at v4.11 12 kB view raw
1/* 2 * fs/f2fs/node.h 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11/* start node id of a node block dedicated to the given node id */ 12#define START_NID(nid) ((nid / NAT_ENTRY_PER_BLOCK) * NAT_ENTRY_PER_BLOCK) 13 14/* node block offset on the NAT area dedicated to the given start node id */ 15#define NAT_BLOCK_OFFSET(start_nid) (start_nid / NAT_ENTRY_PER_BLOCK) 16 17/* # of pages to perform synchronous readahead before building free nids */ 18#define FREE_NID_PAGES 8 19#define MAX_FREE_NIDS (NAT_ENTRY_PER_BLOCK * FREE_NID_PAGES) 20 21#define DEF_RA_NID_PAGES 0 /* # of nid pages to be readaheaded */ 22 23/* maximum readahead size for node during getting data blocks */ 24#define MAX_RA_NODE 128 25 26/* control the memory footprint threshold (10MB per 1GB ram) */ 27#define DEF_RAM_THRESHOLD 1 28 29/* control dirty nats ratio threshold (default: 10% over max nid count) */ 30#define DEF_DIRTY_NAT_RATIO_THRESHOLD 10 31/* control total # of nats */ 32#define DEF_NAT_CACHE_THRESHOLD 100000 33 34/* vector size for gang look-up from nat cache that consists of radix tree */ 35#define NATVEC_SIZE 64 36#define SETVEC_SIZE 32 37 38/* return value for read_node_page */ 39#define LOCKED_PAGE 1 40 41/* For flag in struct node_info */ 42enum { 43 IS_CHECKPOINTED, /* is it checkpointed before? */ 44 HAS_FSYNCED_INODE, /* is the inode fsynced before? */ 45 HAS_LAST_FSYNC, /* has the latest node fsync mark? */ 46 IS_DIRTY, /* this nat entry is dirty? */ 47}; 48 49/* 50 * For node information 51 */ 52struct node_info { 53 nid_t nid; /* node id */ 54 nid_t ino; /* inode number of the node's owner */ 55 block_t blk_addr; /* block address of the node */ 56 unsigned char version; /* version of the node */ 57 unsigned char flag; /* for node information bits */ 58}; 59 60struct nat_entry { 61 struct list_head list; /* for clean or dirty nat list */ 62 struct node_info ni; /* in-memory node information */ 63}; 64 65#define nat_get_nid(nat) (nat->ni.nid) 66#define nat_set_nid(nat, n) (nat->ni.nid = n) 67#define nat_get_blkaddr(nat) (nat->ni.blk_addr) 68#define nat_set_blkaddr(nat, b) (nat->ni.blk_addr = b) 69#define nat_get_ino(nat) (nat->ni.ino) 70#define nat_set_ino(nat, i) (nat->ni.ino = i) 71#define nat_get_version(nat) (nat->ni.version) 72#define nat_set_version(nat, v) (nat->ni.version = v) 73 74#define inc_node_version(version) (++version) 75 76static inline void copy_node_info(struct node_info *dst, 77 struct node_info *src) 78{ 79 dst->nid = src->nid; 80 dst->ino = src->ino; 81 dst->blk_addr = src->blk_addr; 82 dst->version = src->version; 83 /* should not copy flag here */ 84} 85 86static inline void set_nat_flag(struct nat_entry *ne, 87 unsigned int type, bool set) 88{ 89 unsigned char mask = 0x01 << type; 90 if (set) 91 ne->ni.flag |= mask; 92 else 93 ne->ni.flag &= ~mask; 94} 95 96static inline bool get_nat_flag(struct nat_entry *ne, unsigned int type) 97{ 98 unsigned char mask = 0x01 << type; 99 return ne->ni.flag & mask; 100} 101 102static inline void nat_reset_flag(struct nat_entry *ne) 103{ 104 /* these states can be set only after checkpoint was done */ 105 set_nat_flag(ne, IS_CHECKPOINTED, true); 106 set_nat_flag(ne, HAS_FSYNCED_INODE, false); 107 set_nat_flag(ne, HAS_LAST_FSYNC, true); 108} 109 110static inline void node_info_from_raw_nat(struct node_info *ni, 111 struct f2fs_nat_entry *raw_ne) 112{ 113 ni->ino = le32_to_cpu(raw_ne->ino); 114 ni->blk_addr = le32_to_cpu(raw_ne->block_addr); 115 ni->version = raw_ne->version; 116} 117 118static inline void raw_nat_from_node_info(struct f2fs_nat_entry *raw_ne, 119 struct node_info *ni) 120{ 121 raw_ne->ino = cpu_to_le32(ni->ino); 122 raw_ne->block_addr = cpu_to_le32(ni->blk_addr); 123 raw_ne->version = ni->version; 124} 125 126static inline bool excess_dirty_nats(struct f2fs_sb_info *sbi) 127{ 128 return NM_I(sbi)->dirty_nat_cnt >= NM_I(sbi)->max_nid * 129 NM_I(sbi)->dirty_nats_ratio / 100; 130} 131 132static inline bool excess_cached_nats(struct f2fs_sb_info *sbi) 133{ 134 return NM_I(sbi)->nat_cnt >= DEF_NAT_CACHE_THRESHOLD; 135} 136 137enum mem_type { 138 FREE_NIDS, /* indicates the free nid list */ 139 NAT_ENTRIES, /* indicates the cached nat entry */ 140 DIRTY_DENTS, /* indicates dirty dentry pages */ 141 INO_ENTRIES, /* indicates inode entries */ 142 EXTENT_CACHE, /* indicates extent cache */ 143 BASE_CHECK, /* check kernel status */ 144}; 145 146struct nat_entry_set { 147 struct list_head set_list; /* link with other nat sets */ 148 struct list_head entry_list; /* link with dirty nat entries */ 149 nid_t set; /* set number*/ 150 unsigned int entry_cnt; /* the # of nat entries in set */ 151}; 152 153/* 154 * For free nid mangement 155 */ 156enum nid_state { 157 NID_NEW, /* newly added to free nid list */ 158 NID_ALLOC /* it is allocated */ 159}; 160 161struct free_nid { 162 struct list_head list; /* for free node id list */ 163 nid_t nid; /* node id */ 164 int state; /* in use or not: NID_NEW or NID_ALLOC */ 165}; 166 167static inline void next_free_nid(struct f2fs_sb_info *sbi, nid_t *nid) 168{ 169 struct f2fs_nm_info *nm_i = NM_I(sbi); 170 struct free_nid *fnid; 171 172 spin_lock(&nm_i->nid_list_lock); 173 if (nm_i->nid_cnt[FREE_NID_LIST] <= 0) { 174 spin_unlock(&nm_i->nid_list_lock); 175 return; 176 } 177 fnid = list_first_entry(&nm_i->nid_list[FREE_NID_LIST], 178 struct free_nid, list); 179 *nid = fnid->nid; 180 spin_unlock(&nm_i->nid_list_lock); 181} 182 183/* 184 * inline functions 185 */ 186static inline void get_nat_bitmap(struct f2fs_sb_info *sbi, void *addr) 187{ 188 struct f2fs_nm_info *nm_i = NM_I(sbi); 189 190#ifdef CONFIG_F2FS_CHECK_FS 191 if (memcmp(nm_i->nat_bitmap, nm_i->nat_bitmap_mir, 192 nm_i->bitmap_size)) 193 f2fs_bug_on(sbi, 1); 194#endif 195 memcpy(addr, nm_i->nat_bitmap, nm_i->bitmap_size); 196} 197 198static inline pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start) 199{ 200 struct f2fs_nm_info *nm_i = NM_I(sbi); 201 pgoff_t block_off; 202 pgoff_t block_addr; 203 int seg_off; 204 205 block_off = NAT_BLOCK_OFFSET(start); 206 seg_off = block_off >> sbi->log_blocks_per_seg; 207 208 block_addr = (pgoff_t)(nm_i->nat_blkaddr + 209 (seg_off << sbi->log_blocks_per_seg << 1) + 210 (block_off & (sbi->blocks_per_seg - 1))); 211 212 if (f2fs_test_bit(block_off, nm_i->nat_bitmap)) 213 block_addr += sbi->blocks_per_seg; 214 215 return block_addr; 216} 217 218static inline pgoff_t next_nat_addr(struct f2fs_sb_info *sbi, 219 pgoff_t block_addr) 220{ 221 struct f2fs_nm_info *nm_i = NM_I(sbi); 222 223 block_addr -= nm_i->nat_blkaddr; 224 if ((block_addr >> sbi->log_blocks_per_seg) % 2) 225 block_addr -= sbi->blocks_per_seg; 226 else 227 block_addr += sbi->blocks_per_seg; 228 229 return block_addr + nm_i->nat_blkaddr; 230} 231 232static inline void set_to_next_nat(struct f2fs_nm_info *nm_i, nid_t start_nid) 233{ 234 unsigned int block_off = NAT_BLOCK_OFFSET(start_nid); 235 236 f2fs_change_bit(block_off, nm_i->nat_bitmap); 237#ifdef CONFIG_F2FS_CHECK_FS 238 f2fs_change_bit(block_off, nm_i->nat_bitmap_mir); 239#endif 240} 241 242static inline nid_t ino_of_node(struct page *node_page) 243{ 244 struct f2fs_node *rn = F2FS_NODE(node_page); 245 return le32_to_cpu(rn->footer.ino); 246} 247 248static inline nid_t nid_of_node(struct page *node_page) 249{ 250 struct f2fs_node *rn = F2FS_NODE(node_page); 251 return le32_to_cpu(rn->footer.nid); 252} 253 254static inline unsigned int ofs_of_node(struct page *node_page) 255{ 256 struct f2fs_node *rn = F2FS_NODE(node_page); 257 unsigned flag = le32_to_cpu(rn->footer.flag); 258 return flag >> OFFSET_BIT_SHIFT; 259} 260 261static inline __u64 cpver_of_node(struct page *node_page) 262{ 263 struct f2fs_node *rn = F2FS_NODE(node_page); 264 return le64_to_cpu(rn->footer.cp_ver); 265} 266 267static inline block_t next_blkaddr_of_node(struct page *node_page) 268{ 269 struct f2fs_node *rn = F2FS_NODE(node_page); 270 return le32_to_cpu(rn->footer.next_blkaddr); 271} 272 273static inline void fill_node_footer(struct page *page, nid_t nid, 274 nid_t ino, unsigned int ofs, bool reset) 275{ 276 struct f2fs_node *rn = F2FS_NODE(page); 277 unsigned int old_flag = 0; 278 279 if (reset) 280 memset(rn, 0, sizeof(*rn)); 281 else 282 old_flag = le32_to_cpu(rn->footer.flag); 283 284 rn->footer.nid = cpu_to_le32(nid); 285 rn->footer.ino = cpu_to_le32(ino); 286 287 /* should remain old flag bits such as COLD_BIT_SHIFT */ 288 rn->footer.flag = cpu_to_le32((ofs << OFFSET_BIT_SHIFT) | 289 (old_flag & OFFSET_BIT_MASK)); 290} 291 292static inline void copy_node_footer(struct page *dst, struct page *src) 293{ 294 struct f2fs_node *src_rn = F2FS_NODE(src); 295 struct f2fs_node *dst_rn = F2FS_NODE(dst); 296 memcpy(&dst_rn->footer, &src_rn->footer, sizeof(struct node_footer)); 297} 298 299static inline void fill_node_footer_blkaddr(struct page *page, block_t blkaddr) 300{ 301 struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page)); 302 struct f2fs_node *rn = F2FS_NODE(page); 303 __u64 cp_ver = cur_cp_version(ckpt); 304 305 if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG)) 306 cp_ver |= (cur_cp_crc(ckpt) << 32); 307 308 rn->footer.cp_ver = cpu_to_le64(cp_ver); 309 rn->footer.next_blkaddr = cpu_to_le32(blkaddr); 310} 311 312static inline bool is_recoverable_dnode(struct page *page) 313{ 314 struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page)); 315 __u64 cp_ver = cur_cp_version(ckpt); 316 317 if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG)) 318 cp_ver |= (cur_cp_crc(ckpt) << 32); 319 320 return cp_ver == cpver_of_node(page); 321} 322 323/* 324 * f2fs assigns the following node offsets described as (num). 325 * N = NIDS_PER_BLOCK 326 * 327 * Inode block (0) 328 * |- direct node (1) 329 * |- direct node (2) 330 * |- indirect node (3) 331 * | `- direct node (4 => 4 + N - 1) 332 * |- indirect node (4 + N) 333 * | `- direct node (5 + N => 5 + 2N - 1) 334 * `- double indirect node (5 + 2N) 335 * `- indirect node (6 + 2N) 336 * `- direct node 337 * ...... 338 * `- indirect node ((6 + 2N) + x(N + 1)) 339 * `- direct node 340 * ...... 341 * `- indirect node ((6 + 2N) + (N - 1)(N + 1)) 342 * `- direct node 343 */ 344static inline bool IS_DNODE(struct page *node_page) 345{ 346 unsigned int ofs = ofs_of_node(node_page); 347 348 if (f2fs_has_xattr_block(ofs)) 349 return true; 350 351 if (ofs == 3 || ofs == 4 + NIDS_PER_BLOCK || 352 ofs == 5 + 2 * NIDS_PER_BLOCK) 353 return false; 354 if (ofs >= 6 + 2 * NIDS_PER_BLOCK) { 355 ofs -= 6 + 2 * NIDS_PER_BLOCK; 356 if (!((long int)ofs % (NIDS_PER_BLOCK + 1))) 357 return false; 358 } 359 return true; 360} 361 362static inline int set_nid(struct page *p, int off, nid_t nid, bool i) 363{ 364 struct f2fs_node *rn = F2FS_NODE(p); 365 366 f2fs_wait_on_page_writeback(p, NODE, true); 367 368 if (i) 369 rn->i.i_nid[off - NODE_DIR1_BLOCK] = cpu_to_le32(nid); 370 else 371 rn->in.nid[off] = cpu_to_le32(nid); 372 return set_page_dirty(p); 373} 374 375static inline nid_t get_nid(struct page *p, int off, bool i) 376{ 377 struct f2fs_node *rn = F2FS_NODE(p); 378 379 if (i) 380 return le32_to_cpu(rn->i.i_nid[off - NODE_DIR1_BLOCK]); 381 return le32_to_cpu(rn->in.nid[off]); 382} 383 384/* 385 * Coldness identification: 386 * - Mark cold files in f2fs_inode_info 387 * - Mark cold node blocks in their node footer 388 * - Mark cold data pages in page cache 389 */ 390static inline int is_cold_data(struct page *page) 391{ 392 return PageChecked(page); 393} 394 395static inline void set_cold_data(struct page *page) 396{ 397 SetPageChecked(page); 398} 399 400static inline void clear_cold_data(struct page *page) 401{ 402 ClearPageChecked(page); 403} 404 405static inline int is_node(struct page *page, int type) 406{ 407 struct f2fs_node *rn = F2FS_NODE(page); 408 return le32_to_cpu(rn->footer.flag) & (1 << type); 409} 410 411#define is_cold_node(page) is_node(page, COLD_BIT_SHIFT) 412#define is_fsync_dnode(page) is_node(page, FSYNC_BIT_SHIFT) 413#define is_dent_dnode(page) is_node(page, DENT_BIT_SHIFT) 414 415static inline int is_inline_node(struct page *page) 416{ 417 return PageChecked(page); 418} 419 420static inline void set_inline_node(struct page *page) 421{ 422 SetPageChecked(page); 423} 424 425static inline void clear_inline_node(struct page *page) 426{ 427 ClearPageChecked(page); 428} 429 430static inline void set_cold_node(struct inode *inode, struct page *page) 431{ 432 struct f2fs_node *rn = F2FS_NODE(page); 433 unsigned int flag = le32_to_cpu(rn->footer.flag); 434 435 if (S_ISDIR(inode->i_mode)) 436 flag &= ~(0x1 << COLD_BIT_SHIFT); 437 else 438 flag |= (0x1 << COLD_BIT_SHIFT); 439 rn->footer.flag = cpu_to_le32(flag); 440} 441 442static inline void set_mark(struct page *page, int mark, int type) 443{ 444 struct f2fs_node *rn = F2FS_NODE(page); 445 unsigned int flag = le32_to_cpu(rn->footer.flag); 446 if (mark) 447 flag |= (0x1 << type); 448 else 449 flag &= ~(0x1 << type); 450 rn->footer.flag = cpu_to_le32(flag); 451} 452#define set_dentry_mark(page, mark) set_mark(page, mark, DENT_BIT_SHIFT) 453#define set_fsync_mark(page, mark) set_mark(page, mark, FSYNC_BIT_SHIFT)