at v4.11-rc8 4997 lines 126 kB view raw
1/* 2 * Routines having to do with the 'struct sk_buff' memory handlers. 3 * 4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk> 5 * Florian La Roche <rzsfl@rz.uni-sb.de> 6 * 7 * Fixes: 8 * Alan Cox : Fixed the worst of the load 9 * balancer bugs. 10 * Dave Platt : Interrupt stacking fix. 11 * Richard Kooijman : Timestamp fixes. 12 * Alan Cox : Changed buffer format. 13 * Alan Cox : destructor hook for AF_UNIX etc. 14 * Linus Torvalds : Better skb_clone. 15 * Alan Cox : Added skb_copy. 16 * Alan Cox : Added all the changed routines Linus 17 * only put in the headers 18 * Ray VanTassle : Fixed --skb->lock in free 19 * Alan Cox : skb_copy copy arp field 20 * Andi Kleen : slabified it. 21 * Robert Olsson : Removed skb_head_pool 22 * 23 * NOTE: 24 * The __skb_ routines should be called with interrupts 25 * disabled, or you better be *real* sure that the operation is atomic 26 * with respect to whatever list is being frobbed (e.g. via lock_sock() 27 * or via disabling bottom half handlers, etc). 28 * 29 * This program is free software; you can redistribute it and/or 30 * modify it under the terms of the GNU General Public License 31 * as published by the Free Software Foundation; either version 32 * 2 of the License, or (at your option) any later version. 33 */ 34 35/* 36 * The functions in this file will not compile correctly with gcc 2.4.x 37 */ 38 39#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 40 41#include <linux/module.h> 42#include <linux/types.h> 43#include <linux/kernel.h> 44#include <linux/kmemcheck.h> 45#include <linux/mm.h> 46#include <linux/interrupt.h> 47#include <linux/in.h> 48#include <linux/inet.h> 49#include <linux/slab.h> 50#include <linux/tcp.h> 51#include <linux/udp.h> 52#include <linux/sctp.h> 53#include <linux/netdevice.h> 54#ifdef CONFIG_NET_CLS_ACT 55#include <net/pkt_sched.h> 56#endif 57#include <linux/string.h> 58#include <linux/skbuff.h> 59#include <linux/splice.h> 60#include <linux/cache.h> 61#include <linux/rtnetlink.h> 62#include <linux/init.h> 63#include <linux/scatterlist.h> 64#include <linux/errqueue.h> 65#include <linux/prefetch.h> 66#include <linux/if_vlan.h> 67 68#include <net/protocol.h> 69#include <net/dst.h> 70#include <net/sock.h> 71#include <net/checksum.h> 72#include <net/ip6_checksum.h> 73#include <net/xfrm.h> 74 75#include <linux/uaccess.h> 76#include <trace/events/skb.h> 77#include <linux/highmem.h> 78#include <linux/capability.h> 79#include <linux/user_namespace.h> 80 81struct kmem_cache *skbuff_head_cache __read_mostly; 82static struct kmem_cache *skbuff_fclone_cache __read_mostly; 83int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS; 84EXPORT_SYMBOL(sysctl_max_skb_frags); 85 86/** 87 * skb_panic - private function for out-of-line support 88 * @skb: buffer 89 * @sz: size 90 * @addr: address 91 * @msg: skb_over_panic or skb_under_panic 92 * 93 * Out-of-line support for skb_put() and skb_push(). 94 * Called via the wrapper skb_over_panic() or skb_under_panic(). 95 * Keep out of line to prevent kernel bloat. 96 * __builtin_return_address is not used because it is not always reliable. 97 */ 98static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr, 99 const char msg[]) 100{ 101 pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n", 102 msg, addr, skb->len, sz, skb->head, skb->data, 103 (unsigned long)skb->tail, (unsigned long)skb->end, 104 skb->dev ? skb->dev->name : "<NULL>"); 105 BUG(); 106} 107 108static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr) 109{ 110 skb_panic(skb, sz, addr, __func__); 111} 112 113static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr) 114{ 115 skb_panic(skb, sz, addr, __func__); 116} 117 118/* 119 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells 120 * the caller if emergency pfmemalloc reserves are being used. If it is and 121 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves 122 * may be used. Otherwise, the packet data may be discarded until enough 123 * memory is free 124 */ 125#define kmalloc_reserve(size, gfp, node, pfmemalloc) \ 126 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc) 127 128static void *__kmalloc_reserve(size_t size, gfp_t flags, int node, 129 unsigned long ip, bool *pfmemalloc) 130{ 131 void *obj; 132 bool ret_pfmemalloc = false; 133 134 /* 135 * Try a regular allocation, when that fails and we're not entitled 136 * to the reserves, fail. 137 */ 138 obj = kmalloc_node_track_caller(size, 139 flags | __GFP_NOMEMALLOC | __GFP_NOWARN, 140 node); 141 if (obj || !(gfp_pfmemalloc_allowed(flags))) 142 goto out; 143 144 /* Try again but now we are using pfmemalloc reserves */ 145 ret_pfmemalloc = true; 146 obj = kmalloc_node_track_caller(size, flags, node); 147 148out: 149 if (pfmemalloc) 150 *pfmemalloc = ret_pfmemalloc; 151 152 return obj; 153} 154 155/* Allocate a new skbuff. We do this ourselves so we can fill in a few 156 * 'private' fields and also do memory statistics to find all the 157 * [BEEP] leaks. 158 * 159 */ 160 161struct sk_buff *__alloc_skb_head(gfp_t gfp_mask, int node) 162{ 163 struct sk_buff *skb; 164 165 /* Get the HEAD */ 166 skb = kmem_cache_alloc_node(skbuff_head_cache, 167 gfp_mask & ~__GFP_DMA, node); 168 if (!skb) 169 goto out; 170 171 /* 172 * Only clear those fields we need to clear, not those that we will 173 * actually initialise below. Hence, don't put any more fields after 174 * the tail pointer in struct sk_buff! 175 */ 176 memset(skb, 0, offsetof(struct sk_buff, tail)); 177 skb->head = NULL; 178 skb->truesize = sizeof(struct sk_buff); 179 atomic_set(&skb->users, 1); 180 181 skb->mac_header = (typeof(skb->mac_header))~0U; 182out: 183 return skb; 184} 185 186/** 187 * __alloc_skb - allocate a network buffer 188 * @size: size to allocate 189 * @gfp_mask: allocation mask 190 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache 191 * instead of head cache and allocate a cloned (child) skb. 192 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for 193 * allocations in case the data is required for writeback 194 * @node: numa node to allocate memory on 195 * 196 * Allocate a new &sk_buff. The returned buffer has no headroom and a 197 * tail room of at least size bytes. The object has a reference count 198 * of one. The return is the buffer. On a failure the return is %NULL. 199 * 200 * Buffers may only be allocated from interrupts using a @gfp_mask of 201 * %GFP_ATOMIC. 202 */ 203struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask, 204 int flags, int node) 205{ 206 struct kmem_cache *cache; 207 struct skb_shared_info *shinfo; 208 struct sk_buff *skb; 209 u8 *data; 210 bool pfmemalloc; 211 212 cache = (flags & SKB_ALLOC_FCLONE) 213 ? skbuff_fclone_cache : skbuff_head_cache; 214 215 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX)) 216 gfp_mask |= __GFP_MEMALLOC; 217 218 /* Get the HEAD */ 219 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node); 220 if (!skb) 221 goto out; 222 prefetchw(skb); 223 224 /* We do our best to align skb_shared_info on a separate cache 225 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives 226 * aligned memory blocks, unless SLUB/SLAB debug is enabled. 227 * Both skb->head and skb_shared_info are cache line aligned. 228 */ 229 size = SKB_DATA_ALIGN(size); 230 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 231 data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc); 232 if (!data) 233 goto nodata; 234 /* kmalloc(size) might give us more room than requested. 235 * Put skb_shared_info exactly at the end of allocated zone, 236 * to allow max possible filling before reallocation. 237 */ 238 size = SKB_WITH_OVERHEAD(ksize(data)); 239 prefetchw(data + size); 240 241 /* 242 * Only clear those fields we need to clear, not those that we will 243 * actually initialise below. Hence, don't put any more fields after 244 * the tail pointer in struct sk_buff! 245 */ 246 memset(skb, 0, offsetof(struct sk_buff, tail)); 247 /* Account for allocated memory : skb + skb->head */ 248 skb->truesize = SKB_TRUESIZE(size); 249 skb->pfmemalloc = pfmemalloc; 250 atomic_set(&skb->users, 1); 251 skb->head = data; 252 skb->data = data; 253 skb_reset_tail_pointer(skb); 254 skb->end = skb->tail + size; 255 skb->mac_header = (typeof(skb->mac_header))~0U; 256 skb->transport_header = (typeof(skb->transport_header))~0U; 257 258 /* make sure we initialize shinfo sequentially */ 259 shinfo = skb_shinfo(skb); 260 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 261 atomic_set(&shinfo->dataref, 1); 262 kmemcheck_annotate_variable(shinfo->destructor_arg); 263 264 if (flags & SKB_ALLOC_FCLONE) { 265 struct sk_buff_fclones *fclones; 266 267 fclones = container_of(skb, struct sk_buff_fclones, skb1); 268 269 kmemcheck_annotate_bitfield(&fclones->skb2, flags1); 270 skb->fclone = SKB_FCLONE_ORIG; 271 atomic_set(&fclones->fclone_ref, 1); 272 273 fclones->skb2.fclone = SKB_FCLONE_CLONE; 274 } 275out: 276 return skb; 277nodata: 278 kmem_cache_free(cache, skb); 279 skb = NULL; 280 goto out; 281} 282EXPORT_SYMBOL(__alloc_skb); 283 284/** 285 * __build_skb - build a network buffer 286 * @data: data buffer provided by caller 287 * @frag_size: size of data, or 0 if head was kmalloced 288 * 289 * Allocate a new &sk_buff. Caller provides space holding head and 290 * skb_shared_info. @data must have been allocated by kmalloc() only if 291 * @frag_size is 0, otherwise data should come from the page allocator 292 * or vmalloc() 293 * The return is the new skb buffer. 294 * On a failure the return is %NULL, and @data is not freed. 295 * Notes : 296 * Before IO, driver allocates only data buffer where NIC put incoming frame 297 * Driver should add room at head (NET_SKB_PAD) and 298 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info)) 299 * After IO, driver calls build_skb(), to allocate sk_buff and populate it 300 * before giving packet to stack. 301 * RX rings only contains data buffers, not full skbs. 302 */ 303struct sk_buff *__build_skb(void *data, unsigned int frag_size) 304{ 305 struct skb_shared_info *shinfo; 306 struct sk_buff *skb; 307 unsigned int size = frag_size ? : ksize(data); 308 309 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC); 310 if (!skb) 311 return NULL; 312 313 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 314 315 memset(skb, 0, offsetof(struct sk_buff, tail)); 316 skb->truesize = SKB_TRUESIZE(size); 317 atomic_set(&skb->users, 1); 318 skb->head = data; 319 skb->data = data; 320 skb_reset_tail_pointer(skb); 321 skb->end = skb->tail + size; 322 skb->mac_header = (typeof(skb->mac_header))~0U; 323 skb->transport_header = (typeof(skb->transport_header))~0U; 324 325 /* make sure we initialize shinfo sequentially */ 326 shinfo = skb_shinfo(skb); 327 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 328 atomic_set(&shinfo->dataref, 1); 329 kmemcheck_annotate_variable(shinfo->destructor_arg); 330 331 return skb; 332} 333 334/* build_skb() is wrapper over __build_skb(), that specifically 335 * takes care of skb->head and skb->pfmemalloc 336 * This means that if @frag_size is not zero, then @data must be backed 337 * by a page fragment, not kmalloc() or vmalloc() 338 */ 339struct sk_buff *build_skb(void *data, unsigned int frag_size) 340{ 341 struct sk_buff *skb = __build_skb(data, frag_size); 342 343 if (skb && frag_size) { 344 skb->head_frag = 1; 345 if (page_is_pfmemalloc(virt_to_head_page(data))) 346 skb->pfmemalloc = 1; 347 } 348 return skb; 349} 350EXPORT_SYMBOL(build_skb); 351 352#define NAPI_SKB_CACHE_SIZE 64 353 354struct napi_alloc_cache { 355 struct page_frag_cache page; 356 unsigned int skb_count; 357 void *skb_cache[NAPI_SKB_CACHE_SIZE]; 358}; 359 360static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache); 361static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache); 362 363static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask) 364{ 365 struct page_frag_cache *nc; 366 unsigned long flags; 367 void *data; 368 369 local_irq_save(flags); 370 nc = this_cpu_ptr(&netdev_alloc_cache); 371 data = page_frag_alloc(nc, fragsz, gfp_mask); 372 local_irq_restore(flags); 373 return data; 374} 375 376/** 377 * netdev_alloc_frag - allocate a page fragment 378 * @fragsz: fragment size 379 * 380 * Allocates a frag from a page for receive buffer. 381 * Uses GFP_ATOMIC allocations. 382 */ 383void *netdev_alloc_frag(unsigned int fragsz) 384{ 385 return __netdev_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD); 386} 387EXPORT_SYMBOL(netdev_alloc_frag); 388 389static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask) 390{ 391 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 392 393 return page_frag_alloc(&nc->page, fragsz, gfp_mask); 394} 395 396void *napi_alloc_frag(unsigned int fragsz) 397{ 398 return __napi_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD); 399} 400EXPORT_SYMBOL(napi_alloc_frag); 401 402/** 403 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device 404 * @dev: network device to receive on 405 * @len: length to allocate 406 * @gfp_mask: get_free_pages mask, passed to alloc_skb 407 * 408 * Allocate a new &sk_buff and assign it a usage count of one. The 409 * buffer has NET_SKB_PAD headroom built in. Users should allocate 410 * the headroom they think they need without accounting for the 411 * built in space. The built in space is used for optimisations. 412 * 413 * %NULL is returned if there is no free memory. 414 */ 415struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len, 416 gfp_t gfp_mask) 417{ 418 struct page_frag_cache *nc; 419 unsigned long flags; 420 struct sk_buff *skb; 421 bool pfmemalloc; 422 void *data; 423 424 len += NET_SKB_PAD; 425 426 if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) || 427 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 428 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE); 429 if (!skb) 430 goto skb_fail; 431 goto skb_success; 432 } 433 434 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 435 len = SKB_DATA_ALIGN(len); 436 437 if (sk_memalloc_socks()) 438 gfp_mask |= __GFP_MEMALLOC; 439 440 local_irq_save(flags); 441 442 nc = this_cpu_ptr(&netdev_alloc_cache); 443 data = page_frag_alloc(nc, len, gfp_mask); 444 pfmemalloc = nc->pfmemalloc; 445 446 local_irq_restore(flags); 447 448 if (unlikely(!data)) 449 return NULL; 450 451 skb = __build_skb(data, len); 452 if (unlikely(!skb)) { 453 skb_free_frag(data); 454 return NULL; 455 } 456 457 /* use OR instead of assignment to avoid clearing of bits in mask */ 458 if (pfmemalloc) 459 skb->pfmemalloc = 1; 460 skb->head_frag = 1; 461 462skb_success: 463 skb_reserve(skb, NET_SKB_PAD); 464 skb->dev = dev; 465 466skb_fail: 467 return skb; 468} 469EXPORT_SYMBOL(__netdev_alloc_skb); 470 471/** 472 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance 473 * @napi: napi instance this buffer was allocated for 474 * @len: length to allocate 475 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages 476 * 477 * Allocate a new sk_buff for use in NAPI receive. This buffer will 478 * attempt to allocate the head from a special reserved region used 479 * only for NAPI Rx allocation. By doing this we can save several 480 * CPU cycles by avoiding having to disable and re-enable IRQs. 481 * 482 * %NULL is returned if there is no free memory. 483 */ 484struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len, 485 gfp_t gfp_mask) 486{ 487 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 488 struct sk_buff *skb; 489 void *data; 490 491 len += NET_SKB_PAD + NET_IP_ALIGN; 492 493 if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) || 494 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 495 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE); 496 if (!skb) 497 goto skb_fail; 498 goto skb_success; 499 } 500 501 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 502 len = SKB_DATA_ALIGN(len); 503 504 if (sk_memalloc_socks()) 505 gfp_mask |= __GFP_MEMALLOC; 506 507 data = page_frag_alloc(&nc->page, len, gfp_mask); 508 if (unlikely(!data)) 509 return NULL; 510 511 skb = __build_skb(data, len); 512 if (unlikely(!skb)) { 513 skb_free_frag(data); 514 return NULL; 515 } 516 517 /* use OR instead of assignment to avoid clearing of bits in mask */ 518 if (nc->page.pfmemalloc) 519 skb->pfmemalloc = 1; 520 skb->head_frag = 1; 521 522skb_success: 523 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN); 524 skb->dev = napi->dev; 525 526skb_fail: 527 return skb; 528} 529EXPORT_SYMBOL(__napi_alloc_skb); 530 531void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 532 int size, unsigned int truesize) 533{ 534 skb_fill_page_desc(skb, i, page, off, size); 535 skb->len += size; 536 skb->data_len += size; 537 skb->truesize += truesize; 538} 539EXPORT_SYMBOL(skb_add_rx_frag); 540 541void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 542 unsigned int truesize) 543{ 544 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 545 546 skb_frag_size_add(frag, size); 547 skb->len += size; 548 skb->data_len += size; 549 skb->truesize += truesize; 550} 551EXPORT_SYMBOL(skb_coalesce_rx_frag); 552 553static void skb_drop_list(struct sk_buff **listp) 554{ 555 kfree_skb_list(*listp); 556 *listp = NULL; 557} 558 559static inline void skb_drop_fraglist(struct sk_buff *skb) 560{ 561 skb_drop_list(&skb_shinfo(skb)->frag_list); 562} 563 564static void skb_clone_fraglist(struct sk_buff *skb) 565{ 566 struct sk_buff *list; 567 568 skb_walk_frags(skb, list) 569 skb_get(list); 570} 571 572static void skb_free_head(struct sk_buff *skb) 573{ 574 unsigned char *head = skb->head; 575 576 if (skb->head_frag) 577 skb_free_frag(head); 578 else 579 kfree(head); 580} 581 582static void skb_release_data(struct sk_buff *skb) 583{ 584 struct skb_shared_info *shinfo = skb_shinfo(skb); 585 int i; 586 587 if (skb->cloned && 588 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1, 589 &shinfo->dataref)) 590 return; 591 592 for (i = 0; i < shinfo->nr_frags; i++) 593 __skb_frag_unref(&shinfo->frags[i]); 594 595 /* 596 * If skb buf is from userspace, we need to notify the caller 597 * the lower device DMA has done; 598 */ 599 if (shinfo->tx_flags & SKBTX_DEV_ZEROCOPY) { 600 struct ubuf_info *uarg; 601 602 uarg = shinfo->destructor_arg; 603 if (uarg->callback) 604 uarg->callback(uarg, true); 605 } 606 607 if (shinfo->frag_list) 608 kfree_skb_list(shinfo->frag_list); 609 610 skb_free_head(skb); 611} 612 613/* 614 * Free an skbuff by memory without cleaning the state. 615 */ 616static void kfree_skbmem(struct sk_buff *skb) 617{ 618 struct sk_buff_fclones *fclones; 619 620 switch (skb->fclone) { 621 case SKB_FCLONE_UNAVAILABLE: 622 kmem_cache_free(skbuff_head_cache, skb); 623 return; 624 625 case SKB_FCLONE_ORIG: 626 fclones = container_of(skb, struct sk_buff_fclones, skb1); 627 628 /* We usually free the clone (TX completion) before original skb 629 * This test would have no chance to be true for the clone, 630 * while here, branch prediction will be good. 631 */ 632 if (atomic_read(&fclones->fclone_ref) == 1) 633 goto fastpath; 634 break; 635 636 default: /* SKB_FCLONE_CLONE */ 637 fclones = container_of(skb, struct sk_buff_fclones, skb2); 638 break; 639 } 640 if (!atomic_dec_and_test(&fclones->fclone_ref)) 641 return; 642fastpath: 643 kmem_cache_free(skbuff_fclone_cache, fclones); 644} 645 646static void skb_release_head_state(struct sk_buff *skb) 647{ 648 skb_dst_drop(skb); 649#ifdef CONFIG_XFRM 650 secpath_put(skb->sp); 651#endif 652 if (skb->destructor) { 653 WARN_ON(in_irq()); 654 skb->destructor(skb); 655 } 656#if IS_ENABLED(CONFIG_NF_CONNTRACK) 657 nf_conntrack_put(skb_nfct(skb)); 658#endif 659#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 660 nf_bridge_put(skb->nf_bridge); 661#endif 662} 663 664/* Free everything but the sk_buff shell. */ 665static void skb_release_all(struct sk_buff *skb) 666{ 667 skb_release_head_state(skb); 668 if (likely(skb->head)) 669 skb_release_data(skb); 670} 671 672/** 673 * __kfree_skb - private function 674 * @skb: buffer 675 * 676 * Free an sk_buff. Release anything attached to the buffer. 677 * Clean the state. This is an internal helper function. Users should 678 * always call kfree_skb 679 */ 680 681void __kfree_skb(struct sk_buff *skb) 682{ 683 skb_release_all(skb); 684 kfree_skbmem(skb); 685} 686EXPORT_SYMBOL(__kfree_skb); 687 688/** 689 * kfree_skb - free an sk_buff 690 * @skb: buffer to free 691 * 692 * Drop a reference to the buffer and free it if the usage count has 693 * hit zero. 694 */ 695void kfree_skb(struct sk_buff *skb) 696{ 697 if (unlikely(!skb)) 698 return; 699 if (likely(atomic_read(&skb->users) == 1)) 700 smp_rmb(); 701 else if (likely(!atomic_dec_and_test(&skb->users))) 702 return; 703 trace_kfree_skb(skb, __builtin_return_address(0)); 704 __kfree_skb(skb); 705} 706EXPORT_SYMBOL(kfree_skb); 707 708void kfree_skb_list(struct sk_buff *segs) 709{ 710 while (segs) { 711 struct sk_buff *next = segs->next; 712 713 kfree_skb(segs); 714 segs = next; 715 } 716} 717EXPORT_SYMBOL(kfree_skb_list); 718 719/** 720 * skb_tx_error - report an sk_buff xmit error 721 * @skb: buffer that triggered an error 722 * 723 * Report xmit error if a device callback is tracking this skb. 724 * skb must be freed afterwards. 725 */ 726void skb_tx_error(struct sk_buff *skb) 727{ 728 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) { 729 struct ubuf_info *uarg; 730 731 uarg = skb_shinfo(skb)->destructor_arg; 732 if (uarg->callback) 733 uarg->callback(uarg, false); 734 skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY; 735 } 736} 737EXPORT_SYMBOL(skb_tx_error); 738 739/** 740 * consume_skb - free an skbuff 741 * @skb: buffer to free 742 * 743 * Drop a ref to the buffer and free it if the usage count has hit zero 744 * Functions identically to kfree_skb, but kfree_skb assumes that the frame 745 * is being dropped after a failure and notes that 746 */ 747void consume_skb(struct sk_buff *skb) 748{ 749 if (unlikely(!skb)) 750 return; 751 if (likely(atomic_read(&skb->users) == 1)) 752 smp_rmb(); 753 else if (likely(!atomic_dec_and_test(&skb->users))) 754 return; 755 trace_consume_skb(skb); 756 __kfree_skb(skb); 757} 758EXPORT_SYMBOL(consume_skb); 759 760void __kfree_skb_flush(void) 761{ 762 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 763 764 /* flush skb_cache if containing objects */ 765 if (nc->skb_count) { 766 kmem_cache_free_bulk(skbuff_head_cache, nc->skb_count, 767 nc->skb_cache); 768 nc->skb_count = 0; 769 } 770} 771 772static inline void _kfree_skb_defer(struct sk_buff *skb) 773{ 774 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 775 776 /* drop skb->head and call any destructors for packet */ 777 skb_release_all(skb); 778 779 /* record skb to CPU local list */ 780 nc->skb_cache[nc->skb_count++] = skb; 781 782#ifdef CONFIG_SLUB 783 /* SLUB writes into objects when freeing */ 784 prefetchw(skb); 785#endif 786 787 /* flush skb_cache if it is filled */ 788 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) { 789 kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_SIZE, 790 nc->skb_cache); 791 nc->skb_count = 0; 792 } 793} 794void __kfree_skb_defer(struct sk_buff *skb) 795{ 796 _kfree_skb_defer(skb); 797} 798 799void napi_consume_skb(struct sk_buff *skb, int budget) 800{ 801 if (unlikely(!skb)) 802 return; 803 804 /* Zero budget indicate non-NAPI context called us, like netpoll */ 805 if (unlikely(!budget)) { 806 dev_consume_skb_any(skb); 807 return; 808 } 809 810 if (likely(atomic_read(&skb->users) == 1)) 811 smp_rmb(); 812 else if (likely(!atomic_dec_and_test(&skb->users))) 813 return; 814 /* if reaching here SKB is ready to free */ 815 trace_consume_skb(skb); 816 817 /* if SKB is a clone, don't handle this case */ 818 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) { 819 __kfree_skb(skb); 820 return; 821 } 822 823 _kfree_skb_defer(skb); 824} 825EXPORT_SYMBOL(napi_consume_skb); 826 827/* Make sure a field is enclosed inside headers_start/headers_end section */ 828#define CHECK_SKB_FIELD(field) \ 829 BUILD_BUG_ON(offsetof(struct sk_buff, field) < \ 830 offsetof(struct sk_buff, headers_start)); \ 831 BUILD_BUG_ON(offsetof(struct sk_buff, field) > \ 832 offsetof(struct sk_buff, headers_end)); \ 833 834static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 835{ 836 new->tstamp = old->tstamp; 837 /* We do not copy old->sk */ 838 new->dev = old->dev; 839 memcpy(new->cb, old->cb, sizeof(old->cb)); 840 skb_dst_copy(new, old); 841#ifdef CONFIG_XFRM 842 new->sp = secpath_get(old->sp); 843#endif 844 __nf_copy(new, old, false); 845 846 /* Note : this field could be in headers_start/headers_end section 847 * It is not yet because we do not want to have a 16 bit hole 848 */ 849 new->queue_mapping = old->queue_mapping; 850 851 memcpy(&new->headers_start, &old->headers_start, 852 offsetof(struct sk_buff, headers_end) - 853 offsetof(struct sk_buff, headers_start)); 854 CHECK_SKB_FIELD(protocol); 855 CHECK_SKB_FIELD(csum); 856 CHECK_SKB_FIELD(hash); 857 CHECK_SKB_FIELD(priority); 858 CHECK_SKB_FIELD(skb_iif); 859 CHECK_SKB_FIELD(vlan_proto); 860 CHECK_SKB_FIELD(vlan_tci); 861 CHECK_SKB_FIELD(transport_header); 862 CHECK_SKB_FIELD(network_header); 863 CHECK_SKB_FIELD(mac_header); 864 CHECK_SKB_FIELD(inner_protocol); 865 CHECK_SKB_FIELD(inner_transport_header); 866 CHECK_SKB_FIELD(inner_network_header); 867 CHECK_SKB_FIELD(inner_mac_header); 868 CHECK_SKB_FIELD(mark); 869#ifdef CONFIG_NETWORK_SECMARK 870 CHECK_SKB_FIELD(secmark); 871#endif 872#ifdef CONFIG_NET_RX_BUSY_POLL 873 CHECK_SKB_FIELD(napi_id); 874#endif 875#ifdef CONFIG_XPS 876 CHECK_SKB_FIELD(sender_cpu); 877#endif 878#ifdef CONFIG_NET_SCHED 879 CHECK_SKB_FIELD(tc_index); 880#endif 881 882} 883 884/* 885 * You should not add any new code to this function. Add it to 886 * __copy_skb_header above instead. 887 */ 888static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb) 889{ 890#define C(x) n->x = skb->x 891 892 n->next = n->prev = NULL; 893 n->sk = NULL; 894 __copy_skb_header(n, skb); 895 896 C(len); 897 C(data_len); 898 C(mac_len); 899 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len; 900 n->cloned = 1; 901 n->nohdr = 0; 902 n->destructor = NULL; 903 C(tail); 904 C(end); 905 C(head); 906 C(head_frag); 907 C(data); 908 C(truesize); 909 atomic_set(&n->users, 1); 910 911 atomic_inc(&(skb_shinfo(skb)->dataref)); 912 skb->cloned = 1; 913 914 return n; 915#undef C 916} 917 918/** 919 * skb_morph - morph one skb into another 920 * @dst: the skb to receive the contents 921 * @src: the skb to supply the contents 922 * 923 * This is identical to skb_clone except that the target skb is 924 * supplied by the user. 925 * 926 * The target skb is returned upon exit. 927 */ 928struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src) 929{ 930 skb_release_all(dst); 931 return __skb_clone(dst, src); 932} 933EXPORT_SYMBOL_GPL(skb_morph); 934 935/** 936 * skb_copy_ubufs - copy userspace skb frags buffers to kernel 937 * @skb: the skb to modify 938 * @gfp_mask: allocation priority 939 * 940 * This must be called on SKBTX_DEV_ZEROCOPY skb. 941 * It will copy all frags into kernel and drop the reference 942 * to userspace pages. 943 * 944 * If this function is called from an interrupt gfp_mask() must be 945 * %GFP_ATOMIC. 946 * 947 * Returns 0 on success or a negative error code on failure 948 * to allocate kernel memory to copy to. 949 */ 950int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask) 951{ 952 int i; 953 int num_frags = skb_shinfo(skb)->nr_frags; 954 struct page *page, *head = NULL; 955 struct ubuf_info *uarg = skb_shinfo(skb)->destructor_arg; 956 957 for (i = 0; i < num_frags; i++) { 958 u8 *vaddr; 959 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 960 961 page = alloc_page(gfp_mask); 962 if (!page) { 963 while (head) { 964 struct page *next = (struct page *)page_private(head); 965 put_page(head); 966 head = next; 967 } 968 return -ENOMEM; 969 } 970 vaddr = kmap_atomic(skb_frag_page(f)); 971 memcpy(page_address(page), 972 vaddr + f->page_offset, skb_frag_size(f)); 973 kunmap_atomic(vaddr); 974 set_page_private(page, (unsigned long)head); 975 head = page; 976 } 977 978 /* skb frags release userspace buffers */ 979 for (i = 0; i < num_frags; i++) 980 skb_frag_unref(skb, i); 981 982 uarg->callback(uarg, false); 983 984 /* skb frags point to kernel buffers */ 985 for (i = num_frags - 1; i >= 0; i--) { 986 __skb_fill_page_desc(skb, i, head, 0, 987 skb_shinfo(skb)->frags[i].size); 988 head = (struct page *)page_private(head); 989 } 990 991 skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY; 992 return 0; 993} 994EXPORT_SYMBOL_GPL(skb_copy_ubufs); 995 996/** 997 * skb_clone - duplicate an sk_buff 998 * @skb: buffer to clone 999 * @gfp_mask: allocation priority 1000 * 1001 * Duplicate an &sk_buff. The new one is not owned by a socket. Both 1002 * copies share the same packet data but not structure. The new 1003 * buffer has a reference count of 1. If the allocation fails the 1004 * function returns %NULL otherwise the new buffer is returned. 1005 * 1006 * If this function is called from an interrupt gfp_mask() must be 1007 * %GFP_ATOMIC. 1008 */ 1009 1010struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask) 1011{ 1012 struct sk_buff_fclones *fclones = container_of(skb, 1013 struct sk_buff_fclones, 1014 skb1); 1015 struct sk_buff *n; 1016 1017 if (skb_orphan_frags(skb, gfp_mask)) 1018 return NULL; 1019 1020 if (skb->fclone == SKB_FCLONE_ORIG && 1021 atomic_read(&fclones->fclone_ref) == 1) { 1022 n = &fclones->skb2; 1023 atomic_set(&fclones->fclone_ref, 2); 1024 } else { 1025 if (skb_pfmemalloc(skb)) 1026 gfp_mask |= __GFP_MEMALLOC; 1027 1028 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask); 1029 if (!n) 1030 return NULL; 1031 1032 kmemcheck_annotate_bitfield(n, flags1); 1033 n->fclone = SKB_FCLONE_UNAVAILABLE; 1034 } 1035 1036 return __skb_clone(n, skb); 1037} 1038EXPORT_SYMBOL(skb_clone); 1039 1040static void skb_headers_offset_update(struct sk_buff *skb, int off) 1041{ 1042 /* Only adjust this if it actually is csum_start rather than csum */ 1043 if (skb->ip_summed == CHECKSUM_PARTIAL) 1044 skb->csum_start += off; 1045 /* {transport,network,mac}_header and tail are relative to skb->head */ 1046 skb->transport_header += off; 1047 skb->network_header += off; 1048 if (skb_mac_header_was_set(skb)) 1049 skb->mac_header += off; 1050 skb->inner_transport_header += off; 1051 skb->inner_network_header += off; 1052 skb->inner_mac_header += off; 1053} 1054 1055static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 1056{ 1057 __copy_skb_header(new, old); 1058 1059 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size; 1060 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs; 1061 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type; 1062} 1063 1064static inline int skb_alloc_rx_flag(const struct sk_buff *skb) 1065{ 1066 if (skb_pfmemalloc(skb)) 1067 return SKB_ALLOC_RX; 1068 return 0; 1069} 1070 1071/** 1072 * skb_copy - create private copy of an sk_buff 1073 * @skb: buffer to copy 1074 * @gfp_mask: allocation priority 1075 * 1076 * Make a copy of both an &sk_buff and its data. This is used when the 1077 * caller wishes to modify the data and needs a private copy of the 1078 * data to alter. Returns %NULL on failure or the pointer to the buffer 1079 * on success. The returned buffer has a reference count of 1. 1080 * 1081 * As by-product this function converts non-linear &sk_buff to linear 1082 * one, so that &sk_buff becomes completely private and caller is allowed 1083 * to modify all the data of returned buffer. This means that this 1084 * function is not recommended for use in circumstances when only 1085 * header is going to be modified. Use pskb_copy() instead. 1086 */ 1087 1088struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask) 1089{ 1090 int headerlen = skb_headroom(skb); 1091 unsigned int size = skb_end_offset(skb) + skb->data_len; 1092 struct sk_buff *n = __alloc_skb(size, gfp_mask, 1093 skb_alloc_rx_flag(skb), NUMA_NO_NODE); 1094 1095 if (!n) 1096 return NULL; 1097 1098 /* Set the data pointer */ 1099 skb_reserve(n, headerlen); 1100 /* Set the tail pointer and length */ 1101 skb_put(n, skb->len); 1102 1103 if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len)) 1104 BUG(); 1105 1106 copy_skb_header(n, skb); 1107 return n; 1108} 1109EXPORT_SYMBOL(skb_copy); 1110 1111/** 1112 * __pskb_copy_fclone - create copy of an sk_buff with private head. 1113 * @skb: buffer to copy 1114 * @headroom: headroom of new skb 1115 * @gfp_mask: allocation priority 1116 * @fclone: if true allocate the copy of the skb from the fclone 1117 * cache instead of the head cache; it is recommended to set this 1118 * to true for the cases where the copy will likely be cloned 1119 * 1120 * Make a copy of both an &sk_buff and part of its data, located 1121 * in header. Fragmented data remain shared. This is used when 1122 * the caller wishes to modify only header of &sk_buff and needs 1123 * private copy of the header to alter. Returns %NULL on failure 1124 * or the pointer to the buffer on success. 1125 * The returned buffer has a reference count of 1. 1126 */ 1127 1128struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 1129 gfp_t gfp_mask, bool fclone) 1130{ 1131 unsigned int size = skb_headlen(skb) + headroom; 1132 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0); 1133 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE); 1134 1135 if (!n) 1136 goto out; 1137 1138 /* Set the data pointer */ 1139 skb_reserve(n, headroom); 1140 /* Set the tail pointer and length */ 1141 skb_put(n, skb_headlen(skb)); 1142 /* Copy the bytes */ 1143 skb_copy_from_linear_data(skb, n->data, n->len); 1144 1145 n->truesize += skb->data_len; 1146 n->data_len = skb->data_len; 1147 n->len = skb->len; 1148 1149 if (skb_shinfo(skb)->nr_frags) { 1150 int i; 1151 1152 if (skb_orphan_frags(skb, gfp_mask)) { 1153 kfree_skb(n); 1154 n = NULL; 1155 goto out; 1156 } 1157 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1158 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i]; 1159 skb_frag_ref(skb, i); 1160 } 1161 skb_shinfo(n)->nr_frags = i; 1162 } 1163 1164 if (skb_has_frag_list(skb)) { 1165 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list; 1166 skb_clone_fraglist(n); 1167 } 1168 1169 copy_skb_header(n, skb); 1170out: 1171 return n; 1172} 1173EXPORT_SYMBOL(__pskb_copy_fclone); 1174 1175/** 1176 * pskb_expand_head - reallocate header of &sk_buff 1177 * @skb: buffer to reallocate 1178 * @nhead: room to add at head 1179 * @ntail: room to add at tail 1180 * @gfp_mask: allocation priority 1181 * 1182 * Expands (or creates identical copy, if @nhead and @ntail are zero) 1183 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have 1184 * reference count of 1. Returns zero in the case of success or error, 1185 * if expansion failed. In the last case, &sk_buff is not changed. 1186 * 1187 * All the pointers pointing into skb header may change and must be 1188 * reloaded after call to this function. 1189 */ 1190 1191int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, 1192 gfp_t gfp_mask) 1193{ 1194 int i, osize = skb_end_offset(skb); 1195 int size = osize + nhead + ntail; 1196 long off; 1197 u8 *data; 1198 1199 BUG_ON(nhead < 0); 1200 1201 if (skb_shared(skb)) 1202 BUG(); 1203 1204 size = SKB_DATA_ALIGN(size); 1205 1206 if (skb_pfmemalloc(skb)) 1207 gfp_mask |= __GFP_MEMALLOC; 1208 data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 1209 gfp_mask, NUMA_NO_NODE, NULL); 1210 if (!data) 1211 goto nodata; 1212 size = SKB_WITH_OVERHEAD(ksize(data)); 1213 1214 /* Copy only real data... and, alas, header. This should be 1215 * optimized for the cases when header is void. 1216 */ 1217 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head); 1218 1219 memcpy((struct skb_shared_info *)(data + size), 1220 skb_shinfo(skb), 1221 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags])); 1222 1223 /* 1224 * if shinfo is shared we must drop the old head gracefully, but if it 1225 * is not we can just drop the old head and let the existing refcount 1226 * be since all we did is relocate the values 1227 */ 1228 if (skb_cloned(skb)) { 1229 /* copy this zero copy skb frags */ 1230 if (skb_orphan_frags(skb, gfp_mask)) 1231 goto nofrags; 1232 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1233 skb_frag_ref(skb, i); 1234 1235 if (skb_has_frag_list(skb)) 1236 skb_clone_fraglist(skb); 1237 1238 skb_release_data(skb); 1239 } else { 1240 skb_free_head(skb); 1241 } 1242 off = (data + nhead) - skb->head; 1243 1244 skb->head = data; 1245 skb->head_frag = 0; 1246 skb->data += off; 1247#ifdef NET_SKBUFF_DATA_USES_OFFSET 1248 skb->end = size; 1249 off = nhead; 1250#else 1251 skb->end = skb->head + size; 1252#endif 1253 skb->tail += off; 1254 skb_headers_offset_update(skb, nhead); 1255 skb->cloned = 0; 1256 skb->hdr_len = 0; 1257 skb->nohdr = 0; 1258 atomic_set(&skb_shinfo(skb)->dataref, 1); 1259 1260 /* It is not generally safe to change skb->truesize. 1261 * For the moment, we really care of rx path, or 1262 * when skb is orphaned (not attached to a socket). 1263 */ 1264 if (!skb->sk || skb->destructor == sock_edemux) 1265 skb->truesize += size - osize; 1266 1267 return 0; 1268 1269nofrags: 1270 kfree(data); 1271nodata: 1272 return -ENOMEM; 1273} 1274EXPORT_SYMBOL(pskb_expand_head); 1275 1276/* Make private copy of skb with writable head and some headroom */ 1277 1278struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom) 1279{ 1280 struct sk_buff *skb2; 1281 int delta = headroom - skb_headroom(skb); 1282 1283 if (delta <= 0) 1284 skb2 = pskb_copy(skb, GFP_ATOMIC); 1285 else { 1286 skb2 = skb_clone(skb, GFP_ATOMIC); 1287 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0, 1288 GFP_ATOMIC)) { 1289 kfree_skb(skb2); 1290 skb2 = NULL; 1291 } 1292 } 1293 return skb2; 1294} 1295EXPORT_SYMBOL(skb_realloc_headroom); 1296 1297/** 1298 * skb_copy_expand - copy and expand sk_buff 1299 * @skb: buffer to copy 1300 * @newheadroom: new free bytes at head 1301 * @newtailroom: new free bytes at tail 1302 * @gfp_mask: allocation priority 1303 * 1304 * Make a copy of both an &sk_buff and its data and while doing so 1305 * allocate additional space. 1306 * 1307 * This is used when the caller wishes to modify the data and needs a 1308 * private copy of the data to alter as well as more space for new fields. 1309 * Returns %NULL on failure or the pointer to the buffer 1310 * on success. The returned buffer has a reference count of 1. 1311 * 1312 * You must pass %GFP_ATOMIC as the allocation priority if this function 1313 * is called from an interrupt. 1314 */ 1315struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 1316 int newheadroom, int newtailroom, 1317 gfp_t gfp_mask) 1318{ 1319 /* 1320 * Allocate the copy buffer 1321 */ 1322 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom, 1323 gfp_mask, skb_alloc_rx_flag(skb), 1324 NUMA_NO_NODE); 1325 int oldheadroom = skb_headroom(skb); 1326 int head_copy_len, head_copy_off; 1327 1328 if (!n) 1329 return NULL; 1330 1331 skb_reserve(n, newheadroom); 1332 1333 /* Set the tail pointer and length */ 1334 skb_put(n, skb->len); 1335 1336 head_copy_len = oldheadroom; 1337 head_copy_off = 0; 1338 if (newheadroom <= head_copy_len) 1339 head_copy_len = newheadroom; 1340 else 1341 head_copy_off = newheadroom - head_copy_len; 1342 1343 /* Copy the linear header and data. */ 1344 if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off, 1345 skb->len + head_copy_len)) 1346 BUG(); 1347 1348 copy_skb_header(n, skb); 1349 1350 skb_headers_offset_update(n, newheadroom - oldheadroom); 1351 1352 return n; 1353} 1354EXPORT_SYMBOL(skb_copy_expand); 1355 1356/** 1357 * skb_pad - zero pad the tail of an skb 1358 * @skb: buffer to pad 1359 * @pad: space to pad 1360 * 1361 * Ensure that a buffer is followed by a padding area that is zero 1362 * filled. Used by network drivers which may DMA or transfer data 1363 * beyond the buffer end onto the wire. 1364 * 1365 * May return error in out of memory cases. The skb is freed on error. 1366 */ 1367 1368int skb_pad(struct sk_buff *skb, int pad) 1369{ 1370 int err; 1371 int ntail; 1372 1373 /* If the skbuff is non linear tailroom is always zero.. */ 1374 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) { 1375 memset(skb->data+skb->len, 0, pad); 1376 return 0; 1377 } 1378 1379 ntail = skb->data_len + pad - (skb->end - skb->tail); 1380 if (likely(skb_cloned(skb) || ntail > 0)) { 1381 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC); 1382 if (unlikely(err)) 1383 goto free_skb; 1384 } 1385 1386 /* FIXME: The use of this function with non-linear skb's really needs 1387 * to be audited. 1388 */ 1389 err = skb_linearize(skb); 1390 if (unlikely(err)) 1391 goto free_skb; 1392 1393 memset(skb->data + skb->len, 0, pad); 1394 return 0; 1395 1396free_skb: 1397 kfree_skb(skb); 1398 return err; 1399} 1400EXPORT_SYMBOL(skb_pad); 1401 1402/** 1403 * pskb_put - add data to the tail of a potentially fragmented buffer 1404 * @skb: start of the buffer to use 1405 * @tail: tail fragment of the buffer to use 1406 * @len: amount of data to add 1407 * 1408 * This function extends the used data area of the potentially 1409 * fragmented buffer. @tail must be the last fragment of @skb -- or 1410 * @skb itself. If this would exceed the total buffer size the kernel 1411 * will panic. A pointer to the first byte of the extra data is 1412 * returned. 1413 */ 1414 1415unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len) 1416{ 1417 if (tail != skb) { 1418 skb->data_len += len; 1419 skb->len += len; 1420 } 1421 return skb_put(tail, len); 1422} 1423EXPORT_SYMBOL_GPL(pskb_put); 1424 1425/** 1426 * skb_put - add data to a buffer 1427 * @skb: buffer to use 1428 * @len: amount of data to add 1429 * 1430 * This function extends the used data area of the buffer. If this would 1431 * exceed the total buffer size the kernel will panic. A pointer to the 1432 * first byte of the extra data is returned. 1433 */ 1434unsigned char *skb_put(struct sk_buff *skb, unsigned int len) 1435{ 1436 unsigned char *tmp = skb_tail_pointer(skb); 1437 SKB_LINEAR_ASSERT(skb); 1438 skb->tail += len; 1439 skb->len += len; 1440 if (unlikely(skb->tail > skb->end)) 1441 skb_over_panic(skb, len, __builtin_return_address(0)); 1442 return tmp; 1443} 1444EXPORT_SYMBOL(skb_put); 1445 1446/** 1447 * skb_push - add data to the start of a buffer 1448 * @skb: buffer to use 1449 * @len: amount of data to add 1450 * 1451 * This function extends the used data area of the buffer at the buffer 1452 * start. If this would exceed the total buffer headroom the kernel will 1453 * panic. A pointer to the first byte of the extra data is returned. 1454 */ 1455unsigned char *skb_push(struct sk_buff *skb, unsigned int len) 1456{ 1457 skb->data -= len; 1458 skb->len += len; 1459 if (unlikely(skb->data<skb->head)) 1460 skb_under_panic(skb, len, __builtin_return_address(0)); 1461 return skb->data; 1462} 1463EXPORT_SYMBOL(skb_push); 1464 1465/** 1466 * skb_pull - remove data from the start of a buffer 1467 * @skb: buffer to use 1468 * @len: amount of data to remove 1469 * 1470 * This function removes data from the start of a buffer, returning 1471 * the memory to the headroom. A pointer to the next data in the buffer 1472 * is returned. Once the data has been pulled future pushes will overwrite 1473 * the old data. 1474 */ 1475unsigned char *skb_pull(struct sk_buff *skb, unsigned int len) 1476{ 1477 return skb_pull_inline(skb, len); 1478} 1479EXPORT_SYMBOL(skb_pull); 1480 1481/** 1482 * skb_trim - remove end from a buffer 1483 * @skb: buffer to alter 1484 * @len: new length 1485 * 1486 * Cut the length of a buffer down by removing data from the tail. If 1487 * the buffer is already under the length specified it is not modified. 1488 * The skb must be linear. 1489 */ 1490void skb_trim(struct sk_buff *skb, unsigned int len) 1491{ 1492 if (skb->len > len) 1493 __skb_trim(skb, len); 1494} 1495EXPORT_SYMBOL(skb_trim); 1496 1497/* Trims skb to length len. It can change skb pointers. 1498 */ 1499 1500int ___pskb_trim(struct sk_buff *skb, unsigned int len) 1501{ 1502 struct sk_buff **fragp; 1503 struct sk_buff *frag; 1504 int offset = skb_headlen(skb); 1505 int nfrags = skb_shinfo(skb)->nr_frags; 1506 int i; 1507 int err; 1508 1509 if (skb_cloned(skb) && 1510 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))) 1511 return err; 1512 1513 i = 0; 1514 if (offset >= len) 1515 goto drop_pages; 1516 1517 for (; i < nfrags; i++) { 1518 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]); 1519 1520 if (end < len) { 1521 offset = end; 1522 continue; 1523 } 1524 1525 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset); 1526 1527drop_pages: 1528 skb_shinfo(skb)->nr_frags = i; 1529 1530 for (; i < nfrags; i++) 1531 skb_frag_unref(skb, i); 1532 1533 if (skb_has_frag_list(skb)) 1534 skb_drop_fraglist(skb); 1535 goto done; 1536 } 1537 1538 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp); 1539 fragp = &frag->next) { 1540 int end = offset + frag->len; 1541 1542 if (skb_shared(frag)) { 1543 struct sk_buff *nfrag; 1544 1545 nfrag = skb_clone(frag, GFP_ATOMIC); 1546 if (unlikely(!nfrag)) 1547 return -ENOMEM; 1548 1549 nfrag->next = frag->next; 1550 consume_skb(frag); 1551 frag = nfrag; 1552 *fragp = frag; 1553 } 1554 1555 if (end < len) { 1556 offset = end; 1557 continue; 1558 } 1559 1560 if (end > len && 1561 unlikely((err = pskb_trim(frag, len - offset)))) 1562 return err; 1563 1564 if (frag->next) 1565 skb_drop_list(&frag->next); 1566 break; 1567 } 1568 1569done: 1570 if (len > skb_headlen(skb)) { 1571 skb->data_len -= skb->len - len; 1572 skb->len = len; 1573 } else { 1574 skb->len = len; 1575 skb->data_len = 0; 1576 skb_set_tail_pointer(skb, len); 1577 } 1578 1579 return 0; 1580} 1581EXPORT_SYMBOL(___pskb_trim); 1582 1583/** 1584 * __pskb_pull_tail - advance tail of skb header 1585 * @skb: buffer to reallocate 1586 * @delta: number of bytes to advance tail 1587 * 1588 * The function makes a sense only on a fragmented &sk_buff, 1589 * it expands header moving its tail forward and copying necessary 1590 * data from fragmented part. 1591 * 1592 * &sk_buff MUST have reference count of 1. 1593 * 1594 * Returns %NULL (and &sk_buff does not change) if pull failed 1595 * or value of new tail of skb in the case of success. 1596 * 1597 * All the pointers pointing into skb header may change and must be 1598 * reloaded after call to this function. 1599 */ 1600 1601/* Moves tail of skb head forward, copying data from fragmented part, 1602 * when it is necessary. 1603 * 1. It may fail due to malloc failure. 1604 * 2. It may change skb pointers. 1605 * 1606 * It is pretty complicated. Luckily, it is called only in exceptional cases. 1607 */ 1608unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta) 1609{ 1610 /* If skb has not enough free space at tail, get new one 1611 * plus 128 bytes for future expansions. If we have enough 1612 * room at tail, reallocate without expansion only if skb is cloned. 1613 */ 1614 int i, k, eat = (skb->tail + delta) - skb->end; 1615 1616 if (eat > 0 || skb_cloned(skb)) { 1617 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0, 1618 GFP_ATOMIC)) 1619 return NULL; 1620 } 1621 1622 if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta)) 1623 BUG(); 1624 1625 /* Optimization: no fragments, no reasons to preestimate 1626 * size of pulled pages. Superb. 1627 */ 1628 if (!skb_has_frag_list(skb)) 1629 goto pull_pages; 1630 1631 /* Estimate size of pulled pages. */ 1632 eat = delta; 1633 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1634 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 1635 1636 if (size >= eat) 1637 goto pull_pages; 1638 eat -= size; 1639 } 1640 1641 /* If we need update frag list, we are in troubles. 1642 * Certainly, it possible to add an offset to skb data, 1643 * but taking into account that pulling is expected to 1644 * be very rare operation, it is worth to fight against 1645 * further bloating skb head and crucify ourselves here instead. 1646 * Pure masohism, indeed. 8)8) 1647 */ 1648 if (eat) { 1649 struct sk_buff *list = skb_shinfo(skb)->frag_list; 1650 struct sk_buff *clone = NULL; 1651 struct sk_buff *insp = NULL; 1652 1653 do { 1654 BUG_ON(!list); 1655 1656 if (list->len <= eat) { 1657 /* Eaten as whole. */ 1658 eat -= list->len; 1659 list = list->next; 1660 insp = list; 1661 } else { 1662 /* Eaten partially. */ 1663 1664 if (skb_shared(list)) { 1665 /* Sucks! We need to fork list. :-( */ 1666 clone = skb_clone(list, GFP_ATOMIC); 1667 if (!clone) 1668 return NULL; 1669 insp = list->next; 1670 list = clone; 1671 } else { 1672 /* This may be pulled without 1673 * problems. */ 1674 insp = list; 1675 } 1676 if (!pskb_pull(list, eat)) { 1677 kfree_skb(clone); 1678 return NULL; 1679 } 1680 break; 1681 } 1682 } while (eat); 1683 1684 /* Free pulled out fragments. */ 1685 while ((list = skb_shinfo(skb)->frag_list) != insp) { 1686 skb_shinfo(skb)->frag_list = list->next; 1687 kfree_skb(list); 1688 } 1689 /* And insert new clone at head. */ 1690 if (clone) { 1691 clone->next = list; 1692 skb_shinfo(skb)->frag_list = clone; 1693 } 1694 } 1695 /* Success! Now we may commit changes to skb data. */ 1696 1697pull_pages: 1698 eat = delta; 1699 k = 0; 1700 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1701 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 1702 1703 if (size <= eat) { 1704 skb_frag_unref(skb, i); 1705 eat -= size; 1706 } else { 1707 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i]; 1708 if (eat) { 1709 skb_shinfo(skb)->frags[k].page_offset += eat; 1710 skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat); 1711 eat = 0; 1712 } 1713 k++; 1714 } 1715 } 1716 skb_shinfo(skb)->nr_frags = k; 1717 1718 skb->tail += delta; 1719 skb->data_len -= delta; 1720 1721 return skb_tail_pointer(skb); 1722} 1723EXPORT_SYMBOL(__pskb_pull_tail); 1724 1725/** 1726 * skb_copy_bits - copy bits from skb to kernel buffer 1727 * @skb: source skb 1728 * @offset: offset in source 1729 * @to: destination buffer 1730 * @len: number of bytes to copy 1731 * 1732 * Copy the specified number of bytes from the source skb to the 1733 * destination buffer. 1734 * 1735 * CAUTION ! : 1736 * If its prototype is ever changed, 1737 * check arch/{*}/net/{*}.S files, 1738 * since it is called from BPF assembly code. 1739 */ 1740int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len) 1741{ 1742 int start = skb_headlen(skb); 1743 struct sk_buff *frag_iter; 1744 int i, copy; 1745 1746 if (offset > (int)skb->len - len) 1747 goto fault; 1748 1749 /* Copy header. */ 1750 if ((copy = start - offset) > 0) { 1751 if (copy > len) 1752 copy = len; 1753 skb_copy_from_linear_data_offset(skb, offset, to, copy); 1754 if ((len -= copy) == 0) 1755 return 0; 1756 offset += copy; 1757 to += copy; 1758 } 1759 1760 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1761 int end; 1762 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 1763 1764 WARN_ON(start > offset + len); 1765 1766 end = start + skb_frag_size(f); 1767 if ((copy = end - offset) > 0) { 1768 u8 *vaddr; 1769 1770 if (copy > len) 1771 copy = len; 1772 1773 vaddr = kmap_atomic(skb_frag_page(f)); 1774 memcpy(to, 1775 vaddr + f->page_offset + offset - start, 1776 copy); 1777 kunmap_atomic(vaddr); 1778 1779 if ((len -= copy) == 0) 1780 return 0; 1781 offset += copy; 1782 to += copy; 1783 } 1784 start = end; 1785 } 1786 1787 skb_walk_frags(skb, frag_iter) { 1788 int end; 1789 1790 WARN_ON(start > offset + len); 1791 1792 end = start + frag_iter->len; 1793 if ((copy = end - offset) > 0) { 1794 if (copy > len) 1795 copy = len; 1796 if (skb_copy_bits(frag_iter, offset - start, to, copy)) 1797 goto fault; 1798 if ((len -= copy) == 0) 1799 return 0; 1800 offset += copy; 1801 to += copy; 1802 } 1803 start = end; 1804 } 1805 1806 if (!len) 1807 return 0; 1808 1809fault: 1810 return -EFAULT; 1811} 1812EXPORT_SYMBOL(skb_copy_bits); 1813 1814/* 1815 * Callback from splice_to_pipe(), if we need to release some pages 1816 * at the end of the spd in case we error'ed out in filling the pipe. 1817 */ 1818static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i) 1819{ 1820 put_page(spd->pages[i]); 1821} 1822 1823static struct page *linear_to_page(struct page *page, unsigned int *len, 1824 unsigned int *offset, 1825 struct sock *sk) 1826{ 1827 struct page_frag *pfrag = sk_page_frag(sk); 1828 1829 if (!sk_page_frag_refill(sk, pfrag)) 1830 return NULL; 1831 1832 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset); 1833 1834 memcpy(page_address(pfrag->page) + pfrag->offset, 1835 page_address(page) + *offset, *len); 1836 *offset = pfrag->offset; 1837 pfrag->offset += *len; 1838 1839 return pfrag->page; 1840} 1841 1842static bool spd_can_coalesce(const struct splice_pipe_desc *spd, 1843 struct page *page, 1844 unsigned int offset) 1845{ 1846 return spd->nr_pages && 1847 spd->pages[spd->nr_pages - 1] == page && 1848 (spd->partial[spd->nr_pages - 1].offset + 1849 spd->partial[spd->nr_pages - 1].len == offset); 1850} 1851 1852/* 1853 * Fill page/offset/length into spd, if it can hold more pages. 1854 */ 1855static bool spd_fill_page(struct splice_pipe_desc *spd, 1856 struct pipe_inode_info *pipe, struct page *page, 1857 unsigned int *len, unsigned int offset, 1858 bool linear, 1859 struct sock *sk) 1860{ 1861 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS)) 1862 return true; 1863 1864 if (linear) { 1865 page = linear_to_page(page, len, &offset, sk); 1866 if (!page) 1867 return true; 1868 } 1869 if (spd_can_coalesce(spd, page, offset)) { 1870 spd->partial[spd->nr_pages - 1].len += *len; 1871 return false; 1872 } 1873 get_page(page); 1874 spd->pages[spd->nr_pages] = page; 1875 spd->partial[spd->nr_pages].len = *len; 1876 spd->partial[spd->nr_pages].offset = offset; 1877 spd->nr_pages++; 1878 1879 return false; 1880} 1881 1882static bool __splice_segment(struct page *page, unsigned int poff, 1883 unsigned int plen, unsigned int *off, 1884 unsigned int *len, 1885 struct splice_pipe_desc *spd, bool linear, 1886 struct sock *sk, 1887 struct pipe_inode_info *pipe) 1888{ 1889 if (!*len) 1890 return true; 1891 1892 /* skip this segment if already processed */ 1893 if (*off >= plen) { 1894 *off -= plen; 1895 return false; 1896 } 1897 1898 /* ignore any bits we already processed */ 1899 poff += *off; 1900 plen -= *off; 1901 *off = 0; 1902 1903 do { 1904 unsigned int flen = min(*len, plen); 1905 1906 if (spd_fill_page(spd, pipe, page, &flen, poff, 1907 linear, sk)) 1908 return true; 1909 poff += flen; 1910 plen -= flen; 1911 *len -= flen; 1912 } while (*len && plen); 1913 1914 return false; 1915} 1916 1917/* 1918 * Map linear and fragment data from the skb to spd. It reports true if the 1919 * pipe is full or if we already spliced the requested length. 1920 */ 1921static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe, 1922 unsigned int *offset, unsigned int *len, 1923 struct splice_pipe_desc *spd, struct sock *sk) 1924{ 1925 int seg; 1926 struct sk_buff *iter; 1927 1928 /* map the linear part : 1929 * If skb->head_frag is set, this 'linear' part is backed by a 1930 * fragment, and if the head is not shared with any clones then 1931 * we can avoid a copy since we own the head portion of this page. 1932 */ 1933 if (__splice_segment(virt_to_page(skb->data), 1934 (unsigned long) skb->data & (PAGE_SIZE - 1), 1935 skb_headlen(skb), 1936 offset, len, spd, 1937 skb_head_is_locked(skb), 1938 sk, pipe)) 1939 return true; 1940 1941 /* 1942 * then map the fragments 1943 */ 1944 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) { 1945 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg]; 1946 1947 if (__splice_segment(skb_frag_page(f), 1948 f->page_offset, skb_frag_size(f), 1949 offset, len, spd, false, sk, pipe)) 1950 return true; 1951 } 1952 1953 skb_walk_frags(skb, iter) { 1954 if (*offset >= iter->len) { 1955 *offset -= iter->len; 1956 continue; 1957 } 1958 /* __skb_splice_bits() only fails if the output has no room 1959 * left, so no point in going over the frag_list for the error 1960 * case. 1961 */ 1962 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk)) 1963 return true; 1964 } 1965 1966 return false; 1967} 1968 1969/* 1970 * Map data from the skb to a pipe. Should handle both the linear part, 1971 * the fragments, and the frag list. 1972 */ 1973int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 1974 struct pipe_inode_info *pipe, unsigned int tlen, 1975 unsigned int flags) 1976{ 1977 struct partial_page partial[MAX_SKB_FRAGS]; 1978 struct page *pages[MAX_SKB_FRAGS]; 1979 struct splice_pipe_desc spd = { 1980 .pages = pages, 1981 .partial = partial, 1982 .nr_pages_max = MAX_SKB_FRAGS, 1983 .flags = flags, 1984 .ops = &nosteal_pipe_buf_ops, 1985 .spd_release = sock_spd_release, 1986 }; 1987 int ret = 0; 1988 1989 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk); 1990 1991 if (spd.nr_pages) 1992 ret = splice_to_pipe(pipe, &spd); 1993 1994 return ret; 1995} 1996EXPORT_SYMBOL_GPL(skb_splice_bits); 1997 1998/** 1999 * skb_store_bits - store bits from kernel buffer to skb 2000 * @skb: destination buffer 2001 * @offset: offset in destination 2002 * @from: source buffer 2003 * @len: number of bytes to copy 2004 * 2005 * Copy the specified number of bytes from the source buffer to the 2006 * destination skb. This function handles all the messy bits of 2007 * traversing fragment lists and such. 2008 */ 2009 2010int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len) 2011{ 2012 int start = skb_headlen(skb); 2013 struct sk_buff *frag_iter; 2014 int i, copy; 2015 2016 if (offset > (int)skb->len - len) 2017 goto fault; 2018 2019 if ((copy = start - offset) > 0) { 2020 if (copy > len) 2021 copy = len; 2022 skb_copy_to_linear_data_offset(skb, offset, from, copy); 2023 if ((len -= copy) == 0) 2024 return 0; 2025 offset += copy; 2026 from += copy; 2027 } 2028 2029 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2030 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2031 int end; 2032 2033 WARN_ON(start > offset + len); 2034 2035 end = start + skb_frag_size(frag); 2036 if ((copy = end - offset) > 0) { 2037 u8 *vaddr; 2038 2039 if (copy > len) 2040 copy = len; 2041 2042 vaddr = kmap_atomic(skb_frag_page(frag)); 2043 memcpy(vaddr + frag->page_offset + offset - start, 2044 from, copy); 2045 kunmap_atomic(vaddr); 2046 2047 if ((len -= copy) == 0) 2048 return 0; 2049 offset += copy; 2050 from += copy; 2051 } 2052 start = end; 2053 } 2054 2055 skb_walk_frags(skb, frag_iter) { 2056 int end; 2057 2058 WARN_ON(start > offset + len); 2059 2060 end = start + frag_iter->len; 2061 if ((copy = end - offset) > 0) { 2062 if (copy > len) 2063 copy = len; 2064 if (skb_store_bits(frag_iter, offset - start, 2065 from, copy)) 2066 goto fault; 2067 if ((len -= copy) == 0) 2068 return 0; 2069 offset += copy; 2070 from += copy; 2071 } 2072 start = end; 2073 } 2074 if (!len) 2075 return 0; 2076 2077fault: 2078 return -EFAULT; 2079} 2080EXPORT_SYMBOL(skb_store_bits); 2081 2082/* Checksum skb data. */ 2083__wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 2084 __wsum csum, const struct skb_checksum_ops *ops) 2085{ 2086 int start = skb_headlen(skb); 2087 int i, copy = start - offset; 2088 struct sk_buff *frag_iter; 2089 int pos = 0; 2090 2091 /* Checksum header. */ 2092 if (copy > 0) { 2093 if (copy > len) 2094 copy = len; 2095 csum = ops->update(skb->data + offset, copy, csum); 2096 if ((len -= copy) == 0) 2097 return csum; 2098 offset += copy; 2099 pos = copy; 2100 } 2101 2102 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2103 int end; 2104 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2105 2106 WARN_ON(start > offset + len); 2107 2108 end = start + skb_frag_size(frag); 2109 if ((copy = end - offset) > 0) { 2110 __wsum csum2; 2111 u8 *vaddr; 2112 2113 if (copy > len) 2114 copy = len; 2115 vaddr = kmap_atomic(skb_frag_page(frag)); 2116 csum2 = ops->update(vaddr + frag->page_offset + 2117 offset - start, copy, 0); 2118 kunmap_atomic(vaddr); 2119 csum = ops->combine(csum, csum2, pos, copy); 2120 if (!(len -= copy)) 2121 return csum; 2122 offset += copy; 2123 pos += copy; 2124 } 2125 start = end; 2126 } 2127 2128 skb_walk_frags(skb, frag_iter) { 2129 int end; 2130 2131 WARN_ON(start > offset + len); 2132 2133 end = start + frag_iter->len; 2134 if ((copy = end - offset) > 0) { 2135 __wsum csum2; 2136 if (copy > len) 2137 copy = len; 2138 csum2 = __skb_checksum(frag_iter, offset - start, 2139 copy, 0, ops); 2140 csum = ops->combine(csum, csum2, pos, copy); 2141 if ((len -= copy) == 0) 2142 return csum; 2143 offset += copy; 2144 pos += copy; 2145 } 2146 start = end; 2147 } 2148 BUG_ON(len); 2149 2150 return csum; 2151} 2152EXPORT_SYMBOL(__skb_checksum); 2153 2154__wsum skb_checksum(const struct sk_buff *skb, int offset, 2155 int len, __wsum csum) 2156{ 2157 const struct skb_checksum_ops ops = { 2158 .update = csum_partial_ext, 2159 .combine = csum_block_add_ext, 2160 }; 2161 2162 return __skb_checksum(skb, offset, len, csum, &ops); 2163} 2164EXPORT_SYMBOL(skb_checksum); 2165 2166/* Both of above in one bottle. */ 2167 2168__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, 2169 u8 *to, int len, __wsum csum) 2170{ 2171 int start = skb_headlen(skb); 2172 int i, copy = start - offset; 2173 struct sk_buff *frag_iter; 2174 int pos = 0; 2175 2176 /* Copy header. */ 2177 if (copy > 0) { 2178 if (copy > len) 2179 copy = len; 2180 csum = csum_partial_copy_nocheck(skb->data + offset, to, 2181 copy, csum); 2182 if ((len -= copy) == 0) 2183 return csum; 2184 offset += copy; 2185 to += copy; 2186 pos = copy; 2187 } 2188 2189 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2190 int end; 2191 2192 WARN_ON(start > offset + len); 2193 2194 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 2195 if ((copy = end - offset) > 0) { 2196 __wsum csum2; 2197 u8 *vaddr; 2198 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2199 2200 if (copy > len) 2201 copy = len; 2202 vaddr = kmap_atomic(skb_frag_page(frag)); 2203 csum2 = csum_partial_copy_nocheck(vaddr + 2204 frag->page_offset + 2205 offset - start, to, 2206 copy, 0); 2207 kunmap_atomic(vaddr); 2208 csum = csum_block_add(csum, csum2, pos); 2209 if (!(len -= copy)) 2210 return csum; 2211 offset += copy; 2212 to += copy; 2213 pos += copy; 2214 } 2215 start = end; 2216 } 2217 2218 skb_walk_frags(skb, frag_iter) { 2219 __wsum csum2; 2220 int end; 2221 2222 WARN_ON(start > offset + len); 2223 2224 end = start + frag_iter->len; 2225 if ((copy = end - offset) > 0) { 2226 if (copy > len) 2227 copy = len; 2228 csum2 = skb_copy_and_csum_bits(frag_iter, 2229 offset - start, 2230 to, copy, 0); 2231 csum = csum_block_add(csum, csum2, pos); 2232 if ((len -= copy) == 0) 2233 return csum; 2234 offset += copy; 2235 to += copy; 2236 pos += copy; 2237 } 2238 start = end; 2239 } 2240 BUG_ON(len); 2241 return csum; 2242} 2243EXPORT_SYMBOL(skb_copy_and_csum_bits); 2244 2245 /** 2246 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy() 2247 * @from: source buffer 2248 * 2249 * Calculates the amount of linear headroom needed in the 'to' skb passed 2250 * into skb_zerocopy(). 2251 */ 2252unsigned int 2253skb_zerocopy_headlen(const struct sk_buff *from) 2254{ 2255 unsigned int hlen = 0; 2256 2257 if (!from->head_frag || 2258 skb_headlen(from) < L1_CACHE_BYTES || 2259 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) 2260 hlen = skb_headlen(from); 2261 2262 if (skb_has_frag_list(from)) 2263 hlen = from->len; 2264 2265 return hlen; 2266} 2267EXPORT_SYMBOL_GPL(skb_zerocopy_headlen); 2268 2269/** 2270 * skb_zerocopy - Zero copy skb to skb 2271 * @to: destination buffer 2272 * @from: source buffer 2273 * @len: number of bytes to copy from source buffer 2274 * @hlen: size of linear headroom in destination buffer 2275 * 2276 * Copies up to `len` bytes from `from` to `to` by creating references 2277 * to the frags in the source buffer. 2278 * 2279 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the 2280 * headroom in the `to` buffer. 2281 * 2282 * Return value: 2283 * 0: everything is OK 2284 * -ENOMEM: couldn't orphan frags of @from due to lack of memory 2285 * -EFAULT: skb_copy_bits() found some problem with skb geometry 2286 */ 2287int 2288skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen) 2289{ 2290 int i, j = 0; 2291 int plen = 0; /* length of skb->head fragment */ 2292 int ret; 2293 struct page *page; 2294 unsigned int offset; 2295 2296 BUG_ON(!from->head_frag && !hlen); 2297 2298 /* dont bother with small payloads */ 2299 if (len <= skb_tailroom(to)) 2300 return skb_copy_bits(from, 0, skb_put(to, len), len); 2301 2302 if (hlen) { 2303 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen); 2304 if (unlikely(ret)) 2305 return ret; 2306 len -= hlen; 2307 } else { 2308 plen = min_t(int, skb_headlen(from), len); 2309 if (plen) { 2310 page = virt_to_head_page(from->head); 2311 offset = from->data - (unsigned char *)page_address(page); 2312 __skb_fill_page_desc(to, 0, page, offset, plen); 2313 get_page(page); 2314 j = 1; 2315 len -= plen; 2316 } 2317 } 2318 2319 to->truesize += len + plen; 2320 to->len += len + plen; 2321 to->data_len += len + plen; 2322 2323 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) { 2324 skb_tx_error(from); 2325 return -ENOMEM; 2326 } 2327 2328 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) { 2329 if (!len) 2330 break; 2331 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i]; 2332 skb_shinfo(to)->frags[j].size = min_t(int, skb_shinfo(to)->frags[j].size, len); 2333 len -= skb_shinfo(to)->frags[j].size; 2334 skb_frag_ref(to, j); 2335 j++; 2336 } 2337 skb_shinfo(to)->nr_frags = j; 2338 2339 return 0; 2340} 2341EXPORT_SYMBOL_GPL(skb_zerocopy); 2342 2343void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to) 2344{ 2345 __wsum csum; 2346 long csstart; 2347 2348 if (skb->ip_summed == CHECKSUM_PARTIAL) 2349 csstart = skb_checksum_start_offset(skb); 2350 else 2351 csstart = skb_headlen(skb); 2352 2353 BUG_ON(csstart > skb_headlen(skb)); 2354 2355 skb_copy_from_linear_data(skb, to, csstart); 2356 2357 csum = 0; 2358 if (csstart != skb->len) 2359 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart, 2360 skb->len - csstart, 0); 2361 2362 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2363 long csstuff = csstart + skb->csum_offset; 2364 2365 *((__sum16 *)(to + csstuff)) = csum_fold(csum); 2366 } 2367} 2368EXPORT_SYMBOL(skb_copy_and_csum_dev); 2369 2370/** 2371 * skb_dequeue - remove from the head of the queue 2372 * @list: list to dequeue from 2373 * 2374 * Remove the head of the list. The list lock is taken so the function 2375 * may be used safely with other locking list functions. The head item is 2376 * returned or %NULL if the list is empty. 2377 */ 2378 2379struct sk_buff *skb_dequeue(struct sk_buff_head *list) 2380{ 2381 unsigned long flags; 2382 struct sk_buff *result; 2383 2384 spin_lock_irqsave(&list->lock, flags); 2385 result = __skb_dequeue(list); 2386 spin_unlock_irqrestore(&list->lock, flags); 2387 return result; 2388} 2389EXPORT_SYMBOL(skb_dequeue); 2390 2391/** 2392 * skb_dequeue_tail - remove from the tail of the queue 2393 * @list: list to dequeue from 2394 * 2395 * Remove the tail of the list. The list lock is taken so the function 2396 * may be used safely with other locking list functions. The tail item is 2397 * returned or %NULL if the list is empty. 2398 */ 2399struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list) 2400{ 2401 unsigned long flags; 2402 struct sk_buff *result; 2403 2404 spin_lock_irqsave(&list->lock, flags); 2405 result = __skb_dequeue_tail(list); 2406 spin_unlock_irqrestore(&list->lock, flags); 2407 return result; 2408} 2409EXPORT_SYMBOL(skb_dequeue_tail); 2410 2411/** 2412 * skb_queue_purge - empty a list 2413 * @list: list to empty 2414 * 2415 * Delete all buffers on an &sk_buff list. Each buffer is removed from 2416 * the list and one reference dropped. This function takes the list 2417 * lock and is atomic with respect to other list locking functions. 2418 */ 2419void skb_queue_purge(struct sk_buff_head *list) 2420{ 2421 struct sk_buff *skb; 2422 while ((skb = skb_dequeue(list)) != NULL) 2423 kfree_skb(skb); 2424} 2425EXPORT_SYMBOL(skb_queue_purge); 2426 2427/** 2428 * skb_rbtree_purge - empty a skb rbtree 2429 * @root: root of the rbtree to empty 2430 * 2431 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from 2432 * the list and one reference dropped. This function does not take 2433 * any lock. Synchronization should be handled by the caller (e.g., TCP 2434 * out-of-order queue is protected by the socket lock). 2435 */ 2436void skb_rbtree_purge(struct rb_root *root) 2437{ 2438 struct sk_buff *skb, *next; 2439 2440 rbtree_postorder_for_each_entry_safe(skb, next, root, rbnode) 2441 kfree_skb(skb); 2442 2443 *root = RB_ROOT; 2444} 2445 2446/** 2447 * skb_queue_head - queue a buffer at the list head 2448 * @list: list to use 2449 * @newsk: buffer to queue 2450 * 2451 * Queue a buffer at the start of the list. This function takes the 2452 * list lock and can be used safely with other locking &sk_buff functions 2453 * safely. 2454 * 2455 * A buffer cannot be placed on two lists at the same time. 2456 */ 2457void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk) 2458{ 2459 unsigned long flags; 2460 2461 spin_lock_irqsave(&list->lock, flags); 2462 __skb_queue_head(list, newsk); 2463 spin_unlock_irqrestore(&list->lock, flags); 2464} 2465EXPORT_SYMBOL(skb_queue_head); 2466 2467/** 2468 * skb_queue_tail - queue a buffer at the list tail 2469 * @list: list to use 2470 * @newsk: buffer to queue 2471 * 2472 * Queue a buffer at the tail of the list. This function takes the 2473 * list lock and can be used safely with other locking &sk_buff functions 2474 * safely. 2475 * 2476 * A buffer cannot be placed on two lists at the same time. 2477 */ 2478void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk) 2479{ 2480 unsigned long flags; 2481 2482 spin_lock_irqsave(&list->lock, flags); 2483 __skb_queue_tail(list, newsk); 2484 spin_unlock_irqrestore(&list->lock, flags); 2485} 2486EXPORT_SYMBOL(skb_queue_tail); 2487 2488/** 2489 * skb_unlink - remove a buffer from a list 2490 * @skb: buffer to remove 2491 * @list: list to use 2492 * 2493 * Remove a packet from a list. The list locks are taken and this 2494 * function is atomic with respect to other list locked calls 2495 * 2496 * You must know what list the SKB is on. 2497 */ 2498void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 2499{ 2500 unsigned long flags; 2501 2502 spin_lock_irqsave(&list->lock, flags); 2503 __skb_unlink(skb, list); 2504 spin_unlock_irqrestore(&list->lock, flags); 2505} 2506EXPORT_SYMBOL(skb_unlink); 2507 2508/** 2509 * skb_append - append a buffer 2510 * @old: buffer to insert after 2511 * @newsk: buffer to insert 2512 * @list: list to use 2513 * 2514 * Place a packet after a given packet in a list. The list locks are taken 2515 * and this function is atomic with respect to other list locked calls. 2516 * A buffer cannot be placed on two lists at the same time. 2517 */ 2518void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 2519{ 2520 unsigned long flags; 2521 2522 spin_lock_irqsave(&list->lock, flags); 2523 __skb_queue_after(list, old, newsk); 2524 spin_unlock_irqrestore(&list->lock, flags); 2525} 2526EXPORT_SYMBOL(skb_append); 2527 2528/** 2529 * skb_insert - insert a buffer 2530 * @old: buffer to insert before 2531 * @newsk: buffer to insert 2532 * @list: list to use 2533 * 2534 * Place a packet before a given packet in a list. The list locks are 2535 * taken and this function is atomic with respect to other list locked 2536 * calls. 2537 * 2538 * A buffer cannot be placed on two lists at the same time. 2539 */ 2540void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 2541{ 2542 unsigned long flags; 2543 2544 spin_lock_irqsave(&list->lock, flags); 2545 __skb_insert(newsk, old->prev, old, list); 2546 spin_unlock_irqrestore(&list->lock, flags); 2547} 2548EXPORT_SYMBOL(skb_insert); 2549 2550static inline void skb_split_inside_header(struct sk_buff *skb, 2551 struct sk_buff* skb1, 2552 const u32 len, const int pos) 2553{ 2554 int i; 2555 2556 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len), 2557 pos - len); 2558 /* And move data appendix as is. */ 2559 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 2560 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i]; 2561 2562 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags; 2563 skb_shinfo(skb)->nr_frags = 0; 2564 skb1->data_len = skb->data_len; 2565 skb1->len += skb1->data_len; 2566 skb->data_len = 0; 2567 skb->len = len; 2568 skb_set_tail_pointer(skb, len); 2569} 2570 2571static inline void skb_split_no_header(struct sk_buff *skb, 2572 struct sk_buff* skb1, 2573 const u32 len, int pos) 2574{ 2575 int i, k = 0; 2576 const int nfrags = skb_shinfo(skb)->nr_frags; 2577 2578 skb_shinfo(skb)->nr_frags = 0; 2579 skb1->len = skb1->data_len = skb->len - len; 2580 skb->len = len; 2581 skb->data_len = len - pos; 2582 2583 for (i = 0; i < nfrags; i++) { 2584 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2585 2586 if (pos + size > len) { 2587 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i]; 2588 2589 if (pos < len) { 2590 /* Split frag. 2591 * We have two variants in this case: 2592 * 1. Move all the frag to the second 2593 * part, if it is possible. F.e. 2594 * this approach is mandatory for TUX, 2595 * where splitting is expensive. 2596 * 2. Split is accurately. We make this. 2597 */ 2598 skb_frag_ref(skb, i); 2599 skb_shinfo(skb1)->frags[0].page_offset += len - pos; 2600 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos); 2601 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos); 2602 skb_shinfo(skb)->nr_frags++; 2603 } 2604 k++; 2605 } else 2606 skb_shinfo(skb)->nr_frags++; 2607 pos += size; 2608 } 2609 skb_shinfo(skb1)->nr_frags = k; 2610} 2611 2612/** 2613 * skb_split - Split fragmented skb to two parts at length len. 2614 * @skb: the buffer to split 2615 * @skb1: the buffer to receive the second part 2616 * @len: new length for skb 2617 */ 2618void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len) 2619{ 2620 int pos = skb_headlen(skb); 2621 2622 skb_shinfo(skb1)->tx_flags = skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG; 2623 if (len < pos) /* Split line is inside header. */ 2624 skb_split_inside_header(skb, skb1, len, pos); 2625 else /* Second chunk has no header, nothing to copy. */ 2626 skb_split_no_header(skb, skb1, len, pos); 2627} 2628EXPORT_SYMBOL(skb_split); 2629 2630/* Shifting from/to a cloned skb is a no-go. 2631 * 2632 * Caller cannot keep skb_shinfo related pointers past calling here! 2633 */ 2634static int skb_prepare_for_shift(struct sk_buff *skb) 2635{ 2636 return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2637} 2638 2639/** 2640 * skb_shift - Shifts paged data partially from skb to another 2641 * @tgt: buffer into which tail data gets added 2642 * @skb: buffer from which the paged data comes from 2643 * @shiftlen: shift up to this many bytes 2644 * 2645 * Attempts to shift up to shiftlen worth of bytes, which may be less than 2646 * the length of the skb, from skb to tgt. Returns number bytes shifted. 2647 * It's up to caller to free skb if everything was shifted. 2648 * 2649 * If @tgt runs out of frags, the whole operation is aborted. 2650 * 2651 * Skb cannot include anything else but paged data while tgt is allowed 2652 * to have non-paged data as well. 2653 * 2654 * TODO: full sized shift could be optimized but that would need 2655 * specialized skb free'er to handle frags without up-to-date nr_frags. 2656 */ 2657int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen) 2658{ 2659 int from, to, merge, todo; 2660 struct skb_frag_struct *fragfrom, *fragto; 2661 2662 BUG_ON(shiftlen > skb->len); 2663 2664 if (skb_headlen(skb)) 2665 return 0; 2666 2667 todo = shiftlen; 2668 from = 0; 2669 to = skb_shinfo(tgt)->nr_frags; 2670 fragfrom = &skb_shinfo(skb)->frags[from]; 2671 2672 /* Actual merge is delayed until the point when we know we can 2673 * commit all, so that we don't have to undo partial changes 2674 */ 2675 if (!to || 2676 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom), 2677 fragfrom->page_offset)) { 2678 merge = -1; 2679 } else { 2680 merge = to - 1; 2681 2682 todo -= skb_frag_size(fragfrom); 2683 if (todo < 0) { 2684 if (skb_prepare_for_shift(skb) || 2685 skb_prepare_for_shift(tgt)) 2686 return 0; 2687 2688 /* All previous frag pointers might be stale! */ 2689 fragfrom = &skb_shinfo(skb)->frags[from]; 2690 fragto = &skb_shinfo(tgt)->frags[merge]; 2691 2692 skb_frag_size_add(fragto, shiftlen); 2693 skb_frag_size_sub(fragfrom, shiftlen); 2694 fragfrom->page_offset += shiftlen; 2695 2696 goto onlymerged; 2697 } 2698 2699 from++; 2700 } 2701 2702 /* Skip full, not-fitting skb to avoid expensive operations */ 2703 if ((shiftlen == skb->len) && 2704 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to)) 2705 return 0; 2706 2707 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt)) 2708 return 0; 2709 2710 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) { 2711 if (to == MAX_SKB_FRAGS) 2712 return 0; 2713 2714 fragfrom = &skb_shinfo(skb)->frags[from]; 2715 fragto = &skb_shinfo(tgt)->frags[to]; 2716 2717 if (todo >= skb_frag_size(fragfrom)) { 2718 *fragto = *fragfrom; 2719 todo -= skb_frag_size(fragfrom); 2720 from++; 2721 to++; 2722 2723 } else { 2724 __skb_frag_ref(fragfrom); 2725 fragto->page = fragfrom->page; 2726 fragto->page_offset = fragfrom->page_offset; 2727 skb_frag_size_set(fragto, todo); 2728 2729 fragfrom->page_offset += todo; 2730 skb_frag_size_sub(fragfrom, todo); 2731 todo = 0; 2732 2733 to++; 2734 break; 2735 } 2736 } 2737 2738 /* Ready to "commit" this state change to tgt */ 2739 skb_shinfo(tgt)->nr_frags = to; 2740 2741 if (merge >= 0) { 2742 fragfrom = &skb_shinfo(skb)->frags[0]; 2743 fragto = &skb_shinfo(tgt)->frags[merge]; 2744 2745 skb_frag_size_add(fragto, skb_frag_size(fragfrom)); 2746 __skb_frag_unref(fragfrom); 2747 } 2748 2749 /* Reposition in the original skb */ 2750 to = 0; 2751 while (from < skb_shinfo(skb)->nr_frags) 2752 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++]; 2753 skb_shinfo(skb)->nr_frags = to; 2754 2755 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags); 2756 2757onlymerged: 2758 /* Most likely the tgt won't ever need its checksum anymore, skb on 2759 * the other hand might need it if it needs to be resent 2760 */ 2761 tgt->ip_summed = CHECKSUM_PARTIAL; 2762 skb->ip_summed = CHECKSUM_PARTIAL; 2763 2764 /* Yak, is it really working this way? Some helper please? */ 2765 skb->len -= shiftlen; 2766 skb->data_len -= shiftlen; 2767 skb->truesize -= shiftlen; 2768 tgt->len += shiftlen; 2769 tgt->data_len += shiftlen; 2770 tgt->truesize += shiftlen; 2771 2772 return shiftlen; 2773} 2774 2775/** 2776 * skb_prepare_seq_read - Prepare a sequential read of skb data 2777 * @skb: the buffer to read 2778 * @from: lower offset of data to be read 2779 * @to: upper offset of data to be read 2780 * @st: state variable 2781 * 2782 * Initializes the specified state variable. Must be called before 2783 * invoking skb_seq_read() for the first time. 2784 */ 2785void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 2786 unsigned int to, struct skb_seq_state *st) 2787{ 2788 st->lower_offset = from; 2789 st->upper_offset = to; 2790 st->root_skb = st->cur_skb = skb; 2791 st->frag_idx = st->stepped_offset = 0; 2792 st->frag_data = NULL; 2793} 2794EXPORT_SYMBOL(skb_prepare_seq_read); 2795 2796/** 2797 * skb_seq_read - Sequentially read skb data 2798 * @consumed: number of bytes consumed by the caller so far 2799 * @data: destination pointer for data to be returned 2800 * @st: state variable 2801 * 2802 * Reads a block of skb data at @consumed relative to the 2803 * lower offset specified to skb_prepare_seq_read(). Assigns 2804 * the head of the data block to @data and returns the length 2805 * of the block or 0 if the end of the skb data or the upper 2806 * offset has been reached. 2807 * 2808 * The caller is not required to consume all of the data 2809 * returned, i.e. @consumed is typically set to the number 2810 * of bytes already consumed and the next call to 2811 * skb_seq_read() will return the remaining part of the block. 2812 * 2813 * Note 1: The size of each block of data returned can be arbitrary, 2814 * this limitation is the cost for zerocopy sequential 2815 * reads of potentially non linear data. 2816 * 2817 * Note 2: Fragment lists within fragments are not implemented 2818 * at the moment, state->root_skb could be replaced with 2819 * a stack for this purpose. 2820 */ 2821unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 2822 struct skb_seq_state *st) 2823{ 2824 unsigned int block_limit, abs_offset = consumed + st->lower_offset; 2825 skb_frag_t *frag; 2826 2827 if (unlikely(abs_offset >= st->upper_offset)) { 2828 if (st->frag_data) { 2829 kunmap_atomic(st->frag_data); 2830 st->frag_data = NULL; 2831 } 2832 return 0; 2833 } 2834 2835next_skb: 2836 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset; 2837 2838 if (abs_offset < block_limit && !st->frag_data) { 2839 *data = st->cur_skb->data + (abs_offset - st->stepped_offset); 2840 return block_limit - abs_offset; 2841 } 2842 2843 if (st->frag_idx == 0 && !st->frag_data) 2844 st->stepped_offset += skb_headlen(st->cur_skb); 2845 2846 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) { 2847 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx]; 2848 block_limit = skb_frag_size(frag) + st->stepped_offset; 2849 2850 if (abs_offset < block_limit) { 2851 if (!st->frag_data) 2852 st->frag_data = kmap_atomic(skb_frag_page(frag)); 2853 2854 *data = (u8 *) st->frag_data + frag->page_offset + 2855 (abs_offset - st->stepped_offset); 2856 2857 return block_limit - abs_offset; 2858 } 2859 2860 if (st->frag_data) { 2861 kunmap_atomic(st->frag_data); 2862 st->frag_data = NULL; 2863 } 2864 2865 st->frag_idx++; 2866 st->stepped_offset += skb_frag_size(frag); 2867 } 2868 2869 if (st->frag_data) { 2870 kunmap_atomic(st->frag_data); 2871 st->frag_data = NULL; 2872 } 2873 2874 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) { 2875 st->cur_skb = skb_shinfo(st->root_skb)->frag_list; 2876 st->frag_idx = 0; 2877 goto next_skb; 2878 } else if (st->cur_skb->next) { 2879 st->cur_skb = st->cur_skb->next; 2880 st->frag_idx = 0; 2881 goto next_skb; 2882 } 2883 2884 return 0; 2885} 2886EXPORT_SYMBOL(skb_seq_read); 2887 2888/** 2889 * skb_abort_seq_read - Abort a sequential read of skb data 2890 * @st: state variable 2891 * 2892 * Must be called if skb_seq_read() was not called until it 2893 * returned 0. 2894 */ 2895void skb_abort_seq_read(struct skb_seq_state *st) 2896{ 2897 if (st->frag_data) 2898 kunmap_atomic(st->frag_data); 2899} 2900EXPORT_SYMBOL(skb_abort_seq_read); 2901 2902#define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb)) 2903 2904static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text, 2905 struct ts_config *conf, 2906 struct ts_state *state) 2907{ 2908 return skb_seq_read(offset, text, TS_SKB_CB(state)); 2909} 2910 2911static void skb_ts_finish(struct ts_config *conf, struct ts_state *state) 2912{ 2913 skb_abort_seq_read(TS_SKB_CB(state)); 2914} 2915 2916/** 2917 * skb_find_text - Find a text pattern in skb data 2918 * @skb: the buffer to look in 2919 * @from: search offset 2920 * @to: search limit 2921 * @config: textsearch configuration 2922 * 2923 * Finds a pattern in the skb data according to the specified 2924 * textsearch configuration. Use textsearch_next() to retrieve 2925 * subsequent occurrences of the pattern. Returns the offset 2926 * to the first occurrence or UINT_MAX if no match was found. 2927 */ 2928unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 2929 unsigned int to, struct ts_config *config) 2930{ 2931 struct ts_state state; 2932 unsigned int ret; 2933 2934 config->get_next_block = skb_ts_get_next_block; 2935 config->finish = skb_ts_finish; 2936 2937 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state)); 2938 2939 ret = textsearch_find(config, &state); 2940 return (ret <= to - from ? ret : UINT_MAX); 2941} 2942EXPORT_SYMBOL(skb_find_text); 2943 2944/** 2945 * skb_append_datato_frags - append the user data to a skb 2946 * @sk: sock structure 2947 * @skb: skb structure to be appended with user data. 2948 * @getfrag: call back function to be used for getting the user data 2949 * @from: pointer to user message iov 2950 * @length: length of the iov message 2951 * 2952 * Description: This procedure append the user data in the fragment part 2953 * of the skb if any page alloc fails user this procedure returns -ENOMEM 2954 */ 2955int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb, 2956 int (*getfrag)(void *from, char *to, int offset, 2957 int len, int odd, struct sk_buff *skb), 2958 void *from, int length) 2959{ 2960 int frg_cnt = skb_shinfo(skb)->nr_frags; 2961 int copy; 2962 int offset = 0; 2963 int ret; 2964 struct page_frag *pfrag = &current->task_frag; 2965 2966 do { 2967 /* Return error if we don't have space for new frag */ 2968 if (frg_cnt >= MAX_SKB_FRAGS) 2969 return -EMSGSIZE; 2970 2971 if (!sk_page_frag_refill(sk, pfrag)) 2972 return -ENOMEM; 2973 2974 /* copy the user data to page */ 2975 copy = min_t(int, length, pfrag->size - pfrag->offset); 2976 2977 ret = getfrag(from, page_address(pfrag->page) + pfrag->offset, 2978 offset, copy, 0, skb); 2979 if (ret < 0) 2980 return -EFAULT; 2981 2982 /* copy was successful so update the size parameters */ 2983 skb_fill_page_desc(skb, frg_cnt, pfrag->page, pfrag->offset, 2984 copy); 2985 frg_cnt++; 2986 pfrag->offset += copy; 2987 get_page(pfrag->page); 2988 2989 skb->truesize += copy; 2990 atomic_add(copy, &sk->sk_wmem_alloc); 2991 skb->len += copy; 2992 skb->data_len += copy; 2993 offset += copy; 2994 length -= copy; 2995 2996 } while (length > 0); 2997 2998 return 0; 2999} 3000EXPORT_SYMBOL(skb_append_datato_frags); 3001 3002int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 3003 int offset, size_t size) 3004{ 3005 int i = skb_shinfo(skb)->nr_frags; 3006 3007 if (skb_can_coalesce(skb, i, page, offset)) { 3008 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size); 3009 } else if (i < MAX_SKB_FRAGS) { 3010 get_page(page); 3011 skb_fill_page_desc(skb, i, page, offset, size); 3012 } else { 3013 return -EMSGSIZE; 3014 } 3015 3016 return 0; 3017} 3018EXPORT_SYMBOL_GPL(skb_append_pagefrags); 3019 3020/** 3021 * skb_pull_rcsum - pull skb and update receive checksum 3022 * @skb: buffer to update 3023 * @len: length of data pulled 3024 * 3025 * This function performs an skb_pull on the packet and updates 3026 * the CHECKSUM_COMPLETE checksum. It should be used on 3027 * receive path processing instead of skb_pull unless you know 3028 * that the checksum difference is zero (e.g., a valid IP header) 3029 * or you are setting ip_summed to CHECKSUM_NONE. 3030 */ 3031unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len) 3032{ 3033 unsigned char *data = skb->data; 3034 3035 BUG_ON(len > skb->len); 3036 __skb_pull(skb, len); 3037 skb_postpull_rcsum(skb, data, len); 3038 return skb->data; 3039} 3040EXPORT_SYMBOL_GPL(skb_pull_rcsum); 3041 3042/** 3043 * skb_segment - Perform protocol segmentation on skb. 3044 * @head_skb: buffer to segment 3045 * @features: features for the output path (see dev->features) 3046 * 3047 * This function performs segmentation on the given skb. It returns 3048 * a pointer to the first in a list of new skbs for the segments. 3049 * In case of error it returns ERR_PTR(err). 3050 */ 3051struct sk_buff *skb_segment(struct sk_buff *head_skb, 3052 netdev_features_t features) 3053{ 3054 struct sk_buff *segs = NULL; 3055 struct sk_buff *tail = NULL; 3056 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list; 3057 skb_frag_t *frag = skb_shinfo(head_skb)->frags; 3058 unsigned int mss = skb_shinfo(head_skb)->gso_size; 3059 unsigned int doffset = head_skb->data - skb_mac_header(head_skb); 3060 struct sk_buff *frag_skb = head_skb; 3061 unsigned int offset = doffset; 3062 unsigned int tnl_hlen = skb_tnl_header_len(head_skb); 3063 unsigned int partial_segs = 0; 3064 unsigned int headroom; 3065 unsigned int len = head_skb->len; 3066 __be16 proto; 3067 bool csum, sg; 3068 int nfrags = skb_shinfo(head_skb)->nr_frags; 3069 int err = -ENOMEM; 3070 int i = 0; 3071 int pos; 3072 int dummy; 3073 3074 __skb_push(head_skb, doffset); 3075 proto = skb_network_protocol(head_skb, &dummy); 3076 if (unlikely(!proto)) 3077 return ERR_PTR(-EINVAL); 3078 3079 sg = !!(features & NETIF_F_SG); 3080 csum = !!can_checksum_protocol(features, proto); 3081 3082 if (sg && csum && (mss != GSO_BY_FRAGS)) { 3083 if (!(features & NETIF_F_GSO_PARTIAL)) { 3084 struct sk_buff *iter; 3085 unsigned int frag_len; 3086 3087 if (!list_skb || 3088 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type)) 3089 goto normal; 3090 3091 /* If we get here then all the required 3092 * GSO features except frag_list are supported. 3093 * Try to split the SKB to multiple GSO SKBs 3094 * with no frag_list. 3095 * Currently we can do that only when the buffers don't 3096 * have a linear part and all the buffers except 3097 * the last are of the same length. 3098 */ 3099 frag_len = list_skb->len; 3100 skb_walk_frags(head_skb, iter) { 3101 if (frag_len != iter->len && iter->next) 3102 goto normal; 3103 if (skb_headlen(iter)) 3104 goto normal; 3105 3106 len -= iter->len; 3107 } 3108 3109 if (len != frag_len) 3110 goto normal; 3111 } 3112 3113 /* GSO partial only requires that we trim off any excess that 3114 * doesn't fit into an MSS sized block, so take care of that 3115 * now. 3116 */ 3117 partial_segs = len / mss; 3118 if (partial_segs > 1) 3119 mss *= partial_segs; 3120 else 3121 partial_segs = 0; 3122 } 3123 3124normal: 3125 headroom = skb_headroom(head_skb); 3126 pos = skb_headlen(head_skb); 3127 3128 do { 3129 struct sk_buff *nskb; 3130 skb_frag_t *nskb_frag; 3131 int hsize; 3132 int size; 3133 3134 if (unlikely(mss == GSO_BY_FRAGS)) { 3135 len = list_skb->len; 3136 } else { 3137 len = head_skb->len - offset; 3138 if (len > mss) 3139 len = mss; 3140 } 3141 3142 hsize = skb_headlen(head_skb) - offset; 3143 if (hsize < 0) 3144 hsize = 0; 3145 if (hsize > len || !sg) 3146 hsize = len; 3147 3148 if (!hsize && i >= nfrags && skb_headlen(list_skb) && 3149 (skb_headlen(list_skb) == len || sg)) { 3150 BUG_ON(skb_headlen(list_skb) > len); 3151 3152 i = 0; 3153 nfrags = skb_shinfo(list_skb)->nr_frags; 3154 frag = skb_shinfo(list_skb)->frags; 3155 frag_skb = list_skb; 3156 pos += skb_headlen(list_skb); 3157 3158 while (pos < offset + len) { 3159 BUG_ON(i >= nfrags); 3160 3161 size = skb_frag_size(frag); 3162 if (pos + size > offset + len) 3163 break; 3164 3165 i++; 3166 pos += size; 3167 frag++; 3168 } 3169 3170 nskb = skb_clone(list_skb, GFP_ATOMIC); 3171 list_skb = list_skb->next; 3172 3173 if (unlikely(!nskb)) 3174 goto err; 3175 3176 if (unlikely(pskb_trim(nskb, len))) { 3177 kfree_skb(nskb); 3178 goto err; 3179 } 3180 3181 hsize = skb_end_offset(nskb); 3182 if (skb_cow_head(nskb, doffset + headroom)) { 3183 kfree_skb(nskb); 3184 goto err; 3185 } 3186 3187 nskb->truesize += skb_end_offset(nskb) - hsize; 3188 skb_release_head_state(nskb); 3189 __skb_push(nskb, doffset); 3190 } else { 3191 nskb = __alloc_skb(hsize + doffset + headroom, 3192 GFP_ATOMIC, skb_alloc_rx_flag(head_skb), 3193 NUMA_NO_NODE); 3194 3195 if (unlikely(!nskb)) 3196 goto err; 3197 3198 skb_reserve(nskb, headroom); 3199 __skb_put(nskb, doffset); 3200 } 3201 3202 if (segs) 3203 tail->next = nskb; 3204 else 3205 segs = nskb; 3206 tail = nskb; 3207 3208 __copy_skb_header(nskb, head_skb); 3209 3210 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom); 3211 skb_reset_mac_len(nskb); 3212 3213 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen, 3214 nskb->data - tnl_hlen, 3215 doffset + tnl_hlen); 3216 3217 if (nskb->len == len + doffset) 3218 goto perform_csum_check; 3219 3220 if (!sg) { 3221 if (!nskb->remcsum_offload) 3222 nskb->ip_summed = CHECKSUM_NONE; 3223 SKB_GSO_CB(nskb)->csum = 3224 skb_copy_and_csum_bits(head_skb, offset, 3225 skb_put(nskb, len), 3226 len, 0); 3227 SKB_GSO_CB(nskb)->csum_start = 3228 skb_headroom(nskb) + doffset; 3229 continue; 3230 } 3231 3232 nskb_frag = skb_shinfo(nskb)->frags; 3233 3234 skb_copy_from_linear_data_offset(head_skb, offset, 3235 skb_put(nskb, hsize), hsize); 3236 3237 skb_shinfo(nskb)->tx_flags = skb_shinfo(head_skb)->tx_flags & 3238 SKBTX_SHARED_FRAG; 3239 3240 while (pos < offset + len) { 3241 if (i >= nfrags) { 3242 BUG_ON(skb_headlen(list_skb)); 3243 3244 i = 0; 3245 nfrags = skb_shinfo(list_skb)->nr_frags; 3246 frag = skb_shinfo(list_skb)->frags; 3247 frag_skb = list_skb; 3248 3249 BUG_ON(!nfrags); 3250 3251 list_skb = list_skb->next; 3252 } 3253 3254 if (unlikely(skb_shinfo(nskb)->nr_frags >= 3255 MAX_SKB_FRAGS)) { 3256 net_warn_ratelimited( 3257 "skb_segment: too many frags: %u %u\n", 3258 pos, mss); 3259 goto err; 3260 } 3261 3262 if (unlikely(skb_orphan_frags(frag_skb, GFP_ATOMIC))) 3263 goto err; 3264 3265 *nskb_frag = *frag; 3266 __skb_frag_ref(nskb_frag); 3267 size = skb_frag_size(nskb_frag); 3268 3269 if (pos < offset) { 3270 nskb_frag->page_offset += offset - pos; 3271 skb_frag_size_sub(nskb_frag, offset - pos); 3272 } 3273 3274 skb_shinfo(nskb)->nr_frags++; 3275 3276 if (pos + size <= offset + len) { 3277 i++; 3278 frag++; 3279 pos += size; 3280 } else { 3281 skb_frag_size_sub(nskb_frag, pos + size - (offset + len)); 3282 goto skip_fraglist; 3283 } 3284 3285 nskb_frag++; 3286 } 3287 3288skip_fraglist: 3289 nskb->data_len = len - hsize; 3290 nskb->len += nskb->data_len; 3291 nskb->truesize += nskb->data_len; 3292 3293perform_csum_check: 3294 if (!csum) { 3295 if (skb_has_shared_frag(nskb)) { 3296 err = __skb_linearize(nskb); 3297 if (err) 3298 goto err; 3299 } 3300 if (!nskb->remcsum_offload) 3301 nskb->ip_summed = CHECKSUM_NONE; 3302 SKB_GSO_CB(nskb)->csum = 3303 skb_checksum(nskb, doffset, 3304 nskb->len - doffset, 0); 3305 SKB_GSO_CB(nskb)->csum_start = 3306 skb_headroom(nskb) + doffset; 3307 } 3308 } while ((offset += len) < head_skb->len); 3309 3310 /* Some callers want to get the end of the list. 3311 * Put it in segs->prev to avoid walking the list. 3312 * (see validate_xmit_skb_list() for example) 3313 */ 3314 segs->prev = tail; 3315 3316 if (partial_segs) { 3317 struct sk_buff *iter; 3318 int type = skb_shinfo(head_skb)->gso_type; 3319 unsigned short gso_size = skb_shinfo(head_skb)->gso_size; 3320 3321 /* Update type to add partial and then remove dodgy if set */ 3322 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL; 3323 type &= ~SKB_GSO_DODGY; 3324 3325 /* Update GSO info and prepare to start updating headers on 3326 * our way back down the stack of protocols. 3327 */ 3328 for (iter = segs; iter; iter = iter->next) { 3329 skb_shinfo(iter)->gso_size = gso_size; 3330 skb_shinfo(iter)->gso_segs = partial_segs; 3331 skb_shinfo(iter)->gso_type = type; 3332 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset; 3333 } 3334 3335 if (tail->len - doffset <= gso_size) 3336 skb_shinfo(tail)->gso_size = 0; 3337 else if (tail != segs) 3338 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size); 3339 } 3340 3341 /* Following permits correct backpressure, for protocols 3342 * using skb_set_owner_w(). 3343 * Idea is to tranfert ownership from head_skb to last segment. 3344 */ 3345 if (head_skb->destructor == sock_wfree) { 3346 swap(tail->truesize, head_skb->truesize); 3347 swap(tail->destructor, head_skb->destructor); 3348 swap(tail->sk, head_skb->sk); 3349 } 3350 return segs; 3351 3352err: 3353 kfree_skb_list(segs); 3354 return ERR_PTR(err); 3355} 3356EXPORT_SYMBOL_GPL(skb_segment); 3357 3358int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb) 3359{ 3360 struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb); 3361 unsigned int offset = skb_gro_offset(skb); 3362 unsigned int headlen = skb_headlen(skb); 3363 unsigned int len = skb_gro_len(skb); 3364 struct sk_buff *lp, *p = *head; 3365 unsigned int delta_truesize; 3366 3367 if (unlikely(p->len + len >= 65536)) 3368 return -E2BIG; 3369 3370 lp = NAPI_GRO_CB(p)->last; 3371 pinfo = skb_shinfo(lp); 3372 3373 if (headlen <= offset) { 3374 skb_frag_t *frag; 3375 skb_frag_t *frag2; 3376 int i = skbinfo->nr_frags; 3377 int nr_frags = pinfo->nr_frags + i; 3378 3379 if (nr_frags > MAX_SKB_FRAGS) 3380 goto merge; 3381 3382 offset -= headlen; 3383 pinfo->nr_frags = nr_frags; 3384 skbinfo->nr_frags = 0; 3385 3386 frag = pinfo->frags + nr_frags; 3387 frag2 = skbinfo->frags + i; 3388 do { 3389 *--frag = *--frag2; 3390 } while (--i); 3391 3392 frag->page_offset += offset; 3393 skb_frag_size_sub(frag, offset); 3394 3395 /* all fragments truesize : remove (head size + sk_buff) */ 3396 delta_truesize = skb->truesize - 3397 SKB_TRUESIZE(skb_end_offset(skb)); 3398 3399 skb->truesize -= skb->data_len; 3400 skb->len -= skb->data_len; 3401 skb->data_len = 0; 3402 3403 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE; 3404 goto done; 3405 } else if (skb->head_frag) { 3406 int nr_frags = pinfo->nr_frags; 3407 skb_frag_t *frag = pinfo->frags + nr_frags; 3408 struct page *page = virt_to_head_page(skb->head); 3409 unsigned int first_size = headlen - offset; 3410 unsigned int first_offset; 3411 3412 if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS) 3413 goto merge; 3414 3415 first_offset = skb->data - 3416 (unsigned char *)page_address(page) + 3417 offset; 3418 3419 pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags; 3420 3421 frag->page.p = page; 3422 frag->page_offset = first_offset; 3423 skb_frag_size_set(frag, first_size); 3424 3425 memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags); 3426 /* We dont need to clear skbinfo->nr_frags here */ 3427 3428 delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 3429 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD; 3430 goto done; 3431 } 3432 3433merge: 3434 delta_truesize = skb->truesize; 3435 if (offset > headlen) { 3436 unsigned int eat = offset - headlen; 3437 3438 skbinfo->frags[0].page_offset += eat; 3439 skb_frag_size_sub(&skbinfo->frags[0], eat); 3440 skb->data_len -= eat; 3441 skb->len -= eat; 3442 offset = headlen; 3443 } 3444 3445 __skb_pull(skb, offset); 3446 3447 if (NAPI_GRO_CB(p)->last == p) 3448 skb_shinfo(p)->frag_list = skb; 3449 else 3450 NAPI_GRO_CB(p)->last->next = skb; 3451 NAPI_GRO_CB(p)->last = skb; 3452 __skb_header_release(skb); 3453 lp = p; 3454 3455done: 3456 NAPI_GRO_CB(p)->count++; 3457 p->data_len += len; 3458 p->truesize += delta_truesize; 3459 p->len += len; 3460 if (lp != p) { 3461 lp->data_len += len; 3462 lp->truesize += delta_truesize; 3463 lp->len += len; 3464 } 3465 NAPI_GRO_CB(skb)->same_flow = 1; 3466 return 0; 3467} 3468EXPORT_SYMBOL_GPL(skb_gro_receive); 3469 3470void __init skb_init(void) 3471{ 3472 skbuff_head_cache = kmem_cache_create("skbuff_head_cache", 3473 sizeof(struct sk_buff), 3474 0, 3475 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 3476 NULL); 3477 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache", 3478 sizeof(struct sk_buff_fclones), 3479 0, 3480 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 3481 NULL); 3482} 3483 3484/** 3485 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer 3486 * @skb: Socket buffer containing the buffers to be mapped 3487 * @sg: The scatter-gather list to map into 3488 * @offset: The offset into the buffer's contents to start mapping 3489 * @len: Length of buffer space to be mapped 3490 * 3491 * Fill the specified scatter-gather list with mappings/pointers into a 3492 * region of the buffer space attached to a socket buffer. 3493 */ 3494static int 3495__skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 3496{ 3497 int start = skb_headlen(skb); 3498 int i, copy = start - offset; 3499 struct sk_buff *frag_iter; 3500 int elt = 0; 3501 3502 if (copy > 0) { 3503 if (copy > len) 3504 copy = len; 3505 sg_set_buf(sg, skb->data + offset, copy); 3506 elt++; 3507 if ((len -= copy) == 0) 3508 return elt; 3509 offset += copy; 3510 } 3511 3512 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3513 int end; 3514 3515 WARN_ON(start > offset + len); 3516 3517 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 3518 if ((copy = end - offset) > 0) { 3519 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3520 3521 if (copy > len) 3522 copy = len; 3523 sg_set_page(&sg[elt], skb_frag_page(frag), copy, 3524 frag->page_offset+offset-start); 3525 elt++; 3526 if (!(len -= copy)) 3527 return elt; 3528 offset += copy; 3529 } 3530 start = end; 3531 } 3532 3533 skb_walk_frags(skb, frag_iter) { 3534 int end; 3535 3536 WARN_ON(start > offset + len); 3537 3538 end = start + frag_iter->len; 3539 if ((copy = end - offset) > 0) { 3540 if (copy > len) 3541 copy = len; 3542 elt += __skb_to_sgvec(frag_iter, sg+elt, offset - start, 3543 copy); 3544 if ((len -= copy) == 0) 3545 return elt; 3546 offset += copy; 3547 } 3548 start = end; 3549 } 3550 BUG_ON(len); 3551 return elt; 3552} 3553 3554/* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given 3555 * sglist without mark the sg which contain last skb data as the end. 3556 * So the caller can mannipulate sg list as will when padding new data after 3557 * the first call without calling sg_unmark_end to expend sg list. 3558 * 3559 * Scenario to use skb_to_sgvec_nomark: 3560 * 1. sg_init_table 3561 * 2. skb_to_sgvec_nomark(payload1) 3562 * 3. skb_to_sgvec_nomark(payload2) 3563 * 3564 * This is equivalent to: 3565 * 1. sg_init_table 3566 * 2. skb_to_sgvec(payload1) 3567 * 3. sg_unmark_end 3568 * 4. skb_to_sgvec(payload2) 3569 * 3570 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark 3571 * is more preferable. 3572 */ 3573int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 3574 int offset, int len) 3575{ 3576 return __skb_to_sgvec(skb, sg, offset, len); 3577} 3578EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark); 3579 3580int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 3581{ 3582 int nsg = __skb_to_sgvec(skb, sg, offset, len); 3583 3584 sg_mark_end(&sg[nsg - 1]); 3585 3586 return nsg; 3587} 3588EXPORT_SYMBOL_GPL(skb_to_sgvec); 3589 3590/** 3591 * skb_cow_data - Check that a socket buffer's data buffers are writable 3592 * @skb: The socket buffer to check. 3593 * @tailbits: Amount of trailing space to be added 3594 * @trailer: Returned pointer to the skb where the @tailbits space begins 3595 * 3596 * Make sure that the data buffers attached to a socket buffer are 3597 * writable. If they are not, private copies are made of the data buffers 3598 * and the socket buffer is set to use these instead. 3599 * 3600 * If @tailbits is given, make sure that there is space to write @tailbits 3601 * bytes of data beyond current end of socket buffer. @trailer will be 3602 * set to point to the skb in which this space begins. 3603 * 3604 * The number of scatterlist elements required to completely map the 3605 * COW'd and extended socket buffer will be returned. 3606 */ 3607int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer) 3608{ 3609 int copyflag; 3610 int elt; 3611 struct sk_buff *skb1, **skb_p; 3612 3613 /* If skb is cloned or its head is paged, reallocate 3614 * head pulling out all the pages (pages are considered not writable 3615 * at the moment even if they are anonymous). 3616 */ 3617 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) && 3618 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL) 3619 return -ENOMEM; 3620 3621 /* Easy case. Most of packets will go this way. */ 3622 if (!skb_has_frag_list(skb)) { 3623 /* A little of trouble, not enough of space for trailer. 3624 * This should not happen, when stack is tuned to generate 3625 * good frames. OK, on miss we reallocate and reserve even more 3626 * space, 128 bytes is fair. */ 3627 3628 if (skb_tailroom(skb) < tailbits && 3629 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC)) 3630 return -ENOMEM; 3631 3632 /* Voila! */ 3633 *trailer = skb; 3634 return 1; 3635 } 3636 3637 /* Misery. We are in troubles, going to mincer fragments... */ 3638 3639 elt = 1; 3640 skb_p = &skb_shinfo(skb)->frag_list; 3641 copyflag = 0; 3642 3643 while ((skb1 = *skb_p) != NULL) { 3644 int ntail = 0; 3645 3646 /* The fragment is partially pulled by someone, 3647 * this can happen on input. Copy it and everything 3648 * after it. */ 3649 3650 if (skb_shared(skb1)) 3651 copyflag = 1; 3652 3653 /* If the skb is the last, worry about trailer. */ 3654 3655 if (skb1->next == NULL && tailbits) { 3656 if (skb_shinfo(skb1)->nr_frags || 3657 skb_has_frag_list(skb1) || 3658 skb_tailroom(skb1) < tailbits) 3659 ntail = tailbits + 128; 3660 } 3661 3662 if (copyflag || 3663 skb_cloned(skb1) || 3664 ntail || 3665 skb_shinfo(skb1)->nr_frags || 3666 skb_has_frag_list(skb1)) { 3667 struct sk_buff *skb2; 3668 3669 /* Fuck, we are miserable poor guys... */ 3670 if (ntail == 0) 3671 skb2 = skb_copy(skb1, GFP_ATOMIC); 3672 else 3673 skb2 = skb_copy_expand(skb1, 3674 skb_headroom(skb1), 3675 ntail, 3676 GFP_ATOMIC); 3677 if (unlikely(skb2 == NULL)) 3678 return -ENOMEM; 3679 3680 if (skb1->sk) 3681 skb_set_owner_w(skb2, skb1->sk); 3682 3683 /* Looking around. Are we still alive? 3684 * OK, link new skb, drop old one */ 3685 3686 skb2->next = skb1->next; 3687 *skb_p = skb2; 3688 kfree_skb(skb1); 3689 skb1 = skb2; 3690 } 3691 elt++; 3692 *trailer = skb1; 3693 skb_p = &skb1->next; 3694 } 3695 3696 return elt; 3697} 3698EXPORT_SYMBOL_GPL(skb_cow_data); 3699 3700static void sock_rmem_free(struct sk_buff *skb) 3701{ 3702 struct sock *sk = skb->sk; 3703 3704 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 3705} 3706 3707static void skb_set_err_queue(struct sk_buff *skb) 3708{ 3709 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING. 3710 * So, it is safe to (mis)use it to mark skbs on the error queue. 3711 */ 3712 skb->pkt_type = PACKET_OUTGOING; 3713 BUILD_BUG_ON(PACKET_OUTGOING == 0); 3714} 3715 3716/* 3717 * Note: We dont mem charge error packets (no sk_forward_alloc changes) 3718 */ 3719int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb) 3720{ 3721 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >= 3722 (unsigned int)sk->sk_rcvbuf) 3723 return -ENOMEM; 3724 3725 skb_orphan(skb); 3726 skb->sk = sk; 3727 skb->destructor = sock_rmem_free; 3728 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 3729 skb_set_err_queue(skb); 3730 3731 /* before exiting rcu section, make sure dst is refcounted */ 3732 skb_dst_force(skb); 3733 3734 skb_queue_tail(&sk->sk_error_queue, skb); 3735 if (!sock_flag(sk, SOCK_DEAD)) 3736 sk->sk_data_ready(sk); 3737 return 0; 3738} 3739EXPORT_SYMBOL(sock_queue_err_skb); 3740 3741static bool is_icmp_err_skb(const struct sk_buff *skb) 3742{ 3743 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP || 3744 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6); 3745} 3746 3747struct sk_buff *sock_dequeue_err_skb(struct sock *sk) 3748{ 3749 struct sk_buff_head *q = &sk->sk_error_queue; 3750 struct sk_buff *skb, *skb_next = NULL; 3751 bool icmp_next = false; 3752 unsigned long flags; 3753 3754 spin_lock_irqsave(&q->lock, flags); 3755 skb = __skb_dequeue(q); 3756 if (skb && (skb_next = skb_peek(q))) 3757 icmp_next = is_icmp_err_skb(skb_next); 3758 spin_unlock_irqrestore(&q->lock, flags); 3759 3760 if (is_icmp_err_skb(skb) && !icmp_next) 3761 sk->sk_err = 0; 3762 3763 if (skb_next) 3764 sk->sk_error_report(sk); 3765 3766 return skb; 3767} 3768EXPORT_SYMBOL(sock_dequeue_err_skb); 3769 3770/** 3771 * skb_clone_sk - create clone of skb, and take reference to socket 3772 * @skb: the skb to clone 3773 * 3774 * This function creates a clone of a buffer that holds a reference on 3775 * sk_refcnt. Buffers created via this function are meant to be 3776 * returned using sock_queue_err_skb, or free via kfree_skb. 3777 * 3778 * When passing buffers allocated with this function to sock_queue_err_skb 3779 * it is necessary to wrap the call with sock_hold/sock_put in order to 3780 * prevent the socket from being released prior to being enqueued on 3781 * the sk_error_queue. 3782 */ 3783struct sk_buff *skb_clone_sk(struct sk_buff *skb) 3784{ 3785 struct sock *sk = skb->sk; 3786 struct sk_buff *clone; 3787 3788 if (!sk || !atomic_inc_not_zero(&sk->sk_refcnt)) 3789 return NULL; 3790 3791 clone = skb_clone(skb, GFP_ATOMIC); 3792 if (!clone) { 3793 sock_put(sk); 3794 return NULL; 3795 } 3796 3797 clone->sk = sk; 3798 clone->destructor = sock_efree; 3799 3800 return clone; 3801} 3802EXPORT_SYMBOL(skb_clone_sk); 3803 3804static void __skb_complete_tx_timestamp(struct sk_buff *skb, 3805 struct sock *sk, 3806 int tstype, 3807 bool opt_stats) 3808{ 3809 struct sock_exterr_skb *serr; 3810 int err; 3811 3812 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb)); 3813 3814 serr = SKB_EXT_ERR(skb); 3815 memset(serr, 0, sizeof(*serr)); 3816 serr->ee.ee_errno = ENOMSG; 3817 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING; 3818 serr->ee.ee_info = tstype; 3819 serr->opt_stats = opt_stats; 3820 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0; 3821 if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) { 3822 serr->ee.ee_data = skb_shinfo(skb)->tskey; 3823 if (sk->sk_protocol == IPPROTO_TCP && 3824 sk->sk_type == SOCK_STREAM) 3825 serr->ee.ee_data -= sk->sk_tskey; 3826 } 3827 3828 err = sock_queue_err_skb(sk, skb); 3829 3830 if (err) 3831 kfree_skb(skb); 3832} 3833 3834static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly) 3835{ 3836 bool ret; 3837 3838 if (likely(sysctl_tstamp_allow_data || tsonly)) 3839 return true; 3840 3841 read_lock_bh(&sk->sk_callback_lock); 3842 ret = sk->sk_socket && sk->sk_socket->file && 3843 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW); 3844 read_unlock_bh(&sk->sk_callback_lock); 3845 return ret; 3846} 3847 3848void skb_complete_tx_timestamp(struct sk_buff *skb, 3849 struct skb_shared_hwtstamps *hwtstamps) 3850{ 3851 struct sock *sk = skb->sk; 3852 3853 if (!skb_may_tx_timestamp(sk, false)) 3854 return; 3855 3856 /* Take a reference to prevent skb_orphan() from freeing the socket, 3857 * but only if the socket refcount is not zero. 3858 */ 3859 if (likely(atomic_inc_not_zero(&sk->sk_refcnt))) { 3860 *skb_hwtstamps(skb) = *hwtstamps; 3861 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false); 3862 sock_put(sk); 3863 } 3864} 3865EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp); 3866 3867void __skb_tstamp_tx(struct sk_buff *orig_skb, 3868 struct skb_shared_hwtstamps *hwtstamps, 3869 struct sock *sk, int tstype) 3870{ 3871 struct sk_buff *skb; 3872 bool tsonly, opt_stats = false; 3873 3874 if (!sk) 3875 return; 3876 3877 tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY; 3878 if (!skb_may_tx_timestamp(sk, tsonly)) 3879 return; 3880 3881 if (tsonly) { 3882#ifdef CONFIG_INET 3883 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) && 3884 sk->sk_protocol == IPPROTO_TCP && 3885 sk->sk_type == SOCK_STREAM) { 3886 skb = tcp_get_timestamping_opt_stats(sk); 3887 opt_stats = true; 3888 } else 3889#endif 3890 skb = alloc_skb(0, GFP_ATOMIC); 3891 } else { 3892 skb = skb_clone(orig_skb, GFP_ATOMIC); 3893 } 3894 if (!skb) 3895 return; 3896 3897 if (tsonly) { 3898 skb_shinfo(skb)->tx_flags = skb_shinfo(orig_skb)->tx_flags; 3899 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey; 3900 } 3901 3902 if (hwtstamps) 3903 *skb_hwtstamps(skb) = *hwtstamps; 3904 else 3905 skb->tstamp = ktime_get_real(); 3906 3907 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats); 3908} 3909EXPORT_SYMBOL_GPL(__skb_tstamp_tx); 3910 3911void skb_tstamp_tx(struct sk_buff *orig_skb, 3912 struct skb_shared_hwtstamps *hwtstamps) 3913{ 3914 return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk, 3915 SCM_TSTAMP_SND); 3916} 3917EXPORT_SYMBOL_GPL(skb_tstamp_tx); 3918 3919void skb_complete_wifi_ack(struct sk_buff *skb, bool acked) 3920{ 3921 struct sock *sk = skb->sk; 3922 struct sock_exterr_skb *serr; 3923 int err = 1; 3924 3925 skb->wifi_acked_valid = 1; 3926 skb->wifi_acked = acked; 3927 3928 serr = SKB_EXT_ERR(skb); 3929 memset(serr, 0, sizeof(*serr)); 3930 serr->ee.ee_errno = ENOMSG; 3931 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS; 3932 3933 /* Take a reference to prevent skb_orphan() from freeing the socket, 3934 * but only if the socket refcount is not zero. 3935 */ 3936 if (likely(atomic_inc_not_zero(&sk->sk_refcnt))) { 3937 err = sock_queue_err_skb(sk, skb); 3938 sock_put(sk); 3939 } 3940 if (err) 3941 kfree_skb(skb); 3942} 3943EXPORT_SYMBOL_GPL(skb_complete_wifi_ack); 3944 3945/** 3946 * skb_partial_csum_set - set up and verify partial csum values for packet 3947 * @skb: the skb to set 3948 * @start: the number of bytes after skb->data to start checksumming. 3949 * @off: the offset from start to place the checksum. 3950 * 3951 * For untrusted partially-checksummed packets, we need to make sure the values 3952 * for skb->csum_start and skb->csum_offset are valid so we don't oops. 3953 * 3954 * This function checks and sets those values and skb->ip_summed: if this 3955 * returns false you should drop the packet. 3956 */ 3957bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off) 3958{ 3959 if (unlikely(start > skb_headlen(skb)) || 3960 unlikely((int)start + off > skb_headlen(skb) - 2)) { 3961 net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n", 3962 start, off, skb_headlen(skb)); 3963 return false; 3964 } 3965 skb->ip_summed = CHECKSUM_PARTIAL; 3966 skb->csum_start = skb_headroom(skb) + start; 3967 skb->csum_offset = off; 3968 skb_set_transport_header(skb, start); 3969 return true; 3970} 3971EXPORT_SYMBOL_GPL(skb_partial_csum_set); 3972 3973static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len, 3974 unsigned int max) 3975{ 3976 if (skb_headlen(skb) >= len) 3977 return 0; 3978 3979 /* If we need to pullup then pullup to the max, so we 3980 * won't need to do it again. 3981 */ 3982 if (max > skb->len) 3983 max = skb->len; 3984 3985 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL) 3986 return -ENOMEM; 3987 3988 if (skb_headlen(skb) < len) 3989 return -EPROTO; 3990 3991 return 0; 3992} 3993 3994#define MAX_TCP_HDR_LEN (15 * 4) 3995 3996static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb, 3997 typeof(IPPROTO_IP) proto, 3998 unsigned int off) 3999{ 4000 switch (proto) { 4001 int err; 4002 4003 case IPPROTO_TCP: 4004 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr), 4005 off + MAX_TCP_HDR_LEN); 4006 if (!err && !skb_partial_csum_set(skb, off, 4007 offsetof(struct tcphdr, 4008 check))) 4009 err = -EPROTO; 4010 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check; 4011 4012 case IPPROTO_UDP: 4013 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr), 4014 off + sizeof(struct udphdr)); 4015 if (!err && !skb_partial_csum_set(skb, off, 4016 offsetof(struct udphdr, 4017 check))) 4018 err = -EPROTO; 4019 return err ? ERR_PTR(err) : &udp_hdr(skb)->check; 4020 } 4021 4022 return ERR_PTR(-EPROTO); 4023} 4024 4025/* This value should be large enough to cover a tagged ethernet header plus 4026 * maximally sized IP and TCP or UDP headers. 4027 */ 4028#define MAX_IP_HDR_LEN 128 4029 4030static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate) 4031{ 4032 unsigned int off; 4033 bool fragment; 4034 __sum16 *csum; 4035 int err; 4036 4037 fragment = false; 4038 4039 err = skb_maybe_pull_tail(skb, 4040 sizeof(struct iphdr), 4041 MAX_IP_HDR_LEN); 4042 if (err < 0) 4043 goto out; 4044 4045 if (ip_hdr(skb)->frag_off & htons(IP_OFFSET | IP_MF)) 4046 fragment = true; 4047 4048 off = ip_hdrlen(skb); 4049 4050 err = -EPROTO; 4051 4052 if (fragment) 4053 goto out; 4054 4055 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off); 4056 if (IS_ERR(csum)) 4057 return PTR_ERR(csum); 4058 4059 if (recalculate) 4060 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr, 4061 ip_hdr(skb)->daddr, 4062 skb->len - off, 4063 ip_hdr(skb)->protocol, 0); 4064 err = 0; 4065 4066out: 4067 return err; 4068} 4069 4070/* This value should be large enough to cover a tagged ethernet header plus 4071 * an IPv6 header, all options, and a maximal TCP or UDP header. 4072 */ 4073#define MAX_IPV6_HDR_LEN 256 4074 4075#define OPT_HDR(type, skb, off) \ 4076 (type *)(skb_network_header(skb) + (off)) 4077 4078static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate) 4079{ 4080 int err; 4081 u8 nexthdr; 4082 unsigned int off; 4083 unsigned int len; 4084 bool fragment; 4085 bool done; 4086 __sum16 *csum; 4087 4088 fragment = false; 4089 done = false; 4090 4091 off = sizeof(struct ipv6hdr); 4092 4093 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN); 4094 if (err < 0) 4095 goto out; 4096 4097 nexthdr = ipv6_hdr(skb)->nexthdr; 4098 4099 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len); 4100 while (off <= len && !done) { 4101 switch (nexthdr) { 4102 case IPPROTO_DSTOPTS: 4103 case IPPROTO_HOPOPTS: 4104 case IPPROTO_ROUTING: { 4105 struct ipv6_opt_hdr *hp; 4106 4107 err = skb_maybe_pull_tail(skb, 4108 off + 4109 sizeof(struct ipv6_opt_hdr), 4110 MAX_IPV6_HDR_LEN); 4111 if (err < 0) 4112 goto out; 4113 4114 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off); 4115 nexthdr = hp->nexthdr; 4116 off += ipv6_optlen(hp); 4117 break; 4118 } 4119 case IPPROTO_AH: { 4120 struct ip_auth_hdr *hp; 4121 4122 err = skb_maybe_pull_tail(skb, 4123 off + 4124 sizeof(struct ip_auth_hdr), 4125 MAX_IPV6_HDR_LEN); 4126 if (err < 0) 4127 goto out; 4128 4129 hp = OPT_HDR(struct ip_auth_hdr, skb, off); 4130 nexthdr = hp->nexthdr; 4131 off += ipv6_authlen(hp); 4132 break; 4133 } 4134 case IPPROTO_FRAGMENT: { 4135 struct frag_hdr *hp; 4136 4137 err = skb_maybe_pull_tail(skb, 4138 off + 4139 sizeof(struct frag_hdr), 4140 MAX_IPV6_HDR_LEN); 4141 if (err < 0) 4142 goto out; 4143 4144 hp = OPT_HDR(struct frag_hdr, skb, off); 4145 4146 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF)) 4147 fragment = true; 4148 4149 nexthdr = hp->nexthdr; 4150 off += sizeof(struct frag_hdr); 4151 break; 4152 } 4153 default: 4154 done = true; 4155 break; 4156 } 4157 } 4158 4159 err = -EPROTO; 4160 4161 if (!done || fragment) 4162 goto out; 4163 4164 csum = skb_checksum_setup_ip(skb, nexthdr, off); 4165 if (IS_ERR(csum)) 4166 return PTR_ERR(csum); 4167 4168 if (recalculate) 4169 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 4170 &ipv6_hdr(skb)->daddr, 4171 skb->len - off, nexthdr, 0); 4172 err = 0; 4173 4174out: 4175 return err; 4176} 4177 4178/** 4179 * skb_checksum_setup - set up partial checksum offset 4180 * @skb: the skb to set up 4181 * @recalculate: if true the pseudo-header checksum will be recalculated 4182 */ 4183int skb_checksum_setup(struct sk_buff *skb, bool recalculate) 4184{ 4185 int err; 4186 4187 switch (skb->protocol) { 4188 case htons(ETH_P_IP): 4189 err = skb_checksum_setup_ipv4(skb, recalculate); 4190 break; 4191 4192 case htons(ETH_P_IPV6): 4193 err = skb_checksum_setup_ipv6(skb, recalculate); 4194 break; 4195 4196 default: 4197 err = -EPROTO; 4198 break; 4199 } 4200 4201 return err; 4202} 4203EXPORT_SYMBOL(skb_checksum_setup); 4204 4205/** 4206 * skb_checksum_maybe_trim - maybe trims the given skb 4207 * @skb: the skb to check 4208 * @transport_len: the data length beyond the network header 4209 * 4210 * Checks whether the given skb has data beyond the given transport length. 4211 * If so, returns a cloned skb trimmed to this transport length. 4212 * Otherwise returns the provided skb. Returns NULL in error cases 4213 * (e.g. transport_len exceeds skb length or out-of-memory). 4214 * 4215 * Caller needs to set the skb transport header and free any returned skb if it 4216 * differs from the provided skb. 4217 */ 4218static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb, 4219 unsigned int transport_len) 4220{ 4221 struct sk_buff *skb_chk; 4222 unsigned int len = skb_transport_offset(skb) + transport_len; 4223 int ret; 4224 4225 if (skb->len < len) 4226 return NULL; 4227 else if (skb->len == len) 4228 return skb; 4229 4230 skb_chk = skb_clone(skb, GFP_ATOMIC); 4231 if (!skb_chk) 4232 return NULL; 4233 4234 ret = pskb_trim_rcsum(skb_chk, len); 4235 if (ret) { 4236 kfree_skb(skb_chk); 4237 return NULL; 4238 } 4239 4240 return skb_chk; 4241} 4242 4243/** 4244 * skb_checksum_trimmed - validate checksum of an skb 4245 * @skb: the skb to check 4246 * @transport_len: the data length beyond the network header 4247 * @skb_chkf: checksum function to use 4248 * 4249 * Applies the given checksum function skb_chkf to the provided skb. 4250 * Returns a checked and maybe trimmed skb. Returns NULL on error. 4251 * 4252 * If the skb has data beyond the given transport length, then a 4253 * trimmed & cloned skb is checked and returned. 4254 * 4255 * Caller needs to set the skb transport header and free any returned skb if it 4256 * differs from the provided skb. 4257 */ 4258struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 4259 unsigned int transport_len, 4260 __sum16(*skb_chkf)(struct sk_buff *skb)) 4261{ 4262 struct sk_buff *skb_chk; 4263 unsigned int offset = skb_transport_offset(skb); 4264 __sum16 ret; 4265 4266 skb_chk = skb_checksum_maybe_trim(skb, transport_len); 4267 if (!skb_chk) 4268 goto err; 4269 4270 if (!pskb_may_pull(skb_chk, offset)) 4271 goto err; 4272 4273 skb_pull_rcsum(skb_chk, offset); 4274 ret = skb_chkf(skb_chk); 4275 skb_push_rcsum(skb_chk, offset); 4276 4277 if (ret) 4278 goto err; 4279 4280 return skb_chk; 4281 4282err: 4283 if (skb_chk && skb_chk != skb) 4284 kfree_skb(skb_chk); 4285 4286 return NULL; 4287 4288} 4289EXPORT_SYMBOL(skb_checksum_trimmed); 4290 4291void __skb_warn_lro_forwarding(const struct sk_buff *skb) 4292{ 4293 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n", 4294 skb->dev->name); 4295} 4296EXPORT_SYMBOL(__skb_warn_lro_forwarding); 4297 4298void kfree_skb_partial(struct sk_buff *skb, bool head_stolen) 4299{ 4300 if (head_stolen) { 4301 skb_release_head_state(skb); 4302 kmem_cache_free(skbuff_head_cache, skb); 4303 } else { 4304 __kfree_skb(skb); 4305 } 4306} 4307EXPORT_SYMBOL(kfree_skb_partial); 4308 4309/** 4310 * skb_try_coalesce - try to merge skb to prior one 4311 * @to: prior buffer 4312 * @from: buffer to add 4313 * @fragstolen: pointer to boolean 4314 * @delta_truesize: how much more was allocated than was requested 4315 */ 4316bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 4317 bool *fragstolen, int *delta_truesize) 4318{ 4319 int i, delta, len = from->len; 4320 4321 *fragstolen = false; 4322 4323 if (skb_cloned(to)) 4324 return false; 4325 4326 if (len <= skb_tailroom(to)) { 4327 if (len) 4328 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len)); 4329 *delta_truesize = 0; 4330 return true; 4331 } 4332 4333 if (skb_has_frag_list(to) || skb_has_frag_list(from)) 4334 return false; 4335 4336 if (skb_headlen(from) != 0) { 4337 struct page *page; 4338 unsigned int offset; 4339 4340 if (skb_shinfo(to)->nr_frags + 4341 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) 4342 return false; 4343 4344 if (skb_head_is_locked(from)) 4345 return false; 4346 4347 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 4348 4349 page = virt_to_head_page(from->head); 4350 offset = from->data - (unsigned char *)page_address(page); 4351 4352 skb_fill_page_desc(to, skb_shinfo(to)->nr_frags, 4353 page, offset, skb_headlen(from)); 4354 *fragstolen = true; 4355 } else { 4356 if (skb_shinfo(to)->nr_frags + 4357 skb_shinfo(from)->nr_frags > MAX_SKB_FRAGS) 4358 return false; 4359 4360 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from)); 4361 } 4362 4363 WARN_ON_ONCE(delta < len); 4364 4365 memcpy(skb_shinfo(to)->frags + skb_shinfo(to)->nr_frags, 4366 skb_shinfo(from)->frags, 4367 skb_shinfo(from)->nr_frags * sizeof(skb_frag_t)); 4368 skb_shinfo(to)->nr_frags += skb_shinfo(from)->nr_frags; 4369 4370 if (!skb_cloned(from)) 4371 skb_shinfo(from)->nr_frags = 0; 4372 4373 /* if the skb is not cloned this does nothing 4374 * since we set nr_frags to 0. 4375 */ 4376 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) 4377 skb_frag_ref(from, i); 4378 4379 to->truesize += delta; 4380 to->len += len; 4381 to->data_len += len; 4382 4383 *delta_truesize = delta; 4384 return true; 4385} 4386EXPORT_SYMBOL(skb_try_coalesce); 4387 4388/** 4389 * skb_scrub_packet - scrub an skb 4390 * 4391 * @skb: buffer to clean 4392 * @xnet: packet is crossing netns 4393 * 4394 * skb_scrub_packet can be used after encapsulating or decapsulting a packet 4395 * into/from a tunnel. Some information have to be cleared during these 4396 * operations. 4397 * skb_scrub_packet can also be used to clean a skb before injecting it in 4398 * another namespace (@xnet == true). We have to clear all information in the 4399 * skb that could impact namespace isolation. 4400 */ 4401void skb_scrub_packet(struct sk_buff *skb, bool xnet) 4402{ 4403 skb->tstamp = 0; 4404 skb->pkt_type = PACKET_HOST; 4405 skb->skb_iif = 0; 4406 skb->ignore_df = 0; 4407 skb_dst_drop(skb); 4408 secpath_reset(skb); 4409 nf_reset(skb); 4410 nf_reset_trace(skb); 4411 4412 if (!xnet) 4413 return; 4414 4415 skb_orphan(skb); 4416 skb->mark = 0; 4417} 4418EXPORT_SYMBOL_GPL(skb_scrub_packet); 4419 4420/** 4421 * skb_gso_transport_seglen - Return length of individual segments of a gso packet 4422 * 4423 * @skb: GSO skb 4424 * 4425 * skb_gso_transport_seglen is used to determine the real size of the 4426 * individual segments, including Layer4 headers (TCP/UDP). 4427 * 4428 * The MAC/L2 or network (IP, IPv6) headers are not accounted for. 4429 */ 4430unsigned int skb_gso_transport_seglen(const struct sk_buff *skb) 4431{ 4432 const struct skb_shared_info *shinfo = skb_shinfo(skb); 4433 unsigned int thlen = 0; 4434 4435 if (skb->encapsulation) { 4436 thlen = skb_inner_transport_header(skb) - 4437 skb_transport_header(skb); 4438 4439 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) 4440 thlen += inner_tcp_hdrlen(skb); 4441 } else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 4442 thlen = tcp_hdrlen(skb); 4443 } else if (unlikely(shinfo->gso_type & SKB_GSO_SCTP)) { 4444 thlen = sizeof(struct sctphdr); 4445 } 4446 /* UFO sets gso_size to the size of the fragmentation 4447 * payload, i.e. the size of the L4 (UDP) header is already 4448 * accounted for. 4449 */ 4450 return thlen + shinfo->gso_size; 4451} 4452EXPORT_SYMBOL_GPL(skb_gso_transport_seglen); 4453 4454/** 4455 * skb_gso_validate_mtu - Return in case such skb fits a given MTU 4456 * 4457 * @skb: GSO skb 4458 * @mtu: MTU to validate against 4459 * 4460 * skb_gso_validate_mtu validates if a given skb will fit a wanted MTU 4461 * once split. 4462 */ 4463bool skb_gso_validate_mtu(const struct sk_buff *skb, unsigned int mtu) 4464{ 4465 const struct skb_shared_info *shinfo = skb_shinfo(skb); 4466 const struct sk_buff *iter; 4467 unsigned int hlen; 4468 4469 hlen = skb_gso_network_seglen(skb); 4470 4471 if (shinfo->gso_size != GSO_BY_FRAGS) 4472 return hlen <= mtu; 4473 4474 /* Undo this so we can re-use header sizes */ 4475 hlen -= GSO_BY_FRAGS; 4476 4477 skb_walk_frags(skb, iter) { 4478 if (hlen + skb_headlen(iter) > mtu) 4479 return false; 4480 } 4481 4482 return true; 4483} 4484EXPORT_SYMBOL_GPL(skb_gso_validate_mtu); 4485 4486static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb) 4487{ 4488 if (skb_cow(skb, skb_headroom(skb)) < 0) { 4489 kfree_skb(skb); 4490 return NULL; 4491 } 4492 4493 memmove(skb->data - ETH_HLEN, skb->data - skb->mac_len - VLAN_HLEN, 4494 2 * ETH_ALEN); 4495 skb->mac_header += VLAN_HLEN; 4496 return skb; 4497} 4498 4499struct sk_buff *skb_vlan_untag(struct sk_buff *skb) 4500{ 4501 struct vlan_hdr *vhdr; 4502 u16 vlan_tci; 4503 4504 if (unlikely(skb_vlan_tag_present(skb))) { 4505 /* vlan_tci is already set-up so leave this for another time */ 4506 return skb; 4507 } 4508 4509 skb = skb_share_check(skb, GFP_ATOMIC); 4510 if (unlikely(!skb)) 4511 goto err_free; 4512 4513 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN))) 4514 goto err_free; 4515 4516 vhdr = (struct vlan_hdr *)skb->data; 4517 vlan_tci = ntohs(vhdr->h_vlan_TCI); 4518 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci); 4519 4520 skb_pull_rcsum(skb, VLAN_HLEN); 4521 vlan_set_encap_proto(skb, vhdr); 4522 4523 skb = skb_reorder_vlan_header(skb); 4524 if (unlikely(!skb)) 4525 goto err_free; 4526 4527 skb_reset_network_header(skb); 4528 skb_reset_transport_header(skb); 4529 skb_reset_mac_len(skb); 4530 4531 return skb; 4532 4533err_free: 4534 kfree_skb(skb); 4535 return NULL; 4536} 4537EXPORT_SYMBOL(skb_vlan_untag); 4538 4539int skb_ensure_writable(struct sk_buff *skb, int write_len) 4540{ 4541 if (!pskb_may_pull(skb, write_len)) 4542 return -ENOMEM; 4543 4544 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len)) 4545 return 0; 4546 4547 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 4548} 4549EXPORT_SYMBOL(skb_ensure_writable); 4550 4551/* remove VLAN header from packet and update csum accordingly. 4552 * expects a non skb_vlan_tag_present skb with a vlan tag payload 4553 */ 4554int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci) 4555{ 4556 struct vlan_hdr *vhdr; 4557 int offset = skb->data - skb_mac_header(skb); 4558 int err; 4559 4560 if (WARN_ONCE(offset, 4561 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n", 4562 offset)) { 4563 return -EINVAL; 4564 } 4565 4566 err = skb_ensure_writable(skb, VLAN_ETH_HLEN); 4567 if (unlikely(err)) 4568 return err; 4569 4570 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 4571 4572 vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN); 4573 *vlan_tci = ntohs(vhdr->h_vlan_TCI); 4574 4575 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN); 4576 __skb_pull(skb, VLAN_HLEN); 4577 4578 vlan_set_encap_proto(skb, vhdr); 4579 skb->mac_header += VLAN_HLEN; 4580 4581 if (skb_network_offset(skb) < ETH_HLEN) 4582 skb_set_network_header(skb, ETH_HLEN); 4583 4584 skb_reset_mac_len(skb); 4585 4586 return err; 4587} 4588EXPORT_SYMBOL(__skb_vlan_pop); 4589 4590/* Pop a vlan tag either from hwaccel or from payload. 4591 * Expects skb->data at mac header. 4592 */ 4593int skb_vlan_pop(struct sk_buff *skb) 4594{ 4595 u16 vlan_tci; 4596 __be16 vlan_proto; 4597 int err; 4598 4599 if (likely(skb_vlan_tag_present(skb))) { 4600 skb->vlan_tci = 0; 4601 } else { 4602 if (unlikely(!eth_type_vlan(skb->protocol))) 4603 return 0; 4604 4605 err = __skb_vlan_pop(skb, &vlan_tci); 4606 if (err) 4607 return err; 4608 } 4609 /* move next vlan tag to hw accel tag */ 4610 if (likely(!eth_type_vlan(skb->protocol))) 4611 return 0; 4612 4613 vlan_proto = skb->protocol; 4614 err = __skb_vlan_pop(skb, &vlan_tci); 4615 if (unlikely(err)) 4616 return err; 4617 4618 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 4619 return 0; 4620} 4621EXPORT_SYMBOL(skb_vlan_pop); 4622 4623/* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present). 4624 * Expects skb->data at mac header. 4625 */ 4626int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci) 4627{ 4628 if (skb_vlan_tag_present(skb)) { 4629 int offset = skb->data - skb_mac_header(skb); 4630 int err; 4631 4632 if (WARN_ONCE(offset, 4633 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n", 4634 offset)) { 4635 return -EINVAL; 4636 } 4637 4638 err = __vlan_insert_tag(skb, skb->vlan_proto, 4639 skb_vlan_tag_get(skb)); 4640 if (err) 4641 return err; 4642 4643 skb->protocol = skb->vlan_proto; 4644 skb->mac_len += VLAN_HLEN; 4645 4646 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 4647 } 4648 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 4649 return 0; 4650} 4651EXPORT_SYMBOL(skb_vlan_push); 4652 4653/** 4654 * alloc_skb_with_frags - allocate skb with page frags 4655 * 4656 * @header_len: size of linear part 4657 * @data_len: needed length in frags 4658 * @max_page_order: max page order desired. 4659 * @errcode: pointer to error code if any 4660 * @gfp_mask: allocation mask 4661 * 4662 * This can be used to allocate a paged skb, given a maximal order for frags. 4663 */ 4664struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 4665 unsigned long data_len, 4666 int max_page_order, 4667 int *errcode, 4668 gfp_t gfp_mask) 4669{ 4670 int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT; 4671 unsigned long chunk; 4672 struct sk_buff *skb; 4673 struct page *page; 4674 gfp_t gfp_head; 4675 int i; 4676 4677 *errcode = -EMSGSIZE; 4678 /* Note this test could be relaxed, if we succeed to allocate 4679 * high order pages... 4680 */ 4681 if (npages > MAX_SKB_FRAGS) 4682 return NULL; 4683 4684 gfp_head = gfp_mask; 4685 if (gfp_head & __GFP_DIRECT_RECLAIM) 4686 gfp_head |= __GFP_REPEAT; 4687 4688 *errcode = -ENOBUFS; 4689 skb = alloc_skb(header_len, gfp_head); 4690 if (!skb) 4691 return NULL; 4692 4693 skb->truesize += npages << PAGE_SHIFT; 4694 4695 for (i = 0; npages > 0; i++) { 4696 int order = max_page_order; 4697 4698 while (order) { 4699 if (npages >= 1 << order) { 4700 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) | 4701 __GFP_COMP | 4702 __GFP_NOWARN | 4703 __GFP_NORETRY, 4704 order); 4705 if (page) 4706 goto fill_page; 4707 /* Do not retry other high order allocations */ 4708 order = 1; 4709 max_page_order = 0; 4710 } 4711 order--; 4712 } 4713 page = alloc_page(gfp_mask); 4714 if (!page) 4715 goto failure; 4716fill_page: 4717 chunk = min_t(unsigned long, data_len, 4718 PAGE_SIZE << order); 4719 skb_fill_page_desc(skb, i, page, 0, chunk); 4720 data_len -= chunk; 4721 npages -= 1 << order; 4722 } 4723 return skb; 4724 4725failure: 4726 kfree_skb(skb); 4727 return NULL; 4728} 4729EXPORT_SYMBOL(alloc_skb_with_frags); 4730 4731/* carve out the first off bytes from skb when off < headlen */ 4732static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off, 4733 const int headlen, gfp_t gfp_mask) 4734{ 4735 int i; 4736 int size = skb_end_offset(skb); 4737 int new_hlen = headlen - off; 4738 u8 *data; 4739 4740 size = SKB_DATA_ALIGN(size); 4741 4742 if (skb_pfmemalloc(skb)) 4743 gfp_mask |= __GFP_MEMALLOC; 4744 data = kmalloc_reserve(size + 4745 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 4746 gfp_mask, NUMA_NO_NODE, NULL); 4747 if (!data) 4748 return -ENOMEM; 4749 4750 size = SKB_WITH_OVERHEAD(ksize(data)); 4751 4752 /* Copy real data, and all frags */ 4753 skb_copy_from_linear_data_offset(skb, off, data, new_hlen); 4754 skb->len -= off; 4755 4756 memcpy((struct skb_shared_info *)(data + size), 4757 skb_shinfo(skb), 4758 offsetof(struct skb_shared_info, 4759 frags[skb_shinfo(skb)->nr_frags])); 4760 if (skb_cloned(skb)) { 4761 /* drop the old head gracefully */ 4762 if (skb_orphan_frags(skb, gfp_mask)) { 4763 kfree(data); 4764 return -ENOMEM; 4765 } 4766 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 4767 skb_frag_ref(skb, i); 4768 if (skb_has_frag_list(skb)) 4769 skb_clone_fraglist(skb); 4770 skb_release_data(skb); 4771 } else { 4772 /* we can reuse existing recount- all we did was 4773 * relocate values 4774 */ 4775 skb_free_head(skb); 4776 } 4777 4778 skb->head = data; 4779 skb->data = data; 4780 skb->head_frag = 0; 4781#ifdef NET_SKBUFF_DATA_USES_OFFSET 4782 skb->end = size; 4783#else 4784 skb->end = skb->head + size; 4785#endif 4786 skb_set_tail_pointer(skb, skb_headlen(skb)); 4787 skb_headers_offset_update(skb, 0); 4788 skb->cloned = 0; 4789 skb->hdr_len = 0; 4790 skb->nohdr = 0; 4791 atomic_set(&skb_shinfo(skb)->dataref, 1); 4792 4793 return 0; 4794} 4795 4796static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp); 4797 4798/* carve out the first eat bytes from skb's frag_list. May recurse into 4799 * pskb_carve() 4800 */ 4801static int pskb_carve_frag_list(struct sk_buff *skb, 4802 struct skb_shared_info *shinfo, int eat, 4803 gfp_t gfp_mask) 4804{ 4805 struct sk_buff *list = shinfo->frag_list; 4806 struct sk_buff *clone = NULL; 4807 struct sk_buff *insp = NULL; 4808 4809 do { 4810 if (!list) { 4811 pr_err("Not enough bytes to eat. Want %d\n", eat); 4812 return -EFAULT; 4813 } 4814 if (list->len <= eat) { 4815 /* Eaten as whole. */ 4816 eat -= list->len; 4817 list = list->next; 4818 insp = list; 4819 } else { 4820 /* Eaten partially. */ 4821 if (skb_shared(list)) { 4822 clone = skb_clone(list, gfp_mask); 4823 if (!clone) 4824 return -ENOMEM; 4825 insp = list->next; 4826 list = clone; 4827 } else { 4828 /* This may be pulled without problems. */ 4829 insp = list; 4830 } 4831 if (pskb_carve(list, eat, gfp_mask) < 0) { 4832 kfree_skb(clone); 4833 return -ENOMEM; 4834 } 4835 break; 4836 } 4837 } while (eat); 4838 4839 /* Free pulled out fragments. */ 4840 while ((list = shinfo->frag_list) != insp) { 4841 shinfo->frag_list = list->next; 4842 kfree_skb(list); 4843 } 4844 /* And insert new clone at head. */ 4845 if (clone) { 4846 clone->next = list; 4847 shinfo->frag_list = clone; 4848 } 4849 return 0; 4850} 4851 4852/* carve off first len bytes from skb. Split line (off) is in the 4853 * non-linear part of skb 4854 */ 4855static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off, 4856 int pos, gfp_t gfp_mask) 4857{ 4858 int i, k = 0; 4859 int size = skb_end_offset(skb); 4860 u8 *data; 4861 const int nfrags = skb_shinfo(skb)->nr_frags; 4862 struct skb_shared_info *shinfo; 4863 4864 size = SKB_DATA_ALIGN(size); 4865 4866 if (skb_pfmemalloc(skb)) 4867 gfp_mask |= __GFP_MEMALLOC; 4868 data = kmalloc_reserve(size + 4869 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)), 4870 gfp_mask, NUMA_NO_NODE, NULL); 4871 if (!data) 4872 return -ENOMEM; 4873 4874 size = SKB_WITH_OVERHEAD(ksize(data)); 4875 4876 memcpy((struct skb_shared_info *)(data + size), 4877 skb_shinfo(skb), offsetof(struct skb_shared_info, 4878 frags[skb_shinfo(skb)->nr_frags])); 4879 if (skb_orphan_frags(skb, gfp_mask)) { 4880 kfree(data); 4881 return -ENOMEM; 4882 } 4883 shinfo = (struct skb_shared_info *)(data + size); 4884 for (i = 0; i < nfrags; i++) { 4885 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]); 4886 4887 if (pos + fsize > off) { 4888 shinfo->frags[k] = skb_shinfo(skb)->frags[i]; 4889 4890 if (pos < off) { 4891 /* Split frag. 4892 * We have two variants in this case: 4893 * 1. Move all the frag to the second 4894 * part, if it is possible. F.e. 4895 * this approach is mandatory for TUX, 4896 * where splitting is expensive. 4897 * 2. Split is accurately. We make this. 4898 */ 4899 shinfo->frags[0].page_offset += off - pos; 4900 skb_frag_size_sub(&shinfo->frags[0], off - pos); 4901 } 4902 skb_frag_ref(skb, i); 4903 k++; 4904 } 4905 pos += fsize; 4906 } 4907 shinfo->nr_frags = k; 4908 if (skb_has_frag_list(skb)) 4909 skb_clone_fraglist(skb); 4910 4911 if (k == 0) { 4912 /* split line is in frag list */ 4913 pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask); 4914 } 4915 skb_release_data(skb); 4916 4917 skb->head = data; 4918 skb->head_frag = 0; 4919 skb->data = data; 4920#ifdef NET_SKBUFF_DATA_USES_OFFSET 4921 skb->end = size; 4922#else 4923 skb->end = skb->head + size; 4924#endif 4925 skb_reset_tail_pointer(skb); 4926 skb_headers_offset_update(skb, 0); 4927 skb->cloned = 0; 4928 skb->hdr_len = 0; 4929 skb->nohdr = 0; 4930 skb->len -= off; 4931 skb->data_len = skb->len; 4932 atomic_set(&skb_shinfo(skb)->dataref, 1); 4933 return 0; 4934} 4935 4936/* remove len bytes from the beginning of the skb */ 4937static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp) 4938{ 4939 int headlen = skb_headlen(skb); 4940 4941 if (len < headlen) 4942 return pskb_carve_inside_header(skb, len, headlen, gfp); 4943 else 4944 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp); 4945} 4946 4947/* Extract to_copy bytes starting at off from skb, and return this in 4948 * a new skb 4949 */ 4950struct sk_buff *pskb_extract(struct sk_buff *skb, int off, 4951 int to_copy, gfp_t gfp) 4952{ 4953 struct sk_buff *clone = skb_clone(skb, gfp); 4954 4955 if (!clone) 4956 return NULL; 4957 4958 if (pskb_carve(clone, off, gfp) < 0 || 4959 pskb_trim(clone, to_copy)) { 4960 kfree_skb(clone); 4961 return NULL; 4962 } 4963 return clone; 4964} 4965EXPORT_SYMBOL(pskb_extract); 4966 4967/** 4968 * skb_condense - try to get rid of fragments/frag_list if possible 4969 * @skb: buffer 4970 * 4971 * Can be used to save memory before skb is added to a busy queue. 4972 * If packet has bytes in frags and enough tail room in skb->head, 4973 * pull all of them, so that we can free the frags right now and adjust 4974 * truesize. 4975 * Notes: 4976 * We do not reallocate skb->head thus can not fail. 4977 * Caller must re-evaluate skb->truesize if needed. 4978 */ 4979void skb_condense(struct sk_buff *skb) 4980{ 4981 if (skb->data_len) { 4982 if (skb->data_len > skb->end - skb->tail || 4983 skb_cloned(skb)) 4984 return; 4985 4986 /* Nice, we can free page frag(s) right now */ 4987 __pskb_pull_tail(skb, skb->data_len); 4988 } 4989 /* At this point, skb->truesize might be over estimated, 4990 * because skb had a fragment, and fragments do not tell 4991 * their truesize. 4992 * When we pulled its content into skb->head, fragment 4993 * was freed, but __pskb_pull_tail() could not possibly 4994 * adjust skb->truesize, not knowing the frag truesize. 4995 */ 4996 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 4997}