Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1#ifndef _LINUX_MMZONE_H
2#define _LINUX_MMZONE_H
3
4#ifndef __ASSEMBLY__
5#ifndef __GENERATING_BOUNDS_H
6
7#include <linux/spinlock.h>
8#include <linux/list.h>
9#include <linux/wait.h>
10#include <linux/bitops.h>
11#include <linux/cache.h>
12#include <linux/threads.h>
13#include <linux/numa.h>
14#include <linux/init.h>
15#include <linux/seqlock.h>
16#include <linux/nodemask.h>
17#include <linux/pageblock-flags.h>
18#include <linux/page-flags-layout.h>
19#include <linux/atomic.h>
20#include <asm/page.h>
21
22/* Free memory management - zoned buddy allocator. */
23#ifndef CONFIG_FORCE_MAX_ZONEORDER
24#define MAX_ORDER 11
25#else
26#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
27#endif
28#define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
29
30/*
31 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
32 * costly to service. That is between allocation orders which should
33 * coalesce naturally under reasonable reclaim pressure and those which
34 * will not.
35 */
36#define PAGE_ALLOC_COSTLY_ORDER 3
37
38enum {
39 MIGRATE_UNMOVABLE,
40 MIGRATE_MOVABLE,
41 MIGRATE_RECLAIMABLE,
42 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */
43 MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
44#ifdef CONFIG_CMA
45 /*
46 * MIGRATE_CMA migration type is designed to mimic the way
47 * ZONE_MOVABLE works. Only movable pages can be allocated
48 * from MIGRATE_CMA pageblocks and page allocator never
49 * implicitly change migration type of MIGRATE_CMA pageblock.
50 *
51 * The way to use it is to change migratetype of a range of
52 * pageblocks to MIGRATE_CMA which can be done by
53 * __free_pageblock_cma() function. What is important though
54 * is that a range of pageblocks must be aligned to
55 * MAX_ORDER_NR_PAGES should biggest page be bigger then
56 * a single pageblock.
57 */
58 MIGRATE_CMA,
59#endif
60#ifdef CONFIG_MEMORY_ISOLATION
61 MIGRATE_ISOLATE, /* can't allocate from here */
62#endif
63 MIGRATE_TYPES
64};
65
66/* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
67extern char * const migratetype_names[MIGRATE_TYPES];
68
69#ifdef CONFIG_CMA
70# define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
71# define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA)
72#else
73# define is_migrate_cma(migratetype) false
74# define is_migrate_cma_page(_page) false
75#endif
76
77#define for_each_migratetype_order(order, type) \
78 for (order = 0; order < MAX_ORDER; order++) \
79 for (type = 0; type < MIGRATE_TYPES; type++)
80
81extern int page_group_by_mobility_disabled;
82
83#define NR_MIGRATETYPE_BITS (PB_migrate_end - PB_migrate + 1)
84#define MIGRATETYPE_MASK ((1UL << NR_MIGRATETYPE_BITS) - 1)
85
86#define get_pageblock_migratetype(page) \
87 get_pfnblock_flags_mask(page, page_to_pfn(page), \
88 PB_migrate_end, MIGRATETYPE_MASK)
89
90struct free_area {
91 struct list_head free_list[MIGRATE_TYPES];
92 unsigned long nr_free;
93};
94
95struct pglist_data;
96
97/*
98 * zone->lock and the zone lru_lock are two of the hottest locks in the kernel.
99 * So add a wild amount of padding here to ensure that they fall into separate
100 * cachelines. There are very few zone structures in the machine, so space
101 * consumption is not a concern here.
102 */
103#if defined(CONFIG_SMP)
104struct zone_padding {
105 char x[0];
106} ____cacheline_internodealigned_in_smp;
107#define ZONE_PADDING(name) struct zone_padding name;
108#else
109#define ZONE_PADDING(name)
110#endif
111
112enum zone_stat_item {
113 /* First 128 byte cacheline (assuming 64 bit words) */
114 NR_FREE_PAGES,
115 NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */
116 NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE,
117 NR_ZONE_ACTIVE_ANON,
118 NR_ZONE_INACTIVE_FILE,
119 NR_ZONE_ACTIVE_FILE,
120 NR_ZONE_UNEVICTABLE,
121 NR_ZONE_WRITE_PENDING, /* Count of dirty, writeback and unstable pages */
122 NR_MLOCK, /* mlock()ed pages found and moved off LRU */
123 NR_SLAB_RECLAIMABLE,
124 NR_SLAB_UNRECLAIMABLE,
125 NR_PAGETABLE, /* used for pagetables */
126 NR_KERNEL_STACK_KB, /* measured in KiB */
127 /* Second 128 byte cacheline */
128 NR_BOUNCE,
129#if IS_ENABLED(CONFIG_ZSMALLOC)
130 NR_ZSPAGES, /* allocated in zsmalloc */
131#endif
132#ifdef CONFIG_NUMA
133 NUMA_HIT, /* allocated in intended node */
134 NUMA_MISS, /* allocated in non intended node */
135 NUMA_FOREIGN, /* was intended here, hit elsewhere */
136 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
137 NUMA_LOCAL, /* allocation from local node */
138 NUMA_OTHER, /* allocation from other node */
139#endif
140 NR_FREE_CMA_PAGES,
141 NR_VM_ZONE_STAT_ITEMS };
142
143enum node_stat_item {
144 NR_LRU_BASE,
145 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
146 NR_ACTIVE_ANON, /* " " " " " */
147 NR_INACTIVE_FILE, /* " " " " " */
148 NR_ACTIVE_FILE, /* " " " " " */
149 NR_UNEVICTABLE, /* " " " " " */
150 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */
151 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */
152 NR_PAGES_SCANNED, /* pages scanned since last reclaim */
153 WORKINGSET_REFAULT,
154 WORKINGSET_ACTIVATE,
155 WORKINGSET_NODERECLAIM,
156 NR_ANON_MAPPED, /* Mapped anonymous pages */
157 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
158 only modified from process context */
159 NR_FILE_PAGES,
160 NR_FILE_DIRTY,
161 NR_WRITEBACK,
162 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */
163 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */
164 NR_SHMEM_THPS,
165 NR_SHMEM_PMDMAPPED,
166 NR_ANON_THPS,
167 NR_UNSTABLE_NFS, /* NFS unstable pages */
168 NR_VMSCAN_WRITE,
169 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */
170 NR_DIRTIED, /* page dirtyings since bootup */
171 NR_WRITTEN, /* page writings since bootup */
172 NR_VM_NODE_STAT_ITEMS
173};
174
175/*
176 * We do arithmetic on the LRU lists in various places in the code,
177 * so it is important to keep the active lists LRU_ACTIVE higher in
178 * the array than the corresponding inactive lists, and to keep
179 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
180 *
181 * This has to be kept in sync with the statistics in zone_stat_item
182 * above and the descriptions in vmstat_text in mm/vmstat.c
183 */
184#define LRU_BASE 0
185#define LRU_ACTIVE 1
186#define LRU_FILE 2
187
188enum lru_list {
189 LRU_INACTIVE_ANON = LRU_BASE,
190 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
191 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
192 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
193 LRU_UNEVICTABLE,
194 NR_LRU_LISTS
195};
196
197#define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
198
199#define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
200
201static inline int is_file_lru(enum lru_list lru)
202{
203 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
204}
205
206static inline int is_active_lru(enum lru_list lru)
207{
208 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
209}
210
211struct zone_reclaim_stat {
212 /*
213 * The pageout code in vmscan.c keeps track of how many of the
214 * mem/swap backed and file backed pages are referenced.
215 * The higher the rotated/scanned ratio, the more valuable
216 * that cache is.
217 *
218 * The anon LRU stats live in [0], file LRU stats in [1]
219 */
220 unsigned long recent_rotated[2];
221 unsigned long recent_scanned[2];
222};
223
224struct lruvec {
225 struct list_head lists[NR_LRU_LISTS];
226 struct zone_reclaim_stat reclaim_stat;
227 /* Evictions & activations on the inactive file list */
228 atomic_long_t inactive_age;
229#ifdef CONFIG_MEMCG
230 struct pglist_data *pgdat;
231#endif
232};
233
234/* Mask used at gathering information at once (see memcontrol.c) */
235#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
236#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
237#define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
238
239/* Isolate unmapped file */
240#define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x2)
241/* Isolate for asynchronous migration */
242#define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4)
243/* Isolate unevictable pages */
244#define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8)
245
246/* LRU Isolation modes. */
247typedef unsigned __bitwise isolate_mode_t;
248
249enum zone_watermarks {
250 WMARK_MIN,
251 WMARK_LOW,
252 WMARK_HIGH,
253 NR_WMARK
254};
255
256#define min_wmark_pages(z) (z->watermark[WMARK_MIN])
257#define low_wmark_pages(z) (z->watermark[WMARK_LOW])
258#define high_wmark_pages(z) (z->watermark[WMARK_HIGH])
259
260struct per_cpu_pages {
261 int count; /* number of pages in the list */
262 int high; /* high watermark, emptying needed */
263 int batch; /* chunk size for buddy add/remove */
264
265 /* Lists of pages, one per migrate type stored on the pcp-lists */
266 struct list_head lists[MIGRATE_PCPTYPES];
267};
268
269struct per_cpu_pageset {
270 struct per_cpu_pages pcp;
271#ifdef CONFIG_NUMA
272 s8 expire;
273#endif
274#ifdef CONFIG_SMP
275 s8 stat_threshold;
276 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
277#endif
278};
279
280struct per_cpu_nodestat {
281 s8 stat_threshold;
282 s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS];
283};
284
285#endif /* !__GENERATING_BOUNDS.H */
286
287enum zone_type {
288#ifdef CONFIG_ZONE_DMA
289 /*
290 * ZONE_DMA is used when there are devices that are not able
291 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
292 * carve out the portion of memory that is needed for these devices.
293 * The range is arch specific.
294 *
295 * Some examples
296 *
297 * Architecture Limit
298 * ---------------------------
299 * parisc, ia64, sparc <4G
300 * s390 <2G
301 * arm Various
302 * alpha Unlimited or 0-16MB.
303 *
304 * i386, x86_64 and multiple other arches
305 * <16M.
306 */
307 ZONE_DMA,
308#endif
309#ifdef CONFIG_ZONE_DMA32
310 /*
311 * x86_64 needs two ZONE_DMAs because it supports devices that are
312 * only able to do DMA to the lower 16M but also 32 bit devices that
313 * can only do DMA areas below 4G.
314 */
315 ZONE_DMA32,
316#endif
317 /*
318 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
319 * performed on pages in ZONE_NORMAL if the DMA devices support
320 * transfers to all addressable memory.
321 */
322 ZONE_NORMAL,
323#ifdef CONFIG_HIGHMEM
324 /*
325 * A memory area that is only addressable by the kernel through
326 * mapping portions into its own address space. This is for example
327 * used by i386 to allow the kernel to address the memory beyond
328 * 900MB. The kernel will set up special mappings (page
329 * table entries on i386) for each page that the kernel needs to
330 * access.
331 */
332 ZONE_HIGHMEM,
333#endif
334 ZONE_MOVABLE,
335#ifdef CONFIG_ZONE_DEVICE
336 ZONE_DEVICE,
337#endif
338 __MAX_NR_ZONES
339
340};
341
342#ifndef __GENERATING_BOUNDS_H
343
344struct zone {
345 /* Read-mostly fields */
346
347 /* zone watermarks, access with *_wmark_pages(zone) macros */
348 unsigned long watermark[NR_WMARK];
349
350 unsigned long nr_reserved_highatomic;
351
352 /*
353 * We don't know if the memory that we're going to allocate will be
354 * freeable or/and it will be released eventually, so to avoid totally
355 * wasting several GB of ram we must reserve some of the lower zone
356 * memory (otherwise we risk to run OOM on the lower zones despite
357 * there being tons of freeable ram on the higher zones). This array is
358 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
359 * changes.
360 */
361 long lowmem_reserve[MAX_NR_ZONES];
362
363#ifdef CONFIG_NUMA
364 int node;
365#endif
366 struct pglist_data *zone_pgdat;
367 struct per_cpu_pageset __percpu *pageset;
368
369#ifndef CONFIG_SPARSEMEM
370 /*
371 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
372 * In SPARSEMEM, this map is stored in struct mem_section
373 */
374 unsigned long *pageblock_flags;
375#endif /* CONFIG_SPARSEMEM */
376
377 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
378 unsigned long zone_start_pfn;
379
380 /*
381 * spanned_pages is the total pages spanned by the zone, including
382 * holes, which is calculated as:
383 * spanned_pages = zone_end_pfn - zone_start_pfn;
384 *
385 * present_pages is physical pages existing within the zone, which
386 * is calculated as:
387 * present_pages = spanned_pages - absent_pages(pages in holes);
388 *
389 * managed_pages is present pages managed by the buddy system, which
390 * is calculated as (reserved_pages includes pages allocated by the
391 * bootmem allocator):
392 * managed_pages = present_pages - reserved_pages;
393 *
394 * So present_pages may be used by memory hotplug or memory power
395 * management logic to figure out unmanaged pages by checking
396 * (present_pages - managed_pages). And managed_pages should be used
397 * by page allocator and vm scanner to calculate all kinds of watermarks
398 * and thresholds.
399 *
400 * Locking rules:
401 *
402 * zone_start_pfn and spanned_pages are protected by span_seqlock.
403 * It is a seqlock because it has to be read outside of zone->lock,
404 * and it is done in the main allocator path. But, it is written
405 * quite infrequently.
406 *
407 * The span_seq lock is declared along with zone->lock because it is
408 * frequently read in proximity to zone->lock. It's good to
409 * give them a chance of being in the same cacheline.
410 *
411 * Write access to present_pages at runtime should be protected by
412 * mem_hotplug_begin/end(). Any reader who can't tolerant drift of
413 * present_pages should get_online_mems() to get a stable value.
414 *
415 * Read access to managed_pages should be safe because it's unsigned
416 * long. Write access to zone->managed_pages and totalram_pages are
417 * protected by managed_page_count_lock at runtime. Idealy only
418 * adjust_managed_page_count() should be used instead of directly
419 * touching zone->managed_pages and totalram_pages.
420 */
421 unsigned long managed_pages;
422 unsigned long spanned_pages;
423 unsigned long present_pages;
424
425 const char *name;
426
427#ifdef CONFIG_MEMORY_ISOLATION
428 /*
429 * Number of isolated pageblock. It is used to solve incorrect
430 * freepage counting problem due to racy retrieving migratetype
431 * of pageblock. Protected by zone->lock.
432 */
433 unsigned long nr_isolate_pageblock;
434#endif
435
436#ifdef CONFIG_MEMORY_HOTPLUG
437 /* see spanned/present_pages for more description */
438 seqlock_t span_seqlock;
439#endif
440
441 int initialized;
442
443 /* Write-intensive fields used from the page allocator */
444 ZONE_PADDING(_pad1_)
445
446 /* free areas of different sizes */
447 struct free_area free_area[MAX_ORDER];
448
449 /* zone flags, see below */
450 unsigned long flags;
451
452 /* Primarily protects free_area */
453 spinlock_t lock;
454
455 /* Write-intensive fields used by compaction and vmstats. */
456 ZONE_PADDING(_pad2_)
457
458 /*
459 * When free pages are below this point, additional steps are taken
460 * when reading the number of free pages to avoid per-cpu counter
461 * drift allowing watermarks to be breached
462 */
463 unsigned long percpu_drift_mark;
464
465#if defined CONFIG_COMPACTION || defined CONFIG_CMA
466 /* pfn where compaction free scanner should start */
467 unsigned long compact_cached_free_pfn;
468 /* pfn where async and sync compaction migration scanner should start */
469 unsigned long compact_cached_migrate_pfn[2];
470#endif
471
472#ifdef CONFIG_COMPACTION
473 /*
474 * On compaction failure, 1<<compact_defer_shift compactions
475 * are skipped before trying again. The number attempted since
476 * last failure is tracked with compact_considered.
477 */
478 unsigned int compact_considered;
479 unsigned int compact_defer_shift;
480 int compact_order_failed;
481#endif
482
483#if defined CONFIG_COMPACTION || defined CONFIG_CMA
484 /* Set to true when the PG_migrate_skip bits should be cleared */
485 bool compact_blockskip_flush;
486#endif
487
488 bool contiguous;
489
490 ZONE_PADDING(_pad3_)
491 /* Zone statistics */
492 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
493} ____cacheline_internodealigned_in_smp;
494
495enum pgdat_flags {
496 PGDAT_CONGESTED, /* pgdat has many dirty pages backed by
497 * a congested BDI
498 */
499 PGDAT_DIRTY, /* reclaim scanning has recently found
500 * many dirty file pages at the tail
501 * of the LRU.
502 */
503 PGDAT_WRITEBACK, /* reclaim scanning has recently found
504 * many pages under writeback
505 */
506 PGDAT_RECLAIM_LOCKED, /* prevents concurrent reclaim */
507};
508
509static inline unsigned long zone_end_pfn(const struct zone *zone)
510{
511 return zone->zone_start_pfn + zone->spanned_pages;
512}
513
514static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
515{
516 return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
517}
518
519static inline bool zone_is_initialized(struct zone *zone)
520{
521 return zone->initialized;
522}
523
524static inline bool zone_is_empty(struct zone *zone)
525{
526 return zone->spanned_pages == 0;
527}
528
529/*
530 * The "priority" of VM scanning is how much of the queues we will scan in one
531 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
532 * queues ("queue_length >> 12") during an aging round.
533 */
534#define DEF_PRIORITY 12
535
536/* Maximum number of zones on a zonelist */
537#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
538
539enum {
540 ZONELIST_FALLBACK, /* zonelist with fallback */
541#ifdef CONFIG_NUMA
542 /*
543 * The NUMA zonelists are doubled because we need zonelists that
544 * restrict the allocations to a single node for __GFP_THISNODE.
545 */
546 ZONELIST_NOFALLBACK, /* zonelist without fallback (__GFP_THISNODE) */
547#endif
548 MAX_ZONELISTS
549};
550
551/*
552 * This struct contains information about a zone in a zonelist. It is stored
553 * here to avoid dereferences into large structures and lookups of tables
554 */
555struct zoneref {
556 struct zone *zone; /* Pointer to actual zone */
557 int zone_idx; /* zone_idx(zoneref->zone) */
558};
559
560/*
561 * One allocation request operates on a zonelist. A zonelist
562 * is a list of zones, the first one is the 'goal' of the
563 * allocation, the other zones are fallback zones, in decreasing
564 * priority.
565 *
566 * To speed the reading of the zonelist, the zonerefs contain the zone index
567 * of the entry being read. Helper functions to access information given
568 * a struct zoneref are
569 *
570 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs
571 * zonelist_zone_idx() - Return the index of the zone for an entry
572 * zonelist_node_idx() - Return the index of the node for an entry
573 */
574struct zonelist {
575 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
576};
577
578#ifndef CONFIG_DISCONTIGMEM
579/* The array of struct pages - for discontigmem use pgdat->lmem_map */
580extern struct page *mem_map;
581#endif
582
583/*
584 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
585 * (mostly NUMA machines?) to denote a higher-level memory zone than the
586 * zone denotes.
587 *
588 * On NUMA machines, each NUMA node would have a pg_data_t to describe
589 * it's memory layout.
590 *
591 * Memory statistics and page replacement data structures are maintained on a
592 * per-zone basis.
593 */
594struct bootmem_data;
595typedef struct pglist_data {
596 struct zone node_zones[MAX_NR_ZONES];
597 struct zonelist node_zonelists[MAX_ZONELISTS];
598 int nr_zones;
599#ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */
600 struct page *node_mem_map;
601#ifdef CONFIG_PAGE_EXTENSION
602 struct page_ext *node_page_ext;
603#endif
604#endif
605#ifndef CONFIG_NO_BOOTMEM
606 struct bootmem_data *bdata;
607#endif
608#ifdef CONFIG_MEMORY_HOTPLUG
609 /*
610 * Must be held any time you expect node_start_pfn, node_present_pages
611 * or node_spanned_pages stay constant. Holding this will also
612 * guarantee that any pfn_valid() stays that way.
613 *
614 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
615 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG.
616 *
617 * Nests above zone->lock and zone->span_seqlock
618 */
619 spinlock_t node_size_lock;
620#endif
621 unsigned long node_start_pfn;
622 unsigned long node_present_pages; /* total number of physical pages */
623 unsigned long node_spanned_pages; /* total size of physical page
624 range, including holes */
625 int node_id;
626 wait_queue_head_t kswapd_wait;
627 wait_queue_head_t pfmemalloc_wait;
628 struct task_struct *kswapd; /* Protected by
629 mem_hotplug_begin/end() */
630 int kswapd_order;
631 enum zone_type kswapd_classzone_idx;
632
633#ifdef CONFIG_COMPACTION
634 int kcompactd_max_order;
635 enum zone_type kcompactd_classzone_idx;
636 wait_queue_head_t kcompactd_wait;
637 struct task_struct *kcompactd;
638#endif
639#ifdef CONFIG_NUMA_BALANCING
640 /* Lock serializing the migrate rate limiting window */
641 spinlock_t numabalancing_migrate_lock;
642
643 /* Rate limiting time interval */
644 unsigned long numabalancing_migrate_next_window;
645
646 /* Number of pages migrated during the rate limiting time interval */
647 unsigned long numabalancing_migrate_nr_pages;
648#endif
649 /*
650 * This is a per-node reserve of pages that are not available
651 * to userspace allocations.
652 */
653 unsigned long totalreserve_pages;
654
655#ifdef CONFIG_NUMA
656 /*
657 * zone reclaim becomes active if more unmapped pages exist.
658 */
659 unsigned long min_unmapped_pages;
660 unsigned long min_slab_pages;
661#endif /* CONFIG_NUMA */
662
663 /* Write-intensive fields used by page reclaim */
664 ZONE_PADDING(_pad1_)
665 spinlock_t lru_lock;
666
667#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
668 /*
669 * If memory initialisation on large machines is deferred then this
670 * is the first PFN that needs to be initialised.
671 */
672 unsigned long first_deferred_pfn;
673#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
674
675#ifdef CONFIG_TRANSPARENT_HUGEPAGE
676 spinlock_t split_queue_lock;
677 struct list_head split_queue;
678 unsigned long split_queue_len;
679#endif
680
681 /* Fields commonly accessed by the page reclaim scanner */
682 struct lruvec lruvec;
683
684 /*
685 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
686 * this node's LRU. Maintained by the pageout code.
687 */
688 unsigned int inactive_ratio;
689
690 unsigned long flags;
691
692 ZONE_PADDING(_pad2_)
693
694 /* Per-node vmstats */
695 struct per_cpu_nodestat __percpu *per_cpu_nodestats;
696 atomic_long_t vm_stat[NR_VM_NODE_STAT_ITEMS];
697} pg_data_t;
698
699#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
700#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
701#ifdef CONFIG_FLAT_NODE_MEM_MAP
702#define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
703#else
704#define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
705#endif
706#define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
707
708#define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn)
709#define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
710static inline spinlock_t *zone_lru_lock(struct zone *zone)
711{
712 return &zone->zone_pgdat->lru_lock;
713}
714
715static inline struct lruvec *node_lruvec(struct pglist_data *pgdat)
716{
717 return &pgdat->lruvec;
718}
719
720static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
721{
722 return pgdat->node_start_pfn + pgdat->node_spanned_pages;
723}
724
725static inline bool pgdat_is_empty(pg_data_t *pgdat)
726{
727 return !pgdat->node_start_pfn && !pgdat->node_spanned_pages;
728}
729
730static inline int zone_id(const struct zone *zone)
731{
732 struct pglist_data *pgdat = zone->zone_pgdat;
733
734 return zone - pgdat->node_zones;
735}
736
737#ifdef CONFIG_ZONE_DEVICE
738static inline bool is_dev_zone(const struct zone *zone)
739{
740 return zone_id(zone) == ZONE_DEVICE;
741}
742#else
743static inline bool is_dev_zone(const struct zone *zone)
744{
745 return false;
746}
747#endif
748
749#include <linux/memory_hotplug.h>
750
751extern struct mutex zonelists_mutex;
752void build_all_zonelists(pg_data_t *pgdat, struct zone *zone);
753void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx);
754bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
755 int classzone_idx, unsigned int alloc_flags,
756 long free_pages);
757bool zone_watermark_ok(struct zone *z, unsigned int order,
758 unsigned long mark, int classzone_idx,
759 unsigned int alloc_flags);
760bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
761 unsigned long mark, int classzone_idx);
762enum memmap_context {
763 MEMMAP_EARLY,
764 MEMMAP_HOTPLUG,
765};
766extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
767 unsigned long size);
768
769extern void lruvec_init(struct lruvec *lruvec);
770
771static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec)
772{
773#ifdef CONFIG_MEMCG
774 return lruvec->pgdat;
775#else
776 return container_of(lruvec, struct pglist_data, lruvec);
777#endif
778}
779
780extern unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx);
781
782#ifdef CONFIG_HAVE_MEMORY_PRESENT
783void memory_present(int nid, unsigned long start, unsigned long end);
784#else
785static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
786#endif
787
788#ifdef CONFIG_HAVE_MEMORYLESS_NODES
789int local_memory_node(int node_id);
790#else
791static inline int local_memory_node(int node_id) { return node_id; };
792#endif
793
794#ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
795unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
796#endif
797
798/*
799 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
800 */
801#define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
802
803/*
804 * Returns true if a zone has pages managed by the buddy allocator.
805 * All the reclaim decisions have to use this function rather than
806 * populated_zone(). If the whole zone is reserved then we can easily
807 * end up with populated_zone() && !managed_zone().
808 */
809static inline bool managed_zone(struct zone *zone)
810{
811 return zone->managed_pages;
812}
813
814/* Returns true if a zone has memory */
815static inline bool populated_zone(struct zone *zone)
816{
817 return zone->present_pages;
818}
819
820extern int movable_zone;
821
822#ifdef CONFIG_HIGHMEM
823static inline int zone_movable_is_highmem(void)
824{
825#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
826 return movable_zone == ZONE_HIGHMEM;
827#else
828 return (ZONE_MOVABLE - 1) == ZONE_HIGHMEM;
829#endif
830}
831#endif
832
833static inline int is_highmem_idx(enum zone_type idx)
834{
835#ifdef CONFIG_HIGHMEM
836 return (idx == ZONE_HIGHMEM ||
837 (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
838#else
839 return 0;
840#endif
841}
842
843/**
844 * is_highmem - helper function to quickly check if a struct zone is a
845 * highmem zone or not. This is an attempt to keep references
846 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
847 * @zone - pointer to struct zone variable
848 */
849static inline int is_highmem(struct zone *zone)
850{
851#ifdef CONFIG_HIGHMEM
852 return is_highmem_idx(zone_idx(zone));
853#else
854 return 0;
855#endif
856}
857
858/* These two functions are used to setup the per zone pages min values */
859struct ctl_table;
860int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
861 void __user *, size_t *, loff_t *);
862int watermark_scale_factor_sysctl_handler(struct ctl_table *, int,
863 void __user *, size_t *, loff_t *);
864extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
865int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
866 void __user *, size_t *, loff_t *);
867int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
868 void __user *, size_t *, loff_t *);
869int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
870 void __user *, size_t *, loff_t *);
871int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
872 void __user *, size_t *, loff_t *);
873
874extern int numa_zonelist_order_handler(struct ctl_table *, int,
875 void __user *, size_t *, loff_t *);
876extern char numa_zonelist_order[];
877#define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */
878
879#ifndef CONFIG_NEED_MULTIPLE_NODES
880
881extern struct pglist_data contig_page_data;
882#define NODE_DATA(nid) (&contig_page_data)
883#define NODE_MEM_MAP(nid) mem_map
884
885#else /* CONFIG_NEED_MULTIPLE_NODES */
886
887#include <asm/mmzone.h>
888
889#endif /* !CONFIG_NEED_MULTIPLE_NODES */
890
891extern struct pglist_data *first_online_pgdat(void);
892extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
893extern struct zone *next_zone(struct zone *zone);
894
895/**
896 * for_each_online_pgdat - helper macro to iterate over all online nodes
897 * @pgdat - pointer to a pg_data_t variable
898 */
899#define for_each_online_pgdat(pgdat) \
900 for (pgdat = first_online_pgdat(); \
901 pgdat; \
902 pgdat = next_online_pgdat(pgdat))
903/**
904 * for_each_zone - helper macro to iterate over all memory zones
905 * @zone - pointer to struct zone variable
906 *
907 * The user only needs to declare the zone variable, for_each_zone
908 * fills it in.
909 */
910#define for_each_zone(zone) \
911 for (zone = (first_online_pgdat())->node_zones; \
912 zone; \
913 zone = next_zone(zone))
914
915#define for_each_populated_zone(zone) \
916 for (zone = (first_online_pgdat())->node_zones; \
917 zone; \
918 zone = next_zone(zone)) \
919 if (!populated_zone(zone)) \
920 ; /* do nothing */ \
921 else
922
923static inline struct zone *zonelist_zone(struct zoneref *zoneref)
924{
925 return zoneref->zone;
926}
927
928static inline int zonelist_zone_idx(struct zoneref *zoneref)
929{
930 return zoneref->zone_idx;
931}
932
933static inline int zonelist_node_idx(struct zoneref *zoneref)
934{
935#ifdef CONFIG_NUMA
936 /* zone_to_nid not available in this context */
937 return zoneref->zone->node;
938#else
939 return 0;
940#endif /* CONFIG_NUMA */
941}
942
943struct zoneref *__next_zones_zonelist(struct zoneref *z,
944 enum zone_type highest_zoneidx,
945 nodemask_t *nodes);
946
947/**
948 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
949 * @z - The cursor used as a starting point for the search
950 * @highest_zoneidx - The zone index of the highest zone to return
951 * @nodes - An optional nodemask to filter the zonelist with
952 *
953 * This function returns the next zone at or below a given zone index that is
954 * within the allowed nodemask using a cursor as the starting point for the
955 * search. The zoneref returned is a cursor that represents the current zone
956 * being examined. It should be advanced by one before calling
957 * next_zones_zonelist again.
958 */
959static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
960 enum zone_type highest_zoneidx,
961 nodemask_t *nodes)
962{
963 if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
964 return z;
965 return __next_zones_zonelist(z, highest_zoneidx, nodes);
966}
967
968/**
969 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
970 * @zonelist - The zonelist to search for a suitable zone
971 * @highest_zoneidx - The zone index of the highest zone to return
972 * @nodes - An optional nodemask to filter the zonelist with
973 * @return - Zoneref pointer for the first suitable zone found (see below)
974 *
975 * This function returns the first zone at or below a given zone index that is
976 * within the allowed nodemask. The zoneref returned is a cursor that can be
977 * used to iterate the zonelist with next_zones_zonelist by advancing it by
978 * one before calling.
979 *
980 * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is
981 * never NULL). This may happen either genuinely, or due to concurrent nodemask
982 * update due to cpuset modification.
983 */
984static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
985 enum zone_type highest_zoneidx,
986 nodemask_t *nodes)
987{
988 return next_zones_zonelist(zonelist->_zonerefs,
989 highest_zoneidx, nodes);
990}
991
992/**
993 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
994 * @zone - The current zone in the iterator
995 * @z - The current pointer within zonelist->zones being iterated
996 * @zlist - The zonelist being iterated
997 * @highidx - The zone index of the highest zone to return
998 * @nodemask - Nodemask allowed by the allocator
999 *
1000 * This iterator iterates though all zones at or below a given zone index and
1001 * within a given nodemask
1002 */
1003#define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1004 for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z); \
1005 zone; \
1006 z = next_zones_zonelist(++z, highidx, nodemask), \
1007 zone = zonelist_zone(z))
1008
1009#define for_next_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1010 for (zone = z->zone; \
1011 zone; \
1012 z = next_zones_zonelist(++z, highidx, nodemask), \
1013 zone = zonelist_zone(z))
1014
1015
1016/**
1017 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1018 * @zone - The current zone in the iterator
1019 * @z - The current pointer within zonelist->zones being iterated
1020 * @zlist - The zonelist being iterated
1021 * @highidx - The zone index of the highest zone to return
1022 *
1023 * This iterator iterates though all zones at or below a given zone index.
1024 */
1025#define for_each_zone_zonelist(zone, z, zlist, highidx) \
1026 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
1027
1028#ifdef CONFIG_SPARSEMEM
1029#include <asm/sparsemem.h>
1030#endif
1031
1032#if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
1033 !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1034static inline unsigned long early_pfn_to_nid(unsigned long pfn)
1035{
1036 return 0;
1037}
1038#endif
1039
1040#ifdef CONFIG_FLATMEM
1041#define pfn_to_nid(pfn) (0)
1042#endif
1043
1044#ifdef CONFIG_SPARSEMEM
1045
1046/*
1047 * SECTION_SHIFT #bits space required to store a section #
1048 *
1049 * PA_SECTION_SHIFT physical address to/from section number
1050 * PFN_SECTION_SHIFT pfn to/from section number
1051 */
1052#define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
1053#define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
1054
1055#define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
1056
1057#define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
1058#define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
1059
1060#define SECTION_BLOCKFLAGS_BITS \
1061 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1062
1063#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1064#error Allocator MAX_ORDER exceeds SECTION_SIZE
1065#endif
1066
1067#define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
1068#define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
1069
1070#define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1071#define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK)
1072
1073struct page;
1074struct page_ext;
1075struct mem_section {
1076 /*
1077 * This is, logically, a pointer to an array of struct
1078 * pages. However, it is stored with some other magic.
1079 * (see sparse.c::sparse_init_one_section())
1080 *
1081 * Additionally during early boot we encode node id of
1082 * the location of the section here to guide allocation.
1083 * (see sparse.c::memory_present())
1084 *
1085 * Making it a UL at least makes someone do a cast
1086 * before using it wrong.
1087 */
1088 unsigned long section_mem_map;
1089
1090 /* See declaration of similar field in struct zone */
1091 unsigned long *pageblock_flags;
1092#ifdef CONFIG_PAGE_EXTENSION
1093 /*
1094 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
1095 * section. (see page_ext.h about this.)
1096 */
1097 struct page_ext *page_ext;
1098 unsigned long pad;
1099#endif
1100 /*
1101 * WARNING: mem_section must be a power-of-2 in size for the
1102 * calculation and use of SECTION_ROOT_MASK to make sense.
1103 */
1104};
1105
1106#ifdef CONFIG_SPARSEMEM_EXTREME
1107#define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
1108#else
1109#define SECTIONS_PER_ROOT 1
1110#endif
1111
1112#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
1113#define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1114#define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
1115
1116#ifdef CONFIG_SPARSEMEM_EXTREME
1117extern struct mem_section *mem_section[NR_SECTION_ROOTS];
1118#else
1119extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1120#endif
1121
1122static inline struct mem_section *__nr_to_section(unsigned long nr)
1123{
1124 if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1125 return NULL;
1126 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
1127}
1128extern int __section_nr(struct mem_section* ms);
1129extern unsigned long usemap_size(void);
1130
1131/*
1132 * We use the lower bits of the mem_map pointer to store
1133 * a little bit of information. There should be at least
1134 * 3 bits here due to 32-bit alignment.
1135 */
1136#define SECTION_MARKED_PRESENT (1UL<<0)
1137#define SECTION_HAS_MEM_MAP (1UL<<1)
1138#define SECTION_MAP_LAST_BIT (1UL<<2)
1139#define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
1140#define SECTION_NID_SHIFT 2
1141
1142static inline struct page *__section_mem_map_addr(struct mem_section *section)
1143{
1144 unsigned long map = section->section_mem_map;
1145 map &= SECTION_MAP_MASK;
1146 return (struct page *)map;
1147}
1148
1149static inline int present_section(struct mem_section *section)
1150{
1151 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1152}
1153
1154static inline int present_section_nr(unsigned long nr)
1155{
1156 return present_section(__nr_to_section(nr));
1157}
1158
1159static inline int valid_section(struct mem_section *section)
1160{
1161 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1162}
1163
1164static inline int valid_section_nr(unsigned long nr)
1165{
1166 return valid_section(__nr_to_section(nr));
1167}
1168
1169static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1170{
1171 return __nr_to_section(pfn_to_section_nr(pfn));
1172}
1173
1174#ifndef CONFIG_HAVE_ARCH_PFN_VALID
1175static inline int pfn_valid(unsigned long pfn)
1176{
1177 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1178 return 0;
1179 return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
1180}
1181#endif
1182
1183static inline int pfn_present(unsigned long pfn)
1184{
1185 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1186 return 0;
1187 return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1188}
1189
1190/*
1191 * These are _only_ used during initialisation, therefore they
1192 * can use __initdata ... They could have names to indicate
1193 * this restriction.
1194 */
1195#ifdef CONFIG_NUMA
1196#define pfn_to_nid(pfn) \
1197({ \
1198 unsigned long __pfn_to_nid_pfn = (pfn); \
1199 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
1200})
1201#else
1202#define pfn_to_nid(pfn) (0)
1203#endif
1204
1205#define early_pfn_valid(pfn) pfn_valid(pfn)
1206void sparse_init(void);
1207#else
1208#define sparse_init() do {} while (0)
1209#define sparse_index_init(_sec, _nid) do {} while (0)
1210#endif /* CONFIG_SPARSEMEM */
1211
1212/*
1213 * During memory init memblocks map pfns to nids. The search is expensive and
1214 * this caches recent lookups. The implementation of __early_pfn_to_nid
1215 * may treat start/end as pfns or sections.
1216 */
1217struct mminit_pfnnid_cache {
1218 unsigned long last_start;
1219 unsigned long last_end;
1220 int last_nid;
1221};
1222
1223#ifndef early_pfn_valid
1224#define early_pfn_valid(pfn) (1)
1225#endif
1226
1227void memory_present(int nid, unsigned long start, unsigned long end);
1228unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
1229
1230/*
1231 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1232 * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
1233 * pfn_valid_within() should be used in this case; we optimise this away
1234 * when we have no holes within a MAX_ORDER_NR_PAGES block.
1235 */
1236#ifdef CONFIG_HOLES_IN_ZONE
1237#define pfn_valid_within(pfn) pfn_valid(pfn)
1238#else
1239#define pfn_valid_within(pfn) (1)
1240#endif
1241
1242#ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1243/*
1244 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1245 * associated with it or not. In FLATMEM, it is expected that holes always
1246 * have valid memmap as long as there is valid PFNs either side of the hole.
1247 * In SPARSEMEM, it is assumed that a valid section has a memmap for the
1248 * entire section.
1249 *
1250 * However, an ARM, and maybe other embedded architectures in the future
1251 * free memmap backing holes to save memory on the assumption the memmap is
1252 * never used. The page_zone linkages are then broken even though pfn_valid()
1253 * returns true. A walker of the full memmap must then do this additional
1254 * check to ensure the memmap they are looking at is sane by making sure
1255 * the zone and PFN linkages are still valid. This is expensive, but walkers
1256 * of the full memmap are extremely rare.
1257 */
1258bool memmap_valid_within(unsigned long pfn,
1259 struct page *page, struct zone *zone);
1260#else
1261static inline bool memmap_valid_within(unsigned long pfn,
1262 struct page *page, struct zone *zone)
1263{
1264 return true;
1265}
1266#endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1267
1268#endif /* !__GENERATING_BOUNDS.H */
1269#endif /* !__ASSEMBLY__ */
1270#endif /* _LINUX_MMZONE_H */