at v4.11 58 kB view raw
1/* 2 * linux/fs/block_dev.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * Copyright (C) 2001 Andrea Arcangeli <andrea@suse.de> SuSE 6 */ 7 8#include <linux/init.h> 9#include <linux/mm.h> 10#include <linux/fcntl.h> 11#include <linux/slab.h> 12#include <linux/kmod.h> 13#include <linux/major.h> 14#include <linux/device_cgroup.h> 15#include <linux/highmem.h> 16#include <linux/blkdev.h> 17#include <linux/backing-dev.h> 18#include <linux/module.h> 19#include <linux/blkpg.h> 20#include <linux/magic.h> 21#include <linux/buffer_head.h> 22#include <linux/swap.h> 23#include <linux/pagevec.h> 24#include <linux/writeback.h> 25#include <linux/mpage.h> 26#include <linux/mount.h> 27#include <linux/uio.h> 28#include <linux/namei.h> 29#include <linux/log2.h> 30#include <linux/cleancache.h> 31#include <linux/dax.h> 32#include <linux/badblocks.h> 33#include <linux/task_io_accounting_ops.h> 34#include <linux/falloc.h> 35#include <linux/uaccess.h> 36#include "internal.h" 37 38struct bdev_inode { 39 struct block_device bdev; 40 struct inode vfs_inode; 41}; 42 43static const struct address_space_operations def_blk_aops; 44 45static inline struct bdev_inode *BDEV_I(struct inode *inode) 46{ 47 return container_of(inode, struct bdev_inode, vfs_inode); 48} 49 50struct block_device *I_BDEV(struct inode *inode) 51{ 52 return &BDEV_I(inode)->bdev; 53} 54EXPORT_SYMBOL(I_BDEV); 55 56void __vfs_msg(struct super_block *sb, const char *prefix, const char *fmt, ...) 57{ 58 struct va_format vaf; 59 va_list args; 60 61 va_start(args, fmt); 62 vaf.fmt = fmt; 63 vaf.va = &args; 64 printk_ratelimited("%sVFS (%s): %pV\n", prefix, sb->s_id, &vaf); 65 va_end(args); 66} 67 68static void bdev_write_inode(struct block_device *bdev) 69{ 70 struct inode *inode = bdev->bd_inode; 71 int ret; 72 73 spin_lock(&inode->i_lock); 74 while (inode->i_state & I_DIRTY) { 75 spin_unlock(&inode->i_lock); 76 ret = write_inode_now(inode, true); 77 if (ret) { 78 char name[BDEVNAME_SIZE]; 79 pr_warn_ratelimited("VFS: Dirty inode writeback failed " 80 "for block device %s (err=%d).\n", 81 bdevname(bdev, name), ret); 82 } 83 spin_lock(&inode->i_lock); 84 } 85 spin_unlock(&inode->i_lock); 86} 87 88/* Kill _all_ buffers and pagecache , dirty or not.. */ 89void kill_bdev(struct block_device *bdev) 90{ 91 struct address_space *mapping = bdev->bd_inode->i_mapping; 92 93 if (mapping->nrpages == 0 && mapping->nrexceptional == 0) 94 return; 95 96 invalidate_bh_lrus(); 97 truncate_inode_pages(mapping, 0); 98} 99EXPORT_SYMBOL(kill_bdev); 100 101/* Invalidate clean unused buffers and pagecache. */ 102void invalidate_bdev(struct block_device *bdev) 103{ 104 struct address_space *mapping = bdev->bd_inode->i_mapping; 105 106 if (mapping->nrpages == 0) 107 return; 108 109 invalidate_bh_lrus(); 110 lru_add_drain_all(); /* make sure all lru add caches are flushed */ 111 invalidate_mapping_pages(mapping, 0, -1); 112 /* 99% of the time, we don't need to flush the cleancache on the bdev. 113 * But, for the strange corners, lets be cautious 114 */ 115 cleancache_invalidate_inode(mapping); 116} 117EXPORT_SYMBOL(invalidate_bdev); 118 119int set_blocksize(struct block_device *bdev, int size) 120{ 121 /* Size must be a power of two, and between 512 and PAGE_SIZE */ 122 if (size > PAGE_SIZE || size < 512 || !is_power_of_2(size)) 123 return -EINVAL; 124 125 /* Size cannot be smaller than the size supported by the device */ 126 if (size < bdev_logical_block_size(bdev)) 127 return -EINVAL; 128 129 /* Don't change the size if it is same as current */ 130 if (bdev->bd_block_size != size) { 131 sync_blockdev(bdev); 132 bdev->bd_block_size = size; 133 bdev->bd_inode->i_blkbits = blksize_bits(size); 134 kill_bdev(bdev); 135 } 136 return 0; 137} 138 139EXPORT_SYMBOL(set_blocksize); 140 141int sb_set_blocksize(struct super_block *sb, int size) 142{ 143 if (set_blocksize(sb->s_bdev, size)) 144 return 0; 145 /* If we get here, we know size is power of two 146 * and it's value is between 512 and PAGE_SIZE */ 147 sb->s_blocksize = size; 148 sb->s_blocksize_bits = blksize_bits(size); 149 return sb->s_blocksize; 150} 151 152EXPORT_SYMBOL(sb_set_blocksize); 153 154int sb_min_blocksize(struct super_block *sb, int size) 155{ 156 int minsize = bdev_logical_block_size(sb->s_bdev); 157 if (size < minsize) 158 size = minsize; 159 return sb_set_blocksize(sb, size); 160} 161 162EXPORT_SYMBOL(sb_min_blocksize); 163 164static int 165blkdev_get_block(struct inode *inode, sector_t iblock, 166 struct buffer_head *bh, int create) 167{ 168 bh->b_bdev = I_BDEV(inode); 169 bh->b_blocknr = iblock; 170 set_buffer_mapped(bh); 171 return 0; 172} 173 174static struct inode *bdev_file_inode(struct file *file) 175{ 176 return file->f_mapping->host; 177} 178 179static unsigned int dio_bio_write_op(struct kiocb *iocb) 180{ 181 unsigned int op = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE; 182 183 /* avoid the need for a I/O completion work item */ 184 if (iocb->ki_flags & IOCB_DSYNC) 185 op |= REQ_FUA; 186 return op; 187} 188 189#define DIO_INLINE_BIO_VECS 4 190 191static void blkdev_bio_end_io_simple(struct bio *bio) 192{ 193 struct task_struct *waiter = bio->bi_private; 194 195 WRITE_ONCE(bio->bi_private, NULL); 196 wake_up_process(waiter); 197} 198 199static ssize_t 200__blkdev_direct_IO_simple(struct kiocb *iocb, struct iov_iter *iter, 201 int nr_pages) 202{ 203 struct file *file = iocb->ki_filp; 204 struct block_device *bdev = I_BDEV(bdev_file_inode(file)); 205 struct bio_vec inline_vecs[DIO_INLINE_BIO_VECS], *vecs, *bvec; 206 loff_t pos = iocb->ki_pos; 207 bool should_dirty = false; 208 struct bio bio; 209 ssize_t ret; 210 blk_qc_t qc; 211 int i; 212 213 if ((pos | iov_iter_alignment(iter)) & 214 (bdev_logical_block_size(bdev) - 1)) 215 return -EINVAL; 216 217 if (nr_pages <= DIO_INLINE_BIO_VECS) 218 vecs = inline_vecs; 219 else { 220 vecs = kmalloc(nr_pages * sizeof(struct bio_vec), GFP_KERNEL); 221 if (!vecs) 222 return -ENOMEM; 223 } 224 225 bio_init(&bio, vecs, nr_pages); 226 bio.bi_bdev = bdev; 227 bio.bi_iter.bi_sector = pos >> 9; 228 bio.bi_private = current; 229 bio.bi_end_io = blkdev_bio_end_io_simple; 230 231 ret = bio_iov_iter_get_pages(&bio, iter); 232 if (unlikely(ret)) 233 return ret; 234 ret = bio.bi_iter.bi_size; 235 236 if (iov_iter_rw(iter) == READ) { 237 bio.bi_opf = REQ_OP_READ; 238 if (iter_is_iovec(iter)) 239 should_dirty = true; 240 } else { 241 bio.bi_opf = dio_bio_write_op(iocb); 242 task_io_account_write(ret); 243 } 244 245 qc = submit_bio(&bio); 246 for (;;) { 247 set_current_state(TASK_UNINTERRUPTIBLE); 248 if (!READ_ONCE(bio.bi_private)) 249 break; 250 if (!(iocb->ki_flags & IOCB_HIPRI) || 251 !blk_mq_poll(bdev_get_queue(bdev), qc)) 252 io_schedule(); 253 } 254 __set_current_state(TASK_RUNNING); 255 256 bio_for_each_segment_all(bvec, &bio, i) { 257 if (should_dirty && !PageCompound(bvec->bv_page)) 258 set_page_dirty_lock(bvec->bv_page); 259 put_page(bvec->bv_page); 260 } 261 262 if (vecs != inline_vecs) 263 kfree(vecs); 264 265 if (unlikely(bio.bi_error)) 266 return bio.bi_error; 267 return ret; 268} 269 270struct blkdev_dio { 271 union { 272 struct kiocb *iocb; 273 struct task_struct *waiter; 274 }; 275 size_t size; 276 atomic_t ref; 277 bool multi_bio : 1; 278 bool should_dirty : 1; 279 bool is_sync : 1; 280 struct bio bio; 281}; 282 283static struct bio_set *blkdev_dio_pool __read_mostly; 284 285static void blkdev_bio_end_io(struct bio *bio) 286{ 287 struct blkdev_dio *dio = bio->bi_private; 288 bool should_dirty = dio->should_dirty; 289 290 if (dio->multi_bio && !atomic_dec_and_test(&dio->ref)) { 291 if (bio->bi_error && !dio->bio.bi_error) 292 dio->bio.bi_error = bio->bi_error; 293 } else { 294 if (!dio->is_sync) { 295 struct kiocb *iocb = dio->iocb; 296 ssize_t ret = dio->bio.bi_error; 297 298 if (likely(!ret)) { 299 ret = dio->size; 300 iocb->ki_pos += ret; 301 } 302 303 dio->iocb->ki_complete(iocb, ret, 0); 304 bio_put(&dio->bio); 305 } else { 306 struct task_struct *waiter = dio->waiter; 307 308 WRITE_ONCE(dio->waiter, NULL); 309 wake_up_process(waiter); 310 } 311 } 312 313 if (should_dirty) { 314 bio_check_pages_dirty(bio); 315 } else { 316 struct bio_vec *bvec; 317 int i; 318 319 bio_for_each_segment_all(bvec, bio, i) 320 put_page(bvec->bv_page); 321 bio_put(bio); 322 } 323} 324 325static ssize_t 326__blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter, int nr_pages) 327{ 328 struct file *file = iocb->ki_filp; 329 struct inode *inode = bdev_file_inode(file); 330 struct block_device *bdev = I_BDEV(inode); 331 struct blk_plug plug; 332 struct blkdev_dio *dio; 333 struct bio *bio; 334 bool is_read = (iov_iter_rw(iter) == READ), is_sync; 335 loff_t pos = iocb->ki_pos; 336 blk_qc_t qc = BLK_QC_T_NONE; 337 int ret; 338 339 if ((pos | iov_iter_alignment(iter)) & 340 (bdev_logical_block_size(bdev) - 1)) 341 return -EINVAL; 342 343 bio = bio_alloc_bioset(GFP_KERNEL, nr_pages, blkdev_dio_pool); 344 bio_get(bio); /* extra ref for the completion handler */ 345 346 dio = container_of(bio, struct blkdev_dio, bio); 347 dio->is_sync = is_sync = is_sync_kiocb(iocb); 348 if (dio->is_sync) 349 dio->waiter = current; 350 else 351 dio->iocb = iocb; 352 353 dio->size = 0; 354 dio->multi_bio = false; 355 dio->should_dirty = is_read && (iter->type == ITER_IOVEC); 356 357 blk_start_plug(&plug); 358 for (;;) { 359 bio->bi_bdev = bdev; 360 bio->bi_iter.bi_sector = pos >> 9; 361 bio->bi_private = dio; 362 bio->bi_end_io = blkdev_bio_end_io; 363 364 ret = bio_iov_iter_get_pages(bio, iter); 365 if (unlikely(ret)) { 366 bio->bi_error = ret; 367 bio_endio(bio); 368 break; 369 } 370 371 if (is_read) { 372 bio->bi_opf = REQ_OP_READ; 373 if (dio->should_dirty) 374 bio_set_pages_dirty(bio); 375 } else { 376 bio->bi_opf = dio_bio_write_op(iocb); 377 task_io_account_write(bio->bi_iter.bi_size); 378 } 379 380 dio->size += bio->bi_iter.bi_size; 381 pos += bio->bi_iter.bi_size; 382 383 nr_pages = iov_iter_npages(iter, BIO_MAX_PAGES); 384 if (!nr_pages) { 385 qc = submit_bio(bio); 386 break; 387 } 388 389 if (!dio->multi_bio) { 390 dio->multi_bio = true; 391 atomic_set(&dio->ref, 2); 392 } else { 393 atomic_inc(&dio->ref); 394 } 395 396 submit_bio(bio); 397 bio = bio_alloc(GFP_KERNEL, nr_pages); 398 } 399 blk_finish_plug(&plug); 400 401 if (!is_sync) 402 return -EIOCBQUEUED; 403 404 for (;;) { 405 set_current_state(TASK_UNINTERRUPTIBLE); 406 if (!READ_ONCE(dio->waiter)) 407 break; 408 409 if (!(iocb->ki_flags & IOCB_HIPRI) || 410 !blk_mq_poll(bdev_get_queue(bdev), qc)) 411 io_schedule(); 412 } 413 __set_current_state(TASK_RUNNING); 414 415 ret = dio->bio.bi_error; 416 if (likely(!ret)) 417 ret = dio->size; 418 419 bio_put(&dio->bio); 420 return ret; 421} 422 423static ssize_t 424blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 425{ 426 int nr_pages; 427 428 nr_pages = iov_iter_npages(iter, BIO_MAX_PAGES + 1); 429 if (!nr_pages) 430 return 0; 431 if (is_sync_kiocb(iocb) && nr_pages <= BIO_MAX_PAGES) 432 return __blkdev_direct_IO_simple(iocb, iter, nr_pages); 433 434 return __blkdev_direct_IO(iocb, iter, min(nr_pages, BIO_MAX_PAGES)); 435} 436 437static __init int blkdev_init(void) 438{ 439 blkdev_dio_pool = bioset_create(4, offsetof(struct blkdev_dio, bio)); 440 if (!blkdev_dio_pool) 441 return -ENOMEM; 442 return 0; 443} 444module_init(blkdev_init); 445 446int __sync_blockdev(struct block_device *bdev, int wait) 447{ 448 if (!bdev) 449 return 0; 450 if (!wait) 451 return filemap_flush(bdev->bd_inode->i_mapping); 452 return filemap_write_and_wait(bdev->bd_inode->i_mapping); 453} 454 455/* 456 * Write out and wait upon all the dirty data associated with a block 457 * device via its mapping. Does not take the superblock lock. 458 */ 459int sync_blockdev(struct block_device *bdev) 460{ 461 return __sync_blockdev(bdev, 1); 462} 463EXPORT_SYMBOL(sync_blockdev); 464 465/* 466 * Write out and wait upon all dirty data associated with this 467 * device. Filesystem data as well as the underlying block 468 * device. Takes the superblock lock. 469 */ 470int fsync_bdev(struct block_device *bdev) 471{ 472 struct super_block *sb = get_super(bdev); 473 if (sb) { 474 int res = sync_filesystem(sb); 475 drop_super(sb); 476 return res; 477 } 478 return sync_blockdev(bdev); 479} 480EXPORT_SYMBOL(fsync_bdev); 481 482/** 483 * freeze_bdev -- lock a filesystem and force it into a consistent state 484 * @bdev: blockdevice to lock 485 * 486 * If a superblock is found on this device, we take the s_umount semaphore 487 * on it to make sure nobody unmounts until the snapshot creation is done. 488 * The reference counter (bd_fsfreeze_count) guarantees that only the last 489 * unfreeze process can unfreeze the frozen filesystem actually when multiple 490 * freeze requests arrive simultaneously. It counts up in freeze_bdev() and 491 * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze 492 * actually. 493 */ 494struct super_block *freeze_bdev(struct block_device *bdev) 495{ 496 struct super_block *sb; 497 int error = 0; 498 499 mutex_lock(&bdev->bd_fsfreeze_mutex); 500 if (++bdev->bd_fsfreeze_count > 1) { 501 /* 502 * We don't even need to grab a reference - the first call 503 * to freeze_bdev grab an active reference and only the last 504 * thaw_bdev drops it. 505 */ 506 sb = get_super(bdev); 507 if (sb) 508 drop_super(sb); 509 mutex_unlock(&bdev->bd_fsfreeze_mutex); 510 return sb; 511 } 512 513 sb = get_active_super(bdev); 514 if (!sb) 515 goto out; 516 if (sb->s_op->freeze_super) 517 error = sb->s_op->freeze_super(sb); 518 else 519 error = freeze_super(sb); 520 if (error) { 521 deactivate_super(sb); 522 bdev->bd_fsfreeze_count--; 523 mutex_unlock(&bdev->bd_fsfreeze_mutex); 524 return ERR_PTR(error); 525 } 526 deactivate_super(sb); 527 out: 528 sync_blockdev(bdev); 529 mutex_unlock(&bdev->bd_fsfreeze_mutex); 530 return sb; /* thaw_bdev releases s->s_umount */ 531} 532EXPORT_SYMBOL(freeze_bdev); 533 534/** 535 * thaw_bdev -- unlock filesystem 536 * @bdev: blockdevice to unlock 537 * @sb: associated superblock 538 * 539 * Unlocks the filesystem and marks it writeable again after freeze_bdev(). 540 */ 541int thaw_bdev(struct block_device *bdev, struct super_block *sb) 542{ 543 int error = -EINVAL; 544 545 mutex_lock(&bdev->bd_fsfreeze_mutex); 546 if (!bdev->bd_fsfreeze_count) 547 goto out; 548 549 error = 0; 550 if (--bdev->bd_fsfreeze_count > 0) 551 goto out; 552 553 if (!sb) 554 goto out; 555 556 if (sb->s_op->thaw_super) 557 error = sb->s_op->thaw_super(sb); 558 else 559 error = thaw_super(sb); 560 if (error) 561 bdev->bd_fsfreeze_count++; 562out: 563 mutex_unlock(&bdev->bd_fsfreeze_mutex); 564 return error; 565} 566EXPORT_SYMBOL(thaw_bdev); 567 568static int blkdev_writepage(struct page *page, struct writeback_control *wbc) 569{ 570 return block_write_full_page(page, blkdev_get_block, wbc); 571} 572 573static int blkdev_readpage(struct file * file, struct page * page) 574{ 575 return block_read_full_page(page, blkdev_get_block); 576} 577 578static int blkdev_readpages(struct file *file, struct address_space *mapping, 579 struct list_head *pages, unsigned nr_pages) 580{ 581 return mpage_readpages(mapping, pages, nr_pages, blkdev_get_block); 582} 583 584static int blkdev_write_begin(struct file *file, struct address_space *mapping, 585 loff_t pos, unsigned len, unsigned flags, 586 struct page **pagep, void **fsdata) 587{ 588 return block_write_begin(mapping, pos, len, flags, pagep, 589 blkdev_get_block); 590} 591 592static int blkdev_write_end(struct file *file, struct address_space *mapping, 593 loff_t pos, unsigned len, unsigned copied, 594 struct page *page, void *fsdata) 595{ 596 int ret; 597 ret = block_write_end(file, mapping, pos, len, copied, page, fsdata); 598 599 unlock_page(page); 600 put_page(page); 601 602 return ret; 603} 604 605/* 606 * private llseek: 607 * for a block special file file_inode(file)->i_size is zero 608 * so we compute the size by hand (just as in block_read/write above) 609 */ 610static loff_t block_llseek(struct file *file, loff_t offset, int whence) 611{ 612 struct inode *bd_inode = bdev_file_inode(file); 613 loff_t retval; 614 615 inode_lock(bd_inode); 616 retval = fixed_size_llseek(file, offset, whence, i_size_read(bd_inode)); 617 inode_unlock(bd_inode); 618 return retval; 619} 620 621int blkdev_fsync(struct file *filp, loff_t start, loff_t end, int datasync) 622{ 623 struct inode *bd_inode = bdev_file_inode(filp); 624 struct block_device *bdev = I_BDEV(bd_inode); 625 int error; 626 627 error = filemap_write_and_wait_range(filp->f_mapping, start, end); 628 if (error) 629 return error; 630 631 /* 632 * There is no need to serialise calls to blkdev_issue_flush with 633 * i_mutex and doing so causes performance issues with concurrent 634 * O_SYNC writers to a block device. 635 */ 636 error = blkdev_issue_flush(bdev, GFP_KERNEL, NULL); 637 if (error == -EOPNOTSUPP) 638 error = 0; 639 640 return error; 641} 642EXPORT_SYMBOL(blkdev_fsync); 643 644/** 645 * bdev_read_page() - Start reading a page from a block device 646 * @bdev: The device to read the page from 647 * @sector: The offset on the device to read the page to (need not be aligned) 648 * @page: The page to read 649 * 650 * On entry, the page should be locked. It will be unlocked when the page 651 * has been read. If the block driver implements rw_page synchronously, 652 * that will be true on exit from this function, but it need not be. 653 * 654 * Errors returned by this function are usually "soft", eg out of memory, or 655 * queue full; callers should try a different route to read this page rather 656 * than propagate an error back up the stack. 657 * 658 * Return: negative errno if an error occurs, 0 if submission was successful. 659 */ 660int bdev_read_page(struct block_device *bdev, sector_t sector, 661 struct page *page) 662{ 663 const struct block_device_operations *ops = bdev->bd_disk->fops; 664 int result = -EOPNOTSUPP; 665 666 if (!ops->rw_page || bdev_get_integrity(bdev)) 667 return result; 668 669 result = blk_queue_enter(bdev->bd_queue, false); 670 if (result) 671 return result; 672 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, false); 673 blk_queue_exit(bdev->bd_queue); 674 return result; 675} 676EXPORT_SYMBOL_GPL(bdev_read_page); 677 678/** 679 * bdev_write_page() - Start writing a page to a block device 680 * @bdev: The device to write the page to 681 * @sector: The offset on the device to write the page to (need not be aligned) 682 * @page: The page to write 683 * @wbc: The writeback_control for the write 684 * 685 * On entry, the page should be locked and not currently under writeback. 686 * On exit, if the write started successfully, the page will be unlocked and 687 * under writeback. If the write failed already (eg the driver failed to 688 * queue the page to the device), the page will still be locked. If the 689 * caller is a ->writepage implementation, it will need to unlock the page. 690 * 691 * Errors returned by this function are usually "soft", eg out of memory, or 692 * queue full; callers should try a different route to write this page rather 693 * than propagate an error back up the stack. 694 * 695 * Return: negative errno if an error occurs, 0 if submission was successful. 696 */ 697int bdev_write_page(struct block_device *bdev, sector_t sector, 698 struct page *page, struct writeback_control *wbc) 699{ 700 int result; 701 const struct block_device_operations *ops = bdev->bd_disk->fops; 702 703 if (!ops->rw_page || bdev_get_integrity(bdev)) 704 return -EOPNOTSUPP; 705 result = blk_queue_enter(bdev->bd_queue, false); 706 if (result) 707 return result; 708 709 set_page_writeback(page); 710 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, true); 711 if (result) 712 end_page_writeback(page); 713 else 714 unlock_page(page); 715 blk_queue_exit(bdev->bd_queue); 716 return result; 717} 718EXPORT_SYMBOL_GPL(bdev_write_page); 719 720/** 721 * bdev_direct_access() - Get the address for directly-accessibly memory 722 * @bdev: The device containing the memory 723 * @dax: control and output parameters for ->direct_access 724 * 725 * If a block device is made up of directly addressable memory, this function 726 * will tell the caller the PFN and the address of the memory. The address 727 * may be directly dereferenced within the kernel without the need to call 728 * ioremap(), kmap() or similar. The PFN is suitable for inserting into 729 * page tables. 730 * 731 * Return: negative errno if an error occurs, otherwise the number of bytes 732 * accessible at this address. 733 */ 734long bdev_direct_access(struct block_device *bdev, struct blk_dax_ctl *dax) 735{ 736 sector_t sector = dax->sector; 737 long avail, size = dax->size; 738 const struct block_device_operations *ops = bdev->bd_disk->fops; 739 740 /* 741 * The device driver is allowed to sleep, in order to make the 742 * memory directly accessible. 743 */ 744 might_sleep(); 745 746 if (size < 0) 747 return size; 748 if (!blk_queue_dax(bdev_get_queue(bdev)) || !ops->direct_access) 749 return -EOPNOTSUPP; 750 if ((sector + DIV_ROUND_UP(size, 512)) > 751 part_nr_sects_read(bdev->bd_part)) 752 return -ERANGE; 753 sector += get_start_sect(bdev); 754 if (sector % (PAGE_SIZE / 512)) 755 return -EINVAL; 756 avail = ops->direct_access(bdev, sector, &dax->addr, &dax->pfn, size); 757 if (!avail) 758 return -ERANGE; 759 if (avail > 0 && avail & ~PAGE_MASK) 760 return -ENXIO; 761 return min(avail, size); 762} 763EXPORT_SYMBOL_GPL(bdev_direct_access); 764 765/** 766 * bdev_dax_supported() - Check if the device supports dax for filesystem 767 * @sb: The superblock of the device 768 * @blocksize: The block size of the device 769 * 770 * This is a library function for filesystems to check if the block device 771 * can be mounted with dax option. 772 * 773 * Return: negative errno if unsupported, 0 if supported. 774 */ 775int bdev_dax_supported(struct super_block *sb, int blocksize) 776{ 777 struct blk_dax_ctl dax = { 778 .sector = 0, 779 .size = PAGE_SIZE, 780 }; 781 int err; 782 783 if (blocksize != PAGE_SIZE) { 784 vfs_msg(sb, KERN_ERR, "error: unsupported blocksize for dax"); 785 return -EINVAL; 786 } 787 788 err = bdev_direct_access(sb->s_bdev, &dax); 789 if (err < 0) { 790 switch (err) { 791 case -EOPNOTSUPP: 792 vfs_msg(sb, KERN_ERR, 793 "error: device does not support dax"); 794 break; 795 case -EINVAL: 796 vfs_msg(sb, KERN_ERR, 797 "error: unaligned partition for dax"); 798 break; 799 default: 800 vfs_msg(sb, KERN_ERR, 801 "error: dax access failed (%d)", err); 802 } 803 return err; 804 } 805 806 return 0; 807} 808EXPORT_SYMBOL_GPL(bdev_dax_supported); 809 810/** 811 * bdev_dax_capable() - Return if the raw device is capable for dax 812 * @bdev: The device for raw block device access 813 */ 814bool bdev_dax_capable(struct block_device *bdev) 815{ 816 struct blk_dax_ctl dax = { 817 .size = PAGE_SIZE, 818 }; 819 820 if (!IS_ENABLED(CONFIG_FS_DAX)) 821 return false; 822 823 dax.sector = 0; 824 if (bdev_direct_access(bdev, &dax) < 0) 825 return false; 826 827 dax.sector = bdev->bd_part->nr_sects - (PAGE_SIZE / 512); 828 if (bdev_direct_access(bdev, &dax) < 0) 829 return false; 830 831 return true; 832} 833 834/* 835 * pseudo-fs 836 */ 837 838static __cacheline_aligned_in_smp DEFINE_SPINLOCK(bdev_lock); 839static struct kmem_cache * bdev_cachep __read_mostly; 840 841static struct inode *bdev_alloc_inode(struct super_block *sb) 842{ 843 struct bdev_inode *ei = kmem_cache_alloc(bdev_cachep, GFP_KERNEL); 844 if (!ei) 845 return NULL; 846 return &ei->vfs_inode; 847} 848 849static void bdev_i_callback(struct rcu_head *head) 850{ 851 struct inode *inode = container_of(head, struct inode, i_rcu); 852 struct bdev_inode *bdi = BDEV_I(inode); 853 854 kmem_cache_free(bdev_cachep, bdi); 855} 856 857static void bdev_destroy_inode(struct inode *inode) 858{ 859 call_rcu(&inode->i_rcu, bdev_i_callback); 860} 861 862static void init_once(void *foo) 863{ 864 struct bdev_inode *ei = (struct bdev_inode *) foo; 865 struct block_device *bdev = &ei->bdev; 866 867 memset(bdev, 0, sizeof(*bdev)); 868 mutex_init(&bdev->bd_mutex); 869 INIT_LIST_HEAD(&bdev->bd_list); 870#ifdef CONFIG_SYSFS 871 INIT_LIST_HEAD(&bdev->bd_holder_disks); 872#endif 873 bdev->bd_bdi = &noop_backing_dev_info; 874 inode_init_once(&ei->vfs_inode); 875 /* Initialize mutex for freeze. */ 876 mutex_init(&bdev->bd_fsfreeze_mutex); 877} 878 879static void bdev_evict_inode(struct inode *inode) 880{ 881 struct block_device *bdev = &BDEV_I(inode)->bdev; 882 truncate_inode_pages_final(&inode->i_data); 883 invalidate_inode_buffers(inode); /* is it needed here? */ 884 clear_inode(inode); 885 spin_lock(&bdev_lock); 886 list_del_init(&bdev->bd_list); 887 spin_unlock(&bdev_lock); 888 if (bdev->bd_bdi != &noop_backing_dev_info) { 889 bdi_put(bdev->bd_bdi); 890 bdev->bd_bdi = &noop_backing_dev_info; 891 } 892} 893 894static const struct super_operations bdev_sops = { 895 .statfs = simple_statfs, 896 .alloc_inode = bdev_alloc_inode, 897 .destroy_inode = bdev_destroy_inode, 898 .drop_inode = generic_delete_inode, 899 .evict_inode = bdev_evict_inode, 900}; 901 902static struct dentry *bd_mount(struct file_system_type *fs_type, 903 int flags, const char *dev_name, void *data) 904{ 905 struct dentry *dent; 906 dent = mount_pseudo(fs_type, "bdev:", &bdev_sops, NULL, BDEVFS_MAGIC); 907 if (!IS_ERR(dent)) 908 dent->d_sb->s_iflags |= SB_I_CGROUPWB; 909 return dent; 910} 911 912static struct file_system_type bd_type = { 913 .name = "bdev", 914 .mount = bd_mount, 915 .kill_sb = kill_anon_super, 916}; 917 918struct super_block *blockdev_superblock __read_mostly; 919EXPORT_SYMBOL_GPL(blockdev_superblock); 920 921void __init bdev_cache_init(void) 922{ 923 int err; 924 static struct vfsmount *bd_mnt; 925 926 bdev_cachep = kmem_cache_create("bdev_cache", sizeof(struct bdev_inode), 927 0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT| 928 SLAB_MEM_SPREAD|SLAB_ACCOUNT|SLAB_PANIC), 929 init_once); 930 err = register_filesystem(&bd_type); 931 if (err) 932 panic("Cannot register bdev pseudo-fs"); 933 bd_mnt = kern_mount(&bd_type); 934 if (IS_ERR(bd_mnt)) 935 panic("Cannot create bdev pseudo-fs"); 936 blockdev_superblock = bd_mnt->mnt_sb; /* For writeback */ 937} 938 939/* 940 * Most likely _very_ bad one - but then it's hardly critical for small 941 * /dev and can be fixed when somebody will need really large one. 942 * Keep in mind that it will be fed through icache hash function too. 943 */ 944static inline unsigned long hash(dev_t dev) 945{ 946 return MAJOR(dev)+MINOR(dev); 947} 948 949static int bdev_test(struct inode *inode, void *data) 950{ 951 return BDEV_I(inode)->bdev.bd_dev == *(dev_t *)data; 952} 953 954static int bdev_set(struct inode *inode, void *data) 955{ 956 BDEV_I(inode)->bdev.bd_dev = *(dev_t *)data; 957 return 0; 958} 959 960static LIST_HEAD(all_bdevs); 961 962/* 963 * If there is a bdev inode for this device, unhash it so that it gets evicted 964 * as soon as last inode reference is dropped. 965 */ 966void bdev_unhash_inode(dev_t dev) 967{ 968 struct inode *inode; 969 970 inode = ilookup5(blockdev_superblock, hash(dev), bdev_test, &dev); 971 if (inode) { 972 remove_inode_hash(inode); 973 iput(inode); 974 } 975} 976 977struct block_device *bdget(dev_t dev) 978{ 979 struct block_device *bdev; 980 struct inode *inode; 981 982 inode = iget5_locked(blockdev_superblock, hash(dev), 983 bdev_test, bdev_set, &dev); 984 985 if (!inode) 986 return NULL; 987 988 bdev = &BDEV_I(inode)->bdev; 989 990 if (inode->i_state & I_NEW) { 991 bdev->bd_contains = NULL; 992 bdev->bd_super = NULL; 993 bdev->bd_inode = inode; 994 bdev->bd_block_size = i_blocksize(inode); 995 bdev->bd_part_count = 0; 996 bdev->bd_invalidated = 0; 997 inode->i_mode = S_IFBLK; 998 inode->i_rdev = dev; 999 inode->i_bdev = bdev; 1000 inode->i_data.a_ops = &def_blk_aops; 1001 mapping_set_gfp_mask(&inode->i_data, GFP_USER); 1002 spin_lock(&bdev_lock); 1003 list_add(&bdev->bd_list, &all_bdevs); 1004 spin_unlock(&bdev_lock); 1005 unlock_new_inode(inode); 1006 } 1007 return bdev; 1008} 1009 1010EXPORT_SYMBOL(bdget); 1011 1012/** 1013 * bdgrab -- Grab a reference to an already referenced block device 1014 * @bdev: Block device to grab a reference to. 1015 */ 1016struct block_device *bdgrab(struct block_device *bdev) 1017{ 1018 ihold(bdev->bd_inode); 1019 return bdev; 1020} 1021EXPORT_SYMBOL(bdgrab); 1022 1023long nr_blockdev_pages(void) 1024{ 1025 struct block_device *bdev; 1026 long ret = 0; 1027 spin_lock(&bdev_lock); 1028 list_for_each_entry(bdev, &all_bdevs, bd_list) { 1029 ret += bdev->bd_inode->i_mapping->nrpages; 1030 } 1031 spin_unlock(&bdev_lock); 1032 return ret; 1033} 1034 1035void bdput(struct block_device *bdev) 1036{ 1037 iput(bdev->bd_inode); 1038} 1039 1040EXPORT_SYMBOL(bdput); 1041 1042static struct block_device *bd_acquire(struct inode *inode) 1043{ 1044 struct block_device *bdev; 1045 1046 spin_lock(&bdev_lock); 1047 bdev = inode->i_bdev; 1048 if (bdev && !inode_unhashed(bdev->bd_inode)) { 1049 bdgrab(bdev); 1050 spin_unlock(&bdev_lock); 1051 return bdev; 1052 } 1053 spin_unlock(&bdev_lock); 1054 1055 /* 1056 * i_bdev references block device inode that was already shut down 1057 * (corresponding device got removed). Remove the reference and look 1058 * up block device inode again just in case new device got 1059 * reestablished under the same device number. 1060 */ 1061 if (bdev) 1062 bd_forget(inode); 1063 1064 bdev = bdget(inode->i_rdev); 1065 if (bdev) { 1066 spin_lock(&bdev_lock); 1067 if (!inode->i_bdev) { 1068 /* 1069 * We take an additional reference to bd_inode, 1070 * and it's released in clear_inode() of inode. 1071 * So, we can access it via ->i_mapping always 1072 * without igrab(). 1073 */ 1074 bdgrab(bdev); 1075 inode->i_bdev = bdev; 1076 inode->i_mapping = bdev->bd_inode->i_mapping; 1077 } 1078 spin_unlock(&bdev_lock); 1079 } 1080 return bdev; 1081} 1082 1083/* Call when you free inode */ 1084 1085void bd_forget(struct inode *inode) 1086{ 1087 struct block_device *bdev = NULL; 1088 1089 spin_lock(&bdev_lock); 1090 if (!sb_is_blkdev_sb(inode->i_sb)) 1091 bdev = inode->i_bdev; 1092 inode->i_bdev = NULL; 1093 inode->i_mapping = &inode->i_data; 1094 spin_unlock(&bdev_lock); 1095 1096 if (bdev) 1097 bdput(bdev); 1098} 1099 1100/** 1101 * bd_may_claim - test whether a block device can be claimed 1102 * @bdev: block device of interest 1103 * @whole: whole block device containing @bdev, may equal @bdev 1104 * @holder: holder trying to claim @bdev 1105 * 1106 * Test whether @bdev can be claimed by @holder. 1107 * 1108 * CONTEXT: 1109 * spin_lock(&bdev_lock). 1110 * 1111 * RETURNS: 1112 * %true if @bdev can be claimed, %false otherwise. 1113 */ 1114static bool bd_may_claim(struct block_device *bdev, struct block_device *whole, 1115 void *holder) 1116{ 1117 if (bdev->bd_holder == holder) 1118 return true; /* already a holder */ 1119 else if (bdev->bd_holder != NULL) 1120 return false; /* held by someone else */ 1121 else if (whole == bdev) 1122 return true; /* is a whole device which isn't held */ 1123 1124 else if (whole->bd_holder == bd_may_claim) 1125 return true; /* is a partition of a device that is being partitioned */ 1126 else if (whole->bd_holder != NULL) 1127 return false; /* is a partition of a held device */ 1128 else 1129 return true; /* is a partition of an un-held device */ 1130} 1131 1132/** 1133 * bd_prepare_to_claim - prepare to claim a block device 1134 * @bdev: block device of interest 1135 * @whole: the whole device containing @bdev, may equal @bdev 1136 * @holder: holder trying to claim @bdev 1137 * 1138 * Prepare to claim @bdev. This function fails if @bdev is already 1139 * claimed by another holder and waits if another claiming is in 1140 * progress. This function doesn't actually claim. On successful 1141 * return, the caller has ownership of bd_claiming and bd_holder[s]. 1142 * 1143 * CONTEXT: 1144 * spin_lock(&bdev_lock). Might release bdev_lock, sleep and regrab 1145 * it multiple times. 1146 * 1147 * RETURNS: 1148 * 0 if @bdev can be claimed, -EBUSY otherwise. 1149 */ 1150static int bd_prepare_to_claim(struct block_device *bdev, 1151 struct block_device *whole, void *holder) 1152{ 1153retry: 1154 /* if someone else claimed, fail */ 1155 if (!bd_may_claim(bdev, whole, holder)) 1156 return -EBUSY; 1157 1158 /* if claiming is already in progress, wait for it to finish */ 1159 if (whole->bd_claiming) { 1160 wait_queue_head_t *wq = bit_waitqueue(&whole->bd_claiming, 0); 1161 DEFINE_WAIT(wait); 1162 1163 prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE); 1164 spin_unlock(&bdev_lock); 1165 schedule(); 1166 finish_wait(wq, &wait); 1167 spin_lock(&bdev_lock); 1168 goto retry; 1169 } 1170 1171 /* yay, all mine */ 1172 return 0; 1173} 1174 1175/** 1176 * bd_start_claiming - start claiming a block device 1177 * @bdev: block device of interest 1178 * @holder: holder trying to claim @bdev 1179 * 1180 * @bdev is about to be opened exclusively. Check @bdev can be opened 1181 * exclusively and mark that an exclusive open is in progress. Each 1182 * successful call to this function must be matched with a call to 1183 * either bd_finish_claiming() or bd_abort_claiming() (which do not 1184 * fail). 1185 * 1186 * This function is used to gain exclusive access to the block device 1187 * without actually causing other exclusive open attempts to fail. It 1188 * should be used when the open sequence itself requires exclusive 1189 * access but may subsequently fail. 1190 * 1191 * CONTEXT: 1192 * Might sleep. 1193 * 1194 * RETURNS: 1195 * Pointer to the block device containing @bdev on success, ERR_PTR() 1196 * value on failure. 1197 */ 1198static struct block_device *bd_start_claiming(struct block_device *bdev, 1199 void *holder) 1200{ 1201 struct gendisk *disk; 1202 struct block_device *whole; 1203 int partno, err; 1204 1205 might_sleep(); 1206 1207 /* 1208 * @bdev might not have been initialized properly yet, look up 1209 * and grab the outer block device the hard way. 1210 */ 1211 disk = get_gendisk(bdev->bd_dev, &partno); 1212 if (!disk) 1213 return ERR_PTR(-ENXIO); 1214 1215 /* 1216 * Normally, @bdev should equal what's returned from bdget_disk() 1217 * if partno is 0; however, some drivers (floppy) use multiple 1218 * bdev's for the same physical device and @bdev may be one of the 1219 * aliases. Keep @bdev if partno is 0. This means claimer 1220 * tracking is broken for those devices but it has always been that 1221 * way. 1222 */ 1223 if (partno) 1224 whole = bdget_disk(disk, 0); 1225 else 1226 whole = bdgrab(bdev); 1227 1228 module_put(disk->fops->owner); 1229 put_disk(disk); 1230 if (!whole) 1231 return ERR_PTR(-ENOMEM); 1232 1233 /* prepare to claim, if successful, mark claiming in progress */ 1234 spin_lock(&bdev_lock); 1235 1236 err = bd_prepare_to_claim(bdev, whole, holder); 1237 if (err == 0) { 1238 whole->bd_claiming = holder; 1239 spin_unlock(&bdev_lock); 1240 return whole; 1241 } else { 1242 spin_unlock(&bdev_lock); 1243 bdput(whole); 1244 return ERR_PTR(err); 1245 } 1246} 1247 1248#ifdef CONFIG_SYSFS 1249struct bd_holder_disk { 1250 struct list_head list; 1251 struct gendisk *disk; 1252 int refcnt; 1253}; 1254 1255static struct bd_holder_disk *bd_find_holder_disk(struct block_device *bdev, 1256 struct gendisk *disk) 1257{ 1258 struct bd_holder_disk *holder; 1259 1260 list_for_each_entry(holder, &bdev->bd_holder_disks, list) 1261 if (holder->disk == disk) 1262 return holder; 1263 return NULL; 1264} 1265 1266static int add_symlink(struct kobject *from, struct kobject *to) 1267{ 1268 return sysfs_create_link(from, to, kobject_name(to)); 1269} 1270 1271static void del_symlink(struct kobject *from, struct kobject *to) 1272{ 1273 sysfs_remove_link(from, kobject_name(to)); 1274} 1275 1276/** 1277 * bd_link_disk_holder - create symlinks between holding disk and slave bdev 1278 * @bdev: the claimed slave bdev 1279 * @disk: the holding disk 1280 * 1281 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT. 1282 * 1283 * This functions creates the following sysfs symlinks. 1284 * 1285 * - from "slaves" directory of the holder @disk to the claimed @bdev 1286 * - from "holders" directory of the @bdev to the holder @disk 1287 * 1288 * For example, if /dev/dm-0 maps to /dev/sda and disk for dm-0 is 1289 * passed to bd_link_disk_holder(), then: 1290 * 1291 * /sys/block/dm-0/slaves/sda --> /sys/block/sda 1292 * /sys/block/sda/holders/dm-0 --> /sys/block/dm-0 1293 * 1294 * The caller must have claimed @bdev before calling this function and 1295 * ensure that both @bdev and @disk are valid during the creation and 1296 * lifetime of these symlinks. 1297 * 1298 * CONTEXT: 1299 * Might sleep. 1300 * 1301 * RETURNS: 1302 * 0 on success, -errno on failure. 1303 */ 1304int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk) 1305{ 1306 struct bd_holder_disk *holder; 1307 int ret = 0; 1308 1309 mutex_lock(&bdev->bd_mutex); 1310 1311 WARN_ON_ONCE(!bdev->bd_holder); 1312 1313 /* FIXME: remove the following once add_disk() handles errors */ 1314 if (WARN_ON(!disk->slave_dir || !bdev->bd_part->holder_dir)) 1315 goto out_unlock; 1316 1317 holder = bd_find_holder_disk(bdev, disk); 1318 if (holder) { 1319 holder->refcnt++; 1320 goto out_unlock; 1321 } 1322 1323 holder = kzalloc(sizeof(*holder), GFP_KERNEL); 1324 if (!holder) { 1325 ret = -ENOMEM; 1326 goto out_unlock; 1327 } 1328 1329 INIT_LIST_HEAD(&holder->list); 1330 holder->disk = disk; 1331 holder->refcnt = 1; 1332 1333 ret = add_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj); 1334 if (ret) 1335 goto out_free; 1336 1337 ret = add_symlink(bdev->bd_part->holder_dir, &disk_to_dev(disk)->kobj); 1338 if (ret) 1339 goto out_del; 1340 /* 1341 * bdev could be deleted beneath us which would implicitly destroy 1342 * the holder directory. Hold on to it. 1343 */ 1344 kobject_get(bdev->bd_part->holder_dir); 1345 1346 list_add(&holder->list, &bdev->bd_holder_disks); 1347 goto out_unlock; 1348 1349out_del: 1350 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj); 1351out_free: 1352 kfree(holder); 1353out_unlock: 1354 mutex_unlock(&bdev->bd_mutex); 1355 return ret; 1356} 1357EXPORT_SYMBOL_GPL(bd_link_disk_holder); 1358 1359/** 1360 * bd_unlink_disk_holder - destroy symlinks created by bd_link_disk_holder() 1361 * @bdev: the calimed slave bdev 1362 * @disk: the holding disk 1363 * 1364 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT. 1365 * 1366 * CONTEXT: 1367 * Might sleep. 1368 */ 1369void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk) 1370{ 1371 struct bd_holder_disk *holder; 1372 1373 mutex_lock(&bdev->bd_mutex); 1374 1375 holder = bd_find_holder_disk(bdev, disk); 1376 1377 if (!WARN_ON_ONCE(holder == NULL) && !--holder->refcnt) { 1378 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj); 1379 del_symlink(bdev->bd_part->holder_dir, 1380 &disk_to_dev(disk)->kobj); 1381 kobject_put(bdev->bd_part->holder_dir); 1382 list_del_init(&holder->list); 1383 kfree(holder); 1384 } 1385 1386 mutex_unlock(&bdev->bd_mutex); 1387} 1388EXPORT_SYMBOL_GPL(bd_unlink_disk_holder); 1389#endif 1390 1391/** 1392 * flush_disk - invalidates all buffer-cache entries on a disk 1393 * 1394 * @bdev: struct block device to be flushed 1395 * @kill_dirty: flag to guide handling of dirty inodes 1396 * 1397 * Invalidates all buffer-cache entries on a disk. It should be called 1398 * when a disk has been changed -- either by a media change or online 1399 * resize. 1400 */ 1401static void flush_disk(struct block_device *bdev, bool kill_dirty) 1402{ 1403 if (__invalidate_device(bdev, kill_dirty)) { 1404 printk(KERN_WARNING "VFS: busy inodes on changed media or " 1405 "resized disk %s\n", 1406 bdev->bd_disk ? bdev->bd_disk->disk_name : ""); 1407 } 1408 1409 if (!bdev->bd_disk) 1410 return; 1411 if (disk_part_scan_enabled(bdev->bd_disk)) 1412 bdev->bd_invalidated = 1; 1413} 1414 1415/** 1416 * check_disk_size_change - checks for disk size change and adjusts bdev size. 1417 * @disk: struct gendisk to check 1418 * @bdev: struct bdev to adjust. 1419 * 1420 * This routine checks to see if the bdev size does not match the disk size 1421 * and adjusts it if it differs. 1422 */ 1423void check_disk_size_change(struct gendisk *disk, struct block_device *bdev) 1424{ 1425 loff_t disk_size, bdev_size; 1426 1427 disk_size = (loff_t)get_capacity(disk) << 9; 1428 bdev_size = i_size_read(bdev->bd_inode); 1429 if (disk_size != bdev_size) { 1430 printk(KERN_INFO 1431 "%s: detected capacity change from %lld to %lld\n", 1432 disk->disk_name, bdev_size, disk_size); 1433 i_size_write(bdev->bd_inode, disk_size); 1434 flush_disk(bdev, false); 1435 } 1436} 1437EXPORT_SYMBOL(check_disk_size_change); 1438 1439/** 1440 * revalidate_disk - wrapper for lower-level driver's revalidate_disk call-back 1441 * @disk: struct gendisk to be revalidated 1442 * 1443 * This routine is a wrapper for lower-level driver's revalidate_disk 1444 * call-backs. It is used to do common pre and post operations needed 1445 * for all revalidate_disk operations. 1446 */ 1447int revalidate_disk(struct gendisk *disk) 1448{ 1449 struct block_device *bdev; 1450 int ret = 0; 1451 1452 if (disk->fops->revalidate_disk) 1453 ret = disk->fops->revalidate_disk(disk); 1454 blk_integrity_revalidate(disk); 1455 bdev = bdget_disk(disk, 0); 1456 if (!bdev) 1457 return ret; 1458 1459 mutex_lock(&bdev->bd_mutex); 1460 check_disk_size_change(disk, bdev); 1461 bdev->bd_invalidated = 0; 1462 mutex_unlock(&bdev->bd_mutex); 1463 bdput(bdev); 1464 return ret; 1465} 1466EXPORT_SYMBOL(revalidate_disk); 1467 1468/* 1469 * This routine checks whether a removable media has been changed, 1470 * and invalidates all buffer-cache-entries in that case. This 1471 * is a relatively slow routine, so we have to try to minimize using 1472 * it. Thus it is called only upon a 'mount' or 'open'. This 1473 * is the best way of combining speed and utility, I think. 1474 * People changing diskettes in the middle of an operation deserve 1475 * to lose :-) 1476 */ 1477int check_disk_change(struct block_device *bdev) 1478{ 1479 struct gendisk *disk = bdev->bd_disk; 1480 const struct block_device_operations *bdops = disk->fops; 1481 unsigned int events; 1482 1483 events = disk_clear_events(disk, DISK_EVENT_MEDIA_CHANGE | 1484 DISK_EVENT_EJECT_REQUEST); 1485 if (!(events & DISK_EVENT_MEDIA_CHANGE)) 1486 return 0; 1487 1488 flush_disk(bdev, true); 1489 if (bdops->revalidate_disk) 1490 bdops->revalidate_disk(bdev->bd_disk); 1491 return 1; 1492} 1493 1494EXPORT_SYMBOL(check_disk_change); 1495 1496void bd_set_size(struct block_device *bdev, loff_t size) 1497{ 1498 unsigned bsize = bdev_logical_block_size(bdev); 1499 1500 inode_lock(bdev->bd_inode); 1501 i_size_write(bdev->bd_inode, size); 1502 inode_unlock(bdev->bd_inode); 1503 while (bsize < PAGE_SIZE) { 1504 if (size & bsize) 1505 break; 1506 bsize <<= 1; 1507 } 1508 bdev->bd_block_size = bsize; 1509 bdev->bd_inode->i_blkbits = blksize_bits(bsize); 1510} 1511EXPORT_SYMBOL(bd_set_size); 1512 1513static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part); 1514 1515/* 1516 * bd_mutex locking: 1517 * 1518 * mutex_lock(part->bd_mutex) 1519 * mutex_lock_nested(whole->bd_mutex, 1) 1520 */ 1521 1522static int __blkdev_get(struct block_device *bdev, fmode_t mode, int for_part) 1523{ 1524 struct gendisk *disk; 1525 struct module *owner; 1526 int ret; 1527 int partno; 1528 int perm = 0; 1529 1530 if (mode & FMODE_READ) 1531 perm |= MAY_READ; 1532 if (mode & FMODE_WRITE) 1533 perm |= MAY_WRITE; 1534 /* 1535 * hooks: /n/, see "layering violations". 1536 */ 1537 if (!for_part) { 1538 ret = devcgroup_inode_permission(bdev->bd_inode, perm); 1539 if (ret != 0) { 1540 bdput(bdev); 1541 return ret; 1542 } 1543 } 1544 1545 restart: 1546 1547 ret = -ENXIO; 1548 disk = get_gendisk(bdev->bd_dev, &partno); 1549 if (!disk) 1550 goto out; 1551 owner = disk->fops->owner; 1552 1553 disk_block_events(disk); 1554 mutex_lock_nested(&bdev->bd_mutex, for_part); 1555 if (!bdev->bd_openers) { 1556 bdev->bd_disk = disk; 1557 bdev->bd_queue = disk->queue; 1558 bdev->bd_contains = bdev; 1559 if (bdev->bd_bdi == &noop_backing_dev_info) 1560 bdev->bd_bdi = bdi_get(disk->queue->backing_dev_info); 1561 1562 if (!partno) { 1563 ret = -ENXIO; 1564 bdev->bd_part = disk_get_part(disk, partno); 1565 if (!bdev->bd_part) 1566 goto out_clear; 1567 1568 ret = 0; 1569 if (disk->fops->open) { 1570 ret = disk->fops->open(bdev, mode); 1571 if (ret == -ERESTARTSYS) { 1572 /* Lost a race with 'disk' being 1573 * deleted, try again. 1574 * See md.c 1575 */ 1576 disk_put_part(bdev->bd_part); 1577 bdev->bd_part = NULL; 1578 bdev->bd_disk = NULL; 1579 bdev->bd_queue = NULL; 1580 mutex_unlock(&bdev->bd_mutex); 1581 disk_unblock_events(disk); 1582 put_disk(disk); 1583 module_put(owner); 1584 goto restart; 1585 } 1586 } 1587 1588 if (!ret) 1589 bd_set_size(bdev,(loff_t)get_capacity(disk)<<9); 1590 1591 /* 1592 * If the device is invalidated, rescan partition 1593 * if open succeeded or failed with -ENOMEDIUM. 1594 * The latter is necessary to prevent ghost 1595 * partitions on a removed medium. 1596 */ 1597 if (bdev->bd_invalidated) { 1598 if (!ret) 1599 rescan_partitions(disk, bdev); 1600 else if (ret == -ENOMEDIUM) 1601 invalidate_partitions(disk, bdev); 1602 } 1603 1604 if (ret) 1605 goto out_clear; 1606 } else { 1607 struct block_device *whole; 1608 whole = bdget_disk(disk, 0); 1609 ret = -ENOMEM; 1610 if (!whole) 1611 goto out_clear; 1612 BUG_ON(for_part); 1613 ret = __blkdev_get(whole, mode, 1); 1614 if (ret) 1615 goto out_clear; 1616 bdev->bd_contains = whole; 1617 bdev->bd_part = disk_get_part(disk, partno); 1618 if (!(disk->flags & GENHD_FL_UP) || 1619 !bdev->bd_part || !bdev->bd_part->nr_sects) { 1620 ret = -ENXIO; 1621 goto out_clear; 1622 } 1623 bd_set_size(bdev, (loff_t)bdev->bd_part->nr_sects << 9); 1624 } 1625 } else { 1626 if (bdev->bd_contains == bdev) { 1627 ret = 0; 1628 if (bdev->bd_disk->fops->open) 1629 ret = bdev->bd_disk->fops->open(bdev, mode); 1630 /* the same as first opener case, read comment there */ 1631 if (bdev->bd_invalidated) { 1632 if (!ret) 1633 rescan_partitions(bdev->bd_disk, bdev); 1634 else if (ret == -ENOMEDIUM) 1635 invalidate_partitions(bdev->bd_disk, bdev); 1636 } 1637 if (ret) 1638 goto out_unlock_bdev; 1639 } 1640 /* only one opener holds refs to the module and disk */ 1641 put_disk(disk); 1642 module_put(owner); 1643 } 1644 bdev->bd_openers++; 1645 if (for_part) 1646 bdev->bd_part_count++; 1647 mutex_unlock(&bdev->bd_mutex); 1648 disk_unblock_events(disk); 1649 return 0; 1650 1651 out_clear: 1652 disk_put_part(bdev->bd_part); 1653 bdev->bd_disk = NULL; 1654 bdev->bd_part = NULL; 1655 bdev->bd_queue = NULL; 1656 bdi_put(bdev->bd_bdi); 1657 bdev->bd_bdi = &noop_backing_dev_info; 1658 if (bdev != bdev->bd_contains) 1659 __blkdev_put(bdev->bd_contains, mode, 1); 1660 bdev->bd_contains = NULL; 1661 out_unlock_bdev: 1662 mutex_unlock(&bdev->bd_mutex); 1663 disk_unblock_events(disk); 1664 put_disk(disk); 1665 module_put(owner); 1666 out: 1667 bdput(bdev); 1668 1669 return ret; 1670} 1671 1672/** 1673 * blkdev_get - open a block device 1674 * @bdev: block_device to open 1675 * @mode: FMODE_* mask 1676 * @holder: exclusive holder identifier 1677 * 1678 * Open @bdev with @mode. If @mode includes %FMODE_EXCL, @bdev is 1679 * open with exclusive access. Specifying %FMODE_EXCL with %NULL 1680 * @holder is invalid. Exclusive opens may nest for the same @holder. 1681 * 1682 * On success, the reference count of @bdev is unchanged. On failure, 1683 * @bdev is put. 1684 * 1685 * CONTEXT: 1686 * Might sleep. 1687 * 1688 * RETURNS: 1689 * 0 on success, -errno on failure. 1690 */ 1691int blkdev_get(struct block_device *bdev, fmode_t mode, void *holder) 1692{ 1693 struct block_device *whole = NULL; 1694 int res; 1695 1696 WARN_ON_ONCE((mode & FMODE_EXCL) && !holder); 1697 1698 if ((mode & FMODE_EXCL) && holder) { 1699 whole = bd_start_claiming(bdev, holder); 1700 if (IS_ERR(whole)) { 1701 bdput(bdev); 1702 return PTR_ERR(whole); 1703 } 1704 } 1705 1706 res = __blkdev_get(bdev, mode, 0); 1707 1708 if (whole) { 1709 struct gendisk *disk = whole->bd_disk; 1710 1711 /* finish claiming */ 1712 mutex_lock(&bdev->bd_mutex); 1713 spin_lock(&bdev_lock); 1714 1715 if (!res) { 1716 BUG_ON(!bd_may_claim(bdev, whole, holder)); 1717 /* 1718 * Note that for a whole device bd_holders 1719 * will be incremented twice, and bd_holder 1720 * will be set to bd_may_claim before being 1721 * set to holder 1722 */ 1723 whole->bd_holders++; 1724 whole->bd_holder = bd_may_claim; 1725 bdev->bd_holders++; 1726 bdev->bd_holder = holder; 1727 } 1728 1729 /* tell others that we're done */ 1730 BUG_ON(whole->bd_claiming != holder); 1731 whole->bd_claiming = NULL; 1732 wake_up_bit(&whole->bd_claiming, 0); 1733 1734 spin_unlock(&bdev_lock); 1735 1736 /* 1737 * Block event polling for write claims if requested. Any 1738 * write holder makes the write_holder state stick until 1739 * all are released. This is good enough and tracking 1740 * individual writeable reference is too fragile given the 1741 * way @mode is used in blkdev_get/put(). 1742 */ 1743 if (!res && (mode & FMODE_WRITE) && !bdev->bd_write_holder && 1744 (disk->flags & GENHD_FL_BLOCK_EVENTS_ON_EXCL_WRITE)) { 1745 bdev->bd_write_holder = true; 1746 disk_block_events(disk); 1747 } 1748 1749 mutex_unlock(&bdev->bd_mutex); 1750 bdput(whole); 1751 } 1752 1753 return res; 1754} 1755EXPORT_SYMBOL(blkdev_get); 1756 1757/** 1758 * blkdev_get_by_path - open a block device by name 1759 * @path: path to the block device to open 1760 * @mode: FMODE_* mask 1761 * @holder: exclusive holder identifier 1762 * 1763 * Open the blockdevice described by the device file at @path. @mode 1764 * and @holder are identical to blkdev_get(). 1765 * 1766 * On success, the returned block_device has reference count of one. 1767 * 1768 * CONTEXT: 1769 * Might sleep. 1770 * 1771 * RETURNS: 1772 * Pointer to block_device on success, ERR_PTR(-errno) on failure. 1773 */ 1774struct block_device *blkdev_get_by_path(const char *path, fmode_t mode, 1775 void *holder) 1776{ 1777 struct block_device *bdev; 1778 int err; 1779 1780 bdev = lookup_bdev(path); 1781 if (IS_ERR(bdev)) 1782 return bdev; 1783 1784 err = blkdev_get(bdev, mode, holder); 1785 if (err) 1786 return ERR_PTR(err); 1787 1788 if ((mode & FMODE_WRITE) && bdev_read_only(bdev)) { 1789 blkdev_put(bdev, mode); 1790 return ERR_PTR(-EACCES); 1791 } 1792 1793 return bdev; 1794} 1795EXPORT_SYMBOL(blkdev_get_by_path); 1796 1797/** 1798 * blkdev_get_by_dev - open a block device by device number 1799 * @dev: device number of block device to open 1800 * @mode: FMODE_* mask 1801 * @holder: exclusive holder identifier 1802 * 1803 * Open the blockdevice described by device number @dev. @mode and 1804 * @holder are identical to blkdev_get(). 1805 * 1806 * Use it ONLY if you really do not have anything better - i.e. when 1807 * you are behind a truly sucky interface and all you are given is a 1808 * device number. _Never_ to be used for internal purposes. If you 1809 * ever need it - reconsider your API. 1810 * 1811 * On success, the returned block_device has reference count of one. 1812 * 1813 * CONTEXT: 1814 * Might sleep. 1815 * 1816 * RETURNS: 1817 * Pointer to block_device on success, ERR_PTR(-errno) on failure. 1818 */ 1819struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder) 1820{ 1821 struct block_device *bdev; 1822 int err; 1823 1824 bdev = bdget(dev); 1825 if (!bdev) 1826 return ERR_PTR(-ENOMEM); 1827 1828 err = blkdev_get(bdev, mode, holder); 1829 if (err) 1830 return ERR_PTR(err); 1831 1832 return bdev; 1833} 1834EXPORT_SYMBOL(blkdev_get_by_dev); 1835 1836static int blkdev_open(struct inode * inode, struct file * filp) 1837{ 1838 struct block_device *bdev; 1839 1840 /* 1841 * Preserve backwards compatibility and allow large file access 1842 * even if userspace doesn't ask for it explicitly. Some mkfs 1843 * binary needs it. We might want to drop this workaround 1844 * during an unstable branch. 1845 */ 1846 filp->f_flags |= O_LARGEFILE; 1847 1848 if (filp->f_flags & O_NDELAY) 1849 filp->f_mode |= FMODE_NDELAY; 1850 if (filp->f_flags & O_EXCL) 1851 filp->f_mode |= FMODE_EXCL; 1852 if ((filp->f_flags & O_ACCMODE) == 3) 1853 filp->f_mode |= FMODE_WRITE_IOCTL; 1854 1855 bdev = bd_acquire(inode); 1856 if (bdev == NULL) 1857 return -ENOMEM; 1858 1859 filp->f_mapping = bdev->bd_inode->i_mapping; 1860 1861 return blkdev_get(bdev, filp->f_mode, filp); 1862} 1863 1864static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part) 1865{ 1866 struct gendisk *disk = bdev->bd_disk; 1867 struct block_device *victim = NULL; 1868 1869 mutex_lock_nested(&bdev->bd_mutex, for_part); 1870 if (for_part) 1871 bdev->bd_part_count--; 1872 1873 if (!--bdev->bd_openers) { 1874 WARN_ON_ONCE(bdev->bd_holders); 1875 sync_blockdev(bdev); 1876 kill_bdev(bdev); 1877 1878 bdev_write_inode(bdev); 1879 /* 1880 * Detaching bdev inode from its wb in __destroy_inode() 1881 * is too late: the queue which embeds its bdi (along with 1882 * root wb) can be gone as soon as we put_disk() below. 1883 */ 1884 inode_detach_wb(bdev->bd_inode); 1885 } 1886 if (bdev->bd_contains == bdev) { 1887 if (disk->fops->release) 1888 disk->fops->release(disk, mode); 1889 } 1890 if (!bdev->bd_openers) { 1891 struct module *owner = disk->fops->owner; 1892 1893 disk_put_part(bdev->bd_part); 1894 bdev->bd_part = NULL; 1895 bdev->bd_disk = NULL; 1896 if (bdev != bdev->bd_contains) 1897 victim = bdev->bd_contains; 1898 bdev->bd_contains = NULL; 1899 1900 put_disk(disk); 1901 module_put(owner); 1902 } 1903 mutex_unlock(&bdev->bd_mutex); 1904 bdput(bdev); 1905 if (victim) 1906 __blkdev_put(victim, mode, 1); 1907} 1908 1909void blkdev_put(struct block_device *bdev, fmode_t mode) 1910{ 1911 mutex_lock(&bdev->bd_mutex); 1912 1913 if (mode & FMODE_EXCL) { 1914 bool bdev_free; 1915 1916 /* 1917 * Release a claim on the device. The holder fields 1918 * are protected with bdev_lock. bd_mutex is to 1919 * synchronize disk_holder unlinking. 1920 */ 1921 spin_lock(&bdev_lock); 1922 1923 WARN_ON_ONCE(--bdev->bd_holders < 0); 1924 WARN_ON_ONCE(--bdev->bd_contains->bd_holders < 0); 1925 1926 /* bd_contains might point to self, check in a separate step */ 1927 if ((bdev_free = !bdev->bd_holders)) 1928 bdev->bd_holder = NULL; 1929 if (!bdev->bd_contains->bd_holders) 1930 bdev->bd_contains->bd_holder = NULL; 1931 1932 spin_unlock(&bdev_lock); 1933 1934 /* 1935 * If this was the last claim, remove holder link and 1936 * unblock evpoll if it was a write holder. 1937 */ 1938 if (bdev_free && bdev->bd_write_holder) { 1939 disk_unblock_events(bdev->bd_disk); 1940 bdev->bd_write_holder = false; 1941 } 1942 } 1943 1944 /* 1945 * Trigger event checking and tell drivers to flush MEDIA_CHANGE 1946 * event. This is to ensure detection of media removal commanded 1947 * from userland - e.g. eject(1). 1948 */ 1949 disk_flush_events(bdev->bd_disk, DISK_EVENT_MEDIA_CHANGE); 1950 1951 mutex_unlock(&bdev->bd_mutex); 1952 1953 __blkdev_put(bdev, mode, 0); 1954} 1955EXPORT_SYMBOL(blkdev_put); 1956 1957static int blkdev_close(struct inode * inode, struct file * filp) 1958{ 1959 struct block_device *bdev = I_BDEV(bdev_file_inode(filp)); 1960 blkdev_put(bdev, filp->f_mode); 1961 return 0; 1962} 1963 1964static long block_ioctl(struct file *file, unsigned cmd, unsigned long arg) 1965{ 1966 struct block_device *bdev = I_BDEV(bdev_file_inode(file)); 1967 fmode_t mode = file->f_mode; 1968 1969 /* 1970 * O_NDELAY can be altered using fcntl(.., F_SETFL, ..), so we have 1971 * to updated it before every ioctl. 1972 */ 1973 if (file->f_flags & O_NDELAY) 1974 mode |= FMODE_NDELAY; 1975 else 1976 mode &= ~FMODE_NDELAY; 1977 1978 return blkdev_ioctl(bdev, mode, cmd, arg); 1979} 1980 1981/* 1982 * Write data to the block device. Only intended for the block device itself 1983 * and the raw driver which basically is a fake block device. 1984 * 1985 * Does not take i_mutex for the write and thus is not for general purpose 1986 * use. 1987 */ 1988ssize_t blkdev_write_iter(struct kiocb *iocb, struct iov_iter *from) 1989{ 1990 struct file *file = iocb->ki_filp; 1991 struct inode *bd_inode = bdev_file_inode(file); 1992 loff_t size = i_size_read(bd_inode); 1993 struct blk_plug plug; 1994 ssize_t ret; 1995 1996 if (bdev_read_only(I_BDEV(bd_inode))) 1997 return -EPERM; 1998 1999 if (!iov_iter_count(from)) 2000 return 0; 2001 2002 if (iocb->ki_pos >= size) 2003 return -ENOSPC; 2004 2005 iov_iter_truncate(from, size - iocb->ki_pos); 2006 2007 blk_start_plug(&plug); 2008 ret = __generic_file_write_iter(iocb, from); 2009 if (ret > 0) 2010 ret = generic_write_sync(iocb, ret); 2011 blk_finish_plug(&plug); 2012 return ret; 2013} 2014EXPORT_SYMBOL_GPL(blkdev_write_iter); 2015 2016ssize_t blkdev_read_iter(struct kiocb *iocb, struct iov_iter *to) 2017{ 2018 struct file *file = iocb->ki_filp; 2019 struct inode *bd_inode = bdev_file_inode(file); 2020 loff_t size = i_size_read(bd_inode); 2021 loff_t pos = iocb->ki_pos; 2022 2023 if (pos >= size) 2024 return 0; 2025 2026 size -= pos; 2027 iov_iter_truncate(to, size); 2028 return generic_file_read_iter(iocb, to); 2029} 2030EXPORT_SYMBOL_GPL(blkdev_read_iter); 2031 2032/* 2033 * Try to release a page associated with block device when the system 2034 * is under memory pressure. 2035 */ 2036static int blkdev_releasepage(struct page *page, gfp_t wait) 2037{ 2038 struct super_block *super = BDEV_I(page->mapping->host)->bdev.bd_super; 2039 2040 if (super && super->s_op->bdev_try_to_free_page) 2041 return super->s_op->bdev_try_to_free_page(super, page, wait); 2042 2043 return try_to_free_buffers(page); 2044} 2045 2046static int blkdev_writepages(struct address_space *mapping, 2047 struct writeback_control *wbc) 2048{ 2049 if (dax_mapping(mapping)) { 2050 struct block_device *bdev = I_BDEV(mapping->host); 2051 2052 return dax_writeback_mapping_range(mapping, bdev, wbc); 2053 } 2054 return generic_writepages(mapping, wbc); 2055} 2056 2057static const struct address_space_operations def_blk_aops = { 2058 .readpage = blkdev_readpage, 2059 .readpages = blkdev_readpages, 2060 .writepage = blkdev_writepage, 2061 .write_begin = blkdev_write_begin, 2062 .write_end = blkdev_write_end, 2063 .writepages = blkdev_writepages, 2064 .releasepage = blkdev_releasepage, 2065 .direct_IO = blkdev_direct_IO, 2066 .is_dirty_writeback = buffer_check_dirty_writeback, 2067}; 2068 2069#define BLKDEV_FALLOC_FL_SUPPORTED \ 2070 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \ 2071 FALLOC_FL_ZERO_RANGE | FALLOC_FL_NO_HIDE_STALE) 2072 2073static long blkdev_fallocate(struct file *file, int mode, loff_t start, 2074 loff_t len) 2075{ 2076 struct block_device *bdev = I_BDEV(bdev_file_inode(file)); 2077 struct request_queue *q = bdev_get_queue(bdev); 2078 struct address_space *mapping; 2079 loff_t end = start + len - 1; 2080 loff_t isize; 2081 int error; 2082 2083 /* Fail if we don't recognize the flags. */ 2084 if (mode & ~BLKDEV_FALLOC_FL_SUPPORTED) 2085 return -EOPNOTSUPP; 2086 2087 /* Don't go off the end of the device. */ 2088 isize = i_size_read(bdev->bd_inode); 2089 if (start >= isize) 2090 return -EINVAL; 2091 if (end >= isize) { 2092 if (mode & FALLOC_FL_KEEP_SIZE) { 2093 len = isize - start; 2094 end = start + len - 1; 2095 } else 2096 return -EINVAL; 2097 } 2098 2099 /* 2100 * Don't allow IO that isn't aligned to logical block size. 2101 */ 2102 if ((start | len) & (bdev_logical_block_size(bdev) - 1)) 2103 return -EINVAL; 2104 2105 /* Invalidate the page cache, including dirty pages. */ 2106 mapping = bdev->bd_inode->i_mapping; 2107 truncate_inode_pages_range(mapping, start, end); 2108 2109 switch (mode) { 2110 case FALLOC_FL_ZERO_RANGE: 2111 case FALLOC_FL_ZERO_RANGE | FALLOC_FL_KEEP_SIZE: 2112 error = blkdev_issue_zeroout(bdev, start >> 9, len >> 9, 2113 GFP_KERNEL, false); 2114 break; 2115 case FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE: 2116 /* Only punch if the device can do zeroing discard. */ 2117 if (!blk_queue_discard(q) || !q->limits.discard_zeroes_data) 2118 return -EOPNOTSUPP; 2119 error = blkdev_issue_discard(bdev, start >> 9, len >> 9, 2120 GFP_KERNEL, 0); 2121 break; 2122 case FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE | FALLOC_FL_NO_HIDE_STALE: 2123 if (!blk_queue_discard(q)) 2124 return -EOPNOTSUPP; 2125 error = blkdev_issue_discard(bdev, start >> 9, len >> 9, 2126 GFP_KERNEL, 0); 2127 break; 2128 default: 2129 return -EOPNOTSUPP; 2130 } 2131 if (error) 2132 return error; 2133 2134 /* 2135 * Invalidate again; if someone wandered in and dirtied a page, 2136 * the caller will be given -EBUSY. The third argument is 2137 * inclusive, so the rounding here is safe. 2138 */ 2139 return invalidate_inode_pages2_range(mapping, 2140 start >> PAGE_SHIFT, 2141 end >> PAGE_SHIFT); 2142} 2143 2144const struct file_operations def_blk_fops = { 2145 .open = blkdev_open, 2146 .release = blkdev_close, 2147 .llseek = block_llseek, 2148 .read_iter = blkdev_read_iter, 2149 .write_iter = blkdev_write_iter, 2150 .mmap = generic_file_mmap, 2151 .fsync = blkdev_fsync, 2152 .unlocked_ioctl = block_ioctl, 2153#ifdef CONFIG_COMPAT 2154 .compat_ioctl = compat_blkdev_ioctl, 2155#endif 2156 .splice_read = generic_file_splice_read, 2157 .splice_write = iter_file_splice_write, 2158 .fallocate = blkdev_fallocate, 2159}; 2160 2161int ioctl_by_bdev(struct block_device *bdev, unsigned cmd, unsigned long arg) 2162{ 2163 int res; 2164 mm_segment_t old_fs = get_fs(); 2165 set_fs(KERNEL_DS); 2166 res = blkdev_ioctl(bdev, 0, cmd, arg); 2167 set_fs(old_fs); 2168 return res; 2169} 2170 2171EXPORT_SYMBOL(ioctl_by_bdev); 2172 2173/** 2174 * lookup_bdev - lookup a struct block_device by name 2175 * @pathname: special file representing the block device 2176 * 2177 * Get a reference to the blockdevice at @pathname in the current 2178 * namespace if possible and return it. Return ERR_PTR(error) 2179 * otherwise. 2180 */ 2181struct block_device *lookup_bdev(const char *pathname) 2182{ 2183 struct block_device *bdev; 2184 struct inode *inode; 2185 struct path path; 2186 int error; 2187 2188 if (!pathname || !*pathname) 2189 return ERR_PTR(-EINVAL); 2190 2191 error = kern_path(pathname, LOOKUP_FOLLOW, &path); 2192 if (error) 2193 return ERR_PTR(error); 2194 2195 inode = d_backing_inode(path.dentry); 2196 error = -ENOTBLK; 2197 if (!S_ISBLK(inode->i_mode)) 2198 goto fail; 2199 error = -EACCES; 2200 if (!may_open_dev(&path)) 2201 goto fail; 2202 error = -ENOMEM; 2203 bdev = bd_acquire(inode); 2204 if (!bdev) 2205 goto fail; 2206out: 2207 path_put(&path); 2208 return bdev; 2209fail: 2210 bdev = ERR_PTR(error); 2211 goto out; 2212} 2213EXPORT_SYMBOL(lookup_bdev); 2214 2215int __invalidate_device(struct block_device *bdev, bool kill_dirty) 2216{ 2217 struct super_block *sb = get_super(bdev); 2218 int res = 0; 2219 2220 if (sb) { 2221 /* 2222 * no need to lock the super, get_super holds the 2223 * read mutex so the filesystem cannot go away 2224 * under us (->put_super runs with the write lock 2225 * hold). 2226 */ 2227 shrink_dcache_sb(sb); 2228 res = invalidate_inodes(sb, kill_dirty); 2229 drop_super(sb); 2230 } 2231 invalidate_bdev(bdev); 2232 return res; 2233} 2234EXPORT_SYMBOL(__invalidate_device); 2235 2236void iterate_bdevs(void (*func)(struct block_device *, void *), void *arg) 2237{ 2238 struct inode *inode, *old_inode = NULL; 2239 2240 spin_lock(&blockdev_superblock->s_inode_list_lock); 2241 list_for_each_entry(inode, &blockdev_superblock->s_inodes, i_sb_list) { 2242 struct address_space *mapping = inode->i_mapping; 2243 struct block_device *bdev; 2244 2245 spin_lock(&inode->i_lock); 2246 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW) || 2247 mapping->nrpages == 0) { 2248 spin_unlock(&inode->i_lock); 2249 continue; 2250 } 2251 __iget(inode); 2252 spin_unlock(&inode->i_lock); 2253 spin_unlock(&blockdev_superblock->s_inode_list_lock); 2254 /* 2255 * We hold a reference to 'inode' so it couldn't have been 2256 * removed from s_inodes list while we dropped the 2257 * s_inode_list_lock We cannot iput the inode now as we can 2258 * be holding the last reference and we cannot iput it under 2259 * s_inode_list_lock. So we keep the reference and iput it 2260 * later. 2261 */ 2262 iput(old_inode); 2263 old_inode = inode; 2264 bdev = I_BDEV(inode); 2265 2266 mutex_lock(&bdev->bd_mutex); 2267 if (bdev->bd_openers) 2268 func(bdev, arg); 2269 mutex_unlock(&bdev->bd_mutex); 2270 2271 spin_lock(&blockdev_superblock->s_inode_list_lock); 2272 } 2273 spin_unlock(&blockdev_superblock->s_inode_list_lock); 2274 iput(old_inode); 2275}