at v4.11 81 kB view raw
1#ifndef _LINUX_MM_H 2#define _LINUX_MM_H 3 4#include <linux/errno.h> 5 6#ifdef __KERNEL__ 7 8#include <linux/mmdebug.h> 9#include <linux/gfp.h> 10#include <linux/bug.h> 11#include <linux/list.h> 12#include <linux/mmzone.h> 13#include <linux/rbtree.h> 14#include <linux/atomic.h> 15#include <linux/debug_locks.h> 16#include <linux/mm_types.h> 17#include <linux/range.h> 18#include <linux/pfn.h> 19#include <linux/percpu-refcount.h> 20#include <linux/bit_spinlock.h> 21#include <linux/shrinker.h> 22#include <linux/resource.h> 23#include <linux/page_ext.h> 24#include <linux/err.h> 25#include <linux/page_ref.h> 26 27struct mempolicy; 28struct anon_vma; 29struct anon_vma_chain; 30struct file_ra_state; 31struct user_struct; 32struct writeback_control; 33struct bdi_writeback; 34 35void init_mm_internals(void); 36 37#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */ 38extern unsigned long max_mapnr; 39 40static inline void set_max_mapnr(unsigned long limit) 41{ 42 max_mapnr = limit; 43} 44#else 45static inline void set_max_mapnr(unsigned long limit) { } 46#endif 47 48extern unsigned long totalram_pages; 49extern void * high_memory; 50extern int page_cluster; 51 52#ifdef CONFIG_SYSCTL 53extern int sysctl_legacy_va_layout; 54#else 55#define sysctl_legacy_va_layout 0 56#endif 57 58#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 59extern const int mmap_rnd_bits_min; 60extern const int mmap_rnd_bits_max; 61extern int mmap_rnd_bits __read_mostly; 62#endif 63#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 64extern const int mmap_rnd_compat_bits_min; 65extern const int mmap_rnd_compat_bits_max; 66extern int mmap_rnd_compat_bits __read_mostly; 67#endif 68 69#include <asm/page.h> 70#include <asm/pgtable.h> 71#include <asm/processor.h> 72 73#ifndef __pa_symbol 74#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 75#endif 76 77#ifndef page_to_virt 78#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x))) 79#endif 80 81#ifndef lm_alias 82#define lm_alias(x) __va(__pa_symbol(x)) 83#endif 84 85/* 86 * To prevent common memory management code establishing 87 * a zero page mapping on a read fault. 88 * This macro should be defined within <asm/pgtable.h>. 89 * s390 does this to prevent multiplexing of hardware bits 90 * related to the physical page in case of virtualization. 91 */ 92#ifndef mm_forbids_zeropage 93#define mm_forbids_zeropage(X) (0) 94#endif 95 96/* 97 * Default maximum number of active map areas, this limits the number of vmas 98 * per mm struct. Users can overwrite this number by sysctl but there is a 99 * problem. 100 * 101 * When a program's coredump is generated as ELF format, a section is created 102 * per a vma. In ELF, the number of sections is represented in unsigned short. 103 * This means the number of sections should be smaller than 65535 at coredump. 104 * Because the kernel adds some informative sections to a image of program at 105 * generating coredump, we need some margin. The number of extra sections is 106 * 1-3 now and depends on arch. We use "5" as safe margin, here. 107 * 108 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is 109 * not a hard limit any more. Although some userspace tools can be surprised by 110 * that. 111 */ 112#define MAPCOUNT_ELF_CORE_MARGIN (5) 113#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 114 115extern int sysctl_max_map_count; 116 117extern unsigned long sysctl_user_reserve_kbytes; 118extern unsigned long sysctl_admin_reserve_kbytes; 119 120extern int sysctl_overcommit_memory; 121extern int sysctl_overcommit_ratio; 122extern unsigned long sysctl_overcommit_kbytes; 123 124extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *, 125 size_t *, loff_t *); 126extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *, 127 size_t *, loff_t *); 128 129#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 130 131/* to align the pointer to the (next) page boundary */ 132#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 133 134/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 135#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE) 136 137/* 138 * Linux kernel virtual memory manager primitives. 139 * The idea being to have a "virtual" mm in the same way 140 * we have a virtual fs - giving a cleaner interface to the 141 * mm details, and allowing different kinds of memory mappings 142 * (from shared memory to executable loading to arbitrary 143 * mmap() functions). 144 */ 145 146extern struct kmem_cache *vm_area_cachep; 147 148#ifndef CONFIG_MMU 149extern struct rb_root nommu_region_tree; 150extern struct rw_semaphore nommu_region_sem; 151 152extern unsigned int kobjsize(const void *objp); 153#endif 154 155/* 156 * vm_flags in vm_area_struct, see mm_types.h. 157 * When changing, update also include/trace/events/mmflags.h 158 */ 159#define VM_NONE 0x00000000 160 161#define VM_READ 0x00000001 /* currently active flags */ 162#define VM_WRITE 0x00000002 163#define VM_EXEC 0x00000004 164#define VM_SHARED 0x00000008 165 166/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 167#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 168#define VM_MAYWRITE 0x00000020 169#define VM_MAYEXEC 0x00000040 170#define VM_MAYSHARE 0x00000080 171 172#define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 173#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */ 174#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 175#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 176#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */ 177 178#define VM_LOCKED 0x00002000 179#define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 180 181 /* Used by sys_madvise() */ 182#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 183#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 184 185#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 186#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 187#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */ 188#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 189#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 190#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 191#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 192#define VM_ARCH_2 0x02000000 193#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 194 195#ifdef CONFIG_MEM_SOFT_DIRTY 196# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 197#else 198# define VM_SOFTDIRTY 0 199#endif 200 201#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 202#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 203#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 204#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 205 206#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS 207#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */ 208#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */ 209#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */ 210#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */ 211#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0) 212#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1) 213#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2) 214#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3) 215#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */ 216 217#if defined(CONFIG_X86) 218# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 219#if defined (CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS) 220# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0 221# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */ 222# define VM_PKEY_BIT1 VM_HIGH_ARCH_1 223# define VM_PKEY_BIT2 VM_HIGH_ARCH_2 224# define VM_PKEY_BIT3 VM_HIGH_ARCH_3 225#endif 226#elif defined(CONFIG_PPC) 227# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 228#elif defined(CONFIG_PARISC) 229# define VM_GROWSUP VM_ARCH_1 230#elif defined(CONFIG_METAG) 231# define VM_GROWSUP VM_ARCH_1 232#elif defined(CONFIG_IA64) 233# define VM_GROWSUP VM_ARCH_1 234#elif !defined(CONFIG_MMU) 235# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 236#endif 237 238#if defined(CONFIG_X86) 239/* MPX specific bounds table or bounds directory */ 240# define VM_MPX VM_ARCH_2 241#endif 242 243#ifndef VM_GROWSUP 244# define VM_GROWSUP VM_NONE 245#endif 246 247/* Bits set in the VMA until the stack is in its final location */ 248#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) 249 250#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 251#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 252#endif 253 254#ifdef CONFIG_STACK_GROWSUP 255#define VM_STACK VM_GROWSUP 256#else 257#define VM_STACK VM_GROWSDOWN 258#endif 259 260#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 261 262/* 263 * Special vmas that are non-mergable, non-mlock()able. 264 * Note: mm/huge_memory.c VM_NO_THP depends on this definition. 265 */ 266#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 267 268/* This mask defines which mm->def_flags a process can inherit its parent */ 269#define VM_INIT_DEF_MASK VM_NOHUGEPAGE 270 271/* This mask is used to clear all the VMA flags used by mlock */ 272#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT)) 273 274/* 275 * mapping from the currently active vm_flags protection bits (the 276 * low four bits) to a page protection mask.. 277 */ 278extern pgprot_t protection_map[16]; 279 280#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */ 281#define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */ 282#define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */ 283#define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */ 284#define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */ 285#define FAULT_FLAG_TRIED 0x20 /* Second try */ 286#define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */ 287#define FAULT_FLAG_REMOTE 0x80 /* faulting for non current tsk/mm */ 288#define FAULT_FLAG_INSTRUCTION 0x100 /* The fault was during an instruction fetch */ 289 290#define FAULT_FLAG_TRACE \ 291 { FAULT_FLAG_WRITE, "WRITE" }, \ 292 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \ 293 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \ 294 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \ 295 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \ 296 { FAULT_FLAG_TRIED, "TRIED" }, \ 297 { FAULT_FLAG_USER, "USER" }, \ 298 { FAULT_FLAG_REMOTE, "REMOTE" }, \ 299 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" } 300 301/* 302 * vm_fault is filled by the the pagefault handler and passed to the vma's 303 * ->fault function. The vma's ->fault is responsible for returning a bitmask 304 * of VM_FAULT_xxx flags that give details about how the fault was handled. 305 * 306 * MM layer fills up gfp_mask for page allocations but fault handler might 307 * alter it if its implementation requires a different allocation context. 308 * 309 * pgoff should be used in favour of virtual_address, if possible. 310 */ 311struct vm_fault { 312 struct vm_area_struct *vma; /* Target VMA */ 313 unsigned int flags; /* FAULT_FLAG_xxx flags */ 314 gfp_t gfp_mask; /* gfp mask to be used for allocations */ 315 pgoff_t pgoff; /* Logical page offset based on vma */ 316 unsigned long address; /* Faulting virtual address */ 317 pmd_t *pmd; /* Pointer to pmd entry matching 318 * the 'address' */ 319 pud_t *pud; /* Pointer to pud entry matching 320 * the 'address' 321 */ 322 pte_t orig_pte; /* Value of PTE at the time of fault */ 323 324 struct page *cow_page; /* Page handler may use for COW fault */ 325 struct mem_cgroup *memcg; /* Cgroup cow_page belongs to */ 326 struct page *page; /* ->fault handlers should return a 327 * page here, unless VM_FAULT_NOPAGE 328 * is set (which is also implied by 329 * VM_FAULT_ERROR). 330 */ 331 /* These three entries are valid only while holding ptl lock */ 332 pte_t *pte; /* Pointer to pte entry matching 333 * the 'address'. NULL if the page 334 * table hasn't been allocated. 335 */ 336 spinlock_t *ptl; /* Page table lock. 337 * Protects pte page table if 'pte' 338 * is not NULL, otherwise pmd. 339 */ 340 pgtable_t prealloc_pte; /* Pre-allocated pte page table. 341 * vm_ops->map_pages() calls 342 * alloc_set_pte() from atomic context. 343 * do_fault_around() pre-allocates 344 * page table to avoid allocation from 345 * atomic context. 346 */ 347}; 348 349/* page entry size for vm->huge_fault() */ 350enum page_entry_size { 351 PE_SIZE_PTE = 0, 352 PE_SIZE_PMD, 353 PE_SIZE_PUD, 354}; 355 356/* 357 * These are the virtual MM functions - opening of an area, closing and 358 * unmapping it (needed to keep files on disk up-to-date etc), pointer 359 * to the functions called when a no-page or a wp-page exception occurs. 360 */ 361struct vm_operations_struct { 362 void (*open)(struct vm_area_struct * area); 363 void (*close)(struct vm_area_struct * area); 364 int (*mremap)(struct vm_area_struct * area); 365 int (*fault)(struct vm_fault *vmf); 366 int (*huge_fault)(struct vm_fault *vmf, enum page_entry_size pe_size); 367 void (*map_pages)(struct vm_fault *vmf, 368 pgoff_t start_pgoff, pgoff_t end_pgoff); 369 370 /* notification that a previously read-only page is about to become 371 * writable, if an error is returned it will cause a SIGBUS */ 372 int (*page_mkwrite)(struct vm_fault *vmf); 373 374 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ 375 int (*pfn_mkwrite)(struct vm_fault *vmf); 376 377 /* called by access_process_vm when get_user_pages() fails, typically 378 * for use by special VMAs that can switch between memory and hardware 379 */ 380 int (*access)(struct vm_area_struct *vma, unsigned long addr, 381 void *buf, int len, int write); 382 383 /* Called by the /proc/PID/maps code to ask the vma whether it 384 * has a special name. Returning non-NULL will also cause this 385 * vma to be dumped unconditionally. */ 386 const char *(*name)(struct vm_area_struct *vma); 387 388#ifdef CONFIG_NUMA 389 /* 390 * set_policy() op must add a reference to any non-NULL @new mempolicy 391 * to hold the policy upon return. Caller should pass NULL @new to 392 * remove a policy and fall back to surrounding context--i.e. do not 393 * install a MPOL_DEFAULT policy, nor the task or system default 394 * mempolicy. 395 */ 396 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 397 398 /* 399 * get_policy() op must add reference [mpol_get()] to any policy at 400 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 401 * in mm/mempolicy.c will do this automatically. 402 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 403 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem. 404 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 405 * must return NULL--i.e., do not "fallback" to task or system default 406 * policy. 407 */ 408 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 409 unsigned long addr); 410#endif 411 /* 412 * Called by vm_normal_page() for special PTEs to find the 413 * page for @addr. This is useful if the default behavior 414 * (using pte_page()) would not find the correct page. 415 */ 416 struct page *(*find_special_page)(struct vm_area_struct *vma, 417 unsigned long addr); 418}; 419 420struct mmu_gather; 421struct inode; 422 423#define page_private(page) ((page)->private) 424#define set_page_private(page, v) ((page)->private = (v)) 425 426#if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE) 427static inline int pmd_devmap(pmd_t pmd) 428{ 429 return 0; 430} 431static inline int pud_devmap(pud_t pud) 432{ 433 return 0; 434} 435#endif 436 437/* 438 * FIXME: take this include out, include page-flags.h in 439 * files which need it (119 of them) 440 */ 441#include <linux/page-flags.h> 442#include <linux/huge_mm.h> 443 444/* 445 * Methods to modify the page usage count. 446 * 447 * What counts for a page usage: 448 * - cache mapping (page->mapping) 449 * - private data (page->private) 450 * - page mapped in a task's page tables, each mapping 451 * is counted separately 452 * 453 * Also, many kernel routines increase the page count before a critical 454 * routine so they can be sure the page doesn't go away from under them. 455 */ 456 457/* 458 * Drop a ref, return true if the refcount fell to zero (the page has no users) 459 */ 460static inline int put_page_testzero(struct page *page) 461{ 462 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 463 return page_ref_dec_and_test(page); 464} 465 466/* 467 * Try to grab a ref unless the page has a refcount of zero, return false if 468 * that is the case. 469 * This can be called when MMU is off so it must not access 470 * any of the virtual mappings. 471 */ 472static inline int get_page_unless_zero(struct page *page) 473{ 474 return page_ref_add_unless(page, 1, 0); 475} 476 477extern int page_is_ram(unsigned long pfn); 478 479enum { 480 REGION_INTERSECTS, 481 REGION_DISJOINT, 482 REGION_MIXED, 483}; 484 485int region_intersects(resource_size_t offset, size_t size, unsigned long flags, 486 unsigned long desc); 487 488/* Support for virtually mapped pages */ 489struct page *vmalloc_to_page(const void *addr); 490unsigned long vmalloc_to_pfn(const void *addr); 491 492/* 493 * Determine if an address is within the vmalloc range 494 * 495 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 496 * is no special casing required. 497 */ 498static inline bool is_vmalloc_addr(const void *x) 499{ 500#ifdef CONFIG_MMU 501 unsigned long addr = (unsigned long)x; 502 503 return addr >= VMALLOC_START && addr < VMALLOC_END; 504#else 505 return false; 506#endif 507} 508#ifdef CONFIG_MMU 509extern int is_vmalloc_or_module_addr(const void *x); 510#else 511static inline int is_vmalloc_or_module_addr(const void *x) 512{ 513 return 0; 514} 515#endif 516 517extern void kvfree(const void *addr); 518 519static inline atomic_t *compound_mapcount_ptr(struct page *page) 520{ 521 return &page[1].compound_mapcount; 522} 523 524static inline int compound_mapcount(struct page *page) 525{ 526 VM_BUG_ON_PAGE(!PageCompound(page), page); 527 page = compound_head(page); 528 return atomic_read(compound_mapcount_ptr(page)) + 1; 529} 530 531/* 532 * The atomic page->_mapcount, starts from -1: so that transitions 533 * both from it and to it can be tracked, using atomic_inc_and_test 534 * and atomic_add_negative(-1). 535 */ 536static inline void page_mapcount_reset(struct page *page) 537{ 538 atomic_set(&(page)->_mapcount, -1); 539} 540 541int __page_mapcount(struct page *page); 542 543static inline int page_mapcount(struct page *page) 544{ 545 VM_BUG_ON_PAGE(PageSlab(page), page); 546 547 if (unlikely(PageCompound(page))) 548 return __page_mapcount(page); 549 return atomic_read(&page->_mapcount) + 1; 550} 551 552#ifdef CONFIG_TRANSPARENT_HUGEPAGE 553int total_mapcount(struct page *page); 554int page_trans_huge_mapcount(struct page *page, int *total_mapcount); 555#else 556static inline int total_mapcount(struct page *page) 557{ 558 return page_mapcount(page); 559} 560static inline int page_trans_huge_mapcount(struct page *page, 561 int *total_mapcount) 562{ 563 int mapcount = page_mapcount(page); 564 if (total_mapcount) 565 *total_mapcount = mapcount; 566 return mapcount; 567} 568#endif 569 570static inline struct page *virt_to_head_page(const void *x) 571{ 572 struct page *page = virt_to_page(x); 573 574 return compound_head(page); 575} 576 577void __put_page(struct page *page); 578 579void put_pages_list(struct list_head *pages); 580 581void split_page(struct page *page, unsigned int order); 582 583/* 584 * Compound pages have a destructor function. Provide a 585 * prototype for that function and accessor functions. 586 * These are _only_ valid on the head of a compound page. 587 */ 588typedef void compound_page_dtor(struct page *); 589 590/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */ 591enum compound_dtor_id { 592 NULL_COMPOUND_DTOR, 593 COMPOUND_PAGE_DTOR, 594#ifdef CONFIG_HUGETLB_PAGE 595 HUGETLB_PAGE_DTOR, 596#endif 597#ifdef CONFIG_TRANSPARENT_HUGEPAGE 598 TRANSHUGE_PAGE_DTOR, 599#endif 600 NR_COMPOUND_DTORS, 601}; 602extern compound_page_dtor * const compound_page_dtors[]; 603 604static inline void set_compound_page_dtor(struct page *page, 605 enum compound_dtor_id compound_dtor) 606{ 607 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page); 608 page[1].compound_dtor = compound_dtor; 609} 610 611static inline compound_page_dtor *get_compound_page_dtor(struct page *page) 612{ 613 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page); 614 return compound_page_dtors[page[1].compound_dtor]; 615} 616 617static inline unsigned int compound_order(struct page *page) 618{ 619 if (!PageHead(page)) 620 return 0; 621 return page[1].compound_order; 622} 623 624static inline void set_compound_order(struct page *page, unsigned int order) 625{ 626 page[1].compound_order = order; 627} 628 629void free_compound_page(struct page *page); 630 631#ifdef CONFIG_MMU 632/* 633 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 634 * servicing faults for write access. In the normal case, do always want 635 * pte_mkwrite. But get_user_pages can cause write faults for mappings 636 * that do not have writing enabled, when used by access_process_vm. 637 */ 638static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 639{ 640 if (likely(vma->vm_flags & VM_WRITE)) 641 pte = pte_mkwrite(pte); 642 return pte; 643} 644 645int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg, 646 struct page *page); 647int finish_fault(struct vm_fault *vmf); 648int finish_mkwrite_fault(struct vm_fault *vmf); 649#endif 650 651/* 652 * Multiple processes may "see" the same page. E.g. for untouched 653 * mappings of /dev/null, all processes see the same page full of 654 * zeroes, and text pages of executables and shared libraries have 655 * only one copy in memory, at most, normally. 656 * 657 * For the non-reserved pages, page_count(page) denotes a reference count. 658 * page_count() == 0 means the page is free. page->lru is then used for 659 * freelist management in the buddy allocator. 660 * page_count() > 0 means the page has been allocated. 661 * 662 * Pages are allocated by the slab allocator in order to provide memory 663 * to kmalloc and kmem_cache_alloc. In this case, the management of the 664 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 665 * unless a particular usage is carefully commented. (the responsibility of 666 * freeing the kmalloc memory is the caller's, of course). 667 * 668 * A page may be used by anyone else who does a __get_free_page(). 669 * In this case, page_count still tracks the references, and should only 670 * be used through the normal accessor functions. The top bits of page->flags 671 * and page->virtual store page management information, but all other fields 672 * are unused and could be used privately, carefully. The management of this 673 * page is the responsibility of the one who allocated it, and those who have 674 * subsequently been given references to it. 675 * 676 * The other pages (we may call them "pagecache pages") are completely 677 * managed by the Linux memory manager: I/O, buffers, swapping etc. 678 * The following discussion applies only to them. 679 * 680 * A pagecache page contains an opaque `private' member, which belongs to the 681 * page's address_space. Usually, this is the address of a circular list of 682 * the page's disk buffers. PG_private must be set to tell the VM to call 683 * into the filesystem to release these pages. 684 * 685 * A page may belong to an inode's memory mapping. In this case, page->mapping 686 * is the pointer to the inode, and page->index is the file offset of the page, 687 * in units of PAGE_SIZE. 688 * 689 * If pagecache pages are not associated with an inode, they are said to be 690 * anonymous pages. These may become associated with the swapcache, and in that 691 * case PG_swapcache is set, and page->private is an offset into the swapcache. 692 * 693 * In either case (swapcache or inode backed), the pagecache itself holds one 694 * reference to the page. Setting PG_private should also increment the 695 * refcount. The each user mapping also has a reference to the page. 696 * 697 * The pagecache pages are stored in a per-mapping radix tree, which is 698 * rooted at mapping->page_tree, and indexed by offset. 699 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 700 * lists, we instead now tag pages as dirty/writeback in the radix tree. 701 * 702 * All pagecache pages may be subject to I/O: 703 * - inode pages may need to be read from disk, 704 * - inode pages which have been modified and are MAP_SHARED may need 705 * to be written back to the inode on disk, 706 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 707 * modified may need to be swapped out to swap space and (later) to be read 708 * back into memory. 709 */ 710 711/* 712 * The zone field is never updated after free_area_init_core() 713 * sets it, so none of the operations on it need to be atomic. 714 */ 715 716/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */ 717#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 718#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 719#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 720#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH) 721 722/* 723 * Define the bit shifts to access each section. For non-existent 724 * sections we define the shift as 0; that plus a 0 mask ensures 725 * the compiler will optimise away reference to them. 726 */ 727#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 728#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 729#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 730#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0)) 731 732/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 733#ifdef NODE_NOT_IN_PAGE_FLAGS 734#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 735#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ 736 SECTIONS_PGOFF : ZONES_PGOFF) 737#else 738#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 739#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ 740 NODES_PGOFF : ZONES_PGOFF) 741#endif 742 743#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 744 745#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 746#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 747#endif 748 749#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 750#define NODES_MASK ((1UL << NODES_WIDTH) - 1) 751#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 752#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1) 753#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 754 755static inline enum zone_type page_zonenum(const struct page *page) 756{ 757 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 758} 759 760#ifdef CONFIG_ZONE_DEVICE 761void get_zone_device_page(struct page *page); 762void put_zone_device_page(struct page *page); 763static inline bool is_zone_device_page(const struct page *page) 764{ 765 return page_zonenum(page) == ZONE_DEVICE; 766} 767#else 768static inline void get_zone_device_page(struct page *page) 769{ 770} 771static inline void put_zone_device_page(struct page *page) 772{ 773} 774static inline bool is_zone_device_page(const struct page *page) 775{ 776 return false; 777} 778#endif 779 780static inline void get_page(struct page *page) 781{ 782 page = compound_head(page); 783 /* 784 * Getting a normal page or the head of a compound page 785 * requires to already have an elevated page->_refcount. 786 */ 787 VM_BUG_ON_PAGE(page_ref_count(page) <= 0, page); 788 page_ref_inc(page); 789 790 if (unlikely(is_zone_device_page(page))) 791 get_zone_device_page(page); 792} 793 794static inline void put_page(struct page *page) 795{ 796 page = compound_head(page); 797 798 if (put_page_testzero(page)) 799 __put_page(page); 800 801 if (unlikely(is_zone_device_page(page))) 802 put_zone_device_page(page); 803} 804 805#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 806#define SECTION_IN_PAGE_FLAGS 807#endif 808 809/* 810 * The identification function is mainly used by the buddy allocator for 811 * determining if two pages could be buddies. We are not really identifying 812 * the zone since we could be using the section number id if we do not have 813 * node id available in page flags. 814 * We only guarantee that it will return the same value for two combinable 815 * pages in a zone. 816 */ 817static inline int page_zone_id(struct page *page) 818{ 819 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 820} 821 822static inline int zone_to_nid(struct zone *zone) 823{ 824#ifdef CONFIG_NUMA 825 return zone->node; 826#else 827 return 0; 828#endif 829} 830 831#ifdef NODE_NOT_IN_PAGE_FLAGS 832extern int page_to_nid(const struct page *page); 833#else 834static inline int page_to_nid(const struct page *page) 835{ 836 return (page->flags >> NODES_PGSHIFT) & NODES_MASK; 837} 838#endif 839 840#ifdef CONFIG_NUMA_BALANCING 841static inline int cpu_pid_to_cpupid(int cpu, int pid) 842{ 843 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 844} 845 846static inline int cpupid_to_pid(int cpupid) 847{ 848 return cpupid & LAST__PID_MASK; 849} 850 851static inline int cpupid_to_cpu(int cpupid) 852{ 853 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 854} 855 856static inline int cpupid_to_nid(int cpupid) 857{ 858 return cpu_to_node(cpupid_to_cpu(cpupid)); 859} 860 861static inline bool cpupid_pid_unset(int cpupid) 862{ 863 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 864} 865 866static inline bool cpupid_cpu_unset(int cpupid) 867{ 868 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 869} 870 871static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 872{ 873 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 874} 875 876#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 877#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 878static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 879{ 880 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK); 881} 882 883static inline int page_cpupid_last(struct page *page) 884{ 885 return page->_last_cpupid; 886} 887static inline void page_cpupid_reset_last(struct page *page) 888{ 889 page->_last_cpupid = -1 & LAST_CPUPID_MASK; 890} 891#else 892static inline int page_cpupid_last(struct page *page) 893{ 894 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 895} 896 897extern int page_cpupid_xchg_last(struct page *page, int cpupid); 898 899static inline void page_cpupid_reset_last(struct page *page) 900{ 901 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT; 902} 903#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 904#else /* !CONFIG_NUMA_BALANCING */ 905static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 906{ 907 return page_to_nid(page); /* XXX */ 908} 909 910static inline int page_cpupid_last(struct page *page) 911{ 912 return page_to_nid(page); /* XXX */ 913} 914 915static inline int cpupid_to_nid(int cpupid) 916{ 917 return -1; 918} 919 920static inline int cpupid_to_pid(int cpupid) 921{ 922 return -1; 923} 924 925static inline int cpupid_to_cpu(int cpupid) 926{ 927 return -1; 928} 929 930static inline int cpu_pid_to_cpupid(int nid, int pid) 931{ 932 return -1; 933} 934 935static inline bool cpupid_pid_unset(int cpupid) 936{ 937 return 1; 938} 939 940static inline void page_cpupid_reset_last(struct page *page) 941{ 942} 943 944static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 945{ 946 return false; 947} 948#endif /* CONFIG_NUMA_BALANCING */ 949 950static inline struct zone *page_zone(const struct page *page) 951{ 952 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 953} 954 955static inline pg_data_t *page_pgdat(const struct page *page) 956{ 957 return NODE_DATA(page_to_nid(page)); 958} 959 960#ifdef SECTION_IN_PAGE_FLAGS 961static inline void set_page_section(struct page *page, unsigned long section) 962{ 963 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 964 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 965} 966 967static inline unsigned long page_to_section(const struct page *page) 968{ 969 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 970} 971#endif 972 973static inline void set_page_zone(struct page *page, enum zone_type zone) 974{ 975 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 976 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 977} 978 979static inline void set_page_node(struct page *page, unsigned long node) 980{ 981 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 982 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 983} 984 985static inline void set_page_links(struct page *page, enum zone_type zone, 986 unsigned long node, unsigned long pfn) 987{ 988 set_page_zone(page, zone); 989 set_page_node(page, node); 990#ifdef SECTION_IN_PAGE_FLAGS 991 set_page_section(page, pfn_to_section_nr(pfn)); 992#endif 993} 994 995#ifdef CONFIG_MEMCG 996static inline struct mem_cgroup *page_memcg(struct page *page) 997{ 998 return page->mem_cgroup; 999} 1000static inline struct mem_cgroup *page_memcg_rcu(struct page *page) 1001{ 1002 WARN_ON_ONCE(!rcu_read_lock_held()); 1003 return READ_ONCE(page->mem_cgroup); 1004} 1005#else 1006static inline struct mem_cgroup *page_memcg(struct page *page) 1007{ 1008 return NULL; 1009} 1010static inline struct mem_cgroup *page_memcg_rcu(struct page *page) 1011{ 1012 WARN_ON_ONCE(!rcu_read_lock_held()); 1013 return NULL; 1014} 1015#endif 1016 1017/* 1018 * Some inline functions in vmstat.h depend on page_zone() 1019 */ 1020#include <linux/vmstat.h> 1021 1022static __always_inline void *lowmem_page_address(const struct page *page) 1023{ 1024 return page_to_virt(page); 1025} 1026 1027#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 1028#define HASHED_PAGE_VIRTUAL 1029#endif 1030 1031#if defined(WANT_PAGE_VIRTUAL) 1032static inline void *page_address(const struct page *page) 1033{ 1034 return page->virtual; 1035} 1036static inline void set_page_address(struct page *page, void *address) 1037{ 1038 page->virtual = address; 1039} 1040#define page_address_init() do { } while(0) 1041#endif 1042 1043#if defined(HASHED_PAGE_VIRTUAL) 1044void *page_address(const struct page *page); 1045void set_page_address(struct page *page, void *virtual); 1046void page_address_init(void); 1047#endif 1048 1049#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 1050#define page_address(page) lowmem_page_address(page) 1051#define set_page_address(page, address) do { } while(0) 1052#define page_address_init() do { } while(0) 1053#endif 1054 1055extern void *page_rmapping(struct page *page); 1056extern struct anon_vma *page_anon_vma(struct page *page); 1057extern struct address_space *page_mapping(struct page *page); 1058 1059extern struct address_space *__page_file_mapping(struct page *); 1060 1061static inline 1062struct address_space *page_file_mapping(struct page *page) 1063{ 1064 if (unlikely(PageSwapCache(page))) 1065 return __page_file_mapping(page); 1066 1067 return page->mapping; 1068} 1069 1070extern pgoff_t __page_file_index(struct page *page); 1071 1072/* 1073 * Return the pagecache index of the passed page. Regular pagecache pages 1074 * use ->index whereas swapcache pages use swp_offset(->private) 1075 */ 1076static inline pgoff_t page_index(struct page *page) 1077{ 1078 if (unlikely(PageSwapCache(page))) 1079 return __page_file_index(page); 1080 return page->index; 1081} 1082 1083bool page_mapped(struct page *page); 1084struct address_space *page_mapping(struct page *page); 1085 1086/* 1087 * Return true only if the page has been allocated with 1088 * ALLOC_NO_WATERMARKS and the low watermark was not 1089 * met implying that the system is under some pressure. 1090 */ 1091static inline bool page_is_pfmemalloc(struct page *page) 1092{ 1093 /* 1094 * Page index cannot be this large so this must be 1095 * a pfmemalloc page. 1096 */ 1097 return page->index == -1UL; 1098} 1099 1100/* 1101 * Only to be called by the page allocator on a freshly allocated 1102 * page. 1103 */ 1104static inline void set_page_pfmemalloc(struct page *page) 1105{ 1106 page->index = -1UL; 1107} 1108 1109static inline void clear_page_pfmemalloc(struct page *page) 1110{ 1111 page->index = 0; 1112} 1113 1114/* 1115 * Different kinds of faults, as returned by handle_mm_fault(). 1116 * Used to decide whether a process gets delivered SIGBUS or 1117 * just gets major/minor fault counters bumped up. 1118 */ 1119 1120#define VM_FAULT_OOM 0x0001 1121#define VM_FAULT_SIGBUS 0x0002 1122#define VM_FAULT_MAJOR 0x0004 1123#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */ 1124#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */ 1125#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */ 1126#define VM_FAULT_SIGSEGV 0x0040 1127 1128#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */ 1129#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */ 1130#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */ 1131#define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */ 1132#define VM_FAULT_DONE_COW 0x1000 /* ->fault has fully handled COW */ 1133 1134#define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */ 1135 1136#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \ 1137 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \ 1138 VM_FAULT_FALLBACK) 1139 1140#define VM_FAULT_RESULT_TRACE \ 1141 { VM_FAULT_OOM, "OOM" }, \ 1142 { VM_FAULT_SIGBUS, "SIGBUS" }, \ 1143 { VM_FAULT_MAJOR, "MAJOR" }, \ 1144 { VM_FAULT_WRITE, "WRITE" }, \ 1145 { VM_FAULT_HWPOISON, "HWPOISON" }, \ 1146 { VM_FAULT_HWPOISON_LARGE, "HWPOISON_LARGE" }, \ 1147 { VM_FAULT_SIGSEGV, "SIGSEGV" }, \ 1148 { VM_FAULT_NOPAGE, "NOPAGE" }, \ 1149 { VM_FAULT_LOCKED, "LOCKED" }, \ 1150 { VM_FAULT_RETRY, "RETRY" }, \ 1151 { VM_FAULT_FALLBACK, "FALLBACK" }, \ 1152 { VM_FAULT_DONE_COW, "DONE_COW" } 1153 1154/* Encode hstate index for a hwpoisoned large page */ 1155#define VM_FAULT_SET_HINDEX(x) ((x) << 12) 1156#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf) 1157 1158/* 1159 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 1160 */ 1161extern void pagefault_out_of_memory(void); 1162 1163#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 1164 1165/* 1166 * Flags passed to show_mem() and show_free_areas() to suppress output in 1167 * various contexts. 1168 */ 1169#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */ 1170 1171extern void show_free_areas(unsigned int flags, nodemask_t *nodemask); 1172 1173extern bool can_do_mlock(void); 1174extern int user_shm_lock(size_t, struct user_struct *); 1175extern void user_shm_unlock(size_t, struct user_struct *); 1176 1177/* 1178 * Parameter block passed down to zap_pte_range in exceptional cases. 1179 */ 1180struct zap_details { 1181 struct address_space *check_mapping; /* Check page->mapping if set */ 1182 pgoff_t first_index; /* Lowest page->index to unmap */ 1183 pgoff_t last_index; /* Highest page->index to unmap */ 1184}; 1185 1186struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 1187 pte_t pte); 1188struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 1189 pmd_t pmd); 1190 1191int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1192 unsigned long size); 1193void zap_page_range(struct vm_area_struct *vma, unsigned long address, 1194 unsigned long size); 1195void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma, 1196 unsigned long start, unsigned long end); 1197 1198/** 1199 * mm_walk - callbacks for walk_page_range 1200 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry 1201 * this handler should only handle pud_trans_huge() puds. 1202 * the pmd_entry or pte_entry callbacks will be used for 1203 * regular PUDs. 1204 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry 1205 * this handler is required to be able to handle 1206 * pmd_trans_huge() pmds. They may simply choose to 1207 * split_huge_page() instead of handling it explicitly. 1208 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry 1209 * @pte_hole: if set, called for each hole at all levels 1210 * @hugetlb_entry: if set, called for each hugetlb entry 1211 * @test_walk: caller specific callback function to determine whether 1212 * we walk over the current vma or not. Returning 0 1213 * value means "do page table walk over the current vma," 1214 * and a negative one means "abort current page table walk 1215 * right now." 1 means "skip the current vma." 1216 * @mm: mm_struct representing the target process of page table walk 1217 * @vma: vma currently walked (NULL if walking outside vmas) 1218 * @private: private data for callbacks' usage 1219 * 1220 * (see the comment on walk_page_range() for more details) 1221 */ 1222struct mm_walk { 1223 int (*pud_entry)(pud_t *pud, unsigned long addr, 1224 unsigned long next, struct mm_walk *walk); 1225 int (*pmd_entry)(pmd_t *pmd, unsigned long addr, 1226 unsigned long next, struct mm_walk *walk); 1227 int (*pte_entry)(pte_t *pte, unsigned long addr, 1228 unsigned long next, struct mm_walk *walk); 1229 int (*pte_hole)(unsigned long addr, unsigned long next, 1230 struct mm_walk *walk); 1231 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask, 1232 unsigned long addr, unsigned long next, 1233 struct mm_walk *walk); 1234 int (*test_walk)(unsigned long addr, unsigned long next, 1235 struct mm_walk *walk); 1236 struct mm_struct *mm; 1237 struct vm_area_struct *vma; 1238 void *private; 1239}; 1240 1241int walk_page_range(unsigned long addr, unsigned long end, 1242 struct mm_walk *walk); 1243int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk); 1244void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 1245 unsigned long end, unsigned long floor, unsigned long ceiling); 1246int copy_page_range(struct mm_struct *dst, struct mm_struct *src, 1247 struct vm_area_struct *vma); 1248void unmap_mapping_range(struct address_space *mapping, 1249 loff_t const holebegin, loff_t const holelen, int even_cows); 1250int follow_pte_pmd(struct mm_struct *mm, unsigned long address, 1251 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp); 1252int follow_pfn(struct vm_area_struct *vma, unsigned long address, 1253 unsigned long *pfn); 1254int follow_phys(struct vm_area_struct *vma, unsigned long address, 1255 unsigned int flags, unsigned long *prot, resource_size_t *phys); 1256int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 1257 void *buf, int len, int write); 1258 1259static inline void unmap_shared_mapping_range(struct address_space *mapping, 1260 loff_t const holebegin, loff_t const holelen) 1261{ 1262 unmap_mapping_range(mapping, holebegin, holelen, 0); 1263} 1264 1265extern void truncate_pagecache(struct inode *inode, loff_t new); 1266extern void truncate_setsize(struct inode *inode, loff_t newsize); 1267void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); 1268void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 1269int truncate_inode_page(struct address_space *mapping, struct page *page); 1270int generic_error_remove_page(struct address_space *mapping, struct page *page); 1271int invalidate_inode_page(struct page *page); 1272 1273#ifdef CONFIG_MMU 1274extern int handle_mm_fault(struct vm_area_struct *vma, unsigned long address, 1275 unsigned int flags); 1276extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, 1277 unsigned long address, unsigned int fault_flags, 1278 bool *unlocked); 1279#else 1280static inline int handle_mm_fault(struct vm_area_struct *vma, 1281 unsigned long address, unsigned int flags) 1282{ 1283 /* should never happen if there's no MMU */ 1284 BUG(); 1285 return VM_FAULT_SIGBUS; 1286} 1287static inline int fixup_user_fault(struct task_struct *tsk, 1288 struct mm_struct *mm, unsigned long address, 1289 unsigned int fault_flags, bool *unlocked) 1290{ 1291 /* should never happen if there's no MMU */ 1292 BUG(); 1293 return -EFAULT; 1294} 1295#endif 1296 1297extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, 1298 unsigned int gup_flags); 1299extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1300 void *buf, int len, unsigned int gup_flags); 1301extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 1302 unsigned long addr, void *buf, int len, unsigned int gup_flags); 1303 1304long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm, 1305 unsigned long start, unsigned long nr_pages, 1306 unsigned int gup_flags, struct page **pages, 1307 struct vm_area_struct **vmas, int *locked); 1308long get_user_pages(unsigned long start, unsigned long nr_pages, 1309 unsigned int gup_flags, struct page **pages, 1310 struct vm_area_struct **vmas); 1311long get_user_pages_locked(unsigned long start, unsigned long nr_pages, 1312 unsigned int gup_flags, struct page **pages, int *locked); 1313long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 1314 struct page **pages, unsigned int gup_flags); 1315int get_user_pages_fast(unsigned long start, int nr_pages, int write, 1316 struct page **pages); 1317 1318/* Container for pinned pfns / pages */ 1319struct frame_vector { 1320 unsigned int nr_allocated; /* Number of frames we have space for */ 1321 unsigned int nr_frames; /* Number of frames stored in ptrs array */ 1322 bool got_ref; /* Did we pin pages by getting page ref? */ 1323 bool is_pfns; /* Does array contain pages or pfns? */ 1324 void *ptrs[0]; /* Array of pinned pfns / pages. Use 1325 * pfns_vector_pages() or pfns_vector_pfns() 1326 * for access */ 1327}; 1328 1329struct frame_vector *frame_vector_create(unsigned int nr_frames); 1330void frame_vector_destroy(struct frame_vector *vec); 1331int get_vaddr_frames(unsigned long start, unsigned int nr_pfns, 1332 unsigned int gup_flags, struct frame_vector *vec); 1333void put_vaddr_frames(struct frame_vector *vec); 1334int frame_vector_to_pages(struct frame_vector *vec); 1335void frame_vector_to_pfns(struct frame_vector *vec); 1336 1337static inline unsigned int frame_vector_count(struct frame_vector *vec) 1338{ 1339 return vec->nr_frames; 1340} 1341 1342static inline struct page **frame_vector_pages(struct frame_vector *vec) 1343{ 1344 if (vec->is_pfns) { 1345 int err = frame_vector_to_pages(vec); 1346 1347 if (err) 1348 return ERR_PTR(err); 1349 } 1350 return (struct page **)(vec->ptrs); 1351} 1352 1353static inline unsigned long *frame_vector_pfns(struct frame_vector *vec) 1354{ 1355 if (!vec->is_pfns) 1356 frame_vector_to_pfns(vec); 1357 return (unsigned long *)(vec->ptrs); 1358} 1359 1360struct kvec; 1361int get_kernel_pages(const struct kvec *iov, int nr_pages, int write, 1362 struct page **pages); 1363int get_kernel_page(unsigned long start, int write, struct page **pages); 1364struct page *get_dump_page(unsigned long addr); 1365 1366extern int try_to_release_page(struct page * page, gfp_t gfp_mask); 1367extern void do_invalidatepage(struct page *page, unsigned int offset, 1368 unsigned int length); 1369 1370int __set_page_dirty_nobuffers(struct page *page); 1371int __set_page_dirty_no_writeback(struct page *page); 1372int redirty_page_for_writepage(struct writeback_control *wbc, 1373 struct page *page); 1374void account_page_dirtied(struct page *page, struct address_space *mapping); 1375void account_page_cleaned(struct page *page, struct address_space *mapping, 1376 struct bdi_writeback *wb); 1377int set_page_dirty(struct page *page); 1378int set_page_dirty_lock(struct page *page); 1379void cancel_dirty_page(struct page *page); 1380int clear_page_dirty_for_io(struct page *page); 1381 1382int get_cmdline(struct task_struct *task, char *buffer, int buflen); 1383 1384/* Is the vma a continuation of the stack vma above it? */ 1385static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr) 1386{ 1387 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN); 1388} 1389 1390static inline bool vma_is_anonymous(struct vm_area_struct *vma) 1391{ 1392 return !vma->vm_ops; 1393} 1394 1395#ifdef CONFIG_SHMEM 1396/* 1397 * The vma_is_shmem is not inline because it is used only by slow 1398 * paths in userfault. 1399 */ 1400bool vma_is_shmem(struct vm_area_struct *vma); 1401#else 1402static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; } 1403#endif 1404 1405static inline int stack_guard_page_start(struct vm_area_struct *vma, 1406 unsigned long addr) 1407{ 1408 return (vma->vm_flags & VM_GROWSDOWN) && 1409 (vma->vm_start == addr) && 1410 !vma_growsdown(vma->vm_prev, addr); 1411} 1412 1413/* Is the vma a continuation of the stack vma below it? */ 1414static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr) 1415{ 1416 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP); 1417} 1418 1419static inline int stack_guard_page_end(struct vm_area_struct *vma, 1420 unsigned long addr) 1421{ 1422 return (vma->vm_flags & VM_GROWSUP) && 1423 (vma->vm_end == addr) && 1424 !vma_growsup(vma->vm_next, addr); 1425} 1426 1427int vma_is_stack_for_current(struct vm_area_struct *vma); 1428 1429extern unsigned long move_page_tables(struct vm_area_struct *vma, 1430 unsigned long old_addr, struct vm_area_struct *new_vma, 1431 unsigned long new_addr, unsigned long len, 1432 bool need_rmap_locks); 1433extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start, 1434 unsigned long end, pgprot_t newprot, 1435 int dirty_accountable, int prot_numa); 1436extern int mprotect_fixup(struct vm_area_struct *vma, 1437 struct vm_area_struct **pprev, unsigned long start, 1438 unsigned long end, unsigned long newflags); 1439 1440/* 1441 * doesn't attempt to fault and will return short. 1442 */ 1443int __get_user_pages_fast(unsigned long start, int nr_pages, int write, 1444 struct page **pages); 1445/* 1446 * per-process(per-mm_struct) statistics. 1447 */ 1448static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 1449{ 1450 long val = atomic_long_read(&mm->rss_stat.count[member]); 1451 1452#ifdef SPLIT_RSS_COUNTING 1453 /* 1454 * counter is updated in asynchronous manner and may go to minus. 1455 * But it's never be expected number for users. 1456 */ 1457 if (val < 0) 1458 val = 0; 1459#endif 1460 return (unsigned long)val; 1461} 1462 1463static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 1464{ 1465 atomic_long_add(value, &mm->rss_stat.count[member]); 1466} 1467 1468static inline void inc_mm_counter(struct mm_struct *mm, int member) 1469{ 1470 atomic_long_inc(&mm->rss_stat.count[member]); 1471} 1472 1473static inline void dec_mm_counter(struct mm_struct *mm, int member) 1474{ 1475 atomic_long_dec(&mm->rss_stat.count[member]); 1476} 1477 1478/* Optimized variant when page is already known not to be PageAnon */ 1479static inline int mm_counter_file(struct page *page) 1480{ 1481 if (PageSwapBacked(page)) 1482 return MM_SHMEMPAGES; 1483 return MM_FILEPAGES; 1484} 1485 1486static inline int mm_counter(struct page *page) 1487{ 1488 if (PageAnon(page)) 1489 return MM_ANONPAGES; 1490 return mm_counter_file(page); 1491} 1492 1493static inline unsigned long get_mm_rss(struct mm_struct *mm) 1494{ 1495 return get_mm_counter(mm, MM_FILEPAGES) + 1496 get_mm_counter(mm, MM_ANONPAGES) + 1497 get_mm_counter(mm, MM_SHMEMPAGES); 1498} 1499 1500static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 1501{ 1502 return max(mm->hiwater_rss, get_mm_rss(mm)); 1503} 1504 1505static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 1506{ 1507 return max(mm->hiwater_vm, mm->total_vm); 1508} 1509 1510static inline void update_hiwater_rss(struct mm_struct *mm) 1511{ 1512 unsigned long _rss = get_mm_rss(mm); 1513 1514 if ((mm)->hiwater_rss < _rss) 1515 (mm)->hiwater_rss = _rss; 1516} 1517 1518static inline void update_hiwater_vm(struct mm_struct *mm) 1519{ 1520 if (mm->hiwater_vm < mm->total_vm) 1521 mm->hiwater_vm = mm->total_vm; 1522} 1523 1524static inline void reset_mm_hiwater_rss(struct mm_struct *mm) 1525{ 1526 mm->hiwater_rss = get_mm_rss(mm); 1527} 1528 1529static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 1530 struct mm_struct *mm) 1531{ 1532 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 1533 1534 if (*maxrss < hiwater_rss) 1535 *maxrss = hiwater_rss; 1536} 1537 1538#if defined(SPLIT_RSS_COUNTING) 1539void sync_mm_rss(struct mm_struct *mm); 1540#else 1541static inline void sync_mm_rss(struct mm_struct *mm) 1542{ 1543} 1544#endif 1545 1546#ifndef __HAVE_ARCH_PTE_DEVMAP 1547static inline int pte_devmap(pte_t pte) 1548{ 1549 return 0; 1550} 1551#endif 1552 1553int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot); 1554 1555extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1556 spinlock_t **ptl); 1557static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 1558 spinlock_t **ptl) 1559{ 1560 pte_t *ptep; 1561 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 1562 return ptep; 1563} 1564 1565#ifdef __PAGETABLE_P4D_FOLDED 1566static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 1567 unsigned long address) 1568{ 1569 return 0; 1570} 1571#else 1572int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 1573#endif 1574 1575#ifdef __PAGETABLE_PUD_FOLDED 1576static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, 1577 unsigned long address) 1578{ 1579 return 0; 1580} 1581#else 1582int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address); 1583#endif 1584 1585#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) 1586static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 1587 unsigned long address) 1588{ 1589 return 0; 1590} 1591 1592static inline void mm_nr_pmds_init(struct mm_struct *mm) {} 1593 1594static inline unsigned long mm_nr_pmds(struct mm_struct *mm) 1595{ 1596 return 0; 1597} 1598 1599static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} 1600static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} 1601 1602#else 1603int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 1604 1605static inline void mm_nr_pmds_init(struct mm_struct *mm) 1606{ 1607 atomic_long_set(&mm->nr_pmds, 0); 1608} 1609 1610static inline unsigned long mm_nr_pmds(struct mm_struct *mm) 1611{ 1612 return atomic_long_read(&mm->nr_pmds); 1613} 1614 1615static inline void mm_inc_nr_pmds(struct mm_struct *mm) 1616{ 1617 atomic_long_inc(&mm->nr_pmds); 1618} 1619 1620static inline void mm_dec_nr_pmds(struct mm_struct *mm) 1621{ 1622 atomic_long_dec(&mm->nr_pmds); 1623} 1624#endif 1625 1626int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address); 1627int __pte_alloc_kernel(pmd_t *pmd, unsigned long address); 1628 1629/* 1630 * The following ifdef needed to get the 4level-fixup.h header to work. 1631 * Remove it when 4level-fixup.h has been removed. 1632 */ 1633#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK) 1634 1635#ifndef __ARCH_HAS_5LEVEL_HACK 1636static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 1637 unsigned long address) 1638{ 1639 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ? 1640 NULL : p4d_offset(pgd, address); 1641} 1642 1643static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d, 1644 unsigned long address) 1645{ 1646 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ? 1647 NULL : pud_offset(p4d, address); 1648} 1649#endif /* !__ARCH_HAS_5LEVEL_HACK */ 1650 1651static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 1652{ 1653 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 1654 NULL: pmd_offset(pud, address); 1655} 1656#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */ 1657 1658#if USE_SPLIT_PTE_PTLOCKS 1659#if ALLOC_SPLIT_PTLOCKS 1660void __init ptlock_cache_init(void); 1661extern bool ptlock_alloc(struct page *page); 1662extern void ptlock_free(struct page *page); 1663 1664static inline spinlock_t *ptlock_ptr(struct page *page) 1665{ 1666 return page->ptl; 1667} 1668#else /* ALLOC_SPLIT_PTLOCKS */ 1669static inline void ptlock_cache_init(void) 1670{ 1671} 1672 1673static inline bool ptlock_alloc(struct page *page) 1674{ 1675 return true; 1676} 1677 1678static inline void ptlock_free(struct page *page) 1679{ 1680} 1681 1682static inline spinlock_t *ptlock_ptr(struct page *page) 1683{ 1684 return &page->ptl; 1685} 1686#endif /* ALLOC_SPLIT_PTLOCKS */ 1687 1688static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 1689{ 1690 return ptlock_ptr(pmd_page(*pmd)); 1691} 1692 1693static inline bool ptlock_init(struct page *page) 1694{ 1695 /* 1696 * prep_new_page() initialize page->private (and therefore page->ptl) 1697 * with 0. Make sure nobody took it in use in between. 1698 * 1699 * It can happen if arch try to use slab for page table allocation: 1700 * slab code uses page->slab_cache, which share storage with page->ptl. 1701 */ 1702 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page); 1703 if (!ptlock_alloc(page)) 1704 return false; 1705 spin_lock_init(ptlock_ptr(page)); 1706 return true; 1707} 1708 1709/* Reset page->mapping so free_pages_check won't complain. */ 1710static inline void pte_lock_deinit(struct page *page) 1711{ 1712 page->mapping = NULL; 1713 ptlock_free(page); 1714} 1715 1716#else /* !USE_SPLIT_PTE_PTLOCKS */ 1717/* 1718 * We use mm->page_table_lock to guard all pagetable pages of the mm. 1719 */ 1720static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 1721{ 1722 return &mm->page_table_lock; 1723} 1724static inline void ptlock_cache_init(void) {} 1725static inline bool ptlock_init(struct page *page) { return true; } 1726static inline void pte_lock_deinit(struct page *page) {} 1727#endif /* USE_SPLIT_PTE_PTLOCKS */ 1728 1729static inline void pgtable_init(void) 1730{ 1731 ptlock_cache_init(); 1732 pgtable_cache_init(); 1733} 1734 1735static inline bool pgtable_page_ctor(struct page *page) 1736{ 1737 if (!ptlock_init(page)) 1738 return false; 1739 inc_zone_page_state(page, NR_PAGETABLE); 1740 return true; 1741} 1742 1743static inline void pgtable_page_dtor(struct page *page) 1744{ 1745 pte_lock_deinit(page); 1746 dec_zone_page_state(page, NR_PAGETABLE); 1747} 1748 1749#define pte_offset_map_lock(mm, pmd, address, ptlp) \ 1750({ \ 1751 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 1752 pte_t *__pte = pte_offset_map(pmd, address); \ 1753 *(ptlp) = __ptl; \ 1754 spin_lock(__ptl); \ 1755 __pte; \ 1756}) 1757 1758#define pte_unmap_unlock(pte, ptl) do { \ 1759 spin_unlock(ptl); \ 1760 pte_unmap(pte); \ 1761} while (0) 1762 1763#define pte_alloc(mm, pmd, address) \ 1764 (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd, address)) 1765 1766#define pte_alloc_map(mm, pmd, address) \ 1767 (pte_alloc(mm, pmd, address) ? NULL : pte_offset_map(pmd, address)) 1768 1769#define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 1770 (pte_alloc(mm, pmd, address) ? \ 1771 NULL : pte_offset_map_lock(mm, pmd, address, ptlp)) 1772 1773#define pte_alloc_kernel(pmd, address) \ 1774 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \ 1775 NULL: pte_offset_kernel(pmd, address)) 1776 1777#if USE_SPLIT_PMD_PTLOCKS 1778 1779static struct page *pmd_to_page(pmd_t *pmd) 1780{ 1781 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 1782 return virt_to_page((void *)((unsigned long) pmd & mask)); 1783} 1784 1785static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 1786{ 1787 return ptlock_ptr(pmd_to_page(pmd)); 1788} 1789 1790static inline bool pgtable_pmd_page_ctor(struct page *page) 1791{ 1792#ifdef CONFIG_TRANSPARENT_HUGEPAGE 1793 page->pmd_huge_pte = NULL; 1794#endif 1795 return ptlock_init(page); 1796} 1797 1798static inline void pgtable_pmd_page_dtor(struct page *page) 1799{ 1800#ifdef CONFIG_TRANSPARENT_HUGEPAGE 1801 VM_BUG_ON_PAGE(page->pmd_huge_pte, page); 1802#endif 1803 ptlock_free(page); 1804} 1805 1806#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte) 1807 1808#else 1809 1810static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 1811{ 1812 return &mm->page_table_lock; 1813} 1814 1815static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; } 1816static inline void pgtable_pmd_page_dtor(struct page *page) {} 1817 1818#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 1819 1820#endif 1821 1822static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 1823{ 1824 spinlock_t *ptl = pmd_lockptr(mm, pmd); 1825 spin_lock(ptl); 1826 return ptl; 1827} 1828 1829/* 1830 * No scalability reason to split PUD locks yet, but follow the same pattern 1831 * as the PMD locks to make it easier if we decide to. The VM should not be 1832 * considered ready to switch to split PUD locks yet; there may be places 1833 * which need to be converted from page_table_lock. 1834 */ 1835static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud) 1836{ 1837 return &mm->page_table_lock; 1838} 1839 1840static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud) 1841{ 1842 spinlock_t *ptl = pud_lockptr(mm, pud); 1843 1844 spin_lock(ptl); 1845 return ptl; 1846} 1847 1848extern void __init pagecache_init(void); 1849extern void free_area_init(unsigned long * zones_size); 1850extern void free_area_init_node(int nid, unsigned long * zones_size, 1851 unsigned long zone_start_pfn, unsigned long *zholes_size); 1852extern void free_initmem(void); 1853 1854/* 1855 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 1856 * into the buddy system. The freed pages will be poisoned with pattern 1857 * "poison" if it's within range [0, UCHAR_MAX]. 1858 * Return pages freed into the buddy system. 1859 */ 1860extern unsigned long free_reserved_area(void *start, void *end, 1861 int poison, char *s); 1862 1863#ifdef CONFIG_HIGHMEM 1864/* 1865 * Free a highmem page into the buddy system, adjusting totalhigh_pages 1866 * and totalram_pages. 1867 */ 1868extern void free_highmem_page(struct page *page); 1869#endif 1870 1871extern void adjust_managed_page_count(struct page *page, long count); 1872extern void mem_init_print_info(const char *str); 1873 1874extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end); 1875 1876/* Free the reserved page into the buddy system, so it gets managed. */ 1877static inline void __free_reserved_page(struct page *page) 1878{ 1879 ClearPageReserved(page); 1880 init_page_count(page); 1881 __free_page(page); 1882} 1883 1884static inline void free_reserved_page(struct page *page) 1885{ 1886 __free_reserved_page(page); 1887 adjust_managed_page_count(page, 1); 1888} 1889 1890static inline void mark_page_reserved(struct page *page) 1891{ 1892 SetPageReserved(page); 1893 adjust_managed_page_count(page, -1); 1894} 1895 1896/* 1897 * Default method to free all the __init memory into the buddy system. 1898 * The freed pages will be poisoned with pattern "poison" if it's within 1899 * range [0, UCHAR_MAX]. 1900 * Return pages freed into the buddy system. 1901 */ 1902static inline unsigned long free_initmem_default(int poison) 1903{ 1904 extern char __init_begin[], __init_end[]; 1905 1906 return free_reserved_area(&__init_begin, &__init_end, 1907 poison, "unused kernel"); 1908} 1909 1910static inline unsigned long get_num_physpages(void) 1911{ 1912 int nid; 1913 unsigned long phys_pages = 0; 1914 1915 for_each_online_node(nid) 1916 phys_pages += node_present_pages(nid); 1917 1918 return phys_pages; 1919} 1920 1921#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 1922/* 1923 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its 1924 * zones, allocate the backing mem_map and account for memory holes in a more 1925 * architecture independent manner. This is a substitute for creating the 1926 * zone_sizes[] and zholes_size[] arrays and passing them to 1927 * free_area_init_node() 1928 * 1929 * An architecture is expected to register range of page frames backed by 1930 * physical memory with memblock_add[_node]() before calling 1931 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic 1932 * usage, an architecture is expected to do something like 1933 * 1934 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 1935 * max_highmem_pfn}; 1936 * for_each_valid_physical_page_range() 1937 * memblock_add_node(base, size, nid) 1938 * free_area_init_nodes(max_zone_pfns); 1939 * 1940 * free_bootmem_with_active_regions() calls free_bootmem_node() for each 1941 * registered physical page range. Similarly 1942 * sparse_memory_present_with_active_regions() calls memory_present() for 1943 * each range when SPARSEMEM is enabled. 1944 * 1945 * See mm/page_alloc.c for more information on each function exposed by 1946 * CONFIG_HAVE_MEMBLOCK_NODE_MAP. 1947 */ 1948extern void free_area_init_nodes(unsigned long *max_zone_pfn); 1949unsigned long node_map_pfn_alignment(void); 1950unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, 1951 unsigned long end_pfn); 1952extern unsigned long absent_pages_in_range(unsigned long start_pfn, 1953 unsigned long end_pfn); 1954extern void get_pfn_range_for_nid(unsigned int nid, 1955 unsigned long *start_pfn, unsigned long *end_pfn); 1956extern unsigned long find_min_pfn_with_active_regions(void); 1957extern void free_bootmem_with_active_regions(int nid, 1958 unsigned long max_low_pfn); 1959extern void sparse_memory_present_with_active_regions(int nid); 1960 1961#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 1962 1963#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \ 1964 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) 1965static inline int __early_pfn_to_nid(unsigned long pfn, 1966 struct mminit_pfnnid_cache *state) 1967{ 1968 return 0; 1969} 1970#else 1971/* please see mm/page_alloc.c */ 1972extern int __meminit early_pfn_to_nid(unsigned long pfn); 1973/* there is a per-arch backend function. */ 1974extern int __meminit __early_pfn_to_nid(unsigned long pfn, 1975 struct mminit_pfnnid_cache *state); 1976#endif 1977 1978extern void set_dma_reserve(unsigned long new_dma_reserve); 1979extern void memmap_init_zone(unsigned long, int, unsigned long, 1980 unsigned long, enum memmap_context); 1981extern void setup_per_zone_wmarks(void); 1982extern int __meminit init_per_zone_wmark_min(void); 1983extern void mem_init(void); 1984extern void __init mmap_init(void); 1985extern void show_mem(unsigned int flags, nodemask_t *nodemask); 1986extern long si_mem_available(void); 1987extern void si_meminfo(struct sysinfo * val); 1988extern void si_meminfo_node(struct sysinfo *val, int nid); 1989#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES 1990extern unsigned long arch_reserved_kernel_pages(void); 1991#endif 1992 1993extern __printf(3, 4) 1994void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...); 1995 1996extern void setup_per_cpu_pageset(void); 1997 1998extern void zone_pcp_update(struct zone *zone); 1999extern void zone_pcp_reset(struct zone *zone); 2000 2001/* page_alloc.c */ 2002extern int min_free_kbytes; 2003extern int watermark_scale_factor; 2004 2005/* nommu.c */ 2006extern atomic_long_t mmap_pages_allocated; 2007extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 2008 2009/* interval_tree.c */ 2010void vma_interval_tree_insert(struct vm_area_struct *node, 2011 struct rb_root *root); 2012void vma_interval_tree_insert_after(struct vm_area_struct *node, 2013 struct vm_area_struct *prev, 2014 struct rb_root *root); 2015void vma_interval_tree_remove(struct vm_area_struct *node, 2016 struct rb_root *root); 2017struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root, 2018 unsigned long start, unsigned long last); 2019struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 2020 unsigned long start, unsigned long last); 2021 2022#define vma_interval_tree_foreach(vma, root, start, last) \ 2023 for (vma = vma_interval_tree_iter_first(root, start, last); \ 2024 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 2025 2026void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 2027 struct rb_root *root); 2028void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 2029 struct rb_root *root); 2030struct anon_vma_chain *anon_vma_interval_tree_iter_first( 2031 struct rb_root *root, unsigned long start, unsigned long last); 2032struct anon_vma_chain *anon_vma_interval_tree_iter_next( 2033 struct anon_vma_chain *node, unsigned long start, unsigned long last); 2034#ifdef CONFIG_DEBUG_VM_RB 2035void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 2036#endif 2037 2038#define anon_vma_interval_tree_foreach(avc, root, start, last) \ 2039 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 2040 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 2041 2042/* mmap.c */ 2043extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 2044extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start, 2045 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert, 2046 struct vm_area_struct *expand); 2047static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start, 2048 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert) 2049{ 2050 return __vma_adjust(vma, start, end, pgoff, insert, NULL); 2051} 2052extern struct vm_area_struct *vma_merge(struct mm_struct *, 2053 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 2054 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 2055 struct mempolicy *, struct vm_userfaultfd_ctx); 2056extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 2057extern int __split_vma(struct mm_struct *, struct vm_area_struct *, 2058 unsigned long addr, int new_below); 2059extern int split_vma(struct mm_struct *, struct vm_area_struct *, 2060 unsigned long addr, int new_below); 2061extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 2062extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 2063 struct rb_node **, struct rb_node *); 2064extern void unlink_file_vma(struct vm_area_struct *); 2065extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 2066 unsigned long addr, unsigned long len, pgoff_t pgoff, 2067 bool *need_rmap_locks); 2068extern void exit_mmap(struct mm_struct *); 2069 2070static inline int check_data_rlimit(unsigned long rlim, 2071 unsigned long new, 2072 unsigned long start, 2073 unsigned long end_data, 2074 unsigned long start_data) 2075{ 2076 if (rlim < RLIM_INFINITY) { 2077 if (((new - start) + (end_data - start_data)) > rlim) 2078 return -ENOSPC; 2079 } 2080 2081 return 0; 2082} 2083 2084extern int mm_take_all_locks(struct mm_struct *mm); 2085extern void mm_drop_all_locks(struct mm_struct *mm); 2086 2087extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 2088extern struct file *get_mm_exe_file(struct mm_struct *mm); 2089extern struct file *get_task_exe_file(struct task_struct *task); 2090 2091extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages); 2092extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages); 2093 2094extern bool vma_is_special_mapping(const struct vm_area_struct *vma, 2095 const struct vm_special_mapping *sm); 2096extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, 2097 unsigned long addr, unsigned long len, 2098 unsigned long flags, 2099 const struct vm_special_mapping *spec); 2100/* This is an obsolete alternative to _install_special_mapping. */ 2101extern int install_special_mapping(struct mm_struct *mm, 2102 unsigned long addr, unsigned long len, 2103 unsigned long flags, struct page **pages); 2104 2105extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 2106 2107extern unsigned long mmap_region(struct file *file, unsigned long addr, 2108 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 2109 struct list_head *uf); 2110extern unsigned long do_mmap(struct file *file, unsigned long addr, 2111 unsigned long len, unsigned long prot, unsigned long flags, 2112 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate, 2113 struct list_head *uf); 2114extern int do_munmap(struct mm_struct *, unsigned long, size_t, 2115 struct list_head *uf); 2116 2117static inline unsigned long 2118do_mmap_pgoff(struct file *file, unsigned long addr, 2119 unsigned long len, unsigned long prot, unsigned long flags, 2120 unsigned long pgoff, unsigned long *populate, 2121 struct list_head *uf) 2122{ 2123 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf); 2124} 2125 2126#ifdef CONFIG_MMU 2127extern int __mm_populate(unsigned long addr, unsigned long len, 2128 int ignore_errors); 2129static inline void mm_populate(unsigned long addr, unsigned long len) 2130{ 2131 /* Ignore errors */ 2132 (void) __mm_populate(addr, len, 1); 2133} 2134#else 2135static inline void mm_populate(unsigned long addr, unsigned long len) {} 2136#endif 2137 2138/* These take the mm semaphore themselves */ 2139extern int __must_check vm_brk(unsigned long, unsigned long); 2140extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long); 2141extern int vm_munmap(unsigned long, size_t); 2142extern unsigned long __must_check vm_mmap(struct file *, unsigned long, 2143 unsigned long, unsigned long, 2144 unsigned long, unsigned long); 2145 2146struct vm_unmapped_area_info { 2147#define VM_UNMAPPED_AREA_TOPDOWN 1 2148 unsigned long flags; 2149 unsigned long length; 2150 unsigned long low_limit; 2151 unsigned long high_limit; 2152 unsigned long align_mask; 2153 unsigned long align_offset; 2154}; 2155 2156extern unsigned long unmapped_area(struct vm_unmapped_area_info *info); 2157extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info); 2158 2159/* 2160 * Search for an unmapped address range. 2161 * 2162 * We are looking for a range that: 2163 * - does not intersect with any VMA; 2164 * - is contained within the [low_limit, high_limit) interval; 2165 * - is at least the desired size. 2166 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask) 2167 */ 2168static inline unsigned long 2169vm_unmapped_area(struct vm_unmapped_area_info *info) 2170{ 2171 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN) 2172 return unmapped_area_topdown(info); 2173 else 2174 return unmapped_area(info); 2175} 2176 2177/* truncate.c */ 2178extern void truncate_inode_pages(struct address_space *, loff_t); 2179extern void truncate_inode_pages_range(struct address_space *, 2180 loff_t lstart, loff_t lend); 2181extern void truncate_inode_pages_final(struct address_space *); 2182 2183/* generic vm_area_ops exported for stackable file systems */ 2184extern int filemap_fault(struct vm_fault *vmf); 2185extern void filemap_map_pages(struct vm_fault *vmf, 2186 pgoff_t start_pgoff, pgoff_t end_pgoff); 2187extern int filemap_page_mkwrite(struct vm_fault *vmf); 2188 2189/* mm/page-writeback.c */ 2190int write_one_page(struct page *page, int wait); 2191void task_dirty_inc(struct task_struct *tsk); 2192 2193/* readahead.c */ 2194#define VM_MAX_READAHEAD 128 /* kbytes */ 2195#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */ 2196 2197int force_page_cache_readahead(struct address_space *mapping, struct file *filp, 2198 pgoff_t offset, unsigned long nr_to_read); 2199 2200void page_cache_sync_readahead(struct address_space *mapping, 2201 struct file_ra_state *ra, 2202 struct file *filp, 2203 pgoff_t offset, 2204 unsigned long size); 2205 2206void page_cache_async_readahead(struct address_space *mapping, 2207 struct file_ra_state *ra, 2208 struct file *filp, 2209 struct page *pg, 2210 pgoff_t offset, 2211 unsigned long size); 2212 2213/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 2214extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 2215 2216/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */ 2217extern int expand_downwards(struct vm_area_struct *vma, 2218 unsigned long address); 2219#if VM_GROWSUP 2220extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 2221#else 2222 #define expand_upwards(vma, address) (0) 2223#endif 2224 2225/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 2226extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 2227extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 2228 struct vm_area_struct **pprev); 2229 2230/* Look up the first VMA which intersects the interval start_addr..end_addr-1, 2231 NULL if none. Assume start_addr < end_addr. */ 2232static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) 2233{ 2234 struct vm_area_struct * vma = find_vma(mm,start_addr); 2235 2236 if (vma && end_addr <= vma->vm_start) 2237 vma = NULL; 2238 return vma; 2239} 2240 2241static inline unsigned long vma_pages(struct vm_area_struct *vma) 2242{ 2243 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 2244} 2245 2246/* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 2247static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 2248 unsigned long vm_start, unsigned long vm_end) 2249{ 2250 struct vm_area_struct *vma = find_vma(mm, vm_start); 2251 2252 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 2253 vma = NULL; 2254 2255 return vma; 2256} 2257 2258#ifdef CONFIG_MMU 2259pgprot_t vm_get_page_prot(unsigned long vm_flags); 2260void vma_set_page_prot(struct vm_area_struct *vma); 2261#else 2262static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 2263{ 2264 return __pgprot(0); 2265} 2266static inline void vma_set_page_prot(struct vm_area_struct *vma) 2267{ 2268 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 2269} 2270#endif 2271 2272#ifdef CONFIG_NUMA_BALANCING 2273unsigned long change_prot_numa(struct vm_area_struct *vma, 2274 unsigned long start, unsigned long end); 2275#endif 2276 2277struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 2278int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 2279 unsigned long pfn, unsigned long size, pgprot_t); 2280int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 2281int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2282 unsigned long pfn); 2283int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 2284 unsigned long pfn, pgprot_t pgprot); 2285int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2286 pfn_t pfn); 2287int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 2288 2289 2290struct page *follow_page_mask(struct vm_area_struct *vma, 2291 unsigned long address, unsigned int foll_flags, 2292 unsigned int *page_mask); 2293 2294static inline struct page *follow_page(struct vm_area_struct *vma, 2295 unsigned long address, unsigned int foll_flags) 2296{ 2297 unsigned int unused_page_mask; 2298 return follow_page_mask(vma, address, foll_flags, &unused_page_mask); 2299} 2300 2301#define FOLL_WRITE 0x01 /* check pte is writable */ 2302#define FOLL_TOUCH 0x02 /* mark page accessed */ 2303#define FOLL_GET 0x04 /* do get_page on page */ 2304#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */ 2305#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */ 2306#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO 2307 * and return without waiting upon it */ 2308#define FOLL_POPULATE 0x40 /* fault in page */ 2309#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */ 2310#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */ 2311#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */ 2312#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */ 2313#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */ 2314#define FOLL_MLOCK 0x1000 /* lock present pages */ 2315#define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */ 2316#define FOLL_COW 0x4000 /* internal GUP flag */ 2317 2318typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr, 2319 void *data); 2320extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 2321 unsigned long size, pte_fn_t fn, void *data); 2322 2323 2324#ifdef CONFIG_PAGE_POISONING 2325extern bool page_poisoning_enabled(void); 2326extern void kernel_poison_pages(struct page *page, int numpages, int enable); 2327extern bool page_is_poisoned(struct page *page); 2328#else 2329static inline bool page_poisoning_enabled(void) { return false; } 2330static inline void kernel_poison_pages(struct page *page, int numpages, 2331 int enable) { } 2332static inline bool page_is_poisoned(struct page *page) { return false; } 2333#endif 2334 2335#ifdef CONFIG_DEBUG_PAGEALLOC 2336extern bool _debug_pagealloc_enabled; 2337extern void __kernel_map_pages(struct page *page, int numpages, int enable); 2338 2339static inline bool debug_pagealloc_enabled(void) 2340{ 2341 return _debug_pagealloc_enabled; 2342} 2343 2344static inline void 2345kernel_map_pages(struct page *page, int numpages, int enable) 2346{ 2347 if (!debug_pagealloc_enabled()) 2348 return; 2349 2350 __kernel_map_pages(page, numpages, enable); 2351} 2352#ifdef CONFIG_HIBERNATION 2353extern bool kernel_page_present(struct page *page); 2354#endif /* CONFIG_HIBERNATION */ 2355#else /* CONFIG_DEBUG_PAGEALLOC */ 2356static inline void 2357kernel_map_pages(struct page *page, int numpages, int enable) {} 2358#ifdef CONFIG_HIBERNATION 2359static inline bool kernel_page_present(struct page *page) { return true; } 2360#endif /* CONFIG_HIBERNATION */ 2361static inline bool debug_pagealloc_enabled(void) 2362{ 2363 return false; 2364} 2365#endif /* CONFIG_DEBUG_PAGEALLOC */ 2366 2367#ifdef __HAVE_ARCH_GATE_AREA 2368extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 2369extern int in_gate_area_no_mm(unsigned long addr); 2370extern int in_gate_area(struct mm_struct *mm, unsigned long addr); 2371#else 2372static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 2373{ 2374 return NULL; 2375} 2376static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } 2377static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) 2378{ 2379 return 0; 2380} 2381#endif /* __HAVE_ARCH_GATE_AREA */ 2382 2383extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm); 2384 2385#ifdef CONFIG_SYSCTL 2386extern int sysctl_drop_caches; 2387int drop_caches_sysctl_handler(struct ctl_table *, int, 2388 void __user *, size_t *, loff_t *); 2389#endif 2390 2391void drop_slab(void); 2392void drop_slab_node(int nid); 2393 2394#ifndef CONFIG_MMU 2395#define randomize_va_space 0 2396#else 2397extern int randomize_va_space; 2398#endif 2399 2400const char * arch_vma_name(struct vm_area_struct *vma); 2401void print_vma_addr(char *prefix, unsigned long rip); 2402 2403void sparse_mem_maps_populate_node(struct page **map_map, 2404 unsigned long pnum_begin, 2405 unsigned long pnum_end, 2406 unsigned long map_count, 2407 int nodeid); 2408 2409struct page *sparse_mem_map_populate(unsigned long pnum, int nid); 2410pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 2411p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node); 2412pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node); 2413pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 2414pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node); 2415void *vmemmap_alloc_block(unsigned long size, int node); 2416struct vmem_altmap; 2417void *__vmemmap_alloc_block_buf(unsigned long size, int node, 2418 struct vmem_altmap *altmap); 2419static inline void *vmemmap_alloc_block_buf(unsigned long size, int node) 2420{ 2421 return __vmemmap_alloc_block_buf(size, node, NULL); 2422} 2423 2424void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 2425int vmemmap_populate_basepages(unsigned long start, unsigned long end, 2426 int node); 2427int vmemmap_populate(unsigned long start, unsigned long end, int node); 2428void vmemmap_populate_print_last(void); 2429#ifdef CONFIG_MEMORY_HOTPLUG 2430void vmemmap_free(unsigned long start, unsigned long end); 2431#endif 2432void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, 2433 unsigned long size); 2434 2435enum mf_flags { 2436 MF_COUNT_INCREASED = 1 << 0, 2437 MF_ACTION_REQUIRED = 1 << 1, 2438 MF_MUST_KILL = 1 << 2, 2439 MF_SOFT_OFFLINE = 1 << 3, 2440}; 2441extern int memory_failure(unsigned long pfn, int trapno, int flags); 2442extern void memory_failure_queue(unsigned long pfn, int trapno, int flags); 2443extern int unpoison_memory(unsigned long pfn); 2444extern int get_hwpoison_page(struct page *page); 2445#define put_hwpoison_page(page) put_page(page) 2446extern int sysctl_memory_failure_early_kill; 2447extern int sysctl_memory_failure_recovery; 2448extern void shake_page(struct page *p, int access); 2449extern atomic_long_t num_poisoned_pages; 2450extern int soft_offline_page(struct page *page, int flags); 2451 2452 2453/* 2454 * Error handlers for various types of pages. 2455 */ 2456enum mf_result { 2457 MF_IGNORED, /* Error: cannot be handled */ 2458 MF_FAILED, /* Error: handling failed */ 2459 MF_DELAYED, /* Will be handled later */ 2460 MF_RECOVERED, /* Successfully recovered */ 2461}; 2462 2463enum mf_action_page_type { 2464 MF_MSG_KERNEL, 2465 MF_MSG_KERNEL_HIGH_ORDER, 2466 MF_MSG_SLAB, 2467 MF_MSG_DIFFERENT_COMPOUND, 2468 MF_MSG_POISONED_HUGE, 2469 MF_MSG_HUGE, 2470 MF_MSG_FREE_HUGE, 2471 MF_MSG_UNMAP_FAILED, 2472 MF_MSG_DIRTY_SWAPCACHE, 2473 MF_MSG_CLEAN_SWAPCACHE, 2474 MF_MSG_DIRTY_MLOCKED_LRU, 2475 MF_MSG_CLEAN_MLOCKED_LRU, 2476 MF_MSG_DIRTY_UNEVICTABLE_LRU, 2477 MF_MSG_CLEAN_UNEVICTABLE_LRU, 2478 MF_MSG_DIRTY_LRU, 2479 MF_MSG_CLEAN_LRU, 2480 MF_MSG_TRUNCATED_LRU, 2481 MF_MSG_BUDDY, 2482 MF_MSG_BUDDY_2ND, 2483 MF_MSG_UNKNOWN, 2484}; 2485 2486#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 2487extern void clear_huge_page(struct page *page, 2488 unsigned long addr, 2489 unsigned int pages_per_huge_page); 2490extern void copy_user_huge_page(struct page *dst, struct page *src, 2491 unsigned long addr, struct vm_area_struct *vma, 2492 unsigned int pages_per_huge_page); 2493extern long copy_huge_page_from_user(struct page *dst_page, 2494 const void __user *usr_src, 2495 unsigned int pages_per_huge_page, 2496 bool allow_pagefault); 2497#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 2498 2499extern struct page_ext_operations debug_guardpage_ops; 2500extern struct page_ext_operations page_poisoning_ops; 2501 2502#ifdef CONFIG_DEBUG_PAGEALLOC 2503extern unsigned int _debug_guardpage_minorder; 2504extern bool _debug_guardpage_enabled; 2505 2506static inline unsigned int debug_guardpage_minorder(void) 2507{ 2508 return _debug_guardpage_minorder; 2509} 2510 2511static inline bool debug_guardpage_enabled(void) 2512{ 2513 return _debug_guardpage_enabled; 2514} 2515 2516static inline bool page_is_guard(struct page *page) 2517{ 2518 struct page_ext *page_ext; 2519 2520 if (!debug_guardpage_enabled()) 2521 return false; 2522 2523 page_ext = lookup_page_ext(page); 2524 if (unlikely(!page_ext)) 2525 return false; 2526 2527 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); 2528} 2529#else 2530static inline unsigned int debug_guardpage_minorder(void) { return 0; } 2531static inline bool debug_guardpage_enabled(void) { return false; } 2532static inline bool page_is_guard(struct page *page) { return false; } 2533#endif /* CONFIG_DEBUG_PAGEALLOC */ 2534 2535#if MAX_NUMNODES > 1 2536void __init setup_nr_node_ids(void); 2537#else 2538static inline void setup_nr_node_ids(void) {} 2539#endif 2540 2541#endif /* __KERNEL__ */ 2542#endif /* _LINUX_MM_H */