Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * f2fs extent cache support
3 *
4 * Copyright (c) 2015 Motorola Mobility
5 * Copyright (c) 2015 Samsung Electronics
6 * Authors: Jaegeuk Kim <jaegeuk@kernel.org>
7 * Chao Yu <chao2.yu@samsung.com>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 */
13
14#include <linux/fs.h>
15#include <linux/f2fs_fs.h>
16
17#include "f2fs.h"
18#include "node.h"
19#include <trace/events/f2fs.h>
20
21static struct kmem_cache *extent_tree_slab;
22static struct kmem_cache *extent_node_slab;
23
24static struct extent_node *__attach_extent_node(struct f2fs_sb_info *sbi,
25 struct extent_tree *et, struct extent_info *ei,
26 struct rb_node *parent, struct rb_node **p)
27{
28 struct extent_node *en;
29
30 en = kmem_cache_alloc(extent_node_slab, GFP_ATOMIC);
31 if (!en)
32 return NULL;
33
34 en->ei = *ei;
35 INIT_LIST_HEAD(&en->list);
36 en->et = et;
37
38 rb_link_node(&en->rb_node, parent, p);
39 rb_insert_color(&en->rb_node, &et->root);
40 atomic_inc(&et->node_cnt);
41 atomic_inc(&sbi->total_ext_node);
42 return en;
43}
44
45static void __detach_extent_node(struct f2fs_sb_info *sbi,
46 struct extent_tree *et, struct extent_node *en)
47{
48 rb_erase(&en->rb_node, &et->root);
49 atomic_dec(&et->node_cnt);
50 atomic_dec(&sbi->total_ext_node);
51
52 if (et->cached_en == en)
53 et->cached_en = NULL;
54 kmem_cache_free(extent_node_slab, en);
55}
56
57/*
58 * Flow to release an extent_node:
59 * 1. list_del_init
60 * 2. __detach_extent_node
61 * 3. kmem_cache_free.
62 */
63static void __release_extent_node(struct f2fs_sb_info *sbi,
64 struct extent_tree *et, struct extent_node *en)
65{
66 spin_lock(&sbi->extent_lock);
67 f2fs_bug_on(sbi, list_empty(&en->list));
68 list_del_init(&en->list);
69 spin_unlock(&sbi->extent_lock);
70
71 __detach_extent_node(sbi, et, en);
72}
73
74static struct extent_tree *__grab_extent_tree(struct inode *inode)
75{
76 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
77 struct extent_tree *et;
78 nid_t ino = inode->i_ino;
79
80 mutex_lock(&sbi->extent_tree_lock);
81 et = radix_tree_lookup(&sbi->extent_tree_root, ino);
82 if (!et) {
83 et = f2fs_kmem_cache_alloc(extent_tree_slab, GFP_NOFS);
84 f2fs_radix_tree_insert(&sbi->extent_tree_root, ino, et);
85 memset(et, 0, sizeof(struct extent_tree));
86 et->ino = ino;
87 et->root = RB_ROOT;
88 et->cached_en = NULL;
89 rwlock_init(&et->lock);
90 INIT_LIST_HEAD(&et->list);
91 atomic_set(&et->node_cnt, 0);
92 atomic_inc(&sbi->total_ext_tree);
93 } else {
94 atomic_dec(&sbi->total_zombie_tree);
95 list_del_init(&et->list);
96 }
97 mutex_unlock(&sbi->extent_tree_lock);
98
99 /* never died until evict_inode */
100 F2FS_I(inode)->extent_tree = et;
101
102 return et;
103}
104
105static struct extent_node *__lookup_extent_tree(struct f2fs_sb_info *sbi,
106 struct extent_tree *et, unsigned int fofs)
107{
108 struct rb_node *node = et->root.rb_node;
109 struct extent_node *en = et->cached_en;
110
111 if (en) {
112 struct extent_info *cei = &en->ei;
113
114 if (cei->fofs <= fofs && cei->fofs + cei->len > fofs) {
115 stat_inc_cached_node_hit(sbi);
116 return en;
117 }
118 }
119
120 while (node) {
121 en = rb_entry(node, struct extent_node, rb_node);
122
123 if (fofs < en->ei.fofs) {
124 node = node->rb_left;
125 } else if (fofs >= en->ei.fofs + en->ei.len) {
126 node = node->rb_right;
127 } else {
128 stat_inc_rbtree_node_hit(sbi);
129 return en;
130 }
131 }
132 return NULL;
133}
134
135static struct extent_node *__init_extent_tree(struct f2fs_sb_info *sbi,
136 struct extent_tree *et, struct extent_info *ei)
137{
138 struct rb_node **p = &et->root.rb_node;
139 struct extent_node *en;
140
141 en = __attach_extent_node(sbi, et, ei, NULL, p);
142 if (!en)
143 return NULL;
144
145 et->largest = en->ei;
146 et->cached_en = en;
147 return en;
148}
149
150static unsigned int __free_extent_tree(struct f2fs_sb_info *sbi,
151 struct extent_tree *et)
152{
153 struct rb_node *node, *next;
154 struct extent_node *en;
155 unsigned int count = atomic_read(&et->node_cnt);
156
157 node = rb_first(&et->root);
158 while (node) {
159 next = rb_next(node);
160 en = rb_entry(node, struct extent_node, rb_node);
161 __release_extent_node(sbi, et, en);
162 node = next;
163 }
164
165 return count - atomic_read(&et->node_cnt);
166}
167
168static void __drop_largest_extent(struct inode *inode,
169 pgoff_t fofs, unsigned int len)
170{
171 struct extent_info *largest = &F2FS_I(inode)->extent_tree->largest;
172
173 if (fofs < largest->fofs + largest->len && fofs + len > largest->fofs) {
174 largest->len = 0;
175 f2fs_mark_inode_dirty_sync(inode, true);
176 }
177}
178
179/* return true, if inode page is changed */
180bool f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext)
181{
182 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
183 struct extent_tree *et;
184 struct extent_node *en;
185 struct extent_info ei;
186
187 if (!f2fs_may_extent_tree(inode)) {
188 /* drop largest extent */
189 if (i_ext && i_ext->len) {
190 i_ext->len = 0;
191 return true;
192 }
193 return false;
194 }
195
196 et = __grab_extent_tree(inode);
197
198 if (!i_ext || !i_ext->len)
199 return false;
200
201 get_extent_info(&ei, i_ext);
202
203 write_lock(&et->lock);
204 if (atomic_read(&et->node_cnt))
205 goto out;
206
207 en = __init_extent_tree(sbi, et, &ei);
208 if (en) {
209 spin_lock(&sbi->extent_lock);
210 list_add_tail(&en->list, &sbi->extent_list);
211 spin_unlock(&sbi->extent_lock);
212 }
213out:
214 write_unlock(&et->lock);
215 return false;
216}
217
218static bool f2fs_lookup_extent_tree(struct inode *inode, pgoff_t pgofs,
219 struct extent_info *ei)
220{
221 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
222 struct extent_tree *et = F2FS_I(inode)->extent_tree;
223 struct extent_node *en;
224 bool ret = false;
225
226 f2fs_bug_on(sbi, !et);
227
228 trace_f2fs_lookup_extent_tree_start(inode, pgofs);
229
230 read_lock(&et->lock);
231
232 if (et->largest.fofs <= pgofs &&
233 et->largest.fofs + et->largest.len > pgofs) {
234 *ei = et->largest;
235 ret = true;
236 stat_inc_largest_node_hit(sbi);
237 goto out;
238 }
239
240 en = __lookup_extent_tree(sbi, et, pgofs);
241 if (en) {
242 *ei = en->ei;
243 spin_lock(&sbi->extent_lock);
244 if (!list_empty(&en->list)) {
245 list_move_tail(&en->list, &sbi->extent_list);
246 et->cached_en = en;
247 }
248 spin_unlock(&sbi->extent_lock);
249 ret = true;
250 }
251out:
252 stat_inc_total_hit(sbi);
253 read_unlock(&et->lock);
254
255 trace_f2fs_lookup_extent_tree_end(inode, pgofs, ei);
256 return ret;
257}
258
259
260/*
261 * lookup extent at @fofs, if hit, return the extent
262 * if not, return NULL and
263 * @prev_ex: extent before fofs
264 * @next_ex: extent after fofs
265 * @insert_p: insert point for new extent at fofs
266 * in order to simpfy the insertion after.
267 * tree must stay unchanged between lookup and insertion.
268 */
269static struct extent_node *__lookup_extent_tree_ret(struct extent_tree *et,
270 unsigned int fofs,
271 struct extent_node **prev_ex,
272 struct extent_node **next_ex,
273 struct rb_node ***insert_p,
274 struct rb_node **insert_parent)
275{
276 struct rb_node **pnode = &et->root.rb_node;
277 struct rb_node *parent = NULL, *tmp_node;
278 struct extent_node *en = et->cached_en;
279
280 *insert_p = NULL;
281 *insert_parent = NULL;
282 *prev_ex = NULL;
283 *next_ex = NULL;
284
285 if (RB_EMPTY_ROOT(&et->root))
286 return NULL;
287
288 if (en) {
289 struct extent_info *cei = &en->ei;
290
291 if (cei->fofs <= fofs && cei->fofs + cei->len > fofs)
292 goto lookup_neighbors;
293 }
294
295 while (*pnode) {
296 parent = *pnode;
297 en = rb_entry(*pnode, struct extent_node, rb_node);
298
299 if (fofs < en->ei.fofs)
300 pnode = &(*pnode)->rb_left;
301 else if (fofs >= en->ei.fofs + en->ei.len)
302 pnode = &(*pnode)->rb_right;
303 else
304 goto lookup_neighbors;
305 }
306
307 *insert_p = pnode;
308 *insert_parent = parent;
309
310 en = rb_entry(parent, struct extent_node, rb_node);
311 tmp_node = parent;
312 if (parent && fofs > en->ei.fofs)
313 tmp_node = rb_next(parent);
314 *next_ex = rb_entry_safe(tmp_node, struct extent_node, rb_node);
315
316 tmp_node = parent;
317 if (parent && fofs < en->ei.fofs)
318 tmp_node = rb_prev(parent);
319 *prev_ex = rb_entry_safe(tmp_node, struct extent_node, rb_node);
320 return NULL;
321
322lookup_neighbors:
323 if (fofs == en->ei.fofs) {
324 /* lookup prev node for merging backward later */
325 tmp_node = rb_prev(&en->rb_node);
326 *prev_ex = rb_entry_safe(tmp_node, struct extent_node, rb_node);
327 }
328 if (fofs == en->ei.fofs + en->ei.len - 1) {
329 /* lookup next node for merging frontward later */
330 tmp_node = rb_next(&en->rb_node);
331 *next_ex = rb_entry_safe(tmp_node, struct extent_node, rb_node);
332 }
333 return en;
334}
335
336static struct extent_node *__try_merge_extent_node(struct inode *inode,
337 struct extent_tree *et, struct extent_info *ei,
338 struct extent_node *prev_ex,
339 struct extent_node *next_ex)
340{
341 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
342 struct extent_node *en = NULL;
343
344 if (prev_ex && __is_back_mergeable(ei, &prev_ex->ei)) {
345 prev_ex->ei.len += ei->len;
346 ei = &prev_ex->ei;
347 en = prev_ex;
348 }
349
350 if (next_ex && __is_front_mergeable(ei, &next_ex->ei)) {
351 next_ex->ei.fofs = ei->fofs;
352 next_ex->ei.blk = ei->blk;
353 next_ex->ei.len += ei->len;
354 if (en)
355 __release_extent_node(sbi, et, prev_ex);
356
357 en = next_ex;
358 }
359
360 if (!en)
361 return NULL;
362
363 __try_update_largest_extent(inode, et, en);
364
365 spin_lock(&sbi->extent_lock);
366 if (!list_empty(&en->list)) {
367 list_move_tail(&en->list, &sbi->extent_list);
368 et->cached_en = en;
369 }
370 spin_unlock(&sbi->extent_lock);
371 return en;
372}
373
374static struct extent_node *__insert_extent_tree(struct inode *inode,
375 struct extent_tree *et, struct extent_info *ei,
376 struct rb_node **insert_p,
377 struct rb_node *insert_parent)
378{
379 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
380 struct rb_node **p = &et->root.rb_node;
381 struct rb_node *parent = NULL;
382 struct extent_node *en = NULL;
383
384 if (insert_p && insert_parent) {
385 parent = insert_parent;
386 p = insert_p;
387 goto do_insert;
388 }
389
390 while (*p) {
391 parent = *p;
392 en = rb_entry(parent, struct extent_node, rb_node);
393
394 if (ei->fofs < en->ei.fofs)
395 p = &(*p)->rb_left;
396 else if (ei->fofs >= en->ei.fofs + en->ei.len)
397 p = &(*p)->rb_right;
398 else
399 f2fs_bug_on(sbi, 1);
400 }
401do_insert:
402 en = __attach_extent_node(sbi, et, ei, parent, p);
403 if (!en)
404 return NULL;
405
406 __try_update_largest_extent(inode, et, en);
407
408 /* update in global extent list */
409 spin_lock(&sbi->extent_lock);
410 list_add_tail(&en->list, &sbi->extent_list);
411 et->cached_en = en;
412 spin_unlock(&sbi->extent_lock);
413 return en;
414}
415
416static void f2fs_update_extent_tree_range(struct inode *inode,
417 pgoff_t fofs, block_t blkaddr, unsigned int len)
418{
419 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
420 struct extent_tree *et = F2FS_I(inode)->extent_tree;
421 struct extent_node *en = NULL, *en1 = NULL;
422 struct extent_node *prev_en = NULL, *next_en = NULL;
423 struct extent_info ei, dei, prev;
424 struct rb_node **insert_p = NULL, *insert_parent = NULL;
425 unsigned int end = fofs + len;
426 unsigned int pos = (unsigned int)fofs;
427
428 if (!et)
429 return;
430
431 trace_f2fs_update_extent_tree_range(inode, fofs, blkaddr, len);
432
433 write_lock(&et->lock);
434
435 if (is_inode_flag_set(inode, FI_NO_EXTENT)) {
436 write_unlock(&et->lock);
437 return;
438 }
439
440 prev = et->largest;
441 dei.len = 0;
442
443 /*
444 * drop largest extent before lookup, in case it's already
445 * been shrunk from extent tree
446 */
447 __drop_largest_extent(inode, fofs, len);
448
449 /* 1. lookup first extent node in range [fofs, fofs + len - 1] */
450 en = __lookup_extent_tree_ret(et, fofs, &prev_en, &next_en,
451 &insert_p, &insert_parent);
452 if (!en)
453 en = next_en;
454
455 /* 2. invlidate all extent nodes in range [fofs, fofs + len - 1] */
456 while (en && en->ei.fofs < end) {
457 unsigned int org_end;
458 int parts = 0; /* # of parts current extent split into */
459
460 next_en = en1 = NULL;
461
462 dei = en->ei;
463 org_end = dei.fofs + dei.len;
464 f2fs_bug_on(sbi, pos >= org_end);
465
466 if (pos > dei.fofs && pos - dei.fofs >= F2FS_MIN_EXTENT_LEN) {
467 en->ei.len = pos - en->ei.fofs;
468 prev_en = en;
469 parts = 1;
470 }
471
472 if (end < org_end && org_end - end >= F2FS_MIN_EXTENT_LEN) {
473 if (parts) {
474 set_extent_info(&ei, end,
475 end - dei.fofs + dei.blk,
476 org_end - end);
477 en1 = __insert_extent_tree(inode, et, &ei,
478 NULL, NULL);
479 next_en = en1;
480 } else {
481 en->ei.fofs = end;
482 en->ei.blk += end - dei.fofs;
483 en->ei.len -= end - dei.fofs;
484 next_en = en;
485 }
486 parts++;
487 }
488
489 if (!next_en) {
490 struct rb_node *node = rb_next(&en->rb_node);
491
492 next_en = rb_entry_safe(node, struct extent_node,
493 rb_node);
494 }
495
496 if (parts)
497 __try_update_largest_extent(inode, et, en);
498 else
499 __release_extent_node(sbi, et, en);
500
501 /*
502 * if original extent is split into zero or two parts, extent
503 * tree has been altered by deletion or insertion, therefore
504 * invalidate pointers regard to tree.
505 */
506 if (parts != 1) {
507 insert_p = NULL;
508 insert_parent = NULL;
509 }
510 en = next_en;
511 }
512
513 /* 3. update extent in extent cache */
514 if (blkaddr) {
515
516 set_extent_info(&ei, fofs, blkaddr, len);
517 if (!__try_merge_extent_node(inode, et, &ei, prev_en, next_en))
518 __insert_extent_tree(inode, et, &ei,
519 insert_p, insert_parent);
520
521 /* give up extent_cache, if split and small updates happen */
522 if (dei.len >= 1 &&
523 prev.len < F2FS_MIN_EXTENT_LEN &&
524 et->largest.len < F2FS_MIN_EXTENT_LEN) {
525 __drop_largest_extent(inode, 0, UINT_MAX);
526 set_inode_flag(inode, FI_NO_EXTENT);
527 }
528 }
529
530 if (is_inode_flag_set(inode, FI_NO_EXTENT))
531 __free_extent_tree(sbi, et);
532
533 write_unlock(&et->lock);
534}
535
536unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink)
537{
538 struct extent_tree *et, *next;
539 struct extent_node *en;
540 unsigned int node_cnt = 0, tree_cnt = 0;
541 int remained;
542
543 if (!test_opt(sbi, EXTENT_CACHE))
544 return 0;
545
546 if (!atomic_read(&sbi->total_zombie_tree))
547 goto free_node;
548
549 if (!mutex_trylock(&sbi->extent_tree_lock))
550 goto out;
551
552 /* 1. remove unreferenced extent tree */
553 list_for_each_entry_safe(et, next, &sbi->zombie_list, list) {
554 if (atomic_read(&et->node_cnt)) {
555 write_lock(&et->lock);
556 node_cnt += __free_extent_tree(sbi, et);
557 write_unlock(&et->lock);
558 }
559 f2fs_bug_on(sbi, atomic_read(&et->node_cnt));
560 list_del_init(&et->list);
561 radix_tree_delete(&sbi->extent_tree_root, et->ino);
562 kmem_cache_free(extent_tree_slab, et);
563 atomic_dec(&sbi->total_ext_tree);
564 atomic_dec(&sbi->total_zombie_tree);
565 tree_cnt++;
566
567 if (node_cnt + tree_cnt >= nr_shrink)
568 goto unlock_out;
569 cond_resched();
570 }
571 mutex_unlock(&sbi->extent_tree_lock);
572
573free_node:
574 /* 2. remove LRU extent entries */
575 if (!mutex_trylock(&sbi->extent_tree_lock))
576 goto out;
577
578 remained = nr_shrink - (node_cnt + tree_cnt);
579
580 spin_lock(&sbi->extent_lock);
581 for (; remained > 0; remained--) {
582 if (list_empty(&sbi->extent_list))
583 break;
584 en = list_first_entry(&sbi->extent_list,
585 struct extent_node, list);
586 et = en->et;
587 if (!write_trylock(&et->lock)) {
588 /* refresh this extent node's position in extent list */
589 list_move_tail(&en->list, &sbi->extent_list);
590 continue;
591 }
592
593 list_del_init(&en->list);
594 spin_unlock(&sbi->extent_lock);
595
596 __detach_extent_node(sbi, et, en);
597
598 write_unlock(&et->lock);
599 node_cnt++;
600 spin_lock(&sbi->extent_lock);
601 }
602 spin_unlock(&sbi->extent_lock);
603
604unlock_out:
605 mutex_unlock(&sbi->extent_tree_lock);
606out:
607 trace_f2fs_shrink_extent_tree(sbi, node_cnt, tree_cnt);
608
609 return node_cnt + tree_cnt;
610}
611
612unsigned int f2fs_destroy_extent_node(struct inode *inode)
613{
614 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
615 struct extent_tree *et = F2FS_I(inode)->extent_tree;
616 unsigned int node_cnt = 0;
617
618 if (!et || !atomic_read(&et->node_cnt))
619 return 0;
620
621 write_lock(&et->lock);
622 node_cnt = __free_extent_tree(sbi, et);
623 write_unlock(&et->lock);
624
625 return node_cnt;
626}
627
628void f2fs_drop_extent_tree(struct inode *inode)
629{
630 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
631 struct extent_tree *et = F2FS_I(inode)->extent_tree;
632
633 set_inode_flag(inode, FI_NO_EXTENT);
634
635 write_lock(&et->lock);
636 __free_extent_tree(sbi, et);
637 __drop_largest_extent(inode, 0, UINT_MAX);
638 write_unlock(&et->lock);
639}
640
641void f2fs_destroy_extent_tree(struct inode *inode)
642{
643 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
644 struct extent_tree *et = F2FS_I(inode)->extent_tree;
645 unsigned int node_cnt = 0;
646
647 if (!et)
648 return;
649
650 if (inode->i_nlink && !is_bad_inode(inode) &&
651 atomic_read(&et->node_cnt)) {
652 mutex_lock(&sbi->extent_tree_lock);
653 list_add_tail(&et->list, &sbi->zombie_list);
654 atomic_inc(&sbi->total_zombie_tree);
655 mutex_unlock(&sbi->extent_tree_lock);
656 return;
657 }
658
659 /* free all extent info belong to this extent tree */
660 node_cnt = f2fs_destroy_extent_node(inode);
661
662 /* delete extent tree entry in radix tree */
663 mutex_lock(&sbi->extent_tree_lock);
664 f2fs_bug_on(sbi, atomic_read(&et->node_cnt));
665 radix_tree_delete(&sbi->extent_tree_root, inode->i_ino);
666 kmem_cache_free(extent_tree_slab, et);
667 atomic_dec(&sbi->total_ext_tree);
668 mutex_unlock(&sbi->extent_tree_lock);
669
670 F2FS_I(inode)->extent_tree = NULL;
671
672 trace_f2fs_destroy_extent_tree(inode, node_cnt);
673}
674
675bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
676 struct extent_info *ei)
677{
678 if (!f2fs_may_extent_tree(inode))
679 return false;
680
681 return f2fs_lookup_extent_tree(inode, pgofs, ei);
682}
683
684void f2fs_update_extent_cache(struct dnode_of_data *dn)
685{
686 pgoff_t fofs;
687 block_t blkaddr;
688
689 if (!f2fs_may_extent_tree(dn->inode))
690 return;
691
692 if (dn->data_blkaddr == NEW_ADDR)
693 blkaddr = NULL_ADDR;
694 else
695 blkaddr = dn->data_blkaddr;
696
697 fofs = start_bidx_of_node(ofs_of_node(dn->node_page), dn->inode) +
698 dn->ofs_in_node;
699 f2fs_update_extent_tree_range(dn->inode, fofs, blkaddr, 1);
700}
701
702void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
703 pgoff_t fofs, block_t blkaddr, unsigned int len)
704
705{
706 if (!f2fs_may_extent_tree(dn->inode))
707 return;
708
709 f2fs_update_extent_tree_range(dn->inode, fofs, blkaddr, len);
710}
711
712void init_extent_cache_info(struct f2fs_sb_info *sbi)
713{
714 INIT_RADIX_TREE(&sbi->extent_tree_root, GFP_NOIO);
715 mutex_init(&sbi->extent_tree_lock);
716 INIT_LIST_HEAD(&sbi->extent_list);
717 spin_lock_init(&sbi->extent_lock);
718 atomic_set(&sbi->total_ext_tree, 0);
719 INIT_LIST_HEAD(&sbi->zombie_list);
720 atomic_set(&sbi->total_zombie_tree, 0);
721 atomic_set(&sbi->total_ext_node, 0);
722}
723
724int __init create_extent_cache(void)
725{
726 extent_tree_slab = f2fs_kmem_cache_create("f2fs_extent_tree",
727 sizeof(struct extent_tree));
728 if (!extent_tree_slab)
729 return -ENOMEM;
730 extent_node_slab = f2fs_kmem_cache_create("f2fs_extent_node",
731 sizeof(struct extent_node));
732 if (!extent_node_slab) {
733 kmem_cache_destroy(extent_tree_slab);
734 return -ENOMEM;
735 }
736 return 0;
737}
738
739void destroy_extent_cache(void)
740{
741 kmem_cache_destroy(extent_node_slab);
742 kmem_cache_destroy(extent_tree_slab);
743}