at v4.11 34 kB view raw
1/* 2 * Copyright (C) 2005 Marc Kleine-Budde, Pengutronix 3 * Copyright (C) 2006 Andrey Volkov, Varma Electronics 4 * Copyright (C) 2008-2009 Wolfgang Grandegger <wg@grandegger.com> 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the version 2 of the GNU General Public License 8 * as published by the Free Software Foundation 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this program; if not, see <http://www.gnu.org/licenses/>. 17 */ 18 19#include <linux/module.h> 20#include <linux/kernel.h> 21#include <linux/slab.h> 22#include <linux/netdevice.h> 23#include <linux/if_arp.h> 24#include <linux/workqueue.h> 25#include <linux/can.h> 26#include <linux/can/dev.h> 27#include <linux/can/skb.h> 28#include <linux/can/netlink.h> 29#include <linux/can/led.h> 30#include <net/rtnetlink.h> 31 32#define MOD_DESC "CAN device driver interface" 33 34MODULE_DESCRIPTION(MOD_DESC); 35MODULE_LICENSE("GPL v2"); 36MODULE_AUTHOR("Wolfgang Grandegger <wg@grandegger.com>"); 37 38/* CAN DLC to real data length conversion helpers */ 39 40static const u8 dlc2len[] = {0, 1, 2, 3, 4, 5, 6, 7, 41 8, 12, 16, 20, 24, 32, 48, 64}; 42 43/* get data length from can_dlc with sanitized can_dlc */ 44u8 can_dlc2len(u8 can_dlc) 45{ 46 return dlc2len[can_dlc & 0x0F]; 47} 48EXPORT_SYMBOL_GPL(can_dlc2len); 49 50static const u8 len2dlc[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, /* 0 - 8 */ 51 9, 9, 9, 9, /* 9 - 12 */ 52 10, 10, 10, 10, /* 13 - 16 */ 53 11, 11, 11, 11, /* 17 - 20 */ 54 12, 12, 12, 12, /* 21 - 24 */ 55 13, 13, 13, 13, 13, 13, 13, 13, /* 25 - 32 */ 56 14, 14, 14, 14, 14, 14, 14, 14, /* 33 - 40 */ 57 14, 14, 14, 14, 14, 14, 14, 14, /* 41 - 48 */ 58 15, 15, 15, 15, 15, 15, 15, 15, /* 49 - 56 */ 59 15, 15, 15, 15, 15, 15, 15, 15}; /* 57 - 64 */ 60 61/* map the sanitized data length to an appropriate data length code */ 62u8 can_len2dlc(u8 len) 63{ 64 if (unlikely(len > 64)) 65 return 0xF; 66 67 return len2dlc[len]; 68} 69EXPORT_SYMBOL_GPL(can_len2dlc); 70 71#ifdef CONFIG_CAN_CALC_BITTIMING 72#define CAN_CALC_MAX_ERROR 50 /* in one-tenth of a percent */ 73#define CAN_CALC_SYNC_SEG 1 74 75/* 76 * Bit-timing calculation derived from: 77 * 78 * Code based on LinCAN sources and H8S2638 project 79 * Copyright 2004-2006 Pavel Pisa - DCE FELK CVUT cz 80 * Copyright 2005 Stanislav Marek 81 * email: pisa@cmp.felk.cvut.cz 82 * 83 * Calculates proper bit-timing parameters for a specified bit-rate 84 * and sample-point, which can then be used to set the bit-timing 85 * registers of the CAN controller. You can find more information 86 * in the header file linux/can/netlink.h. 87 */ 88static int can_update_sample_point(const struct can_bittiming_const *btc, 89 unsigned int sample_point_nominal, unsigned int tseg, 90 unsigned int *tseg1_ptr, unsigned int *tseg2_ptr, 91 unsigned int *sample_point_error_ptr) 92{ 93 unsigned int sample_point_error, best_sample_point_error = UINT_MAX; 94 unsigned int sample_point, best_sample_point = 0; 95 unsigned int tseg1, tseg2; 96 int i; 97 98 for (i = 0; i <= 1; i++) { 99 tseg2 = tseg + CAN_CALC_SYNC_SEG - (sample_point_nominal * (tseg + CAN_CALC_SYNC_SEG)) / 1000 - i; 100 tseg2 = clamp(tseg2, btc->tseg2_min, btc->tseg2_max); 101 tseg1 = tseg - tseg2; 102 if (tseg1 > btc->tseg1_max) { 103 tseg1 = btc->tseg1_max; 104 tseg2 = tseg - tseg1; 105 } 106 107 sample_point = 1000 * (tseg + CAN_CALC_SYNC_SEG - tseg2) / (tseg + CAN_CALC_SYNC_SEG); 108 sample_point_error = abs(sample_point_nominal - sample_point); 109 110 if ((sample_point <= sample_point_nominal) && (sample_point_error < best_sample_point_error)) { 111 best_sample_point = sample_point; 112 best_sample_point_error = sample_point_error; 113 *tseg1_ptr = tseg1; 114 *tseg2_ptr = tseg2; 115 } 116 } 117 118 if (sample_point_error_ptr) 119 *sample_point_error_ptr = best_sample_point_error; 120 121 return best_sample_point; 122} 123 124static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt, 125 const struct can_bittiming_const *btc) 126{ 127 struct can_priv *priv = netdev_priv(dev); 128 unsigned int bitrate; /* current bitrate */ 129 unsigned int bitrate_error; /* difference between current and nominal value */ 130 unsigned int best_bitrate_error = UINT_MAX; 131 unsigned int sample_point_error; /* difference between current and nominal value */ 132 unsigned int best_sample_point_error = UINT_MAX; 133 unsigned int sample_point_nominal; /* nominal sample point */ 134 unsigned int best_tseg = 0; /* current best value for tseg */ 135 unsigned int best_brp = 0; /* current best value for brp */ 136 unsigned int brp, tsegall, tseg, tseg1 = 0, tseg2 = 0; 137 u64 v64; 138 139 /* Use CiA recommended sample points */ 140 if (bt->sample_point) { 141 sample_point_nominal = bt->sample_point; 142 } else { 143 if (bt->bitrate > 800000) 144 sample_point_nominal = 750; 145 else if (bt->bitrate > 500000) 146 sample_point_nominal = 800; 147 else 148 sample_point_nominal = 875; 149 } 150 151 /* tseg even = round down, odd = round up */ 152 for (tseg = (btc->tseg1_max + btc->tseg2_max) * 2 + 1; 153 tseg >= (btc->tseg1_min + btc->tseg2_min) * 2; tseg--) { 154 tsegall = CAN_CALC_SYNC_SEG + tseg / 2; 155 156 /* Compute all possible tseg choices (tseg=tseg1+tseg2) */ 157 brp = priv->clock.freq / (tsegall * bt->bitrate) + tseg % 2; 158 159 /* choose brp step which is possible in system */ 160 brp = (brp / btc->brp_inc) * btc->brp_inc; 161 if ((brp < btc->brp_min) || (brp > btc->brp_max)) 162 continue; 163 164 bitrate = priv->clock.freq / (brp * tsegall); 165 bitrate_error = abs(bt->bitrate - bitrate); 166 167 /* tseg brp biterror */ 168 if (bitrate_error > best_bitrate_error) 169 continue; 170 171 /* reset sample point error if we have a better bitrate */ 172 if (bitrate_error < best_bitrate_error) 173 best_sample_point_error = UINT_MAX; 174 175 can_update_sample_point(btc, sample_point_nominal, tseg / 2, &tseg1, &tseg2, &sample_point_error); 176 if (sample_point_error > best_sample_point_error) 177 continue; 178 179 best_sample_point_error = sample_point_error; 180 best_bitrate_error = bitrate_error; 181 best_tseg = tseg / 2; 182 best_brp = brp; 183 184 if (bitrate_error == 0 && sample_point_error == 0) 185 break; 186 } 187 188 if (best_bitrate_error) { 189 /* Error in one-tenth of a percent */ 190 v64 = (u64)best_bitrate_error * 1000; 191 do_div(v64, bt->bitrate); 192 bitrate_error = (u32)v64; 193 if (bitrate_error > CAN_CALC_MAX_ERROR) { 194 netdev_err(dev, 195 "bitrate error %d.%d%% too high\n", 196 bitrate_error / 10, bitrate_error % 10); 197 return -EDOM; 198 } 199 netdev_warn(dev, "bitrate error %d.%d%%\n", 200 bitrate_error / 10, bitrate_error % 10); 201 } 202 203 /* real sample point */ 204 bt->sample_point = can_update_sample_point(btc, sample_point_nominal, best_tseg, 205 &tseg1, &tseg2, NULL); 206 207 v64 = (u64)best_brp * 1000 * 1000 * 1000; 208 do_div(v64, priv->clock.freq); 209 bt->tq = (u32)v64; 210 bt->prop_seg = tseg1 / 2; 211 bt->phase_seg1 = tseg1 - bt->prop_seg; 212 bt->phase_seg2 = tseg2; 213 214 /* check for sjw user settings */ 215 if (!bt->sjw || !btc->sjw_max) { 216 bt->sjw = 1; 217 } else { 218 /* bt->sjw is at least 1 -> sanitize upper bound to sjw_max */ 219 if (bt->sjw > btc->sjw_max) 220 bt->sjw = btc->sjw_max; 221 /* bt->sjw must not be higher than tseg2 */ 222 if (tseg2 < bt->sjw) 223 bt->sjw = tseg2; 224 } 225 226 bt->brp = best_brp; 227 228 /* real bitrate */ 229 bt->bitrate = priv->clock.freq / (bt->brp * (CAN_CALC_SYNC_SEG + tseg1 + tseg2)); 230 231 return 0; 232} 233#else /* !CONFIG_CAN_CALC_BITTIMING */ 234static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt, 235 const struct can_bittiming_const *btc) 236{ 237 netdev_err(dev, "bit-timing calculation not available\n"); 238 return -EINVAL; 239} 240#endif /* CONFIG_CAN_CALC_BITTIMING */ 241 242/* 243 * Checks the validity of the specified bit-timing parameters prop_seg, 244 * phase_seg1, phase_seg2 and sjw and tries to determine the bitrate 245 * prescaler value brp. You can find more information in the header 246 * file linux/can/netlink.h. 247 */ 248static int can_fixup_bittiming(struct net_device *dev, struct can_bittiming *bt, 249 const struct can_bittiming_const *btc) 250{ 251 struct can_priv *priv = netdev_priv(dev); 252 int tseg1, alltseg; 253 u64 brp64; 254 255 tseg1 = bt->prop_seg + bt->phase_seg1; 256 if (!bt->sjw) 257 bt->sjw = 1; 258 if (bt->sjw > btc->sjw_max || 259 tseg1 < btc->tseg1_min || tseg1 > btc->tseg1_max || 260 bt->phase_seg2 < btc->tseg2_min || bt->phase_seg2 > btc->tseg2_max) 261 return -ERANGE; 262 263 brp64 = (u64)priv->clock.freq * (u64)bt->tq; 264 if (btc->brp_inc > 1) 265 do_div(brp64, btc->brp_inc); 266 brp64 += 500000000UL - 1; 267 do_div(brp64, 1000000000UL); /* the practicable BRP */ 268 if (btc->brp_inc > 1) 269 brp64 *= btc->brp_inc; 270 bt->brp = (u32)brp64; 271 272 if (bt->brp < btc->brp_min || bt->brp > btc->brp_max) 273 return -EINVAL; 274 275 alltseg = bt->prop_seg + bt->phase_seg1 + bt->phase_seg2 + 1; 276 bt->bitrate = priv->clock.freq / (bt->brp * alltseg); 277 bt->sample_point = ((tseg1 + 1) * 1000) / alltseg; 278 279 return 0; 280} 281 282/* Checks the validity of predefined bitrate settings */ 283static int can_validate_bitrate(struct net_device *dev, struct can_bittiming *bt, 284 const u32 *bitrate_const, 285 const unsigned int bitrate_const_cnt) 286{ 287 struct can_priv *priv = netdev_priv(dev); 288 unsigned int i; 289 290 for (i = 0; i < bitrate_const_cnt; i++) { 291 if (bt->bitrate == bitrate_const[i]) 292 break; 293 } 294 295 if (i >= priv->bitrate_const_cnt) 296 return -EINVAL; 297 298 return 0; 299} 300 301static int can_get_bittiming(struct net_device *dev, struct can_bittiming *bt, 302 const struct can_bittiming_const *btc, 303 const u32 *bitrate_const, 304 const unsigned int bitrate_const_cnt) 305{ 306 int err; 307 308 /* 309 * Depending on the given can_bittiming parameter structure the CAN 310 * timing parameters are calculated based on the provided bitrate OR 311 * alternatively the CAN timing parameters (tq, prop_seg, etc.) are 312 * provided directly which are then checked and fixed up. 313 */ 314 if (!bt->tq && bt->bitrate && btc) 315 err = can_calc_bittiming(dev, bt, btc); 316 else if (bt->tq && !bt->bitrate && btc) 317 err = can_fixup_bittiming(dev, bt, btc); 318 else if (!bt->tq && bt->bitrate && bitrate_const) 319 err = can_validate_bitrate(dev, bt, bitrate_const, 320 bitrate_const_cnt); 321 else 322 err = -EINVAL; 323 324 return err; 325} 326 327static void can_update_state_error_stats(struct net_device *dev, 328 enum can_state new_state) 329{ 330 struct can_priv *priv = netdev_priv(dev); 331 332 if (new_state <= priv->state) 333 return; 334 335 switch (new_state) { 336 case CAN_STATE_ERROR_WARNING: 337 priv->can_stats.error_warning++; 338 break; 339 case CAN_STATE_ERROR_PASSIVE: 340 priv->can_stats.error_passive++; 341 break; 342 case CAN_STATE_BUS_OFF: 343 priv->can_stats.bus_off++; 344 break; 345 default: 346 break; 347 } 348} 349 350static int can_tx_state_to_frame(struct net_device *dev, enum can_state state) 351{ 352 switch (state) { 353 case CAN_STATE_ERROR_ACTIVE: 354 return CAN_ERR_CRTL_ACTIVE; 355 case CAN_STATE_ERROR_WARNING: 356 return CAN_ERR_CRTL_TX_WARNING; 357 case CAN_STATE_ERROR_PASSIVE: 358 return CAN_ERR_CRTL_TX_PASSIVE; 359 default: 360 return 0; 361 } 362} 363 364static int can_rx_state_to_frame(struct net_device *dev, enum can_state state) 365{ 366 switch (state) { 367 case CAN_STATE_ERROR_ACTIVE: 368 return CAN_ERR_CRTL_ACTIVE; 369 case CAN_STATE_ERROR_WARNING: 370 return CAN_ERR_CRTL_RX_WARNING; 371 case CAN_STATE_ERROR_PASSIVE: 372 return CAN_ERR_CRTL_RX_PASSIVE; 373 default: 374 return 0; 375 } 376} 377 378void can_change_state(struct net_device *dev, struct can_frame *cf, 379 enum can_state tx_state, enum can_state rx_state) 380{ 381 struct can_priv *priv = netdev_priv(dev); 382 enum can_state new_state = max(tx_state, rx_state); 383 384 if (unlikely(new_state == priv->state)) { 385 netdev_warn(dev, "%s: oops, state did not change", __func__); 386 return; 387 } 388 389 netdev_dbg(dev, "New error state: %d\n", new_state); 390 391 can_update_state_error_stats(dev, new_state); 392 priv->state = new_state; 393 394 if (unlikely(new_state == CAN_STATE_BUS_OFF)) { 395 cf->can_id |= CAN_ERR_BUSOFF; 396 return; 397 } 398 399 cf->can_id |= CAN_ERR_CRTL; 400 cf->data[1] |= tx_state >= rx_state ? 401 can_tx_state_to_frame(dev, tx_state) : 0; 402 cf->data[1] |= tx_state <= rx_state ? 403 can_rx_state_to_frame(dev, rx_state) : 0; 404} 405EXPORT_SYMBOL_GPL(can_change_state); 406 407/* 408 * Local echo of CAN messages 409 * 410 * CAN network devices *should* support a local echo functionality 411 * (see Documentation/networking/can.txt). To test the handling of CAN 412 * interfaces that do not support the local echo both driver types are 413 * implemented. In the case that the driver does not support the echo 414 * the IFF_ECHO remains clear in dev->flags. This causes the PF_CAN core 415 * to perform the echo as a fallback solution. 416 */ 417static void can_flush_echo_skb(struct net_device *dev) 418{ 419 struct can_priv *priv = netdev_priv(dev); 420 struct net_device_stats *stats = &dev->stats; 421 int i; 422 423 for (i = 0; i < priv->echo_skb_max; i++) { 424 if (priv->echo_skb[i]) { 425 kfree_skb(priv->echo_skb[i]); 426 priv->echo_skb[i] = NULL; 427 stats->tx_dropped++; 428 stats->tx_aborted_errors++; 429 } 430 } 431} 432 433/* 434 * Put the skb on the stack to be looped backed locally lateron 435 * 436 * The function is typically called in the start_xmit function 437 * of the device driver. The driver must protect access to 438 * priv->echo_skb, if necessary. 439 */ 440void can_put_echo_skb(struct sk_buff *skb, struct net_device *dev, 441 unsigned int idx) 442{ 443 struct can_priv *priv = netdev_priv(dev); 444 445 BUG_ON(idx >= priv->echo_skb_max); 446 447 /* check flag whether this packet has to be looped back */ 448 if (!(dev->flags & IFF_ECHO) || skb->pkt_type != PACKET_LOOPBACK || 449 (skb->protocol != htons(ETH_P_CAN) && 450 skb->protocol != htons(ETH_P_CANFD))) { 451 kfree_skb(skb); 452 return; 453 } 454 455 if (!priv->echo_skb[idx]) { 456 457 skb = can_create_echo_skb(skb); 458 if (!skb) 459 return; 460 461 /* make settings for echo to reduce code in irq context */ 462 skb->pkt_type = PACKET_BROADCAST; 463 skb->ip_summed = CHECKSUM_UNNECESSARY; 464 skb->dev = dev; 465 466 /* save this skb for tx interrupt echo handling */ 467 priv->echo_skb[idx] = skb; 468 } else { 469 /* locking problem with netif_stop_queue() ?? */ 470 netdev_err(dev, "%s: BUG! echo_skb is occupied!\n", __func__); 471 kfree_skb(skb); 472 } 473} 474EXPORT_SYMBOL_GPL(can_put_echo_skb); 475 476/* 477 * Get the skb from the stack and loop it back locally 478 * 479 * The function is typically called when the TX done interrupt 480 * is handled in the device driver. The driver must protect 481 * access to priv->echo_skb, if necessary. 482 */ 483unsigned int can_get_echo_skb(struct net_device *dev, unsigned int idx) 484{ 485 struct can_priv *priv = netdev_priv(dev); 486 487 BUG_ON(idx >= priv->echo_skb_max); 488 489 if (priv->echo_skb[idx]) { 490 struct sk_buff *skb = priv->echo_skb[idx]; 491 struct can_frame *cf = (struct can_frame *)skb->data; 492 u8 dlc = cf->can_dlc; 493 494 netif_rx(priv->echo_skb[idx]); 495 priv->echo_skb[idx] = NULL; 496 497 return dlc; 498 } 499 500 return 0; 501} 502EXPORT_SYMBOL_GPL(can_get_echo_skb); 503 504/* 505 * Remove the skb from the stack and free it. 506 * 507 * The function is typically called when TX failed. 508 */ 509void can_free_echo_skb(struct net_device *dev, unsigned int idx) 510{ 511 struct can_priv *priv = netdev_priv(dev); 512 513 BUG_ON(idx >= priv->echo_skb_max); 514 515 if (priv->echo_skb[idx]) { 516 dev_kfree_skb_any(priv->echo_skb[idx]); 517 priv->echo_skb[idx] = NULL; 518 } 519} 520EXPORT_SYMBOL_GPL(can_free_echo_skb); 521 522/* 523 * CAN device restart for bus-off recovery 524 */ 525static void can_restart(struct net_device *dev) 526{ 527 struct can_priv *priv = netdev_priv(dev); 528 struct net_device_stats *stats = &dev->stats; 529 struct sk_buff *skb; 530 struct can_frame *cf; 531 int err; 532 533 BUG_ON(netif_carrier_ok(dev)); 534 535 /* 536 * No synchronization needed because the device is bus-off and 537 * no messages can come in or go out. 538 */ 539 can_flush_echo_skb(dev); 540 541 /* send restart message upstream */ 542 skb = alloc_can_err_skb(dev, &cf); 543 if (skb == NULL) { 544 err = -ENOMEM; 545 goto restart; 546 } 547 cf->can_id |= CAN_ERR_RESTARTED; 548 549 netif_rx(skb); 550 551 stats->rx_packets++; 552 stats->rx_bytes += cf->can_dlc; 553 554restart: 555 netdev_dbg(dev, "restarted\n"); 556 priv->can_stats.restarts++; 557 558 /* Now restart the device */ 559 err = priv->do_set_mode(dev, CAN_MODE_START); 560 561 netif_carrier_on(dev); 562 if (err) 563 netdev_err(dev, "Error %d during restart", err); 564} 565 566static void can_restart_work(struct work_struct *work) 567{ 568 struct delayed_work *dwork = to_delayed_work(work); 569 struct can_priv *priv = container_of(dwork, struct can_priv, restart_work); 570 571 can_restart(priv->dev); 572} 573 574int can_restart_now(struct net_device *dev) 575{ 576 struct can_priv *priv = netdev_priv(dev); 577 578 /* 579 * A manual restart is only permitted if automatic restart is 580 * disabled and the device is in the bus-off state 581 */ 582 if (priv->restart_ms) 583 return -EINVAL; 584 if (priv->state != CAN_STATE_BUS_OFF) 585 return -EBUSY; 586 587 cancel_delayed_work_sync(&priv->restart_work); 588 can_restart(dev); 589 590 return 0; 591} 592 593/* 594 * CAN bus-off 595 * 596 * This functions should be called when the device goes bus-off to 597 * tell the netif layer that no more packets can be sent or received. 598 * If enabled, a timer is started to trigger bus-off recovery. 599 */ 600void can_bus_off(struct net_device *dev) 601{ 602 struct can_priv *priv = netdev_priv(dev); 603 604 netdev_dbg(dev, "bus-off\n"); 605 606 netif_carrier_off(dev); 607 608 if (priv->restart_ms) 609 schedule_delayed_work(&priv->restart_work, 610 msecs_to_jiffies(priv->restart_ms)); 611} 612EXPORT_SYMBOL_GPL(can_bus_off); 613 614static void can_setup(struct net_device *dev) 615{ 616 dev->type = ARPHRD_CAN; 617 dev->mtu = CAN_MTU; 618 dev->hard_header_len = 0; 619 dev->addr_len = 0; 620 dev->tx_queue_len = 10; 621 622 /* New-style flags. */ 623 dev->flags = IFF_NOARP; 624 dev->features = NETIF_F_HW_CSUM; 625} 626 627struct sk_buff *alloc_can_skb(struct net_device *dev, struct can_frame **cf) 628{ 629 struct sk_buff *skb; 630 631 skb = netdev_alloc_skb(dev, sizeof(struct can_skb_priv) + 632 sizeof(struct can_frame)); 633 if (unlikely(!skb)) 634 return NULL; 635 636 skb->protocol = htons(ETH_P_CAN); 637 skb->pkt_type = PACKET_BROADCAST; 638 skb->ip_summed = CHECKSUM_UNNECESSARY; 639 640 skb_reset_mac_header(skb); 641 skb_reset_network_header(skb); 642 skb_reset_transport_header(skb); 643 644 can_skb_reserve(skb); 645 can_skb_prv(skb)->ifindex = dev->ifindex; 646 can_skb_prv(skb)->skbcnt = 0; 647 648 *cf = (struct can_frame *)skb_put(skb, sizeof(struct can_frame)); 649 memset(*cf, 0, sizeof(struct can_frame)); 650 651 return skb; 652} 653EXPORT_SYMBOL_GPL(alloc_can_skb); 654 655struct sk_buff *alloc_canfd_skb(struct net_device *dev, 656 struct canfd_frame **cfd) 657{ 658 struct sk_buff *skb; 659 660 skb = netdev_alloc_skb(dev, sizeof(struct can_skb_priv) + 661 sizeof(struct canfd_frame)); 662 if (unlikely(!skb)) 663 return NULL; 664 665 skb->protocol = htons(ETH_P_CANFD); 666 skb->pkt_type = PACKET_BROADCAST; 667 skb->ip_summed = CHECKSUM_UNNECESSARY; 668 669 skb_reset_mac_header(skb); 670 skb_reset_network_header(skb); 671 skb_reset_transport_header(skb); 672 673 can_skb_reserve(skb); 674 can_skb_prv(skb)->ifindex = dev->ifindex; 675 can_skb_prv(skb)->skbcnt = 0; 676 677 *cfd = (struct canfd_frame *)skb_put(skb, sizeof(struct canfd_frame)); 678 memset(*cfd, 0, sizeof(struct canfd_frame)); 679 680 return skb; 681} 682EXPORT_SYMBOL_GPL(alloc_canfd_skb); 683 684struct sk_buff *alloc_can_err_skb(struct net_device *dev, struct can_frame **cf) 685{ 686 struct sk_buff *skb; 687 688 skb = alloc_can_skb(dev, cf); 689 if (unlikely(!skb)) 690 return NULL; 691 692 (*cf)->can_id = CAN_ERR_FLAG; 693 (*cf)->can_dlc = CAN_ERR_DLC; 694 695 return skb; 696} 697EXPORT_SYMBOL_GPL(alloc_can_err_skb); 698 699/* 700 * Allocate and setup space for the CAN network device 701 */ 702struct net_device *alloc_candev(int sizeof_priv, unsigned int echo_skb_max) 703{ 704 struct net_device *dev; 705 struct can_priv *priv; 706 int size; 707 708 if (echo_skb_max) 709 size = ALIGN(sizeof_priv, sizeof(struct sk_buff *)) + 710 echo_skb_max * sizeof(struct sk_buff *); 711 else 712 size = sizeof_priv; 713 714 dev = alloc_netdev(size, "can%d", NET_NAME_UNKNOWN, can_setup); 715 if (!dev) 716 return NULL; 717 718 priv = netdev_priv(dev); 719 priv->dev = dev; 720 721 if (echo_skb_max) { 722 priv->echo_skb_max = echo_skb_max; 723 priv->echo_skb = (void *)priv + 724 ALIGN(sizeof_priv, sizeof(struct sk_buff *)); 725 } 726 727 priv->state = CAN_STATE_STOPPED; 728 729 INIT_DELAYED_WORK(&priv->restart_work, can_restart_work); 730 731 return dev; 732} 733EXPORT_SYMBOL_GPL(alloc_candev); 734 735/* 736 * Free space of the CAN network device 737 */ 738void free_candev(struct net_device *dev) 739{ 740 free_netdev(dev); 741} 742EXPORT_SYMBOL_GPL(free_candev); 743 744/* 745 * changing MTU and control mode for CAN/CANFD devices 746 */ 747int can_change_mtu(struct net_device *dev, int new_mtu) 748{ 749 struct can_priv *priv = netdev_priv(dev); 750 751 /* Do not allow changing the MTU while running */ 752 if (dev->flags & IFF_UP) 753 return -EBUSY; 754 755 /* allow change of MTU according to the CANFD ability of the device */ 756 switch (new_mtu) { 757 case CAN_MTU: 758 /* 'CANFD-only' controllers can not switch to CAN_MTU */ 759 if (priv->ctrlmode_static & CAN_CTRLMODE_FD) 760 return -EINVAL; 761 762 priv->ctrlmode &= ~CAN_CTRLMODE_FD; 763 break; 764 765 case CANFD_MTU: 766 /* check for potential CANFD ability */ 767 if (!(priv->ctrlmode_supported & CAN_CTRLMODE_FD) && 768 !(priv->ctrlmode_static & CAN_CTRLMODE_FD)) 769 return -EINVAL; 770 771 priv->ctrlmode |= CAN_CTRLMODE_FD; 772 break; 773 774 default: 775 return -EINVAL; 776 } 777 778 dev->mtu = new_mtu; 779 return 0; 780} 781EXPORT_SYMBOL_GPL(can_change_mtu); 782 783/* 784 * Common open function when the device gets opened. 785 * 786 * This function should be called in the open function of the device 787 * driver. 788 */ 789int open_candev(struct net_device *dev) 790{ 791 struct can_priv *priv = netdev_priv(dev); 792 793 if (!priv->bittiming.bitrate) { 794 netdev_err(dev, "bit-timing not yet defined\n"); 795 return -EINVAL; 796 } 797 798 /* For CAN FD the data bitrate has to be >= the arbitration bitrate */ 799 if ((priv->ctrlmode & CAN_CTRLMODE_FD) && 800 (!priv->data_bittiming.bitrate || 801 (priv->data_bittiming.bitrate < priv->bittiming.bitrate))) { 802 netdev_err(dev, "incorrect/missing data bit-timing\n"); 803 return -EINVAL; 804 } 805 806 /* Switch carrier on if device was stopped while in bus-off state */ 807 if (!netif_carrier_ok(dev)) 808 netif_carrier_on(dev); 809 810 return 0; 811} 812EXPORT_SYMBOL_GPL(open_candev); 813 814/* 815 * Common close function for cleanup before the device gets closed. 816 * 817 * This function should be called in the close function of the device 818 * driver. 819 */ 820void close_candev(struct net_device *dev) 821{ 822 struct can_priv *priv = netdev_priv(dev); 823 824 cancel_delayed_work_sync(&priv->restart_work); 825 can_flush_echo_skb(dev); 826} 827EXPORT_SYMBOL_GPL(close_candev); 828 829/* 830 * CAN netlink interface 831 */ 832static const struct nla_policy can_policy[IFLA_CAN_MAX + 1] = { 833 [IFLA_CAN_STATE] = { .type = NLA_U32 }, 834 [IFLA_CAN_CTRLMODE] = { .len = sizeof(struct can_ctrlmode) }, 835 [IFLA_CAN_RESTART_MS] = { .type = NLA_U32 }, 836 [IFLA_CAN_RESTART] = { .type = NLA_U32 }, 837 [IFLA_CAN_BITTIMING] = { .len = sizeof(struct can_bittiming) }, 838 [IFLA_CAN_BITTIMING_CONST] 839 = { .len = sizeof(struct can_bittiming_const) }, 840 [IFLA_CAN_CLOCK] = { .len = sizeof(struct can_clock) }, 841 [IFLA_CAN_BERR_COUNTER] = { .len = sizeof(struct can_berr_counter) }, 842 [IFLA_CAN_DATA_BITTIMING] 843 = { .len = sizeof(struct can_bittiming) }, 844 [IFLA_CAN_DATA_BITTIMING_CONST] 845 = { .len = sizeof(struct can_bittiming_const) }, 846}; 847 848static int can_validate(struct nlattr *tb[], struct nlattr *data[]) 849{ 850 bool is_can_fd = false; 851 852 /* Make sure that valid CAN FD configurations always consist of 853 * - nominal/arbitration bittiming 854 * - data bittiming 855 * - control mode with CAN_CTRLMODE_FD set 856 */ 857 858 if (!data) 859 return 0; 860 861 if (data[IFLA_CAN_CTRLMODE]) { 862 struct can_ctrlmode *cm = nla_data(data[IFLA_CAN_CTRLMODE]); 863 864 is_can_fd = cm->flags & cm->mask & CAN_CTRLMODE_FD; 865 } 866 867 if (is_can_fd) { 868 if (!data[IFLA_CAN_BITTIMING] || !data[IFLA_CAN_DATA_BITTIMING]) 869 return -EOPNOTSUPP; 870 } 871 872 if (data[IFLA_CAN_DATA_BITTIMING]) { 873 if (!is_can_fd || !data[IFLA_CAN_BITTIMING]) 874 return -EOPNOTSUPP; 875 } 876 877 return 0; 878} 879 880static int can_changelink(struct net_device *dev, 881 struct nlattr *tb[], struct nlattr *data[]) 882{ 883 struct can_priv *priv = netdev_priv(dev); 884 int err; 885 886 /* We need synchronization with dev->stop() */ 887 ASSERT_RTNL(); 888 889 if (data[IFLA_CAN_BITTIMING]) { 890 struct can_bittiming bt; 891 892 /* Do not allow changing bittiming while running */ 893 if (dev->flags & IFF_UP) 894 return -EBUSY; 895 896 /* Calculate bittiming parameters based on 897 * bittiming_const if set, otherwise pass bitrate 898 * directly via do_set_bitrate(). Bail out if neither 899 * is given. 900 */ 901 if (!priv->bittiming_const && !priv->do_set_bittiming) 902 return -EOPNOTSUPP; 903 904 memcpy(&bt, nla_data(data[IFLA_CAN_BITTIMING]), sizeof(bt)); 905 err = can_get_bittiming(dev, &bt, 906 priv->bittiming_const, 907 priv->bitrate_const, 908 priv->bitrate_const_cnt); 909 if (err) 910 return err; 911 memcpy(&priv->bittiming, &bt, sizeof(bt)); 912 913 if (priv->do_set_bittiming) { 914 /* Finally, set the bit-timing registers */ 915 err = priv->do_set_bittiming(dev); 916 if (err) 917 return err; 918 } 919 } 920 921 if (data[IFLA_CAN_CTRLMODE]) { 922 struct can_ctrlmode *cm; 923 u32 ctrlstatic; 924 u32 maskedflags; 925 926 /* Do not allow changing controller mode while running */ 927 if (dev->flags & IFF_UP) 928 return -EBUSY; 929 cm = nla_data(data[IFLA_CAN_CTRLMODE]); 930 ctrlstatic = priv->ctrlmode_static; 931 maskedflags = cm->flags & cm->mask; 932 933 /* check whether provided bits are allowed to be passed */ 934 if (cm->mask & ~(priv->ctrlmode_supported | ctrlstatic)) 935 return -EOPNOTSUPP; 936 937 /* do not check for static fd-non-iso if 'fd' is disabled */ 938 if (!(maskedflags & CAN_CTRLMODE_FD)) 939 ctrlstatic &= ~CAN_CTRLMODE_FD_NON_ISO; 940 941 /* make sure static options are provided by configuration */ 942 if ((maskedflags & ctrlstatic) != ctrlstatic) 943 return -EOPNOTSUPP; 944 945 /* clear bits to be modified and copy the flag values */ 946 priv->ctrlmode &= ~cm->mask; 947 priv->ctrlmode |= maskedflags; 948 949 /* CAN_CTRLMODE_FD can only be set when driver supports FD */ 950 if (priv->ctrlmode & CAN_CTRLMODE_FD) 951 dev->mtu = CANFD_MTU; 952 else 953 dev->mtu = CAN_MTU; 954 } 955 956 if (data[IFLA_CAN_RESTART_MS]) { 957 /* Do not allow changing restart delay while running */ 958 if (dev->flags & IFF_UP) 959 return -EBUSY; 960 priv->restart_ms = nla_get_u32(data[IFLA_CAN_RESTART_MS]); 961 } 962 963 if (data[IFLA_CAN_RESTART]) { 964 /* Do not allow a restart while not running */ 965 if (!(dev->flags & IFF_UP)) 966 return -EINVAL; 967 err = can_restart_now(dev); 968 if (err) 969 return err; 970 } 971 972 if (data[IFLA_CAN_DATA_BITTIMING]) { 973 struct can_bittiming dbt; 974 975 /* Do not allow changing bittiming while running */ 976 if (dev->flags & IFF_UP) 977 return -EBUSY; 978 979 /* Calculate bittiming parameters based on 980 * data_bittiming_const if set, otherwise pass bitrate 981 * directly via do_set_bitrate(). Bail out if neither 982 * is given. 983 */ 984 if (!priv->data_bittiming_const && !priv->do_set_data_bittiming) 985 return -EOPNOTSUPP; 986 987 memcpy(&dbt, nla_data(data[IFLA_CAN_DATA_BITTIMING]), 988 sizeof(dbt)); 989 err = can_get_bittiming(dev, &dbt, 990 priv->data_bittiming_const, 991 priv->data_bitrate_const, 992 priv->data_bitrate_const_cnt); 993 if (err) 994 return err; 995 memcpy(&priv->data_bittiming, &dbt, sizeof(dbt)); 996 997 if (priv->do_set_data_bittiming) { 998 /* Finally, set the bit-timing registers */ 999 err = priv->do_set_data_bittiming(dev); 1000 if (err) 1001 return err; 1002 } 1003 } 1004 1005 if (data[IFLA_CAN_TERMINATION]) { 1006 const u16 termval = nla_get_u16(data[IFLA_CAN_TERMINATION]); 1007 const unsigned int num_term = priv->termination_const_cnt; 1008 unsigned int i; 1009 1010 if (!priv->do_set_termination) 1011 return -EOPNOTSUPP; 1012 1013 /* check whether given value is supported by the interface */ 1014 for (i = 0; i < num_term; i++) { 1015 if (termval == priv->termination_const[i]) 1016 break; 1017 } 1018 if (i >= num_term) 1019 return -EINVAL; 1020 1021 /* Finally, set the termination value */ 1022 err = priv->do_set_termination(dev, termval); 1023 if (err) 1024 return err; 1025 1026 priv->termination = termval; 1027 } 1028 1029 return 0; 1030} 1031 1032static size_t can_get_size(const struct net_device *dev) 1033{ 1034 struct can_priv *priv = netdev_priv(dev); 1035 size_t size = 0; 1036 1037 if (priv->bittiming.bitrate) /* IFLA_CAN_BITTIMING */ 1038 size += nla_total_size(sizeof(struct can_bittiming)); 1039 if (priv->bittiming_const) /* IFLA_CAN_BITTIMING_CONST */ 1040 size += nla_total_size(sizeof(struct can_bittiming_const)); 1041 size += nla_total_size(sizeof(struct can_clock)); /* IFLA_CAN_CLOCK */ 1042 size += nla_total_size(sizeof(u32)); /* IFLA_CAN_STATE */ 1043 size += nla_total_size(sizeof(struct can_ctrlmode)); /* IFLA_CAN_CTRLMODE */ 1044 size += nla_total_size(sizeof(u32)); /* IFLA_CAN_RESTART_MS */ 1045 if (priv->do_get_berr_counter) /* IFLA_CAN_BERR_COUNTER */ 1046 size += nla_total_size(sizeof(struct can_berr_counter)); 1047 if (priv->data_bittiming.bitrate) /* IFLA_CAN_DATA_BITTIMING */ 1048 size += nla_total_size(sizeof(struct can_bittiming)); 1049 if (priv->data_bittiming_const) /* IFLA_CAN_DATA_BITTIMING_CONST */ 1050 size += nla_total_size(sizeof(struct can_bittiming_const)); 1051 if (priv->termination_const) { 1052 size += nla_total_size(sizeof(priv->termination)); /* IFLA_CAN_TERMINATION */ 1053 size += nla_total_size(sizeof(*priv->termination_const) * /* IFLA_CAN_TERMINATION_CONST */ 1054 priv->termination_const_cnt); 1055 } 1056 if (priv->bitrate_const) /* IFLA_CAN_BITRATE_CONST */ 1057 size += nla_total_size(sizeof(*priv->bitrate_const) * 1058 priv->bitrate_const_cnt); 1059 if (priv->data_bitrate_const) /* IFLA_CAN_DATA_BITRATE_CONST */ 1060 size += nla_total_size(sizeof(*priv->data_bitrate_const) * 1061 priv->data_bitrate_const_cnt); 1062 1063 return size; 1064} 1065 1066static int can_fill_info(struct sk_buff *skb, const struct net_device *dev) 1067{ 1068 struct can_priv *priv = netdev_priv(dev); 1069 struct can_ctrlmode cm = {.flags = priv->ctrlmode}; 1070 struct can_berr_counter bec; 1071 enum can_state state = priv->state; 1072 1073 if (priv->do_get_state) 1074 priv->do_get_state(dev, &state); 1075 1076 if ((priv->bittiming.bitrate && 1077 nla_put(skb, IFLA_CAN_BITTIMING, 1078 sizeof(priv->bittiming), &priv->bittiming)) || 1079 1080 (priv->bittiming_const && 1081 nla_put(skb, IFLA_CAN_BITTIMING_CONST, 1082 sizeof(*priv->bittiming_const), priv->bittiming_const)) || 1083 1084 nla_put(skb, IFLA_CAN_CLOCK, sizeof(priv->clock), &priv->clock) || 1085 nla_put_u32(skb, IFLA_CAN_STATE, state) || 1086 nla_put(skb, IFLA_CAN_CTRLMODE, sizeof(cm), &cm) || 1087 nla_put_u32(skb, IFLA_CAN_RESTART_MS, priv->restart_ms) || 1088 1089 (priv->do_get_berr_counter && 1090 !priv->do_get_berr_counter(dev, &bec) && 1091 nla_put(skb, IFLA_CAN_BERR_COUNTER, sizeof(bec), &bec)) || 1092 1093 (priv->data_bittiming.bitrate && 1094 nla_put(skb, IFLA_CAN_DATA_BITTIMING, 1095 sizeof(priv->data_bittiming), &priv->data_bittiming)) || 1096 1097 (priv->data_bittiming_const && 1098 nla_put(skb, IFLA_CAN_DATA_BITTIMING_CONST, 1099 sizeof(*priv->data_bittiming_const), 1100 priv->data_bittiming_const)) || 1101 1102 (priv->termination_const && 1103 (nla_put_u16(skb, IFLA_CAN_TERMINATION, priv->termination) || 1104 nla_put(skb, IFLA_CAN_TERMINATION_CONST, 1105 sizeof(*priv->termination_const) * 1106 priv->termination_const_cnt, 1107 priv->termination_const))) || 1108 1109 (priv->bitrate_const && 1110 nla_put(skb, IFLA_CAN_BITRATE_CONST, 1111 sizeof(*priv->bitrate_const) * 1112 priv->bitrate_const_cnt, 1113 priv->bitrate_const)) || 1114 1115 (priv->data_bitrate_const && 1116 nla_put(skb, IFLA_CAN_DATA_BITRATE_CONST, 1117 sizeof(*priv->data_bitrate_const) * 1118 priv->data_bitrate_const_cnt, 1119 priv->data_bitrate_const)) 1120 ) 1121 1122 return -EMSGSIZE; 1123 1124 return 0; 1125} 1126 1127static size_t can_get_xstats_size(const struct net_device *dev) 1128{ 1129 return sizeof(struct can_device_stats); 1130} 1131 1132static int can_fill_xstats(struct sk_buff *skb, const struct net_device *dev) 1133{ 1134 struct can_priv *priv = netdev_priv(dev); 1135 1136 if (nla_put(skb, IFLA_INFO_XSTATS, 1137 sizeof(priv->can_stats), &priv->can_stats)) 1138 goto nla_put_failure; 1139 return 0; 1140 1141nla_put_failure: 1142 return -EMSGSIZE; 1143} 1144 1145static int can_newlink(struct net *src_net, struct net_device *dev, 1146 struct nlattr *tb[], struct nlattr *data[]) 1147{ 1148 return -EOPNOTSUPP; 1149} 1150 1151static void can_dellink(struct net_device *dev, struct list_head *head) 1152{ 1153 return; 1154} 1155 1156static struct rtnl_link_ops can_link_ops __read_mostly = { 1157 .kind = "can", 1158 .maxtype = IFLA_CAN_MAX, 1159 .policy = can_policy, 1160 .setup = can_setup, 1161 .validate = can_validate, 1162 .newlink = can_newlink, 1163 .changelink = can_changelink, 1164 .dellink = can_dellink, 1165 .get_size = can_get_size, 1166 .fill_info = can_fill_info, 1167 .get_xstats_size = can_get_xstats_size, 1168 .fill_xstats = can_fill_xstats, 1169}; 1170 1171/* 1172 * Register the CAN network device 1173 */ 1174int register_candev(struct net_device *dev) 1175{ 1176 struct can_priv *priv = netdev_priv(dev); 1177 1178 /* Ensure termination_const, termination_const_cnt and 1179 * do_set_termination consistency. All must be either set or 1180 * unset. 1181 */ 1182 if ((!priv->termination_const != !priv->termination_const_cnt) || 1183 (!priv->termination_const != !priv->do_set_termination)) 1184 return -EINVAL; 1185 1186 if (!priv->bitrate_const != !priv->bitrate_const_cnt) 1187 return -EINVAL; 1188 1189 if (!priv->data_bitrate_const != !priv->data_bitrate_const_cnt) 1190 return -EINVAL; 1191 1192 dev->rtnl_link_ops = &can_link_ops; 1193 return register_netdev(dev); 1194} 1195EXPORT_SYMBOL_GPL(register_candev); 1196 1197/* 1198 * Unregister the CAN network device 1199 */ 1200void unregister_candev(struct net_device *dev) 1201{ 1202 unregister_netdev(dev); 1203} 1204EXPORT_SYMBOL_GPL(unregister_candev); 1205 1206/* 1207 * Test if a network device is a candev based device 1208 * and return the can_priv* if so. 1209 */ 1210struct can_priv *safe_candev_priv(struct net_device *dev) 1211{ 1212 if ((dev->type != ARPHRD_CAN) || (dev->rtnl_link_ops != &can_link_ops)) 1213 return NULL; 1214 1215 return netdev_priv(dev); 1216} 1217EXPORT_SYMBOL_GPL(safe_candev_priv); 1218 1219static __init int can_dev_init(void) 1220{ 1221 int err; 1222 1223 can_led_notifier_init(); 1224 1225 err = rtnl_link_register(&can_link_ops); 1226 if (!err) 1227 printk(KERN_INFO MOD_DESC "\n"); 1228 1229 return err; 1230} 1231module_init(can_dev_init); 1232 1233static __exit void can_dev_exit(void) 1234{ 1235 rtnl_link_unregister(&can_link_ops); 1236 1237 can_led_notifier_exit(); 1238} 1239module_exit(can_dev_exit); 1240 1241MODULE_ALIAS_RTNL_LINK("can");