at v4.11 21 kB view raw
1/* 2 * Generic EDAC defs 3 * 4 * Author: Dave Jiang <djiang@mvista.com> 5 * 6 * 2006-2008 (c) MontaVista Software, Inc. This file is licensed under 7 * the terms of the GNU General Public License version 2. This program 8 * is licensed "as is" without any warranty of any kind, whether express 9 * or implied. 10 * 11 */ 12#ifndef _LINUX_EDAC_H_ 13#define _LINUX_EDAC_H_ 14 15#include <linux/atomic.h> 16#include <linux/device.h> 17#include <linux/completion.h> 18#include <linux/workqueue.h> 19#include <linux/debugfs.h> 20 21#define EDAC_DEVICE_NAME_LEN 31 22 23struct device; 24 25#define EDAC_OPSTATE_INVAL -1 26#define EDAC_OPSTATE_POLL 0 27#define EDAC_OPSTATE_NMI 1 28#define EDAC_OPSTATE_INT 2 29 30extern int edac_op_state; 31extern int edac_err_assert; 32extern atomic_t edac_handlers; 33 34extern int edac_handler_set(void); 35extern void edac_atomic_assert_error(void); 36extern struct bus_type *edac_get_sysfs_subsys(void); 37 38enum { 39 EDAC_REPORTING_ENABLED, 40 EDAC_REPORTING_DISABLED, 41 EDAC_REPORTING_FORCE 42}; 43 44extern int edac_report_status; 45#ifdef CONFIG_EDAC 46static inline int get_edac_report_status(void) 47{ 48 return edac_report_status; 49} 50 51static inline void set_edac_report_status(int new) 52{ 53 edac_report_status = new; 54} 55#else 56static inline int get_edac_report_status(void) 57{ 58 return EDAC_REPORTING_DISABLED; 59} 60 61static inline void set_edac_report_status(int new) 62{ 63} 64#endif 65 66static inline void opstate_init(void) 67{ 68 switch (edac_op_state) { 69 case EDAC_OPSTATE_POLL: 70 case EDAC_OPSTATE_NMI: 71 break; 72 default: 73 edac_op_state = EDAC_OPSTATE_POLL; 74 } 75 return; 76} 77 78/* Max length of a DIMM label*/ 79#define EDAC_MC_LABEL_LEN 31 80 81/* Maximum size of the location string */ 82#define LOCATION_SIZE 256 83 84/* Defines the maximum number of labels that can be reported */ 85#define EDAC_MAX_LABELS 8 86 87/* String used to join two or more labels */ 88#define OTHER_LABEL " or " 89 90/** 91 * enum dev_type - describe the type of memory DRAM chips used at the stick 92 * @DEV_UNKNOWN: Can't be determined, or MC doesn't support detect it 93 * @DEV_X1: 1 bit for data 94 * @DEV_X2: 2 bits for data 95 * @DEV_X4: 4 bits for data 96 * @DEV_X8: 8 bits for data 97 * @DEV_X16: 16 bits for data 98 * @DEV_X32: 32 bits for data 99 * @DEV_X64: 64 bits for data 100 * 101 * Typical values are x4 and x8. 102 */ 103enum dev_type { 104 DEV_UNKNOWN = 0, 105 DEV_X1, 106 DEV_X2, 107 DEV_X4, 108 DEV_X8, 109 DEV_X16, 110 DEV_X32, /* Do these parts exist? */ 111 DEV_X64 /* Do these parts exist? */ 112}; 113 114#define DEV_FLAG_UNKNOWN BIT(DEV_UNKNOWN) 115#define DEV_FLAG_X1 BIT(DEV_X1) 116#define DEV_FLAG_X2 BIT(DEV_X2) 117#define DEV_FLAG_X4 BIT(DEV_X4) 118#define DEV_FLAG_X8 BIT(DEV_X8) 119#define DEV_FLAG_X16 BIT(DEV_X16) 120#define DEV_FLAG_X32 BIT(DEV_X32) 121#define DEV_FLAG_X64 BIT(DEV_X64) 122 123/** 124 * enum hw_event_mc_err_type - type of the detected error 125 * 126 * @HW_EVENT_ERR_CORRECTED: Corrected Error - Indicates that an ECC 127 * corrected error was detected 128 * @HW_EVENT_ERR_UNCORRECTED: Uncorrected Error - Indicates an error that 129 * can't be corrected by ECC, but it is not 130 * fatal (maybe it is on an unused memory area, 131 * or the memory controller could recover from 132 * it for example, by re-trying the operation). 133 * @HW_EVENT_ERR_DEFERRED: Deferred Error - Indicates an uncorrectable 134 * error whose handling is not urgent. This could 135 * be due to hardware data poisoning where the 136 * system can continue operation until the poisoned 137 * data is consumed. Preemptive measures may also 138 * be taken, e.g. offlining pages, etc. 139 * @HW_EVENT_ERR_FATAL: Fatal Error - Uncorrected error that could not 140 * be recovered. 141 * @HW_EVENT_ERR_INFO: Informational - The CPER spec defines a forth 142 * type of error: informational logs. 143 */ 144enum hw_event_mc_err_type { 145 HW_EVENT_ERR_CORRECTED, 146 HW_EVENT_ERR_UNCORRECTED, 147 HW_EVENT_ERR_DEFERRED, 148 HW_EVENT_ERR_FATAL, 149 HW_EVENT_ERR_INFO, 150}; 151 152static inline char *mc_event_error_type(const unsigned int err_type) 153{ 154 switch (err_type) { 155 case HW_EVENT_ERR_CORRECTED: 156 return "Corrected"; 157 case HW_EVENT_ERR_UNCORRECTED: 158 return "Uncorrected"; 159 case HW_EVENT_ERR_DEFERRED: 160 return "Deferred"; 161 case HW_EVENT_ERR_FATAL: 162 return "Fatal"; 163 default: 164 case HW_EVENT_ERR_INFO: 165 return "Info"; 166 } 167} 168 169/** 170 * enum mem_type - memory types. For a more detailed reference, please see 171 * http://en.wikipedia.org/wiki/DRAM 172 * 173 * @MEM_EMPTY: Empty csrow 174 * @MEM_RESERVED: Reserved csrow type 175 * @MEM_UNKNOWN: Unknown csrow type 176 * @MEM_FPM: FPM - Fast Page Mode, used on systems up to 1995. 177 * @MEM_EDO: EDO - Extended data out, used on systems up to 1998. 178 * @MEM_BEDO: BEDO - Burst Extended data out, an EDO variant. 179 * @MEM_SDR: SDR - Single data rate SDRAM 180 * http://en.wikipedia.org/wiki/Synchronous_dynamic_random-access_memory 181 * They use 3 pins for chip select: Pins 0 and 2 are 182 * for rank 0; pins 1 and 3 are for rank 1, if the memory 183 * is dual-rank. 184 * @MEM_RDR: Registered SDR SDRAM 185 * @MEM_DDR: Double data rate SDRAM 186 * http://en.wikipedia.org/wiki/DDR_SDRAM 187 * @MEM_RDDR: Registered Double data rate SDRAM 188 * This is a variant of the DDR memories. 189 * A registered memory has a buffer inside it, hiding 190 * part of the memory details to the memory controller. 191 * @MEM_RMBS: Rambus DRAM, used on a few Pentium III/IV controllers. 192 * @MEM_DDR2: DDR2 RAM, as described at JEDEC JESD79-2F. 193 * Those memories are labeled as "PC2-" instead of "PC" to 194 * differentiate from DDR. 195 * @MEM_FB_DDR2: Fully-Buffered DDR2, as described at JEDEC Std No. 205 196 * and JESD206. 197 * Those memories are accessed per DIMM slot, and not by 198 * a chip select signal. 199 * @MEM_RDDR2: Registered DDR2 RAM 200 * This is a variant of the DDR2 memories. 201 * @MEM_XDR: Rambus XDR 202 * It is an evolution of the original RAMBUS memories, 203 * created to compete with DDR2. Weren't used on any 204 * x86 arch, but cell_edac PPC memory controller uses it. 205 * @MEM_DDR3: DDR3 RAM 206 * @MEM_RDDR3: Registered DDR3 RAM 207 * This is a variant of the DDR3 memories. 208 * @MEM_LRDDR3: Load-Reduced DDR3 memory. 209 * @MEM_DDR4: Unbuffered DDR4 RAM 210 * @MEM_RDDR4: Registered DDR4 RAM 211 * This is a variant of the DDR4 memories. 212 * @MEM_LRDDR4: Load-Reduced DDR4 memory. 213 */ 214enum mem_type { 215 MEM_EMPTY = 0, 216 MEM_RESERVED, 217 MEM_UNKNOWN, 218 MEM_FPM, 219 MEM_EDO, 220 MEM_BEDO, 221 MEM_SDR, 222 MEM_RDR, 223 MEM_DDR, 224 MEM_RDDR, 225 MEM_RMBS, 226 MEM_DDR2, 227 MEM_FB_DDR2, 228 MEM_RDDR2, 229 MEM_XDR, 230 MEM_DDR3, 231 MEM_RDDR3, 232 MEM_LRDDR3, 233 MEM_DDR4, 234 MEM_RDDR4, 235 MEM_LRDDR4, 236}; 237 238#define MEM_FLAG_EMPTY BIT(MEM_EMPTY) 239#define MEM_FLAG_RESERVED BIT(MEM_RESERVED) 240#define MEM_FLAG_UNKNOWN BIT(MEM_UNKNOWN) 241#define MEM_FLAG_FPM BIT(MEM_FPM) 242#define MEM_FLAG_EDO BIT(MEM_EDO) 243#define MEM_FLAG_BEDO BIT(MEM_BEDO) 244#define MEM_FLAG_SDR BIT(MEM_SDR) 245#define MEM_FLAG_RDR BIT(MEM_RDR) 246#define MEM_FLAG_DDR BIT(MEM_DDR) 247#define MEM_FLAG_RDDR BIT(MEM_RDDR) 248#define MEM_FLAG_RMBS BIT(MEM_RMBS) 249#define MEM_FLAG_DDR2 BIT(MEM_DDR2) 250#define MEM_FLAG_FB_DDR2 BIT(MEM_FB_DDR2) 251#define MEM_FLAG_RDDR2 BIT(MEM_RDDR2) 252#define MEM_FLAG_XDR BIT(MEM_XDR) 253#define MEM_FLAG_DDR3 BIT(MEM_DDR3) 254#define MEM_FLAG_RDDR3 BIT(MEM_RDDR3) 255#define MEM_FLAG_DDR4 BIT(MEM_DDR4) 256#define MEM_FLAG_RDDR4 BIT(MEM_RDDR4) 257#define MEM_FLAG_LRDDR4 BIT(MEM_LRDDR4) 258 259/** 260 * enum edac-type - Error Detection and Correction capabilities and mode 261 * @EDAC_UNKNOWN: Unknown if ECC is available 262 * @EDAC_NONE: Doesn't support ECC 263 * @EDAC_RESERVED: Reserved ECC type 264 * @EDAC_PARITY: Detects parity errors 265 * @EDAC_EC: Error Checking - no correction 266 * @EDAC_SECDED: Single bit error correction, Double detection 267 * @EDAC_S2ECD2ED: Chipkill x2 devices - do these exist? 268 * @EDAC_S4ECD4ED: Chipkill x4 devices 269 * @EDAC_S8ECD8ED: Chipkill x8 devices 270 * @EDAC_S16ECD16ED: Chipkill x16 devices 271 */ 272enum edac_type { 273 EDAC_UNKNOWN = 0, 274 EDAC_NONE, 275 EDAC_RESERVED, 276 EDAC_PARITY, 277 EDAC_EC, 278 EDAC_SECDED, 279 EDAC_S2ECD2ED, 280 EDAC_S4ECD4ED, 281 EDAC_S8ECD8ED, 282 EDAC_S16ECD16ED, 283}; 284 285#define EDAC_FLAG_UNKNOWN BIT(EDAC_UNKNOWN) 286#define EDAC_FLAG_NONE BIT(EDAC_NONE) 287#define EDAC_FLAG_PARITY BIT(EDAC_PARITY) 288#define EDAC_FLAG_EC BIT(EDAC_EC) 289#define EDAC_FLAG_SECDED BIT(EDAC_SECDED) 290#define EDAC_FLAG_S2ECD2ED BIT(EDAC_S2ECD2ED) 291#define EDAC_FLAG_S4ECD4ED BIT(EDAC_S4ECD4ED) 292#define EDAC_FLAG_S8ECD8ED BIT(EDAC_S8ECD8ED) 293#define EDAC_FLAG_S16ECD16ED BIT(EDAC_S16ECD16ED) 294 295/** 296 * enum scrub_type - scrubbing capabilities 297 * @SCRUB_UNKNOWN: Unknown if scrubber is available 298 * @SCRUB_NONE: No scrubber 299 * @SCRUB_SW_PROG: SW progressive (sequential) scrubbing 300 * @SCRUB_SW_SRC: Software scrub only errors 301 * @SCRUB_SW_PROG_SRC: Progressive software scrub from an error 302 * @SCRUB_SW_TUNABLE: Software scrub frequency is tunable 303 * @SCRUB_HW_PROG: HW progressive (sequential) scrubbing 304 * @SCRUB_HW_SRC: Hardware scrub only errors 305 * @SCRUB_HW_PROG_SRC: Progressive hardware scrub from an error 306 * @SCRUB_HW_TUNABLE: Hardware scrub frequency is tunable 307 */ 308enum scrub_type { 309 SCRUB_UNKNOWN = 0, 310 SCRUB_NONE, 311 SCRUB_SW_PROG, 312 SCRUB_SW_SRC, 313 SCRUB_SW_PROG_SRC, 314 SCRUB_SW_TUNABLE, 315 SCRUB_HW_PROG, 316 SCRUB_HW_SRC, 317 SCRUB_HW_PROG_SRC, 318 SCRUB_HW_TUNABLE 319}; 320 321#define SCRUB_FLAG_SW_PROG BIT(SCRUB_SW_PROG) 322#define SCRUB_FLAG_SW_SRC BIT(SCRUB_SW_SRC) 323#define SCRUB_FLAG_SW_PROG_SRC BIT(SCRUB_SW_PROG_SRC) 324#define SCRUB_FLAG_SW_TUN BIT(SCRUB_SW_SCRUB_TUNABLE) 325#define SCRUB_FLAG_HW_PROG BIT(SCRUB_HW_PROG) 326#define SCRUB_FLAG_HW_SRC BIT(SCRUB_HW_SRC) 327#define SCRUB_FLAG_HW_PROG_SRC BIT(SCRUB_HW_PROG_SRC) 328#define SCRUB_FLAG_HW_TUN BIT(SCRUB_HW_TUNABLE) 329 330/* FIXME - should have notify capabilities: NMI, LOG, PROC, etc */ 331 332/* EDAC internal operation states */ 333#define OP_ALLOC 0x100 334#define OP_RUNNING_POLL 0x201 335#define OP_RUNNING_INTERRUPT 0x202 336#define OP_RUNNING_POLL_INTR 0x203 337#define OP_OFFLINE 0x300 338 339/** 340 * enum edac_mc_layer - memory controller hierarchy layer 341 * 342 * @EDAC_MC_LAYER_BRANCH: memory layer is named "branch" 343 * @EDAC_MC_LAYER_CHANNEL: memory layer is named "channel" 344 * @EDAC_MC_LAYER_SLOT: memory layer is named "slot" 345 * @EDAC_MC_LAYER_CHIP_SELECT: memory layer is named "chip select" 346 * @EDAC_MC_LAYER_ALL_MEM: memory layout is unknown. All memory is mapped 347 * as a single memory area. This is used when 348 * retrieving errors from a firmware driven driver. 349 * 350 * This enum is used by the drivers to tell edac_mc_sysfs what name should 351 * be used when describing a memory stick location. 352 */ 353enum edac_mc_layer_type { 354 EDAC_MC_LAYER_BRANCH, 355 EDAC_MC_LAYER_CHANNEL, 356 EDAC_MC_LAYER_SLOT, 357 EDAC_MC_LAYER_CHIP_SELECT, 358 EDAC_MC_LAYER_ALL_MEM, 359}; 360 361/** 362 * struct edac_mc_layer - describes the memory controller hierarchy 363 * @type: layer type 364 * @size: number of components per layer. For example, 365 * if the channel layer has two channels, size = 2 366 * @is_virt_csrow: This layer is part of the "csrow" when old API 367 * compatibility mode is enabled. Otherwise, it is 368 * a channel 369 */ 370struct edac_mc_layer { 371 enum edac_mc_layer_type type; 372 unsigned size; 373 bool is_virt_csrow; 374}; 375 376/* 377 * Maximum number of layers used by the memory controller to uniquely 378 * identify a single memory stick. 379 * NOTE: Changing this constant requires not only to change the constant 380 * below, but also to change the existing code at the core, as there are 381 * some code there that are optimized for 3 layers. 382 */ 383#define EDAC_MAX_LAYERS 3 384 385/** 386 * EDAC_DIMM_OFF - Macro responsible to get a pointer offset inside a pointer 387 * array for the element given by [layer0,layer1,layer2] 388 * position 389 * 390 * @layers: a struct edac_mc_layer array, describing how many elements 391 * were allocated for each layer 392 * @nlayers: Number of layers at the @layers array 393 * @layer0: layer0 position 394 * @layer1: layer1 position. Unused if n_layers < 2 395 * @layer2: layer2 position. Unused if n_layers < 3 396 * 397 * For 1 layer, this macro returns "var[layer0] - var"; 398 * 399 * For 2 layers, this macro is similar to allocate a bi-dimensional array 400 * and to return "var[layer0][layer1] - var"; 401 * 402 * For 3 layers, this macro is similar to allocate a tri-dimensional array 403 * and to return "var[layer0][layer1][layer2] - var". 404 * 405 * A loop could be used here to make it more generic, but, as we only have 406 * 3 layers, this is a little faster. 407 * 408 * By design, layers can never be 0 or more than 3. If that ever happens, 409 * a NULL is returned, causing an OOPS during the memory allocation routine, 410 * with would point to the developer that he's doing something wrong. 411 */ 412#define EDAC_DIMM_OFF(layers, nlayers, layer0, layer1, layer2) ({ \ 413 int __i; \ 414 if ((nlayers) == 1) \ 415 __i = layer0; \ 416 else if ((nlayers) == 2) \ 417 __i = (layer1) + ((layers[1]).size * (layer0)); \ 418 else if ((nlayers) == 3) \ 419 __i = (layer2) + ((layers[2]).size * ((layer1) + \ 420 ((layers[1]).size * (layer0)))); \ 421 else \ 422 __i = -EINVAL; \ 423 __i; \ 424}) 425 426/** 427 * EDAC_DIMM_PTR - Macro responsible to get a pointer inside a pointer array 428 * for the element given by [layer0,layer1,layer2] position 429 * 430 * @layers: a struct edac_mc_layer array, describing how many elements 431 * were allocated for each layer 432 * @var: name of the var where we want to get the pointer 433 * (like mci->dimms) 434 * @nlayers: Number of layers at the @layers array 435 * @layer0: layer0 position 436 * @layer1: layer1 position. Unused if n_layers < 2 437 * @layer2: layer2 position. Unused if n_layers < 3 438 * 439 * For 1 layer, this macro returns "var[layer0]"; 440 * 441 * For 2 layers, this macro is similar to allocate a bi-dimensional array 442 * and to return "var[layer0][layer1]"; 443 * 444 * For 3 layers, this macro is similar to allocate a tri-dimensional array 445 * and to return "var[layer0][layer1][layer2]"; 446 */ 447#define EDAC_DIMM_PTR(layers, var, nlayers, layer0, layer1, layer2) ({ \ 448 typeof(*var) __p; \ 449 int ___i = EDAC_DIMM_OFF(layers, nlayers, layer0, layer1, layer2); \ 450 if (___i < 0) \ 451 __p = NULL; \ 452 else \ 453 __p = (var)[___i]; \ 454 __p; \ 455}) 456 457struct dimm_info { 458 struct device dev; 459 460 char label[EDAC_MC_LABEL_LEN + 1]; /* DIMM label on motherboard */ 461 462 /* Memory location data */ 463 unsigned location[EDAC_MAX_LAYERS]; 464 465 struct mem_ctl_info *mci; /* the parent */ 466 467 u32 grain; /* granularity of reported error in bytes */ 468 enum dev_type dtype; /* memory device type */ 469 enum mem_type mtype; /* memory dimm type */ 470 enum edac_type edac_mode; /* EDAC mode for this dimm */ 471 472 u32 nr_pages; /* number of pages on this dimm */ 473 474 unsigned csrow, cschannel; /* Points to the old API data */ 475}; 476 477/** 478 * struct rank_info - contains the information for one DIMM rank 479 * 480 * @chan_idx: channel number where the rank is (typically, 0 or 1) 481 * @ce_count: number of correctable errors for this rank 482 * @csrow: A pointer to the chip select row structure (the parent 483 * structure). The location of the rank is given by 484 * the (csrow->csrow_idx, chan_idx) vector. 485 * @dimm: A pointer to the DIMM structure, where the DIMM label 486 * information is stored. 487 * 488 * FIXME: Currently, the EDAC core model will assume one DIMM per rank. 489 * This is a bad assumption, but it makes this patch easier. Later 490 * patches in this series will fix this issue. 491 */ 492struct rank_info { 493 int chan_idx; 494 struct csrow_info *csrow; 495 struct dimm_info *dimm; 496 497 u32 ce_count; /* Correctable Errors for this csrow */ 498}; 499 500struct csrow_info { 501 struct device dev; 502 503 /* Used only by edac_mc_find_csrow_by_page() */ 504 unsigned long first_page; /* first page number in csrow */ 505 unsigned long last_page; /* last page number in csrow */ 506 unsigned long page_mask; /* used for interleaving - 507 * 0UL for non intlv */ 508 509 int csrow_idx; /* the chip-select row */ 510 511 u32 ue_count; /* Uncorrectable Errors for this csrow */ 512 u32 ce_count; /* Correctable Errors for this csrow */ 513 514 struct mem_ctl_info *mci; /* the parent */ 515 516 /* channel information for this csrow */ 517 u32 nr_channels; 518 struct rank_info **channels; 519}; 520 521/* 522 * struct errcount_attribute - used to store the several error counts 523 */ 524struct errcount_attribute_data { 525 int n_layers; 526 int pos[EDAC_MAX_LAYERS]; 527 int layer0, layer1, layer2; 528}; 529 530/** 531 * struct edac_raw_error_desc - Raw error report structure 532 * @grain: minimum granularity for an error report, in bytes 533 * @error_count: number of errors of the same type 534 * @top_layer: top layer of the error (layer[0]) 535 * @mid_layer: middle layer of the error (layer[1]) 536 * @low_layer: low layer of the error (layer[2]) 537 * @page_frame_number: page where the error happened 538 * @offset_in_page: page offset 539 * @syndrome: syndrome of the error (or 0 if unknown or if 540 * the syndrome is not applicable) 541 * @msg: error message 542 * @location: location of the error 543 * @label: label of the affected DIMM(s) 544 * @other_detail: other driver-specific detail about the error 545 * @enable_per_layer_report: if false, the error affects all layers 546 * (typically, a memory controller error) 547 */ 548struct edac_raw_error_desc { 549 /* 550 * NOTE: everything before grain won't be cleaned by 551 * edac_raw_error_desc_clean() 552 */ 553 char location[LOCATION_SIZE]; 554 char label[(EDAC_MC_LABEL_LEN + 1 + sizeof(OTHER_LABEL)) * EDAC_MAX_LABELS]; 555 long grain; 556 557 /* the vars below and grain will be cleaned on every new error report */ 558 u16 error_count; 559 int top_layer; 560 int mid_layer; 561 int low_layer; 562 unsigned long page_frame_number; 563 unsigned long offset_in_page; 564 unsigned long syndrome; 565 const char *msg; 566 const char *other_detail; 567 bool enable_per_layer_report; 568}; 569 570/* MEMORY controller information structure 571 */ 572struct mem_ctl_info { 573 struct device dev; 574 struct bus_type *bus; 575 576 struct list_head link; /* for global list of mem_ctl_info structs */ 577 578 struct module *owner; /* Module owner of this control struct */ 579 580 unsigned long mtype_cap; /* memory types supported by mc */ 581 unsigned long edac_ctl_cap; /* Mem controller EDAC capabilities */ 582 unsigned long edac_cap; /* configuration capabilities - this is 583 * closely related to edac_ctl_cap. The 584 * difference is that the controller may be 585 * capable of s4ecd4ed which would be listed 586 * in edac_ctl_cap, but if channels aren't 587 * capable of s4ecd4ed then the edac_cap would 588 * not have that capability. 589 */ 590 unsigned long scrub_cap; /* chipset scrub capabilities */ 591 enum scrub_type scrub_mode; /* current scrub mode */ 592 593 /* Translates sdram memory scrub rate given in bytes/sec to the 594 internal representation and configures whatever else needs 595 to be configured. 596 */ 597 int (*set_sdram_scrub_rate) (struct mem_ctl_info * mci, u32 bw); 598 599 /* Get the current sdram memory scrub rate from the internal 600 representation and converts it to the closest matching 601 bandwidth in bytes/sec. 602 */ 603 int (*get_sdram_scrub_rate) (struct mem_ctl_info * mci); 604 605 606 /* pointer to edac checking routine */ 607 void (*edac_check) (struct mem_ctl_info * mci); 608 609 /* 610 * Remaps memory pages: controller pages to physical pages. 611 * For most MC's, this will be NULL. 612 */ 613 /* FIXME - why not send the phys page to begin with? */ 614 unsigned long (*ctl_page_to_phys) (struct mem_ctl_info * mci, 615 unsigned long page); 616 int mc_idx; 617 struct csrow_info **csrows; 618 unsigned nr_csrows, num_cschannel; 619 620 /* 621 * Memory Controller hierarchy 622 * 623 * There are basically two types of memory controller: the ones that 624 * sees memory sticks ("dimms"), and the ones that sees memory ranks. 625 * All old memory controllers enumerate memories per rank, but most 626 * of the recent drivers enumerate memories per DIMM, instead. 627 * When the memory controller is per rank, csbased is true. 628 */ 629 unsigned n_layers; 630 struct edac_mc_layer *layers; 631 bool csbased; 632 633 /* 634 * DIMM info. Will eventually remove the entire csrows_info some day 635 */ 636 unsigned tot_dimms; 637 struct dimm_info **dimms; 638 639 /* 640 * FIXME - what about controllers on other busses? - IDs must be 641 * unique. dev pointer should be sufficiently unique, but 642 * BUS:SLOT.FUNC numbers may not be unique. 643 */ 644 struct device *pdev; 645 const char *mod_name; 646 const char *mod_ver; 647 const char *ctl_name; 648 const char *dev_name; 649 void *pvt_info; 650 unsigned long start_time; /* mci load start time (in jiffies) */ 651 652 /* 653 * drivers shouldn't access those fields directly, as the core 654 * already handles that. 655 */ 656 u32 ce_noinfo_count, ue_noinfo_count; 657 u32 ue_mc, ce_mc; 658 u32 *ce_per_layer[EDAC_MAX_LAYERS], *ue_per_layer[EDAC_MAX_LAYERS]; 659 660 struct completion complete; 661 662 /* Additional top controller level attributes, but specified 663 * by the low level driver. 664 * 665 * Set by the low level driver to provide attributes at the 666 * controller level. 667 * An array of structures, NULL terminated 668 * 669 * If attributes are desired, then set to array of attributes 670 * If no attributes are desired, leave NULL 671 */ 672 const struct mcidev_sysfs_attribute *mc_driver_sysfs_attributes; 673 674 /* work struct for this MC */ 675 struct delayed_work work; 676 677 /* 678 * Used to report an error - by being at the global struct 679 * makes the memory allocated by the EDAC core 680 */ 681 struct edac_raw_error_desc error_desc; 682 683 /* the internal state of this controller instance */ 684 int op_state; 685 686 struct dentry *debugfs; 687 u8 fake_inject_layer[EDAC_MAX_LAYERS]; 688 bool fake_inject_ue; 689 u16 fake_inject_count; 690}; 691 692/* 693 * Maximum number of memory controllers in the coherent fabric. 694 */ 695#define EDAC_MAX_MCS 16 696 697#endif