at v4.11-rc7 7668 lines 213 kB view raw
1/* 2 * linux/mm/page_alloc.c 3 * 4 * Manages the free list, the system allocates free pages here. 5 * Note that kmalloc() lives in slab.c 6 * 7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 8 * Swap reorganised 29.12.95, Stephen Tweedie 9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 15 */ 16 17#include <linux/stddef.h> 18#include <linux/mm.h> 19#include <linux/swap.h> 20#include <linux/interrupt.h> 21#include <linux/pagemap.h> 22#include <linux/jiffies.h> 23#include <linux/bootmem.h> 24#include <linux/memblock.h> 25#include <linux/compiler.h> 26#include <linux/kernel.h> 27#include <linux/kmemcheck.h> 28#include <linux/kasan.h> 29#include <linux/module.h> 30#include <linux/suspend.h> 31#include <linux/pagevec.h> 32#include <linux/blkdev.h> 33#include <linux/slab.h> 34#include <linux/ratelimit.h> 35#include <linux/oom.h> 36#include <linux/notifier.h> 37#include <linux/topology.h> 38#include <linux/sysctl.h> 39#include <linux/cpu.h> 40#include <linux/cpuset.h> 41#include <linux/memory_hotplug.h> 42#include <linux/nodemask.h> 43#include <linux/vmalloc.h> 44#include <linux/vmstat.h> 45#include <linux/mempolicy.h> 46#include <linux/memremap.h> 47#include <linux/stop_machine.h> 48#include <linux/sort.h> 49#include <linux/pfn.h> 50#include <linux/backing-dev.h> 51#include <linux/fault-inject.h> 52#include <linux/page-isolation.h> 53#include <linux/page_ext.h> 54#include <linux/debugobjects.h> 55#include <linux/kmemleak.h> 56#include <linux/compaction.h> 57#include <trace/events/kmem.h> 58#include <trace/events/oom.h> 59#include <linux/prefetch.h> 60#include <linux/mm_inline.h> 61#include <linux/migrate.h> 62#include <linux/hugetlb.h> 63#include <linux/sched/rt.h> 64#include <linux/sched/mm.h> 65#include <linux/page_owner.h> 66#include <linux/kthread.h> 67#include <linux/memcontrol.h> 68 69#include <asm/sections.h> 70#include <asm/tlbflush.h> 71#include <asm/div64.h> 72#include "internal.h" 73 74/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 75static DEFINE_MUTEX(pcp_batch_high_lock); 76#define MIN_PERCPU_PAGELIST_FRACTION (8) 77 78#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 79DEFINE_PER_CPU(int, numa_node); 80EXPORT_PER_CPU_SYMBOL(numa_node); 81#endif 82 83#ifdef CONFIG_HAVE_MEMORYLESS_NODES 84/* 85 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 86 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 87 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 88 * defined in <linux/topology.h>. 89 */ 90DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 91EXPORT_PER_CPU_SYMBOL(_numa_mem_); 92int _node_numa_mem_[MAX_NUMNODES]; 93#endif 94 95/* work_structs for global per-cpu drains */ 96DEFINE_MUTEX(pcpu_drain_mutex); 97DEFINE_PER_CPU(struct work_struct, pcpu_drain); 98 99#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY 100volatile unsigned long latent_entropy __latent_entropy; 101EXPORT_SYMBOL(latent_entropy); 102#endif 103 104/* 105 * Array of node states. 106 */ 107nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 108 [N_POSSIBLE] = NODE_MASK_ALL, 109 [N_ONLINE] = { { [0] = 1UL } }, 110#ifndef CONFIG_NUMA 111 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 112#ifdef CONFIG_HIGHMEM 113 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 114#endif 115#ifdef CONFIG_MOVABLE_NODE 116 [N_MEMORY] = { { [0] = 1UL } }, 117#endif 118 [N_CPU] = { { [0] = 1UL } }, 119#endif /* NUMA */ 120}; 121EXPORT_SYMBOL(node_states); 122 123/* Protect totalram_pages and zone->managed_pages */ 124static DEFINE_SPINLOCK(managed_page_count_lock); 125 126unsigned long totalram_pages __read_mostly; 127unsigned long totalreserve_pages __read_mostly; 128unsigned long totalcma_pages __read_mostly; 129 130int percpu_pagelist_fraction; 131gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 132 133/* 134 * A cached value of the page's pageblock's migratetype, used when the page is 135 * put on a pcplist. Used to avoid the pageblock migratetype lookup when 136 * freeing from pcplists in most cases, at the cost of possibly becoming stale. 137 * Also the migratetype set in the page does not necessarily match the pcplist 138 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any 139 * other index - this ensures that it will be put on the correct CMA freelist. 140 */ 141static inline int get_pcppage_migratetype(struct page *page) 142{ 143 return page->index; 144} 145 146static inline void set_pcppage_migratetype(struct page *page, int migratetype) 147{ 148 page->index = migratetype; 149} 150 151#ifdef CONFIG_PM_SLEEP 152/* 153 * The following functions are used by the suspend/hibernate code to temporarily 154 * change gfp_allowed_mask in order to avoid using I/O during memory allocations 155 * while devices are suspended. To avoid races with the suspend/hibernate code, 156 * they should always be called with pm_mutex held (gfp_allowed_mask also should 157 * only be modified with pm_mutex held, unless the suspend/hibernate code is 158 * guaranteed not to run in parallel with that modification). 159 */ 160 161static gfp_t saved_gfp_mask; 162 163void pm_restore_gfp_mask(void) 164{ 165 WARN_ON(!mutex_is_locked(&pm_mutex)); 166 if (saved_gfp_mask) { 167 gfp_allowed_mask = saved_gfp_mask; 168 saved_gfp_mask = 0; 169 } 170} 171 172void pm_restrict_gfp_mask(void) 173{ 174 WARN_ON(!mutex_is_locked(&pm_mutex)); 175 WARN_ON(saved_gfp_mask); 176 saved_gfp_mask = gfp_allowed_mask; 177 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS); 178} 179 180bool pm_suspended_storage(void) 181{ 182 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 183 return false; 184 return true; 185} 186#endif /* CONFIG_PM_SLEEP */ 187 188#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 189unsigned int pageblock_order __read_mostly; 190#endif 191 192static void __free_pages_ok(struct page *page, unsigned int order); 193 194/* 195 * results with 256, 32 in the lowmem_reserve sysctl: 196 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 197 * 1G machine -> (16M dma, 784M normal, 224M high) 198 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 199 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 200 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA 201 * 202 * TBD: should special case ZONE_DMA32 machines here - in those we normally 203 * don't need any ZONE_NORMAL reservation 204 */ 205int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 206#ifdef CONFIG_ZONE_DMA 207 256, 208#endif 209#ifdef CONFIG_ZONE_DMA32 210 256, 211#endif 212#ifdef CONFIG_HIGHMEM 213 32, 214#endif 215 32, 216}; 217 218EXPORT_SYMBOL(totalram_pages); 219 220static char * const zone_names[MAX_NR_ZONES] = { 221#ifdef CONFIG_ZONE_DMA 222 "DMA", 223#endif 224#ifdef CONFIG_ZONE_DMA32 225 "DMA32", 226#endif 227 "Normal", 228#ifdef CONFIG_HIGHMEM 229 "HighMem", 230#endif 231 "Movable", 232#ifdef CONFIG_ZONE_DEVICE 233 "Device", 234#endif 235}; 236 237char * const migratetype_names[MIGRATE_TYPES] = { 238 "Unmovable", 239 "Movable", 240 "Reclaimable", 241 "HighAtomic", 242#ifdef CONFIG_CMA 243 "CMA", 244#endif 245#ifdef CONFIG_MEMORY_ISOLATION 246 "Isolate", 247#endif 248}; 249 250compound_page_dtor * const compound_page_dtors[] = { 251 NULL, 252 free_compound_page, 253#ifdef CONFIG_HUGETLB_PAGE 254 free_huge_page, 255#endif 256#ifdef CONFIG_TRANSPARENT_HUGEPAGE 257 free_transhuge_page, 258#endif 259}; 260 261int min_free_kbytes = 1024; 262int user_min_free_kbytes = -1; 263int watermark_scale_factor = 10; 264 265static unsigned long __meminitdata nr_kernel_pages; 266static unsigned long __meminitdata nr_all_pages; 267static unsigned long __meminitdata dma_reserve; 268 269#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 270static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES]; 271static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES]; 272static unsigned long __initdata required_kernelcore; 273static unsigned long __initdata required_movablecore; 274static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES]; 275static bool mirrored_kernelcore; 276 277/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 278int movable_zone; 279EXPORT_SYMBOL(movable_zone); 280#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 281 282#if MAX_NUMNODES > 1 283int nr_node_ids __read_mostly = MAX_NUMNODES; 284int nr_online_nodes __read_mostly = 1; 285EXPORT_SYMBOL(nr_node_ids); 286EXPORT_SYMBOL(nr_online_nodes); 287#endif 288 289int page_group_by_mobility_disabled __read_mostly; 290 291#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 292static inline void reset_deferred_meminit(pg_data_t *pgdat) 293{ 294 pgdat->first_deferred_pfn = ULONG_MAX; 295} 296 297/* Returns true if the struct page for the pfn is uninitialised */ 298static inline bool __meminit early_page_uninitialised(unsigned long pfn) 299{ 300 int nid = early_pfn_to_nid(pfn); 301 302 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn) 303 return true; 304 305 return false; 306} 307 308/* 309 * Returns false when the remaining initialisation should be deferred until 310 * later in the boot cycle when it can be parallelised. 311 */ 312static inline bool update_defer_init(pg_data_t *pgdat, 313 unsigned long pfn, unsigned long zone_end, 314 unsigned long *nr_initialised) 315{ 316 unsigned long max_initialise; 317 318 /* Always populate low zones for address-contrained allocations */ 319 if (zone_end < pgdat_end_pfn(pgdat)) 320 return true; 321 /* 322 * Initialise at least 2G of a node but also take into account that 323 * two large system hashes that can take up 1GB for 0.25TB/node. 324 */ 325 max_initialise = max(2UL << (30 - PAGE_SHIFT), 326 (pgdat->node_spanned_pages >> 8)); 327 328 (*nr_initialised)++; 329 if ((*nr_initialised > max_initialise) && 330 (pfn & (PAGES_PER_SECTION - 1)) == 0) { 331 pgdat->first_deferred_pfn = pfn; 332 return false; 333 } 334 335 return true; 336} 337#else 338static inline void reset_deferred_meminit(pg_data_t *pgdat) 339{ 340} 341 342static inline bool early_page_uninitialised(unsigned long pfn) 343{ 344 return false; 345} 346 347static inline bool update_defer_init(pg_data_t *pgdat, 348 unsigned long pfn, unsigned long zone_end, 349 unsigned long *nr_initialised) 350{ 351 return true; 352} 353#endif 354 355/* Return a pointer to the bitmap storing bits affecting a block of pages */ 356static inline unsigned long *get_pageblock_bitmap(struct page *page, 357 unsigned long pfn) 358{ 359#ifdef CONFIG_SPARSEMEM 360 return __pfn_to_section(pfn)->pageblock_flags; 361#else 362 return page_zone(page)->pageblock_flags; 363#endif /* CONFIG_SPARSEMEM */ 364} 365 366static inline int pfn_to_bitidx(struct page *page, unsigned long pfn) 367{ 368#ifdef CONFIG_SPARSEMEM 369 pfn &= (PAGES_PER_SECTION-1); 370 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 371#else 372 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages); 373 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 374#endif /* CONFIG_SPARSEMEM */ 375} 376 377/** 378 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages 379 * @page: The page within the block of interest 380 * @pfn: The target page frame number 381 * @end_bitidx: The last bit of interest to retrieve 382 * @mask: mask of bits that the caller is interested in 383 * 384 * Return: pageblock_bits flags 385 */ 386static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page, 387 unsigned long pfn, 388 unsigned long end_bitidx, 389 unsigned long mask) 390{ 391 unsigned long *bitmap; 392 unsigned long bitidx, word_bitidx; 393 unsigned long word; 394 395 bitmap = get_pageblock_bitmap(page, pfn); 396 bitidx = pfn_to_bitidx(page, pfn); 397 word_bitidx = bitidx / BITS_PER_LONG; 398 bitidx &= (BITS_PER_LONG-1); 399 400 word = bitmap[word_bitidx]; 401 bitidx += end_bitidx; 402 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask; 403} 404 405unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn, 406 unsigned long end_bitidx, 407 unsigned long mask) 408{ 409 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask); 410} 411 412static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn) 413{ 414 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK); 415} 416 417/** 418 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages 419 * @page: The page within the block of interest 420 * @flags: The flags to set 421 * @pfn: The target page frame number 422 * @end_bitidx: The last bit of interest 423 * @mask: mask of bits that the caller is interested in 424 */ 425void set_pfnblock_flags_mask(struct page *page, unsigned long flags, 426 unsigned long pfn, 427 unsigned long end_bitidx, 428 unsigned long mask) 429{ 430 unsigned long *bitmap; 431 unsigned long bitidx, word_bitidx; 432 unsigned long old_word, word; 433 434 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); 435 436 bitmap = get_pageblock_bitmap(page, pfn); 437 bitidx = pfn_to_bitidx(page, pfn); 438 word_bitidx = bitidx / BITS_PER_LONG; 439 bitidx &= (BITS_PER_LONG-1); 440 441 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page); 442 443 bitidx += end_bitidx; 444 mask <<= (BITS_PER_LONG - bitidx - 1); 445 flags <<= (BITS_PER_LONG - bitidx - 1); 446 447 word = READ_ONCE(bitmap[word_bitidx]); 448 for (;;) { 449 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags); 450 if (word == old_word) 451 break; 452 word = old_word; 453 } 454} 455 456void set_pageblock_migratetype(struct page *page, int migratetype) 457{ 458 if (unlikely(page_group_by_mobility_disabled && 459 migratetype < MIGRATE_PCPTYPES)) 460 migratetype = MIGRATE_UNMOVABLE; 461 462 set_pageblock_flags_group(page, (unsigned long)migratetype, 463 PB_migrate, PB_migrate_end); 464} 465 466#ifdef CONFIG_DEBUG_VM 467static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 468{ 469 int ret = 0; 470 unsigned seq; 471 unsigned long pfn = page_to_pfn(page); 472 unsigned long sp, start_pfn; 473 474 do { 475 seq = zone_span_seqbegin(zone); 476 start_pfn = zone->zone_start_pfn; 477 sp = zone->spanned_pages; 478 if (!zone_spans_pfn(zone, pfn)) 479 ret = 1; 480 } while (zone_span_seqretry(zone, seq)); 481 482 if (ret) 483 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", 484 pfn, zone_to_nid(zone), zone->name, 485 start_pfn, start_pfn + sp); 486 487 return ret; 488} 489 490static int page_is_consistent(struct zone *zone, struct page *page) 491{ 492 if (!pfn_valid_within(page_to_pfn(page))) 493 return 0; 494 if (zone != page_zone(page)) 495 return 0; 496 497 return 1; 498} 499/* 500 * Temporary debugging check for pages not lying within a given zone. 501 */ 502static int bad_range(struct zone *zone, struct page *page) 503{ 504 if (page_outside_zone_boundaries(zone, page)) 505 return 1; 506 if (!page_is_consistent(zone, page)) 507 return 1; 508 509 return 0; 510} 511#else 512static inline int bad_range(struct zone *zone, struct page *page) 513{ 514 return 0; 515} 516#endif 517 518static void bad_page(struct page *page, const char *reason, 519 unsigned long bad_flags) 520{ 521 static unsigned long resume; 522 static unsigned long nr_shown; 523 static unsigned long nr_unshown; 524 525 /* 526 * Allow a burst of 60 reports, then keep quiet for that minute; 527 * or allow a steady drip of one report per second. 528 */ 529 if (nr_shown == 60) { 530 if (time_before(jiffies, resume)) { 531 nr_unshown++; 532 goto out; 533 } 534 if (nr_unshown) { 535 pr_alert( 536 "BUG: Bad page state: %lu messages suppressed\n", 537 nr_unshown); 538 nr_unshown = 0; 539 } 540 nr_shown = 0; 541 } 542 if (nr_shown++ == 0) 543 resume = jiffies + 60 * HZ; 544 545 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n", 546 current->comm, page_to_pfn(page)); 547 __dump_page(page, reason); 548 bad_flags &= page->flags; 549 if (bad_flags) 550 pr_alert("bad because of flags: %#lx(%pGp)\n", 551 bad_flags, &bad_flags); 552 dump_page_owner(page); 553 554 print_modules(); 555 dump_stack(); 556out: 557 /* Leave bad fields for debug, except PageBuddy could make trouble */ 558 page_mapcount_reset(page); /* remove PageBuddy */ 559 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 560} 561 562/* 563 * Higher-order pages are called "compound pages". They are structured thusly: 564 * 565 * The first PAGE_SIZE page is called the "head page" and have PG_head set. 566 * 567 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded 568 * in bit 0 of page->compound_head. The rest of bits is pointer to head page. 569 * 570 * The first tail page's ->compound_dtor holds the offset in array of compound 571 * page destructors. See compound_page_dtors. 572 * 573 * The first tail page's ->compound_order holds the order of allocation. 574 * This usage means that zero-order pages may not be compound. 575 */ 576 577void free_compound_page(struct page *page) 578{ 579 __free_pages_ok(page, compound_order(page)); 580} 581 582void prep_compound_page(struct page *page, unsigned int order) 583{ 584 int i; 585 int nr_pages = 1 << order; 586 587 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR); 588 set_compound_order(page, order); 589 __SetPageHead(page); 590 for (i = 1; i < nr_pages; i++) { 591 struct page *p = page + i; 592 set_page_count(p, 0); 593 p->mapping = TAIL_MAPPING; 594 set_compound_head(p, page); 595 } 596 atomic_set(compound_mapcount_ptr(page), -1); 597} 598 599#ifdef CONFIG_DEBUG_PAGEALLOC 600unsigned int _debug_guardpage_minorder; 601bool _debug_pagealloc_enabled __read_mostly 602 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT); 603EXPORT_SYMBOL(_debug_pagealloc_enabled); 604bool _debug_guardpage_enabled __read_mostly; 605 606static int __init early_debug_pagealloc(char *buf) 607{ 608 if (!buf) 609 return -EINVAL; 610 return kstrtobool(buf, &_debug_pagealloc_enabled); 611} 612early_param("debug_pagealloc", early_debug_pagealloc); 613 614static bool need_debug_guardpage(void) 615{ 616 /* If we don't use debug_pagealloc, we don't need guard page */ 617 if (!debug_pagealloc_enabled()) 618 return false; 619 620 if (!debug_guardpage_minorder()) 621 return false; 622 623 return true; 624} 625 626static void init_debug_guardpage(void) 627{ 628 if (!debug_pagealloc_enabled()) 629 return; 630 631 if (!debug_guardpage_minorder()) 632 return; 633 634 _debug_guardpage_enabled = true; 635} 636 637struct page_ext_operations debug_guardpage_ops = { 638 .need = need_debug_guardpage, 639 .init = init_debug_guardpage, 640}; 641 642static int __init debug_guardpage_minorder_setup(char *buf) 643{ 644 unsigned long res; 645 646 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) { 647 pr_err("Bad debug_guardpage_minorder value\n"); 648 return 0; 649 } 650 _debug_guardpage_minorder = res; 651 pr_info("Setting debug_guardpage_minorder to %lu\n", res); 652 return 0; 653} 654early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup); 655 656static inline bool set_page_guard(struct zone *zone, struct page *page, 657 unsigned int order, int migratetype) 658{ 659 struct page_ext *page_ext; 660 661 if (!debug_guardpage_enabled()) 662 return false; 663 664 if (order >= debug_guardpage_minorder()) 665 return false; 666 667 page_ext = lookup_page_ext(page); 668 if (unlikely(!page_ext)) 669 return false; 670 671 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); 672 673 INIT_LIST_HEAD(&page->lru); 674 set_page_private(page, order); 675 /* Guard pages are not available for any usage */ 676 __mod_zone_freepage_state(zone, -(1 << order), migratetype); 677 678 return true; 679} 680 681static inline void clear_page_guard(struct zone *zone, struct page *page, 682 unsigned int order, int migratetype) 683{ 684 struct page_ext *page_ext; 685 686 if (!debug_guardpage_enabled()) 687 return; 688 689 page_ext = lookup_page_ext(page); 690 if (unlikely(!page_ext)) 691 return; 692 693 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); 694 695 set_page_private(page, 0); 696 if (!is_migrate_isolate(migratetype)) 697 __mod_zone_freepage_state(zone, (1 << order), migratetype); 698} 699#else 700struct page_ext_operations debug_guardpage_ops; 701static inline bool set_page_guard(struct zone *zone, struct page *page, 702 unsigned int order, int migratetype) { return false; } 703static inline void clear_page_guard(struct zone *zone, struct page *page, 704 unsigned int order, int migratetype) {} 705#endif 706 707static inline void set_page_order(struct page *page, unsigned int order) 708{ 709 set_page_private(page, order); 710 __SetPageBuddy(page); 711} 712 713static inline void rmv_page_order(struct page *page) 714{ 715 __ClearPageBuddy(page); 716 set_page_private(page, 0); 717} 718 719/* 720 * This function checks whether a page is free && is the buddy 721 * we can do coalesce a page and its buddy if 722 * (a) the buddy is not in a hole (check before calling!) && 723 * (b) the buddy is in the buddy system && 724 * (c) a page and its buddy have the same order && 725 * (d) a page and its buddy are in the same zone. 726 * 727 * For recording whether a page is in the buddy system, we set ->_mapcount 728 * PAGE_BUDDY_MAPCOUNT_VALUE. 729 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is 730 * serialized by zone->lock. 731 * 732 * For recording page's order, we use page_private(page). 733 */ 734static inline int page_is_buddy(struct page *page, struct page *buddy, 735 unsigned int order) 736{ 737 if (page_is_guard(buddy) && page_order(buddy) == order) { 738 if (page_zone_id(page) != page_zone_id(buddy)) 739 return 0; 740 741 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 742 743 return 1; 744 } 745 746 if (PageBuddy(buddy) && page_order(buddy) == order) { 747 /* 748 * zone check is done late to avoid uselessly 749 * calculating zone/node ids for pages that could 750 * never merge. 751 */ 752 if (page_zone_id(page) != page_zone_id(buddy)) 753 return 0; 754 755 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 756 757 return 1; 758 } 759 return 0; 760} 761 762/* 763 * Freeing function for a buddy system allocator. 764 * 765 * The concept of a buddy system is to maintain direct-mapped table 766 * (containing bit values) for memory blocks of various "orders". 767 * The bottom level table contains the map for the smallest allocatable 768 * units of memory (here, pages), and each level above it describes 769 * pairs of units from the levels below, hence, "buddies". 770 * At a high level, all that happens here is marking the table entry 771 * at the bottom level available, and propagating the changes upward 772 * as necessary, plus some accounting needed to play nicely with other 773 * parts of the VM system. 774 * At each level, we keep a list of pages, which are heads of continuous 775 * free pages of length of (1 << order) and marked with _mapcount 776 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page) 777 * field. 778 * So when we are allocating or freeing one, we can derive the state of the 779 * other. That is, if we allocate a small block, and both were 780 * free, the remainder of the region must be split into blocks. 781 * If a block is freed, and its buddy is also free, then this 782 * triggers coalescing into a block of larger size. 783 * 784 * -- nyc 785 */ 786 787static inline void __free_one_page(struct page *page, 788 unsigned long pfn, 789 struct zone *zone, unsigned int order, 790 int migratetype) 791{ 792 unsigned long combined_pfn; 793 unsigned long uninitialized_var(buddy_pfn); 794 struct page *buddy; 795 unsigned int max_order; 796 797 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1); 798 799 VM_BUG_ON(!zone_is_initialized(zone)); 800 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page); 801 802 VM_BUG_ON(migratetype == -1); 803 if (likely(!is_migrate_isolate(migratetype))) 804 __mod_zone_freepage_state(zone, 1 << order, migratetype); 805 806 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page); 807 VM_BUG_ON_PAGE(bad_range(zone, page), page); 808 809continue_merging: 810 while (order < max_order - 1) { 811 buddy_pfn = __find_buddy_pfn(pfn, order); 812 buddy = page + (buddy_pfn - pfn); 813 814 if (!pfn_valid_within(buddy_pfn)) 815 goto done_merging; 816 if (!page_is_buddy(page, buddy, order)) 817 goto done_merging; 818 /* 819 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 820 * merge with it and move up one order. 821 */ 822 if (page_is_guard(buddy)) { 823 clear_page_guard(zone, buddy, order, migratetype); 824 } else { 825 list_del(&buddy->lru); 826 zone->free_area[order].nr_free--; 827 rmv_page_order(buddy); 828 } 829 combined_pfn = buddy_pfn & pfn; 830 page = page + (combined_pfn - pfn); 831 pfn = combined_pfn; 832 order++; 833 } 834 if (max_order < MAX_ORDER) { 835 /* If we are here, it means order is >= pageblock_order. 836 * We want to prevent merge between freepages on isolate 837 * pageblock and normal pageblock. Without this, pageblock 838 * isolation could cause incorrect freepage or CMA accounting. 839 * 840 * We don't want to hit this code for the more frequent 841 * low-order merging. 842 */ 843 if (unlikely(has_isolate_pageblock(zone))) { 844 int buddy_mt; 845 846 buddy_pfn = __find_buddy_pfn(pfn, order); 847 buddy = page + (buddy_pfn - pfn); 848 buddy_mt = get_pageblock_migratetype(buddy); 849 850 if (migratetype != buddy_mt 851 && (is_migrate_isolate(migratetype) || 852 is_migrate_isolate(buddy_mt))) 853 goto done_merging; 854 } 855 max_order++; 856 goto continue_merging; 857 } 858 859done_merging: 860 set_page_order(page, order); 861 862 /* 863 * If this is not the largest possible page, check if the buddy 864 * of the next-highest order is free. If it is, it's possible 865 * that pages are being freed that will coalesce soon. In case, 866 * that is happening, add the free page to the tail of the list 867 * so it's less likely to be used soon and more likely to be merged 868 * as a higher order page 869 */ 870 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) { 871 struct page *higher_page, *higher_buddy; 872 combined_pfn = buddy_pfn & pfn; 873 higher_page = page + (combined_pfn - pfn); 874 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1); 875 higher_buddy = higher_page + (buddy_pfn - combined_pfn); 876 if (pfn_valid_within(buddy_pfn) && 877 page_is_buddy(higher_page, higher_buddy, order + 1)) { 878 list_add_tail(&page->lru, 879 &zone->free_area[order].free_list[migratetype]); 880 goto out; 881 } 882 } 883 884 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]); 885out: 886 zone->free_area[order].nr_free++; 887} 888 889/* 890 * A bad page could be due to a number of fields. Instead of multiple branches, 891 * try and check multiple fields with one check. The caller must do a detailed 892 * check if necessary. 893 */ 894static inline bool page_expected_state(struct page *page, 895 unsigned long check_flags) 896{ 897 if (unlikely(atomic_read(&page->_mapcount) != -1)) 898 return false; 899 900 if (unlikely((unsigned long)page->mapping | 901 page_ref_count(page) | 902#ifdef CONFIG_MEMCG 903 (unsigned long)page->mem_cgroup | 904#endif 905 (page->flags & check_flags))) 906 return false; 907 908 return true; 909} 910 911static void free_pages_check_bad(struct page *page) 912{ 913 const char *bad_reason; 914 unsigned long bad_flags; 915 916 bad_reason = NULL; 917 bad_flags = 0; 918 919 if (unlikely(atomic_read(&page->_mapcount) != -1)) 920 bad_reason = "nonzero mapcount"; 921 if (unlikely(page->mapping != NULL)) 922 bad_reason = "non-NULL mapping"; 923 if (unlikely(page_ref_count(page) != 0)) 924 bad_reason = "nonzero _refcount"; 925 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) { 926 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; 927 bad_flags = PAGE_FLAGS_CHECK_AT_FREE; 928 } 929#ifdef CONFIG_MEMCG 930 if (unlikely(page->mem_cgroup)) 931 bad_reason = "page still charged to cgroup"; 932#endif 933 bad_page(page, bad_reason, bad_flags); 934} 935 936static inline int free_pages_check(struct page *page) 937{ 938 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE))) 939 return 0; 940 941 /* Something has gone sideways, find it */ 942 free_pages_check_bad(page); 943 return 1; 944} 945 946static int free_tail_pages_check(struct page *head_page, struct page *page) 947{ 948 int ret = 1; 949 950 /* 951 * We rely page->lru.next never has bit 0 set, unless the page 952 * is PageTail(). Let's make sure that's true even for poisoned ->lru. 953 */ 954 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1); 955 956 if (!IS_ENABLED(CONFIG_DEBUG_VM)) { 957 ret = 0; 958 goto out; 959 } 960 switch (page - head_page) { 961 case 1: 962 /* the first tail page: ->mapping is compound_mapcount() */ 963 if (unlikely(compound_mapcount(page))) { 964 bad_page(page, "nonzero compound_mapcount", 0); 965 goto out; 966 } 967 break; 968 case 2: 969 /* 970 * the second tail page: ->mapping is 971 * page_deferred_list().next -- ignore value. 972 */ 973 break; 974 default: 975 if (page->mapping != TAIL_MAPPING) { 976 bad_page(page, "corrupted mapping in tail page", 0); 977 goto out; 978 } 979 break; 980 } 981 if (unlikely(!PageTail(page))) { 982 bad_page(page, "PageTail not set", 0); 983 goto out; 984 } 985 if (unlikely(compound_head(page) != head_page)) { 986 bad_page(page, "compound_head not consistent", 0); 987 goto out; 988 } 989 ret = 0; 990out: 991 page->mapping = NULL; 992 clear_compound_head(page); 993 return ret; 994} 995 996static __always_inline bool free_pages_prepare(struct page *page, 997 unsigned int order, bool check_free) 998{ 999 int bad = 0; 1000 1001 VM_BUG_ON_PAGE(PageTail(page), page); 1002 1003 trace_mm_page_free(page, order); 1004 kmemcheck_free_shadow(page, order); 1005 1006 /* 1007 * Check tail pages before head page information is cleared to 1008 * avoid checking PageCompound for order-0 pages. 1009 */ 1010 if (unlikely(order)) { 1011 bool compound = PageCompound(page); 1012 int i; 1013 1014 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); 1015 1016 if (compound) 1017 ClearPageDoubleMap(page); 1018 for (i = 1; i < (1 << order); i++) { 1019 if (compound) 1020 bad += free_tail_pages_check(page, page + i); 1021 if (unlikely(free_pages_check(page + i))) { 1022 bad++; 1023 continue; 1024 } 1025 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1026 } 1027 } 1028 if (PageMappingFlags(page)) 1029 page->mapping = NULL; 1030 if (memcg_kmem_enabled() && PageKmemcg(page)) 1031 memcg_kmem_uncharge(page, order); 1032 if (check_free) 1033 bad += free_pages_check(page); 1034 if (bad) 1035 return false; 1036 1037 page_cpupid_reset_last(page); 1038 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1039 reset_page_owner(page, order); 1040 1041 if (!PageHighMem(page)) { 1042 debug_check_no_locks_freed(page_address(page), 1043 PAGE_SIZE << order); 1044 debug_check_no_obj_freed(page_address(page), 1045 PAGE_SIZE << order); 1046 } 1047 arch_free_page(page, order); 1048 kernel_poison_pages(page, 1 << order, 0); 1049 kernel_map_pages(page, 1 << order, 0); 1050 kasan_free_pages(page, order); 1051 1052 return true; 1053} 1054 1055#ifdef CONFIG_DEBUG_VM 1056static inline bool free_pcp_prepare(struct page *page) 1057{ 1058 return free_pages_prepare(page, 0, true); 1059} 1060 1061static inline bool bulkfree_pcp_prepare(struct page *page) 1062{ 1063 return false; 1064} 1065#else 1066static bool free_pcp_prepare(struct page *page) 1067{ 1068 return free_pages_prepare(page, 0, false); 1069} 1070 1071static bool bulkfree_pcp_prepare(struct page *page) 1072{ 1073 return free_pages_check(page); 1074} 1075#endif /* CONFIG_DEBUG_VM */ 1076 1077/* 1078 * Frees a number of pages from the PCP lists 1079 * Assumes all pages on list are in same zone, and of same order. 1080 * count is the number of pages to free. 1081 * 1082 * If the zone was previously in an "all pages pinned" state then look to 1083 * see if this freeing clears that state. 1084 * 1085 * And clear the zone's pages_scanned counter, to hold off the "all pages are 1086 * pinned" detection logic. 1087 */ 1088static void free_pcppages_bulk(struct zone *zone, int count, 1089 struct per_cpu_pages *pcp) 1090{ 1091 int migratetype = 0; 1092 int batch_free = 0; 1093 unsigned long nr_scanned, flags; 1094 bool isolated_pageblocks; 1095 1096 spin_lock_irqsave(&zone->lock, flags); 1097 isolated_pageblocks = has_isolate_pageblock(zone); 1098 nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED); 1099 if (nr_scanned) 1100 __mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned); 1101 1102 while (count) { 1103 struct page *page; 1104 struct list_head *list; 1105 1106 /* 1107 * Remove pages from lists in a round-robin fashion. A 1108 * batch_free count is maintained that is incremented when an 1109 * empty list is encountered. This is so more pages are freed 1110 * off fuller lists instead of spinning excessively around empty 1111 * lists 1112 */ 1113 do { 1114 batch_free++; 1115 if (++migratetype == MIGRATE_PCPTYPES) 1116 migratetype = 0; 1117 list = &pcp->lists[migratetype]; 1118 } while (list_empty(list)); 1119 1120 /* This is the only non-empty list. Free them all. */ 1121 if (batch_free == MIGRATE_PCPTYPES) 1122 batch_free = count; 1123 1124 do { 1125 int mt; /* migratetype of the to-be-freed page */ 1126 1127 page = list_last_entry(list, struct page, lru); 1128 /* must delete as __free_one_page list manipulates */ 1129 list_del(&page->lru); 1130 1131 mt = get_pcppage_migratetype(page); 1132 /* MIGRATE_ISOLATE page should not go to pcplists */ 1133 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page); 1134 /* Pageblock could have been isolated meanwhile */ 1135 if (unlikely(isolated_pageblocks)) 1136 mt = get_pageblock_migratetype(page); 1137 1138 if (bulkfree_pcp_prepare(page)) 1139 continue; 1140 1141 __free_one_page(page, page_to_pfn(page), zone, 0, mt); 1142 trace_mm_page_pcpu_drain(page, 0, mt); 1143 } while (--count && --batch_free && !list_empty(list)); 1144 } 1145 spin_unlock_irqrestore(&zone->lock, flags); 1146} 1147 1148static void free_one_page(struct zone *zone, 1149 struct page *page, unsigned long pfn, 1150 unsigned int order, 1151 int migratetype) 1152{ 1153 unsigned long nr_scanned, flags; 1154 spin_lock_irqsave(&zone->lock, flags); 1155 __count_vm_events(PGFREE, 1 << order); 1156 nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED); 1157 if (nr_scanned) 1158 __mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned); 1159 1160 if (unlikely(has_isolate_pageblock(zone) || 1161 is_migrate_isolate(migratetype))) { 1162 migratetype = get_pfnblock_migratetype(page, pfn); 1163 } 1164 __free_one_page(page, pfn, zone, order, migratetype); 1165 spin_unlock_irqrestore(&zone->lock, flags); 1166} 1167 1168static void __meminit __init_single_page(struct page *page, unsigned long pfn, 1169 unsigned long zone, int nid) 1170{ 1171 set_page_links(page, zone, nid, pfn); 1172 init_page_count(page); 1173 page_mapcount_reset(page); 1174 page_cpupid_reset_last(page); 1175 1176 INIT_LIST_HEAD(&page->lru); 1177#ifdef WANT_PAGE_VIRTUAL 1178 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 1179 if (!is_highmem_idx(zone)) 1180 set_page_address(page, __va(pfn << PAGE_SHIFT)); 1181#endif 1182} 1183 1184static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone, 1185 int nid) 1186{ 1187 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid); 1188} 1189 1190#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1191static void init_reserved_page(unsigned long pfn) 1192{ 1193 pg_data_t *pgdat; 1194 int nid, zid; 1195 1196 if (!early_page_uninitialised(pfn)) 1197 return; 1198 1199 nid = early_pfn_to_nid(pfn); 1200 pgdat = NODE_DATA(nid); 1201 1202 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1203 struct zone *zone = &pgdat->node_zones[zid]; 1204 1205 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone)) 1206 break; 1207 } 1208 __init_single_pfn(pfn, zid, nid); 1209} 1210#else 1211static inline void init_reserved_page(unsigned long pfn) 1212{ 1213} 1214#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1215 1216/* 1217 * Initialised pages do not have PageReserved set. This function is 1218 * called for each range allocated by the bootmem allocator and 1219 * marks the pages PageReserved. The remaining valid pages are later 1220 * sent to the buddy page allocator. 1221 */ 1222void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end) 1223{ 1224 unsigned long start_pfn = PFN_DOWN(start); 1225 unsigned long end_pfn = PFN_UP(end); 1226 1227 for (; start_pfn < end_pfn; start_pfn++) { 1228 if (pfn_valid(start_pfn)) { 1229 struct page *page = pfn_to_page(start_pfn); 1230 1231 init_reserved_page(start_pfn); 1232 1233 /* Avoid false-positive PageTail() */ 1234 INIT_LIST_HEAD(&page->lru); 1235 1236 SetPageReserved(page); 1237 } 1238 } 1239} 1240 1241static void __free_pages_ok(struct page *page, unsigned int order) 1242{ 1243 int migratetype; 1244 unsigned long pfn = page_to_pfn(page); 1245 1246 if (!free_pages_prepare(page, order, true)) 1247 return; 1248 1249 migratetype = get_pfnblock_migratetype(page, pfn); 1250 free_one_page(page_zone(page), page, pfn, order, migratetype); 1251} 1252 1253static void __init __free_pages_boot_core(struct page *page, unsigned int order) 1254{ 1255 unsigned int nr_pages = 1 << order; 1256 struct page *p = page; 1257 unsigned int loop; 1258 1259 prefetchw(p); 1260 for (loop = 0; loop < (nr_pages - 1); loop++, p++) { 1261 prefetchw(p + 1); 1262 __ClearPageReserved(p); 1263 set_page_count(p, 0); 1264 } 1265 __ClearPageReserved(p); 1266 set_page_count(p, 0); 1267 1268 page_zone(page)->managed_pages += nr_pages; 1269 set_page_refcounted(page); 1270 __free_pages(page, order); 1271} 1272 1273#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \ 1274 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) 1275 1276static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata; 1277 1278int __meminit early_pfn_to_nid(unsigned long pfn) 1279{ 1280 static DEFINE_SPINLOCK(early_pfn_lock); 1281 int nid; 1282 1283 spin_lock(&early_pfn_lock); 1284 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache); 1285 if (nid < 0) 1286 nid = first_online_node; 1287 spin_unlock(&early_pfn_lock); 1288 1289 return nid; 1290} 1291#endif 1292 1293#ifdef CONFIG_NODES_SPAN_OTHER_NODES 1294static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node, 1295 struct mminit_pfnnid_cache *state) 1296{ 1297 int nid; 1298 1299 nid = __early_pfn_to_nid(pfn, state); 1300 if (nid >= 0 && nid != node) 1301 return false; 1302 return true; 1303} 1304 1305/* Only safe to use early in boot when initialisation is single-threaded */ 1306static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 1307{ 1308 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache); 1309} 1310 1311#else 1312 1313static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 1314{ 1315 return true; 1316} 1317static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node, 1318 struct mminit_pfnnid_cache *state) 1319{ 1320 return true; 1321} 1322#endif 1323 1324 1325void __init __free_pages_bootmem(struct page *page, unsigned long pfn, 1326 unsigned int order) 1327{ 1328 if (early_page_uninitialised(pfn)) 1329 return; 1330 return __free_pages_boot_core(page, order); 1331} 1332 1333/* 1334 * Check that the whole (or subset of) a pageblock given by the interval of 1335 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it 1336 * with the migration of free compaction scanner. The scanners then need to 1337 * use only pfn_valid_within() check for arches that allow holes within 1338 * pageblocks. 1339 * 1340 * Return struct page pointer of start_pfn, or NULL if checks were not passed. 1341 * 1342 * It's possible on some configurations to have a setup like node0 node1 node0 1343 * i.e. it's possible that all pages within a zones range of pages do not 1344 * belong to a single zone. We assume that a border between node0 and node1 1345 * can occur within a single pageblock, but not a node0 node1 node0 1346 * interleaving within a single pageblock. It is therefore sufficient to check 1347 * the first and last page of a pageblock and avoid checking each individual 1348 * page in a pageblock. 1349 */ 1350struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 1351 unsigned long end_pfn, struct zone *zone) 1352{ 1353 struct page *start_page; 1354 struct page *end_page; 1355 1356 /* end_pfn is one past the range we are checking */ 1357 end_pfn--; 1358 1359 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn)) 1360 return NULL; 1361 1362 start_page = pfn_to_page(start_pfn); 1363 1364 if (page_zone(start_page) != zone) 1365 return NULL; 1366 1367 end_page = pfn_to_page(end_pfn); 1368 1369 /* This gives a shorter code than deriving page_zone(end_page) */ 1370 if (page_zone_id(start_page) != page_zone_id(end_page)) 1371 return NULL; 1372 1373 return start_page; 1374} 1375 1376void set_zone_contiguous(struct zone *zone) 1377{ 1378 unsigned long block_start_pfn = zone->zone_start_pfn; 1379 unsigned long block_end_pfn; 1380 1381 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages); 1382 for (; block_start_pfn < zone_end_pfn(zone); 1383 block_start_pfn = block_end_pfn, 1384 block_end_pfn += pageblock_nr_pages) { 1385 1386 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone)); 1387 1388 if (!__pageblock_pfn_to_page(block_start_pfn, 1389 block_end_pfn, zone)) 1390 return; 1391 } 1392 1393 /* We confirm that there is no hole */ 1394 zone->contiguous = true; 1395} 1396 1397void clear_zone_contiguous(struct zone *zone) 1398{ 1399 zone->contiguous = false; 1400} 1401 1402#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1403static void __init deferred_free_range(struct page *page, 1404 unsigned long pfn, int nr_pages) 1405{ 1406 int i; 1407 1408 if (!page) 1409 return; 1410 1411 /* Free a large naturally-aligned chunk if possible */ 1412 if (nr_pages == pageblock_nr_pages && 1413 (pfn & (pageblock_nr_pages - 1)) == 0) { 1414 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1415 __free_pages_boot_core(page, pageblock_order); 1416 return; 1417 } 1418 1419 for (i = 0; i < nr_pages; i++, page++, pfn++) { 1420 if ((pfn & (pageblock_nr_pages - 1)) == 0) 1421 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1422 __free_pages_boot_core(page, 0); 1423 } 1424} 1425 1426/* Completion tracking for deferred_init_memmap() threads */ 1427static atomic_t pgdat_init_n_undone __initdata; 1428static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp); 1429 1430static inline void __init pgdat_init_report_one_done(void) 1431{ 1432 if (atomic_dec_and_test(&pgdat_init_n_undone)) 1433 complete(&pgdat_init_all_done_comp); 1434} 1435 1436/* Initialise remaining memory on a node */ 1437static int __init deferred_init_memmap(void *data) 1438{ 1439 pg_data_t *pgdat = data; 1440 int nid = pgdat->node_id; 1441 struct mminit_pfnnid_cache nid_init_state = { }; 1442 unsigned long start = jiffies; 1443 unsigned long nr_pages = 0; 1444 unsigned long walk_start, walk_end; 1445 int i, zid; 1446 struct zone *zone; 1447 unsigned long first_init_pfn = pgdat->first_deferred_pfn; 1448 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 1449 1450 if (first_init_pfn == ULONG_MAX) { 1451 pgdat_init_report_one_done(); 1452 return 0; 1453 } 1454 1455 /* Bind memory initialisation thread to a local node if possible */ 1456 if (!cpumask_empty(cpumask)) 1457 set_cpus_allowed_ptr(current, cpumask); 1458 1459 /* Sanity check boundaries */ 1460 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn); 1461 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat)); 1462 pgdat->first_deferred_pfn = ULONG_MAX; 1463 1464 /* Only the highest zone is deferred so find it */ 1465 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1466 zone = pgdat->node_zones + zid; 1467 if (first_init_pfn < zone_end_pfn(zone)) 1468 break; 1469 } 1470 1471 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) { 1472 unsigned long pfn, end_pfn; 1473 struct page *page = NULL; 1474 struct page *free_base_page = NULL; 1475 unsigned long free_base_pfn = 0; 1476 int nr_to_free = 0; 1477 1478 end_pfn = min(walk_end, zone_end_pfn(zone)); 1479 pfn = first_init_pfn; 1480 if (pfn < walk_start) 1481 pfn = walk_start; 1482 if (pfn < zone->zone_start_pfn) 1483 pfn = zone->zone_start_pfn; 1484 1485 for (; pfn < end_pfn; pfn++) { 1486 if (!pfn_valid_within(pfn)) 1487 goto free_range; 1488 1489 /* 1490 * Ensure pfn_valid is checked every 1491 * pageblock_nr_pages for memory holes 1492 */ 1493 if ((pfn & (pageblock_nr_pages - 1)) == 0) { 1494 if (!pfn_valid(pfn)) { 1495 page = NULL; 1496 goto free_range; 1497 } 1498 } 1499 1500 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) { 1501 page = NULL; 1502 goto free_range; 1503 } 1504 1505 /* Minimise pfn page lookups and scheduler checks */ 1506 if (page && (pfn & (pageblock_nr_pages - 1)) != 0) { 1507 page++; 1508 } else { 1509 nr_pages += nr_to_free; 1510 deferred_free_range(free_base_page, 1511 free_base_pfn, nr_to_free); 1512 free_base_page = NULL; 1513 free_base_pfn = nr_to_free = 0; 1514 1515 page = pfn_to_page(pfn); 1516 cond_resched(); 1517 } 1518 1519 if (page->flags) { 1520 VM_BUG_ON(page_zone(page) != zone); 1521 goto free_range; 1522 } 1523 1524 __init_single_page(page, pfn, zid, nid); 1525 if (!free_base_page) { 1526 free_base_page = page; 1527 free_base_pfn = pfn; 1528 nr_to_free = 0; 1529 } 1530 nr_to_free++; 1531 1532 /* Where possible, batch up pages for a single free */ 1533 continue; 1534free_range: 1535 /* Free the current block of pages to allocator */ 1536 nr_pages += nr_to_free; 1537 deferred_free_range(free_base_page, free_base_pfn, 1538 nr_to_free); 1539 free_base_page = NULL; 1540 free_base_pfn = nr_to_free = 0; 1541 } 1542 /* Free the last block of pages to allocator */ 1543 nr_pages += nr_to_free; 1544 deferred_free_range(free_base_page, free_base_pfn, nr_to_free); 1545 1546 first_init_pfn = max(end_pfn, first_init_pfn); 1547 } 1548 1549 /* Sanity check that the next zone really is unpopulated */ 1550 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone)); 1551 1552 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages, 1553 jiffies_to_msecs(jiffies - start)); 1554 1555 pgdat_init_report_one_done(); 1556 return 0; 1557} 1558#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1559 1560void __init page_alloc_init_late(void) 1561{ 1562 struct zone *zone; 1563 1564#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1565 int nid; 1566 1567 /* There will be num_node_state(N_MEMORY) threads */ 1568 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY)); 1569 for_each_node_state(nid, N_MEMORY) { 1570 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid); 1571 } 1572 1573 /* Block until all are initialised */ 1574 wait_for_completion(&pgdat_init_all_done_comp); 1575 1576 /* Reinit limits that are based on free pages after the kernel is up */ 1577 files_maxfiles_init(); 1578#endif 1579 1580 for_each_populated_zone(zone) 1581 set_zone_contiguous(zone); 1582} 1583 1584#ifdef CONFIG_CMA 1585/* Free whole pageblock and set its migration type to MIGRATE_CMA. */ 1586void __init init_cma_reserved_pageblock(struct page *page) 1587{ 1588 unsigned i = pageblock_nr_pages; 1589 struct page *p = page; 1590 1591 do { 1592 __ClearPageReserved(p); 1593 set_page_count(p, 0); 1594 } while (++p, --i); 1595 1596 set_pageblock_migratetype(page, MIGRATE_CMA); 1597 1598 if (pageblock_order >= MAX_ORDER) { 1599 i = pageblock_nr_pages; 1600 p = page; 1601 do { 1602 set_page_refcounted(p); 1603 __free_pages(p, MAX_ORDER - 1); 1604 p += MAX_ORDER_NR_PAGES; 1605 } while (i -= MAX_ORDER_NR_PAGES); 1606 } else { 1607 set_page_refcounted(page); 1608 __free_pages(page, pageblock_order); 1609 } 1610 1611 adjust_managed_page_count(page, pageblock_nr_pages); 1612} 1613#endif 1614 1615/* 1616 * The order of subdivision here is critical for the IO subsystem. 1617 * Please do not alter this order without good reasons and regression 1618 * testing. Specifically, as large blocks of memory are subdivided, 1619 * the order in which smaller blocks are delivered depends on the order 1620 * they're subdivided in this function. This is the primary factor 1621 * influencing the order in which pages are delivered to the IO 1622 * subsystem according to empirical testing, and this is also justified 1623 * by considering the behavior of a buddy system containing a single 1624 * large block of memory acted on by a series of small allocations. 1625 * This behavior is a critical factor in sglist merging's success. 1626 * 1627 * -- nyc 1628 */ 1629static inline void expand(struct zone *zone, struct page *page, 1630 int low, int high, struct free_area *area, 1631 int migratetype) 1632{ 1633 unsigned long size = 1 << high; 1634 1635 while (high > low) { 1636 area--; 1637 high--; 1638 size >>= 1; 1639 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); 1640 1641 /* 1642 * Mark as guard pages (or page), that will allow to 1643 * merge back to allocator when buddy will be freed. 1644 * Corresponding page table entries will not be touched, 1645 * pages will stay not present in virtual address space 1646 */ 1647 if (set_page_guard(zone, &page[size], high, migratetype)) 1648 continue; 1649 1650 list_add(&page[size].lru, &area->free_list[migratetype]); 1651 area->nr_free++; 1652 set_page_order(&page[size], high); 1653 } 1654} 1655 1656static void check_new_page_bad(struct page *page) 1657{ 1658 const char *bad_reason = NULL; 1659 unsigned long bad_flags = 0; 1660 1661 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1662 bad_reason = "nonzero mapcount"; 1663 if (unlikely(page->mapping != NULL)) 1664 bad_reason = "non-NULL mapping"; 1665 if (unlikely(page_ref_count(page) != 0)) 1666 bad_reason = "nonzero _count"; 1667 if (unlikely(page->flags & __PG_HWPOISON)) { 1668 bad_reason = "HWPoisoned (hardware-corrupted)"; 1669 bad_flags = __PG_HWPOISON; 1670 /* Don't complain about hwpoisoned pages */ 1671 page_mapcount_reset(page); /* remove PageBuddy */ 1672 return; 1673 } 1674 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) { 1675 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set"; 1676 bad_flags = PAGE_FLAGS_CHECK_AT_PREP; 1677 } 1678#ifdef CONFIG_MEMCG 1679 if (unlikely(page->mem_cgroup)) 1680 bad_reason = "page still charged to cgroup"; 1681#endif 1682 bad_page(page, bad_reason, bad_flags); 1683} 1684 1685/* 1686 * This page is about to be returned from the page allocator 1687 */ 1688static inline int check_new_page(struct page *page) 1689{ 1690 if (likely(page_expected_state(page, 1691 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON))) 1692 return 0; 1693 1694 check_new_page_bad(page); 1695 return 1; 1696} 1697 1698static inline bool free_pages_prezeroed(bool poisoned) 1699{ 1700 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) && 1701 page_poisoning_enabled() && poisoned; 1702} 1703 1704#ifdef CONFIG_DEBUG_VM 1705static bool check_pcp_refill(struct page *page) 1706{ 1707 return false; 1708} 1709 1710static bool check_new_pcp(struct page *page) 1711{ 1712 return check_new_page(page); 1713} 1714#else 1715static bool check_pcp_refill(struct page *page) 1716{ 1717 return check_new_page(page); 1718} 1719static bool check_new_pcp(struct page *page) 1720{ 1721 return false; 1722} 1723#endif /* CONFIG_DEBUG_VM */ 1724 1725static bool check_new_pages(struct page *page, unsigned int order) 1726{ 1727 int i; 1728 for (i = 0; i < (1 << order); i++) { 1729 struct page *p = page + i; 1730 1731 if (unlikely(check_new_page(p))) 1732 return true; 1733 } 1734 1735 return false; 1736} 1737 1738inline void post_alloc_hook(struct page *page, unsigned int order, 1739 gfp_t gfp_flags) 1740{ 1741 set_page_private(page, 0); 1742 set_page_refcounted(page); 1743 1744 arch_alloc_page(page, order); 1745 kernel_map_pages(page, 1 << order, 1); 1746 kernel_poison_pages(page, 1 << order, 1); 1747 kasan_alloc_pages(page, order); 1748 set_page_owner(page, order, gfp_flags); 1749} 1750 1751static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, 1752 unsigned int alloc_flags) 1753{ 1754 int i; 1755 bool poisoned = true; 1756 1757 for (i = 0; i < (1 << order); i++) { 1758 struct page *p = page + i; 1759 if (poisoned) 1760 poisoned &= page_is_poisoned(p); 1761 } 1762 1763 post_alloc_hook(page, order, gfp_flags); 1764 1765 if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO)) 1766 for (i = 0; i < (1 << order); i++) 1767 clear_highpage(page + i); 1768 1769 if (order && (gfp_flags & __GFP_COMP)) 1770 prep_compound_page(page, order); 1771 1772 /* 1773 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to 1774 * allocate the page. The expectation is that the caller is taking 1775 * steps that will free more memory. The caller should avoid the page 1776 * being used for !PFMEMALLOC purposes. 1777 */ 1778 if (alloc_flags & ALLOC_NO_WATERMARKS) 1779 set_page_pfmemalloc(page); 1780 else 1781 clear_page_pfmemalloc(page); 1782} 1783 1784/* 1785 * Go through the free lists for the given migratetype and remove 1786 * the smallest available page from the freelists 1787 */ 1788static inline 1789struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 1790 int migratetype) 1791{ 1792 unsigned int current_order; 1793 struct free_area *area; 1794 struct page *page; 1795 1796 /* Find a page of the appropriate size in the preferred list */ 1797 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 1798 area = &(zone->free_area[current_order]); 1799 page = list_first_entry_or_null(&area->free_list[migratetype], 1800 struct page, lru); 1801 if (!page) 1802 continue; 1803 list_del(&page->lru); 1804 rmv_page_order(page); 1805 area->nr_free--; 1806 expand(zone, page, order, current_order, area, migratetype); 1807 set_pcppage_migratetype(page, migratetype); 1808 return page; 1809 } 1810 1811 return NULL; 1812} 1813 1814 1815/* 1816 * This array describes the order lists are fallen back to when 1817 * the free lists for the desirable migrate type are depleted 1818 */ 1819static int fallbacks[MIGRATE_TYPES][4] = { 1820 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 1821 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 1822 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES }, 1823#ifdef CONFIG_CMA 1824 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */ 1825#endif 1826#ifdef CONFIG_MEMORY_ISOLATION 1827 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */ 1828#endif 1829}; 1830 1831#ifdef CONFIG_CMA 1832static struct page *__rmqueue_cma_fallback(struct zone *zone, 1833 unsigned int order) 1834{ 1835 return __rmqueue_smallest(zone, order, MIGRATE_CMA); 1836} 1837#else 1838static inline struct page *__rmqueue_cma_fallback(struct zone *zone, 1839 unsigned int order) { return NULL; } 1840#endif 1841 1842/* 1843 * Move the free pages in a range to the free lists of the requested type. 1844 * Note that start_page and end_pages are not aligned on a pageblock 1845 * boundary. If alignment is required, use move_freepages_block() 1846 */ 1847int move_freepages(struct zone *zone, 1848 struct page *start_page, struct page *end_page, 1849 int migratetype) 1850{ 1851 struct page *page; 1852 unsigned int order; 1853 int pages_moved = 0; 1854 1855#ifndef CONFIG_HOLES_IN_ZONE 1856 /* 1857 * page_zone is not safe to call in this context when 1858 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant 1859 * anyway as we check zone boundaries in move_freepages_block(). 1860 * Remove at a later date when no bug reports exist related to 1861 * grouping pages by mobility 1862 */ 1863 VM_BUG_ON(page_zone(start_page) != page_zone(end_page)); 1864#endif 1865 1866 for (page = start_page; page <= end_page;) { 1867 if (!pfn_valid_within(page_to_pfn(page))) { 1868 page++; 1869 continue; 1870 } 1871 1872 /* Make sure we are not inadvertently changing nodes */ 1873 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); 1874 1875 if (!PageBuddy(page)) { 1876 page++; 1877 continue; 1878 } 1879 1880 order = page_order(page); 1881 list_move(&page->lru, 1882 &zone->free_area[order].free_list[migratetype]); 1883 page += 1 << order; 1884 pages_moved += 1 << order; 1885 } 1886 1887 return pages_moved; 1888} 1889 1890int move_freepages_block(struct zone *zone, struct page *page, 1891 int migratetype) 1892{ 1893 unsigned long start_pfn, end_pfn; 1894 struct page *start_page, *end_page; 1895 1896 start_pfn = page_to_pfn(page); 1897 start_pfn = start_pfn & ~(pageblock_nr_pages-1); 1898 start_page = pfn_to_page(start_pfn); 1899 end_page = start_page + pageblock_nr_pages - 1; 1900 end_pfn = start_pfn + pageblock_nr_pages - 1; 1901 1902 /* Do not cross zone boundaries */ 1903 if (!zone_spans_pfn(zone, start_pfn)) 1904 start_page = page; 1905 if (!zone_spans_pfn(zone, end_pfn)) 1906 return 0; 1907 1908 return move_freepages(zone, start_page, end_page, migratetype); 1909} 1910 1911static void change_pageblock_range(struct page *pageblock_page, 1912 int start_order, int migratetype) 1913{ 1914 int nr_pageblocks = 1 << (start_order - pageblock_order); 1915 1916 while (nr_pageblocks--) { 1917 set_pageblock_migratetype(pageblock_page, migratetype); 1918 pageblock_page += pageblock_nr_pages; 1919 } 1920} 1921 1922/* 1923 * When we are falling back to another migratetype during allocation, try to 1924 * steal extra free pages from the same pageblocks to satisfy further 1925 * allocations, instead of polluting multiple pageblocks. 1926 * 1927 * If we are stealing a relatively large buddy page, it is likely there will 1928 * be more free pages in the pageblock, so try to steal them all. For 1929 * reclaimable and unmovable allocations, we steal regardless of page size, 1930 * as fragmentation caused by those allocations polluting movable pageblocks 1931 * is worse than movable allocations stealing from unmovable and reclaimable 1932 * pageblocks. 1933 */ 1934static bool can_steal_fallback(unsigned int order, int start_mt) 1935{ 1936 /* 1937 * Leaving this order check is intended, although there is 1938 * relaxed order check in next check. The reason is that 1939 * we can actually steal whole pageblock if this condition met, 1940 * but, below check doesn't guarantee it and that is just heuristic 1941 * so could be changed anytime. 1942 */ 1943 if (order >= pageblock_order) 1944 return true; 1945 1946 if (order >= pageblock_order / 2 || 1947 start_mt == MIGRATE_RECLAIMABLE || 1948 start_mt == MIGRATE_UNMOVABLE || 1949 page_group_by_mobility_disabled) 1950 return true; 1951 1952 return false; 1953} 1954 1955/* 1956 * This function implements actual steal behaviour. If order is large enough, 1957 * we can steal whole pageblock. If not, we first move freepages in this 1958 * pageblock and check whether half of pages are moved or not. If half of 1959 * pages are moved, we can change migratetype of pageblock and permanently 1960 * use it's pages as requested migratetype in the future. 1961 */ 1962static void steal_suitable_fallback(struct zone *zone, struct page *page, 1963 int start_type) 1964{ 1965 unsigned int current_order = page_order(page); 1966 int pages; 1967 1968 /* Take ownership for orders >= pageblock_order */ 1969 if (current_order >= pageblock_order) { 1970 change_pageblock_range(page, current_order, start_type); 1971 return; 1972 } 1973 1974 pages = move_freepages_block(zone, page, start_type); 1975 1976 /* Claim the whole block if over half of it is free */ 1977 if (pages >= (1 << (pageblock_order-1)) || 1978 page_group_by_mobility_disabled) 1979 set_pageblock_migratetype(page, start_type); 1980} 1981 1982/* 1983 * Check whether there is a suitable fallback freepage with requested order. 1984 * If only_stealable is true, this function returns fallback_mt only if 1985 * we can steal other freepages all together. This would help to reduce 1986 * fragmentation due to mixed migratetype pages in one pageblock. 1987 */ 1988int find_suitable_fallback(struct free_area *area, unsigned int order, 1989 int migratetype, bool only_stealable, bool *can_steal) 1990{ 1991 int i; 1992 int fallback_mt; 1993 1994 if (area->nr_free == 0) 1995 return -1; 1996 1997 *can_steal = false; 1998 for (i = 0;; i++) { 1999 fallback_mt = fallbacks[migratetype][i]; 2000 if (fallback_mt == MIGRATE_TYPES) 2001 break; 2002 2003 if (list_empty(&area->free_list[fallback_mt])) 2004 continue; 2005 2006 if (can_steal_fallback(order, migratetype)) 2007 *can_steal = true; 2008 2009 if (!only_stealable) 2010 return fallback_mt; 2011 2012 if (*can_steal) 2013 return fallback_mt; 2014 } 2015 2016 return -1; 2017} 2018 2019/* 2020 * Reserve a pageblock for exclusive use of high-order atomic allocations if 2021 * there are no empty page blocks that contain a page with a suitable order 2022 */ 2023static void reserve_highatomic_pageblock(struct page *page, struct zone *zone, 2024 unsigned int alloc_order) 2025{ 2026 int mt; 2027 unsigned long max_managed, flags; 2028 2029 /* 2030 * Limit the number reserved to 1 pageblock or roughly 1% of a zone. 2031 * Check is race-prone but harmless. 2032 */ 2033 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages; 2034 if (zone->nr_reserved_highatomic >= max_managed) 2035 return; 2036 2037 spin_lock_irqsave(&zone->lock, flags); 2038 2039 /* Recheck the nr_reserved_highatomic limit under the lock */ 2040 if (zone->nr_reserved_highatomic >= max_managed) 2041 goto out_unlock; 2042 2043 /* Yoink! */ 2044 mt = get_pageblock_migratetype(page); 2045 if (mt != MIGRATE_HIGHATOMIC && 2046 !is_migrate_isolate(mt) && !is_migrate_cma(mt)) { 2047 zone->nr_reserved_highatomic += pageblock_nr_pages; 2048 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC); 2049 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC); 2050 } 2051 2052out_unlock: 2053 spin_unlock_irqrestore(&zone->lock, flags); 2054} 2055 2056/* 2057 * Used when an allocation is about to fail under memory pressure. This 2058 * potentially hurts the reliability of high-order allocations when under 2059 * intense memory pressure but failed atomic allocations should be easier 2060 * to recover from than an OOM. 2061 * 2062 * If @force is true, try to unreserve a pageblock even though highatomic 2063 * pageblock is exhausted. 2064 */ 2065static bool unreserve_highatomic_pageblock(const struct alloc_context *ac, 2066 bool force) 2067{ 2068 struct zonelist *zonelist = ac->zonelist; 2069 unsigned long flags; 2070 struct zoneref *z; 2071 struct zone *zone; 2072 struct page *page; 2073 int order; 2074 bool ret; 2075 2076 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx, 2077 ac->nodemask) { 2078 /* 2079 * Preserve at least one pageblock unless memory pressure 2080 * is really high. 2081 */ 2082 if (!force && zone->nr_reserved_highatomic <= 2083 pageblock_nr_pages) 2084 continue; 2085 2086 spin_lock_irqsave(&zone->lock, flags); 2087 for (order = 0; order < MAX_ORDER; order++) { 2088 struct free_area *area = &(zone->free_area[order]); 2089 2090 page = list_first_entry_or_null( 2091 &area->free_list[MIGRATE_HIGHATOMIC], 2092 struct page, lru); 2093 if (!page) 2094 continue; 2095 2096 /* 2097 * In page freeing path, migratetype change is racy so 2098 * we can counter several free pages in a pageblock 2099 * in this loop althoug we changed the pageblock type 2100 * from highatomic to ac->migratetype. So we should 2101 * adjust the count once. 2102 */ 2103 if (get_pageblock_migratetype(page) == 2104 MIGRATE_HIGHATOMIC) { 2105 /* 2106 * It should never happen but changes to 2107 * locking could inadvertently allow a per-cpu 2108 * drain to add pages to MIGRATE_HIGHATOMIC 2109 * while unreserving so be safe and watch for 2110 * underflows. 2111 */ 2112 zone->nr_reserved_highatomic -= min( 2113 pageblock_nr_pages, 2114 zone->nr_reserved_highatomic); 2115 } 2116 2117 /* 2118 * Convert to ac->migratetype and avoid the normal 2119 * pageblock stealing heuristics. Minimally, the caller 2120 * is doing the work and needs the pages. More 2121 * importantly, if the block was always converted to 2122 * MIGRATE_UNMOVABLE or another type then the number 2123 * of pageblocks that cannot be completely freed 2124 * may increase. 2125 */ 2126 set_pageblock_migratetype(page, ac->migratetype); 2127 ret = move_freepages_block(zone, page, ac->migratetype); 2128 if (ret) { 2129 spin_unlock_irqrestore(&zone->lock, flags); 2130 return ret; 2131 } 2132 } 2133 spin_unlock_irqrestore(&zone->lock, flags); 2134 } 2135 2136 return false; 2137} 2138 2139/* Remove an element from the buddy allocator from the fallback list */ 2140static inline struct page * 2141__rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype) 2142{ 2143 struct free_area *area; 2144 unsigned int current_order; 2145 struct page *page; 2146 int fallback_mt; 2147 bool can_steal; 2148 2149 /* Find the largest possible block of pages in the other list */ 2150 for (current_order = MAX_ORDER-1; 2151 current_order >= order && current_order <= MAX_ORDER-1; 2152 --current_order) { 2153 area = &(zone->free_area[current_order]); 2154 fallback_mt = find_suitable_fallback(area, current_order, 2155 start_migratetype, false, &can_steal); 2156 if (fallback_mt == -1) 2157 continue; 2158 2159 page = list_first_entry(&area->free_list[fallback_mt], 2160 struct page, lru); 2161 if (can_steal && 2162 get_pageblock_migratetype(page) != MIGRATE_HIGHATOMIC) 2163 steal_suitable_fallback(zone, page, start_migratetype); 2164 2165 /* Remove the page from the freelists */ 2166 area->nr_free--; 2167 list_del(&page->lru); 2168 rmv_page_order(page); 2169 2170 expand(zone, page, order, current_order, area, 2171 start_migratetype); 2172 /* 2173 * The pcppage_migratetype may differ from pageblock's 2174 * migratetype depending on the decisions in 2175 * find_suitable_fallback(). This is OK as long as it does not 2176 * differ for MIGRATE_CMA pageblocks. Those can be used as 2177 * fallback only via special __rmqueue_cma_fallback() function 2178 */ 2179 set_pcppage_migratetype(page, start_migratetype); 2180 2181 trace_mm_page_alloc_extfrag(page, order, current_order, 2182 start_migratetype, fallback_mt); 2183 2184 return page; 2185 } 2186 2187 return NULL; 2188} 2189 2190/* 2191 * Do the hard work of removing an element from the buddy allocator. 2192 * Call me with the zone->lock already held. 2193 */ 2194static struct page *__rmqueue(struct zone *zone, unsigned int order, 2195 int migratetype) 2196{ 2197 struct page *page; 2198 2199 page = __rmqueue_smallest(zone, order, migratetype); 2200 if (unlikely(!page)) { 2201 if (migratetype == MIGRATE_MOVABLE) 2202 page = __rmqueue_cma_fallback(zone, order); 2203 2204 if (!page) 2205 page = __rmqueue_fallback(zone, order, migratetype); 2206 } 2207 2208 trace_mm_page_alloc_zone_locked(page, order, migratetype); 2209 return page; 2210} 2211 2212/* 2213 * Obtain a specified number of elements from the buddy allocator, all under 2214 * a single hold of the lock, for efficiency. Add them to the supplied list. 2215 * Returns the number of new pages which were placed at *list. 2216 */ 2217static int rmqueue_bulk(struct zone *zone, unsigned int order, 2218 unsigned long count, struct list_head *list, 2219 int migratetype, bool cold) 2220{ 2221 int i, alloced = 0; 2222 unsigned long flags; 2223 2224 spin_lock_irqsave(&zone->lock, flags); 2225 for (i = 0; i < count; ++i) { 2226 struct page *page = __rmqueue(zone, order, migratetype); 2227 if (unlikely(page == NULL)) 2228 break; 2229 2230 if (unlikely(check_pcp_refill(page))) 2231 continue; 2232 2233 /* 2234 * Split buddy pages returned by expand() are received here 2235 * in physical page order. The page is added to the callers and 2236 * list and the list head then moves forward. From the callers 2237 * perspective, the linked list is ordered by page number in 2238 * some conditions. This is useful for IO devices that can 2239 * merge IO requests if the physical pages are ordered 2240 * properly. 2241 */ 2242 if (likely(!cold)) 2243 list_add(&page->lru, list); 2244 else 2245 list_add_tail(&page->lru, list); 2246 list = &page->lru; 2247 alloced++; 2248 if (is_migrate_cma(get_pcppage_migratetype(page))) 2249 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 2250 -(1 << order)); 2251 } 2252 2253 /* 2254 * i pages were removed from the buddy list even if some leak due 2255 * to check_pcp_refill failing so adjust NR_FREE_PAGES based 2256 * on i. Do not confuse with 'alloced' which is the number of 2257 * pages added to the pcp list. 2258 */ 2259 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 2260 spin_unlock_irqrestore(&zone->lock, flags); 2261 return alloced; 2262} 2263 2264#ifdef CONFIG_NUMA 2265/* 2266 * Called from the vmstat counter updater to drain pagesets of this 2267 * currently executing processor on remote nodes after they have 2268 * expired. 2269 * 2270 * Note that this function must be called with the thread pinned to 2271 * a single processor. 2272 */ 2273void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 2274{ 2275 unsigned long flags; 2276 int to_drain, batch; 2277 2278 local_irq_save(flags); 2279 batch = READ_ONCE(pcp->batch); 2280 to_drain = min(pcp->count, batch); 2281 if (to_drain > 0) { 2282 free_pcppages_bulk(zone, to_drain, pcp); 2283 pcp->count -= to_drain; 2284 } 2285 local_irq_restore(flags); 2286} 2287#endif 2288 2289/* 2290 * Drain pcplists of the indicated processor and zone. 2291 * 2292 * The processor must either be the current processor and the 2293 * thread pinned to the current processor or a processor that 2294 * is not online. 2295 */ 2296static void drain_pages_zone(unsigned int cpu, struct zone *zone) 2297{ 2298 unsigned long flags; 2299 struct per_cpu_pageset *pset; 2300 struct per_cpu_pages *pcp; 2301 2302 local_irq_save(flags); 2303 pset = per_cpu_ptr(zone->pageset, cpu); 2304 2305 pcp = &pset->pcp; 2306 if (pcp->count) { 2307 free_pcppages_bulk(zone, pcp->count, pcp); 2308 pcp->count = 0; 2309 } 2310 local_irq_restore(flags); 2311} 2312 2313/* 2314 * Drain pcplists of all zones on the indicated processor. 2315 * 2316 * The processor must either be the current processor and the 2317 * thread pinned to the current processor or a processor that 2318 * is not online. 2319 */ 2320static void drain_pages(unsigned int cpu) 2321{ 2322 struct zone *zone; 2323 2324 for_each_populated_zone(zone) { 2325 drain_pages_zone(cpu, zone); 2326 } 2327} 2328 2329/* 2330 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 2331 * 2332 * The CPU has to be pinned. When zone parameter is non-NULL, spill just 2333 * the single zone's pages. 2334 */ 2335void drain_local_pages(struct zone *zone) 2336{ 2337 int cpu = smp_processor_id(); 2338 2339 if (zone) 2340 drain_pages_zone(cpu, zone); 2341 else 2342 drain_pages(cpu); 2343} 2344 2345static void drain_local_pages_wq(struct work_struct *work) 2346{ 2347 /* 2348 * drain_all_pages doesn't use proper cpu hotplug protection so 2349 * we can race with cpu offline when the WQ can move this from 2350 * a cpu pinned worker to an unbound one. We can operate on a different 2351 * cpu which is allright but we also have to make sure to not move to 2352 * a different one. 2353 */ 2354 preempt_disable(); 2355 drain_local_pages(NULL); 2356 preempt_enable(); 2357} 2358 2359/* 2360 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 2361 * 2362 * When zone parameter is non-NULL, spill just the single zone's pages. 2363 * 2364 * Note that this can be extremely slow as the draining happens in a workqueue. 2365 */ 2366void drain_all_pages(struct zone *zone) 2367{ 2368 int cpu; 2369 2370 /* 2371 * Allocate in the BSS so we wont require allocation in 2372 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 2373 */ 2374 static cpumask_t cpus_with_pcps; 2375 2376 /* 2377 * Make sure nobody triggers this path before mm_percpu_wq is fully 2378 * initialized. 2379 */ 2380 if (WARN_ON_ONCE(!mm_percpu_wq)) 2381 return; 2382 2383 /* Workqueues cannot recurse */ 2384 if (current->flags & PF_WQ_WORKER) 2385 return; 2386 2387 /* 2388 * Do not drain if one is already in progress unless it's specific to 2389 * a zone. Such callers are primarily CMA and memory hotplug and need 2390 * the drain to be complete when the call returns. 2391 */ 2392 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) { 2393 if (!zone) 2394 return; 2395 mutex_lock(&pcpu_drain_mutex); 2396 } 2397 2398 /* 2399 * We don't care about racing with CPU hotplug event 2400 * as offline notification will cause the notified 2401 * cpu to drain that CPU pcps and on_each_cpu_mask 2402 * disables preemption as part of its processing 2403 */ 2404 for_each_online_cpu(cpu) { 2405 struct per_cpu_pageset *pcp; 2406 struct zone *z; 2407 bool has_pcps = false; 2408 2409 if (zone) { 2410 pcp = per_cpu_ptr(zone->pageset, cpu); 2411 if (pcp->pcp.count) 2412 has_pcps = true; 2413 } else { 2414 for_each_populated_zone(z) { 2415 pcp = per_cpu_ptr(z->pageset, cpu); 2416 if (pcp->pcp.count) { 2417 has_pcps = true; 2418 break; 2419 } 2420 } 2421 } 2422 2423 if (has_pcps) 2424 cpumask_set_cpu(cpu, &cpus_with_pcps); 2425 else 2426 cpumask_clear_cpu(cpu, &cpus_with_pcps); 2427 } 2428 2429 for_each_cpu(cpu, &cpus_with_pcps) { 2430 struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu); 2431 INIT_WORK(work, drain_local_pages_wq); 2432 queue_work_on(cpu, mm_percpu_wq, work); 2433 } 2434 for_each_cpu(cpu, &cpus_with_pcps) 2435 flush_work(per_cpu_ptr(&pcpu_drain, cpu)); 2436 2437 mutex_unlock(&pcpu_drain_mutex); 2438} 2439 2440#ifdef CONFIG_HIBERNATION 2441 2442void mark_free_pages(struct zone *zone) 2443{ 2444 unsigned long pfn, max_zone_pfn; 2445 unsigned long flags; 2446 unsigned int order, t; 2447 struct page *page; 2448 2449 if (zone_is_empty(zone)) 2450 return; 2451 2452 spin_lock_irqsave(&zone->lock, flags); 2453 2454 max_zone_pfn = zone_end_pfn(zone); 2455 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 2456 if (pfn_valid(pfn)) { 2457 page = pfn_to_page(pfn); 2458 2459 if (page_zone(page) != zone) 2460 continue; 2461 2462 if (!swsusp_page_is_forbidden(page)) 2463 swsusp_unset_page_free(page); 2464 } 2465 2466 for_each_migratetype_order(order, t) { 2467 list_for_each_entry(page, 2468 &zone->free_area[order].free_list[t], lru) { 2469 unsigned long i; 2470 2471 pfn = page_to_pfn(page); 2472 for (i = 0; i < (1UL << order); i++) 2473 swsusp_set_page_free(pfn_to_page(pfn + i)); 2474 } 2475 } 2476 spin_unlock_irqrestore(&zone->lock, flags); 2477} 2478#endif /* CONFIG_PM */ 2479 2480/* 2481 * Free a 0-order page 2482 * cold == true ? free a cold page : free a hot page 2483 */ 2484void free_hot_cold_page(struct page *page, bool cold) 2485{ 2486 struct zone *zone = page_zone(page); 2487 struct per_cpu_pages *pcp; 2488 unsigned long pfn = page_to_pfn(page); 2489 int migratetype; 2490 2491 if (in_interrupt()) { 2492 __free_pages_ok(page, 0); 2493 return; 2494 } 2495 2496 if (!free_pcp_prepare(page)) 2497 return; 2498 2499 migratetype = get_pfnblock_migratetype(page, pfn); 2500 set_pcppage_migratetype(page, migratetype); 2501 preempt_disable(); 2502 2503 /* 2504 * We only track unmovable, reclaimable and movable on pcp lists. 2505 * Free ISOLATE pages back to the allocator because they are being 2506 * offlined but treat RESERVE as movable pages so we can get those 2507 * areas back if necessary. Otherwise, we may have to free 2508 * excessively into the page allocator 2509 */ 2510 if (migratetype >= MIGRATE_PCPTYPES) { 2511 if (unlikely(is_migrate_isolate(migratetype))) { 2512 free_one_page(zone, page, pfn, 0, migratetype); 2513 goto out; 2514 } 2515 migratetype = MIGRATE_MOVABLE; 2516 } 2517 2518 __count_vm_event(PGFREE); 2519 pcp = &this_cpu_ptr(zone->pageset)->pcp; 2520 if (!cold) 2521 list_add(&page->lru, &pcp->lists[migratetype]); 2522 else 2523 list_add_tail(&page->lru, &pcp->lists[migratetype]); 2524 pcp->count++; 2525 if (pcp->count >= pcp->high) { 2526 unsigned long batch = READ_ONCE(pcp->batch); 2527 free_pcppages_bulk(zone, batch, pcp); 2528 pcp->count -= batch; 2529 } 2530 2531out: 2532 preempt_enable(); 2533} 2534 2535/* 2536 * Free a list of 0-order pages 2537 */ 2538void free_hot_cold_page_list(struct list_head *list, bool cold) 2539{ 2540 struct page *page, *next; 2541 2542 list_for_each_entry_safe(page, next, list, lru) { 2543 trace_mm_page_free_batched(page, cold); 2544 free_hot_cold_page(page, cold); 2545 } 2546} 2547 2548/* 2549 * split_page takes a non-compound higher-order page, and splits it into 2550 * n (1<<order) sub-pages: page[0..n] 2551 * Each sub-page must be freed individually. 2552 * 2553 * Note: this is probably too low level an operation for use in drivers. 2554 * Please consult with lkml before using this in your driver. 2555 */ 2556void split_page(struct page *page, unsigned int order) 2557{ 2558 int i; 2559 2560 VM_BUG_ON_PAGE(PageCompound(page), page); 2561 VM_BUG_ON_PAGE(!page_count(page), page); 2562 2563#ifdef CONFIG_KMEMCHECK 2564 /* 2565 * Split shadow pages too, because free(page[0]) would 2566 * otherwise free the whole shadow. 2567 */ 2568 if (kmemcheck_page_is_tracked(page)) 2569 split_page(virt_to_page(page[0].shadow), order); 2570#endif 2571 2572 for (i = 1; i < (1 << order); i++) 2573 set_page_refcounted(page + i); 2574 split_page_owner(page, order); 2575} 2576EXPORT_SYMBOL_GPL(split_page); 2577 2578int __isolate_free_page(struct page *page, unsigned int order) 2579{ 2580 unsigned long watermark; 2581 struct zone *zone; 2582 int mt; 2583 2584 BUG_ON(!PageBuddy(page)); 2585 2586 zone = page_zone(page); 2587 mt = get_pageblock_migratetype(page); 2588 2589 if (!is_migrate_isolate(mt)) { 2590 /* 2591 * Obey watermarks as if the page was being allocated. We can 2592 * emulate a high-order watermark check with a raised order-0 2593 * watermark, because we already know our high-order page 2594 * exists. 2595 */ 2596 watermark = min_wmark_pages(zone) + (1UL << order); 2597 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA)) 2598 return 0; 2599 2600 __mod_zone_freepage_state(zone, -(1UL << order), mt); 2601 } 2602 2603 /* Remove page from free list */ 2604 list_del(&page->lru); 2605 zone->free_area[order].nr_free--; 2606 rmv_page_order(page); 2607 2608 /* 2609 * Set the pageblock if the isolated page is at least half of a 2610 * pageblock 2611 */ 2612 if (order >= pageblock_order - 1) { 2613 struct page *endpage = page + (1 << order) - 1; 2614 for (; page < endpage; page += pageblock_nr_pages) { 2615 int mt = get_pageblock_migratetype(page); 2616 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt) 2617 && mt != MIGRATE_HIGHATOMIC) 2618 set_pageblock_migratetype(page, 2619 MIGRATE_MOVABLE); 2620 } 2621 } 2622 2623 2624 return 1UL << order; 2625} 2626 2627/* 2628 * Update NUMA hit/miss statistics 2629 * 2630 * Must be called with interrupts disabled. 2631 */ 2632static inline void zone_statistics(struct zone *preferred_zone, struct zone *z) 2633{ 2634#ifdef CONFIG_NUMA 2635 enum zone_stat_item local_stat = NUMA_LOCAL; 2636 2637 if (z->node != numa_node_id()) 2638 local_stat = NUMA_OTHER; 2639 2640 if (z->node == preferred_zone->node) 2641 __inc_zone_state(z, NUMA_HIT); 2642 else { 2643 __inc_zone_state(z, NUMA_MISS); 2644 __inc_zone_state(preferred_zone, NUMA_FOREIGN); 2645 } 2646 __inc_zone_state(z, local_stat); 2647#endif 2648} 2649 2650/* Remove page from the per-cpu list, caller must protect the list */ 2651static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype, 2652 bool cold, struct per_cpu_pages *pcp, 2653 struct list_head *list) 2654{ 2655 struct page *page; 2656 2657 VM_BUG_ON(in_interrupt()); 2658 2659 do { 2660 if (list_empty(list)) { 2661 pcp->count += rmqueue_bulk(zone, 0, 2662 pcp->batch, list, 2663 migratetype, cold); 2664 if (unlikely(list_empty(list))) 2665 return NULL; 2666 } 2667 2668 if (cold) 2669 page = list_last_entry(list, struct page, lru); 2670 else 2671 page = list_first_entry(list, struct page, lru); 2672 2673 list_del(&page->lru); 2674 pcp->count--; 2675 } while (check_new_pcp(page)); 2676 2677 return page; 2678} 2679 2680/* Lock and remove page from the per-cpu list */ 2681static struct page *rmqueue_pcplist(struct zone *preferred_zone, 2682 struct zone *zone, unsigned int order, 2683 gfp_t gfp_flags, int migratetype) 2684{ 2685 struct per_cpu_pages *pcp; 2686 struct list_head *list; 2687 bool cold = ((gfp_flags & __GFP_COLD) != 0); 2688 struct page *page; 2689 2690 preempt_disable(); 2691 pcp = &this_cpu_ptr(zone->pageset)->pcp; 2692 list = &pcp->lists[migratetype]; 2693 page = __rmqueue_pcplist(zone, migratetype, cold, pcp, list); 2694 if (page) { 2695 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 2696 zone_statistics(preferred_zone, zone); 2697 } 2698 preempt_enable(); 2699 return page; 2700} 2701 2702/* 2703 * Allocate a page from the given zone. Use pcplists for order-0 allocations. 2704 */ 2705static inline 2706struct page *rmqueue(struct zone *preferred_zone, 2707 struct zone *zone, unsigned int order, 2708 gfp_t gfp_flags, unsigned int alloc_flags, 2709 int migratetype) 2710{ 2711 unsigned long flags; 2712 struct page *page; 2713 2714 if (likely(order == 0) && !in_interrupt()) { 2715 page = rmqueue_pcplist(preferred_zone, zone, order, 2716 gfp_flags, migratetype); 2717 goto out; 2718 } 2719 2720 /* 2721 * We most definitely don't want callers attempting to 2722 * allocate greater than order-1 page units with __GFP_NOFAIL. 2723 */ 2724 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1)); 2725 spin_lock_irqsave(&zone->lock, flags); 2726 2727 do { 2728 page = NULL; 2729 if (alloc_flags & ALLOC_HARDER) { 2730 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 2731 if (page) 2732 trace_mm_page_alloc_zone_locked(page, order, migratetype); 2733 } 2734 if (!page) 2735 page = __rmqueue(zone, order, migratetype); 2736 } while (page && check_new_pages(page, order)); 2737 spin_unlock(&zone->lock); 2738 if (!page) 2739 goto failed; 2740 __mod_zone_freepage_state(zone, -(1 << order), 2741 get_pcppage_migratetype(page)); 2742 2743 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 2744 zone_statistics(preferred_zone, zone); 2745 local_irq_restore(flags); 2746 2747out: 2748 VM_BUG_ON_PAGE(page && bad_range(zone, page), page); 2749 return page; 2750 2751failed: 2752 local_irq_restore(flags); 2753 return NULL; 2754} 2755 2756#ifdef CONFIG_FAIL_PAGE_ALLOC 2757 2758static struct { 2759 struct fault_attr attr; 2760 2761 bool ignore_gfp_highmem; 2762 bool ignore_gfp_reclaim; 2763 u32 min_order; 2764} fail_page_alloc = { 2765 .attr = FAULT_ATTR_INITIALIZER, 2766 .ignore_gfp_reclaim = true, 2767 .ignore_gfp_highmem = true, 2768 .min_order = 1, 2769}; 2770 2771static int __init setup_fail_page_alloc(char *str) 2772{ 2773 return setup_fault_attr(&fail_page_alloc.attr, str); 2774} 2775__setup("fail_page_alloc=", setup_fail_page_alloc); 2776 2777static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 2778{ 2779 if (order < fail_page_alloc.min_order) 2780 return false; 2781 if (gfp_mask & __GFP_NOFAIL) 2782 return false; 2783 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 2784 return false; 2785 if (fail_page_alloc.ignore_gfp_reclaim && 2786 (gfp_mask & __GFP_DIRECT_RECLAIM)) 2787 return false; 2788 2789 return should_fail(&fail_page_alloc.attr, 1 << order); 2790} 2791 2792#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 2793 2794static int __init fail_page_alloc_debugfs(void) 2795{ 2796 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR; 2797 struct dentry *dir; 2798 2799 dir = fault_create_debugfs_attr("fail_page_alloc", NULL, 2800 &fail_page_alloc.attr); 2801 if (IS_ERR(dir)) 2802 return PTR_ERR(dir); 2803 2804 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir, 2805 &fail_page_alloc.ignore_gfp_reclaim)) 2806 goto fail; 2807 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir, 2808 &fail_page_alloc.ignore_gfp_highmem)) 2809 goto fail; 2810 if (!debugfs_create_u32("min-order", mode, dir, 2811 &fail_page_alloc.min_order)) 2812 goto fail; 2813 2814 return 0; 2815fail: 2816 debugfs_remove_recursive(dir); 2817 2818 return -ENOMEM; 2819} 2820 2821late_initcall(fail_page_alloc_debugfs); 2822 2823#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 2824 2825#else /* CONFIG_FAIL_PAGE_ALLOC */ 2826 2827static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 2828{ 2829 return false; 2830} 2831 2832#endif /* CONFIG_FAIL_PAGE_ALLOC */ 2833 2834/* 2835 * Return true if free base pages are above 'mark'. For high-order checks it 2836 * will return true of the order-0 watermark is reached and there is at least 2837 * one free page of a suitable size. Checking now avoids taking the zone lock 2838 * to check in the allocation paths if no pages are free. 2839 */ 2840bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 2841 int classzone_idx, unsigned int alloc_flags, 2842 long free_pages) 2843{ 2844 long min = mark; 2845 int o; 2846 const bool alloc_harder = (alloc_flags & ALLOC_HARDER); 2847 2848 /* free_pages may go negative - that's OK */ 2849 free_pages -= (1 << order) - 1; 2850 2851 if (alloc_flags & ALLOC_HIGH) 2852 min -= min / 2; 2853 2854 /* 2855 * If the caller does not have rights to ALLOC_HARDER then subtract 2856 * the high-atomic reserves. This will over-estimate the size of the 2857 * atomic reserve but it avoids a search. 2858 */ 2859 if (likely(!alloc_harder)) 2860 free_pages -= z->nr_reserved_highatomic; 2861 else 2862 min -= min / 4; 2863 2864#ifdef CONFIG_CMA 2865 /* If allocation can't use CMA areas don't use free CMA pages */ 2866 if (!(alloc_flags & ALLOC_CMA)) 2867 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES); 2868#endif 2869 2870 /* 2871 * Check watermarks for an order-0 allocation request. If these 2872 * are not met, then a high-order request also cannot go ahead 2873 * even if a suitable page happened to be free. 2874 */ 2875 if (free_pages <= min + z->lowmem_reserve[classzone_idx]) 2876 return false; 2877 2878 /* If this is an order-0 request then the watermark is fine */ 2879 if (!order) 2880 return true; 2881 2882 /* For a high-order request, check at least one suitable page is free */ 2883 for (o = order; o < MAX_ORDER; o++) { 2884 struct free_area *area = &z->free_area[o]; 2885 int mt; 2886 2887 if (!area->nr_free) 2888 continue; 2889 2890 if (alloc_harder) 2891 return true; 2892 2893 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) { 2894 if (!list_empty(&area->free_list[mt])) 2895 return true; 2896 } 2897 2898#ifdef CONFIG_CMA 2899 if ((alloc_flags & ALLOC_CMA) && 2900 !list_empty(&area->free_list[MIGRATE_CMA])) { 2901 return true; 2902 } 2903#endif 2904 } 2905 return false; 2906} 2907 2908bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 2909 int classzone_idx, unsigned int alloc_flags) 2910{ 2911 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 2912 zone_page_state(z, NR_FREE_PAGES)); 2913} 2914 2915static inline bool zone_watermark_fast(struct zone *z, unsigned int order, 2916 unsigned long mark, int classzone_idx, unsigned int alloc_flags) 2917{ 2918 long free_pages = zone_page_state(z, NR_FREE_PAGES); 2919 long cma_pages = 0; 2920 2921#ifdef CONFIG_CMA 2922 /* If allocation can't use CMA areas don't use free CMA pages */ 2923 if (!(alloc_flags & ALLOC_CMA)) 2924 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES); 2925#endif 2926 2927 /* 2928 * Fast check for order-0 only. If this fails then the reserves 2929 * need to be calculated. There is a corner case where the check 2930 * passes but only the high-order atomic reserve are free. If 2931 * the caller is !atomic then it'll uselessly search the free 2932 * list. That corner case is then slower but it is harmless. 2933 */ 2934 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx]) 2935 return true; 2936 2937 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 2938 free_pages); 2939} 2940 2941bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 2942 unsigned long mark, int classzone_idx) 2943{ 2944 long free_pages = zone_page_state(z, NR_FREE_PAGES); 2945 2946 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 2947 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 2948 2949 return __zone_watermark_ok(z, order, mark, classzone_idx, 0, 2950 free_pages); 2951} 2952 2953#ifdef CONFIG_NUMA 2954static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 2955{ 2956 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <= 2957 RECLAIM_DISTANCE; 2958} 2959#else /* CONFIG_NUMA */ 2960static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 2961{ 2962 return true; 2963} 2964#endif /* CONFIG_NUMA */ 2965 2966/* 2967 * get_page_from_freelist goes through the zonelist trying to allocate 2968 * a page. 2969 */ 2970static struct page * 2971get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, 2972 const struct alloc_context *ac) 2973{ 2974 struct zoneref *z = ac->preferred_zoneref; 2975 struct zone *zone; 2976 struct pglist_data *last_pgdat_dirty_limit = NULL; 2977 2978 /* 2979 * Scan zonelist, looking for a zone with enough free. 2980 * See also __cpuset_node_allowed() comment in kernel/cpuset.c. 2981 */ 2982 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 2983 ac->nodemask) { 2984 struct page *page; 2985 unsigned long mark; 2986 2987 if (cpusets_enabled() && 2988 (alloc_flags & ALLOC_CPUSET) && 2989 !__cpuset_zone_allowed(zone, gfp_mask)) 2990 continue; 2991 /* 2992 * When allocating a page cache page for writing, we 2993 * want to get it from a node that is within its dirty 2994 * limit, such that no single node holds more than its 2995 * proportional share of globally allowed dirty pages. 2996 * The dirty limits take into account the node's 2997 * lowmem reserves and high watermark so that kswapd 2998 * should be able to balance it without having to 2999 * write pages from its LRU list. 3000 * 3001 * XXX: For now, allow allocations to potentially 3002 * exceed the per-node dirty limit in the slowpath 3003 * (spread_dirty_pages unset) before going into reclaim, 3004 * which is important when on a NUMA setup the allowed 3005 * nodes are together not big enough to reach the 3006 * global limit. The proper fix for these situations 3007 * will require awareness of nodes in the 3008 * dirty-throttling and the flusher threads. 3009 */ 3010 if (ac->spread_dirty_pages) { 3011 if (last_pgdat_dirty_limit == zone->zone_pgdat) 3012 continue; 3013 3014 if (!node_dirty_ok(zone->zone_pgdat)) { 3015 last_pgdat_dirty_limit = zone->zone_pgdat; 3016 continue; 3017 } 3018 } 3019 3020 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK]; 3021 if (!zone_watermark_fast(zone, order, mark, 3022 ac_classzone_idx(ac), alloc_flags)) { 3023 int ret; 3024 3025 /* Checked here to keep the fast path fast */ 3026 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 3027 if (alloc_flags & ALLOC_NO_WATERMARKS) 3028 goto try_this_zone; 3029 3030 if (node_reclaim_mode == 0 || 3031 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone)) 3032 continue; 3033 3034 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order); 3035 switch (ret) { 3036 case NODE_RECLAIM_NOSCAN: 3037 /* did not scan */ 3038 continue; 3039 case NODE_RECLAIM_FULL: 3040 /* scanned but unreclaimable */ 3041 continue; 3042 default: 3043 /* did we reclaim enough */ 3044 if (zone_watermark_ok(zone, order, mark, 3045 ac_classzone_idx(ac), alloc_flags)) 3046 goto try_this_zone; 3047 3048 continue; 3049 } 3050 } 3051 3052try_this_zone: 3053 page = rmqueue(ac->preferred_zoneref->zone, zone, order, 3054 gfp_mask, alloc_flags, ac->migratetype); 3055 if (page) { 3056 prep_new_page(page, order, gfp_mask, alloc_flags); 3057 3058 /* 3059 * If this is a high-order atomic allocation then check 3060 * if the pageblock should be reserved for the future 3061 */ 3062 if (unlikely(order && (alloc_flags & ALLOC_HARDER))) 3063 reserve_highatomic_pageblock(page, zone, order); 3064 3065 return page; 3066 } 3067 } 3068 3069 return NULL; 3070} 3071 3072/* 3073 * Large machines with many possible nodes should not always dump per-node 3074 * meminfo in irq context. 3075 */ 3076static inline bool should_suppress_show_mem(void) 3077{ 3078 bool ret = false; 3079 3080#if NODES_SHIFT > 8 3081 ret = in_interrupt(); 3082#endif 3083 return ret; 3084} 3085 3086static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask) 3087{ 3088 unsigned int filter = SHOW_MEM_FILTER_NODES; 3089 static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1); 3090 3091 if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs)) 3092 return; 3093 3094 /* 3095 * This documents exceptions given to allocations in certain 3096 * contexts that are allowed to allocate outside current's set 3097 * of allowed nodes. 3098 */ 3099 if (!(gfp_mask & __GFP_NOMEMALLOC)) 3100 if (test_thread_flag(TIF_MEMDIE) || 3101 (current->flags & (PF_MEMALLOC | PF_EXITING))) 3102 filter &= ~SHOW_MEM_FILTER_NODES; 3103 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM)) 3104 filter &= ~SHOW_MEM_FILTER_NODES; 3105 3106 show_mem(filter, nodemask); 3107} 3108 3109void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...) 3110{ 3111 struct va_format vaf; 3112 va_list args; 3113 static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL, 3114 DEFAULT_RATELIMIT_BURST); 3115 3116 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) || 3117 debug_guardpage_minorder() > 0) 3118 return; 3119 3120 pr_warn("%s: ", current->comm); 3121 3122 va_start(args, fmt); 3123 vaf.fmt = fmt; 3124 vaf.va = &args; 3125 pr_cont("%pV", &vaf); 3126 va_end(args); 3127 3128 pr_cont(", mode:%#x(%pGg), nodemask=", gfp_mask, &gfp_mask); 3129 if (nodemask) 3130 pr_cont("%*pbl\n", nodemask_pr_args(nodemask)); 3131 else 3132 pr_cont("(null)\n"); 3133 3134 cpuset_print_current_mems_allowed(); 3135 3136 dump_stack(); 3137 warn_alloc_show_mem(gfp_mask, nodemask); 3138} 3139 3140static inline struct page * 3141__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order, 3142 unsigned int alloc_flags, 3143 const struct alloc_context *ac) 3144{ 3145 struct page *page; 3146 3147 page = get_page_from_freelist(gfp_mask, order, 3148 alloc_flags|ALLOC_CPUSET, ac); 3149 /* 3150 * fallback to ignore cpuset restriction if our nodes 3151 * are depleted 3152 */ 3153 if (!page) 3154 page = get_page_from_freelist(gfp_mask, order, 3155 alloc_flags, ac); 3156 3157 return page; 3158} 3159 3160static inline struct page * 3161__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 3162 const struct alloc_context *ac, unsigned long *did_some_progress) 3163{ 3164 struct oom_control oc = { 3165 .zonelist = ac->zonelist, 3166 .nodemask = ac->nodemask, 3167 .memcg = NULL, 3168 .gfp_mask = gfp_mask, 3169 .order = order, 3170 }; 3171 struct page *page; 3172 3173 *did_some_progress = 0; 3174 3175 /* 3176 * Acquire the oom lock. If that fails, somebody else is 3177 * making progress for us. 3178 */ 3179 if (!mutex_trylock(&oom_lock)) { 3180 *did_some_progress = 1; 3181 schedule_timeout_uninterruptible(1); 3182 return NULL; 3183 } 3184 3185 /* 3186 * Go through the zonelist yet one more time, keep very high watermark 3187 * here, this is only to catch a parallel oom killing, we must fail if 3188 * we're still under heavy pressure. 3189 */ 3190 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order, 3191 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); 3192 if (page) 3193 goto out; 3194 3195 /* Coredumps can quickly deplete all memory reserves */ 3196 if (current->flags & PF_DUMPCORE) 3197 goto out; 3198 /* The OOM killer will not help higher order allocs */ 3199 if (order > PAGE_ALLOC_COSTLY_ORDER) 3200 goto out; 3201 /* The OOM killer does not needlessly kill tasks for lowmem */ 3202 if (ac->high_zoneidx < ZONE_NORMAL) 3203 goto out; 3204 if (pm_suspended_storage()) 3205 goto out; 3206 /* 3207 * XXX: GFP_NOFS allocations should rather fail than rely on 3208 * other request to make a forward progress. 3209 * We are in an unfortunate situation where out_of_memory cannot 3210 * do much for this context but let's try it to at least get 3211 * access to memory reserved if the current task is killed (see 3212 * out_of_memory). Once filesystems are ready to handle allocation 3213 * failures more gracefully we should just bail out here. 3214 */ 3215 3216 /* The OOM killer may not free memory on a specific node */ 3217 if (gfp_mask & __GFP_THISNODE) 3218 goto out; 3219 3220 /* Exhausted what can be done so it's blamo time */ 3221 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) { 3222 *did_some_progress = 1; 3223 3224 /* 3225 * Help non-failing allocations by giving them access to memory 3226 * reserves 3227 */ 3228 if (gfp_mask & __GFP_NOFAIL) 3229 page = __alloc_pages_cpuset_fallback(gfp_mask, order, 3230 ALLOC_NO_WATERMARKS, ac); 3231 } 3232out: 3233 mutex_unlock(&oom_lock); 3234 return page; 3235} 3236 3237/* 3238 * Maximum number of compaction retries wit a progress before OOM 3239 * killer is consider as the only way to move forward. 3240 */ 3241#define MAX_COMPACT_RETRIES 16 3242 3243#ifdef CONFIG_COMPACTION 3244/* Try memory compaction for high-order allocations before reclaim */ 3245static struct page * 3246__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 3247 unsigned int alloc_flags, const struct alloc_context *ac, 3248 enum compact_priority prio, enum compact_result *compact_result) 3249{ 3250 struct page *page; 3251 3252 if (!order) 3253 return NULL; 3254 3255 current->flags |= PF_MEMALLOC; 3256 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, 3257 prio); 3258 current->flags &= ~PF_MEMALLOC; 3259 3260 if (*compact_result <= COMPACT_INACTIVE) 3261 return NULL; 3262 3263 /* 3264 * At least in one zone compaction wasn't deferred or skipped, so let's 3265 * count a compaction stall 3266 */ 3267 count_vm_event(COMPACTSTALL); 3268 3269 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3270 3271 if (page) { 3272 struct zone *zone = page_zone(page); 3273 3274 zone->compact_blockskip_flush = false; 3275 compaction_defer_reset(zone, order, true); 3276 count_vm_event(COMPACTSUCCESS); 3277 return page; 3278 } 3279 3280 /* 3281 * It's bad if compaction run occurs and fails. The most likely reason 3282 * is that pages exist, but not enough to satisfy watermarks. 3283 */ 3284 count_vm_event(COMPACTFAIL); 3285 3286 cond_resched(); 3287 3288 return NULL; 3289} 3290 3291static inline bool 3292should_compact_retry(struct alloc_context *ac, int order, int alloc_flags, 3293 enum compact_result compact_result, 3294 enum compact_priority *compact_priority, 3295 int *compaction_retries) 3296{ 3297 int max_retries = MAX_COMPACT_RETRIES; 3298 int min_priority; 3299 bool ret = false; 3300 int retries = *compaction_retries; 3301 enum compact_priority priority = *compact_priority; 3302 3303 if (!order) 3304 return false; 3305 3306 if (compaction_made_progress(compact_result)) 3307 (*compaction_retries)++; 3308 3309 /* 3310 * compaction considers all the zone as desperately out of memory 3311 * so it doesn't really make much sense to retry except when the 3312 * failure could be caused by insufficient priority 3313 */ 3314 if (compaction_failed(compact_result)) 3315 goto check_priority; 3316 3317 /* 3318 * make sure the compaction wasn't deferred or didn't bail out early 3319 * due to locks contention before we declare that we should give up. 3320 * But do not retry if the given zonelist is not suitable for 3321 * compaction. 3322 */ 3323 if (compaction_withdrawn(compact_result)) { 3324 ret = compaction_zonelist_suitable(ac, order, alloc_flags); 3325 goto out; 3326 } 3327 3328 /* 3329 * !costly requests are much more important than __GFP_REPEAT 3330 * costly ones because they are de facto nofail and invoke OOM 3331 * killer to move on while costly can fail and users are ready 3332 * to cope with that. 1/4 retries is rather arbitrary but we 3333 * would need much more detailed feedback from compaction to 3334 * make a better decision. 3335 */ 3336 if (order > PAGE_ALLOC_COSTLY_ORDER) 3337 max_retries /= 4; 3338 if (*compaction_retries <= max_retries) { 3339 ret = true; 3340 goto out; 3341 } 3342 3343 /* 3344 * Make sure there are attempts at the highest priority if we exhausted 3345 * all retries or failed at the lower priorities. 3346 */ 3347check_priority: 3348 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ? 3349 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY; 3350 3351 if (*compact_priority > min_priority) { 3352 (*compact_priority)--; 3353 *compaction_retries = 0; 3354 ret = true; 3355 } 3356out: 3357 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret); 3358 return ret; 3359} 3360#else 3361static inline struct page * 3362__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 3363 unsigned int alloc_flags, const struct alloc_context *ac, 3364 enum compact_priority prio, enum compact_result *compact_result) 3365{ 3366 *compact_result = COMPACT_SKIPPED; 3367 return NULL; 3368} 3369 3370static inline bool 3371should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags, 3372 enum compact_result compact_result, 3373 enum compact_priority *compact_priority, 3374 int *compaction_retries) 3375{ 3376 struct zone *zone; 3377 struct zoneref *z; 3378 3379 if (!order || order > PAGE_ALLOC_COSTLY_ORDER) 3380 return false; 3381 3382 /* 3383 * There are setups with compaction disabled which would prefer to loop 3384 * inside the allocator rather than hit the oom killer prematurely. 3385 * Let's give them a good hope and keep retrying while the order-0 3386 * watermarks are OK. 3387 */ 3388 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 3389 ac->nodemask) { 3390 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone), 3391 ac_classzone_idx(ac), alloc_flags)) 3392 return true; 3393 } 3394 return false; 3395} 3396#endif /* CONFIG_COMPACTION */ 3397 3398/* Perform direct synchronous page reclaim */ 3399static int 3400__perform_reclaim(gfp_t gfp_mask, unsigned int order, 3401 const struct alloc_context *ac) 3402{ 3403 struct reclaim_state reclaim_state; 3404 int progress; 3405 3406 cond_resched(); 3407 3408 /* We now go into synchronous reclaim */ 3409 cpuset_memory_pressure_bump(); 3410 current->flags |= PF_MEMALLOC; 3411 lockdep_set_current_reclaim_state(gfp_mask); 3412 reclaim_state.reclaimed_slab = 0; 3413 current->reclaim_state = &reclaim_state; 3414 3415 progress = try_to_free_pages(ac->zonelist, order, gfp_mask, 3416 ac->nodemask); 3417 3418 current->reclaim_state = NULL; 3419 lockdep_clear_current_reclaim_state(); 3420 current->flags &= ~PF_MEMALLOC; 3421 3422 cond_resched(); 3423 3424 return progress; 3425} 3426 3427/* The really slow allocator path where we enter direct reclaim */ 3428static inline struct page * 3429__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 3430 unsigned int alloc_flags, const struct alloc_context *ac, 3431 unsigned long *did_some_progress) 3432{ 3433 struct page *page = NULL; 3434 bool drained = false; 3435 3436 *did_some_progress = __perform_reclaim(gfp_mask, order, ac); 3437 if (unlikely(!(*did_some_progress))) 3438 return NULL; 3439 3440retry: 3441 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3442 3443 /* 3444 * If an allocation failed after direct reclaim, it could be because 3445 * pages are pinned on the per-cpu lists or in high alloc reserves. 3446 * Shrink them them and try again 3447 */ 3448 if (!page && !drained) { 3449 unreserve_highatomic_pageblock(ac, false); 3450 drain_all_pages(NULL); 3451 drained = true; 3452 goto retry; 3453 } 3454 3455 return page; 3456} 3457 3458static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac) 3459{ 3460 struct zoneref *z; 3461 struct zone *zone; 3462 pg_data_t *last_pgdat = NULL; 3463 3464 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 3465 ac->high_zoneidx, ac->nodemask) { 3466 if (last_pgdat != zone->zone_pgdat) 3467 wakeup_kswapd(zone, order, ac->high_zoneidx); 3468 last_pgdat = zone->zone_pgdat; 3469 } 3470} 3471 3472static inline unsigned int 3473gfp_to_alloc_flags(gfp_t gfp_mask) 3474{ 3475 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 3476 3477 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */ 3478 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); 3479 3480 /* 3481 * The caller may dip into page reserves a bit more if the caller 3482 * cannot run direct reclaim, or if the caller has realtime scheduling 3483 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 3484 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH). 3485 */ 3486 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH); 3487 3488 if (gfp_mask & __GFP_ATOMIC) { 3489 /* 3490 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even 3491 * if it can't schedule. 3492 */ 3493 if (!(gfp_mask & __GFP_NOMEMALLOC)) 3494 alloc_flags |= ALLOC_HARDER; 3495 /* 3496 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the 3497 * comment for __cpuset_node_allowed(). 3498 */ 3499 alloc_flags &= ~ALLOC_CPUSET; 3500 } else if (unlikely(rt_task(current)) && !in_interrupt()) 3501 alloc_flags |= ALLOC_HARDER; 3502 3503#ifdef CONFIG_CMA 3504 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE) 3505 alloc_flags |= ALLOC_CMA; 3506#endif 3507 return alloc_flags; 3508} 3509 3510bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 3511{ 3512 if (unlikely(gfp_mask & __GFP_NOMEMALLOC)) 3513 return false; 3514 3515 if (gfp_mask & __GFP_MEMALLOC) 3516 return true; 3517 if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 3518 return true; 3519 if (!in_interrupt() && 3520 ((current->flags & PF_MEMALLOC) || 3521 unlikely(test_thread_flag(TIF_MEMDIE)))) 3522 return true; 3523 3524 return false; 3525} 3526 3527/* 3528 * Maximum number of reclaim retries without any progress before OOM killer 3529 * is consider as the only way to move forward. 3530 */ 3531#define MAX_RECLAIM_RETRIES 16 3532 3533/* 3534 * Checks whether it makes sense to retry the reclaim to make a forward progress 3535 * for the given allocation request. 3536 * The reclaim feedback represented by did_some_progress (any progress during 3537 * the last reclaim round) and no_progress_loops (number of reclaim rounds without 3538 * any progress in a row) is considered as well as the reclaimable pages on the 3539 * applicable zone list (with a backoff mechanism which is a function of 3540 * no_progress_loops). 3541 * 3542 * Returns true if a retry is viable or false to enter the oom path. 3543 */ 3544static inline bool 3545should_reclaim_retry(gfp_t gfp_mask, unsigned order, 3546 struct alloc_context *ac, int alloc_flags, 3547 bool did_some_progress, int *no_progress_loops) 3548{ 3549 struct zone *zone; 3550 struct zoneref *z; 3551 3552 /* 3553 * Costly allocations might have made a progress but this doesn't mean 3554 * their order will become available due to high fragmentation so 3555 * always increment the no progress counter for them 3556 */ 3557 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) 3558 *no_progress_loops = 0; 3559 else 3560 (*no_progress_loops)++; 3561 3562 /* 3563 * Make sure we converge to OOM if we cannot make any progress 3564 * several times in the row. 3565 */ 3566 if (*no_progress_loops > MAX_RECLAIM_RETRIES) { 3567 /* Before OOM, exhaust highatomic_reserve */ 3568 return unreserve_highatomic_pageblock(ac, true); 3569 } 3570 3571 /* 3572 * Keep reclaiming pages while there is a chance this will lead 3573 * somewhere. If none of the target zones can satisfy our allocation 3574 * request even if all reclaimable pages are considered then we are 3575 * screwed and have to go OOM. 3576 */ 3577 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 3578 ac->nodemask) { 3579 unsigned long available; 3580 unsigned long reclaimable; 3581 unsigned long min_wmark = min_wmark_pages(zone); 3582 bool wmark; 3583 3584 available = reclaimable = zone_reclaimable_pages(zone); 3585 available -= DIV_ROUND_UP((*no_progress_loops) * available, 3586 MAX_RECLAIM_RETRIES); 3587 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 3588 3589 /* 3590 * Would the allocation succeed if we reclaimed the whole 3591 * available? 3592 */ 3593 wmark = __zone_watermark_ok(zone, order, min_wmark, 3594 ac_classzone_idx(ac), alloc_flags, available); 3595 trace_reclaim_retry_zone(z, order, reclaimable, 3596 available, min_wmark, *no_progress_loops, wmark); 3597 if (wmark) { 3598 /* 3599 * If we didn't make any progress and have a lot of 3600 * dirty + writeback pages then we should wait for 3601 * an IO to complete to slow down the reclaim and 3602 * prevent from pre mature OOM 3603 */ 3604 if (!did_some_progress) { 3605 unsigned long write_pending; 3606 3607 write_pending = zone_page_state_snapshot(zone, 3608 NR_ZONE_WRITE_PENDING); 3609 3610 if (2 * write_pending > reclaimable) { 3611 congestion_wait(BLK_RW_ASYNC, HZ/10); 3612 return true; 3613 } 3614 } 3615 3616 /* 3617 * Memory allocation/reclaim might be called from a WQ 3618 * context and the current implementation of the WQ 3619 * concurrency control doesn't recognize that 3620 * a particular WQ is congested if the worker thread is 3621 * looping without ever sleeping. Therefore we have to 3622 * do a short sleep here rather than calling 3623 * cond_resched(). 3624 */ 3625 if (current->flags & PF_WQ_WORKER) 3626 schedule_timeout_uninterruptible(1); 3627 else 3628 cond_resched(); 3629 3630 return true; 3631 } 3632 } 3633 3634 return false; 3635} 3636 3637static inline struct page * 3638__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 3639 struct alloc_context *ac) 3640{ 3641 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM; 3642 struct page *page = NULL; 3643 unsigned int alloc_flags; 3644 unsigned long did_some_progress; 3645 enum compact_priority compact_priority; 3646 enum compact_result compact_result; 3647 int compaction_retries; 3648 int no_progress_loops; 3649 unsigned long alloc_start = jiffies; 3650 unsigned int stall_timeout = 10 * HZ; 3651 unsigned int cpuset_mems_cookie; 3652 3653 /* 3654 * In the slowpath, we sanity check order to avoid ever trying to 3655 * reclaim >= MAX_ORDER areas which will never succeed. Callers may 3656 * be using allocators in order of preference for an area that is 3657 * too large. 3658 */ 3659 if (order >= MAX_ORDER) { 3660 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN)); 3661 return NULL; 3662 } 3663 3664 /* 3665 * We also sanity check to catch abuse of atomic reserves being used by 3666 * callers that are not in atomic context. 3667 */ 3668 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) == 3669 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM))) 3670 gfp_mask &= ~__GFP_ATOMIC; 3671 3672retry_cpuset: 3673 compaction_retries = 0; 3674 no_progress_loops = 0; 3675 compact_priority = DEF_COMPACT_PRIORITY; 3676 cpuset_mems_cookie = read_mems_allowed_begin(); 3677 3678 /* 3679 * The fast path uses conservative alloc_flags to succeed only until 3680 * kswapd needs to be woken up, and to avoid the cost of setting up 3681 * alloc_flags precisely. So we do that now. 3682 */ 3683 alloc_flags = gfp_to_alloc_flags(gfp_mask); 3684 3685 /* 3686 * We need to recalculate the starting point for the zonelist iterator 3687 * because we might have used different nodemask in the fast path, or 3688 * there was a cpuset modification and we are retrying - otherwise we 3689 * could end up iterating over non-eligible zones endlessly. 3690 */ 3691 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 3692 ac->high_zoneidx, ac->nodemask); 3693 if (!ac->preferred_zoneref->zone) 3694 goto nopage; 3695 3696 if (gfp_mask & __GFP_KSWAPD_RECLAIM) 3697 wake_all_kswapds(order, ac); 3698 3699 /* 3700 * The adjusted alloc_flags might result in immediate success, so try 3701 * that first 3702 */ 3703 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3704 if (page) 3705 goto got_pg; 3706 3707 /* 3708 * For costly allocations, try direct compaction first, as it's likely 3709 * that we have enough base pages and don't need to reclaim. Don't try 3710 * that for allocations that are allowed to ignore watermarks, as the 3711 * ALLOC_NO_WATERMARKS attempt didn't yet happen. 3712 */ 3713 if (can_direct_reclaim && order > PAGE_ALLOC_COSTLY_ORDER && 3714 !gfp_pfmemalloc_allowed(gfp_mask)) { 3715 page = __alloc_pages_direct_compact(gfp_mask, order, 3716 alloc_flags, ac, 3717 INIT_COMPACT_PRIORITY, 3718 &compact_result); 3719 if (page) 3720 goto got_pg; 3721 3722 /* 3723 * Checks for costly allocations with __GFP_NORETRY, which 3724 * includes THP page fault allocations 3725 */ 3726 if (gfp_mask & __GFP_NORETRY) { 3727 /* 3728 * If compaction is deferred for high-order allocations, 3729 * it is because sync compaction recently failed. If 3730 * this is the case and the caller requested a THP 3731 * allocation, we do not want to heavily disrupt the 3732 * system, so we fail the allocation instead of entering 3733 * direct reclaim. 3734 */ 3735 if (compact_result == COMPACT_DEFERRED) 3736 goto nopage; 3737 3738 /* 3739 * Looks like reclaim/compaction is worth trying, but 3740 * sync compaction could be very expensive, so keep 3741 * using async compaction. 3742 */ 3743 compact_priority = INIT_COMPACT_PRIORITY; 3744 } 3745 } 3746 3747retry: 3748 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */ 3749 if (gfp_mask & __GFP_KSWAPD_RECLAIM) 3750 wake_all_kswapds(order, ac); 3751 3752 if (gfp_pfmemalloc_allowed(gfp_mask)) 3753 alloc_flags = ALLOC_NO_WATERMARKS; 3754 3755 /* 3756 * Reset the zonelist iterators if memory policies can be ignored. 3757 * These allocations are high priority and system rather than user 3758 * orientated. 3759 */ 3760 if (!(alloc_flags & ALLOC_CPUSET) || (alloc_flags & ALLOC_NO_WATERMARKS)) { 3761 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask); 3762 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 3763 ac->high_zoneidx, ac->nodemask); 3764 } 3765 3766 /* Attempt with potentially adjusted zonelist and alloc_flags */ 3767 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3768 if (page) 3769 goto got_pg; 3770 3771 /* Caller is not willing to reclaim, we can't balance anything */ 3772 if (!can_direct_reclaim) 3773 goto nopage; 3774 3775 /* Make sure we know about allocations which stall for too long */ 3776 if (time_after(jiffies, alloc_start + stall_timeout)) { 3777 warn_alloc(gfp_mask, ac->nodemask, 3778 "page allocation stalls for %ums, order:%u", 3779 jiffies_to_msecs(jiffies-alloc_start), order); 3780 stall_timeout += 10 * HZ; 3781 } 3782 3783 /* Avoid recursion of direct reclaim */ 3784 if (current->flags & PF_MEMALLOC) 3785 goto nopage; 3786 3787 /* Try direct reclaim and then allocating */ 3788 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, 3789 &did_some_progress); 3790 if (page) 3791 goto got_pg; 3792 3793 /* Try direct compaction and then allocating */ 3794 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, 3795 compact_priority, &compact_result); 3796 if (page) 3797 goto got_pg; 3798 3799 /* Do not loop if specifically requested */ 3800 if (gfp_mask & __GFP_NORETRY) 3801 goto nopage; 3802 3803 /* 3804 * Do not retry costly high order allocations unless they are 3805 * __GFP_REPEAT 3806 */ 3807 if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_REPEAT)) 3808 goto nopage; 3809 3810 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags, 3811 did_some_progress > 0, &no_progress_loops)) 3812 goto retry; 3813 3814 /* 3815 * It doesn't make any sense to retry for the compaction if the order-0 3816 * reclaim is not able to make any progress because the current 3817 * implementation of the compaction depends on the sufficient amount 3818 * of free memory (see __compaction_suitable) 3819 */ 3820 if (did_some_progress > 0 && 3821 should_compact_retry(ac, order, alloc_flags, 3822 compact_result, &compact_priority, 3823 &compaction_retries)) 3824 goto retry; 3825 3826 /* 3827 * It's possible we raced with cpuset update so the OOM would be 3828 * premature (see below the nopage: label for full explanation). 3829 */ 3830 if (read_mems_allowed_retry(cpuset_mems_cookie)) 3831 goto retry_cpuset; 3832 3833 /* Reclaim has failed us, start killing things */ 3834 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress); 3835 if (page) 3836 goto got_pg; 3837 3838 /* Avoid allocations with no watermarks from looping endlessly */ 3839 if (test_thread_flag(TIF_MEMDIE)) 3840 goto nopage; 3841 3842 /* Retry as long as the OOM killer is making progress */ 3843 if (did_some_progress) { 3844 no_progress_loops = 0; 3845 goto retry; 3846 } 3847 3848nopage: 3849 /* 3850 * When updating a task's mems_allowed or mempolicy nodemask, it is 3851 * possible to race with parallel threads in such a way that our 3852 * allocation can fail while the mask is being updated. If we are about 3853 * to fail, check if the cpuset changed during allocation and if so, 3854 * retry. 3855 */ 3856 if (read_mems_allowed_retry(cpuset_mems_cookie)) 3857 goto retry_cpuset; 3858 3859 /* 3860 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure 3861 * we always retry 3862 */ 3863 if (gfp_mask & __GFP_NOFAIL) { 3864 /* 3865 * All existing users of the __GFP_NOFAIL are blockable, so warn 3866 * of any new users that actually require GFP_NOWAIT 3867 */ 3868 if (WARN_ON_ONCE(!can_direct_reclaim)) 3869 goto fail; 3870 3871 /* 3872 * PF_MEMALLOC request from this context is rather bizarre 3873 * because we cannot reclaim anything and only can loop waiting 3874 * for somebody to do a work for us 3875 */ 3876 WARN_ON_ONCE(current->flags & PF_MEMALLOC); 3877 3878 /* 3879 * non failing costly orders are a hard requirement which we 3880 * are not prepared for much so let's warn about these users 3881 * so that we can identify them and convert them to something 3882 * else. 3883 */ 3884 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER); 3885 3886 /* 3887 * Help non-failing allocations by giving them access to memory 3888 * reserves but do not use ALLOC_NO_WATERMARKS because this 3889 * could deplete whole memory reserves which would just make 3890 * the situation worse 3891 */ 3892 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac); 3893 if (page) 3894 goto got_pg; 3895 3896 cond_resched(); 3897 goto retry; 3898 } 3899fail: 3900 warn_alloc(gfp_mask, ac->nodemask, 3901 "page allocation failure: order:%u", order); 3902got_pg: 3903 return page; 3904} 3905 3906static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order, 3907 struct zonelist *zonelist, nodemask_t *nodemask, 3908 struct alloc_context *ac, gfp_t *alloc_mask, 3909 unsigned int *alloc_flags) 3910{ 3911 ac->high_zoneidx = gfp_zone(gfp_mask); 3912 ac->zonelist = zonelist; 3913 ac->nodemask = nodemask; 3914 ac->migratetype = gfpflags_to_migratetype(gfp_mask); 3915 3916 if (cpusets_enabled()) { 3917 *alloc_mask |= __GFP_HARDWALL; 3918 if (!ac->nodemask) 3919 ac->nodemask = &cpuset_current_mems_allowed; 3920 else 3921 *alloc_flags |= ALLOC_CPUSET; 3922 } 3923 3924 lockdep_trace_alloc(gfp_mask); 3925 3926 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM); 3927 3928 if (should_fail_alloc_page(gfp_mask, order)) 3929 return false; 3930 3931 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE) 3932 *alloc_flags |= ALLOC_CMA; 3933 3934 return true; 3935} 3936 3937/* Determine whether to spread dirty pages and what the first usable zone */ 3938static inline void finalise_ac(gfp_t gfp_mask, 3939 unsigned int order, struct alloc_context *ac) 3940{ 3941 /* Dirty zone balancing only done in the fast path */ 3942 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE); 3943 3944 /* 3945 * The preferred zone is used for statistics but crucially it is 3946 * also used as the starting point for the zonelist iterator. It 3947 * may get reset for allocations that ignore memory policies. 3948 */ 3949 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 3950 ac->high_zoneidx, ac->nodemask); 3951} 3952 3953/* 3954 * This is the 'heart' of the zoned buddy allocator. 3955 */ 3956struct page * 3957__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, 3958 struct zonelist *zonelist, nodemask_t *nodemask) 3959{ 3960 struct page *page; 3961 unsigned int alloc_flags = ALLOC_WMARK_LOW; 3962 gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */ 3963 struct alloc_context ac = { }; 3964 3965 gfp_mask &= gfp_allowed_mask; 3966 if (!prepare_alloc_pages(gfp_mask, order, zonelist, nodemask, &ac, &alloc_mask, &alloc_flags)) 3967 return NULL; 3968 3969 finalise_ac(gfp_mask, order, &ac); 3970 3971 /* First allocation attempt */ 3972 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac); 3973 if (likely(page)) 3974 goto out; 3975 3976 /* 3977 * Runtime PM, block IO and its error handling path can deadlock 3978 * because I/O on the device might not complete. 3979 */ 3980 alloc_mask = memalloc_noio_flags(gfp_mask); 3981 ac.spread_dirty_pages = false; 3982 3983 /* 3984 * Restore the original nodemask if it was potentially replaced with 3985 * &cpuset_current_mems_allowed to optimize the fast-path attempt. 3986 */ 3987 if (unlikely(ac.nodemask != nodemask)) 3988 ac.nodemask = nodemask; 3989 3990 page = __alloc_pages_slowpath(alloc_mask, order, &ac); 3991 3992out: 3993 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page && 3994 unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) { 3995 __free_pages(page, order); 3996 page = NULL; 3997 } 3998 3999 if (kmemcheck_enabled && page) 4000 kmemcheck_pagealloc_alloc(page, order, gfp_mask); 4001 4002 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype); 4003 4004 return page; 4005} 4006EXPORT_SYMBOL(__alloc_pages_nodemask); 4007 4008/* 4009 * Common helper functions. 4010 */ 4011unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 4012{ 4013 struct page *page; 4014 4015 /* 4016 * __get_free_pages() returns a 32-bit address, which cannot represent 4017 * a highmem page 4018 */ 4019 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0); 4020 4021 page = alloc_pages(gfp_mask, order); 4022 if (!page) 4023 return 0; 4024 return (unsigned long) page_address(page); 4025} 4026EXPORT_SYMBOL(__get_free_pages); 4027 4028unsigned long get_zeroed_page(gfp_t gfp_mask) 4029{ 4030 return __get_free_pages(gfp_mask | __GFP_ZERO, 0); 4031} 4032EXPORT_SYMBOL(get_zeroed_page); 4033 4034void __free_pages(struct page *page, unsigned int order) 4035{ 4036 if (put_page_testzero(page)) { 4037 if (order == 0) 4038 free_hot_cold_page(page, false); 4039 else 4040 __free_pages_ok(page, order); 4041 } 4042} 4043 4044EXPORT_SYMBOL(__free_pages); 4045 4046void free_pages(unsigned long addr, unsigned int order) 4047{ 4048 if (addr != 0) { 4049 VM_BUG_ON(!virt_addr_valid((void *)addr)); 4050 __free_pages(virt_to_page((void *)addr), order); 4051 } 4052} 4053 4054EXPORT_SYMBOL(free_pages); 4055 4056/* 4057 * Page Fragment: 4058 * An arbitrary-length arbitrary-offset area of memory which resides 4059 * within a 0 or higher order page. Multiple fragments within that page 4060 * are individually refcounted, in the page's reference counter. 4061 * 4062 * The page_frag functions below provide a simple allocation framework for 4063 * page fragments. This is used by the network stack and network device 4064 * drivers to provide a backing region of memory for use as either an 4065 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info. 4066 */ 4067static struct page *__page_frag_cache_refill(struct page_frag_cache *nc, 4068 gfp_t gfp_mask) 4069{ 4070 struct page *page = NULL; 4071 gfp_t gfp = gfp_mask; 4072 4073#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4074 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY | 4075 __GFP_NOMEMALLOC; 4076 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, 4077 PAGE_FRAG_CACHE_MAX_ORDER); 4078 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE; 4079#endif 4080 if (unlikely(!page)) 4081 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); 4082 4083 nc->va = page ? page_address(page) : NULL; 4084 4085 return page; 4086} 4087 4088void __page_frag_cache_drain(struct page *page, unsigned int count) 4089{ 4090 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 4091 4092 if (page_ref_sub_and_test(page, count)) { 4093 unsigned int order = compound_order(page); 4094 4095 if (order == 0) 4096 free_hot_cold_page(page, false); 4097 else 4098 __free_pages_ok(page, order); 4099 } 4100} 4101EXPORT_SYMBOL(__page_frag_cache_drain); 4102 4103void *page_frag_alloc(struct page_frag_cache *nc, 4104 unsigned int fragsz, gfp_t gfp_mask) 4105{ 4106 unsigned int size = PAGE_SIZE; 4107 struct page *page; 4108 int offset; 4109 4110 if (unlikely(!nc->va)) { 4111refill: 4112 page = __page_frag_cache_refill(nc, gfp_mask); 4113 if (!page) 4114 return NULL; 4115 4116#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4117 /* if size can vary use size else just use PAGE_SIZE */ 4118 size = nc->size; 4119#endif 4120 /* Even if we own the page, we do not use atomic_set(). 4121 * This would break get_page_unless_zero() users. 4122 */ 4123 page_ref_add(page, size - 1); 4124 4125 /* reset page count bias and offset to start of new frag */ 4126 nc->pfmemalloc = page_is_pfmemalloc(page); 4127 nc->pagecnt_bias = size; 4128 nc->offset = size; 4129 } 4130 4131 offset = nc->offset - fragsz; 4132 if (unlikely(offset < 0)) { 4133 page = virt_to_page(nc->va); 4134 4135 if (!page_ref_sub_and_test(page, nc->pagecnt_bias)) 4136 goto refill; 4137 4138#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4139 /* if size can vary use size else just use PAGE_SIZE */ 4140 size = nc->size; 4141#endif 4142 /* OK, page count is 0, we can safely set it */ 4143 set_page_count(page, size); 4144 4145 /* reset page count bias and offset to start of new frag */ 4146 nc->pagecnt_bias = size; 4147 offset = size - fragsz; 4148 } 4149 4150 nc->pagecnt_bias--; 4151 nc->offset = offset; 4152 4153 return nc->va + offset; 4154} 4155EXPORT_SYMBOL(page_frag_alloc); 4156 4157/* 4158 * Frees a page fragment allocated out of either a compound or order 0 page. 4159 */ 4160void page_frag_free(void *addr) 4161{ 4162 struct page *page = virt_to_head_page(addr); 4163 4164 if (unlikely(put_page_testzero(page))) 4165 __free_pages_ok(page, compound_order(page)); 4166} 4167EXPORT_SYMBOL(page_frag_free); 4168 4169static void *make_alloc_exact(unsigned long addr, unsigned int order, 4170 size_t size) 4171{ 4172 if (addr) { 4173 unsigned long alloc_end = addr + (PAGE_SIZE << order); 4174 unsigned long used = addr + PAGE_ALIGN(size); 4175 4176 split_page(virt_to_page((void *)addr), order); 4177 while (used < alloc_end) { 4178 free_page(used); 4179 used += PAGE_SIZE; 4180 } 4181 } 4182 return (void *)addr; 4183} 4184 4185/** 4186 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 4187 * @size: the number of bytes to allocate 4188 * @gfp_mask: GFP flags for the allocation 4189 * 4190 * This function is similar to alloc_pages(), except that it allocates the 4191 * minimum number of pages to satisfy the request. alloc_pages() can only 4192 * allocate memory in power-of-two pages. 4193 * 4194 * This function is also limited by MAX_ORDER. 4195 * 4196 * Memory allocated by this function must be released by free_pages_exact(). 4197 */ 4198void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 4199{ 4200 unsigned int order = get_order(size); 4201 unsigned long addr; 4202 4203 addr = __get_free_pages(gfp_mask, order); 4204 return make_alloc_exact(addr, order, size); 4205} 4206EXPORT_SYMBOL(alloc_pages_exact); 4207 4208/** 4209 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 4210 * pages on a node. 4211 * @nid: the preferred node ID where memory should be allocated 4212 * @size: the number of bytes to allocate 4213 * @gfp_mask: GFP flags for the allocation 4214 * 4215 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 4216 * back. 4217 */ 4218void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) 4219{ 4220 unsigned int order = get_order(size); 4221 struct page *p = alloc_pages_node(nid, gfp_mask, order); 4222 if (!p) 4223 return NULL; 4224 return make_alloc_exact((unsigned long)page_address(p), order, size); 4225} 4226 4227/** 4228 * free_pages_exact - release memory allocated via alloc_pages_exact() 4229 * @virt: the value returned by alloc_pages_exact. 4230 * @size: size of allocation, same value as passed to alloc_pages_exact(). 4231 * 4232 * Release the memory allocated by a previous call to alloc_pages_exact. 4233 */ 4234void free_pages_exact(void *virt, size_t size) 4235{ 4236 unsigned long addr = (unsigned long)virt; 4237 unsigned long end = addr + PAGE_ALIGN(size); 4238 4239 while (addr < end) { 4240 free_page(addr); 4241 addr += PAGE_SIZE; 4242 } 4243} 4244EXPORT_SYMBOL(free_pages_exact); 4245 4246/** 4247 * nr_free_zone_pages - count number of pages beyond high watermark 4248 * @offset: The zone index of the highest zone 4249 * 4250 * nr_free_zone_pages() counts the number of counts pages which are beyond the 4251 * high watermark within all zones at or below a given zone index. For each 4252 * zone, the number of pages is calculated as: 4253 * managed_pages - high_pages 4254 */ 4255static unsigned long nr_free_zone_pages(int offset) 4256{ 4257 struct zoneref *z; 4258 struct zone *zone; 4259 4260 /* Just pick one node, since fallback list is circular */ 4261 unsigned long sum = 0; 4262 4263 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 4264 4265 for_each_zone_zonelist(zone, z, zonelist, offset) { 4266 unsigned long size = zone->managed_pages; 4267 unsigned long high = high_wmark_pages(zone); 4268 if (size > high) 4269 sum += size - high; 4270 } 4271 4272 return sum; 4273} 4274 4275/** 4276 * nr_free_buffer_pages - count number of pages beyond high watermark 4277 * 4278 * nr_free_buffer_pages() counts the number of pages which are beyond the high 4279 * watermark within ZONE_DMA and ZONE_NORMAL. 4280 */ 4281unsigned long nr_free_buffer_pages(void) 4282{ 4283 return nr_free_zone_pages(gfp_zone(GFP_USER)); 4284} 4285EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 4286 4287/** 4288 * nr_free_pagecache_pages - count number of pages beyond high watermark 4289 * 4290 * nr_free_pagecache_pages() counts the number of pages which are beyond the 4291 * high watermark within all zones. 4292 */ 4293unsigned long nr_free_pagecache_pages(void) 4294{ 4295 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 4296} 4297 4298static inline void show_node(struct zone *zone) 4299{ 4300 if (IS_ENABLED(CONFIG_NUMA)) 4301 printk("Node %d ", zone_to_nid(zone)); 4302} 4303 4304long si_mem_available(void) 4305{ 4306 long available; 4307 unsigned long pagecache; 4308 unsigned long wmark_low = 0; 4309 unsigned long pages[NR_LRU_LISTS]; 4310 struct zone *zone; 4311 int lru; 4312 4313 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++) 4314 pages[lru] = global_node_page_state(NR_LRU_BASE + lru); 4315 4316 for_each_zone(zone) 4317 wmark_low += zone->watermark[WMARK_LOW]; 4318 4319 /* 4320 * Estimate the amount of memory available for userspace allocations, 4321 * without causing swapping. 4322 */ 4323 available = global_page_state(NR_FREE_PAGES) - totalreserve_pages; 4324 4325 /* 4326 * Not all the page cache can be freed, otherwise the system will 4327 * start swapping. Assume at least half of the page cache, or the 4328 * low watermark worth of cache, needs to stay. 4329 */ 4330 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE]; 4331 pagecache -= min(pagecache / 2, wmark_low); 4332 available += pagecache; 4333 4334 /* 4335 * Part of the reclaimable slab consists of items that are in use, 4336 * and cannot be freed. Cap this estimate at the low watermark. 4337 */ 4338 available += global_page_state(NR_SLAB_RECLAIMABLE) - 4339 min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low); 4340 4341 if (available < 0) 4342 available = 0; 4343 return available; 4344} 4345EXPORT_SYMBOL_GPL(si_mem_available); 4346 4347void si_meminfo(struct sysinfo *val) 4348{ 4349 val->totalram = totalram_pages; 4350 val->sharedram = global_node_page_state(NR_SHMEM); 4351 val->freeram = global_page_state(NR_FREE_PAGES); 4352 val->bufferram = nr_blockdev_pages(); 4353 val->totalhigh = totalhigh_pages; 4354 val->freehigh = nr_free_highpages(); 4355 val->mem_unit = PAGE_SIZE; 4356} 4357 4358EXPORT_SYMBOL(si_meminfo); 4359 4360#ifdef CONFIG_NUMA 4361void si_meminfo_node(struct sysinfo *val, int nid) 4362{ 4363 int zone_type; /* needs to be signed */ 4364 unsigned long managed_pages = 0; 4365 unsigned long managed_highpages = 0; 4366 unsigned long free_highpages = 0; 4367 pg_data_t *pgdat = NODE_DATA(nid); 4368 4369 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) 4370 managed_pages += pgdat->node_zones[zone_type].managed_pages; 4371 val->totalram = managed_pages; 4372 val->sharedram = node_page_state(pgdat, NR_SHMEM); 4373 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES); 4374#ifdef CONFIG_HIGHMEM 4375 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 4376 struct zone *zone = &pgdat->node_zones[zone_type]; 4377 4378 if (is_highmem(zone)) { 4379 managed_highpages += zone->managed_pages; 4380 free_highpages += zone_page_state(zone, NR_FREE_PAGES); 4381 } 4382 } 4383 val->totalhigh = managed_highpages; 4384 val->freehigh = free_highpages; 4385#else 4386 val->totalhigh = managed_highpages; 4387 val->freehigh = free_highpages; 4388#endif 4389 val->mem_unit = PAGE_SIZE; 4390} 4391#endif 4392 4393/* 4394 * Determine whether the node should be displayed or not, depending on whether 4395 * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). 4396 */ 4397static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask) 4398{ 4399 if (!(flags & SHOW_MEM_FILTER_NODES)) 4400 return false; 4401 4402 /* 4403 * no node mask - aka implicit memory numa policy. Do not bother with 4404 * the synchronization - read_mems_allowed_begin - because we do not 4405 * have to be precise here. 4406 */ 4407 if (!nodemask) 4408 nodemask = &cpuset_current_mems_allowed; 4409 4410 return !node_isset(nid, *nodemask); 4411} 4412 4413#define K(x) ((x) << (PAGE_SHIFT-10)) 4414 4415static void show_migration_types(unsigned char type) 4416{ 4417 static const char types[MIGRATE_TYPES] = { 4418 [MIGRATE_UNMOVABLE] = 'U', 4419 [MIGRATE_MOVABLE] = 'M', 4420 [MIGRATE_RECLAIMABLE] = 'E', 4421 [MIGRATE_HIGHATOMIC] = 'H', 4422#ifdef CONFIG_CMA 4423 [MIGRATE_CMA] = 'C', 4424#endif 4425#ifdef CONFIG_MEMORY_ISOLATION 4426 [MIGRATE_ISOLATE] = 'I', 4427#endif 4428 }; 4429 char tmp[MIGRATE_TYPES + 1]; 4430 char *p = tmp; 4431 int i; 4432 4433 for (i = 0; i < MIGRATE_TYPES; i++) { 4434 if (type & (1 << i)) 4435 *p++ = types[i]; 4436 } 4437 4438 *p = '\0'; 4439 printk(KERN_CONT "(%s) ", tmp); 4440} 4441 4442/* 4443 * Show free area list (used inside shift_scroll-lock stuff) 4444 * We also calculate the percentage fragmentation. We do this by counting the 4445 * memory on each free list with the exception of the first item on the list. 4446 * 4447 * Bits in @filter: 4448 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's 4449 * cpuset. 4450 */ 4451void show_free_areas(unsigned int filter, nodemask_t *nodemask) 4452{ 4453 unsigned long free_pcp = 0; 4454 int cpu; 4455 struct zone *zone; 4456 pg_data_t *pgdat; 4457 4458 for_each_populated_zone(zone) { 4459 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 4460 continue; 4461 4462 for_each_online_cpu(cpu) 4463 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count; 4464 } 4465 4466 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 4467 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 4468 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n" 4469 " slab_reclaimable:%lu slab_unreclaimable:%lu\n" 4470 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n" 4471 " free:%lu free_pcp:%lu free_cma:%lu\n", 4472 global_node_page_state(NR_ACTIVE_ANON), 4473 global_node_page_state(NR_INACTIVE_ANON), 4474 global_node_page_state(NR_ISOLATED_ANON), 4475 global_node_page_state(NR_ACTIVE_FILE), 4476 global_node_page_state(NR_INACTIVE_FILE), 4477 global_node_page_state(NR_ISOLATED_FILE), 4478 global_node_page_state(NR_UNEVICTABLE), 4479 global_node_page_state(NR_FILE_DIRTY), 4480 global_node_page_state(NR_WRITEBACK), 4481 global_node_page_state(NR_UNSTABLE_NFS), 4482 global_page_state(NR_SLAB_RECLAIMABLE), 4483 global_page_state(NR_SLAB_UNRECLAIMABLE), 4484 global_node_page_state(NR_FILE_MAPPED), 4485 global_node_page_state(NR_SHMEM), 4486 global_page_state(NR_PAGETABLE), 4487 global_page_state(NR_BOUNCE), 4488 global_page_state(NR_FREE_PAGES), 4489 free_pcp, 4490 global_page_state(NR_FREE_CMA_PAGES)); 4491 4492 for_each_online_pgdat(pgdat) { 4493 if (show_mem_node_skip(filter, pgdat->node_id, nodemask)) 4494 continue; 4495 4496 printk("Node %d" 4497 " active_anon:%lukB" 4498 " inactive_anon:%lukB" 4499 " active_file:%lukB" 4500 " inactive_file:%lukB" 4501 " unevictable:%lukB" 4502 " isolated(anon):%lukB" 4503 " isolated(file):%lukB" 4504 " mapped:%lukB" 4505 " dirty:%lukB" 4506 " writeback:%lukB" 4507 " shmem:%lukB" 4508#ifdef CONFIG_TRANSPARENT_HUGEPAGE 4509 " shmem_thp: %lukB" 4510 " shmem_pmdmapped: %lukB" 4511 " anon_thp: %lukB" 4512#endif 4513 " writeback_tmp:%lukB" 4514 " unstable:%lukB" 4515 " pages_scanned:%lu" 4516 " all_unreclaimable? %s" 4517 "\n", 4518 pgdat->node_id, 4519 K(node_page_state(pgdat, NR_ACTIVE_ANON)), 4520 K(node_page_state(pgdat, NR_INACTIVE_ANON)), 4521 K(node_page_state(pgdat, NR_ACTIVE_FILE)), 4522 K(node_page_state(pgdat, NR_INACTIVE_FILE)), 4523 K(node_page_state(pgdat, NR_UNEVICTABLE)), 4524 K(node_page_state(pgdat, NR_ISOLATED_ANON)), 4525 K(node_page_state(pgdat, NR_ISOLATED_FILE)), 4526 K(node_page_state(pgdat, NR_FILE_MAPPED)), 4527 K(node_page_state(pgdat, NR_FILE_DIRTY)), 4528 K(node_page_state(pgdat, NR_WRITEBACK)), 4529 K(node_page_state(pgdat, NR_SHMEM)), 4530#ifdef CONFIG_TRANSPARENT_HUGEPAGE 4531 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR), 4532 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED) 4533 * HPAGE_PMD_NR), 4534 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR), 4535#endif 4536 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)), 4537 K(node_page_state(pgdat, NR_UNSTABLE_NFS)), 4538 node_page_state(pgdat, NR_PAGES_SCANNED), 4539 !pgdat_reclaimable(pgdat) ? "yes" : "no"); 4540 } 4541 4542 for_each_populated_zone(zone) { 4543 int i; 4544 4545 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 4546 continue; 4547 4548 free_pcp = 0; 4549 for_each_online_cpu(cpu) 4550 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count; 4551 4552 show_node(zone); 4553 printk(KERN_CONT 4554 "%s" 4555 " free:%lukB" 4556 " min:%lukB" 4557 " low:%lukB" 4558 " high:%lukB" 4559 " active_anon:%lukB" 4560 " inactive_anon:%lukB" 4561 " active_file:%lukB" 4562 " inactive_file:%lukB" 4563 " unevictable:%lukB" 4564 " writepending:%lukB" 4565 " present:%lukB" 4566 " managed:%lukB" 4567 " mlocked:%lukB" 4568 " slab_reclaimable:%lukB" 4569 " slab_unreclaimable:%lukB" 4570 " kernel_stack:%lukB" 4571 " pagetables:%lukB" 4572 " bounce:%lukB" 4573 " free_pcp:%lukB" 4574 " local_pcp:%ukB" 4575 " free_cma:%lukB" 4576 "\n", 4577 zone->name, 4578 K(zone_page_state(zone, NR_FREE_PAGES)), 4579 K(min_wmark_pages(zone)), 4580 K(low_wmark_pages(zone)), 4581 K(high_wmark_pages(zone)), 4582 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)), 4583 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)), 4584 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)), 4585 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)), 4586 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)), 4587 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)), 4588 K(zone->present_pages), 4589 K(zone->managed_pages), 4590 K(zone_page_state(zone, NR_MLOCK)), 4591 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)), 4592 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)), 4593 zone_page_state(zone, NR_KERNEL_STACK_KB), 4594 K(zone_page_state(zone, NR_PAGETABLE)), 4595 K(zone_page_state(zone, NR_BOUNCE)), 4596 K(free_pcp), 4597 K(this_cpu_read(zone->pageset->pcp.count)), 4598 K(zone_page_state(zone, NR_FREE_CMA_PAGES))); 4599 printk("lowmem_reserve[]:"); 4600 for (i = 0; i < MAX_NR_ZONES; i++) 4601 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]); 4602 printk(KERN_CONT "\n"); 4603 } 4604 4605 for_each_populated_zone(zone) { 4606 unsigned int order; 4607 unsigned long nr[MAX_ORDER], flags, total = 0; 4608 unsigned char types[MAX_ORDER]; 4609 4610 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 4611 continue; 4612 show_node(zone); 4613 printk(KERN_CONT "%s: ", zone->name); 4614 4615 spin_lock_irqsave(&zone->lock, flags); 4616 for (order = 0; order < MAX_ORDER; order++) { 4617 struct free_area *area = &zone->free_area[order]; 4618 int type; 4619 4620 nr[order] = area->nr_free; 4621 total += nr[order] << order; 4622 4623 types[order] = 0; 4624 for (type = 0; type < MIGRATE_TYPES; type++) { 4625 if (!list_empty(&area->free_list[type])) 4626 types[order] |= 1 << type; 4627 } 4628 } 4629 spin_unlock_irqrestore(&zone->lock, flags); 4630 for (order = 0; order < MAX_ORDER; order++) { 4631 printk(KERN_CONT "%lu*%lukB ", 4632 nr[order], K(1UL) << order); 4633 if (nr[order]) 4634 show_migration_types(types[order]); 4635 } 4636 printk(KERN_CONT "= %lukB\n", K(total)); 4637 } 4638 4639 hugetlb_show_meminfo(); 4640 4641 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES)); 4642 4643 show_swap_cache_info(); 4644} 4645 4646static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 4647{ 4648 zoneref->zone = zone; 4649 zoneref->zone_idx = zone_idx(zone); 4650} 4651 4652/* 4653 * Builds allocation fallback zone lists. 4654 * 4655 * Add all populated zones of a node to the zonelist. 4656 */ 4657static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, 4658 int nr_zones) 4659{ 4660 struct zone *zone; 4661 enum zone_type zone_type = MAX_NR_ZONES; 4662 4663 do { 4664 zone_type--; 4665 zone = pgdat->node_zones + zone_type; 4666 if (managed_zone(zone)) { 4667 zoneref_set_zone(zone, 4668 &zonelist->_zonerefs[nr_zones++]); 4669 check_highest_zone(zone_type); 4670 } 4671 } while (zone_type); 4672 4673 return nr_zones; 4674} 4675 4676 4677/* 4678 * zonelist_order: 4679 * 0 = automatic detection of better ordering. 4680 * 1 = order by ([node] distance, -zonetype) 4681 * 2 = order by (-zonetype, [node] distance) 4682 * 4683 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create 4684 * the same zonelist. So only NUMA can configure this param. 4685 */ 4686#define ZONELIST_ORDER_DEFAULT 0 4687#define ZONELIST_ORDER_NODE 1 4688#define ZONELIST_ORDER_ZONE 2 4689 4690/* zonelist order in the kernel. 4691 * set_zonelist_order() will set this to NODE or ZONE. 4692 */ 4693static int current_zonelist_order = ZONELIST_ORDER_DEFAULT; 4694static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"}; 4695 4696 4697#ifdef CONFIG_NUMA 4698/* The value user specified ....changed by config */ 4699static int user_zonelist_order = ZONELIST_ORDER_DEFAULT; 4700/* string for sysctl */ 4701#define NUMA_ZONELIST_ORDER_LEN 16 4702char numa_zonelist_order[16] = "default"; 4703 4704/* 4705 * interface for configure zonelist ordering. 4706 * command line option "numa_zonelist_order" 4707 * = "[dD]efault - default, automatic configuration. 4708 * = "[nN]ode - order by node locality, then by zone within node 4709 * = "[zZ]one - order by zone, then by locality within zone 4710 */ 4711 4712static int __parse_numa_zonelist_order(char *s) 4713{ 4714 if (*s == 'd' || *s == 'D') { 4715 user_zonelist_order = ZONELIST_ORDER_DEFAULT; 4716 } else if (*s == 'n' || *s == 'N') { 4717 user_zonelist_order = ZONELIST_ORDER_NODE; 4718 } else if (*s == 'z' || *s == 'Z') { 4719 user_zonelist_order = ZONELIST_ORDER_ZONE; 4720 } else { 4721 pr_warn("Ignoring invalid numa_zonelist_order value: %s\n", s); 4722 return -EINVAL; 4723 } 4724 return 0; 4725} 4726 4727static __init int setup_numa_zonelist_order(char *s) 4728{ 4729 int ret; 4730 4731 if (!s) 4732 return 0; 4733 4734 ret = __parse_numa_zonelist_order(s); 4735 if (ret == 0) 4736 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN); 4737 4738 return ret; 4739} 4740early_param("numa_zonelist_order", setup_numa_zonelist_order); 4741 4742/* 4743 * sysctl handler for numa_zonelist_order 4744 */ 4745int numa_zonelist_order_handler(struct ctl_table *table, int write, 4746 void __user *buffer, size_t *length, 4747 loff_t *ppos) 4748{ 4749 char saved_string[NUMA_ZONELIST_ORDER_LEN]; 4750 int ret; 4751 static DEFINE_MUTEX(zl_order_mutex); 4752 4753 mutex_lock(&zl_order_mutex); 4754 if (write) { 4755 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) { 4756 ret = -EINVAL; 4757 goto out; 4758 } 4759 strcpy(saved_string, (char *)table->data); 4760 } 4761 ret = proc_dostring(table, write, buffer, length, ppos); 4762 if (ret) 4763 goto out; 4764 if (write) { 4765 int oldval = user_zonelist_order; 4766 4767 ret = __parse_numa_zonelist_order((char *)table->data); 4768 if (ret) { 4769 /* 4770 * bogus value. restore saved string 4771 */ 4772 strncpy((char *)table->data, saved_string, 4773 NUMA_ZONELIST_ORDER_LEN); 4774 user_zonelist_order = oldval; 4775 } else if (oldval != user_zonelist_order) { 4776 mutex_lock(&zonelists_mutex); 4777 build_all_zonelists(NULL, NULL); 4778 mutex_unlock(&zonelists_mutex); 4779 } 4780 } 4781out: 4782 mutex_unlock(&zl_order_mutex); 4783 return ret; 4784} 4785 4786 4787#define MAX_NODE_LOAD (nr_online_nodes) 4788static int node_load[MAX_NUMNODES]; 4789 4790/** 4791 * find_next_best_node - find the next node that should appear in a given node's fallback list 4792 * @node: node whose fallback list we're appending 4793 * @used_node_mask: nodemask_t of already used nodes 4794 * 4795 * We use a number of factors to determine which is the next node that should 4796 * appear on a given node's fallback list. The node should not have appeared 4797 * already in @node's fallback list, and it should be the next closest node 4798 * according to the distance array (which contains arbitrary distance values 4799 * from each node to each node in the system), and should also prefer nodes 4800 * with no CPUs, since presumably they'll have very little allocation pressure 4801 * on them otherwise. 4802 * It returns -1 if no node is found. 4803 */ 4804static int find_next_best_node(int node, nodemask_t *used_node_mask) 4805{ 4806 int n, val; 4807 int min_val = INT_MAX; 4808 int best_node = NUMA_NO_NODE; 4809 const struct cpumask *tmp = cpumask_of_node(0); 4810 4811 /* Use the local node if we haven't already */ 4812 if (!node_isset(node, *used_node_mask)) { 4813 node_set(node, *used_node_mask); 4814 return node; 4815 } 4816 4817 for_each_node_state(n, N_MEMORY) { 4818 4819 /* Don't want a node to appear more than once */ 4820 if (node_isset(n, *used_node_mask)) 4821 continue; 4822 4823 /* Use the distance array to find the distance */ 4824 val = node_distance(node, n); 4825 4826 /* Penalize nodes under us ("prefer the next node") */ 4827 val += (n < node); 4828 4829 /* Give preference to headless and unused nodes */ 4830 tmp = cpumask_of_node(n); 4831 if (!cpumask_empty(tmp)) 4832 val += PENALTY_FOR_NODE_WITH_CPUS; 4833 4834 /* Slight preference for less loaded node */ 4835 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 4836 val += node_load[n]; 4837 4838 if (val < min_val) { 4839 min_val = val; 4840 best_node = n; 4841 } 4842 } 4843 4844 if (best_node >= 0) 4845 node_set(best_node, *used_node_mask); 4846 4847 return best_node; 4848} 4849 4850 4851/* 4852 * Build zonelists ordered by node and zones within node. 4853 * This results in maximum locality--normal zone overflows into local 4854 * DMA zone, if any--but risks exhausting DMA zone. 4855 */ 4856static void build_zonelists_in_node_order(pg_data_t *pgdat, int node) 4857{ 4858 int j; 4859 struct zonelist *zonelist; 4860 4861 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK]; 4862 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++) 4863 ; 4864 j = build_zonelists_node(NODE_DATA(node), zonelist, j); 4865 zonelist->_zonerefs[j].zone = NULL; 4866 zonelist->_zonerefs[j].zone_idx = 0; 4867} 4868 4869/* 4870 * Build gfp_thisnode zonelists 4871 */ 4872static void build_thisnode_zonelists(pg_data_t *pgdat) 4873{ 4874 int j; 4875 struct zonelist *zonelist; 4876 4877 zonelist = &pgdat->node_zonelists[ZONELIST_NOFALLBACK]; 4878 j = build_zonelists_node(pgdat, zonelist, 0); 4879 zonelist->_zonerefs[j].zone = NULL; 4880 zonelist->_zonerefs[j].zone_idx = 0; 4881} 4882 4883/* 4884 * Build zonelists ordered by zone and nodes within zones. 4885 * This results in conserving DMA zone[s] until all Normal memory is 4886 * exhausted, but results in overflowing to remote node while memory 4887 * may still exist in local DMA zone. 4888 */ 4889static int node_order[MAX_NUMNODES]; 4890 4891static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes) 4892{ 4893 int pos, j, node; 4894 int zone_type; /* needs to be signed */ 4895 struct zone *z; 4896 struct zonelist *zonelist; 4897 4898 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK]; 4899 pos = 0; 4900 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) { 4901 for (j = 0; j < nr_nodes; j++) { 4902 node = node_order[j]; 4903 z = &NODE_DATA(node)->node_zones[zone_type]; 4904 if (managed_zone(z)) { 4905 zoneref_set_zone(z, 4906 &zonelist->_zonerefs[pos++]); 4907 check_highest_zone(zone_type); 4908 } 4909 } 4910 } 4911 zonelist->_zonerefs[pos].zone = NULL; 4912 zonelist->_zonerefs[pos].zone_idx = 0; 4913} 4914 4915#if defined(CONFIG_64BIT) 4916/* 4917 * Devices that require DMA32/DMA are relatively rare and do not justify a 4918 * penalty to every machine in case the specialised case applies. Default 4919 * to Node-ordering on 64-bit NUMA machines 4920 */ 4921static int default_zonelist_order(void) 4922{ 4923 return ZONELIST_ORDER_NODE; 4924} 4925#else 4926/* 4927 * On 32-bit, the Normal zone needs to be preserved for allocations accessible 4928 * by the kernel. If processes running on node 0 deplete the low memory zone 4929 * then reclaim will occur more frequency increasing stalls and potentially 4930 * be easier to OOM if a large percentage of the zone is under writeback or 4931 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set. 4932 * Hence, default to zone ordering on 32-bit. 4933 */ 4934static int default_zonelist_order(void) 4935{ 4936 return ZONELIST_ORDER_ZONE; 4937} 4938#endif /* CONFIG_64BIT */ 4939 4940static void set_zonelist_order(void) 4941{ 4942 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT) 4943 current_zonelist_order = default_zonelist_order(); 4944 else 4945 current_zonelist_order = user_zonelist_order; 4946} 4947 4948static void build_zonelists(pg_data_t *pgdat) 4949{ 4950 int i, node, load; 4951 nodemask_t used_mask; 4952 int local_node, prev_node; 4953 struct zonelist *zonelist; 4954 unsigned int order = current_zonelist_order; 4955 4956 /* initialize zonelists */ 4957 for (i = 0; i < MAX_ZONELISTS; i++) { 4958 zonelist = pgdat->node_zonelists + i; 4959 zonelist->_zonerefs[0].zone = NULL; 4960 zonelist->_zonerefs[0].zone_idx = 0; 4961 } 4962 4963 /* NUMA-aware ordering of nodes */ 4964 local_node = pgdat->node_id; 4965 load = nr_online_nodes; 4966 prev_node = local_node; 4967 nodes_clear(used_mask); 4968 4969 memset(node_order, 0, sizeof(node_order)); 4970 i = 0; 4971 4972 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 4973 /* 4974 * We don't want to pressure a particular node. 4975 * So adding penalty to the first node in same 4976 * distance group to make it round-robin. 4977 */ 4978 if (node_distance(local_node, node) != 4979 node_distance(local_node, prev_node)) 4980 node_load[node] = load; 4981 4982 prev_node = node; 4983 load--; 4984 if (order == ZONELIST_ORDER_NODE) 4985 build_zonelists_in_node_order(pgdat, node); 4986 else 4987 node_order[i++] = node; /* remember order */ 4988 } 4989 4990 if (order == ZONELIST_ORDER_ZONE) { 4991 /* calculate node order -- i.e., DMA last! */ 4992 build_zonelists_in_zone_order(pgdat, i); 4993 } 4994 4995 build_thisnode_zonelists(pgdat); 4996} 4997 4998#ifdef CONFIG_HAVE_MEMORYLESS_NODES 4999/* 5000 * Return node id of node used for "local" allocations. 5001 * I.e., first node id of first zone in arg node's generic zonelist. 5002 * Used for initializing percpu 'numa_mem', which is used primarily 5003 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 5004 */ 5005int local_memory_node(int node) 5006{ 5007 struct zoneref *z; 5008 5009 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 5010 gfp_zone(GFP_KERNEL), 5011 NULL); 5012 return z->zone->node; 5013} 5014#endif 5015 5016static void setup_min_unmapped_ratio(void); 5017static void setup_min_slab_ratio(void); 5018#else /* CONFIG_NUMA */ 5019 5020static void set_zonelist_order(void) 5021{ 5022 current_zonelist_order = ZONELIST_ORDER_ZONE; 5023} 5024 5025static void build_zonelists(pg_data_t *pgdat) 5026{ 5027 int node, local_node; 5028 enum zone_type j; 5029 struct zonelist *zonelist; 5030 5031 local_node = pgdat->node_id; 5032 5033 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK]; 5034 j = build_zonelists_node(pgdat, zonelist, 0); 5035 5036 /* 5037 * Now we build the zonelist so that it contains the zones 5038 * of all the other nodes. 5039 * We don't want to pressure a particular node, so when 5040 * building the zones for node N, we make sure that the 5041 * zones coming right after the local ones are those from 5042 * node N+1 (modulo N) 5043 */ 5044 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 5045 if (!node_online(node)) 5046 continue; 5047 j = build_zonelists_node(NODE_DATA(node), zonelist, j); 5048 } 5049 for (node = 0; node < local_node; node++) { 5050 if (!node_online(node)) 5051 continue; 5052 j = build_zonelists_node(NODE_DATA(node), zonelist, j); 5053 } 5054 5055 zonelist->_zonerefs[j].zone = NULL; 5056 zonelist->_zonerefs[j].zone_idx = 0; 5057} 5058 5059#endif /* CONFIG_NUMA */ 5060 5061/* 5062 * Boot pageset table. One per cpu which is going to be used for all 5063 * zones and all nodes. The parameters will be set in such a way 5064 * that an item put on a list will immediately be handed over to 5065 * the buddy list. This is safe since pageset manipulation is done 5066 * with interrupts disabled. 5067 * 5068 * The boot_pagesets must be kept even after bootup is complete for 5069 * unused processors and/or zones. They do play a role for bootstrapping 5070 * hotplugged processors. 5071 * 5072 * zoneinfo_show() and maybe other functions do 5073 * not check if the processor is online before following the pageset pointer. 5074 * Other parts of the kernel may not check if the zone is available. 5075 */ 5076static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch); 5077static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset); 5078static void setup_zone_pageset(struct zone *zone); 5079 5080/* 5081 * Global mutex to protect against size modification of zonelists 5082 * as well as to serialize pageset setup for the new populated zone. 5083 */ 5084DEFINE_MUTEX(zonelists_mutex); 5085 5086/* return values int ....just for stop_machine() */ 5087static int __build_all_zonelists(void *data) 5088{ 5089 int nid; 5090 int cpu; 5091 pg_data_t *self = data; 5092 5093#ifdef CONFIG_NUMA 5094 memset(node_load, 0, sizeof(node_load)); 5095#endif 5096 5097 if (self && !node_online(self->node_id)) { 5098 build_zonelists(self); 5099 } 5100 5101 for_each_online_node(nid) { 5102 pg_data_t *pgdat = NODE_DATA(nid); 5103 5104 build_zonelists(pgdat); 5105 } 5106 5107 /* 5108 * Initialize the boot_pagesets that are going to be used 5109 * for bootstrapping processors. The real pagesets for 5110 * each zone will be allocated later when the per cpu 5111 * allocator is available. 5112 * 5113 * boot_pagesets are used also for bootstrapping offline 5114 * cpus if the system is already booted because the pagesets 5115 * are needed to initialize allocators on a specific cpu too. 5116 * F.e. the percpu allocator needs the page allocator which 5117 * needs the percpu allocator in order to allocate its pagesets 5118 * (a chicken-egg dilemma). 5119 */ 5120 for_each_possible_cpu(cpu) { 5121 setup_pageset(&per_cpu(boot_pageset, cpu), 0); 5122 5123#ifdef CONFIG_HAVE_MEMORYLESS_NODES 5124 /* 5125 * We now know the "local memory node" for each node-- 5126 * i.e., the node of the first zone in the generic zonelist. 5127 * Set up numa_mem percpu variable for on-line cpus. During 5128 * boot, only the boot cpu should be on-line; we'll init the 5129 * secondary cpus' numa_mem as they come on-line. During 5130 * node/memory hotplug, we'll fixup all on-line cpus. 5131 */ 5132 if (cpu_online(cpu)) 5133 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 5134#endif 5135 } 5136 5137 return 0; 5138} 5139 5140static noinline void __init 5141build_all_zonelists_init(void) 5142{ 5143 __build_all_zonelists(NULL); 5144 mminit_verify_zonelist(); 5145 cpuset_init_current_mems_allowed(); 5146} 5147 5148/* 5149 * Called with zonelists_mutex held always 5150 * unless system_state == SYSTEM_BOOTING. 5151 * 5152 * __ref due to (1) call of __meminit annotated setup_zone_pageset 5153 * [we're only called with non-NULL zone through __meminit paths] and 5154 * (2) call of __init annotated helper build_all_zonelists_init 5155 * [protected by SYSTEM_BOOTING]. 5156 */ 5157void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone) 5158{ 5159 set_zonelist_order(); 5160 5161 if (system_state == SYSTEM_BOOTING) { 5162 build_all_zonelists_init(); 5163 } else { 5164#ifdef CONFIG_MEMORY_HOTPLUG 5165 if (zone) 5166 setup_zone_pageset(zone); 5167#endif 5168 /* we have to stop all cpus to guarantee there is no user 5169 of zonelist */ 5170 stop_machine(__build_all_zonelists, pgdat, NULL); 5171 /* cpuset refresh routine should be here */ 5172 } 5173 vm_total_pages = nr_free_pagecache_pages(); 5174 /* 5175 * Disable grouping by mobility if the number of pages in the 5176 * system is too low to allow the mechanism to work. It would be 5177 * more accurate, but expensive to check per-zone. This check is 5178 * made on memory-hotadd so a system can start with mobility 5179 * disabled and enable it later 5180 */ 5181 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 5182 page_group_by_mobility_disabled = 1; 5183 else 5184 page_group_by_mobility_disabled = 0; 5185 5186 pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n", 5187 nr_online_nodes, 5188 zonelist_order_name[current_zonelist_order], 5189 page_group_by_mobility_disabled ? "off" : "on", 5190 vm_total_pages); 5191#ifdef CONFIG_NUMA 5192 pr_info("Policy zone: %s\n", zone_names[policy_zone]); 5193#endif 5194} 5195 5196/* 5197 * Initially all pages are reserved - free ones are freed 5198 * up by free_all_bootmem() once the early boot process is 5199 * done. Non-atomic initialization, single-pass. 5200 */ 5201void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 5202 unsigned long start_pfn, enum memmap_context context) 5203{ 5204 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn)); 5205 unsigned long end_pfn = start_pfn + size; 5206 pg_data_t *pgdat = NODE_DATA(nid); 5207 unsigned long pfn; 5208 unsigned long nr_initialised = 0; 5209#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 5210 struct memblock_region *r = NULL, *tmp; 5211#endif 5212 5213 if (highest_memmap_pfn < end_pfn - 1) 5214 highest_memmap_pfn = end_pfn - 1; 5215 5216 /* 5217 * Honor reservation requested by the driver for this ZONE_DEVICE 5218 * memory 5219 */ 5220 if (altmap && start_pfn == altmap->base_pfn) 5221 start_pfn += altmap->reserve; 5222 5223 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 5224 /* 5225 * There can be holes in boot-time mem_map[]s handed to this 5226 * function. They do not exist on hotplugged memory. 5227 */ 5228 if (context != MEMMAP_EARLY) 5229 goto not_early; 5230 5231 if (!early_pfn_valid(pfn)) { 5232#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 5233 /* 5234 * Skip to the pfn preceding the next valid one (or 5235 * end_pfn), such that we hit a valid pfn (or end_pfn) 5236 * on our next iteration of the loop. 5237 */ 5238 pfn = memblock_next_valid_pfn(pfn, end_pfn) - 1; 5239#endif 5240 continue; 5241 } 5242 if (!early_pfn_in_nid(pfn, nid)) 5243 continue; 5244 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised)) 5245 break; 5246 5247#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 5248 /* 5249 * Check given memblock attribute by firmware which can affect 5250 * kernel memory layout. If zone==ZONE_MOVABLE but memory is 5251 * mirrored, it's an overlapped memmap init. skip it. 5252 */ 5253 if (mirrored_kernelcore && zone == ZONE_MOVABLE) { 5254 if (!r || pfn >= memblock_region_memory_end_pfn(r)) { 5255 for_each_memblock(memory, tmp) 5256 if (pfn < memblock_region_memory_end_pfn(tmp)) 5257 break; 5258 r = tmp; 5259 } 5260 if (pfn >= memblock_region_memory_base_pfn(r) && 5261 memblock_is_mirror(r)) { 5262 /* already initialized as NORMAL */ 5263 pfn = memblock_region_memory_end_pfn(r); 5264 continue; 5265 } 5266 } 5267#endif 5268 5269not_early: 5270 /* 5271 * Mark the block movable so that blocks are reserved for 5272 * movable at startup. This will force kernel allocations 5273 * to reserve their blocks rather than leaking throughout 5274 * the address space during boot when many long-lived 5275 * kernel allocations are made. 5276 * 5277 * bitmap is created for zone's valid pfn range. but memmap 5278 * can be created for invalid pages (for alignment) 5279 * check here not to call set_pageblock_migratetype() against 5280 * pfn out of zone. 5281 */ 5282 if (!(pfn & (pageblock_nr_pages - 1))) { 5283 struct page *page = pfn_to_page(pfn); 5284 5285 __init_single_page(page, pfn, zone, nid); 5286 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 5287 } else { 5288 __init_single_pfn(pfn, zone, nid); 5289 } 5290 } 5291} 5292 5293static void __meminit zone_init_free_lists(struct zone *zone) 5294{ 5295 unsigned int order, t; 5296 for_each_migratetype_order(order, t) { 5297 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 5298 zone->free_area[order].nr_free = 0; 5299 } 5300} 5301 5302#ifndef __HAVE_ARCH_MEMMAP_INIT 5303#define memmap_init(size, nid, zone, start_pfn) \ 5304 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY) 5305#endif 5306 5307static int zone_batchsize(struct zone *zone) 5308{ 5309#ifdef CONFIG_MMU 5310 int batch; 5311 5312 /* 5313 * The per-cpu-pages pools are set to around 1000th of the 5314 * size of the zone. But no more than 1/2 of a meg. 5315 * 5316 * OK, so we don't know how big the cache is. So guess. 5317 */ 5318 batch = zone->managed_pages / 1024; 5319 if (batch * PAGE_SIZE > 512 * 1024) 5320 batch = (512 * 1024) / PAGE_SIZE; 5321 batch /= 4; /* We effectively *= 4 below */ 5322 if (batch < 1) 5323 batch = 1; 5324 5325 /* 5326 * Clamp the batch to a 2^n - 1 value. Having a power 5327 * of 2 value was found to be more likely to have 5328 * suboptimal cache aliasing properties in some cases. 5329 * 5330 * For example if 2 tasks are alternately allocating 5331 * batches of pages, one task can end up with a lot 5332 * of pages of one half of the possible page colors 5333 * and the other with pages of the other colors. 5334 */ 5335 batch = rounddown_pow_of_two(batch + batch/2) - 1; 5336 5337 return batch; 5338 5339#else 5340 /* The deferral and batching of frees should be suppressed under NOMMU 5341 * conditions. 5342 * 5343 * The problem is that NOMMU needs to be able to allocate large chunks 5344 * of contiguous memory as there's no hardware page translation to 5345 * assemble apparent contiguous memory from discontiguous pages. 5346 * 5347 * Queueing large contiguous runs of pages for batching, however, 5348 * causes the pages to actually be freed in smaller chunks. As there 5349 * can be a significant delay between the individual batches being 5350 * recycled, this leads to the once large chunks of space being 5351 * fragmented and becoming unavailable for high-order allocations. 5352 */ 5353 return 0; 5354#endif 5355} 5356 5357/* 5358 * pcp->high and pcp->batch values are related and dependent on one another: 5359 * ->batch must never be higher then ->high. 5360 * The following function updates them in a safe manner without read side 5361 * locking. 5362 * 5363 * Any new users of pcp->batch and pcp->high should ensure they can cope with 5364 * those fields changing asynchronously (acording the the above rule). 5365 * 5366 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 5367 * outside of boot time (or some other assurance that no concurrent updaters 5368 * exist). 5369 */ 5370static void pageset_update(struct per_cpu_pages *pcp, unsigned long high, 5371 unsigned long batch) 5372{ 5373 /* start with a fail safe value for batch */ 5374 pcp->batch = 1; 5375 smp_wmb(); 5376 5377 /* Update high, then batch, in order */ 5378 pcp->high = high; 5379 smp_wmb(); 5380 5381 pcp->batch = batch; 5382} 5383 5384/* a companion to pageset_set_high() */ 5385static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch) 5386{ 5387 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch)); 5388} 5389 5390static void pageset_init(struct per_cpu_pageset *p) 5391{ 5392 struct per_cpu_pages *pcp; 5393 int migratetype; 5394 5395 memset(p, 0, sizeof(*p)); 5396 5397 pcp = &p->pcp; 5398 pcp->count = 0; 5399 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++) 5400 INIT_LIST_HEAD(&pcp->lists[migratetype]); 5401} 5402 5403static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) 5404{ 5405 pageset_init(p); 5406 pageset_set_batch(p, batch); 5407} 5408 5409/* 5410 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist 5411 * to the value high for the pageset p. 5412 */ 5413static void pageset_set_high(struct per_cpu_pageset *p, 5414 unsigned long high) 5415{ 5416 unsigned long batch = max(1UL, high / 4); 5417 if ((high / 4) > (PAGE_SHIFT * 8)) 5418 batch = PAGE_SHIFT * 8; 5419 5420 pageset_update(&p->pcp, high, batch); 5421} 5422 5423static void pageset_set_high_and_batch(struct zone *zone, 5424 struct per_cpu_pageset *pcp) 5425{ 5426 if (percpu_pagelist_fraction) 5427 pageset_set_high(pcp, 5428 (zone->managed_pages / 5429 percpu_pagelist_fraction)); 5430 else 5431 pageset_set_batch(pcp, zone_batchsize(zone)); 5432} 5433 5434static void __meminit zone_pageset_init(struct zone *zone, int cpu) 5435{ 5436 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu); 5437 5438 pageset_init(pcp); 5439 pageset_set_high_and_batch(zone, pcp); 5440} 5441 5442static void __meminit setup_zone_pageset(struct zone *zone) 5443{ 5444 int cpu; 5445 zone->pageset = alloc_percpu(struct per_cpu_pageset); 5446 for_each_possible_cpu(cpu) 5447 zone_pageset_init(zone, cpu); 5448} 5449 5450/* 5451 * Allocate per cpu pagesets and initialize them. 5452 * Before this call only boot pagesets were available. 5453 */ 5454void __init setup_per_cpu_pageset(void) 5455{ 5456 struct pglist_data *pgdat; 5457 struct zone *zone; 5458 5459 for_each_populated_zone(zone) 5460 setup_zone_pageset(zone); 5461 5462 for_each_online_pgdat(pgdat) 5463 pgdat->per_cpu_nodestats = 5464 alloc_percpu(struct per_cpu_nodestat); 5465} 5466 5467static __meminit void zone_pcp_init(struct zone *zone) 5468{ 5469 /* 5470 * per cpu subsystem is not up at this point. The following code 5471 * relies on the ability of the linker to provide the 5472 * offset of a (static) per cpu variable into the per cpu area. 5473 */ 5474 zone->pageset = &boot_pageset; 5475 5476 if (populated_zone(zone)) 5477 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n", 5478 zone->name, zone->present_pages, 5479 zone_batchsize(zone)); 5480} 5481 5482int __meminit init_currently_empty_zone(struct zone *zone, 5483 unsigned long zone_start_pfn, 5484 unsigned long size) 5485{ 5486 struct pglist_data *pgdat = zone->zone_pgdat; 5487 5488 pgdat->nr_zones = zone_idx(zone) + 1; 5489 5490 zone->zone_start_pfn = zone_start_pfn; 5491 5492 mminit_dprintk(MMINIT_TRACE, "memmap_init", 5493 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 5494 pgdat->node_id, 5495 (unsigned long)zone_idx(zone), 5496 zone_start_pfn, (zone_start_pfn + size)); 5497 5498 zone_init_free_lists(zone); 5499 zone->initialized = 1; 5500 5501 return 0; 5502} 5503 5504#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 5505#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 5506 5507/* 5508 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 5509 */ 5510int __meminit __early_pfn_to_nid(unsigned long pfn, 5511 struct mminit_pfnnid_cache *state) 5512{ 5513 unsigned long start_pfn, end_pfn; 5514 int nid; 5515 5516 if (state->last_start <= pfn && pfn < state->last_end) 5517 return state->last_nid; 5518 5519 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn); 5520 if (nid != -1) { 5521 state->last_start = start_pfn; 5522 state->last_end = end_pfn; 5523 state->last_nid = nid; 5524 } 5525 5526 return nid; 5527} 5528#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 5529 5530/** 5531 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range 5532 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed. 5533 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid 5534 * 5535 * If an architecture guarantees that all ranges registered contain no holes 5536 * and may be freed, this this function may be used instead of calling 5537 * memblock_free_early_nid() manually. 5538 */ 5539void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn) 5540{ 5541 unsigned long start_pfn, end_pfn; 5542 int i, this_nid; 5543 5544 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) { 5545 start_pfn = min(start_pfn, max_low_pfn); 5546 end_pfn = min(end_pfn, max_low_pfn); 5547 5548 if (start_pfn < end_pfn) 5549 memblock_free_early_nid(PFN_PHYS(start_pfn), 5550 (end_pfn - start_pfn) << PAGE_SHIFT, 5551 this_nid); 5552 } 5553} 5554 5555/** 5556 * sparse_memory_present_with_active_regions - Call memory_present for each active range 5557 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. 5558 * 5559 * If an architecture guarantees that all ranges registered contain no holes and may 5560 * be freed, this function may be used instead of calling memory_present() manually. 5561 */ 5562void __init sparse_memory_present_with_active_regions(int nid) 5563{ 5564 unsigned long start_pfn, end_pfn; 5565 int i, this_nid; 5566 5567 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) 5568 memory_present(this_nid, start_pfn, end_pfn); 5569} 5570 5571/** 5572 * get_pfn_range_for_nid - Return the start and end page frames for a node 5573 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 5574 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 5575 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 5576 * 5577 * It returns the start and end page frame of a node based on information 5578 * provided by memblock_set_node(). If called for a node 5579 * with no available memory, a warning is printed and the start and end 5580 * PFNs will be 0. 5581 */ 5582void __meminit get_pfn_range_for_nid(unsigned int nid, 5583 unsigned long *start_pfn, unsigned long *end_pfn) 5584{ 5585 unsigned long this_start_pfn, this_end_pfn; 5586 int i; 5587 5588 *start_pfn = -1UL; 5589 *end_pfn = 0; 5590 5591 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { 5592 *start_pfn = min(*start_pfn, this_start_pfn); 5593 *end_pfn = max(*end_pfn, this_end_pfn); 5594 } 5595 5596 if (*start_pfn == -1UL) 5597 *start_pfn = 0; 5598} 5599 5600/* 5601 * This finds a zone that can be used for ZONE_MOVABLE pages. The 5602 * assumption is made that zones within a node are ordered in monotonic 5603 * increasing memory addresses so that the "highest" populated zone is used 5604 */ 5605static void __init find_usable_zone_for_movable(void) 5606{ 5607 int zone_index; 5608 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 5609 if (zone_index == ZONE_MOVABLE) 5610 continue; 5611 5612 if (arch_zone_highest_possible_pfn[zone_index] > 5613 arch_zone_lowest_possible_pfn[zone_index]) 5614 break; 5615 } 5616 5617 VM_BUG_ON(zone_index == -1); 5618 movable_zone = zone_index; 5619} 5620 5621/* 5622 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 5623 * because it is sized independent of architecture. Unlike the other zones, 5624 * the starting point for ZONE_MOVABLE is not fixed. It may be different 5625 * in each node depending on the size of each node and how evenly kernelcore 5626 * is distributed. This helper function adjusts the zone ranges 5627 * provided by the architecture for a given node by using the end of the 5628 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 5629 * zones within a node are in order of monotonic increases memory addresses 5630 */ 5631static void __meminit adjust_zone_range_for_zone_movable(int nid, 5632 unsigned long zone_type, 5633 unsigned long node_start_pfn, 5634 unsigned long node_end_pfn, 5635 unsigned long *zone_start_pfn, 5636 unsigned long *zone_end_pfn) 5637{ 5638 /* Only adjust if ZONE_MOVABLE is on this node */ 5639 if (zone_movable_pfn[nid]) { 5640 /* Size ZONE_MOVABLE */ 5641 if (zone_type == ZONE_MOVABLE) { 5642 *zone_start_pfn = zone_movable_pfn[nid]; 5643 *zone_end_pfn = min(node_end_pfn, 5644 arch_zone_highest_possible_pfn[movable_zone]); 5645 5646 /* Adjust for ZONE_MOVABLE starting within this range */ 5647 } else if (!mirrored_kernelcore && 5648 *zone_start_pfn < zone_movable_pfn[nid] && 5649 *zone_end_pfn > zone_movable_pfn[nid]) { 5650 *zone_end_pfn = zone_movable_pfn[nid]; 5651 5652 /* Check if this whole range is within ZONE_MOVABLE */ 5653 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 5654 *zone_start_pfn = *zone_end_pfn; 5655 } 5656} 5657 5658/* 5659 * Return the number of pages a zone spans in a node, including holes 5660 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 5661 */ 5662static unsigned long __meminit zone_spanned_pages_in_node(int nid, 5663 unsigned long zone_type, 5664 unsigned long node_start_pfn, 5665 unsigned long node_end_pfn, 5666 unsigned long *zone_start_pfn, 5667 unsigned long *zone_end_pfn, 5668 unsigned long *ignored) 5669{ 5670 /* When hotadd a new node from cpu_up(), the node should be empty */ 5671 if (!node_start_pfn && !node_end_pfn) 5672 return 0; 5673 5674 /* Get the start and end of the zone */ 5675 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type]; 5676 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type]; 5677 adjust_zone_range_for_zone_movable(nid, zone_type, 5678 node_start_pfn, node_end_pfn, 5679 zone_start_pfn, zone_end_pfn); 5680 5681 /* Check that this node has pages within the zone's required range */ 5682 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn) 5683 return 0; 5684 5685 /* Move the zone boundaries inside the node if necessary */ 5686 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn); 5687 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn); 5688 5689 /* Return the spanned pages */ 5690 return *zone_end_pfn - *zone_start_pfn; 5691} 5692 5693/* 5694 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 5695 * then all holes in the requested range will be accounted for. 5696 */ 5697unsigned long __meminit __absent_pages_in_range(int nid, 5698 unsigned long range_start_pfn, 5699 unsigned long range_end_pfn) 5700{ 5701 unsigned long nr_absent = range_end_pfn - range_start_pfn; 5702 unsigned long start_pfn, end_pfn; 5703 int i; 5704 5705 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 5706 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); 5707 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); 5708 nr_absent -= end_pfn - start_pfn; 5709 } 5710 return nr_absent; 5711} 5712 5713/** 5714 * absent_pages_in_range - Return number of page frames in holes within a range 5715 * @start_pfn: The start PFN to start searching for holes 5716 * @end_pfn: The end PFN to stop searching for holes 5717 * 5718 * It returns the number of pages frames in memory holes within a range. 5719 */ 5720unsigned long __init absent_pages_in_range(unsigned long start_pfn, 5721 unsigned long end_pfn) 5722{ 5723 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 5724} 5725 5726/* Return the number of page frames in holes in a zone on a node */ 5727static unsigned long __meminit zone_absent_pages_in_node(int nid, 5728 unsigned long zone_type, 5729 unsigned long node_start_pfn, 5730 unsigned long node_end_pfn, 5731 unsigned long *ignored) 5732{ 5733 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 5734 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 5735 unsigned long zone_start_pfn, zone_end_pfn; 5736 unsigned long nr_absent; 5737 5738 /* When hotadd a new node from cpu_up(), the node should be empty */ 5739 if (!node_start_pfn && !node_end_pfn) 5740 return 0; 5741 5742 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 5743 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 5744 5745 adjust_zone_range_for_zone_movable(nid, zone_type, 5746 node_start_pfn, node_end_pfn, 5747 &zone_start_pfn, &zone_end_pfn); 5748 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 5749 5750 /* 5751 * ZONE_MOVABLE handling. 5752 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages 5753 * and vice versa. 5754 */ 5755 if (mirrored_kernelcore && zone_movable_pfn[nid]) { 5756 unsigned long start_pfn, end_pfn; 5757 struct memblock_region *r; 5758 5759 for_each_memblock(memory, r) { 5760 start_pfn = clamp(memblock_region_memory_base_pfn(r), 5761 zone_start_pfn, zone_end_pfn); 5762 end_pfn = clamp(memblock_region_memory_end_pfn(r), 5763 zone_start_pfn, zone_end_pfn); 5764 5765 if (zone_type == ZONE_MOVABLE && 5766 memblock_is_mirror(r)) 5767 nr_absent += end_pfn - start_pfn; 5768 5769 if (zone_type == ZONE_NORMAL && 5770 !memblock_is_mirror(r)) 5771 nr_absent += end_pfn - start_pfn; 5772 } 5773 } 5774 5775 return nr_absent; 5776} 5777 5778#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 5779static inline unsigned long __meminit zone_spanned_pages_in_node(int nid, 5780 unsigned long zone_type, 5781 unsigned long node_start_pfn, 5782 unsigned long node_end_pfn, 5783 unsigned long *zone_start_pfn, 5784 unsigned long *zone_end_pfn, 5785 unsigned long *zones_size) 5786{ 5787 unsigned int zone; 5788 5789 *zone_start_pfn = node_start_pfn; 5790 for (zone = 0; zone < zone_type; zone++) 5791 *zone_start_pfn += zones_size[zone]; 5792 5793 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type]; 5794 5795 return zones_size[zone_type]; 5796} 5797 5798static inline unsigned long __meminit zone_absent_pages_in_node(int nid, 5799 unsigned long zone_type, 5800 unsigned long node_start_pfn, 5801 unsigned long node_end_pfn, 5802 unsigned long *zholes_size) 5803{ 5804 if (!zholes_size) 5805 return 0; 5806 5807 return zholes_size[zone_type]; 5808} 5809 5810#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 5811 5812static void __meminit calculate_node_totalpages(struct pglist_data *pgdat, 5813 unsigned long node_start_pfn, 5814 unsigned long node_end_pfn, 5815 unsigned long *zones_size, 5816 unsigned long *zholes_size) 5817{ 5818 unsigned long realtotalpages = 0, totalpages = 0; 5819 enum zone_type i; 5820 5821 for (i = 0; i < MAX_NR_ZONES; i++) { 5822 struct zone *zone = pgdat->node_zones + i; 5823 unsigned long zone_start_pfn, zone_end_pfn; 5824 unsigned long size, real_size; 5825 5826 size = zone_spanned_pages_in_node(pgdat->node_id, i, 5827 node_start_pfn, 5828 node_end_pfn, 5829 &zone_start_pfn, 5830 &zone_end_pfn, 5831 zones_size); 5832 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i, 5833 node_start_pfn, node_end_pfn, 5834 zholes_size); 5835 if (size) 5836 zone->zone_start_pfn = zone_start_pfn; 5837 else 5838 zone->zone_start_pfn = 0; 5839 zone->spanned_pages = size; 5840 zone->present_pages = real_size; 5841 5842 totalpages += size; 5843 realtotalpages += real_size; 5844 } 5845 5846 pgdat->node_spanned_pages = totalpages; 5847 pgdat->node_present_pages = realtotalpages; 5848 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, 5849 realtotalpages); 5850} 5851 5852#ifndef CONFIG_SPARSEMEM 5853/* 5854 * Calculate the size of the zone->blockflags rounded to an unsigned long 5855 * Start by making sure zonesize is a multiple of pageblock_order by rounding 5856 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 5857 * round what is now in bits to nearest long in bits, then return it in 5858 * bytes. 5859 */ 5860static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize) 5861{ 5862 unsigned long usemapsize; 5863 5864 zonesize += zone_start_pfn & (pageblock_nr_pages-1); 5865 usemapsize = roundup(zonesize, pageblock_nr_pages); 5866 usemapsize = usemapsize >> pageblock_order; 5867 usemapsize *= NR_PAGEBLOCK_BITS; 5868 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 5869 5870 return usemapsize / 8; 5871} 5872 5873static void __init setup_usemap(struct pglist_data *pgdat, 5874 struct zone *zone, 5875 unsigned long zone_start_pfn, 5876 unsigned long zonesize) 5877{ 5878 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize); 5879 zone->pageblock_flags = NULL; 5880 if (usemapsize) 5881 zone->pageblock_flags = 5882 memblock_virt_alloc_node_nopanic(usemapsize, 5883 pgdat->node_id); 5884} 5885#else 5886static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone, 5887 unsigned long zone_start_pfn, unsigned long zonesize) {} 5888#endif /* CONFIG_SPARSEMEM */ 5889 5890#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 5891 5892/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 5893void __paginginit set_pageblock_order(void) 5894{ 5895 unsigned int order; 5896 5897 /* Check that pageblock_nr_pages has not already been setup */ 5898 if (pageblock_order) 5899 return; 5900 5901 if (HPAGE_SHIFT > PAGE_SHIFT) 5902 order = HUGETLB_PAGE_ORDER; 5903 else 5904 order = MAX_ORDER - 1; 5905 5906 /* 5907 * Assume the largest contiguous order of interest is a huge page. 5908 * This value may be variable depending on boot parameters on IA64 and 5909 * powerpc. 5910 */ 5911 pageblock_order = order; 5912} 5913#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 5914 5915/* 5916 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 5917 * is unused as pageblock_order is set at compile-time. See 5918 * include/linux/pageblock-flags.h for the values of pageblock_order based on 5919 * the kernel config 5920 */ 5921void __paginginit set_pageblock_order(void) 5922{ 5923} 5924 5925#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 5926 5927static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages, 5928 unsigned long present_pages) 5929{ 5930 unsigned long pages = spanned_pages; 5931 5932 /* 5933 * Provide a more accurate estimation if there are holes within 5934 * the zone and SPARSEMEM is in use. If there are holes within the 5935 * zone, each populated memory region may cost us one or two extra 5936 * memmap pages due to alignment because memmap pages for each 5937 * populated regions may not be naturally aligned on page boundary. 5938 * So the (present_pages >> 4) heuristic is a tradeoff for that. 5939 */ 5940 if (spanned_pages > present_pages + (present_pages >> 4) && 5941 IS_ENABLED(CONFIG_SPARSEMEM)) 5942 pages = present_pages; 5943 5944 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT; 5945} 5946 5947/* 5948 * Set up the zone data structures: 5949 * - mark all pages reserved 5950 * - mark all memory queues empty 5951 * - clear the memory bitmaps 5952 * 5953 * NOTE: pgdat should get zeroed by caller. 5954 */ 5955static void __paginginit free_area_init_core(struct pglist_data *pgdat) 5956{ 5957 enum zone_type j; 5958 int nid = pgdat->node_id; 5959 int ret; 5960 5961 pgdat_resize_init(pgdat); 5962#ifdef CONFIG_NUMA_BALANCING 5963 spin_lock_init(&pgdat->numabalancing_migrate_lock); 5964 pgdat->numabalancing_migrate_nr_pages = 0; 5965 pgdat->numabalancing_migrate_next_window = jiffies; 5966#endif 5967#ifdef CONFIG_TRANSPARENT_HUGEPAGE 5968 spin_lock_init(&pgdat->split_queue_lock); 5969 INIT_LIST_HEAD(&pgdat->split_queue); 5970 pgdat->split_queue_len = 0; 5971#endif 5972 init_waitqueue_head(&pgdat->kswapd_wait); 5973 init_waitqueue_head(&pgdat->pfmemalloc_wait); 5974#ifdef CONFIG_COMPACTION 5975 init_waitqueue_head(&pgdat->kcompactd_wait); 5976#endif 5977 pgdat_page_ext_init(pgdat); 5978 spin_lock_init(&pgdat->lru_lock); 5979 lruvec_init(node_lruvec(pgdat)); 5980 5981 for (j = 0; j < MAX_NR_ZONES; j++) { 5982 struct zone *zone = pgdat->node_zones + j; 5983 unsigned long size, realsize, freesize, memmap_pages; 5984 unsigned long zone_start_pfn = zone->zone_start_pfn; 5985 5986 size = zone->spanned_pages; 5987 realsize = freesize = zone->present_pages; 5988 5989 /* 5990 * Adjust freesize so that it accounts for how much memory 5991 * is used by this zone for memmap. This affects the watermark 5992 * and per-cpu initialisations 5993 */ 5994 memmap_pages = calc_memmap_size(size, realsize); 5995 if (!is_highmem_idx(j)) { 5996 if (freesize >= memmap_pages) { 5997 freesize -= memmap_pages; 5998 if (memmap_pages) 5999 printk(KERN_DEBUG 6000 " %s zone: %lu pages used for memmap\n", 6001 zone_names[j], memmap_pages); 6002 } else 6003 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n", 6004 zone_names[j], memmap_pages, freesize); 6005 } 6006 6007 /* Account for reserved pages */ 6008 if (j == 0 && freesize > dma_reserve) { 6009 freesize -= dma_reserve; 6010 printk(KERN_DEBUG " %s zone: %lu pages reserved\n", 6011 zone_names[0], dma_reserve); 6012 } 6013 6014 if (!is_highmem_idx(j)) 6015 nr_kernel_pages += freesize; 6016 /* Charge for highmem memmap if there are enough kernel pages */ 6017 else if (nr_kernel_pages > memmap_pages * 2) 6018 nr_kernel_pages -= memmap_pages; 6019 nr_all_pages += freesize; 6020 6021 /* 6022 * Set an approximate value for lowmem here, it will be adjusted 6023 * when the bootmem allocator frees pages into the buddy system. 6024 * And all highmem pages will be managed by the buddy system. 6025 */ 6026 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize; 6027#ifdef CONFIG_NUMA 6028 zone->node = nid; 6029#endif 6030 zone->name = zone_names[j]; 6031 zone->zone_pgdat = pgdat; 6032 spin_lock_init(&zone->lock); 6033 zone_seqlock_init(zone); 6034 zone_pcp_init(zone); 6035 6036 if (!size) 6037 continue; 6038 6039 set_pageblock_order(); 6040 setup_usemap(pgdat, zone, zone_start_pfn, size); 6041 ret = init_currently_empty_zone(zone, zone_start_pfn, size); 6042 BUG_ON(ret); 6043 memmap_init(size, nid, j, zone_start_pfn); 6044 } 6045} 6046 6047static void __ref alloc_node_mem_map(struct pglist_data *pgdat) 6048{ 6049 unsigned long __maybe_unused start = 0; 6050 unsigned long __maybe_unused offset = 0; 6051 6052 /* Skip empty nodes */ 6053 if (!pgdat->node_spanned_pages) 6054 return; 6055 6056#ifdef CONFIG_FLAT_NODE_MEM_MAP 6057 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 6058 offset = pgdat->node_start_pfn - start; 6059 /* ia64 gets its own node_mem_map, before this, without bootmem */ 6060 if (!pgdat->node_mem_map) { 6061 unsigned long size, end; 6062 struct page *map; 6063 6064 /* 6065 * The zone's endpoints aren't required to be MAX_ORDER 6066 * aligned but the node_mem_map endpoints must be in order 6067 * for the buddy allocator to function correctly. 6068 */ 6069 end = pgdat_end_pfn(pgdat); 6070 end = ALIGN(end, MAX_ORDER_NR_PAGES); 6071 size = (end - start) * sizeof(struct page); 6072 map = alloc_remap(pgdat->node_id, size); 6073 if (!map) 6074 map = memblock_virt_alloc_node_nopanic(size, 6075 pgdat->node_id); 6076 pgdat->node_mem_map = map + offset; 6077 } 6078#ifndef CONFIG_NEED_MULTIPLE_NODES 6079 /* 6080 * With no DISCONTIG, the global mem_map is just set as node 0's 6081 */ 6082 if (pgdat == NODE_DATA(0)) { 6083 mem_map = NODE_DATA(0)->node_mem_map; 6084#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM) 6085 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 6086 mem_map -= offset; 6087#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 6088 } 6089#endif 6090#endif /* CONFIG_FLAT_NODE_MEM_MAP */ 6091} 6092 6093void __paginginit free_area_init_node(int nid, unsigned long *zones_size, 6094 unsigned long node_start_pfn, unsigned long *zholes_size) 6095{ 6096 pg_data_t *pgdat = NODE_DATA(nid); 6097 unsigned long start_pfn = 0; 6098 unsigned long end_pfn = 0; 6099 6100 /* pg_data_t should be reset to zero when it's allocated */ 6101 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx); 6102 6103 reset_deferred_meminit(pgdat); 6104 pgdat->node_id = nid; 6105 pgdat->node_start_pfn = node_start_pfn; 6106 pgdat->per_cpu_nodestats = NULL; 6107#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 6108 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 6109 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid, 6110 (u64)start_pfn << PAGE_SHIFT, 6111 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0); 6112#else 6113 start_pfn = node_start_pfn; 6114#endif 6115 calculate_node_totalpages(pgdat, start_pfn, end_pfn, 6116 zones_size, zholes_size); 6117 6118 alloc_node_mem_map(pgdat); 6119#ifdef CONFIG_FLAT_NODE_MEM_MAP 6120 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n", 6121 nid, (unsigned long)pgdat, 6122 (unsigned long)pgdat->node_mem_map); 6123#endif 6124 6125 free_area_init_core(pgdat); 6126} 6127 6128#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 6129 6130#if MAX_NUMNODES > 1 6131/* 6132 * Figure out the number of possible node ids. 6133 */ 6134void __init setup_nr_node_ids(void) 6135{ 6136 unsigned int highest; 6137 6138 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES); 6139 nr_node_ids = highest + 1; 6140} 6141#endif 6142 6143/** 6144 * node_map_pfn_alignment - determine the maximum internode alignment 6145 * 6146 * This function should be called after node map is populated and sorted. 6147 * It calculates the maximum power of two alignment which can distinguish 6148 * all the nodes. 6149 * 6150 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value 6151 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the 6152 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is 6153 * shifted, 1GiB is enough and this function will indicate so. 6154 * 6155 * This is used to test whether pfn -> nid mapping of the chosen memory 6156 * model has fine enough granularity to avoid incorrect mapping for the 6157 * populated node map. 6158 * 6159 * Returns the determined alignment in pfn's. 0 if there is no alignment 6160 * requirement (single node). 6161 */ 6162unsigned long __init node_map_pfn_alignment(void) 6163{ 6164 unsigned long accl_mask = 0, last_end = 0; 6165 unsigned long start, end, mask; 6166 int last_nid = -1; 6167 int i, nid; 6168 6169 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { 6170 if (!start || last_nid < 0 || last_nid == nid) { 6171 last_nid = nid; 6172 last_end = end; 6173 continue; 6174 } 6175 6176 /* 6177 * Start with a mask granular enough to pin-point to the 6178 * start pfn and tick off bits one-by-one until it becomes 6179 * too coarse to separate the current node from the last. 6180 */ 6181 mask = ~((1 << __ffs(start)) - 1); 6182 while (mask && last_end <= (start & (mask << 1))) 6183 mask <<= 1; 6184 6185 /* accumulate all internode masks */ 6186 accl_mask |= mask; 6187 } 6188 6189 /* convert mask to number of pages */ 6190 return ~accl_mask + 1; 6191} 6192 6193/* Find the lowest pfn for a node */ 6194static unsigned long __init find_min_pfn_for_node(int nid) 6195{ 6196 unsigned long min_pfn = ULONG_MAX; 6197 unsigned long start_pfn; 6198 int i; 6199 6200 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL) 6201 min_pfn = min(min_pfn, start_pfn); 6202 6203 if (min_pfn == ULONG_MAX) { 6204 pr_warn("Could not find start_pfn for node %d\n", nid); 6205 return 0; 6206 } 6207 6208 return min_pfn; 6209} 6210 6211/** 6212 * find_min_pfn_with_active_regions - Find the minimum PFN registered 6213 * 6214 * It returns the minimum PFN based on information provided via 6215 * memblock_set_node(). 6216 */ 6217unsigned long __init find_min_pfn_with_active_regions(void) 6218{ 6219 return find_min_pfn_for_node(MAX_NUMNODES); 6220} 6221 6222/* 6223 * early_calculate_totalpages() 6224 * Sum pages in active regions for movable zone. 6225 * Populate N_MEMORY for calculating usable_nodes. 6226 */ 6227static unsigned long __init early_calculate_totalpages(void) 6228{ 6229 unsigned long totalpages = 0; 6230 unsigned long start_pfn, end_pfn; 6231 int i, nid; 6232 6233 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 6234 unsigned long pages = end_pfn - start_pfn; 6235 6236 totalpages += pages; 6237 if (pages) 6238 node_set_state(nid, N_MEMORY); 6239 } 6240 return totalpages; 6241} 6242 6243/* 6244 * Find the PFN the Movable zone begins in each node. Kernel memory 6245 * is spread evenly between nodes as long as the nodes have enough 6246 * memory. When they don't, some nodes will have more kernelcore than 6247 * others 6248 */ 6249static void __init find_zone_movable_pfns_for_nodes(void) 6250{ 6251 int i, nid; 6252 unsigned long usable_startpfn; 6253 unsigned long kernelcore_node, kernelcore_remaining; 6254 /* save the state before borrow the nodemask */ 6255 nodemask_t saved_node_state = node_states[N_MEMORY]; 6256 unsigned long totalpages = early_calculate_totalpages(); 6257 int usable_nodes = nodes_weight(node_states[N_MEMORY]); 6258 struct memblock_region *r; 6259 6260 /* Need to find movable_zone earlier when movable_node is specified. */ 6261 find_usable_zone_for_movable(); 6262 6263 /* 6264 * If movable_node is specified, ignore kernelcore and movablecore 6265 * options. 6266 */ 6267 if (movable_node_is_enabled()) { 6268 for_each_memblock(memory, r) { 6269 if (!memblock_is_hotpluggable(r)) 6270 continue; 6271 6272 nid = r->nid; 6273 6274 usable_startpfn = PFN_DOWN(r->base); 6275 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 6276 min(usable_startpfn, zone_movable_pfn[nid]) : 6277 usable_startpfn; 6278 } 6279 6280 goto out2; 6281 } 6282 6283 /* 6284 * If kernelcore=mirror is specified, ignore movablecore option 6285 */ 6286 if (mirrored_kernelcore) { 6287 bool mem_below_4gb_not_mirrored = false; 6288 6289 for_each_memblock(memory, r) { 6290 if (memblock_is_mirror(r)) 6291 continue; 6292 6293 nid = r->nid; 6294 6295 usable_startpfn = memblock_region_memory_base_pfn(r); 6296 6297 if (usable_startpfn < 0x100000) { 6298 mem_below_4gb_not_mirrored = true; 6299 continue; 6300 } 6301 6302 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 6303 min(usable_startpfn, zone_movable_pfn[nid]) : 6304 usable_startpfn; 6305 } 6306 6307 if (mem_below_4gb_not_mirrored) 6308 pr_warn("This configuration results in unmirrored kernel memory."); 6309 6310 goto out2; 6311 } 6312 6313 /* 6314 * If movablecore=nn[KMG] was specified, calculate what size of 6315 * kernelcore that corresponds so that memory usable for 6316 * any allocation type is evenly spread. If both kernelcore 6317 * and movablecore are specified, then the value of kernelcore 6318 * will be used for required_kernelcore if it's greater than 6319 * what movablecore would have allowed. 6320 */ 6321 if (required_movablecore) { 6322 unsigned long corepages; 6323 6324 /* 6325 * Round-up so that ZONE_MOVABLE is at least as large as what 6326 * was requested by the user 6327 */ 6328 required_movablecore = 6329 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 6330 required_movablecore = min(totalpages, required_movablecore); 6331 corepages = totalpages - required_movablecore; 6332 6333 required_kernelcore = max(required_kernelcore, corepages); 6334 } 6335 6336 /* 6337 * If kernelcore was not specified or kernelcore size is larger 6338 * than totalpages, there is no ZONE_MOVABLE. 6339 */ 6340 if (!required_kernelcore || required_kernelcore >= totalpages) 6341 goto out; 6342 6343 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 6344 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 6345 6346restart: 6347 /* Spread kernelcore memory as evenly as possible throughout nodes */ 6348 kernelcore_node = required_kernelcore / usable_nodes; 6349 for_each_node_state(nid, N_MEMORY) { 6350 unsigned long start_pfn, end_pfn; 6351 6352 /* 6353 * Recalculate kernelcore_node if the division per node 6354 * now exceeds what is necessary to satisfy the requested 6355 * amount of memory for the kernel 6356 */ 6357 if (required_kernelcore < kernelcore_node) 6358 kernelcore_node = required_kernelcore / usable_nodes; 6359 6360 /* 6361 * As the map is walked, we track how much memory is usable 6362 * by the kernel using kernelcore_remaining. When it is 6363 * 0, the rest of the node is usable by ZONE_MOVABLE 6364 */ 6365 kernelcore_remaining = kernelcore_node; 6366 6367 /* Go through each range of PFNs within this node */ 6368 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 6369 unsigned long size_pages; 6370 6371 start_pfn = max(start_pfn, zone_movable_pfn[nid]); 6372 if (start_pfn >= end_pfn) 6373 continue; 6374 6375 /* Account for what is only usable for kernelcore */ 6376 if (start_pfn < usable_startpfn) { 6377 unsigned long kernel_pages; 6378 kernel_pages = min(end_pfn, usable_startpfn) 6379 - start_pfn; 6380 6381 kernelcore_remaining -= min(kernel_pages, 6382 kernelcore_remaining); 6383 required_kernelcore -= min(kernel_pages, 6384 required_kernelcore); 6385 6386 /* Continue if range is now fully accounted */ 6387 if (end_pfn <= usable_startpfn) { 6388 6389 /* 6390 * Push zone_movable_pfn to the end so 6391 * that if we have to rebalance 6392 * kernelcore across nodes, we will 6393 * not double account here 6394 */ 6395 zone_movable_pfn[nid] = end_pfn; 6396 continue; 6397 } 6398 start_pfn = usable_startpfn; 6399 } 6400 6401 /* 6402 * The usable PFN range for ZONE_MOVABLE is from 6403 * start_pfn->end_pfn. Calculate size_pages as the 6404 * number of pages used as kernelcore 6405 */ 6406 size_pages = end_pfn - start_pfn; 6407 if (size_pages > kernelcore_remaining) 6408 size_pages = kernelcore_remaining; 6409 zone_movable_pfn[nid] = start_pfn + size_pages; 6410 6411 /* 6412 * Some kernelcore has been met, update counts and 6413 * break if the kernelcore for this node has been 6414 * satisfied 6415 */ 6416 required_kernelcore -= min(required_kernelcore, 6417 size_pages); 6418 kernelcore_remaining -= size_pages; 6419 if (!kernelcore_remaining) 6420 break; 6421 } 6422 } 6423 6424 /* 6425 * If there is still required_kernelcore, we do another pass with one 6426 * less node in the count. This will push zone_movable_pfn[nid] further 6427 * along on the nodes that still have memory until kernelcore is 6428 * satisfied 6429 */ 6430 usable_nodes--; 6431 if (usable_nodes && required_kernelcore > usable_nodes) 6432 goto restart; 6433 6434out2: 6435 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 6436 for (nid = 0; nid < MAX_NUMNODES; nid++) 6437 zone_movable_pfn[nid] = 6438 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 6439 6440out: 6441 /* restore the node_state */ 6442 node_states[N_MEMORY] = saved_node_state; 6443} 6444 6445/* Any regular or high memory on that node ? */ 6446static void check_for_memory(pg_data_t *pgdat, int nid) 6447{ 6448 enum zone_type zone_type; 6449 6450 if (N_MEMORY == N_NORMAL_MEMORY) 6451 return; 6452 6453 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { 6454 struct zone *zone = &pgdat->node_zones[zone_type]; 6455 if (populated_zone(zone)) { 6456 node_set_state(nid, N_HIGH_MEMORY); 6457 if (N_NORMAL_MEMORY != N_HIGH_MEMORY && 6458 zone_type <= ZONE_NORMAL) 6459 node_set_state(nid, N_NORMAL_MEMORY); 6460 break; 6461 } 6462 } 6463} 6464 6465/** 6466 * free_area_init_nodes - Initialise all pg_data_t and zone data 6467 * @max_zone_pfn: an array of max PFNs for each zone 6468 * 6469 * This will call free_area_init_node() for each active node in the system. 6470 * Using the page ranges provided by memblock_set_node(), the size of each 6471 * zone in each node and their holes is calculated. If the maximum PFN 6472 * between two adjacent zones match, it is assumed that the zone is empty. 6473 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 6474 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 6475 * starts where the previous one ended. For example, ZONE_DMA32 starts 6476 * at arch_max_dma_pfn. 6477 */ 6478void __init free_area_init_nodes(unsigned long *max_zone_pfn) 6479{ 6480 unsigned long start_pfn, end_pfn; 6481 int i, nid; 6482 6483 /* Record where the zone boundaries are */ 6484 memset(arch_zone_lowest_possible_pfn, 0, 6485 sizeof(arch_zone_lowest_possible_pfn)); 6486 memset(arch_zone_highest_possible_pfn, 0, 6487 sizeof(arch_zone_highest_possible_pfn)); 6488 6489 start_pfn = find_min_pfn_with_active_regions(); 6490 6491 for (i = 0; i < MAX_NR_ZONES; i++) { 6492 if (i == ZONE_MOVABLE) 6493 continue; 6494 6495 end_pfn = max(max_zone_pfn[i], start_pfn); 6496 arch_zone_lowest_possible_pfn[i] = start_pfn; 6497 arch_zone_highest_possible_pfn[i] = end_pfn; 6498 6499 start_pfn = end_pfn; 6500 } 6501 6502 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 6503 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 6504 find_zone_movable_pfns_for_nodes(); 6505 6506 /* Print out the zone ranges */ 6507 pr_info("Zone ranges:\n"); 6508 for (i = 0; i < MAX_NR_ZONES; i++) { 6509 if (i == ZONE_MOVABLE) 6510 continue; 6511 pr_info(" %-8s ", zone_names[i]); 6512 if (arch_zone_lowest_possible_pfn[i] == 6513 arch_zone_highest_possible_pfn[i]) 6514 pr_cont("empty\n"); 6515 else 6516 pr_cont("[mem %#018Lx-%#018Lx]\n", 6517 (u64)arch_zone_lowest_possible_pfn[i] 6518 << PAGE_SHIFT, 6519 ((u64)arch_zone_highest_possible_pfn[i] 6520 << PAGE_SHIFT) - 1); 6521 } 6522 6523 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 6524 pr_info("Movable zone start for each node\n"); 6525 for (i = 0; i < MAX_NUMNODES; i++) { 6526 if (zone_movable_pfn[i]) 6527 pr_info(" Node %d: %#018Lx\n", i, 6528 (u64)zone_movable_pfn[i] << PAGE_SHIFT); 6529 } 6530 6531 /* Print out the early node map */ 6532 pr_info("Early memory node ranges\n"); 6533 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) 6534 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid, 6535 (u64)start_pfn << PAGE_SHIFT, 6536 ((u64)end_pfn << PAGE_SHIFT) - 1); 6537 6538 /* Initialise every node */ 6539 mminit_verify_pageflags_layout(); 6540 setup_nr_node_ids(); 6541 for_each_online_node(nid) { 6542 pg_data_t *pgdat = NODE_DATA(nid); 6543 free_area_init_node(nid, NULL, 6544 find_min_pfn_for_node(nid), NULL); 6545 6546 /* Any memory on that node */ 6547 if (pgdat->node_present_pages) 6548 node_set_state(nid, N_MEMORY); 6549 check_for_memory(pgdat, nid); 6550 } 6551} 6552 6553static int __init cmdline_parse_core(char *p, unsigned long *core) 6554{ 6555 unsigned long long coremem; 6556 if (!p) 6557 return -EINVAL; 6558 6559 coremem = memparse(p, &p); 6560 *core = coremem >> PAGE_SHIFT; 6561 6562 /* Paranoid check that UL is enough for the coremem value */ 6563 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 6564 6565 return 0; 6566} 6567 6568/* 6569 * kernelcore=size sets the amount of memory for use for allocations that 6570 * cannot be reclaimed or migrated. 6571 */ 6572static int __init cmdline_parse_kernelcore(char *p) 6573{ 6574 /* parse kernelcore=mirror */ 6575 if (parse_option_str(p, "mirror")) { 6576 mirrored_kernelcore = true; 6577 return 0; 6578 } 6579 6580 return cmdline_parse_core(p, &required_kernelcore); 6581} 6582 6583/* 6584 * movablecore=size sets the amount of memory for use for allocations that 6585 * can be reclaimed or migrated. 6586 */ 6587static int __init cmdline_parse_movablecore(char *p) 6588{ 6589 return cmdline_parse_core(p, &required_movablecore); 6590} 6591 6592early_param("kernelcore", cmdline_parse_kernelcore); 6593early_param("movablecore", cmdline_parse_movablecore); 6594 6595#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 6596 6597void adjust_managed_page_count(struct page *page, long count) 6598{ 6599 spin_lock(&managed_page_count_lock); 6600 page_zone(page)->managed_pages += count; 6601 totalram_pages += count; 6602#ifdef CONFIG_HIGHMEM 6603 if (PageHighMem(page)) 6604 totalhigh_pages += count; 6605#endif 6606 spin_unlock(&managed_page_count_lock); 6607} 6608EXPORT_SYMBOL(adjust_managed_page_count); 6609 6610unsigned long free_reserved_area(void *start, void *end, int poison, char *s) 6611{ 6612 void *pos; 6613 unsigned long pages = 0; 6614 6615 start = (void *)PAGE_ALIGN((unsigned long)start); 6616 end = (void *)((unsigned long)end & PAGE_MASK); 6617 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 6618 if ((unsigned int)poison <= 0xFF) 6619 memset(pos, poison, PAGE_SIZE); 6620 free_reserved_page(virt_to_page(pos)); 6621 } 6622 6623 if (pages && s) 6624 pr_info("Freeing %s memory: %ldK\n", 6625 s, pages << (PAGE_SHIFT - 10)); 6626 6627 return pages; 6628} 6629EXPORT_SYMBOL(free_reserved_area); 6630 6631#ifdef CONFIG_HIGHMEM 6632void free_highmem_page(struct page *page) 6633{ 6634 __free_reserved_page(page); 6635 totalram_pages++; 6636 page_zone(page)->managed_pages++; 6637 totalhigh_pages++; 6638} 6639#endif 6640 6641 6642void __init mem_init_print_info(const char *str) 6643{ 6644 unsigned long physpages, codesize, datasize, rosize, bss_size; 6645 unsigned long init_code_size, init_data_size; 6646 6647 physpages = get_num_physpages(); 6648 codesize = _etext - _stext; 6649 datasize = _edata - _sdata; 6650 rosize = __end_rodata - __start_rodata; 6651 bss_size = __bss_stop - __bss_start; 6652 init_data_size = __init_end - __init_begin; 6653 init_code_size = _einittext - _sinittext; 6654 6655 /* 6656 * Detect special cases and adjust section sizes accordingly: 6657 * 1) .init.* may be embedded into .data sections 6658 * 2) .init.text.* may be out of [__init_begin, __init_end], 6659 * please refer to arch/tile/kernel/vmlinux.lds.S. 6660 * 3) .rodata.* may be embedded into .text or .data sections. 6661 */ 6662#define adj_init_size(start, end, size, pos, adj) \ 6663 do { \ 6664 if (start <= pos && pos < end && size > adj) \ 6665 size -= adj; \ 6666 } while (0) 6667 6668 adj_init_size(__init_begin, __init_end, init_data_size, 6669 _sinittext, init_code_size); 6670 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size); 6671 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size); 6672 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize); 6673 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize); 6674 6675#undef adj_init_size 6676 6677 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved" 6678#ifdef CONFIG_HIGHMEM 6679 ", %luK highmem" 6680#endif 6681 "%s%s)\n", 6682 nr_free_pages() << (PAGE_SHIFT - 10), 6683 physpages << (PAGE_SHIFT - 10), 6684 codesize >> 10, datasize >> 10, rosize >> 10, 6685 (init_data_size + init_code_size) >> 10, bss_size >> 10, 6686 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10), 6687 totalcma_pages << (PAGE_SHIFT - 10), 6688#ifdef CONFIG_HIGHMEM 6689 totalhigh_pages << (PAGE_SHIFT - 10), 6690#endif 6691 str ? ", " : "", str ? str : ""); 6692} 6693 6694/** 6695 * set_dma_reserve - set the specified number of pages reserved in the first zone 6696 * @new_dma_reserve: The number of pages to mark reserved 6697 * 6698 * The per-cpu batchsize and zone watermarks are determined by managed_pages. 6699 * In the DMA zone, a significant percentage may be consumed by kernel image 6700 * and other unfreeable allocations which can skew the watermarks badly. This 6701 * function may optionally be used to account for unfreeable pages in the 6702 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 6703 * smaller per-cpu batchsize. 6704 */ 6705void __init set_dma_reserve(unsigned long new_dma_reserve) 6706{ 6707 dma_reserve = new_dma_reserve; 6708} 6709 6710void __init free_area_init(unsigned long *zones_size) 6711{ 6712 free_area_init_node(0, zones_size, 6713 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); 6714} 6715 6716static int page_alloc_cpu_dead(unsigned int cpu) 6717{ 6718 6719 lru_add_drain_cpu(cpu); 6720 drain_pages(cpu); 6721 6722 /* 6723 * Spill the event counters of the dead processor 6724 * into the current processors event counters. 6725 * This artificially elevates the count of the current 6726 * processor. 6727 */ 6728 vm_events_fold_cpu(cpu); 6729 6730 /* 6731 * Zero the differential counters of the dead processor 6732 * so that the vm statistics are consistent. 6733 * 6734 * This is only okay since the processor is dead and cannot 6735 * race with what we are doing. 6736 */ 6737 cpu_vm_stats_fold(cpu); 6738 return 0; 6739} 6740 6741void __init page_alloc_init(void) 6742{ 6743 int ret; 6744 6745 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD, 6746 "mm/page_alloc:dead", NULL, 6747 page_alloc_cpu_dead); 6748 WARN_ON(ret < 0); 6749} 6750 6751/* 6752 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio 6753 * or min_free_kbytes changes. 6754 */ 6755static void calculate_totalreserve_pages(void) 6756{ 6757 struct pglist_data *pgdat; 6758 unsigned long reserve_pages = 0; 6759 enum zone_type i, j; 6760 6761 for_each_online_pgdat(pgdat) { 6762 6763 pgdat->totalreserve_pages = 0; 6764 6765 for (i = 0; i < MAX_NR_ZONES; i++) { 6766 struct zone *zone = pgdat->node_zones + i; 6767 long max = 0; 6768 6769 /* Find valid and maximum lowmem_reserve in the zone */ 6770 for (j = i; j < MAX_NR_ZONES; j++) { 6771 if (zone->lowmem_reserve[j] > max) 6772 max = zone->lowmem_reserve[j]; 6773 } 6774 6775 /* we treat the high watermark as reserved pages. */ 6776 max += high_wmark_pages(zone); 6777 6778 if (max > zone->managed_pages) 6779 max = zone->managed_pages; 6780 6781 pgdat->totalreserve_pages += max; 6782 6783 reserve_pages += max; 6784 } 6785 } 6786 totalreserve_pages = reserve_pages; 6787} 6788 6789/* 6790 * setup_per_zone_lowmem_reserve - called whenever 6791 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone 6792 * has a correct pages reserved value, so an adequate number of 6793 * pages are left in the zone after a successful __alloc_pages(). 6794 */ 6795static void setup_per_zone_lowmem_reserve(void) 6796{ 6797 struct pglist_data *pgdat; 6798 enum zone_type j, idx; 6799 6800 for_each_online_pgdat(pgdat) { 6801 for (j = 0; j < MAX_NR_ZONES; j++) { 6802 struct zone *zone = pgdat->node_zones + j; 6803 unsigned long managed_pages = zone->managed_pages; 6804 6805 zone->lowmem_reserve[j] = 0; 6806 6807 idx = j; 6808 while (idx) { 6809 struct zone *lower_zone; 6810 6811 idx--; 6812 6813 if (sysctl_lowmem_reserve_ratio[idx] < 1) 6814 sysctl_lowmem_reserve_ratio[idx] = 1; 6815 6816 lower_zone = pgdat->node_zones + idx; 6817 lower_zone->lowmem_reserve[j] = managed_pages / 6818 sysctl_lowmem_reserve_ratio[idx]; 6819 managed_pages += lower_zone->managed_pages; 6820 } 6821 } 6822 } 6823 6824 /* update totalreserve_pages */ 6825 calculate_totalreserve_pages(); 6826} 6827 6828static void __setup_per_zone_wmarks(void) 6829{ 6830 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 6831 unsigned long lowmem_pages = 0; 6832 struct zone *zone; 6833 unsigned long flags; 6834 6835 /* Calculate total number of !ZONE_HIGHMEM pages */ 6836 for_each_zone(zone) { 6837 if (!is_highmem(zone)) 6838 lowmem_pages += zone->managed_pages; 6839 } 6840 6841 for_each_zone(zone) { 6842 u64 tmp; 6843 6844 spin_lock_irqsave(&zone->lock, flags); 6845 tmp = (u64)pages_min * zone->managed_pages; 6846 do_div(tmp, lowmem_pages); 6847 if (is_highmem(zone)) { 6848 /* 6849 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 6850 * need highmem pages, so cap pages_min to a small 6851 * value here. 6852 * 6853 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 6854 * deltas control asynch page reclaim, and so should 6855 * not be capped for highmem. 6856 */ 6857 unsigned long min_pages; 6858 6859 min_pages = zone->managed_pages / 1024; 6860 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 6861 zone->watermark[WMARK_MIN] = min_pages; 6862 } else { 6863 /* 6864 * If it's a lowmem zone, reserve a number of pages 6865 * proportionate to the zone's size. 6866 */ 6867 zone->watermark[WMARK_MIN] = tmp; 6868 } 6869 6870 /* 6871 * Set the kswapd watermarks distance according to the 6872 * scale factor in proportion to available memory, but 6873 * ensure a minimum size on small systems. 6874 */ 6875 tmp = max_t(u64, tmp >> 2, 6876 mult_frac(zone->managed_pages, 6877 watermark_scale_factor, 10000)); 6878 6879 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp; 6880 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2; 6881 6882 spin_unlock_irqrestore(&zone->lock, flags); 6883 } 6884 6885 /* update totalreserve_pages */ 6886 calculate_totalreserve_pages(); 6887} 6888 6889/** 6890 * setup_per_zone_wmarks - called when min_free_kbytes changes 6891 * or when memory is hot-{added|removed} 6892 * 6893 * Ensures that the watermark[min,low,high] values for each zone are set 6894 * correctly with respect to min_free_kbytes. 6895 */ 6896void setup_per_zone_wmarks(void) 6897{ 6898 mutex_lock(&zonelists_mutex); 6899 __setup_per_zone_wmarks(); 6900 mutex_unlock(&zonelists_mutex); 6901} 6902 6903/* 6904 * Initialise min_free_kbytes. 6905 * 6906 * For small machines we want it small (128k min). For large machines 6907 * we want it large (64MB max). But it is not linear, because network 6908 * bandwidth does not increase linearly with machine size. We use 6909 * 6910 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 6911 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 6912 * 6913 * which yields 6914 * 6915 * 16MB: 512k 6916 * 32MB: 724k 6917 * 64MB: 1024k 6918 * 128MB: 1448k 6919 * 256MB: 2048k 6920 * 512MB: 2896k 6921 * 1024MB: 4096k 6922 * 2048MB: 5792k 6923 * 4096MB: 8192k 6924 * 8192MB: 11584k 6925 * 16384MB: 16384k 6926 */ 6927int __meminit init_per_zone_wmark_min(void) 6928{ 6929 unsigned long lowmem_kbytes; 6930 int new_min_free_kbytes; 6931 6932 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 6933 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 6934 6935 if (new_min_free_kbytes > user_min_free_kbytes) { 6936 min_free_kbytes = new_min_free_kbytes; 6937 if (min_free_kbytes < 128) 6938 min_free_kbytes = 128; 6939 if (min_free_kbytes > 65536) 6940 min_free_kbytes = 65536; 6941 } else { 6942 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", 6943 new_min_free_kbytes, user_min_free_kbytes); 6944 } 6945 setup_per_zone_wmarks(); 6946 refresh_zone_stat_thresholds(); 6947 setup_per_zone_lowmem_reserve(); 6948 6949#ifdef CONFIG_NUMA 6950 setup_min_unmapped_ratio(); 6951 setup_min_slab_ratio(); 6952#endif 6953 6954 return 0; 6955} 6956core_initcall(init_per_zone_wmark_min) 6957 6958/* 6959 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 6960 * that we can call two helper functions whenever min_free_kbytes 6961 * changes. 6962 */ 6963int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write, 6964 void __user *buffer, size_t *length, loff_t *ppos) 6965{ 6966 int rc; 6967 6968 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6969 if (rc) 6970 return rc; 6971 6972 if (write) { 6973 user_min_free_kbytes = min_free_kbytes; 6974 setup_per_zone_wmarks(); 6975 } 6976 return 0; 6977} 6978 6979int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write, 6980 void __user *buffer, size_t *length, loff_t *ppos) 6981{ 6982 int rc; 6983 6984 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6985 if (rc) 6986 return rc; 6987 6988 if (write) 6989 setup_per_zone_wmarks(); 6990 6991 return 0; 6992} 6993 6994#ifdef CONFIG_NUMA 6995static void setup_min_unmapped_ratio(void) 6996{ 6997 pg_data_t *pgdat; 6998 struct zone *zone; 6999 7000 for_each_online_pgdat(pgdat) 7001 pgdat->min_unmapped_pages = 0; 7002 7003 for_each_zone(zone) 7004 zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages * 7005 sysctl_min_unmapped_ratio) / 100; 7006} 7007 7008 7009int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write, 7010 void __user *buffer, size_t *length, loff_t *ppos) 7011{ 7012 int rc; 7013 7014 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7015 if (rc) 7016 return rc; 7017 7018 setup_min_unmapped_ratio(); 7019 7020 return 0; 7021} 7022 7023static void setup_min_slab_ratio(void) 7024{ 7025 pg_data_t *pgdat; 7026 struct zone *zone; 7027 7028 for_each_online_pgdat(pgdat) 7029 pgdat->min_slab_pages = 0; 7030 7031 for_each_zone(zone) 7032 zone->zone_pgdat->min_slab_pages += (zone->managed_pages * 7033 sysctl_min_slab_ratio) / 100; 7034} 7035 7036int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write, 7037 void __user *buffer, size_t *length, loff_t *ppos) 7038{ 7039 int rc; 7040 7041 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7042 if (rc) 7043 return rc; 7044 7045 setup_min_slab_ratio(); 7046 7047 return 0; 7048} 7049#endif 7050 7051/* 7052 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 7053 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 7054 * whenever sysctl_lowmem_reserve_ratio changes. 7055 * 7056 * The reserve ratio obviously has absolutely no relation with the 7057 * minimum watermarks. The lowmem reserve ratio can only make sense 7058 * if in function of the boot time zone sizes. 7059 */ 7060int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write, 7061 void __user *buffer, size_t *length, loff_t *ppos) 7062{ 7063 proc_dointvec_minmax(table, write, buffer, length, ppos); 7064 setup_per_zone_lowmem_reserve(); 7065 return 0; 7066} 7067 7068/* 7069 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 7070 * cpu. It is the fraction of total pages in each zone that a hot per cpu 7071 * pagelist can have before it gets flushed back to buddy allocator. 7072 */ 7073int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write, 7074 void __user *buffer, size_t *length, loff_t *ppos) 7075{ 7076 struct zone *zone; 7077 int old_percpu_pagelist_fraction; 7078 int ret; 7079 7080 mutex_lock(&pcp_batch_high_lock); 7081 old_percpu_pagelist_fraction = percpu_pagelist_fraction; 7082 7083 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 7084 if (!write || ret < 0) 7085 goto out; 7086 7087 /* Sanity checking to avoid pcp imbalance */ 7088 if (percpu_pagelist_fraction && 7089 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) { 7090 percpu_pagelist_fraction = old_percpu_pagelist_fraction; 7091 ret = -EINVAL; 7092 goto out; 7093 } 7094 7095 /* No change? */ 7096 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction) 7097 goto out; 7098 7099 for_each_populated_zone(zone) { 7100 unsigned int cpu; 7101 7102 for_each_possible_cpu(cpu) 7103 pageset_set_high_and_batch(zone, 7104 per_cpu_ptr(zone->pageset, cpu)); 7105 } 7106out: 7107 mutex_unlock(&pcp_batch_high_lock); 7108 return ret; 7109} 7110 7111#ifdef CONFIG_NUMA 7112int hashdist = HASHDIST_DEFAULT; 7113 7114static int __init set_hashdist(char *str) 7115{ 7116 if (!str) 7117 return 0; 7118 hashdist = simple_strtoul(str, &str, 0); 7119 return 1; 7120} 7121__setup("hashdist=", set_hashdist); 7122#endif 7123 7124#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES 7125/* 7126 * Returns the number of pages that arch has reserved but 7127 * is not known to alloc_large_system_hash(). 7128 */ 7129static unsigned long __init arch_reserved_kernel_pages(void) 7130{ 7131 return 0; 7132} 7133#endif 7134 7135/* 7136 * allocate a large system hash table from bootmem 7137 * - it is assumed that the hash table must contain an exact power-of-2 7138 * quantity of entries 7139 * - limit is the number of hash buckets, not the total allocation size 7140 */ 7141void *__init alloc_large_system_hash(const char *tablename, 7142 unsigned long bucketsize, 7143 unsigned long numentries, 7144 int scale, 7145 int flags, 7146 unsigned int *_hash_shift, 7147 unsigned int *_hash_mask, 7148 unsigned long low_limit, 7149 unsigned long high_limit) 7150{ 7151 unsigned long long max = high_limit; 7152 unsigned long log2qty, size; 7153 void *table = NULL; 7154 7155 /* allow the kernel cmdline to have a say */ 7156 if (!numentries) { 7157 /* round applicable memory size up to nearest megabyte */ 7158 numentries = nr_kernel_pages; 7159 numentries -= arch_reserved_kernel_pages(); 7160 7161 /* It isn't necessary when PAGE_SIZE >= 1MB */ 7162 if (PAGE_SHIFT < 20) 7163 numentries = round_up(numentries, (1<<20)/PAGE_SIZE); 7164 7165 /* limit to 1 bucket per 2^scale bytes of low memory */ 7166 if (scale > PAGE_SHIFT) 7167 numentries >>= (scale - PAGE_SHIFT); 7168 else 7169 numentries <<= (PAGE_SHIFT - scale); 7170 7171 /* Make sure we've got at least a 0-order allocation.. */ 7172 if (unlikely(flags & HASH_SMALL)) { 7173 /* Makes no sense without HASH_EARLY */ 7174 WARN_ON(!(flags & HASH_EARLY)); 7175 if (!(numentries >> *_hash_shift)) { 7176 numentries = 1UL << *_hash_shift; 7177 BUG_ON(!numentries); 7178 } 7179 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 7180 numentries = PAGE_SIZE / bucketsize; 7181 } 7182 numentries = roundup_pow_of_two(numentries); 7183 7184 /* limit allocation size to 1/16 total memory by default */ 7185 if (max == 0) { 7186 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 7187 do_div(max, bucketsize); 7188 } 7189 max = min(max, 0x80000000ULL); 7190 7191 if (numentries < low_limit) 7192 numentries = low_limit; 7193 if (numentries > max) 7194 numentries = max; 7195 7196 log2qty = ilog2(numentries); 7197 7198 do { 7199 size = bucketsize << log2qty; 7200 if (flags & HASH_EARLY) 7201 table = memblock_virt_alloc_nopanic(size, 0); 7202 else if (hashdist) 7203 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL); 7204 else { 7205 /* 7206 * If bucketsize is not a power-of-two, we may free 7207 * some pages at the end of hash table which 7208 * alloc_pages_exact() automatically does 7209 */ 7210 if (get_order(size) < MAX_ORDER) { 7211 table = alloc_pages_exact(size, GFP_ATOMIC); 7212 kmemleak_alloc(table, size, 1, GFP_ATOMIC); 7213 } 7214 } 7215 } while (!table && size > PAGE_SIZE && --log2qty); 7216 7217 if (!table) 7218 panic("Failed to allocate %s hash table\n", tablename); 7219 7220 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n", 7221 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size); 7222 7223 if (_hash_shift) 7224 *_hash_shift = log2qty; 7225 if (_hash_mask) 7226 *_hash_mask = (1 << log2qty) - 1; 7227 7228 return table; 7229} 7230 7231/* 7232 * This function checks whether pageblock includes unmovable pages or not. 7233 * If @count is not zero, it is okay to include less @count unmovable pages 7234 * 7235 * PageLRU check without isolation or lru_lock could race so that 7236 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable 7237 * check without lock_page also may miss some movable non-lru pages at 7238 * race condition. So you can't expect this function should be exact. 7239 */ 7240bool has_unmovable_pages(struct zone *zone, struct page *page, int count, 7241 bool skip_hwpoisoned_pages) 7242{ 7243 unsigned long pfn, iter, found; 7244 int mt; 7245 7246 /* 7247 * For avoiding noise data, lru_add_drain_all() should be called 7248 * If ZONE_MOVABLE, the zone never contains unmovable pages 7249 */ 7250 if (zone_idx(zone) == ZONE_MOVABLE) 7251 return false; 7252 mt = get_pageblock_migratetype(page); 7253 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt)) 7254 return false; 7255 7256 pfn = page_to_pfn(page); 7257 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) { 7258 unsigned long check = pfn + iter; 7259 7260 if (!pfn_valid_within(check)) 7261 continue; 7262 7263 page = pfn_to_page(check); 7264 7265 /* 7266 * Hugepages are not in LRU lists, but they're movable. 7267 * We need not scan over tail pages bacause we don't 7268 * handle each tail page individually in migration. 7269 */ 7270 if (PageHuge(page)) { 7271 iter = round_up(iter + 1, 1<<compound_order(page)) - 1; 7272 continue; 7273 } 7274 7275 /* 7276 * We can't use page_count without pin a page 7277 * because another CPU can free compound page. 7278 * This check already skips compound tails of THP 7279 * because their page->_refcount is zero at all time. 7280 */ 7281 if (!page_ref_count(page)) { 7282 if (PageBuddy(page)) 7283 iter += (1 << page_order(page)) - 1; 7284 continue; 7285 } 7286 7287 /* 7288 * The HWPoisoned page may be not in buddy system, and 7289 * page_count() is not 0. 7290 */ 7291 if (skip_hwpoisoned_pages && PageHWPoison(page)) 7292 continue; 7293 7294 if (__PageMovable(page)) 7295 continue; 7296 7297 if (!PageLRU(page)) 7298 found++; 7299 /* 7300 * If there are RECLAIMABLE pages, we need to check 7301 * it. But now, memory offline itself doesn't call 7302 * shrink_node_slabs() and it still to be fixed. 7303 */ 7304 /* 7305 * If the page is not RAM, page_count()should be 0. 7306 * we don't need more check. This is an _used_ not-movable page. 7307 * 7308 * The problematic thing here is PG_reserved pages. PG_reserved 7309 * is set to both of a memory hole page and a _used_ kernel 7310 * page at boot. 7311 */ 7312 if (found > count) 7313 return true; 7314 } 7315 return false; 7316} 7317 7318bool is_pageblock_removable_nolock(struct page *page) 7319{ 7320 struct zone *zone; 7321 unsigned long pfn; 7322 7323 /* 7324 * We have to be careful here because we are iterating over memory 7325 * sections which are not zone aware so we might end up outside of 7326 * the zone but still within the section. 7327 * We have to take care about the node as well. If the node is offline 7328 * its NODE_DATA will be NULL - see page_zone. 7329 */ 7330 if (!node_online(page_to_nid(page))) 7331 return false; 7332 7333 zone = page_zone(page); 7334 pfn = page_to_pfn(page); 7335 if (!zone_spans_pfn(zone, pfn)) 7336 return false; 7337 7338 return !has_unmovable_pages(zone, page, 0, true); 7339} 7340 7341#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA) 7342 7343static unsigned long pfn_max_align_down(unsigned long pfn) 7344{ 7345 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES, 7346 pageblock_nr_pages) - 1); 7347} 7348 7349static unsigned long pfn_max_align_up(unsigned long pfn) 7350{ 7351 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES, 7352 pageblock_nr_pages)); 7353} 7354 7355/* [start, end) must belong to a single zone. */ 7356static int __alloc_contig_migrate_range(struct compact_control *cc, 7357 unsigned long start, unsigned long end) 7358{ 7359 /* This function is based on compact_zone() from compaction.c. */ 7360 unsigned long nr_reclaimed; 7361 unsigned long pfn = start; 7362 unsigned int tries = 0; 7363 int ret = 0; 7364 7365 migrate_prep(); 7366 7367 while (pfn < end || !list_empty(&cc->migratepages)) { 7368 if (fatal_signal_pending(current)) { 7369 ret = -EINTR; 7370 break; 7371 } 7372 7373 if (list_empty(&cc->migratepages)) { 7374 cc->nr_migratepages = 0; 7375 pfn = isolate_migratepages_range(cc, pfn, end); 7376 if (!pfn) { 7377 ret = -EINTR; 7378 break; 7379 } 7380 tries = 0; 7381 } else if (++tries == 5) { 7382 ret = ret < 0 ? ret : -EBUSY; 7383 break; 7384 } 7385 7386 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 7387 &cc->migratepages); 7388 cc->nr_migratepages -= nr_reclaimed; 7389 7390 ret = migrate_pages(&cc->migratepages, alloc_migrate_target, 7391 NULL, 0, cc->mode, MR_CMA); 7392 } 7393 if (ret < 0) { 7394 putback_movable_pages(&cc->migratepages); 7395 return ret; 7396 } 7397 return 0; 7398} 7399 7400/** 7401 * alloc_contig_range() -- tries to allocate given range of pages 7402 * @start: start PFN to allocate 7403 * @end: one-past-the-last PFN to allocate 7404 * @migratetype: migratetype of the underlaying pageblocks (either 7405 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 7406 * in range must have the same migratetype and it must 7407 * be either of the two. 7408 * @gfp_mask: GFP mask to use during compaction 7409 * 7410 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES 7411 * aligned, however it's the caller's responsibility to guarantee that 7412 * we are the only thread that changes migrate type of pageblocks the 7413 * pages fall in. 7414 * 7415 * The PFN range must belong to a single zone. 7416 * 7417 * Returns zero on success or negative error code. On success all 7418 * pages which PFN is in [start, end) are allocated for the caller and 7419 * need to be freed with free_contig_range(). 7420 */ 7421int alloc_contig_range(unsigned long start, unsigned long end, 7422 unsigned migratetype, gfp_t gfp_mask) 7423{ 7424 unsigned long outer_start, outer_end; 7425 unsigned int order; 7426 int ret = 0; 7427 7428 struct compact_control cc = { 7429 .nr_migratepages = 0, 7430 .order = -1, 7431 .zone = page_zone(pfn_to_page(start)), 7432 .mode = MIGRATE_SYNC, 7433 .ignore_skip_hint = true, 7434 .gfp_mask = memalloc_noio_flags(gfp_mask), 7435 }; 7436 INIT_LIST_HEAD(&cc.migratepages); 7437 7438 /* 7439 * What we do here is we mark all pageblocks in range as 7440 * MIGRATE_ISOLATE. Because pageblock and max order pages may 7441 * have different sizes, and due to the way page allocator 7442 * work, we align the range to biggest of the two pages so 7443 * that page allocator won't try to merge buddies from 7444 * different pageblocks and change MIGRATE_ISOLATE to some 7445 * other migration type. 7446 * 7447 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 7448 * migrate the pages from an unaligned range (ie. pages that 7449 * we are interested in). This will put all the pages in 7450 * range back to page allocator as MIGRATE_ISOLATE. 7451 * 7452 * When this is done, we take the pages in range from page 7453 * allocator removing them from the buddy system. This way 7454 * page allocator will never consider using them. 7455 * 7456 * This lets us mark the pageblocks back as 7457 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 7458 * aligned range but not in the unaligned, original range are 7459 * put back to page allocator so that buddy can use them. 7460 */ 7461 7462 ret = start_isolate_page_range(pfn_max_align_down(start), 7463 pfn_max_align_up(end), migratetype, 7464 false); 7465 if (ret) 7466 return ret; 7467 7468 /* 7469 * In case of -EBUSY, we'd like to know which page causes problem. 7470 * So, just fall through. We will check it in test_pages_isolated(). 7471 */ 7472 ret = __alloc_contig_migrate_range(&cc, start, end); 7473 if (ret && ret != -EBUSY) 7474 goto done; 7475 7476 /* 7477 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES 7478 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 7479 * more, all pages in [start, end) are free in page allocator. 7480 * What we are going to do is to allocate all pages from 7481 * [start, end) (that is remove them from page allocator). 7482 * 7483 * The only problem is that pages at the beginning and at the 7484 * end of interesting range may be not aligned with pages that 7485 * page allocator holds, ie. they can be part of higher order 7486 * pages. Because of this, we reserve the bigger range and 7487 * once this is done free the pages we are not interested in. 7488 * 7489 * We don't have to hold zone->lock here because the pages are 7490 * isolated thus they won't get removed from buddy. 7491 */ 7492 7493 lru_add_drain_all(); 7494 drain_all_pages(cc.zone); 7495 7496 order = 0; 7497 outer_start = start; 7498 while (!PageBuddy(pfn_to_page(outer_start))) { 7499 if (++order >= MAX_ORDER) { 7500 outer_start = start; 7501 break; 7502 } 7503 outer_start &= ~0UL << order; 7504 } 7505 7506 if (outer_start != start) { 7507 order = page_order(pfn_to_page(outer_start)); 7508 7509 /* 7510 * outer_start page could be small order buddy page and 7511 * it doesn't include start page. Adjust outer_start 7512 * in this case to report failed page properly 7513 * on tracepoint in test_pages_isolated() 7514 */ 7515 if (outer_start + (1UL << order) <= start) 7516 outer_start = start; 7517 } 7518 7519 /* Make sure the range is really isolated. */ 7520 if (test_pages_isolated(outer_start, end, false)) { 7521 pr_info("%s: [%lx, %lx) PFNs busy\n", 7522 __func__, outer_start, end); 7523 ret = -EBUSY; 7524 goto done; 7525 } 7526 7527 /* Grab isolated pages from freelists. */ 7528 outer_end = isolate_freepages_range(&cc, outer_start, end); 7529 if (!outer_end) { 7530 ret = -EBUSY; 7531 goto done; 7532 } 7533 7534 /* Free head and tail (if any) */ 7535 if (start != outer_start) 7536 free_contig_range(outer_start, start - outer_start); 7537 if (end != outer_end) 7538 free_contig_range(end, outer_end - end); 7539 7540done: 7541 undo_isolate_page_range(pfn_max_align_down(start), 7542 pfn_max_align_up(end), migratetype); 7543 return ret; 7544} 7545 7546void free_contig_range(unsigned long pfn, unsigned nr_pages) 7547{ 7548 unsigned int count = 0; 7549 7550 for (; nr_pages--; pfn++) { 7551 struct page *page = pfn_to_page(pfn); 7552 7553 count += page_count(page) != 1; 7554 __free_page(page); 7555 } 7556 WARN(count != 0, "%d pages are still in use!\n", count); 7557} 7558#endif 7559 7560#ifdef CONFIG_MEMORY_HOTPLUG 7561/* 7562 * The zone indicated has a new number of managed_pages; batch sizes and percpu 7563 * page high values need to be recalulated. 7564 */ 7565void __meminit zone_pcp_update(struct zone *zone) 7566{ 7567 unsigned cpu; 7568 mutex_lock(&pcp_batch_high_lock); 7569 for_each_possible_cpu(cpu) 7570 pageset_set_high_and_batch(zone, 7571 per_cpu_ptr(zone->pageset, cpu)); 7572 mutex_unlock(&pcp_batch_high_lock); 7573} 7574#endif 7575 7576void zone_pcp_reset(struct zone *zone) 7577{ 7578 unsigned long flags; 7579 int cpu; 7580 struct per_cpu_pageset *pset; 7581 7582 /* avoid races with drain_pages() */ 7583 local_irq_save(flags); 7584 if (zone->pageset != &boot_pageset) { 7585 for_each_online_cpu(cpu) { 7586 pset = per_cpu_ptr(zone->pageset, cpu); 7587 drain_zonestat(zone, pset); 7588 } 7589 free_percpu(zone->pageset); 7590 zone->pageset = &boot_pageset; 7591 } 7592 local_irq_restore(flags); 7593} 7594 7595#ifdef CONFIG_MEMORY_HOTREMOVE 7596/* 7597 * All pages in the range must be in a single zone and isolated 7598 * before calling this. 7599 */ 7600void 7601__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 7602{ 7603 struct page *page; 7604 struct zone *zone; 7605 unsigned int order, i; 7606 unsigned long pfn; 7607 unsigned long flags; 7608 /* find the first valid pfn */ 7609 for (pfn = start_pfn; pfn < end_pfn; pfn++) 7610 if (pfn_valid(pfn)) 7611 break; 7612 if (pfn == end_pfn) 7613 return; 7614 zone = page_zone(pfn_to_page(pfn)); 7615 spin_lock_irqsave(&zone->lock, flags); 7616 pfn = start_pfn; 7617 while (pfn < end_pfn) { 7618 if (!pfn_valid(pfn)) { 7619 pfn++; 7620 continue; 7621 } 7622 page = pfn_to_page(pfn); 7623 /* 7624 * The HWPoisoned page may be not in buddy system, and 7625 * page_count() is not 0. 7626 */ 7627 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 7628 pfn++; 7629 SetPageReserved(page); 7630 continue; 7631 } 7632 7633 BUG_ON(page_count(page)); 7634 BUG_ON(!PageBuddy(page)); 7635 order = page_order(page); 7636#ifdef CONFIG_DEBUG_VM 7637 pr_info("remove from free list %lx %d %lx\n", 7638 pfn, 1 << order, end_pfn); 7639#endif 7640 list_del(&page->lru); 7641 rmv_page_order(page); 7642 zone->free_area[order].nr_free--; 7643 for (i = 0; i < (1 << order); i++) 7644 SetPageReserved((page+i)); 7645 pfn += (1 << order); 7646 } 7647 spin_unlock_irqrestore(&zone->lock, flags); 7648} 7649#endif 7650 7651bool is_free_buddy_page(struct page *page) 7652{ 7653 struct zone *zone = page_zone(page); 7654 unsigned long pfn = page_to_pfn(page); 7655 unsigned long flags; 7656 unsigned int order; 7657 7658 spin_lock_irqsave(&zone->lock, flags); 7659 for (order = 0; order < MAX_ORDER; order++) { 7660 struct page *page_head = page - (pfn & ((1 << order) - 1)); 7661 7662 if (PageBuddy(page_head) && page_order(page_head) >= order) 7663 break; 7664 } 7665 spin_unlock_irqrestore(&zone->lock, flags); 7666 7667 return order < MAX_ORDER; 7668}