at v4.11-rc8 30 kB view raw
1#ifndef _LINUX_KERNEL_H 2#define _LINUX_KERNEL_H 3 4 5#include <stdarg.h> 6#include <linux/linkage.h> 7#include <linux/stddef.h> 8#include <linux/types.h> 9#include <linux/compiler.h> 10#include <linux/bitops.h> 11#include <linux/log2.h> 12#include <linux/typecheck.h> 13#include <linux/printk.h> 14#include <asm/byteorder.h> 15#include <uapi/linux/kernel.h> 16 17#define USHRT_MAX ((u16)(~0U)) 18#define SHRT_MAX ((s16)(USHRT_MAX>>1)) 19#define SHRT_MIN ((s16)(-SHRT_MAX - 1)) 20#define INT_MAX ((int)(~0U>>1)) 21#define INT_MIN (-INT_MAX - 1) 22#define UINT_MAX (~0U) 23#define LONG_MAX ((long)(~0UL>>1)) 24#define LONG_MIN (-LONG_MAX - 1) 25#define ULONG_MAX (~0UL) 26#define LLONG_MAX ((long long)(~0ULL>>1)) 27#define LLONG_MIN (-LLONG_MAX - 1) 28#define ULLONG_MAX (~0ULL) 29#define SIZE_MAX (~(size_t)0) 30 31#define U8_MAX ((u8)~0U) 32#define S8_MAX ((s8)(U8_MAX>>1)) 33#define S8_MIN ((s8)(-S8_MAX - 1)) 34#define U16_MAX ((u16)~0U) 35#define S16_MAX ((s16)(U16_MAX>>1)) 36#define S16_MIN ((s16)(-S16_MAX - 1)) 37#define U32_MAX ((u32)~0U) 38#define S32_MAX ((s32)(U32_MAX>>1)) 39#define S32_MIN ((s32)(-S32_MAX - 1)) 40#define U64_MAX ((u64)~0ULL) 41#define S64_MAX ((s64)(U64_MAX>>1)) 42#define S64_MIN ((s64)(-S64_MAX - 1)) 43 44#define STACK_MAGIC 0xdeadbeef 45 46#define REPEAT_BYTE(x) ((~0ul / 0xff) * (x)) 47 48/* @a is a power of 2 value */ 49#define ALIGN(x, a) __ALIGN_KERNEL((x), (a)) 50#define __ALIGN_MASK(x, mask) __ALIGN_KERNEL_MASK((x), (mask)) 51#define PTR_ALIGN(p, a) ((typeof(p))ALIGN((unsigned long)(p), (a))) 52#define IS_ALIGNED(x, a) (((x) & ((typeof(x))(a) - 1)) == 0) 53 54/* generic data direction definitions */ 55#define READ 0 56#define WRITE 1 57 58#define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0]) + __must_be_array(arr)) 59 60#define u64_to_user_ptr(x) ( \ 61{ \ 62 typecheck(u64, x); \ 63 (void __user *)(uintptr_t)x; \ 64} \ 65) 66 67/* 68 * This looks more complex than it should be. But we need to 69 * get the type for the ~ right in round_down (it needs to be 70 * as wide as the result!), and we want to evaluate the macro 71 * arguments just once each. 72 */ 73#define __round_mask(x, y) ((__typeof__(x))((y)-1)) 74#define round_up(x, y) ((((x)-1) | __round_mask(x, y))+1) 75#define round_down(x, y) ((x) & ~__round_mask(x, y)) 76 77#define FIELD_SIZEOF(t, f) (sizeof(((t*)0)->f)) 78#define DIV_ROUND_UP __KERNEL_DIV_ROUND_UP 79#define DIV_ROUND_UP_ULL(ll,d) \ 80 ({ unsigned long long _tmp = (ll)+(d)-1; do_div(_tmp, d); _tmp; }) 81 82#if BITS_PER_LONG == 32 83# define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP_ULL(ll, d) 84#else 85# define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP(ll,d) 86#endif 87 88/* The `const' in roundup() prevents gcc-3.3 from calling __divdi3 */ 89#define roundup(x, y) ( \ 90{ \ 91 const typeof(y) __y = y; \ 92 (((x) + (__y - 1)) / __y) * __y; \ 93} \ 94) 95#define rounddown(x, y) ( \ 96{ \ 97 typeof(x) __x = (x); \ 98 __x - (__x % (y)); \ 99} \ 100) 101 102/* 103 * Divide positive or negative dividend by positive or negative divisor 104 * and round to closest integer. Result is undefined for negative 105 * divisors if he dividend variable type is unsigned and for negative 106 * dividends if the divisor variable type is unsigned. 107 */ 108#define DIV_ROUND_CLOSEST(x, divisor)( \ 109{ \ 110 typeof(x) __x = x; \ 111 typeof(divisor) __d = divisor; \ 112 (((typeof(x))-1) > 0 || \ 113 ((typeof(divisor))-1) > 0 || \ 114 (((__x) > 0) == ((__d) > 0))) ? \ 115 (((__x) + ((__d) / 2)) / (__d)) : \ 116 (((__x) - ((__d) / 2)) / (__d)); \ 117} \ 118) 119/* 120 * Same as above but for u64 dividends. divisor must be a 32-bit 121 * number. 122 */ 123#define DIV_ROUND_CLOSEST_ULL(x, divisor)( \ 124{ \ 125 typeof(divisor) __d = divisor; \ 126 unsigned long long _tmp = (x) + (__d) / 2; \ 127 do_div(_tmp, __d); \ 128 _tmp; \ 129} \ 130) 131 132/* 133 * Multiplies an integer by a fraction, while avoiding unnecessary 134 * overflow or loss of precision. 135 */ 136#define mult_frac(x, numer, denom)( \ 137{ \ 138 typeof(x) quot = (x) / (denom); \ 139 typeof(x) rem = (x) % (denom); \ 140 (quot * (numer)) + ((rem * (numer)) / (denom)); \ 141} \ 142) 143 144 145#define _RET_IP_ (unsigned long)__builtin_return_address(0) 146#define _THIS_IP_ ({ __label__ __here; __here: (unsigned long)&&__here; }) 147 148#ifdef CONFIG_LBDAF 149# include <asm/div64.h> 150# define sector_div(a, b) do_div(a, b) 151#else 152# define sector_div(n, b)( \ 153{ \ 154 int _res; \ 155 _res = (n) % (b); \ 156 (n) /= (b); \ 157 _res; \ 158} \ 159) 160#endif 161 162/** 163 * upper_32_bits - return bits 32-63 of a number 164 * @n: the number we're accessing 165 * 166 * A basic shift-right of a 64- or 32-bit quantity. Use this to suppress 167 * the "right shift count >= width of type" warning when that quantity is 168 * 32-bits. 169 */ 170#define upper_32_bits(n) ((u32)(((n) >> 16) >> 16)) 171 172/** 173 * lower_32_bits - return bits 0-31 of a number 174 * @n: the number we're accessing 175 */ 176#define lower_32_bits(n) ((u32)(n)) 177 178struct completion; 179struct pt_regs; 180struct user; 181 182#ifdef CONFIG_PREEMPT_VOLUNTARY 183extern int _cond_resched(void); 184# define might_resched() _cond_resched() 185#else 186# define might_resched() do { } while (0) 187#endif 188 189#ifdef CONFIG_DEBUG_ATOMIC_SLEEP 190 void ___might_sleep(const char *file, int line, int preempt_offset); 191 void __might_sleep(const char *file, int line, int preempt_offset); 192/** 193 * might_sleep - annotation for functions that can sleep 194 * 195 * this macro will print a stack trace if it is executed in an atomic 196 * context (spinlock, irq-handler, ...). 197 * 198 * This is a useful debugging help to be able to catch problems early and not 199 * be bitten later when the calling function happens to sleep when it is not 200 * supposed to. 201 */ 202# define might_sleep() \ 203 do { __might_sleep(__FILE__, __LINE__, 0); might_resched(); } while (0) 204# define sched_annotate_sleep() (current->task_state_change = 0) 205#else 206 static inline void ___might_sleep(const char *file, int line, 207 int preempt_offset) { } 208 static inline void __might_sleep(const char *file, int line, 209 int preempt_offset) { } 210# define might_sleep() do { might_resched(); } while (0) 211# define sched_annotate_sleep() do { } while (0) 212#endif 213 214#define might_sleep_if(cond) do { if (cond) might_sleep(); } while (0) 215 216/** 217 * abs - return absolute value of an argument 218 * @x: the value. If it is unsigned type, it is converted to signed type first. 219 * char is treated as if it was signed (regardless of whether it really is) 220 * but the macro's return type is preserved as char. 221 * 222 * Return: an absolute value of x. 223 */ 224#define abs(x) __abs_choose_expr(x, long long, \ 225 __abs_choose_expr(x, long, \ 226 __abs_choose_expr(x, int, \ 227 __abs_choose_expr(x, short, \ 228 __abs_choose_expr(x, char, \ 229 __builtin_choose_expr( \ 230 __builtin_types_compatible_p(typeof(x), char), \ 231 (char)({ signed char __x = (x); __x<0?-__x:__x; }), \ 232 ((void)0))))))) 233 234#define __abs_choose_expr(x, type, other) __builtin_choose_expr( \ 235 __builtin_types_compatible_p(typeof(x), signed type) || \ 236 __builtin_types_compatible_p(typeof(x), unsigned type), \ 237 ({ signed type __x = (x); __x < 0 ? -__x : __x; }), other) 238 239/** 240 * reciprocal_scale - "scale" a value into range [0, ep_ro) 241 * @val: value 242 * @ep_ro: right open interval endpoint 243 * 244 * Perform a "reciprocal multiplication" in order to "scale" a value into 245 * range [0, ep_ro), where the upper interval endpoint is right-open. 246 * This is useful, e.g. for accessing a index of an array containing 247 * ep_ro elements, for example. Think of it as sort of modulus, only that 248 * the result isn't that of modulo. ;) Note that if initial input is a 249 * small value, then result will return 0. 250 * 251 * Return: a result based on val in interval [0, ep_ro). 252 */ 253static inline u32 reciprocal_scale(u32 val, u32 ep_ro) 254{ 255 return (u32)(((u64) val * ep_ro) >> 32); 256} 257 258#if defined(CONFIG_MMU) && \ 259 (defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)) 260#define might_fault() __might_fault(__FILE__, __LINE__) 261void __might_fault(const char *file, int line); 262#else 263static inline void might_fault(void) { } 264#endif 265 266extern struct atomic_notifier_head panic_notifier_list; 267extern long (*panic_blink)(int state); 268__printf(1, 2) 269void panic(const char *fmt, ...) __noreturn __cold; 270void nmi_panic(struct pt_regs *regs, const char *msg); 271extern void oops_enter(void); 272extern void oops_exit(void); 273void print_oops_end_marker(void); 274extern int oops_may_print(void); 275void do_exit(long error_code) __noreturn; 276void complete_and_exit(struct completion *, long) __noreturn; 277 278/* Internal, do not use. */ 279int __must_check _kstrtoul(const char *s, unsigned int base, unsigned long *res); 280int __must_check _kstrtol(const char *s, unsigned int base, long *res); 281 282int __must_check kstrtoull(const char *s, unsigned int base, unsigned long long *res); 283int __must_check kstrtoll(const char *s, unsigned int base, long long *res); 284 285/** 286 * kstrtoul - convert a string to an unsigned long 287 * @s: The start of the string. The string must be null-terminated, and may also 288 * include a single newline before its terminating null. The first character 289 * may also be a plus sign, but not a minus sign. 290 * @base: The number base to use. The maximum supported base is 16. If base is 291 * given as 0, then the base of the string is automatically detected with the 292 * conventional semantics - If it begins with 0x the number will be parsed as a 293 * hexadecimal (case insensitive), if it otherwise begins with 0, it will be 294 * parsed as an octal number. Otherwise it will be parsed as a decimal. 295 * @res: Where to write the result of the conversion on success. 296 * 297 * Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error. 298 * Used as a replacement for the obsolete simple_strtoull. Return code must 299 * be checked. 300*/ 301static inline int __must_check kstrtoul(const char *s, unsigned int base, unsigned long *res) 302{ 303 /* 304 * We want to shortcut function call, but 305 * __builtin_types_compatible_p(unsigned long, unsigned long long) = 0. 306 */ 307 if (sizeof(unsigned long) == sizeof(unsigned long long) && 308 __alignof__(unsigned long) == __alignof__(unsigned long long)) 309 return kstrtoull(s, base, (unsigned long long *)res); 310 else 311 return _kstrtoul(s, base, res); 312} 313 314/** 315 * kstrtol - convert a string to a long 316 * @s: The start of the string. The string must be null-terminated, and may also 317 * include a single newline before its terminating null. The first character 318 * may also be a plus sign or a minus sign. 319 * @base: The number base to use. The maximum supported base is 16. If base is 320 * given as 0, then the base of the string is automatically detected with the 321 * conventional semantics - If it begins with 0x the number will be parsed as a 322 * hexadecimal (case insensitive), if it otherwise begins with 0, it will be 323 * parsed as an octal number. Otherwise it will be parsed as a decimal. 324 * @res: Where to write the result of the conversion on success. 325 * 326 * Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error. 327 * Used as a replacement for the obsolete simple_strtoull. Return code must 328 * be checked. 329 */ 330static inline int __must_check kstrtol(const char *s, unsigned int base, long *res) 331{ 332 /* 333 * We want to shortcut function call, but 334 * __builtin_types_compatible_p(long, long long) = 0. 335 */ 336 if (sizeof(long) == sizeof(long long) && 337 __alignof__(long) == __alignof__(long long)) 338 return kstrtoll(s, base, (long long *)res); 339 else 340 return _kstrtol(s, base, res); 341} 342 343int __must_check kstrtouint(const char *s, unsigned int base, unsigned int *res); 344int __must_check kstrtoint(const char *s, unsigned int base, int *res); 345 346static inline int __must_check kstrtou64(const char *s, unsigned int base, u64 *res) 347{ 348 return kstrtoull(s, base, res); 349} 350 351static inline int __must_check kstrtos64(const char *s, unsigned int base, s64 *res) 352{ 353 return kstrtoll(s, base, res); 354} 355 356static inline int __must_check kstrtou32(const char *s, unsigned int base, u32 *res) 357{ 358 return kstrtouint(s, base, res); 359} 360 361static inline int __must_check kstrtos32(const char *s, unsigned int base, s32 *res) 362{ 363 return kstrtoint(s, base, res); 364} 365 366int __must_check kstrtou16(const char *s, unsigned int base, u16 *res); 367int __must_check kstrtos16(const char *s, unsigned int base, s16 *res); 368int __must_check kstrtou8(const char *s, unsigned int base, u8 *res); 369int __must_check kstrtos8(const char *s, unsigned int base, s8 *res); 370int __must_check kstrtobool(const char *s, bool *res); 371 372int __must_check kstrtoull_from_user(const char __user *s, size_t count, unsigned int base, unsigned long long *res); 373int __must_check kstrtoll_from_user(const char __user *s, size_t count, unsigned int base, long long *res); 374int __must_check kstrtoul_from_user(const char __user *s, size_t count, unsigned int base, unsigned long *res); 375int __must_check kstrtol_from_user(const char __user *s, size_t count, unsigned int base, long *res); 376int __must_check kstrtouint_from_user(const char __user *s, size_t count, unsigned int base, unsigned int *res); 377int __must_check kstrtoint_from_user(const char __user *s, size_t count, unsigned int base, int *res); 378int __must_check kstrtou16_from_user(const char __user *s, size_t count, unsigned int base, u16 *res); 379int __must_check kstrtos16_from_user(const char __user *s, size_t count, unsigned int base, s16 *res); 380int __must_check kstrtou8_from_user(const char __user *s, size_t count, unsigned int base, u8 *res); 381int __must_check kstrtos8_from_user(const char __user *s, size_t count, unsigned int base, s8 *res); 382int __must_check kstrtobool_from_user(const char __user *s, size_t count, bool *res); 383 384static inline int __must_check kstrtou64_from_user(const char __user *s, size_t count, unsigned int base, u64 *res) 385{ 386 return kstrtoull_from_user(s, count, base, res); 387} 388 389static inline int __must_check kstrtos64_from_user(const char __user *s, size_t count, unsigned int base, s64 *res) 390{ 391 return kstrtoll_from_user(s, count, base, res); 392} 393 394static inline int __must_check kstrtou32_from_user(const char __user *s, size_t count, unsigned int base, u32 *res) 395{ 396 return kstrtouint_from_user(s, count, base, res); 397} 398 399static inline int __must_check kstrtos32_from_user(const char __user *s, size_t count, unsigned int base, s32 *res) 400{ 401 return kstrtoint_from_user(s, count, base, res); 402} 403 404/* Obsolete, do not use. Use kstrto<foo> instead */ 405 406extern unsigned long simple_strtoul(const char *,char **,unsigned int); 407extern long simple_strtol(const char *,char **,unsigned int); 408extern unsigned long long simple_strtoull(const char *,char **,unsigned int); 409extern long long simple_strtoll(const char *,char **,unsigned int); 410 411extern int num_to_str(char *buf, int size, unsigned long long num); 412 413/* lib/printf utilities */ 414 415extern __printf(2, 3) int sprintf(char *buf, const char * fmt, ...); 416extern __printf(2, 0) int vsprintf(char *buf, const char *, va_list); 417extern __printf(3, 4) 418int snprintf(char *buf, size_t size, const char *fmt, ...); 419extern __printf(3, 0) 420int vsnprintf(char *buf, size_t size, const char *fmt, va_list args); 421extern __printf(3, 4) 422int scnprintf(char *buf, size_t size, const char *fmt, ...); 423extern __printf(3, 0) 424int vscnprintf(char *buf, size_t size, const char *fmt, va_list args); 425extern __printf(2, 3) __malloc 426char *kasprintf(gfp_t gfp, const char *fmt, ...); 427extern __printf(2, 0) __malloc 428char *kvasprintf(gfp_t gfp, const char *fmt, va_list args); 429extern __printf(2, 0) 430const char *kvasprintf_const(gfp_t gfp, const char *fmt, va_list args); 431 432extern __scanf(2, 3) 433int sscanf(const char *, const char *, ...); 434extern __scanf(2, 0) 435int vsscanf(const char *, const char *, va_list); 436 437extern int get_option(char **str, int *pint); 438extern char *get_options(const char *str, int nints, int *ints); 439extern unsigned long long memparse(const char *ptr, char **retptr); 440extern bool parse_option_str(const char *str, const char *option); 441 442extern int core_kernel_text(unsigned long addr); 443extern int core_kernel_data(unsigned long addr); 444extern int __kernel_text_address(unsigned long addr); 445extern int kernel_text_address(unsigned long addr); 446extern int func_ptr_is_kernel_text(void *ptr); 447 448unsigned long int_sqrt(unsigned long); 449 450extern void bust_spinlocks(int yes); 451extern int oops_in_progress; /* If set, an oops, panic(), BUG() or die() is in progress */ 452extern int panic_timeout; 453extern int panic_on_oops; 454extern int panic_on_unrecovered_nmi; 455extern int panic_on_io_nmi; 456extern int panic_on_warn; 457extern int sysctl_panic_on_rcu_stall; 458extern int sysctl_panic_on_stackoverflow; 459 460extern bool crash_kexec_post_notifiers; 461 462/* 463 * panic_cpu is used for synchronizing panic() and crash_kexec() execution. It 464 * holds a CPU number which is executing panic() currently. A value of 465 * PANIC_CPU_INVALID means no CPU has entered panic() or crash_kexec(). 466 */ 467extern atomic_t panic_cpu; 468#define PANIC_CPU_INVALID -1 469 470/* 471 * Only to be used by arch init code. If the user over-wrote the default 472 * CONFIG_PANIC_TIMEOUT, honor it. 473 */ 474static inline void set_arch_panic_timeout(int timeout, int arch_default_timeout) 475{ 476 if (panic_timeout == arch_default_timeout) 477 panic_timeout = timeout; 478} 479extern const char *print_tainted(void); 480enum lockdep_ok { 481 LOCKDEP_STILL_OK, 482 LOCKDEP_NOW_UNRELIABLE 483}; 484extern void add_taint(unsigned flag, enum lockdep_ok); 485extern int test_taint(unsigned flag); 486extern unsigned long get_taint(void); 487extern int root_mountflags; 488 489extern bool early_boot_irqs_disabled; 490 491/* Values used for system_state */ 492extern enum system_states { 493 SYSTEM_BOOTING, 494 SYSTEM_RUNNING, 495 SYSTEM_HALT, 496 SYSTEM_POWER_OFF, 497 SYSTEM_RESTART, 498} system_state; 499 500#define TAINT_PROPRIETARY_MODULE 0 501#define TAINT_FORCED_MODULE 1 502#define TAINT_CPU_OUT_OF_SPEC 2 503#define TAINT_FORCED_RMMOD 3 504#define TAINT_MACHINE_CHECK 4 505#define TAINT_BAD_PAGE 5 506#define TAINT_USER 6 507#define TAINT_DIE 7 508#define TAINT_OVERRIDDEN_ACPI_TABLE 8 509#define TAINT_WARN 9 510#define TAINT_CRAP 10 511#define TAINT_FIRMWARE_WORKAROUND 11 512#define TAINT_OOT_MODULE 12 513#define TAINT_UNSIGNED_MODULE 13 514#define TAINT_SOFTLOCKUP 14 515#define TAINT_LIVEPATCH 15 516#define TAINT_FLAGS_COUNT 16 517 518struct taint_flag { 519 char c_true; /* character printed when tainted */ 520 char c_false; /* character printed when not tainted */ 521 bool module; /* also show as a per-module taint flag */ 522}; 523 524extern const struct taint_flag taint_flags[TAINT_FLAGS_COUNT]; 525 526extern const char hex_asc[]; 527#define hex_asc_lo(x) hex_asc[((x) & 0x0f)] 528#define hex_asc_hi(x) hex_asc[((x) & 0xf0) >> 4] 529 530static inline char *hex_byte_pack(char *buf, u8 byte) 531{ 532 *buf++ = hex_asc_hi(byte); 533 *buf++ = hex_asc_lo(byte); 534 return buf; 535} 536 537extern const char hex_asc_upper[]; 538#define hex_asc_upper_lo(x) hex_asc_upper[((x) & 0x0f)] 539#define hex_asc_upper_hi(x) hex_asc_upper[((x) & 0xf0) >> 4] 540 541static inline char *hex_byte_pack_upper(char *buf, u8 byte) 542{ 543 *buf++ = hex_asc_upper_hi(byte); 544 *buf++ = hex_asc_upper_lo(byte); 545 return buf; 546} 547 548extern int hex_to_bin(char ch); 549extern int __must_check hex2bin(u8 *dst, const char *src, size_t count); 550extern char *bin2hex(char *dst, const void *src, size_t count); 551 552bool mac_pton(const char *s, u8 *mac); 553 554/* 555 * General tracing related utility functions - trace_printk(), 556 * tracing_on/tracing_off and tracing_start()/tracing_stop 557 * 558 * Use tracing_on/tracing_off when you want to quickly turn on or off 559 * tracing. It simply enables or disables the recording of the trace events. 560 * This also corresponds to the user space /sys/kernel/debug/tracing/tracing_on 561 * file, which gives a means for the kernel and userspace to interact. 562 * Place a tracing_off() in the kernel where you want tracing to end. 563 * From user space, examine the trace, and then echo 1 > tracing_on 564 * to continue tracing. 565 * 566 * tracing_stop/tracing_start has slightly more overhead. It is used 567 * by things like suspend to ram where disabling the recording of the 568 * trace is not enough, but tracing must actually stop because things 569 * like calling smp_processor_id() may crash the system. 570 * 571 * Most likely, you want to use tracing_on/tracing_off. 572 */ 573 574enum ftrace_dump_mode { 575 DUMP_NONE, 576 DUMP_ALL, 577 DUMP_ORIG, 578}; 579 580#ifdef CONFIG_TRACING 581void tracing_on(void); 582void tracing_off(void); 583int tracing_is_on(void); 584void tracing_snapshot(void); 585void tracing_snapshot_alloc(void); 586 587extern void tracing_start(void); 588extern void tracing_stop(void); 589 590static inline __printf(1, 2) 591void ____trace_printk_check_format(const char *fmt, ...) 592{ 593} 594#define __trace_printk_check_format(fmt, args...) \ 595do { \ 596 if (0) \ 597 ____trace_printk_check_format(fmt, ##args); \ 598} while (0) 599 600/** 601 * trace_printk - printf formatting in the ftrace buffer 602 * @fmt: the printf format for printing 603 * 604 * Note: __trace_printk is an internal function for trace_printk and 605 * the @ip is passed in via the trace_printk macro. 606 * 607 * This function allows a kernel developer to debug fast path sections 608 * that printk is not appropriate for. By scattering in various 609 * printk like tracing in the code, a developer can quickly see 610 * where problems are occurring. 611 * 612 * This is intended as a debugging tool for the developer only. 613 * Please refrain from leaving trace_printks scattered around in 614 * your code. (Extra memory is used for special buffers that are 615 * allocated when trace_printk() is used) 616 * 617 * A little optization trick is done here. If there's only one 618 * argument, there's no need to scan the string for printf formats. 619 * The trace_puts() will suffice. But how can we take advantage of 620 * using trace_puts() when trace_printk() has only one argument? 621 * By stringifying the args and checking the size we can tell 622 * whether or not there are args. __stringify((__VA_ARGS__)) will 623 * turn into "()\0" with a size of 3 when there are no args, anything 624 * else will be bigger. All we need to do is define a string to this, 625 * and then take its size and compare to 3. If it's bigger, use 626 * do_trace_printk() otherwise, optimize it to trace_puts(). Then just 627 * let gcc optimize the rest. 628 */ 629 630#define trace_printk(fmt, ...) \ 631do { \ 632 char _______STR[] = __stringify((__VA_ARGS__)); \ 633 if (sizeof(_______STR) > 3) \ 634 do_trace_printk(fmt, ##__VA_ARGS__); \ 635 else \ 636 trace_puts(fmt); \ 637} while (0) 638 639#define do_trace_printk(fmt, args...) \ 640do { \ 641 static const char *trace_printk_fmt __used \ 642 __attribute__((section("__trace_printk_fmt"))) = \ 643 __builtin_constant_p(fmt) ? fmt : NULL; \ 644 \ 645 __trace_printk_check_format(fmt, ##args); \ 646 \ 647 if (__builtin_constant_p(fmt)) \ 648 __trace_bprintk(_THIS_IP_, trace_printk_fmt, ##args); \ 649 else \ 650 __trace_printk(_THIS_IP_, fmt, ##args); \ 651} while (0) 652 653extern __printf(2, 3) 654int __trace_bprintk(unsigned long ip, const char *fmt, ...); 655 656extern __printf(2, 3) 657int __trace_printk(unsigned long ip, const char *fmt, ...); 658 659/** 660 * trace_puts - write a string into the ftrace buffer 661 * @str: the string to record 662 * 663 * Note: __trace_bputs is an internal function for trace_puts and 664 * the @ip is passed in via the trace_puts macro. 665 * 666 * This is similar to trace_printk() but is made for those really fast 667 * paths that a developer wants the least amount of "Heisenbug" affects, 668 * where the processing of the print format is still too much. 669 * 670 * This function allows a kernel developer to debug fast path sections 671 * that printk is not appropriate for. By scattering in various 672 * printk like tracing in the code, a developer can quickly see 673 * where problems are occurring. 674 * 675 * This is intended as a debugging tool for the developer only. 676 * Please refrain from leaving trace_puts scattered around in 677 * your code. (Extra memory is used for special buffers that are 678 * allocated when trace_puts() is used) 679 * 680 * Returns: 0 if nothing was written, positive # if string was. 681 * (1 when __trace_bputs is used, strlen(str) when __trace_puts is used) 682 */ 683 684#define trace_puts(str) ({ \ 685 static const char *trace_printk_fmt __used \ 686 __attribute__((section("__trace_printk_fmt"))) = \ 687 __builtin_constant_p(str) ? str : NULL; \ 688 \ 689 if (__builtin_constant_p(str)) \ 690 __trace_bputs(_THIS_IP_, trace_printk_fmt); \ 691 else \ 692 __trace_puts(_THIS_IP_, str, strlen(str)); \ 693}) 694extern int __trace_bputs(unsigned long ip, const char *str); 695extern int __trace_puts(unsigned long ip, const char *str, int size); 696 697extern void trace_dump_stack(int skip); 698 699/* 700 * The double __builtin_constant_p is because gcc will give us an error 701 * if we try to allocate the static variable to fmt if it is not a 702 * constant. Even with the outer if statement. 703 */ 704#define ftrace_vprintk(fmt, vargs) \ 705do { \ 706 if (__builtin_constant_p(fmt)) { \ 707 static const char *trace_printk_fmt __used \ 708 __attribute__((section("__trace_printk_fmt"))) = \ 709 __builtin_constant_p(fmt) ? fmt : NULL; \ 710 \ 711 __ftrace_vbprintk(_THIS_IP_, trace_printk_fmt, vargs); \ 712 } else \ 713 __ftrace_vprintk(_THIS_IP_, fmt, vargs); \ 714} while (0) 715 716extern __printf(2, 0) int 717__ftrace_vbprintk(unsigned long ip, const char *fmt, va_list ap); 718 719extern __printf(2, 0) int 720__ftrace_vprintk(unsigned long ip, const char *fmt, va_list ap); 721 722extern void ftrace_dump(enum ftrace_dump_mode oops_dump_mode); 723#else 724static inline void tracing_start(void) { } 725static inline void tracing_stop(void) { } 726static inline void trace_dump_stack(int skip) { } 727 728static inline void tracing_on(void) { } 729static inline void tracing_off(void) { } 730static inline int tracing_is_on(void) { return 0; } 731static inline void tracing_snapshot(void) { } 732static inline void tracing_snapshot_alloc(void) { } 733 734static inline __printf(1, 2) 735int trace_printk(const char *fmt, ...) 736{ 737 return 0; 738} 739static __printf(1, 0) inline int 740ftrace_vprintk(const char *fmt, va_list ap) 741{ 742 return 0; 743} 744static inline void ftrace_dump(enum ftrace_dump_mode oops_dump_mode) { } 745#endif /* CONFIG_TRACING */ 746 747/* 748 * min()/max()/clamp() macros that also do 749 * strict type-checking.. See the 750 * "unnecessary" pointer comparison. 751 */ 752#define __min(t1, t2, min1, min2, x, y) ({ \ 753 t1 min1 = (x); \ 754 t2 min2 = (y); \ 755 (void) (&min1 == &min2); \ 756 min1 < min2 ? min1 : min2; }) 757#define min(x, y) \ 758 __min(typeof(x), typeof(y), \ 759 __UNIQUE_ID(min1_), __UNIQUE_ID(min2_), \ 760 x, y) 761 762#define __max(t1, t2, max1, max2, x, y) ({ \ 763 t1 max1 = (x); \ 764 t2 max2 = (y); \ 765 (void) (&max1 == &max2); \ 766 max1 > max2 ? max1 : max2; }) 767#define max(x, y) \ 768 __max(typeof(x), typeof(y), \ 769 __UNIQUE_ID(max1_), __UNIQUE_ID(max2_), \ 770 x, y) 771 772#define min3(x, y, z) min((typeof(x))min(x, y), z) 773#define max3(x, y, z) max((typeof(x))max(x, y), z) 774 775/** 776 * min_not_zero - return the minimum that is _not_ zero, unless both are zero 777 * @x: value1 778 * @y: value2 779 */ 780#define min_not_zero(x, y) ({ \ 781 typeof(x) __x = (x); \ 782 typeof(y) __y = (y); \ 783 __x == 0 ? __y : ((__y == 0) ? __x : min(__x, __y)); }) 784 785/** 786 * clamp - return a value clamped to a given range with strict typechecking 787 * @val: current value 788 * @lo: lowest allowable value 789 * @hi: highest allowable value 790 * 791 * This macro does strict typechecking of lo/hi to make sure they are of the 792 * same type as val. See the unnecessary pointer comparisons. 793 */ 794#define clamp(val, lo, hi) min((typeof(val))max(val, lo), hi) 795 796/* 797 * ..and if you can't take the strict 798 * types, you can specify one yourself. 799 * 800 * Or not use min/max/clamp at all, of course. 801 */ 802#define min_t(type, x, y) \ 803 __min(type, type, \ 804 __UNIQUE_ID(min1_), __UNIQUE_ID(min2_), \ 805 x, y) 806 807#define max_t(type, x, y) \ 808 __max(type, type, \ 809 __UNIQUE_ID(min1_), __UNIQUE_ID(min2_), \ 810 x, y) 811 812/** 813 * clamp_t - return a value clamped to a given range using a given type 814 * @type: the type of variable to use 815 * @val: current value 816 * @lo: minimum allowable value 817 * @hi: maximum allowable value 818 * 819 * This macro does no typechecking and uses temporary variables of type 820 * 'type' to make all the comparisons. 821 */ 822#define clamp_t(type, val, lo, hi) min_t(type, max_t(type, val, lo), hi) 823 824/** 825 * clamp_val - return a value clamped to a given range using val's type 826 * @val: current value 827 * @lo: minimum allowable value 828 * @hi: maximum allowable value 829 * 830 * This macro does no typechecking and uses temporary variables of whatever 831 * type the input argument 'val' is. This is useful when val is an unsigned 832 * type and min and max are literals that will otherwise be assigned a signed 833 * integer type. 834 */ 835#define clamp_val(val, lo, hi) clamp_t(typeof(val), val, lo, hi) 836 837 838/* 839 * swap - swap value of @a and @b 840 */ 841#define swap(a, b) \ 842 do { typeof(a) __tmp = (a); (a) = (b); (b) = __tmp; } while (0) 843 844/** 845 * container_of - cast a member of a structure out to the containing structure 846 * @ptr: the pointer to the member. 847 * @type: the type of the container struct this is embedded in. 848 * @member: the name of the member within the struct. 849 * 850 */ 851#define container_of(ptr, type, member) ({ \ 852 const typeof( ((type *)0)->member ) *__mptr = (ptr); \ 853 (type *)( (char *)__mptr - offsetof(type,member) );}) 854 855/* Rebuild everything on CONFIG_FTRACE_MCOUNT_RECORD */ 856#ifdef CONFIG_FTRACE_MCOUNT_RECORD 857# define REBUILD_DUE_TO_FTRACE_MCOUNT_RECORD 858#endif 859 860/* Permissions on a sysfs file: you didn't miss the 0 prefix did you? */ 861#define VERIFY_OCTAL_PERMISSIONS(perms) \ 862 (BUILD_BUG_ON_ZERO((perms) < 0) + \ 863 BUILD_BUG_ON_ZERO((perms) > 0777) + \ 864 /* USER_READABLE >= GROUP_READABLE >= OTHER_READABLE */ \ 865 BUILD_BUG_ON_ZERO((((perms) >> 6) & 4) < (((perms) >> 3) & 4)) + \ 866 BUILD_BUG_ON_ZERO((((perms) >> 3) & 4) < ((perms) & 4)) + \ 867 /* USER_WRITABLE >= GROUP_WRITABLE */ \ 868 BUILD_BUG_ON_ZERO((((perms) >> 6) & 2) < (((perms) >> 3) & 2)) + \ 869 /* OTHER_WRITABLE? Generally considered a bad idea. */ \ 870 BUILD_BUG_ON_ZERO((perms) & 2) + \ 871 (perms)) 872#endif