Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * fs/f2fs/node.h
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11/* start node id of a node block dedicated to the given node id */
12#define START_NID(nid) ((nid / NAT_ENTRY_PER_BLOCK) * NAT_ENTRY_PER_BLOCK)
13
14/* node block offset on the NAT area dedicated to the given start node id */
15#define NAT_BLOCK_OFFSET(start_nid) (start_nid / NAT_ENTRY_PER_BLOCK)
16
17/* # of pages to perform synchronous readahead before building free nids */
18#define FREE_NID_PAGES 8
19#define MAX_FREE_NIDS (NAT_ENTRY_PER_BLOCK * FREE_NID_PAGES)
20
21#define DEF_RA_NID_PAGES 0 /* # of nid pages to be readaheaded */
22
23/* maximum readahead size for node during getting data blocks */
24#define MAX_RA_NODE 128
25
26/* control the memory footprint threshold (10MB per 1GB ram) */
27#define DEF_RAM_THRESHOLD 1
28
29/* control dirty nats ratio threshold (default: 10% over max nid count) */
30#define DEF_DIRTY_NAT_RATIO_THRESHOLD 10
31/* control total # of nats */
32#define DEF_NAT_CACHE_THRESHOLD 100000
33
34/* vector size for gang look-up from nat cache that consists of radix tree */
35#define NATVEC_SIZE 64
36#define SETVEC_SIZE 32
37
38/* return value for read_node_page */
39#define LOCKED_PAGE 1
40
41/* For flag in struct node_info */
42enum {
43 IS_CHECKPOINTED, /* is it checkpointed before? */
44 HAS_FSYNCED_INODE, /* is the inode fsynced before? */
45 HAS_LAST_FSYNC, /* has the latest node fsync mark? */
46 IS_DIRTY, /* this nat entry is dirty? */
47};
48
49/*
50 * For node information
51 */
52struct node_info {
53 nid_t nid; /* node id */
54 nid_t ino; /* inode number of the node's owner */
55 block_t blk_addr; /* block address of the node */
56 unsigned char version; /* version of the node */
57 unsigned char flag; /* for node information bits */
58};
59
60struct nat_entry {
61 struct list_head list; /* for clean or dirty nat list */
62 struct node_info ni; /* in-memory node information */
63};
64
65#define nat_get_nid(nat) (nat->ni.nid)
66#define nat_set_nid(nat, n) (nat->ni.nid = n)
67#define nat_get_blkaddr(nat) (nat->ni.blk_addr)
68#define nat_set_blkaddr(nat, b) (nat->ni.blk_addr = b)
69#define nat_get_ino(nat) (nat->ni.ino)
70#define nat_set_ino(nat, i) (nat->ni.ino = i)
71#define nat_get_version(nat) (nat->ni.version)
72#define nat_set_version(nat, v) (nat->ni.version = v)
73
74#define inc_node_version(version) (++version)
75
76static inline void copy_node_info(struct node_info *dst,
77 struct node_info *src)
78{
79 dst->nid = src->nid;
80 dst->ino = src->ino;
81 dst->blk_addr = src->blk_addr;
82 dst->version = src->version;
83 /* should not copy flag here */
84}
85
86static inline void set_nat_flag(struct nat_entry *ne,
87 unsigned int type, bool set)
88{
89 unsigned char mask = 0x01 << type;
90 if (set)
91 ne->ni.flag |= mask;
92 else
93 ne->ni.flag &= ~mask;
94}
95
96static inline bool get_nat_flag(struct nat_entry *ne, unsigned int type)
97{
98 unsigned char mask = 0x01 << type;
99 return ne->ni.flag & mask;
100}
101
102static inline void nat_reset_flag(struct nat_entry *ne)
103{
104 /* these states can be set only after checkpoint was done */
105 set_nat_flag(ne, IS_CHECKPOINTED, true);
106 set_nat_flag(ne, HAS_FSYNCED_INODE, false);
107 set_nat_flag(ne, HAS_LAST_FSYNC, true);
108}
109
110static inline void node_info_from_raw_nat(struct node_info *ni,
111 struct f2fs_nat_entry *raw_ne)
112{
113 ni->ino = le32_to_cpu(raw_ne->ino);
114 ni->blk_addr = le32_to_cpu(raw_ne->block_addr);
115 ni->version = raw_ne->version;
116}
117
118static inline void raw_nat_from_node_info(struct f2fs_nat_entry *raw_ne,
119 struct node_info *ni)
120{
121 raw_ne->ino = cpu_to_le32(ni->ino);
122 raw_ne->block_addr = cpu_to_le32(ni->blk_addr);
123 raw_ne->version = ni->version;
124}
125
126static inline bool excess_dirty_nats(struct f2fs_sb_info *sbi)
127{
128 return NM_I(sbi)->dirty_nat_cnt >= NM_I(sbi)->max_nid *
129 NM_I(sbi)->dirty_nats_ratio / 100;
130}
131
132static inline bool excess_cached_nats(struct f2fs_sb_info *sbi)
133{
134 return NM_I(sbi)->nat_cnt >= DEF_NAT_CACHE_THRESHOLD;
135}
136
137enum mem_type {
138 FREE_NIDS, /* indicates the free nid list */
139 NAT_ENTRIES, /* indicates the cached nat entry */
140 DIRTY_DENTS, /* indicates dirty dentry pages */
141 INO_ENTRIES, /* indicates inode entries */
142 EXTENT_CACHE, /* indicates extent cache */
143 BASE_CHECK, /* check kernel status */
144};
145
146struct nat_entry_set {
147 struct list_head set_list; /* link with other nat sets */
148 struct list_head entry_list; /* link with dirty nat entries */
149 nid_t set; /* set number*/
150 unsigned int entry_cnt; /* the # of nat entries in set */
151};
152
153/*
154 * For free nid mangement
155 */
156enum nid_state {
157 NID_NEW, /* newly added to free nid list */
158 NID_ALLOC /* it is allocated */
159};
160
161struct free_nid {
162 struct list_head list; /* for free node id list */
163 nid_t nid; /* node id */
164 int state; /* in use or not: NID_NEW or NID_ALLOC */
165};
166
167static inline void next_free_nid(struct f2fs_sb_info *sbi, nid_t *nid)
168{
169 struct f2fs_nm_info *nm_i = NM_I(sbi);
170 struct free_nid *fnid;
171
172 spin_lock(&nm_i->nid_list_lock);
173 if (nm_i->nid_cnt[FREE_NID_LIST] <= 0) {
174 spin_unlock(&nm_i->nid_list_lock);
175 return;
176 }
177 fnid = list_first_entry(&nm_i->nid_list[FREE_NID_LIST],
178 struct free_nid, list);
179 *nid = fnid->nid;
180 spin_unlock(&nm_i->nid_list_lock);
181}
182
183/*
184 * inline functions
185 */
186static inline void get_nat_bitmap(struct f2fs_sb_info *sbi, void *addr)
187{
188 struct f2fs_nm_info *nm_i = NM_I(sbi);
189
190#ifdef CONFIG_F2FS_CHECK_FS
191 if (memcmp(nm_i->nat_bitmap, nm_i->nat_bitmap_mir,
192 nm_i->bitmap_size))
193 f2fs_bug_on(sbi, 1);
194#endif
195 memcpy(addr, nm_i->nat_bitmap, nm_i->bitmap_size);
196}
197
198static inline pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start)
199{
200 struct f2fs_nm_info *nm_i = NM_I(sbi);
201 pgoff_t block_off;
202 pgoff_t block_addr;
203 int seg_off;
204
205 block_off = NAT_BLOCK_OFFSET(start);
206 seg_off = block_off >> sbi->log_blocks_per_seg;
207
208 block_addr = (pgoff_t)(nm_i->nat_blkaddr +
209 (seg_off << sbi->log_blocks_per_seg << 1) +
210 (block_off & (sbi->blocks_per_seg - 1)));
211
212 if (f2fs_test_bit(block_off, nm_i->nat_bitmap))
213 block_addr += sbi->blocks_per_seg;
214
215 return block_addr;
216}
217
218static inline pgoff_t next_nat_addr(struct f2fs_sb_info *sbi,
219 pgoff_t block_addr)
220{
221 struct f2fs_nm_info *nm_i = NM_I(sbi);
222
223 block_addr -= nm_i->nat_blkaddr;
224 if ((block_addr >> sbi->log_blocks_per_seg) % 2)
225 block_addr -= sbi->blocks_per_seg;
226 else
227 block_addr += sbi->blocks_per_seg;
228
229 return block_addr + nm_i->nat_blkaddr;
230}
231
232static inline void set_to_next_nat(struct f2fs_nm_info *nm_i, nid_t start_nid)
233{
234 unsigned int block_off = NAT_BLOCK_OFFSET(start_nid);
235
236 f2fs_change_bit(block_off, nm_i->nat_bitmap);
237#ifdef CONFIG_F2FS_CHECK_FS
238 f2fs_change_bit(block_off, nm_i->nat_bitmap_mir);
239#endif
240}
241
242static inline nid_t ino_of_node(struct page *node_page)
243{
244 struct f2fs_node *rn = F2FS_NODE(node_page);
245 return le32_to_cpu(rn->footer.ino);
246}
247
248static inline nid_t nid_of_node(struct page *node_page)
249{
250 struct f2fs_node *rn = F2FS_NODE(node_page);
251 return le32_to_cpu(rn->footer.nid);
252}
253
254static inline unsigned int ofs_of_node(struct page *node_page)
255{
256 struct f2fs_node *rn = F2FS_NODE(node_page);
257 unsigned flag = le32_to_cpu(rn->footer.flag);
258 return flag >> OFFSET_BIT_SHIFT;
259}
260
261static inline __u64 cpver_of_node(struct page *node_page)
262{
263 struct f2fs_node *rn = F2FS_NODE(node_page);
264 return le64_to_cpu(rn->footer.cp_ver);
265}
266
267static inline block_t next_blkaddr_of_node(struct page *node_page)
268{
269 struct f2fs_node *rn = F2FS_NODE(node_page);
270 return le32_to_cpu(rn->footer.next_blkaddr);
271}
272
273static inline void fill_node_footer(struct page *page, nid_t nid,
274 nid_t ino, unsigned int ofs, bool reset)
275{
276 struct f2fs_node *rn = F2FS_NODE(page);
277 unsigned int old_flag = 0;
278
279 if (reset)
280 memset(rn, 0, sizeof(*rn));
281 else
282 old_flag = le32_to_cpu(rn->footer.flag);
283
284 rn->footer.nid = cpu_to_le32(nid);
285 rn->footer.ino = cpu_to_le32(ino);
286
287 /* should remain old flag bits such as COLD_BIT_SHIFT */
288 rn->footer.flag = cpu_to_le32((ofs << OFFSET_BIT_SHIFT) |
289 (old_flag & OFFSET_BIT_MASK));
290}
291
292static inline void copy_node_footer(struct page *dst, struct page *src)
293{
294 struct f2fs_node *src_rn = F2FS_NODE(src);
295 struct f2fs_node *dst_rn = F2FS_NODE(dst);
296 memcpy(&dst_rn->footer, &src_rn->footer, sizeof(struct node_footer));
297}
298
299static inline void fill_node_footer_blkaddr(struct page *page, block_t blkaddr)
300{
301 struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page));
302 struct f2fs_node *rn = F2FS_NODE(page);
303 __u64 cp_ver = cur_cp_version(ckpt);
304
305 if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG))
306 cp_ver |= (cur_cp_crc(ckpt) << 32);
307
308 rn->footer.cp_ver = cpu_to_le64(cp_ver);
309 rn->footer.next_blkaddr = cpu_to_le32(blkaddr);
310}
311
312static inline bool is_recoverable_dnode(struct page *page)
313{
314 struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page));
315 __u64 cp_ver = cur_cp_version(ckpt);
316
317 if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG))
318 cp_ver |= (cur_cp_crc(ckpt) << 32);
319
320 return cp_ver == cpver_of_node(page);
321}
322
323/*
324 * f2fs assigns the following node offsets described as (num).
325 * N = NIDS_PER_BLOCK
326 *
327 * Inode block (0)
328 * |- direct node (1)
329 * |- direct node (2)
330 * |- indirect node (3)
331 * | `- direct node (4 => 4 + N - 1)
332 * |- indirect node (4 + N)
333 * | `- direct node (5 + N => 5 + 2N - 1)
334 * `- double indirect node (5 + 2N)
335 * `- indirect node (6 + 2N)
336 * `- direct node
337 * ......
338 * `- indirect node ((6 + 2N) + x(N + 1))
339 * `- direct node
340 * ......
341 * `- indirect node ((6 + 2N) + (N - 1)(N + 1))
342 * `- direct node
343 */
344static inline bool IS_DNODE(struct page *node_page)
345{
346 unsigned int ofs = ofs_of_node(node_page);
347
348 if (f2fs_has_xattr_block(ofs))
349 return true;
350
351 if (ofs == 3 || ofs == 4 + NIDS_PER_BLOCK ||
352 ofs == 5 + 2 * NIDS_PER_BLOCK)
353 return false;
354 if (ofs >= 6 + 2 * NIDS_PER_BLOCK) {
355 ofs -= 6 + 2 * NIDS_PER_BLOCK;
356 if (!((long int)ofs % (NIDS_PER_BLOCK + 1)))
357 return false;
358 }
359 return true;
360}
361
362static inline int set_nid(struct page *p, int off, nid_t nid, bool i)
363{
364 struct f2fs_node *rn = F2FS_NODE(p);
365
366 f2fs_wait_on_page_writeback(p, NODE, true);
367
368 if (i)
369 rn->i.i_nid[off - NODE_DIR1_BLOCK] = cpu_to_le32(nid);
370 else
371 rn->in.nid[off] = cpu_to_le32(nid);
372 return set_page_dirty(p);
373}
374
375static inline nid_t get_nid(struct page *p, int off, bool i)
376{
377 struct f2fs_node *rn = F2FS_NODE(p);
378
379 if (i)
380 return le32_to_cpu(rn->i.i_nid[off - NODE_DIR1_BLOCK]);
381 return le32_to_cpu(rn->in.nid[off]);
382}
383
384/*
385 * Coldness identification:
386 * - Mark cold files in f2fs_inode_info
387 * - Mark cold node blocks in their node footer
388 * - Mark cold data pages in page cache
389 */
390static inline int is_cold_data(struct page *page)
391{
392 return PageChecked(page);
393}
394
395static inline void set_cold_data(struct page *page)
396{
397 SetPageChecked(page);
398}
399
400static inline void clear_cold_data(struct page *page)
401{
402 ClearPageChecked(page);
403}
404
405static inline int is_node(struct page *page, int type)
406{
407 struct f2fs_node *rn = F2FS_NODE(page);
408 return le32_to_cpu(rn->footer.flag) & (1 << type);
409}
410
411#define is_cold_node(page) is_node(page, COLD_BIT_SHIFT)
412#define is_fsync_dnode(page) is_node(page, FSYNC_BIT_SHIFT)
413#define is_dent_dnode(page) is_node(page, DENT_BIT_SHIFT)
414
415static inline int is_inline_node(struct page *page)
416{
417 return PageChecked(page);
418}
419
420static inline void set_inline_node(struct page *page)
421{
422 SetPageChecked(page);
423}
424
425static inline void clear_inline_node(struct page *page)
426{
427 ClearPageChecked(page);
428}
429
430static inline void set_cold_node(struct inode *inode, struct page *page)
431{
432 struct f2fs_node *rn = F2FS_NODE(page);
433 unsigned int flag = le32_to_cpu(rn->footer.flag);
434
435 if (S_ISDIR(inode->i_mode))
436 flag &= ~(0x1 << COLD_BIT_SHIFT);
437 else
438 flag |= (0x1 << COLD_BIT_SHIFT);
439 rn->footer.flag = cpu_to_le32(flag);
440}
441
442static inline void set_mark(struct page *page, int mark, int type)
443{
444 struct f2fs_node *rn = F2FS_NODE(page);
445 unsigned int flag = le32_to_cpu(rn->footer.flag);
446 if (mark)
447 flag |= (0x1 << type);
448 else
449 flag &= ~(0x1 << type);
450 rn->footer.flag = cpu_to_le32(flag);
451}
452#define set_dentry_mark(page, mark) set_mark(page, mark, DENT_BIT_SHIFT)
453#define set_fsync_mark(page, mark) set_mark(page, mark, FSYNC_BIT_SHIFT)