Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75#include <linux/uaccess.h>
76#include <linux/bitops.h>
77#include <linux/capability.h>
78#include <linux/cpu.h>
79#include <linux/types.h>
80#include <linux/kernel.h>
81#include <linux/hash.h>
82#include <linux/slab.h>
83#include <linux/sched.h>
84#include <linux/mutex.h>
85#include <linux/string.h>
86#include <linux/mm.h>
87#include <linux/socket.h>
88#include <linux/sockios.h>
89#include <linux/errno.h>
90#include <linux/interrupt.h>
91#include <linux/if_ether.h>
92#include <linux/netdevice.h>
93#include <linux/etherdevice.h>
94#include <linux/ethtool.h>
95#include <linux/notifier.h>
96#include <linux/skbuff.h>
97#include <linux/bpf.h>
98#include <net/net_namespace.h>
99#include <net/sock.h>
100#include <net/busy_poll.h>
101#include <linux/rtnetlink.h>
102#include <linux/stat.h>
103#include <net/dst.h>
104#include <net/dst_metadata.h>
105#include <net/pkt_sched.h>
106#include <net/checksum.h>
107#include <net/xfrm.h>
108#include <linux/highmem.h>
109#include <linux/init.h>
110#include <linux/module.h>
111#include <linux/netpoll.h>
112#include <linux/rcupdate.h>
113#include <linux/delay.h>
114#include <net/iw_handler.h>
115#include <asm/current.h>
116#include <linux/audit.h>
117#include <linux/dmaengine.h>
118#include <linux/err.h>
119#include <linux/ctype.h>
120#include <linux/if_arp.h>
121#include <linux/if_vlan.h>
122#include <linux/ip.h>
123#include <net/ip.h>
124#include <net/mpls.h>
125#include <linux/ipv6.h>
126#include <linux/in.h>
127#include <linux/jhash.h>
128#include <linux/random.h>
129#include <trace/events/napi.h>
130#include <trace/events/net.h>
131#include <trace/events/skb.h>
132#include <linux/pci.h>
133#include <linux/inetdevice.h>
134#include <linux/cpu_rmap.h>
135#include <linux/static_key.h>
136#include <linux/hashtable.h>
137#include <linux/vmalloc.h>
138#include <linux/if_macvlan.h>
139#include <linux/errqueue.h>
140#include <linux/hrtimer.h>
141#include <linux/netfilter_ingress.h>
142#include <linux/crash_dump.h>
143
144#include "net-sysfs.h"
145
146/* Instead of increasing this, you should create a hash table. */
147#define MAX_GRO_SKBS 8
148
149/* This should be increased if a protocol with a bigger head is added. */
150#define GRO_MAX_HEAD (MAX_HEADER + 128)
151
152static DEFINE_SPINLOCK(ptype_lock);
153static DEFINE_SPINLOCK(offload_lock);
154struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
155struct list_head ptype_all __read_mostly; /* Taps */
156static struct list_head offload_base __read_mostly;
157
158static int netif_rx_internal(struct sk_buff *skb);
159static int call_netdevice_notifiers_info(unsigned long val,
160 struct net_device *dev,
161 struct netdev_notifier_info *info);
162
163/*
164 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
165 * semaphore.
166 *
167 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
168 *
169 * Writers must hold the rtnl semaphore while they loop through the
170 * dev_base_head list, and hold dev_base_lock for writing when they do the
171 * actual updates. This allows pure readers to access the list even
172 * while a writer is preparing to update it.
173 *
174 * To put it another way, dev_base_lock is held for writing only to
175 * protect against pure readers; the rtnl semaphore provides the
176 * protection against other writers.
177 *
178 * See, for example usages, register_netdevice() and
179 * unregister_netdevice(), which must be called with the rtnl
180 * semaphore held.
181 */
182DEFINE_RWLOCK(dev_base_lock);
183EXPORT_SYMBOL(dev_base_lock);
184
185/* protects napi_hash addition/deletion and napi_gen_id */
186static DEFINE_SPINLOCK(napi_hash_lock);
187
188static unsigned int napi_gen_id = NR_CPUS;
189static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
190
191static seqcount_t devnet_rename_seq;
192
193static inline void dev_base_seq_inc(struct net *net)
194{
195 while (++net->dev_base_seq == 0)
196 ;
197}
198
199static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
200{
201 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
202
203 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
204}
205
206static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
207{
208 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
209}
210
211static inline void rps_lock(struct softnet_data *sd)
212{
213#ifdef CONFIG_RPS
214 spin_lock(&sd->input_pkt_queue.lock);
215#endif
216}
217
218static inline void rps_unlock(struct softnet_data *sd)
219{
220#ifdef CONFIG_RPS
221 spin_unlock(&sd->input_pkt_queue.lock);
222#endif
223}
224
225/* Device list insertion */
226static void list_netdevice(struct net_device *dev)
227{
228 struct net *net = dev_net(dev);
229
230 ASSERT_RTNL();
231
232 write_lock_bh(&dev_base_lock);
233 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
234 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
235 hlist_add_head_rcu(&dev->index_hlist,
236 dev_index_hash(net, dev->ifindex));
237 write_unlock_bh(&dev_base_lock);
238
239 dev_base_seq_inc(net);
240}
241
242/* Device list removal
243 * caller must respect a RCU grace period before freeing/reusing dev
244 */
245static void unlist_netdevice(struct net_device *dev)
246{
247 ASSERT_RTNL();
248
249 /* Unlink dev from the device chain */
250 write_lock_bh(&dev_base_lock);
251 list_del_rcu(&dev->dev_list);
252 hlist_del_rcu(&dev->name_hlist);
253 hlist_del_rcu(&dev->index_hlist);
254 write_unlock_bh(&dev_base_lock);
255
256 dev_base_seq_inc(dev_net(dev));
257}
258
259/*
260 * Our notifier list
261 */
262
263static RAW_NOTIFIER_HEAD(netdev_chain);
264
265/*
266 * Device drivers call our routines to queue packets here. We empty the
267 * queue in the local softnet handler.
268 */
269
270DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
271EXPORT_PER_CPU_SYMBOL(softnet_data);
272
273#ifdef CONFIG_LOCKDEP
274/*
275 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
276 * according to dev->type
277 */
278static const unsigned short netdev_lock_type[] = {
279 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
280 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
281 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
282 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
283 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
284 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
285 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
286 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
287 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
288 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
289 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
290 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
291 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
292 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
293 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
294
295static const char *const netdev_lock_name[] = {
296 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
297 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
298 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
299 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
300 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
301 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
302 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
303 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
304 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
305 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
306 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
307 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
308 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
309 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
310 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
311
312static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
313static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
314
315static inline unsigned short netdev_lock_pos(unsigned short dev_type)
316{
317 int i;
318
319 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
320 if (netdev_lock_type[i] == dev_type)
321 return i;
322 /* the last key is used by default */
323 return ARRAY_SIZE(netdev_lock_type) - 1;
324}
325
326static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
327 unsigned short dev_type)
328{
329 int i;
330
331 i = netdev_lock_pos(dev_type);
332 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
333 netdev_lock_name[i]);
334}
335
336static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
337{
338 int i;
339
340 i = netdev_lock_pos(dev->type);
341 lockdep_set_class_and_name(&dev->addr_list_lock,
342 &netdev_addr_lock_key[i],
343 netdev_lock_name[i]);
344}
345#else
346static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
347 unsigned short dev_type)
348{
349}
350static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
351{
352}
353#endif
354
355/*******************************************************************************
356 *
357 * Protocol management and registration routines
358 *
359 *******************************************************************************/
360
361
362/*
363 * Add a protocol ID to the list. Now that the input handler is
364 * smarter we can dispense with all the messy stuff that used to be
365 * here.
366 *
367 * BEWARE!!! Protocol handlers, mangling input packets,
368 * MUST BE last in hash buckets and checking protocol handlers
369 * MUST start from promiscuous ptype_all chain in net_bh.
370 * It is true now, do not change it.
371 * Explanation follows: if protocol handler, mangling packet, will
372 * be the first on list, it is not able to sense, that packet
373 * is cloned and should be copied-on-write, so that it will
374 * change it and subsequent readers will get broken packet.
375 * --ANK (980803)
376 */
377
378static inline struct list_head *ptype_head(const struct packet_type *pt)
379{
380 if (pt->type == htons(ETH_P_ALL))
381 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
382 else
383 return pt->dev ? &pt->dev->ptype_specific :
384 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
385}
386
387/**
388 * dev_add_pack - add packet handler
389 * @pt: packet type declaration
390 *
391 * Add a protocol handler to the networking stack. The passed &packet_type
392 * is linked into kernel lists and may not be freed until it has been
393 * removed from the kernel lists.
394 *
395 * This call does not sleep therefore it can not
396 * guarantee all CPU's that are in middle of receiving packets
397 * will see the new packet type (until the next received packet).
398 */
399
400void dev_add_pack(struct packet_type *pt)
401{
402 struct list_head *head = ptype_head(pt);
403
404 spin_lock(&ptype_lock);
405 list_add_rcu(&pt->list, head);
406 spin_unlock(&ptype_lock);
407}
408EXPORT_SYMBOL(dev_add_pack);
409
410/**
411 * __dev_remove_pack - remove packet handler
412 * @pt: packet type declaration
413 *
414 * Remove a protocol handler that was previously added to the kernel
415 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
416 * from the kernel lists and can be freed or reused once this function
417 * returns.
418 *
419 * The packet type might still be in use by receivers
420 * and must not be freed until after all the CPU's have gone
421 * through a quiescent state.
422 */
423void __dev_remove_pack(struct packet_type *pt)
424{
425 struct list_head *head = ptype_head(pt);
426 struct packet_type *pt1;
427
428 spin_lock(&ptype_lock);
429
430 list_for_each_entry(pt1, head, list) {
431 if (pt == pt1) {
432 list_del_rcu(&pt->list);
433 goto out;
434 }
435 }
436
437 pr_warn("dev_remove_pack: %p not found\n", pt);
438out:
439 spin_unlock(&ptype_lock);
440}
441EXPORT_SYMBOL(__dev_remove_pack);
442
443/**
444 * dev_remove_pack - remove packet handler
445 * @pt: packet type declaration
446 *
447 * Remove a protocol handler that was previously added to the kernel
448 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
449 * from the kernel lists and can be freed or reused once this function
450 * returns.
451 *
452 * This call sleeps to guarantee that no CPU is looking at the packet
453 * type after return.
454 */
455void dev_remove_pack(struct packet_type *pt)
456{
457 __dev_remove_pack(pt);
458
459 synchronize_net();
460}
461EXPORT_SYMBOL(dev_remove_pack);
462
463
464/**
465 * dev_add_offload - register offload handlers
466 * @po: protocol offload declaration
467 *
468 * Add protocol offload handlers to the networking stack. The passed
469 * &proto_offload is linked into kernel lists and may not be freed until
470 * it has been removed from the kernel lists.
471 *
472 * This call does not sleep therefore it can not
473 * guarantee all CPU's that are in middle of receiving packets
474 * will see the new offload handlers (until the next received packet).
475 */
476void dev_add_offload(struct packet_offload *po)
477{
478 struct packet_offload *elem;
479
480 spin_lock(&offload_lock);
481 list_for_each_entry(elem, &offload_base, list) {
482 if (po->priority < elem->priority)
483 break;
484 }
485 list_add_rcu(&po->list, elem->list.prev);
486 spin_unlock(&offload_lock);
487}
488EXPORT_SYMBOL(dev_add_offload);
489
490/**
491 * __dev_remove_offload - remove offload handler
492 * @po: packet offload declaration
493 *
494 * Remove a protocol offload handler that was previously added to the
495 * kernel offload handlers by dev_add_offload(). The passed &offload_type
496 * is removed from the kernel lists and can be freed or reused once this
497 * function returns.
498 *
499 * The packet type might still be in use by receivers
500 * and must not be freed until after all the CPU's have gone
501 * through a quiescent state.
502 */
503static void __dev_remove_offload(struct packet_offload *po)
504{
505 struct list_head *head = &offload_base;
506 struct packet_offload *po1;
507
508 spin_lock(&offload_lock);
509
510 list_for_each_entry(po1, head, list) {
511 if (po == po1) {
512 list_del_rcu(&po->list);
513 goto out;
514 }
515 }
516
517 pr_warn("dev_remove_offload: %p not found\n", po);
518out:
519 spin_unlock(&offload_lock);
520}
521
522/**
523 * dev_remove_offload - remove packet offload handler
524 * @po: packet offload declaration
525 *
526 * Remove a packet offload handler that was previously added to the kernel
527 * offload handlers by dev_add_offload(). The passed &offload_type is
528 * removed from the kernel lists and can be freed or reused once this
529 * function returns.
530 *
531 * This call sleeps to guarantee that no CPU is looking at the packet
532 * type after return.
533 */
534void dev_remove_offload(struct packet_offload *po)
535{
536 __dev_remove_offload(po);
537
538 synchronize_net();
539}
540EXPORT_SYMBOL(dev_remove_offload);
541
542/******************************************************************************
543 *
544 * Device Boot-time Settings Routines
545 *
546 ******************************************************************************/
547
548/* Boot time configuration table */
549static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
550
551/**
552 * netdev_boot_setup_add - add new setup entry
553 * @name: name of the device
554 * @map: configured settings for the device
555 *
556 * Adds new setup entry to the dev_boot_setup list. The function
557 * returns 0 on error and 1 on success. This is a generic routine to
558 * all netdevices.
559 */
560static int netdev_boot_setup_add(char *name, struct ifmap *map)
561{
562 struct netdev_boot_setup *s;
563 int i;
564
565 s = dev_boot_setup;
566 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
567 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
568 memset(s[i].name, 0, sizeof(s[i].name));
569 strlcpy(s[i].name, name, IFNAMSIZ);
570 memcpy(&s[i].map, map, sizeof(s[i].map));
571 break;
572 }
573 }
574
575 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
576}
577
578/**
579 * netdev_boot_setup_check - check boot time settings
580 * @dev: the netdevice
581 *
582 * Check boot time settings for the device.
583 * The found settings are set for the device to be used
584 * later in the device probing.
585 * Returns 0 if no settings found, 1 if they are.
586 */
587int netdev_boot_setup_check(struct net_device *dev)
588{
589 struct netdev_boot_setup *s = dev_boot_setup;
590 int i;
591
592 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
593 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
594 !strcmp(dev->name, s[i].name)) {
595 dev->irq = s[i].map.irq;
596 dev->base_addr = s[i].map.base_addr;
597 dev->mem_start = s[i].map.mem_start;
598 dev->mem_end = s[i].map.mem_end;
599 return 1;
600 }
601 }
602 return 0;
603}
604EXPORT_SYMBOL(netdev_boot_setup_check);
605
606
607/**
608 * netdev_boot_base - get address from boot time settings
609 * @prefix: prefix for network device
610 * @unit: id for network device
611 *
612 * Check boot time settings for the base address of device.
613 * The found settings are set for the device to be used
614 * later in the device probing.
615 * Returns 0 if no settings found.
616 */
617unsigned long netdev_boot_base(const char *prefix, int unit)
618{
619 const struct netdev_boot_setup *s = dev_boot_setup;
620 char name[IFNAMSIZ];
621 int i;
622
623 sprintf(name, "%s%d", prefix, unit);
624
625 /*
626 * If device already registered then return base of 1
627 * to indicate not to probe for this interface
628 */
629 if (__dev_get_by_name(&init_net, name))
630 return 1;
631
632 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
633 if (!strcmp(name, s[i].name))
634 return s[i].map.base_addr;
635 return 0;
636}
637
638/*
639 * Saves at boot time configured settings for any netdevice.
640 */
641int __init netdev_boot_setup(char *str)
642{
643 int ints[5];
644 struct ifmap map;
645
646 str = get_options(str, ARRAY_SIZE(ints), ints);
647 if (!str || !*str)
648 return 0;
649
650 /* Save settings */
651 memset(&map, 0, sizeof(map));
652 if (ints[0] > 0)
653 map.irq = ints[1];
654 if (ints[0] > 1)
655 map.base_addr = ints[2];
656 if (ints[0] > 2)
657 map.mem_start = ints[3];
658 if (ints[0] > 3)
659 map.mem_end = ints[4];
660
661 /* Add new entry to the list */
662 return netdev_boot_setup_add(str, &map);
663}
664
665__setup("netdev=", netdev_boot_setup);
666
667/*******************************************************************************
668 *
669 * Device Interface Subroutines
670 *
671 *******************************************************************************/
672
673/**
674 * dev_get_iflink - get 'iflink' value of a interface
675 * @dev: targeted interface
676 *
677 * Indicates the ifindex the interface is linked to.
678 * Physical interfaces have the same 'ifindex' and 'iflink' values.
679 */
680
681int dev_get_iflink(const struct net_device *dev)
682{
683 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
684 return dev->netdev_ops->ndo_get_iflink(dev);
685
686 return dev->ifindex;
687}
688EXPORT_SYMBOL(dev_get_iflink);
689
690/**
691 * dev_fill_metadata_dst - Retrieve tunnel egress information.
692 * @dev: targeted interface
693 * @skb: The packet.
694 *
695 * For better visibility of tunnel traffic OVS needs to retrieve
696 * egress tunnel information for a packet. Following API allows
697 * user to get this info.
698 */
699int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
700{
701 struct ip_tunnel_info *info;
702
703 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
704 return -EINVAL;
705
706 info = skb_tunnel_info_unclone(skb);
707 if (!info)
708 return -ENOMEM;
709 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
710 return -EINVAL;
711
712 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
713}
714EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
715
716/**
717 * __dev_get_by_name - find a device by its name
718 * @net: the applicable net namespace
719 * @name: name to find
720 *
721 * Find an interface by name. Must be called under RTNL semaphore
722 * or @dev_base_lock. If the name is found a pointer to the device
723 * is returned. If the name is not found then %NULL is returned. The
724 * reference counters are not incremented so the caller must be
725 * careful with locks.
726 */
727
728struct net_device *__dev_get_by_name(struct net *net, const char *name)
729{
730 struct net_device *dev;
731 struct hlist_head *head = dev_name_hash(net, name);
732
733 hlist_for_each_entry(dev, head, name_hlist)
734 if (!strncmp(dev->name, name, IFNAMSIZ))
735 return dev;
736
737 return NULL;
738}
739EXPORT_SYMBOL(__dev_get_by_name);
740
741/**
742 * dev_get_by_name_rcu - find a device by its name
743 * @net: the applicable net namespace
744 * @name: name to find
745 *
746 * Find an interface by name.
747 * If the name is found a pointer to the device is returned.
748 * If the name is not found then %NULL is returned.
749 * The reference counters are not incremented so the caller must be
750 * careful with locks. The caller must hold RCU lock.
751 */
752
753struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
754{
755 struct net_device *dev;
756 struct hlist_head *head = dev_name_hash(net, name);
757
758 hlist_for_each_entry_rcu(dev, head, name_hlist)
759 if (!strncmp(dev->name, name, IFNAMSIZ))
760 return dev;
761
762 return NULL;
763}
764EXPORT_SYMBOL(dev_get_by_name_rcu);
765
766/**
767 * dev_get_by_name - find a device by its name
768 * @net: the applicable net namespace
769 * @name: name to find
770 *
771 * Find an interface by name. This can be called from any
772 * context and does its own locking. The returned handle has
773 * the usage count incremented and the caller must use dev_put() to
774 * release it when it is no longer needed. %NULL is returned if no
775 * matching device is found.
776 */
777
778struct net_device *dev_get_by_name(struct net *net, const char *name)
779{
780 struct net_device *dev;
781
782 rcu_read_lock();
783 dev = dev_get_by_name_rcu(net, name);
784 if (dev)
785 dev_hold(dev);
786 rcu_read_unlock();
787 return dev;
788}
789EXPORT_SYMBOL(dev_get_by_name);
790
791/**
792 * __dev_get_by_index - find a device by its ifindex
793 * @net: the applicable net namespace
794 * @ifindex: index of device
795 *
796 * Search for an interface by index. Returns %NULL if the device
797 * is not found or a pointer to the device. The device has not
798 * had its reference counter increased so the caller must be careful
799 * about locking. The caller must hold either the RTNL semaphore
800 * or @dev_base_lock.
801 */
802
803struct net_device *__dev_get_by_index(struct net *net, int ifindex)
804{
805 struct net_device *dev;
806 struct hlist_head *head = dev_index_hash(net, ifindex);
807
808 hlist_for_each_entry(dev, head, index_hlist)
809 if (dev->ifindex == ifindex)
810 return dev;
811
812 return NULL;
813}
814EXPORT_SYMBOL(__dev_get_by_index);
815
816/**
817 * dev_get_by_index_rcu - find a device by its ifindex
818 * @net: the applicable net namespace
819 * @ifindex: index of device
820 *
821 * Search for an interface by index. Returns %NULL if the device
822 * is not found or a pointer to the device. The device has not
823 * had its reference counter increased so the caller must be careful
824 * about locking. The caller must hold RCU lock.
825 */
826
827struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
828{
829 struct net_device *dev;
830 struct hlist_head *head = dev_index_hash(net, ifindex);
831
832 hlist_for_each_entry_rcu(dev, head, index_hlist)
833 if (dev->ifindex == ifindex)
834 return dev;
835
836 return NULL;
837}
838EXPORT_SYMBOL(dev_get_by_index_rcu);
839
840
841/**
842 * dev_get_by_index - find a device by its ifindex
843 * @net: the applicable net namespace
844 * @ifindex: index of device
845 *
846 * Search for an interface by index. Returns NULL if the device
847 * is not found or a pointer to the device. The device returned has
848 * had a reference added and the pointer is safe until the user calls
849 * dev_put to indicate they have finished with it.
850 */
851
852struct net_device *dev_get_by_index(struct net *net, int ifindex)
853{
854 struct net_device *dev;
855
856 rcu_read_lock();
857 dev = dev_get_by_index_rcu(net, ifindex);
858 if (dev)
859 dev_hold(dev);
860 rcu_read_unlock();
861 return dev;
862}
863EXPORT_SYMBOL(dev_get_by_index);
864
865/**
866 * netdev_get_name - get a netdevice name, knowing its ifindex.
867 * @net: network namespace
868 * @name: a pointer to the buffer where the name will be stored.
869 * @ifindex: the ifindex of the interface to get the name from.
870 *
871 * The use of raw_seqcount_begin() and cond_resched() before
872 * retrying is required as we want to give the writers a chance
873 * to complete when CONFIG_PREEMPT is not set.
874 */
875int netdev_get_name(struct net *net, char *name, int ifindex)
876{
877 struct net_device *dev;
878 unsigned int seq;
879
880retry:
881 seq = raw_seqcount_begin(&devnet_rename_seq);
882 rcu_read_lock();
883 dev = dev_get_by_index_rcu(net, ifindex);
884 if (!dev) {
885 rcu_read_unlock();
886 return -ENODEV;
887 }
888
889 strcpy(name, dev->name);
890 rcu_read_unlock();
891 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
892 cond_resched();
893 goto retry;
894 }
895
896 return 0;
897}
898
899/**
900 * dev_getbyhwaddr_rcu - find a device by its hardware address
901 * @net: the applicable net namespace
902 * @type: media type of device
903 * @ha: hardware address
904 *
905 * Search for an interface by MAC address. Returns NULL if the device
906 * is not found or a pointer to the device.
907 * The caller must hold RCU or RTNL.
908 * The returned device has not had its ref count increased
909 * and the caller must therefore be careful about locking
910 *
911 */
912
913struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
914 const char *ha)
915{
916 struct net_device *dev;
917
918 for_each_netdev_rcu(net, dev)
919 if (dev->type == type &&
920 !memcmp(dev->dev_addr, ha, dev->addr_len))
921 return dev;
922
923 return NULL;
924}
925EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
926
927struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
928{
929 struct net_device *dev;
930
931 ASSERT_RTNL();
932 for_each_netdev(net, dev)
933 if (dev->type == type)
934 return dev;
935
936 return NULL;
937}
938EXPORT_SYMBOL(__dev_getfirstbyhwtype);
939
940struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
941{
942 struct net_device *dev, *ret = NULL;
943
944 rcu_read_lock();
945 for_each_netdev_rcu(net, dev)
946 if (dev->type == type) {
947 dev_hold(dev);
948 ret = dev;
949 break;
950 }
951 rcu_read_unlock();
952 return ret;
953}
954EXPORT_SYMBOL(dev_getfirstbyhwtype);
955
956/**
957 * __dev_get_by_flags - find any device with given flags
958 * @net: the applicable net namespace
959 * @if_flags: IFF_* values
960 * @mask: bitmask of bits in if_flags to check
961 *
962 * Search for any interface with the given flags. Returns NULL if a device
963 * is not found or a pointer to the device. Must be called inside
964 * rtnl_lock(), and result refcount is unchanged.
965 */
966
967struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
968 unsigned short mask)
969{
970 struct net_device *dev, *ret;
971
972 ASSERT_RTNL();
973
974 ret = NULL;
975 for_each_netdev(net, dev) {
976 if (((dev->flags ^ if_flags) & mask) == 0) {
977 ret = dev;
978 break;
979 }
980 }
981 return ret;
982}
983EXPORT_SYMBOL(__dev_get_by_flags);
984
985/**
986 * dev_valid_name - check if name is okay for network device
987 * @name: name string
988 *
989 * Network device names need to be valid file names to
990 * to allow sysfs to work. We also disallow any kind of
991 * whitespace.
992 */
993bool dev_valid_name(const char *name)
994{
995 if (*name == '\0')
996 return false;
997 if (strlen(name) >= IFNAMSIZ)
998 return false;
999 if (!strcmp(name, ".") || !strcmp(name, ".."))
1000 return false;
1001
1002 while (*name) {
1003 if (*name == '/' || *name == ':' || isspace(*name))
1004 return false;
1005 name++;
1006 }
1007 return true;
1008}
1009EXPORT_SYMBOL(dev_valid_name);
1010
1011/**
1012 * __dev_alloc_name - allocate a name for a device
1013 * @net: network namespace to allocate the device name in
1014 * @name: name format string
1015 * @buf: scratch buffer and result name string
1016 *
1017 * Passed a format string - eg "lt%d" it will try and find a suitable
1018 * id. It scans list of devices to build up a free map, then chooses
1019 * the first empty slot. The caller must hold the dev_base or rtnl lock
1020 * while allocating the name and adding the device in order to avoid
1021 * duplicates.
1022 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1023 * Returns the number of the unit assigned or a negative errno code.
1024 */
1025
1026static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1027{
1028 int i = 0;
1029 const char *p;
1030 const int max_netdevices = 8*PAGE_SIZE;
1031 unsigned long *inuse;
1032 struct net_device *d;
1033
1034 p = strnchr(name, IFNAMSIZ-1, '%');
1035 if (p) {
1036 /*
1037 * Verify the string as this thing may have come from
1038 * the user. There must be either one "%d" and no other "%"
1039 * characters.
1040 */
1041 if (p[1] != 'd' || strchr(p + 2, '%'))
1042 return -EINVAL;
1043
1044 /* Use one page as a bit array of possible slots */
1045 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1046 if (!inuse)
1047 return -ENOMEM;
1048
1049 for_each_netdev(net, d) {
1050 if (!sscanf(d->name, name, &i))
1051 continue;
1052 if (i < 0 || i >= max_netdevices)
1053 continue;
1054
1055 /* avoid cases where sscanf is not exact inverse of printf */
1056 snprintf(buf, IFNAMSIZ, name, i);
1057 if (!strncmp(buf, d->name, IFNAMSIZ))
1058 set_bit(i, inuse);
1059 }
1060
1061 i = find_first_zero_bit(inuse, max_netdevices);
1062 free_page((unsigned long) inuse);
1063 }
1064
1065 if (buf != name)
1066 snprintf(buf, IFNAMSIZ, name, i);
1067 if (!__dev_get_by_name(net, buf))
1068 return i;
1069
1070 /* It is possible to run out of possible slots
1071 * when the name is long and there isn't enough space left
1072 * for the digits, or if all bits are used.
1073 */
1074 return -ENFILE;
1075}
1076
1077/**
1078 * dev_alloc_name - allocate a name for a device
1079 * @dev: device
1080 * @name: name format string
1081 *
1082 * Passed a format string - eg "lt%d" it will try and find a suitable
1083 * id. It scans list of devices to build up a free map, then chooses
1084 * the first empty slot. The caller must hold the dev_base or rtnl lock
1085 * while allocating the name and adding the device in order to avoid
1086 * duplicates.
1087 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1088 * Returns the number of the unit assigned or a negative errno code.
1089 */
1090
1091int dev_alloc_name(struct net_device *dev, const char *name)
1092{
1093 char buf[IFNAMSIZ];
1094 struct net *net;
1095 int ret;
1096
1097 BUG_ON(!dev_net(dev));
1098 net = dev_net(dev);
1099 ret = __dev_alloc_name(net, name, buf);
1100 if (ret >= 0)
1101 strlcpy(dev->name, buf, IFNAMSIZ);
1102 return ret;
1103}
1104EXPORT_SYMBOL(dev_alloc_name);
1105
1106static int dev_alloc_name_ns(struct net *net,
1107 struct net_device *dev,
1108 const char *name)
1109{
1110 char buf[IFNAMSIZ];
1111 int ret;
1112
1113 ret = __dev_alloc_name(net, name, buf);
1114 if (ret >= 0)
1115 strlcpy(dev->name, buf, IFNAMSIZ);
1116 return ret;
1117}
1118
1119static int dev_get_valid_name(struct net *net,
1120 struct net_device *dev,
1121 const char *name)
1122{
1123 BUG_ON(!net);
1124
1125 if (!dev_valid_name(name))
1126 return -EINVAL;
1127
1128 if (strchr(name, '%'))
1129 return dev_alloc_name_ns(net, dev, name);
1130 else if (__dev_get_by_name(net, name))
1131 return -EEXIST;
1132 else if (dev->name != name)
1133 strlcpy(dev->name, name, IFNAMSIZ);
1134
1135 return 0;
1136}
1137
1138/**
1139 * dev_change_name - change name of a device
1140 * @dev: device
1141 * @newname: name (or format string) must be at least IFNAMSIZ
1142 *
1143 * Change name of a device, can pass format strings "eth%d".
1144 * for wildcarding.
1145 */
1146int dev_change_name(struct net_device *dev, const char *newname)
1147{
1148 unsigned char old_assign_type;
1149 char oldname[IFNAMSIZ];
1150 int err = 0;
1151 int ret;
1152 struct net *net;
1153
1154 ASSERT_RTNL();
1155 BUG_ON(!dev_net(dev));
1156
1157 net = dev_net(dev);
1158 if (dev->flags & IFF_UP)
1159 return -EBUSY;
1160
1161 write_seqcount_begin(&devnet_rename_seq);
1162
1163 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1164 write_seqcount_end(&devnet_rename_seq);
1165 return 0;
1166 }
1167
1168 memcpy(oldname, dev->name, IFNAMSIZ);
1169
1170 err = dev_get_valid_name(net, dev, newname);
1171 if (err < 0) {
1172 write_seqcount_end(&devnet_rename_seq);
1173 return err;
1174 }
1175
1176 if (oldname[0] && !strchr(oldname, '%'))
1177 netdev_info(dev, "renamed from %s\n", oldname);
1178
1179 old_assign_type = dev->name_assign_type;
1180 dev->name_assign_type = NET_NAME_RENAMED;
1181
1182rollback:
1183 ret = device_rename(&dev->dev, dev->name);
1184 if (ret) {
1185 memcpy(dev->name, oldname, IFNAMSIZ);
1186 dev->name_assign_type = old_assign_type;
1187 write_seqcount_end(&devnet_rename_seq);
1188 return ret;
1189 }
1190
1191 write_seqcount_end(&devnet_rename_seq);
1192
1193 netdev_adjacent_rename_links(dev, oldname);
1194
1195 write_lock_bh(&dev_base_lock);
1196 hlist_del_rcu(&dev->name_hlist);
1197 write_unlock_bh(&dev_base_lock);
1198
1199 synchronize_rcu();
1200
1201 write_lock_bh(&dev_base_lock);
1202 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1203 write_unlock_bh(&dev_base_lock);
1204
1205 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1206 ret = notifier_to_errno(ret);
1207
1208 if (ret) {
1209 /* err >= 0 after dev_alloc_name() or stores the first errno */
1210 if (err >= 0) {
1211 err = ret;
1212 write_seqcount_begin(&devnet_rename_seq);
1213 memcpy(dev->name, oldname, IFNAMSIZ);
1214 memcpy(oldname, newname, IFNAMSIZ);
1215 dev->name_assign_type = old_assign_type;
1216 old_assign_type = NET_NAME_RENAMED;
1217 goto rollback;
1218 } else {
1219 pr_err("%s: name change rollback failed: %d\n",
1220 dev->name, ret);
1221 }
1222 }
1223
1224 return err;
1225}
1226
1227/**
1228 * dev_set_alias - change ifalias of a device
1229 * @dev: device
1230 * @alias: name up to IFALIASZ
1231 * @len: limit of bytes to copy from info
1232 *
1233 * Set ifalias for a device,
1234 */
1235int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1236{
1237 char *new_ifalias;
1238
1239 ASSERT_RTNL();
1240
1241 if (len >= IFALIASZ)
1242 return -EINVAL;
1243
1244 if (!len) {
1245 kfree(dev->ifalias);
1246 dev->ifalias = NULL;
1247 return 0;
1248 }
1249
1250 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1251 if (!new_ifalias)
1252 return -ENOMEM;
1253 dev->ifalias = new_ifalias;
1254
1255 strlcpy(dev->ifalias, alias, len+1);
1256 return len;
1257}
1258
1259
1260/**
1261 * netdev_features_change - device changes features
1262 * @dev: device to cause notification
1263 *
1264 * Called to indicate a device has changed features.
1265 */
1266void netdev_features_change(struct net_device *dev)
1267{
1268 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1269}
1270EXPORT_SYMBOL(netdev_features_change);
1271
1272/**
1273 * netdev_state_change - device changes state
1274 * @dev: device to cause notification
1275 *
1276 * Called to indicate a device has changed state. This function calls
1277 * the notifier chains for netdev_chain and sends a NEWLINK message
1278 * to the routing socket.
1279 */
1280void netdev_state_change(struct net_device *dev)
1281{
1282 if (dev->flags & IFF_UP) {
1283 struct netdev_notifier_change_info change_info;
1284
1285 change_info.flags_changed = 0;
1286 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1287 &change_info.info);
1288 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1289 }
1290}
1291EXPORT_SYMBOL(netdev_state_change);
1292
1293/**
1294 * netdev_notify_peers - notify network peers about existence of @dev
1295 * @dev: network device
1296 *
1297 * Generate traffic such that interested network peers are aware of
1298 * @dev, such as by generating a gratuitous ARP. This may be used when
1299 * a device wants to inform the rest of the network about some sort of
1300 * reconfiguration such as a failover event or virtual machine
1301 * migration.
1302 */
1303void netdev_notify_peers(struct net_device *dev)
1304{
1305 rtnl_lock();
1306 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1307 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1308 rtnl_unlock();
1309}
1310EXPORT_SYMBOL(netdev_notify_peers);
1311
1312static int __dev_open(struct net_device *dev)
1313{
1314 const struct net_device_ops *ops = dev->netdev_ops;
1315 int ret;
1316
1317 ASSERT_RTNL();
1318
1319 if (!netif_device_present(dev))
1320 return -ENODEV;
1321
1322 /* Block netpoll from trying to do any rx path servicing.
1323 * If we don't do this there is a chance ndo_poll_controller
1324 * or ndo_poll may be running while we open the device
1325 */
1326 netpoll_poll_disable(dev);
1327
1328 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1329 ret = notifier_to_errno(ret);
1330 if (ret)
1331 return ret;
1332
1333 set_bit(__LINK_STATE_START, &dev->state);
1334
1335 if (ops->ndo_validate_addr)
1336 ret = ops->ndo_validate_addr(dev);
1337
1338 if (!ret && ops->ndo_open)
1339 ret = ops->ndo_open(dev);
1340
1341 netpoll_poll_enable(dev);
1342
1343 if (ret)
1344 clear_bit(__LINK_STATE_START, &dev->state);
1345 else {
1346 dev->flags |= IFF_UP;
1347 dev_set_rx_mode(dev);
1348 dev_activate(dev);
1349 add_device_randomness(dev->dev_addr, dev->addr_len);
1350 }
1351
1352 return ret;
1353}
1354
1355/**
1356 * dev_open - prepare an interface for use.
1357 * @dev: device to open
1358 *
1359 * Takes a device from down to up state. The device's private open
1360 * function is invoked and then the multicast lists are loaded. Finally
1361 * the device is moved into the up state and a %NETDEV_UP message is
1362 * sent to the netdev notifier chain.
1363 *
1364 * Calling this function on an active interface is a nop. On a failure
1365 * a negative errno code is returned.
1366 */
1367int dev_open(struct net_device *dev)
1368{
1369 int ret;
1370
1371 if (dev->flags & IFF_UP)
1372 return 0;
1373
1374 ret = __dev_open(dev);
1375 if (ret < 0)
1376 return ret;
1377
1378 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1379 call_netdevice_notifiers(NETDEV_UP, dev);
1380
1381 return ret;
1382}
1383EXPORT_SYMBOL(dev_open);
1384
1385static int __dev_close_many(struct list_head *head)
1386{
1387 struct net_device *dev;
1388
1389 ASSERT_RTNL();
1390 might_sleep();
1391
1392 list_for_each_entry(dev, head, close_list) {
1393 /* Temporarily disable netpoll until the interface is down */
1394 netpoll_poll_disable(dev);
1395
1396 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1397
1398 clear_bit(__LINK_STATE_START, &dev->state);
1399
1400 /* Synchronize to scheduled poll. We cannot touch poll list, it
1401 * can be even on different cpu. So just clear netif_running().
1402 *
1403 * dev->stop() will invoke napi_disable() on all of it's
1404 * napi_struct instances on this device.
1405 */
1406 smp_mb__after_atomic(); /* Commit netif_running(). */
1407 }
1408
1409 dev_deactivate_many(head);
1410
1411 list_for_each_entry(dev, head, close_list) {
1412 const struct net_device_ops *ops = dev->netdev_ops;
1413
1414 /*
1415 * Call the device specific close. This cannot fail.
1416 * Only if device is UP
1417 *
1418 * We allow it to be called even after a DETACH hot-plug
1419 * event.
1420 */
1421 if (ops->ndo_stop)
1422 ops->ndo_stop(dev);
1423
1424 dev->flags &= ~IFF_UP;
1425 netpoll_poll_enable(dev);
1426 }
1427
1428 return 0;
1429}
1430
1431static int __dev_close(struct net_device *dev)
1432{
1433 int retval;
1434 LIST_HEAD(single);
1435
1436 list_add(&dev->close_list, &single);
1437 retval = __dev_close_many(&single);
1438 list_del(&single);
1439
1440 return retval;
1441}
1442
1443int dev_close_many(struct list_head *head, bool unlink)
1444{
1445 struct net_device *dev, *tmp;
1446
1447 /* Remove the devices that don't need to be closed */
1448 list_for_each_entry_safe(dev, tmp, head, close_list)
1449 if (!(dev->flags & IFF_UP))
1450 list_del_init(&dev->close_list);
1451
1452 __dev_close_many(head);
1453
1454 list_for_each_entry_safe(dev, tmp, head, close_list) {
1455 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1456 call_netdevice_notifiers(NETDEV_DOWN, dev);
1457 if (unlink)
1458 list_del_init(&dev->close_list);
1459 }
1460
1461 return 0;
1462}
1463EXPORT_SYMBOL(dev_close_many);
1464
1465/**
1466 * dev_close - shutdown an interface.
1467 * @dev: device to shutdown
1468 *
1469 * This function moves an active device into down state. A
1470 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1471 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1472 * chain.
1473 */
1474int dev_close(struct net_device *dev)
1475{
1476 if (dev->flags & IFF_UP) {
1477 LIST_HEAD(single);
1478
1479 list_add(&dev->close_list, &single);
1480 dev_close_many(&single, true);
1481 list_del(&single);
1482 }
1483 return 0;
1484}
1485EXPORT_SYMBOL(dev_close);
1486
1487
1488/**
1489 * dev_disable_lro - disable Large Receive Offload on a device
1490 * @dev: device
1491 *
1492 * Disable Large Receive Offload (LRO) on a net device. Must be
1493 * called under RTNL. This is needed if received packets may be
1494 * forwarded to another interface.
1495 */
1496void dev_disable_lro(struct net_device *dev)
1497{
1498 struct net_device *lower_dev;
1499 struct list_head *iter;
1500
1501 dev->wanted_features &= ~NETIF_F_LRO;
1502 netdev_update_features(dev);
1503
1504 if (unlikely(dev->features & NETIF_F_LRO))
1505 netdev_WARN(dev, "failed to disable LRO!\n");
1506
1507 netdev_for_each_lower_dev(dev, lower_dev, iter)
1508 dev_disable_lro(lower_dev);
1509}
1510EXPORT_SYMBOL(dev_disable_lro);
1511
1512static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1513 struct net_device *dev)
1514{
1515 struct netdev_notifier_info info;
1516
1517 netdev_notifier_info_init(&info, dev);
1518 return nb->notifier_call(nb, val, &info);
1519}
1520
1521static int dev_boot_phase = 1;
1522
1523/**
1524 * register_netdevice_notifier - register a network notifier block
1525 * @nb: notifier
1526 *
1527 * Register a notifier to be called when network device events occur.
1528 * The notifier passed is linked into the kernel structures and must
1529 * not be reused until it has been unregistered. A negative errno code
1530 * is returned on a failure.
1531 *
1532 * When registered all registration and up events are replayed
1533 * to the new notifier to allow device to have a race free
1534 * view of the network device list.
1535 */
1536
1537int register_netdevice_notifier(struct notifier_block *nb)
1538{
1539 struct net_device *dev;
1540 struct net_device *last;
1541 struct net *net;
1542 int err;
1543
1544 rtnl_lock();
1545 err = raw_notifier_chain_register(&netdev_chain, nb);
1546 if (err)
1547 goto unlock;
1548 if (dev_boot_phase)
1549 goto unlock;
1550 for_each_net(net) {
1551 for_each_netdev(net, dev) {
1552 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1553 err = notifier_to_errno(err);
1554 if (err)
1555 goto rollback;
1556
1557 if (!(dev->flags & IFF_UP))
1558 continue;
1559
1560 call_netdevice_notifier(nb, NETDEV_UP, dev);
1561 }
1562 }
1563
1564unlock:
1565 rtnl_unlock();
1566 return err;
1567
1568rollback:
1569 last = dev;
1570 for_each_net(net) {
1571 for_each_netdev(net, dev) {
1572 if (dev == last)
1573 goto outroll;
1574
1575 if (dev->flags & IFF_UP) {
1576 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1577 dev);
1578 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1579 }
1580 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1581 }
1582 }
1583
1584outroll:
1585 raw_notifier_chain_unregister(&netdev_chain, nb);
1586 goto unlock;
1587}
1588EXPORT_SYMBOL(register_netdevice_notifier);
1589
1590/**
1591 * unregister_netdevice_notifier - unregister a network notifier block
1592 * @nb: notifier
1593 *
1594 * Unregister a notifier previously registered by
1595 * register_netdevice_notifier(). The notifier is unlinked into the
1596 * kernel structures and may then be reused. A negative errno code
1597 * is returned on a failure.
1598 *
1599 * After unregistering unregister and down device events are synthesized
1600 * for all devices on the device list to the removed notifier to remove
1601 * the need for special case cleanup code.
1602 */
1603
1604int unregister_netdevice_notifier(struct notifier_block *nb)
1605{
1606 struct net_device *dev;
1607 struct net *net;
1608 int err;
1609
1610 rtnl_lock();
1611 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1612 if (err)
1613 goto unlock;
1614
1615 for_each_net(net) {
1616 for_each_netdev(net, dev) {
1617 if (dev->flags & IFF_UP) {
1618 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1619 dev);
1620 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1621 }
1622 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1623 }
1624 }
1625unlock:
1626 rtnl_unlock();
1627 return err;
1628}
1629EXPORT_SYMBOL(unregister_netdevice_notifier);
1630
1631/**
1632 * call_netdevice_notifiers_info - call all network notifier blocks
1633 * @val: value passed unmodified to notifier function
1634 * @dev: net_device pointer passed unmodified to notifier function
1635 * @info: notifier information data
1636 *
1637 * Call all network notifier blocks. Parameters and return value
1638 * are as for raw_notifier_call_chain().
1639 */
1640
1641static int call_netdevice_notifiers_info(unsigned long val,
1642 struct net_device *dev,
1643 struct netdev_notifier_info *info)
1644{
1645 ASSERT_RTNL();
1646 netdev_notifier_info_init(info, dev);
1647 return raw_notifier_call_chain(&netdev_chain, val, info);
1648}
1649
1650/**
1651 * call_netdevice_notifiers - call all network notifier blocks
1652 * @val: value passed unmodified to notifier function
1653 * @dev: net_device pointer passed unmodified to notifier function
1654 *
1655 * Call all network notifier blocks. Parameters and return value
1656 * are as for raw_notifier_call_chain().
1657 */
1658
1659int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1660{
1661 struct netdev_notifier_info info;
1662
1663 return call_netdevice_notifiers_info(val, dev, &info);
1664}
1665EXPORT_SYMBOL(call_netdevice_notifiers);
1666
1667#ifdef CONFIG_NET_INGRESS
1668static struct static_key ingress_needed __read_mostly;
1669
1670void net_inc_ingress_queue(void)
1671{
1672 static_key_slow_inc(&ingress_needed);
1673}
1674EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1675
1676void net_dec_ingress_queue(void)
1677{
1678 static_key_slow_dec(&ingress_needed);
1679}
1680EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1681#endif
1682
1683#ifdef CONFIG_NET_EGRESS
1684static struct static_key egress_needed __read_mostly;
1685
1686void net_inc_egress_queue(void)
1687{
1688 static_key_slow_inc(&egress_needed);
1689}
1690EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1691
1692void net_dec_egress_queue(void)
1693{
1694 static_key_slow_dec(&egress_needed);
1695}
1696EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1697#endif
1698
1699static struct static_key netstamp_needed __read_mostly;
1700#ifdef HAVE_JUMP_LABEL
1701static atomic_t netstamp_needed_deferred;
1702static atomic_t netstamp_wanted;
1703static void netstamp_clear(struct work_struct *work)
1704{
1705 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1706 int wanted;
1707
1708 wanted = atomic_add_return(deferred, &netstamp_wanted);
1709 if (wanted > 0)
1710 static_key_enable(&netstamp_needed);
1711 else
1712 static_key_disable(&netstamp_needed);
1713}
1714static DECLARE_WORK(netstamp_work, netstamp_clear);
1715#endif
1716
1717void net_enable_timestamp(void)
1718{
1719#ifdef HAVE_JUMP_LABEL
1720 int wanted;
1721
1722 while (1) {
1723 wanted = atomic_read(&netstamp_wanted);
1724 if (wanted <= 0)
1725 break;
1726 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1727 return;
1728 }
1729 atomic_inc(&netstamp_needed_deferred);
1730 schedule_work(&netstamp_work);
1731#else
1732 static_key_slow_inc(&netstamp_needed);
1733#endif
1734}
1735EXPORT_SYMBOL(net_enable_timestamp);
1736
1737void net_disable_timestamp(void)
1738{
1739#ifdef HAVE_JUMP_LABEL
1740 int wanted;
1741
1742 while (1) {
1743 wanted = atomic_read(&netstamp_wanted);
1744 if (wanted <= 1)
1745 break;
1746 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1747 return;
1748 }
1749 atomic_dec(&netstamp_needed_deferred);
1750 schedule_work(&netstamp_work);
1751#else
1752 static_key_slow_dec(&netstamp_needed);
1753#endif
1754}
1755EXPORT_SYMBOL(net_disable_timestamp);
1756
1757static inline void net_timestamp_set(struct sk_buff *skb)
1758{
1759 skb->tstamp = 0;
1760 if (static_key_false(&netstamp_needed))
1761 __net_timestamp(skb);
1762}
1763
1764#define net_timestamp_check(COND, SKB) \
1765 if (static_key_false(&netstamp_needed)) { \
1766 if ((COND) && !(SKB)->tstamp) \
1767 __net_timestamp(SKB); \
1768 } \
1769
1770bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1771{
1772 unsigned int len;
1773
1774 if (!(dev->flags & IFF_UP))
1775 return false;
1776
1777 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1778 if (skb->len <= len)
1779 return true;
1780
1781 /* if TSO is enabled, we don't care about the length as the packet
1782 * could be forwarded without being segmented before
1783 */
1784 if (skb_is_gso(skb))
1785 return true;
1786
1787 return false;
1788}
1789EXPORT_SYMBOL_GPL(is_skb_forwardable);
1790
1791int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1792{
1793 int ret = ____dev_forward_skb(dev, skb);
1794
1795 if (likely(!ret)) {
1796 skb->protocol = eth_type_trans(skb, dev);
1797 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1798 }
1799
1800 return ret;
1801}
1802EXPORT_SYMBOL_GPL(__dev_forward_skb);
1803
1804/**
1805 * dev_forward_skb - loopback an skb to another netif
1806 *
1807 * @dev: destination network device
1808 * @skb: buffer to forward
1809 *
1810 * return values:
1811 * NET_RX_SUCCESS (no congestion)
1812 * NET_RX_DROP (packet was dropped, but freed)
1813 *
1814 * dev_forward_skb can be used for injecting an skb from the
1815 * start_xmit function of one device into the receive queue
1816 * of another device.
1817 *
1818 * The receiving device may be in another namespace, so
1819 * we have to clear all information in the skb that could
1820 * impact namespace isolation.
1821 */
1822int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1823{
1824 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1825}
1826EXPORT_SYMBOL_GPL(dev_forward_skb);
1827
1828static inline int deliver_skb(struct sk_buff *skb,
1829 struct packet_type *pt_prev,
1830 struct net_device *orig_dev)
1831{
1832 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1833 return -ENOMEM;
1834 atomic_inc(&skb->users);
1835 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1836}
1837
1838static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1839 struct packet_type **pt,
1840 struct net_device *orig_dev,
1841 __be16 type,
1842 struct list_head *ptype_list)
1843{
1844 struct packet_type *ptype, *pt_prev = *pt;
1845
1846 list_for_each_entry_rcu(ptype, ptype_list, list) {
1847 if (ptype->type != type)
1848 continue;
1849 if (pt_prev)
1850 deliver_skb(skb, pt_prev, orig_dev);
1851 pt_prev = ptype;
1852 }
1853 *pt = pt_prev;
1854}
1855
1856static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1857{
1858 if (!ptype->af_packet_priv || !skb->sk)
1859 return false;
1860
1861 if (ptype->id_match)
1862 return ptype->id_match(ptype, skb->sk);
1863 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1864 return true;
1865
1866 return false;
1867}
1868
1869/*
1870 * Support routine. Sends outgoing frames to any network
1871 * taps currently in use.
1872 */
1873
1874void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1875{
1876 struct packet_type *ptype;
1877 struct sk_buff *skb2 = NULL;
1878 struct packet_type *pt_prev = NULL;
1879 struct list_head *ptype_list = &ptype_all;
1880
1881 rcu_read_lock();
1882again:
1883 list_for_each_entry_rcu(ptype, ptype_list, list) {
1884 /* Never send packets back to the socket
1885 * they originated from - MvS (miquels@drinkel.ow.org)
1886 */
1887 if (skb_loop_sk(ptype, skb))
1888 continue;
1889
1890 if (pt_prev) {
1891 deliver_skb(skb2, pt_prev, skb->dev);
1892 pt_prev = ptype;
1893 continue;
1894 }
1895
1896 /* need to clone skb, done only once */
1897 skb2 = skb_clone(skb, GFP_ATOMIC);
1898 if (!skb2)
1899 goto out_unlock;
1900
1901 net_timestamp_set(skb2);
1902
1903 /* skb->nh should be correctly
1904 * set by sender, so that the second statement is
1905 * just protection against buggy protocols.
1906 */
1907 skb_reset_mac_header(skb2);
1908
1909 if (skb_network_header(skb2) < skb2->data ||
1910 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1911 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1912 ntohs(skb2->protocol),
1913 dev->name);
1914 skb_reset_network_header(skb2);
1915 }
1916
1917 skb2->transport_header = skb2->network_header;
1918 skb2->pkt_type = PACKET_OUTGOING;
1919 pt_prev = ptype;
1920 }
1921
1922 if (ptype_list == &ptype_all) {
1923 ptype_list = &dev->ptype_all;
1924 goto again;
1925 }
1926out_unlock:
1927 if (pt_prev)
1928 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1929 rcu_read_unlock();
1930}
1931EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1932
1933/**
1934 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1935 * @dev: Network device
1936 * @txq: number of queues available
1937 *
1938 * If real_num_tx_queues is changed the tc mappings may no longer be
1939 * valid. To resolve this verify the tc mapping remains valid and if
1940 * not NULL the mapping. With no priorities mapping to this
1941 * offset/count pair it will no longer be used. In the worst case TC0
1942 * is invalid nothing can be done so disable priority mappings. If is
1943 * expected that drivers will fix this mapping if they can before
1944 * calling netif_set_real_num_tx_queues.
1945 */
1946static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1947{
1948 int i;
1949 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1950
1951 /* If TC0 is invalidated disable TC mapping */
1952 if (tc->offset + tc->count > txq) {
1953 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1954 dev->num_tc = 0;
1955 return;
1956 }
1957
1958 /* Invalidated prio to tc mappings set to TC0 */
1959 for (i = 1; i < TC_BITMASK + 1; i++) {
1960 int q = netdev_get_prio_tc_map(dev, i);
1961
1962 tc = &dev->tc_to_txq[q];
1963 if (tc->offset + tc->count > txq) {
1964 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1965 i, q);
1966 netdev_set_prio_tc_map(dev, i, 0);
1967 }
1968 }
1969}
1970
1971int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
1972{
1973 if (dev->num_tc) {
1974 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1975 int i;
1976
1977 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
1978 if ((txq - tc->offset) < tc->count)
1979 return i;
1980 }
1981
1982 return -1;
1983 }
1984
1985 return 0;
1986}
1987
1988#ifdef CONFIG_XPS
1989static DEFINE_MUTEX(xps_map_mutex);
1990#define xmap_dereference(P) \
1991 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1992
1993static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
1994 int tci, u16 index)
1995{
1996 struct xps_map *map = NULL;
1997 int pos;
1998
1999 if (dev_maps)
2000 map = xmap_dereference(dev_maps->cpu_map[tci]);
2001 if (!map)
2002 return false;
2003
2004 for (pos = map->len; pos--;) {
2005 if (map->queues[pos] != index)
2006 continue;
2007
2008 if (map->len > 1) {
2009 map->queues[pos] = map->queues[--map->len];
2010 break;
2011 }
2012
2013 RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL);
2014 kfree_rcu(map, rcu);
2015 return false;
2016 }
2017
2018 return true;
2019}
2020
2021static bool remove_xps_queue_cpu(struct net_device *dev,
2022 struct xps_dev_maps *dev_maps,
2023 int cpu, u16 offset, u16 count)
2024{
2025 int num_tc = dev->num_tc ? : 1;
2026 bool active = false;
2027 int tci;
2028
2029 for (tci = cpu * num_tc; num_tc--; tci++) {
2030 int i, j;
2031
2032 for (i = count, j = offset; i--; j++) {
2033 if (!remove_xps_queue(dev_maps, cpu, j))
2034 break;
2035 }
2036
2037 active |= i < 0;
2038 }
2039
2040 return active;
2041}
2042
2043static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2044 u16 count)
2045{
2046 struct xps_dev_maps *dev_maps;
2047 int cpu, i;
2048 bool active = false;
2049
2050 mutex_lock(&xps_map_mutex);
2051 dev_maps = xmap_dereference(dev->xps_maps);
2052
2053 if (!dev_maps)
2054 goto out_no_maps;
2055
2056 for_each_possible_cpu(cpu)
2057 active |= remove_xps_queue_cpu(dev, dev_maps, cpu,
2058 offset, count);
2059
2060 if (!active) {
2061 RCU_INIT_POINTER(dev->xps_maps, NULL);
2062 kfree_rcu(dev_maps, rcu);
2063 }
2064
2065 for (i = offset + (count - 1); count--; i--)
2066 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2067 NUMA_NO_NODE);
2068
2069out_no_maps:
2070 mutex_unlock(&xps_map_mutex);
2071}
2072
2073static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2074{
2075 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2076}
2077
2078static struct xps_map *expand_xps_map(struct xps_map *map,
2079 int cpu, u16 index)
2080{
2081 struct xps_map *new_map;
2082 int alloc_len = XPS_MIN_MAP_ALLOC;
2083 int i, pos;
2084
2085 for (pos = 0; map && pos < map->len; pos++) {
2086 if (map->queues[pos] != index)
2087 continue;
2088 return map;
2089 }
2090
2091 /* Need to add queue to this CPU's existing map */
2092 if (map) {
2093 if (pos < map->alloc_len)
2094 return map;
2095
2096 alloc_len = map->alloc_len * 2;
2097 }
2098
2099 /* Need to allocate new map to store queue on this CPU's map */
2100 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2101 cpu_to_node(cpu));
2102 if (!new_map)
2103 return NULL;
2104
2105 for (i = 0; i < pos; i++)
2106 new_map->queues[i] = map->queues[i];
2107 new_map->alloc_len = alloc_len;
2108 new_map->len = pos;
2109
2110 return new_map;
2111}
2112
2113int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2114 u16 index)
2115{
2116 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2117 int i, cpu, tci, numa_node_id = -2;
2118 int maps_sz, num_tc = 1, tc = 0;
2119 struct xps_map *map, *new_map;
2120 bool active = false;
2121
2122 if (dev->num_tc) {
2123 num_tc = dev->num_tc;
2124 tc = netdev_txq_to_tc(dev, index);
2125 if (tc < 0)
2126 return -EINVAL;
2127 }
2128
2129 maps_sz = XPS_DEV_MAPS_SIZE(num_tc);
2130 if (maps_sz < L1_CACHE_BYTES)
2131 maps_sz = L1_CACHE_BYTES;
2132
2133 mutex_lock(&xps_map_mutex);
2134
2135 dev_maps = xmap_dereference(dev->xps_maps);
2136
2137 /* allocate memory for queue storage */
2138 for_each_cpu_and(cpu, cpu_online_mask, mask) {
2139 if (!new_dev_maps)
2140 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2141 if (!new_dev_maps) {
2142 mutex_unlock(&xps_map_mutex);
2143 return -ENOMEM;
2144 }
2145
2146 tci = cpu * num_tc + tc;
2147 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) :
2148 NULL;
2149
2150 map = expand_xps_map(map, cpu, index);
2151 if (!map)
2152 goto error;
2153
2154 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2155 }
2156
2157 if (!new_dev_maps)
2158 goto out_no_new_maps;
2159
2160 for_each_possible_cpu(cpu) {
2161 /* copy maps belonging to foreign traffic classes */
2162 for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) {
2163 /* fill in the new device map from the old device map */
2164 map = xmap_dereference(dev_maps->cpu_map[tci]);
2165 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2166 }
2167
2168 /* We need to explicitly update tci as prevous loop
2169 * could break out early if dev_maps is NULL.
2170 */
2171 tci = cpu * num_tc + tc;
2172
2173 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2174 /* add queue to CPU maps */
2175 int pos = 0;
2176
2177 map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2178 while ((pos < map->len) && (map->queues[pos] != index))
2179 pos++;
2180
2181 if (pos == map->len)
2182 map->queues[map->len++] = index;
2183#ifdef CONFIG_NUMA
2184 if (numa_node_id == -2)
2185 numa_node_id = cpu_to_node(cpu);
2186 else if (numa_node_id != cpu_to_node(cpu))
2187 numa_node_id = -1;
2188#endif
2189 } else if (dev_maps) {
2190 /* fill in the new device map from the old device map */
2191 map = xmap_dereference(dev_maps->cpu_map[tci]);
2192 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2193 }
2194
2195 /* copy maps belonging to foreign traffic classes */
2196 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2197 /* fill in the new device map from the old device map */
2198 map = xmap_dereference(dev_maps->cpu_map[tci]);
2199 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2200 }
2201 }
2202
2203 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2204
2205 /* Cleanup old maps */
2206 if (!dev_maps)
2207 goto out_no_old_maps;
2208
2209 for_each_possible_cpu(cpu) {
2210 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2211 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2212 map = xmap_dereference(dev_maps->cpu_map[tci]);
2213 if (map && map != new_map)
2214 kfree_rcu(map, rcu);
2215 }
2216 }
2217
2218 kfree_rcu(dev_maps, rcu);
2219
2220out_no_old_maps:
2221 dev_maps = new_dev_maps;
2222 active = true;
2223
2224out_no_new_maps:
2225 /* update Tx queue numa node */
2226 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2227 (numa_node_id >= 0) ? numa_node_id :
2228 NUMA_NO_NODE);
2229
2230 if (!dev_maps)
2231 goto out_no_maps;
2232
2233 /* removes queue from unused CPUs */
2234 for_each_possible_cpu(cpu) {
2235 for (i = tc, tci = cpu * num_tc; i--; tci++)
2236 active |= remove_xps_queue(dev_maps, tci, index);
2237 if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu))
2238 active |= remove_xps_queue(dev_maps, tci, index);
2239 for (i = num_tc - tc, tci++; --i; tci++)
2240 active |= remove_xps_queue(dev_maps, tci, index);
2241 }
2242
2243 /* free map if not active */
2244 if (!active) {
2245 RCU_INIT_POINTER(dev->xps_maps, NULL);
2246 kfree_rcu(dev_maps, rcu);
2247 }
2248
2249out_no_maps:
2250 mutex_unlock(&xps_map_mutex);
2251
2252 return 0;
2253error:
2254 /* remove any maps that we added */
2255 for_each_possible_cpu(cpu) {
2256 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2257 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2258 map = dev_maps ?
2259 xmap_dereference(dev_maps->cpu_map[tci]) :
2260 NULL;
2261 if (new_map && new_map != map)
2262 kfree(new_map);
2263 }
2264 }
2265
2266 mutex_unlock(&xps_map_mutex);
2267
2268 kfree(new_dev_maps);
2269 return -ENOMEM;
2270}
2271EXPORT_SYMBOL(netif_set_xps_queue);
2272
2273#endif
2274void netdev_reset_tc(struct net_device *dev)
2275{
2276#ifdef CONFIG_XPS
2277 netif_reset_xps_queues_gt(dev, 0);
2278#endif
2279 dev->num_tc = 0;
2280 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2281 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2282}
2283EXPORT_SYMBOL(netdev_reset_tc);
2284
2285int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2286{
2287 if (tc >= dev->num_tc)
2288 return -EINVAL;
2289
2290#ifdef CONFIG_XPS
2291 netif_reset_xps_queues(dev, offset, count);
2292#endif
2293 dev->tc_to_txq[tc].count = count;
2294 dev->tc_to_txq[tc].offset = offset;
2295 return 0;
2296}
2297EXPORT_SYMBOL(netdev_set_tc_queue);
2298
2299int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2300{
2301 if (num_tc > TC_MAX_QUEUE)
2302 return -EINVAL;
2303
2304#ifdef CONFIG_XPS
2305 netif_reset_xps_queues_gt(dev, 0);
2306#endif
2307 dev->num_tc = num_tc;
2308 return 0;
2309}
2310EXPORT_SYMBOL(netdev_set_num_tc);
2311
2312/*
2313 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2314 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2315 */
2316int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2317{
2318 int rc;
2319
2320 if (txq < 1 || txq > dev->num_tx_queues)
2321 return -EINVAL;
2322
2323 if (dev->reg_state == NETREG_REGISTERED ||
2324 dev->reg_state == NETREG_UNREGISTERING) {
2325 ASSERT_RTNL();
2326
2327 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2328 txq);
2329 if (rc)
2330 return rc;
2331
2332 if (dev->num_tc)
2333 netif_setup_tc(dev, txq);
2334
2335 if (txq < dev->real_num_tx_queues) {
2336 qdisc_reset_all_tx_gt(dev, txq);
2337#ifdef CONFIG_XPS
2338 netif_reset_xps_queues_gt(dev, txq);
2339#endif
2340 }
2341 }
2342
2343 dev->real_num_tx_queues = txq;
2344 return 0;
2345}
2346EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2347
2348#ifdef CONFIG_SYSFS
2349/**
2350 * netif_set_real_num_rx_queues - set actual number of RX queues used
2351 * @dev: Network device
2352 * @rxq: Actual number of RX queues
2353 *
2354 * This must be called either with the rtnl_lock held or before
2355 * registration of the net device. Returns 0 on success, or a
2356 * negative error code. If called before registration, it always
2357 * succeeds.
2358 */
2359int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2360{
2361 int rc;
2362
2363 if (rxq < 1 || rxq > dev->num_rx_queues)
2364 return -EINVAL;
2365
2366 if (dev->reg_state == NETREG_REGISTERED) {
2367 ASSERT_RTNL();
2368
2369 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2370 rxq);
2371 if (rc)
2372 return rc;
2373 }
2374
2375 dev->real_num_rx_queues = rxq;
2376 return 0;
2377}
2378EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2379#endif
2380
2381/**
2382 * netif_get_num_default_rss_queues - default number of RSS queues
2383 *
2384 * This routine should set an upper limit on the number of RSS queues
2385 * used by default by multiqueue devices.
2386 */
2387int netif_get_num_default_rss_queues(void)
2388{
2389 return is_kdump_kernel() ?
2390 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2391}
2392EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2393
2394static void __netif_reschedule(struct Qdisc *q)
2395{
2396 struct softnet_data *sd;
2397 unsigned long flags;
2398
2399 local_irq_save(flags);
2400 sd = this_cpu_ptr(&softnet_data);
2401 q->next_sched = NULL;
2402 *sd->output_queue_tailp = q;
2403 sd->output_queue_tailp = &q->next_sched;
2404 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2405 local_irq_restore(flags);
2406}
2407
2408void __netif_schedule(struct Qdisc *q)
2409{
2410 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2411 __netif_reschedule(q);
2412}
2413EXPORT_SYMBOL(__netif_schedule);
2414
2415struct dev_kfree_skb_cb {
2416 enum skb_free_reason reason;
2417};
2418
2419static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2420{
2421 return (struct dev_kfree_skb_cb *)skb->cb;
2422}
2423
2424void netif_schedule_queue(struct netdev_queue *txq)
2425{
2426 rcu_read_lock();
2427 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2428 struct Qdisc *q = rcu_dereference(txq->qdisc);
2429
2430 __netif_schedule(q);
2431 }
2432 rcu_read_unlock();
2433}
2434EXPORT_SYMBOL(netif_schedule_queue);
2435
2436void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2437{
2438 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2439 struct Qdisc *q;
2440
2441 rcu_read_lock();
2442 q = rcu_dereference(dev_queue->qdisc);
2443 __netif_schedule(q);
2444 rcu_read_unlock();
2445 }
2446}
2447EXPORT_SYMBOL(netif_tx_wake_queue);
2448
2449void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2450{
2451 unsigned long flags;
2452
2453 if (likely(atomic_read(&skb->users) == 1)) {
2454 smp_rmb();
2455 atomic_set(&skb->users, 0);
2456 } else if (likely(!atomic_dec_and_test(&skb->users))) {
2457 return;
2458 }
2459 get_kfree_skb_cb(skb)->reason = reason;
2460 local_irq_save(flags);
2461 skb->next = __this_cpu_read(softnet_data.completion_queue);
2462 __this_cpu_write(softnet_data.completion_queue, skb);
2463 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2464 local_irq_restore(flags);
2465}
2466EXPORT_SYMBOL(__dev_kfree_skb_irq);
2467
2468void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2469{
2470 if (in_irq() || irqs_disabled())
2471 __dev_kfree_skb_irq(skb, reason);
2472 else
2473 dev_kfree_skb(skb);
2474}
2475EXPORT_SYMBOL(__dev_kfree_skb_any);
2476
2477
2478/**
2479 * netif_device_detach - mark device as removed
2480 * @dev: network device
2481 *
2482 * Mark device as removed from system and therefore no longer available.
2483 */
2484void netif_device_detach(struct net_device *dev)
2485{
2486 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2487 netif_running(dev)) {
2488 netif_tx_stop_all_queues(dev);
2489 }
2490}
2491EXPORT_SYMBOL(netif_device_detach);
2492
2493/**
2494 * netif_device_attach - mark device as attached
2495 * @dev: network device
2496 *
2497 * Mark device as attached from system and restart if needed.
2498 */
2499void netif_device_attach(struct net_device *dev)
2500{
2501 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2502 netif_running(dev)) {
2503 netif_tx_wake_all_queues(dev);
2504 __netdev_watchdog_up(dev);
2505 }
2506}
2507EXPORT_SYMBOL(netif_device_attach);
2508
2509/*
2510 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2511 * to be used as a distribution range.
2512 */
2513u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2514 unsigned int num_tx_queues)
2515{
2516 u32 hash;
2517 u16 qoffset = 0;
2518 u16 qcount = num_tx_queues;
2519
2520 if (skb_rx_queue_recorded(skb)) {
2521 hash = skb_get_rx_queue(skb);
2522 while (unlikely(hash >= num_tx_queues))
2523 hash -= num_tx_queues;
2524 return hash;
2525 }
2526
2527 if (dev->num_tc) {
2528 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2529
2530 qoffset = dev->tc_to_txq[tc].offset;
2531 qcount = dev->tc_to_txq[tc].count;
2532 }
2533
2534 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2535}
2536EXPORT_SYMBOL(__skb_tx_hash);
2537
2538static void skb_warn_bad_offload(const struct sk_buff *skb)
2539{
2540 static const netdev_features_t null_features;
2541 struct net_device *dev = skb->dev;
2542 const char *name = "";
2543
2544 if (!net_ratelimit())
2545 return;
2546
2547 if (dev) {
2548 if (dev->dev.parent)
2549 name = dev_driver_string(dev->dev.parent);
2550 else
2551 name = netdev_name(dev);
2552 }
2553 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2554 "gso_type=%d ip_summed=%d\n",
2555 name, dev ? &dev->features : &null_features,
2556 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2557 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2558 skb_shinfo(skb)->gso_type, skb->ip_summed);
2559}
2560
2561/*
2562 * Invalidate hardware checksum when packet is to be mangled, and
2563 * complete checksum manually on outgoing path.
2564 */
2565int skb_checksum_help(struct sk_buff *skb)
2566{
2567 __wsum csum;
2568 int ret = 0, offset;
2569
2570 if (skb->ip_summed == CHECKSUM_COMPLETE)
2571 goto out_set_summed;
2572
2573 if (unlikely(skb_shinfo(skb)->gso_size)) {
2574 skb_warn_bad_offload(skb);
2575 return -EINVAL;
2576 }
2577
2578 /* Before computing a checksum, we should make sure no frag could
2579 * be modified by an external entity : checksum could be wrong.
2580 */
2581 if (skb_has_shared_frag(skb)) {
2582 ret = __skb_linearize(skb);
2583 if (ret)
2584 goto out;
2585 }
2586
2587 offset = skb_checksum_start_offset(skb);
2588 BUG_ON(offset >= skb_headlen(skb));
2589 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2590
2591 offset += skb->csum_offset;
2592 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2593
2594 if (skb_cloned(skb) &&
2595 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2596 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2597 if (ret)
2598 goto out;
2599 }
2600
2601 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2602out_set_summed:
2603 skb->ip_summed = CHECKSUM_NONE;
2604out:
2605 return ret;
2606}
2607EXPORT_SYMBOL(skb_checksum_help);
2608
2609__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2610{
2611 __be16 type = skb->protocol;
2612
2613 /* Tunnel gso handlers can set protocol to ethernet. */
2614 if (type == htons(ETH_P_TEB)) {
2615 struct ethhdr *eth;
2616
2617 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2618 return 0;
2619
2620 eth = (struct ethhdr *)skb_mac_header(skb);
2621 type = eth->h_proto;
2622 }
2623
2624 return __vlan_get_protocol(skb, type, depth);
2625}
2626
2627/**
2628 * skb_mac_gso_segment - mac layer segmentation handler.
2629 * @skb: buffer to segment
2630 * @features: features for the output path (see dev->features)
2631 */
2632struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2633 netdev_features_t features)
2634{
2635 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2636 struct packet_offload *ptype;
2637 int vlan_depth = skb->mac_len;
2638 __be16 type = skb_network_protocol(skb, &vlan_depth);
2639
2640 if (unlikely(!type))
2641 return ERR_PTR(-EINVAL);
2642
2643 __skb_pull(skb, vlan_depth);
2644
2645 rcu_read_lock();
2646 list_for_each_entry_rcu(ptype, &offload_base, list) {
2647 if (ptype->type == type && ptype->callbacks.gso_segment) {
2648 segs = ptype->callbacks.gso_segment(skb, features);
2649 break;
2650 }
2651 }
2652 rcu_read_unlock();
2653
2654 __skb_push(skb, skb->data - skb_mac_header(skb));
2655
2656 return segs;
2657}
2658EXPORT_SYMBOL(skb_mac_gso_segment);
2659
2660
2661/* openvswitch calls this on rx path, so we need a different check.
2662 */
2663static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2664{
2665 if (tx_path)
2666 return skb->ip_summed != CHECKSUM_PARTIAL &&
2667 skb->ip_summed != CHECKSUM_NONE;
2668
2669 return skb->ip_summed == CHECKSUM_NONE;
2670}
2671
2672/**
2673 * __skb_gso_segment - Perform segmentation on skb.
2674 * @skb: buffer to segment
2675 * @features: features for the output path (see dev->features)
2676 * @tx_path: whether it is called in TX path
2677 *
2678 * This function segments the given skb and returns a list of segments.
2679 *
2680 * It may return NULL if the skb requires no segmentation. This is
2681 * only possible when GSO is used for verifying header integrity.
2682 *
2683 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2684 */
2685struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2686 netdev_features_t features, bool tx_path)
2687{
2688 struct sk_buff *segs;
2689
2690 if (unlikely(skb_needs_check(skb, tx_path))) {
2691 int err;
2692
2693 /* We're going to init ->check field in TCP or UDP header */
2694 err = skb_cow_head(skb, 0);
2695 if (err < 0)
2696 return ERR_PTR(err);
2697 }
2698
2699 /* Only report GSO partial support if it will enable us to
2700 * support segmentation on this frame without needing additional
2701 * work.
2702 */
2703 if (features & NETIF_F_GSO_PARTIAL) {
2704 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2705 struct net_device *dev = skb->dev;
2706
2707 partial_features |= dev->features & dev->gso_partial_features;
2708 if (!skb_gso_ok(skb, features | partial_features))
2709 features &= ~NETIF_F_GSO_PARTIAL;
2710 }
2711
2712 BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2713 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2714
2715 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2716 SKB_GSO_CB(skb)->encap_level = 0;
2717
2718 skb_reset_mac_header(skb);
2719 skb_reset_mac_len(skb);
2720
2721 segs = skb_mac_gso_segment(skb, features);
2722
2723 if (unlikely(skb_needs_check(skb, tx_path)))
2724 skb_warn_bad_offload(skb);
2725
2726 return segs;
2727}
2728EXPORT_SYMBOL(__skb_gso_segment);
2729
2730/* Take action when hardware reception checksum errors are detected. */
2731#ifdef CONFIG_BUG
2732void netdev_rx_csum_fault(struct net_device *dev)
2733{
2734 if (net_ratelimit()) {
2735 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2736 dump_stack();
2737 }
2738}
2739EXPORT_SYMBOL(netdev_rx_csum_fault);
2740#endif
2741
2742/* Actually, we should eliminate this check as soon as we know, that:
2743 * 1. IOMMU is present and allows to map all the memory.
2744 * 2. No high memory really exists on this machine.
2745 */
2746
2747static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2748{
2749#ifdef CONFIG_HIGHMEM
2750 int i;
2751
2752 if (!(dev->features & NETIF_F_HIGHDMA)) {
2753 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2754 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2755
2756 if (PageHighMem(skb_frag_page(frag)))
2757 return 1;
2758 }
2759 }
2760
2761 if (PCI_DMA_BUS_IS_PHYS) {
2762 struct device *pdev = dev->dev.parent;
2763
2764 if (!pdev)
2765 return 0;
2766 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2767 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2768 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2769
2770 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2771 return 1;
2772 }
2773 }
2774#endif
2775 return 0;
2776}
2777
2778/* If MPLS offload request, verify we are testing hardware MPLS features
2779 * instead of standard features for the netdev.
2780 */
2781#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2782static netdev_features_t net_mpls_features(struct sk_buff *skb,
2783 netdev_features_t features,
2784 __be16 type)
2785{
2786 if (eth_p_mpls(type))
2787 features &= skb->dev->mpls_features;
2788
2789 return features;
2790}
2791#else
2792static netdev_features_t net_mpls_features(struct sk_buff *skb,
2793 netdev_features_t features,
2794 __be16 type)
2795{
2796 return features;
2797}
2798#endif
2799
2800static netdev_features_t harmonize_features(struct sk_buff *skb,
2801 netdev_features_t features)
2802{
2803 int tmp;
2804 __be16 type;
2805
2806 type = skb_network_protocol(skb, &tmp);
2807 features = net_mpls_features(skb, features, type);
2808
2809 if (skb->ip_summed != CHECKSUM_NONE &&
2810 !can_checksum_protocol(features, type)) {
2811 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2812 }
2813 if (illegal_highdma(skb->dev, skb))
2814 features &= ~NETIF_F_SG;
2815
2816 return features;
2817}
2818
2819netdev_features_t passthru_features_check(struct sk_buff *skb,
2820 struct net_device *dev,
2821 netdev_features_t features)
2822{
2823 return features;
2824}
2825EXPORT_SYMBOL(passthru_features_check);
2826
2827static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2828 struct net_device *dev,
2829 netdev_features_t features)
2830{
2831 return vlan_features_check(skb, features);
2832}
2833
2834static netdev_features_t gso_features_check(const struct sk_buff *skb,
2835 struct net_device *dev,
2836 netdev_features_t features)
2837{
2838 u16 gso_segs = skb_shinfo(skb)->gso_segs;
2839
2840 if (gso_segs > dev->gso_max_segs)
2841 return features & ~NETIF_F_GSO_MASK;
2842
2843 /* Support for GSO partial features requires software
2844 * intervention before we can actually process the packets
2845 * so we need to strip support for any partial features now
2846 * and we can pull them back in after we have partially
2847 * segmented the frame.
2848 */
2849 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2850 features &= ~dev->gso_partial_features;
2851
2852 /* Make sure to clear the IPv4 ID mangling feature if the
2853 * IPv4 header has the potential to be fragmented.
2854 */
2855 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2856 struct iphdr *iph = skb->encapsulation ?
2857 inner_ip_hdr(skb) : ip_hdr(skb);
2858
2859 if (!(iph->frag_off & htons(IP_DF)))
2860 features &= ~NETIF_F_TSO_MANGLEID;
2861 }
2862
2863 return features;
2864}
2865
2866netdev_features_t netif_skb_features(struct sk_buff *skb)
2867{
2868 struct net_device *dev = skb->dev;
2869 netdev_features_t features = dev->features;
2870
2871 if (skb_is_gso(skb))
2872 features = gso_features_check(skb, dev, features);
2873
2874 /* If encapsulation offload request, verify we are testing
2875 * hardware encapsulation features instead of standard
2876 * features for the netdev
2877 */
2878 if (skb->encapsulation)
2879 features &= dev->hw_enc_features;
2880
2881 if (skb_vlan_tagged(skb))
2882 features = netdev_intersect_features(features,
2883 dev->vlan_features |
2884 NETIF_F_HW_VLAN_CTAG_TX |
2885 NETIF_F_HW_VLAN_STAG_TX);
2886
2887 if (dev->netdev_ops->ndo_features_check)
2888 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2889 features);
2890 else
2891 features &= dflt_features_check(skb, dev, features);
2892
2893 return harmonize_features(skb, features);
2894}
2895EXPORT_SYMBOL(netif_skb_features);
2896
2897static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2898 struct netdev_queue *txq, bool more)
2899{
2900 unsigned int len;
2901 int rc;
2902
2903 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2904 dev_queue_xmit_nit(skb, dev);
2905
2906 len = skb->len;
2907 trace_net_dev_start_xmit(skb, dev);
2908 rc = netdev_start_xmit(skb, dev, txq, more);
2909 trace_net_dev_xmit(skb, rc, dev, len);
2910
2911 return rc;
2912}
2913
2914struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2915 struct netdev_queue *txq, int *ret)
2916{
2917 struct sk_buff *skb = first;
2918 int rc = NETDEV_TX_OK;
2919
2920 while (skb) {
2921 struct sk_buff *next = skb->next;
2922
2923 skb->next = NULL;
2924 rc = xmit_one(skb, dev, txq, next != NULL);
2925 if (unlikely(!dev_xmit_complete(rc))) {
2926 skb->next = next;
2927 goto out;
2928 }
2929
2930 skb = next;
2931 if (netif_xmit_stopped(txq) && skb) {
2932 rc = NETDEV_TX_BUSY;
2933 break;
2934 }
2935 }
2936
2937out:
2938 *ret = rc;
2939 return skb;
2940}
2941
2942static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2943 netdev_features_t features)
2944{
2945 if (skb_vlan_tag_present(skb) &&
2946 !vlan_hw_offload_capable(features, skb->vlan_proto))
2947 skb = __vlan_hwaccel_push_inside(skb);
2948 return skb;
2949}
2950
2951static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2952{
2953 netdev_features_t features;
2954
2955 features = netif_skb_features(skb);
2956 skb = validate_xmit_vlan(skb, features);
2957 if (unlikely(!skb))
2958 goto out_null;
2959
2960 if (netif_needs_gso(skb, features)) {
2961 struct sk_buff *segs;
2962
2963 segs = skb_gso_segment(skb, features);
2964 if (IS_ERR(segs)) {
2965 goto out_kfree_skb;
2966 } else if (segs) {
2967 consume_skb(skb);
2968 skb = segs;
2969 }
2970 } else {
2971 if (skb_needs_linearize(skb, features) &&
2972 __skb_linearize(skb))
2973 goto out_kfree_skb;
2974
2975 /* If packet is not checksummed and device does not
2976 * support checksumming for this protocol, complete
2977 * checksumming here.
2978 */
2979 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2980 if (skb->encapsulation)
2981 skb_set_inner_transport_header(skb,
2982 skb_checksum_start_offset(skb));
2983 else
2984 skb_set_transport_header(skb,
2985 skb_checksum_start_offset(skb));
2986 if (!(features & NETIF_F_CSUM_MASK) &&
2987 skb_checksum_help(skb))
2988 goto out_kfree_skb;
2989 }
2990 }
2991
2992 return skb;
2993
2994out_kfree_skb:
2995 kfree_skb(skb);
2996out_null:
2997 atomic_long_inc(&dev->tx_dropped);
2998 return NULL;
2999}
3000
3001struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
3002{
3003 struct sk_buff *next, *head = NULL, *tail;
3004
3005 for (; skb != NULL; skb = next) {
3006 next = skb->next;
3007 skb->next = NULL;
3008
3009 /* in case skb wont be segmented, point to itself */
3010 skb->prev = skb;
3011
3012 skb = validate_xmit_skb(skb, dev);
3013 if (!skb)
3014 continue;
3015
3016 if (!head)
3017 head = skb;
3018 else
3019 tail->next = skb;
3020 /* If skb was segmented, skb->prev points to
3021 * the last segment. If not, it still contains skb.
3022 */
3023 tail = skb->prev;
3024 }
3025 return head;
3026}
3027EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3028
3029static void qdisc_pkt_len_init(struct sk_buff *skb)
3030{
3031 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3032
3033 qdisc_skb_cb(skb)->pkt_len = skb->len;
3034
3035 /* To get more precise estimation of bytes sent on wire,
3036 * we add to pkt_len the headers size of all segments
3037 */
3038 if (shinfo->gso_size) {
3039 unsigned int hdr_len;
3040 u16 gso_segs = shinfo->gso_segs;
3041
3042 /* mac layer + network layer */
3043 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3044
3045 /* + transport layer */
3046 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3047 hdr_len += tcp_hdrlen(skb);
3048 else
3049 hdr_len += sizeof(struct udphdr);
3050
3051 if (shinfo->gso_type & SKB_GSO_DODGY)
3052 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3053 shinfo->gso_size);
3054
3055 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3056 }
3057}
3058
3059static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3060 struct net_device *dev,
3061 struct netdev_queue *txq)
3062{
3063 spinlock_t *root_lock = qdisc_lock(q);
3064 struct sk_buff *to_free = NULL;
3065 bool contended;
3066 int rc;
3067
3068 qdisc_calculate_pkt_len(skb, q);
3069 /*
3070 * Heuristic to force contended enqueues to serialize on a
3071 * separate lock before trying to get qdisc main lock.
3072 * This permits qdisc->running owner to get the lock more
3073 * often and dequeue packets faster.
3074 */
3075 contended = qdisc_is_running(q);
3076 if (unlikely(contended))
3077 spin_lock(&q->busylock);
3078
3079 spin_lock(root_lock);
3080 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3081 __qdisc_drop(skb, &to_free);
3082 rc = NET_XMIT_DROP;
3083 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3084 qdisc_run_begin(q)) {
3085 /*
3086 * This is a work-conserving queue; there are no old skbs
3087 * waiting to be sent out; and the qdisc is not running -
3088 * xmit the skb directly.
3089 */
3090
3091 qdisc_bstats_update(q, skb);
3092
3093 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3094 if (unlikely(contended)) {
3095 spin_unlock(&q->busylock);
3096 contended = false;
3097 }
3098 __qdisc_run(q);
3099 } else
3100 qdisc_run_end(q);
3101
3102 rc = NET_XMIT_SUCCESS;
3103 } else {
3104 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3105 if (qdisc_run_begin(q)) {
3106 if (unlikely(contended)) {
3107 spin_unlock(&q->busylock);
3108 contended = false;
3109 }
3110 __qdisc_run(q);
3111 }
3112 }
3113 spin_unlock(root_lock);
3114 if (unlikely(to_free))
3115 kfree_skb_list(to_free);
3116 if (unlikely(contended))
3117 spin_unlock(&q->busylock);
3118 return rc;
3119}
3120
3121#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3122static void skb_update_prio(struct sk_buff *skb)
3123{
3124 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
3125
3126 if (!skb->priority && skb->sk && map) {
3127 unsigned int prioidx =
3128 sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
3129
3130 if (prioidx < map->priomap_len)
3131 skb->priority = map->priomap[prioidx];
3132 }
3133}
3134#else
3135#define skb_update_prio(skb)
3136#endif
3137
3138DEFINE_PER_CPU(int, xmit_recursion);
3139EXPORT_SYMBOL(xmit_recursion);
3140
3141/**
3142 * dev_loopback_xmit - loop back @skb
3143 * @net: network namespace this loopback is happening in
3144 * @sk: sk needed to be a netfilter okfn
3145 * @skb: buffer to transmit
3146 */
3147int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3148{
3149 skb_reset_mac_header(skb);
3150 __skb_pull(skb, skb_network_offset(skb));
3151 skb->pkt_type = PACKET_LOOPBACK;
3152 skb->ip_summed = CHECKSUM_UNNECESSARY;
3153 WARN_ON(!skb_dst(skb));
3154 skb_dst_force(skb);
3155 netif_rx_ni(skb);
3156 return 0;
3157}
3158EXPORT_SYMBOL(dev_loopback_xmit);
3159
3160#ifdef CONFIG_NET_EGRESS
3161static struct sk_buff *
3162sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3163{
3164 struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list);
3165 struct tcf_result cl_res;
3166
3167 if (!cl)
3168 return skb;
3169
3170 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3171 qdisc_bstats_cpu_update(cl->q, skb);
3172
3173 switch (tc_classify(skb, cl, &cl_res, false)) {
3174 case TC_ACT_OK:
3175 case TC_ACT_RECLASSIFY:
3176 skb->tc_index = TC_H_MIN(cl_res.classid);
3177 break;
3178 case TC_ACT_SHOT:
3179 qdisc_qstats_cpu_drop(cl->q);
3180 *ret = NET_XMIT_DROP;
3181 kfree_skb(skb);
3182 return NULL;
3183 case TC_ACT_STOLEN:
3184 case TC_ACT_QUEUED:
3185 *ret = NET_XMIT_SUCCESS;
3186 consume_skb(skb);
3187 return NULL;
3188 case TC_ACT_REDIRECT:
3189 /* No need to push/pop skb's mac_header here on egress! */
3190 skb_do_redirect(skb);
3191 *ret = NET_XMIT_SUCCESS;
3192 return NULL;
3193 default:
3194 break;
3195 }
3196
3197 return skb;
3198}
3199#endif /* CONFIG_NET_EGRESS */
3200
3201static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3202{
3203#ifdef CONFIG_XPS
3204 struct xps_dev_maps *dev_maps;
3205 struct xps_map *map;
3206 int queue_index = -1;
3207
3208 rcu_read_lock();
3209 dev_maps = rcu_dereference(dev->xps_maps);
3210 if (dev_maps) {
3211 unsigned int tci = skb->sender_cpu - 1;
3212
3213 if (dev->num_tc) {
3214 tci *= dev->num_tc;
3215 tci += netdev_get_prio_tc_map(dev, skb->priority);
3216 }
3217
3218 map = rcu_dereference(dev_maps->cpu_map[tci]);
3219 if (map) {
3220 if (map->len == 1)
3221 queue_index = map->queues[0];
3222 else
3223 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3224 map->len)];
3225 if (unlikely(queue_index >= dev->real_num_tx_queues))
3226 queue_index = -1;
3227 }
3228 }
3229 rcu_read_unlock();
3230
3231 return queue_index;
3232#else
3233 return -1;
3234#endif
3235}
3236
3237static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3238{
3239 struct sock *sk = skb->sk;
3240 int queue_index = sk_tx_queue_get(sk);
3241
3242 if (queue_index < 0 || skb->ooo_okay ||
3243 queue_index >= dev->real_num_tx_queues) {
3244 int new_index = get_xps_queue(dev, skb);
3245
3246 if (new_index < 0)
3247 new_index = skb_tx_hash(dev, skb);
3248
3249 if (queue_index != new_index && sk &&
3250 sk_fullsock(sk) &&
3251 rcu_access_pointer(sk->sk_dst_cache))
3252 sk_tx_queue_set(sk, new_index);
3253
3254 queue_index = new_index;
3255 }
3256
3257 return queue_index;
3258}
3259
3260struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3261 struct sk_buff *skb,
3262 void *accel_priv)
3263{
3264 int queue_index = 0;
3265
3266#ifdef CONFIG_XPS
3267 u32 sender_cpu = skb->sender_cpu - 1;
3268
3269 if (sender_cpu >= (u32)NR_CPUS)
3270 skb->sender_cpu = raw_smp_processor_id() + 1;
3271#endif
3272
3273 if (dev->real_num_tx_queues != 1) {
3274 const struct net_device_ops *ops = dev->netdev_ops;
3275
3276 if (ops->ndo_select_queue)
3277 queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3278 __netdev_pick_tx);
3279 else
3280 queue_index = __netdev_pick_tx(dev, skb);
3281
3282 if (!accel_priv)
3283 queue_index = netdev_cap_txqueue(dev, queue_index);
3284 }
3285
3286 skb_set_queue_mapping(skb, queue_index);
3287 return netdev_get_tx_queue(dev, queue_index);
3288}
3289
3290/**
3291 * __dev_queue_xmit - transmit a buffer
3292 * @skb: buffer to transmit
3293 * @accel_priv: private data used for L2 forwarding offload
3294 *
3295 * Queue a buffer for transmission to a network device. The caller must
3296 * have set the device and priority and built the buffer before calling
3297 * this function. The function can be called from an interrupt.
3298 *
3299 * A negative errno code is returned on a failure. A success does not
3300 * guarantee the frame will be transmitted as it may be dropped due
3301 * to congestion or traffic shaping.
3302 *
3303 * -----------------------------------------------------------------------------------
3304 * I notice this method can also return errors from the queue disciplines,
3305 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3306 * be positive.
3307 *
3308 * Regardless of the return value, the skb is consumed, so it is currently
3309 * difficult to retry a send to this method. (You can bump the ref count
3310 * before sending to hold a reference for retry if you are careful.)
3311 *
3312 * When calling this method, interrupts MUST be enabled. This is because
3313 * the BH enable code must have IRQs enabled so that it will not deadlock.
3314 * --BLG
3315 */
3316static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3317{
3318 struct net_device *dev = skb->dev;
3319 struct netdev_queue *txq;
3320 struct Qdisc *q;
3321 int rc = -ENOMEM;
3322
3323 skb_reset_mac_header(skb);
3324
3325 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3326 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3327
3328 /* Disable soft irqs for various locks below. Also
3329 * stops preemption for RCU.
3330 */
3331 rcu_read_lock_bh();
3332
3333 skb_update_prio(skb);
3334
3335 qdisc_pkt_len_init(skb);
3336#ifdef CONFIG_NET_CLS_ACT
3337 skb->tc_at_ingress = 0;
3338# ifdef CONFIG_NET_EGRESS
3339 if (static_key_false(&egress_needed)) {
3340 skb = sch_handle_egress(skb, &rc, dev);
3341 if (!skb)
3342 goto out;
3343 }
3344# endif
3345#endif
3346 /* If device/qdisc don't need skb->dst, release it right now while
3347 * its hot in this cpu cache.
3348 */
3349 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3350 skb_dst_drop(skb);
3351 else
3352 skb_dst_force(skb);
3353
3354 txq = netdev_pick_tx(dev, skb, accel_priv);
3355 q = rcu_dereference_bh(txq->qdisc);
3356
3357 trace_net_dev_queue(skb);
3358 if (q->enqueue) {
3359 rc = __dev_xmit_skb(skb, q, dev, txq);
3360 goto out;
3361 }
3362
3363 /* The device has no queue. Common case for software devices:
3364 * loopback, all the sorts of tunnels...
3365
3366 * Really, it is unlikely that netif_tx_lock protection is necessary
3367 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
3368 * counters.)
3369 * However, it is possible, that they rely on protection
3370 * made by us here.
3371
3372 * Check this and shot the lock. It is not prone from deadlocks.
3373 *Either shot noqueue qdisc, it is even simpler 8)
3374 */
3375 if (dev->flags & IFF_UP) {
3376 int cpu = smp_processor_id(); /* ok because BHs are off */
3377
3378 if (txq->xmit_lock_owner != cpu) {
3379 if (unlikely(__this_cpu_read(xmit_recursion) >
3380 XMIT_RECURSION_LIMIT))
3381 goto recursion_alert;
3382
3383 skb = validate_xmit_skb(skb, dev);
3384 if (!skb)
3385 goto out;
3386
3387 HARD_TX_LOCK(dev, txq, cpu);
3388
3389 if (!netif_xmit_stopped(txq)) {
3390 __this_cpu_inc(xmit_recursion);
3391 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3392 __this_cpu_dec(xmit_recursion);
3393 if (dev_xmit_complete(rc)) {
3394 HARD_TX_UNLOCK(dev, txq);
3395 goto out;
3396 }
3397 }
3398 HARD_TX_UNLOCK(dev, txq);
3399 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3400 dev->name);
3401 } else {
3402 /* Recursion is detected! It is possible,
3403 * unfortunately
3404 */
3405recursion_alert:
3406 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3407 dev->name);
3408 }
3409 }
3410
3411 rc = -ENETDOWN;
3412 rcu_read_unlock_bh();
3413
3414 atomic_long_inc(&dev->tx_dropped);
3415 kfree_skb_list(skb);
3416 return rc;
3417out:
3418 rcu_read_unlock_bh();
3419 return rc;
3420}
3421
3422int dev_queue_xmit(struct sk_buff *skb)
3423{
3424 return __dev_queue_xmit(skb, NULL);
3425}
3426EXPORT_SYMBOL(dev_queue_xmit);
3427
3428int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3429{
3430 return __dev_queue_xmit(skb, accel_priv);
3431}
3432EXPORT_SYMBOL(dev_queue_xmit_accel);
3433
3434
3435/*************************************************************************
3436 * Receiver routines
3437 *************************************************************************/
3438
3439int netdev_max_backlog __read_mostly = 1000;
3440EXPORT_SYMBOL(netdev_max_backlog);
3441
3442int netdev_tstamp_prequeue __read_mostly = 1;
3443int netdev_budget __read_mostly = 300;
3444int weight_p __read_mostly = 64; /* old backlog weight */
3445int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
3446int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
3447int dev_rx_weight __read_mostly = 64;
3448int dev_tx_weight __read_mostly = 64;
3449
3450/* Called with irq disabled */
3451static inline void ____napi_schedule(struct softnet_data *sd,
3452 struct napi_struct *napi)
3453{
3454 list_add_tail(&napi->poll_list, &sd->poll_list);
3455 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3456}
3457
3458#ifdef CONFIG_RPS
3459
3460/* One global table that all flow-based protocols share. */
3461struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3462EXPORT_SYMBOL(rps_sock_flow_table);
3463u32 rps_cpu_mask __read_mostly;
3464EXPORT_SYMBOL(rps_cpu_mask);
3465
3466struct static_key rps_needed __read_mostly;
3467EXPORT_SYMBOL(rps_needed);
3468struct static_key rfs_needed __read_mostly;
3469EXPORT_SYMBOL(rfs_needed);
3470
3471static struct rps_dev_flow *
3472set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3473 struct rps_dev_flow *rflow, u16 next_cpu)
3474{
3475 if (next_cpu < nr_cpu_ids) {
3476#ifdef CONFIG_RFS_ACCEL
3477 struct netdev_rx_queue *rxqueue;
3478 struct rps_dev_flow_table *flow_table;
3479 struct rps_dev_flow *old_rflow;
3480 u32 flow_id;
3481 u16 rxq_index;
3482 int rc;
3483
3484 /* Should we steer this flow to a different hardware queue? */
3485 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3486 !(dev->features & NETIF_F_NTUPLE))
3487 goto out;
3488 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3489 if (rxq_index == skb_get_rx_queue(skb))
3490 goto out;
3491
3492 rxqueue = dev->_rx + rxq_index;
3493 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3494 if (!flow_table)
3495 goto out;
3496 flow_id = skb_get_hash(skb) & flow_table->mask;
3497 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3498 rxq_index, flow_id);
3499 if (rc < 0)
3500 goto out;
3501 old_rflow = rflow;
3502 rflow = &flow_table->flows[flow_id];
3503 rflow->filter = rc;
3504 if (old_rflow->filter == rflow->filter)
3505 old_rflow->filter = RPS_NO_FILTER;
3506 out:
3507#endif
3508 rflow->last_qtail =
3509 per_cpu(softnet_data, next_cpu).input_queue_head;
3510 }
3511
3512 rflow->cpu = next_cpu;
3513 return rflow;
3514}
3515
3516/*
3517 * get_rps_cpu is called from netif_receive_skb and returns the target
3518 * CPU from the RPS map of the receiving queue for a given skb.
3519 * rcu_read_lock must be held on entry.
3520 */
3521static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3522 struct rps_dev_flow **rflowp)
3523{
3524 const struct rps_sock_flow_table *sock_flow_table;
3525 struct netdev_rx_queue *rxqueue = dev->_rx;
3526 struct rps_dev_flow_table *flow_table;
3527 struct rps_map *map;
3528 int cpu = -1;
3529 u32 tcpu;
3530 u32 hash;
3531
3532 if (skb_rx_queue_recorded(skb)) {
3533 u16 index = skb_get_rx_queue(skb);
3534
3535 if (unlikely(index >= dev->real_num_rx_queues)) {
3536 WARN_ONCE(dev->real_num_rx_queues > 1,
3537 "%s received packet on queue %u, but number "
3538 "of RX queues is %u\n",
3539 dev->name, index, dev->real_num_rx_queues);
3540 goto done;
3541 }
3542 rxqueue += index;
3543 }
3544
3545 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3546
3547 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3548 map = rcu_dereference(rxqueue->rps_map);
3549 if (!flow_table && !map)
3550 goto done;
3551
3552 skb_reset_network_header(skb);
3553 hash = skb_get_hash(skb);
3554 if (!hash)
3555 goto done;
3556
3557 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3558 if (flow_table && sock_flow_table) {
3559 struct rps_dev_flow *rflow;
3560 u32 next_cpu;
3561 u32 ident;
3562
3563 /* First check into global flow table if there is a match */
3564 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3565 if ((ident ^ hash) & ~rps_cpu_mask)
3566 goto try_rps;
3567
3568 next_cpu = ident & rps_cpu_mask;
3569
3570 /* OK, now we know there is a match,
3571 * we can look at the local (per receive queue) flow table
3572 */
3573 rflow = &flow_table->flows[hash & flow_table->mask];
3574 tcpu = rflow->cpu;
3575
3576 /*
3577 * If the desired CPU (where last recvmsg was done) is
3578 * different from current CPU (one in the rx-queue flow
3579 * table entry), switch if one of the following holds:
3580 * - Current CPU is unset (>= nr_cpu_ids).
3581 * - Current CPU is offline.
3582 * - The current CPU's queue tail has advanced beyond the
3583 * last packet that was enqueued using this table entry.
3584 * This guarantees that all previous packets for the flow
3585 * have been dequeued, thus preserving in order delivery.
3586 */
3587 if (unlikely(tcpu != next_cpu) &&
3588 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3589 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3590 rflow->last_qtail)) >= 0)) {
3591 tcpu = next_cpu;
3592 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3593 }
3594
3595 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3596 *rflowp = rflow;
3597 cpu = tcpu;
3598 goto done;
3599 }
3600 }
3601
3602try_rps:
3603
3604 if (map) {
3605 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3606 if (cpu_online(tcpu)) {
3607 cpu = tcpu;
3608 goto done;
3609 }
3610 }
3611
3612done:
3613 return cpu;
3614}
3615
3616#ifdef CONFIG_RFS_ACCEL
3617
3618/**
3619 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3620 * @dev: Device on which the filter was set
3621 * @rxq_index: RX queue index
3622 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3623 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3624 *
3625 * Drivers that implement ndo_rx_flow_steer() should periodically call
3626 * this function for each installed filter and remove the filters for
3627 * which it returns %true.
3628 */
3629bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3630 u32 flow_id, u16 filter_id)
3631{
3632 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3633 struct rps_dev_flow_table *flow_table;
3634 struct rps_dev_flow *rflow;
3635 bool expire = true;
3636 unsigned int cpu;
3637
3638 rcu_read_lock();
3639 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3640 if (flow_table && flow_id <= flow_table->mask) {
3641 rflow = &flow_table->flows[flow_id];
3642 cpu = ACCESS_ONCE(rflow->cpu);
3643 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3644 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3645 rflow->last_qtail) <
3646 (int)(10 * flow_table->mask)))
3647 expire = false;
3648 }
3649 rcu_read_unlock();
3650 return expire;
3651}
3652EXPORT_SYMBOL(rps_may_expire_flow);
3653
3654#endif /* CONFIG_RFS_ACCEL */
3655
3656/* Called from hardirq (IPI) context */
3657static void rps_trigger_softirq(void *data)
3658{
3659 struct softnet_data *sd = data;
3660
3661 ____napi_schedule(sd, &sd->backlog);
3662 sd->received_rps++;
3663}
3664
3665#endif /* CONFIG_RPS */
3666
3667/*
3668 * Check if this softnet_data structure is another cpu one
3669 * If yes, queue it to our IPI list and return 1
3670 * If no, return 0
3671 */
3672static int rps_ipi_queued(struct softnet_data *sd)
3673{
3674#ifdef CONFIG_RPS
3675 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3676
3677 if (sd != mysd) {
3678 sd->rps_ipi_next = mysd->rps_ipi_list;
3679 mysd->rps_ipi_list = sd;
3680
3681 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3682 return 1;
3683 }
3684#endif /* CONFIG_RPS */
3685 return 0;
3686}
3687
3688#ifdef CONFIG_NET_FLOW_LIMIT
3689int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3690#endif
3691
3692static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3693{
3694#ifdef CONFIG_NET_FLOW_LIMIT
3695 struct sd_flow_limit *fl;
3696 struct softnet_data *sd;
3697 unsigned int old_flow, new_flow;
3698
3699 if (qlen < (netdev_max_backlog >> 1))
3700 return false;
3701
3702 sd = this_cpu_ptr(&softnet_data);
3703
3704 rcu_read_lock();
3705 fl = rcu_dereference(sd->flow_limit);
3706 if (fl) {
3707 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3708 old_flow = fl->history[fl->history_head];
3709 fl->history[fl->history_head] = new_flow;
3710
3711 fl->history_head++;
3712 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3713
3714 if (likely(fl->buckets[old_flow]))
3715 fl->buckets[old_flow]--;
3716
3717 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3718 fl->count++;
3719 rcu_read_unlock();
3720 return true;
3721 }
3722 }
3723 rcu_read_unlock();
3724#endif
3725 return false;
3726}
3727
3728/*
3729 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3730 * queue (may be a remote CPU queue).
3731 */
3732static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3733 unsigned int *qtail)
3734{
3735 struct softnet_data *sd;
3736 unsigned long flags;
3737 unsigned int qlen;
3738
3739 sd = &per_cpu(softnet_data, cpu);
3740
3741 local_irq_save(flags);
3742
3743 rps_lock(sd);
3744 if (!netif_running(skb->dev))
3745 goto drop;
3746 qlen = skb_queue_len(&sd->input_pkt_queue);
3747 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3748 if (qlen) {
3749enqueue:
3750 __skb_queue_tail(&sd->input_pkt_queue, skb);
3751 input_queue_tail_incr_save(sd, qtail);
3752 rps_unlock(sd);
3753 local_irq_restore(flags);
3754 return NET_RX_SUCCESS;
3755 }
3756
3757 /* Schedule NAPI for backlog device
3758 * We can use non atomic operation since we own the queue lock
3759 */
3760 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3761 if (!rps_ipi_queued(sd))
3762 ____napi_schedule(sd, &sd->backlog);
3763 }
3764 goto enqueue;
3765 }
3766
3767drop:
3768 sd->dropped++;
3769 rps_unlock(sd);
3770
3771 local_irq_restore(flags);
3772
3773 atomic_long_inc(&skb->dev->rx_dropped);
3774 kfree_skb(skb);
3775 return NET_RX_DROP;
3776}
3777
3778static int netif_rx_internal(struct sk_buff *skb)
3779{
3780 int ret;
3781
3782 net_timestamp_check(netdev_tstamp_prequeue, skb);
3783
3784 trace_netif_rx(skb);
3785#ifdef CONFIG_RPS
3786 if (static_key_false(&rps_needed)) {
3787 struct rps_dev_flow voidflow, *rflow = &voidflow;
3788 int cpu;
3789
3790 preempt_disable();
3791 rcu_read_lock();
3792
3793 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3794 if (cpu < 0)
3795 cpu = smp_processor_id();
3796
3797 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3798
3799 rcu_read_unlock();
3800 preempt_enable();
3801 } else
3802#endif
3803 {
3804 unsigned int qtail;
3805
3806 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3807 put_cpu();
3808 }
3809 return ret;
3810}
3811
3812/**
3813 * netif_rx - post buffer to the network code
3814 * @skb: buffer to post
3815 *
3816 * This function receives a packet from a device driver and queues it for
3817 * the upper (protocol) levels to process. It always succeeds. The buffer
3818 * may be dropped during processing for congestion control or by the
3819 * protocol layers.
3820 *
3821 * return values:
3822 * NET_RX_SUCCESS (no congestion)
3823 * NET_RX_DROP (packet was dropped)
3824 *
3825 */
3826
3827int netif_rx(struct sk_buff *skb)
3828{
3829 trace_netif_rx_entry(skb);
3830
3831 return netif_rx_internal(skb);
3832}
3833EXPORT_SYMBOL(netif_rx);
3834
3835int netif_rx_ni(struct sk_buff *skb)
3836{
3837 int err;
3838
3839 trace_netif_rx_ni_entry(skb);
3840
3841 preempt_disable();
3842 err = netif_rx_internal(skb);
3843 if (local_softirq_pending())
3844 do_softirq();
3845 preempt_enable();
3846
3847 return err;
3848}
3849EXPORT_SYMBOL(netif_rx_ni);
3850
3851static __latent_entropy void net_tx_action(struct softirq_action *h)
3852{
3853 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3854
3855 if (sd->completion_queue) {
3856 struct sk_buff *clist;
3857
3858 local_irq_disable();
3859 clist = sd->completion_queue;
3860 sd->completion_queue = NULL;
3861 local_irq_enable();
3862
3863 while (clist) {
3864 struct sk_buff *skb = clist;
3865
3866 clist = clist->next;
3867
3868 WARN_ON(atomic_read(&skb->users));
3869 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3870 trace_consume_skb(skb);
3871 else
3872 trace_kfree_skb(skb, net_tx_action);
3873
3874 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
3875 __kfree_skb(skb);
3876 else
3877 __kfree_skb_defer(skb);
3878 }
3879
3880 __kfree_skb_flush();
3881 }
3882
3883 if (sd->output_queue) {
3884 struct Qdisc *head;
3885
3886 local_irq_disable();
3887 head = sd->output_queue;
3888 sd->output_queue = NULL;
3889 sd->output_queue_tailp = &sd->output_queue;
3890 local_irq_enable();
3891
3892 while (head) {
3893 struct Qdisc *q = head;
3894 spinlock_t *root_lock;
3895
3896 head = head->next_sched;
3897
3898 root_lock = qdisc_lock(q);
3899 spin_lock(root_lock);
3900 /* We need to make sure head->next_sched is read
3901 * before clearing __QDISC_STATE_SCHED
3902 */
3903 smp_mb__before_atomic();
3904 clear_bit(__QDISC_STATE_SCHED, &q->state);
3905 qdisc_run(q);
3906 spin_unlock(root_lock);
3907 }
3908 }
3909}
3910
3911#if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
3912/* This hook is defined here for ATM LANE */
3913int (*br_fdb_test_addr_hook)(struct net_device *dev,
3914 unsigned char *addr) __read_mostly;
3915EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3916#endif
3917
3918static inline struct sk_buff *
3919sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
3920 struct net_device *orig_dev)
3921{
3922#ifdef CONFIG_NET_CLS_ACT
3923 struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3924 struct tcf_result cl_res;
3925
3926 /* If there's at least one ingress present somewhere (so
3927 * we get here via enabled static key), remaining devices
3928 * that are not configured with an ingress qdisc will bail
3929 * out here.
3930 */
3931 if (!cl)
3932 return skb;
3933 if (*pt_prev) {
3934 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3935 *pt_prev = NULL;
3936 }
3937
3938 qdisc_skb_cb(skb)->pkt_len = skb->len;
3939 skb->tc_at_ingress = 1;
3940 qdisc_bstats_cpu_update(cl->q, skb);
3941
3942 switch (tc_classify(skb, cl, &cl_res, false)) {
3943 case TC_ACT_OK:
3944 case TC_ACT_RECLASSIFY:
3945 skb->tc_index = TC_H_MIN(cl_res.classid);
3946 break;
3947 case TC_ACT_SHOT:
3948 qdisc_qstats_cpu_drop(cl->q);
3949 kfree_skb(skb);
3950 return NULL;
3951 case TC_ACT_STOLEN:
3952 case TC_ACT_QUEUED:
3953 consume_skb(skb);
3954 return NULL;
3955 case TC_ACT_REDIRECT:
3956 /* skb_mac_header check was done by cls/act_bpf, so
3957 * we can safely push the L2 header back before
3958 * redirecting to another netdev
3959 */
3960 __skb_push(skb, skb->mac_len);
3961 skb_do_redirect(skb);
3962 return NULL;
3963 default:
3964 break;
3965 }
3966#endif /* CONFIG_NET_CLS_ACT */
3967 return skb;
3968}
3969
3970/**
3971 * netdev_is_rx_handler_busy - check if receive handler is registered
3972 * @dev: device to check
3973 *
3974 * Check if a receive handler is already registered for a given device.
3975 * Return true if there one.
3976 *
3977 * The caller must hold the rtnl_mutex.
3978 */
3979bool netdev_is_rx_handler_busy(struct net_device *dev)
3980{
3981 ASSERT_RTNL();
3982 return dev && rtnl_dereference(dev->rx_handler);
3983}
3984EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
3985
3986/**
3987 * netdev_rx_handler_register - register receive handler
3988 * @dev: device to register a handler for
3989 * @rx_handler: receive handler to register
3990 * @rx_handler_data: data pointer that is used by rx handler
3991 *
3992 * Register a receive handler for a device. This handler will then be
3993 * called from __netif_receive_skb. A negative errno code is returned
3994 * on a failure.
3995 *
3996 * The caller must hold the rtnl_mutex.
3997 *
3998 * For a general description of rx_handler, see enum rx_handler_result.
3999 */
4000int netdev_rx_handler_register(struct net_device *dev,
4001 rx_handler_func_t *rx_handler,
4002 void *rx_handler_data)
4003{
4004 if (netdev_is_rx_handler_busy(dev))
4005 return -EBUSY;
4006
4007 /* Note: rx_handler_data must be set before rx_handler */
4008 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4009 rcu_assign_pointer(dev->rx_handler, rx_handler);
4010
4011 return 0;
4012}
4013EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4014
4015/**
4016 * netdev_rx_handler_unregister - unregister receive handler
4017 * @dev: device to unregister a handler from
4018 *
4019 * Unregister a receive handler from a device.
4020 *
4021 * The caller must hold the rtnl_mutex.
4022 */
4023void netdev_rx_handler_unregister(struct net_device *dev)
4024{
4025
4026 ASSERT_RTNL();
4027 RCU_INIT_POINTER(dev->rx_handler, NULL);
4028 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4029 * section has a guarantee to see a non NULL rx_handler_data
4030 * as well.
4031 */
4032 synchronize_net();
4033 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4034}
4035EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4036
4037/*
4038 * Limit the use of PFMEMALLOC reserves to those protocols that implement
4039 * the special handling of PFMEMALLOC skbs.
4040 */
4041static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4042{
4043 switch (skb->protocol) {
4044 case htons(ETH_P_ARP):
4045 case htons(ETH_P_IP):
4046 case htons(ETH_P_IPV6):
4047 case htons(ETH_P_8021Q):
4048 case htons(ETH_P_8021AD):
4049 return true;
4050 default:
4051 return false;
4052 }
4053}
4054
4055static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4056 int *ret, struct net_device *orig_dev)
4057{
4058#ifdef CONFIG_NETFILTER_INGRESS
4059 if (nf_hook_ingress_active(skb)) {
4060 int ingress_retval;
4061
4062 if (*pt_prev) {
4063 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4064 *pt_prev = NULL;
4065 }
4066
4067 rcu_read_lock();
4068 ingress_retval = nf_hook_ingress(skb);
4069 rcu_read_unlock();
4070 return ingress_retval;
4071 }
4072#endif /* CONFIG_NETFILTER_INGRESS */
4073 return 0;
4074}
4075
4076static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
4077{
4078 struct packet_type *ptype, *pt_prev;
4079 rx_handler_func_t *rx_handler;
4080 struct net_device *orig_dev;
4081 bool deliver_exact = false;
4082 int ret = NET_RX_DROP;
4083 __be16 type;
4084
4085 net_timestamp_check(!netdev_tstamp_prequeue, skb);
4086
4087 trace_netif_receive_skb(skb);
4088
4089 orig_dev = skb->dev;
4090
4091 skb_reset_network_header(skb);
4092 if (!skb_transport_header_was_set(skb))
4093 skb_reset_transport_header(skb);
4094 skb_reset_mac_len(skb);
4095
4096 pt_prev = NULL;
4097
4098another_round:
4099 skb->skb_iif = skb->dev->ifindex;
4100
4101 __this_cpu_inc(softnet_data.processed);
4102
4103 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4104 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4105 skb = skb_vlan_untag(skb);
4106 if (unlikely(!skb))
4107 goto out;
4108 }
4109
4110 if (skb_skip_tc_classify(skb))
4111 goto skip_classify;
4112
4113 if (pfmemalloc)
4114 goto skip_taps;
4115
4116 list_for_each_entry_rcu(ptype, &ptype_all, list) {
4117 if (pt_prev)
4118 ret = deliver_skb(skb, pt_prev, orig_dev);
4119 pt_prev = ptype;
4120 }
4121
4122 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4123 if (pt_prev)
4124 ret = deliver_skb(skb, pt_prev, orig_dev);
4125 pt_prev = ptype;
4126 }
4127
4128skip_taps:
4129#ifdef CONFIG_NET_INGRESS
4130 if (static_key_false(&ingress_needed)) {
4131 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4132 if (!skb)
4133 goto out;
4134
4135 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4136 goto out;
4137 }
4138#endif
4139 skb_reset_tc(skb);
4140skip_classify:
4141 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4142 goto drop;
4143
4144 if (skb_vlan_tag_present(skb)) {
4145 if (pt_prev) {
4146 ret = deliver_skb(skb, pt_prev, orig_dev);
4147 pt_prev = NULL;
4148 }
4149 if (vlan_do_receive(&skb))
4150 goto another_round;
4151 else if (unlikely(!skb))
4152 goto out;
4153 }
4154
4155 rx_handler = rcu_dereference(skb->dev->rx_handler);
4156 if (rx_handler) {
4157 if (pt_prev) {
4158 ret = deliver_skb(skb, pt_prev, orig_dev);
4159 pt_prev = NULL;
4160 }
4161 switch (rx_handler(&skb)) {
4162 case RX_HANDLER_CONSUMED:
4163 ret = NET_RX_SUCCESS;
4164 goto out;
4165 case RX_HANDLER_ANOTHER:
4166 goto another_round;
4167 case RX_HANDLER_EXACT:
4168 deliver_exact = true;
4169 case RX_HANDLER_PASS:
4170 break;
4171 default:
4172 BUG();
4173 }
4174 }
4175
4176 if (unlikely(skb_vlan_tag_present(skb))) {
4177 if (skb_vlan_tag_get_id(skb))
4178 skb->pkt_type = PACKET_OTHERHOST;
4179 /* Note: we might in the future use prio bits
4180 * and set skb->priority like in vlan_do_receive()
4181 * For the time being, just ignore Priority Code Point
4182 */
4183 skb->vlan_tci = 0;
4184 }
4185
4186 type = skb->protocol;
4187
4188 /* deliver only exact match when indicated */
4189 if (likely(!deliver_exact)) {
4190 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4191 &ptype_base[ntohs(type) &
4192 PTYPE_HASH_MASK]);
4193 }
4194
4195 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4196 &orig_dev->ptype_specific);
4197
4198 if (unlikely(skb->dev != orig_dev)) {
4199 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4200 &skb->dev->ptype_specific);
4201 }
4202
4203 if (pt_prev) {
4204 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
4205 goto drop;
4206 else
4207 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4208 } else {
4209drop:
4210 if (!deliver_exact)
4211 atomic_long_inc(&skb->dev->rx_dropped);
4212 else
4213 atomic_long_inc(&skb->dev->rx_nohandler);
4214 kfree_skb(skb);
4215 /* Jamal, now you will not able to escape explaining
4216 * me how you were going to use this. :-)
4217 */
4218 ret = NET_RX_DROP;
4219 }
4220
4221out:
4222 return ret;
4223}
4224
4225static int __netif_receive_skb(struct sk_buff *skb)
4226{
4227 int ret;
4228
4229 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4230 unsigned long pflags = current->flags;
4231
4232 /*
4233 * PFMEMALLOC skbs are special, they should
4234 * - be delivered to SOCK_MEMALLOC sockets only
4235 * - stay away from userspace
4236 * - have bounded memory usage
4237 *
4238 * Use PF_MEMALLOC as this saves us from propagating the allocation
4239 * context down to all allocation sites.
4240 */
4241 current->flags |= PF_MEMALLOC;
4242 ret = __netif_receive_skb_core(skb, true);
4243 tsk_restore_flags(current, pflags, PF_MEMALLOC);
4244 } else
4245 ret = __netif_receive_skb_core(skb, false);
4246
4247 return ret;
4248}
4249
4250static int netif_receive_skb_internal(struct sk_buff *skb)
4251{
4252 int ret;
4253
4254 net_timestamp_check(netdev_tstamp_prequeue, skb);
4255
4256 if (skb_defer_rx_timestamp(skb))
4257 return NET_RX_SUCCESS;
4258
4259 rcu_read_lock();
4260
4261#ifdef CONFIG_RPS
4262 if (static_key_false(&rps_needed)) {
4263 struct rps_dev_flow voidflow, *rflow = &voidflow;
4264 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4265
4266 if (cpu >= 0) {
4267 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4268 rcu_read_unlock();
4269 return ret;
4270 }
4271 }
4272#endif
4273 ret = __netif_receive_skb(skb);
4274 rcu_read_unlock();
4275 return ret;
4276}
4277
4278/**
4279 * netif_receive_skb - process receive buffer from network
4280 * @skb: buffer to process
4281 *
4282 * netif_receive_skb() is the main receive data processing function.
4283 * It always succeeds. The buffer may be dropped during processing
4284 * for congestion control or by the protocol layers.
4285 *
4286 * This function may only be called from softirq context and interrupts
4287 * should be enabled.
4288 *
4289 * Return values (usually ignored):
4290 * NET_RX_SUCCESS: no congestion
4291 * NET_RX_DROP: packet was dropped
4292 */
4293int netif_receive_skb(struct sk_buff *skb)
4294{
4295 trace_netif_receive_skb_entry(skb);
4296
4297 return netif_receive_skb_internal(skb);
4298}
4299EXPORT_SYMBOL(netif_receive_skb);
4300
4301DEFINE_PER_CPU(struct work_struct, flush_works);
4302
4303/* Network device is going away, flush any packets still pending */
4304static void flush_backlog(struct work_struct *work)
4305{
4306 struct sk_buff *skb, *tmp;
4307 struct softnet_data *sd;
4308
4309 local_bh_disable();
4310 sd = this_cpu_ptr(&softnet_data);
4311
4312 local_irq_disable();
4313 rps_lock(sd);
4314 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4315 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4316 __skb_unlink(skb, &sd->input_pkt_queue);
4317 kfree_skb(skb);
4318 input_queue_head_incr(sd);
4319 }
4320 }
4321 rps_unlock(sd);
4322 local_irq_enable();
4323
4324 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4325 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4326 __skb_unlink(skb, &sd->process_queue);
4327 kfree_skb(skb);
4328 input_queue_head_incr(sd);
4329 }
4330 }
4331 local_bh_enable();
4332}
4333
4334static void flush_all_backlogs(void)
4335{
4336 unsigned int cpu;
4337
4338 get_online_cpus();
4339
4340 for_each_online_cpu(cpu)
4341 queue_work_on(cpu, system_highpri_wq,
4342 per_cpu_ptr(&flush_works, cpu));
4343
4344 for_each_online_cpu(cpu)
4345 flush_work(per_cpu_ptr(&flush_works, cpu));
4346
4347 put_online_cpus();
4348}
4349
4350static int napi_gro_complete(struct sk_buff *skb)
4351{
4352 struct packet_offload *ptype;
4353 __be16 type = skb->protocol;
4354 struct list_head *head = &offload_base;
4355 int err = -ENOENT;
4356
4357 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4358
4359 if (NAPI_GRO_CB(skb)->count == 1) {
4360 skb_shinfo(skb)->gso_size = 0;
4361 goto out;
4362 }
4363
4364 rcu_read_lock();
4365 list_for_each_entry_rcu(ptype, head, list) {
4366 if (ptype->type != type || !ptype->callbacks.gro_complete)
4367 continue;
4368
4369 err = ptype->callbacks.gro_complete(skb, 0);
4370 break;
4371 }
4372 rcu_read_unlock();
4373
4374 if (err) {
4375 WARN_ON(&ptype->list == head);
4376 kfree_skb(skb);
4377 return NET_RX_SUCCESS;
4378 }
4379
4380out:
4381 return netif_receive_skb_internal(skb);
4382}
4383
4384/* napi->gro_list contains packets ordered by age.
4385 * youngest packets at the head of it.
4386 * Complete skbs in reverse order to reduce latencies.
4387 */
4388void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4389{
4390 struct sk_buff *skb, *prev = NULL;
4391
4392 /* scan list and build reverse chain */
4393 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4394 skb->prev = prev;
4395 prev = skb;
4396 }
4397
4398 for (skb = prev; skb; skb = prev) {
4399 skb->next = NULL;
4400
4401 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4402 return;
4403
4404 prev = skb->prev;
4405 napi_gro_complete(skb);
4406 napi->gro_count--;
4407 }
4408
4409 napi->gro_list = NULL;
4410}
4411EXPORT_SYMBOL(napi_gro_flush);
4412
4413static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4414{
4415 struct sk_buff *p;
4416 unsigned int maclen = skb->dev->hard_header_len;
4417 u32 hash = skb_get_hash_raw(skb);
4418
4419 for (p = napi->gro_list; p; p = p->next) {
4420 unsigned long diffs;
4421
4422 NAPI_GRO_CB(p)->flush = 0;
4423
4424 if (hash != skb_get_hash_raw(p)) {
4425 NAPI_GRO_CB(p)->same_flow = 0;
4426 continue;
4427 }
4428
4429 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4430 diffs |= p->vlan_tci ^ skb->vlan_tci;
4431 diffs |= skb_metadata_dst_cmp(p, skb);
4432 if (maclen == ETH_HLEN)
4433 diffs |= compare_ether_header(skb_mac_header(p),
4434 skb_mac_header(skb));
4435 else if (!diffs)
4436 diffs = memcmp(skb_mac_header(p),
4437 skb_mac_header(skb),
4438 maclen);
4439 NAPI_GRO_CB(p)->same_flow = !diffs;
4440 }
4441}
4442
4443static void skb_gro_reset_offset(struct sk_buff *skb)
4444{
4445 const struct skb_shared_info *pinfo = skb_shinfo(skb);
4446 const skb_frag_t *frag0 = &pinfo->frags[0];
4447
4448 NAPI_GRO_CB(skb)->data_offset = 0;
4449 NAPI_GRO_CB(skb)->frag0 = NULL;
4450 NAPI_GRO_CB(skb)->frag0_len = 0;
4451
4452 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4453 pinfo->nr_frags &&
4454 !PageHighMem(skb_frag_page(frag0))) {
4455 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4456 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
4457 skb_frag_size(frag0),
4458 skb->end - skb->tail);
4459 }
4460}
4461
4462static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4463{
4464 struct skb_shared_info *pinfo = skb_shinfo(skb);
4465
4466 BUG_ON(skb->end - skb->tail < grow);
4467
4468 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4469
4470 skb->data_len -= grow;
4471 skb->tail += grow;
4472
4473 pinfo->frags[0].page_offset += grow;
4474 skb_frag_size_sub(&pinfo->frags[0], grow);
4475
4476 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4477 skb_frag_unref(skb, 0);
4478 memmove(pinfo->frags, pinfo->frags + 1,
4479 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4480 }
4481}
4482
4483static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4484{
4485 struct sk_buff **pp = NULL;
4486 struct packet_offload *ptype;
4487 __be16 type = skb->protocol;
4488 struct list_head *head = &offload_base;
4489 int same_flow;
4490 enum gro_result ret;
4491 int grow;
4492
4493 if (!(skb->dev->features & NETIF_F_GRO))
4494 goto normal;
4495
4496 if (skb->csum_bad)
4497 goto normal;
4498
4499 gro_list_prepare(napi, skb);
4500
4501 rcu_read_lock();
4502 list_for_each_entry_rcu(ptype, head, list) {
4503 if (ptype->type != type || !ptype->callbacks.gro_receive)
4504 continue;
4505
4506 skb_set_network_header(skb, skb_gro_offset(skb));
4507 skb_reset_mac_len(skb);
4508 NAPI_GRO_CB(skb)->same_flow = 0;
4509 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
4510 NAPI_GRO_CB(skb)->free = 0;
4511 NAPI_GRO_CB(skb)->encap_mark = 0;
4512 NAPI_GRO_CB(skb)->recursion_counter = 0;
4513 NAPI_GRO_CB(skb)->is_fou = 0;
4514 NAPI_GRO_CB(skb)->is_atomic = 1;
4515 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4516
4517 /* Setup for GRO checksum validation */
4518 switch (skb->ip_summed) {
4519 case CHECKSUM_COMPLETE:
4520 NAPI_GRO_CB(skb)->csum = skb->csum;
4521 NAPI_GRO_CB(skb)->csum_valid = 1;
4522 NAPI_GRO_CB(skb)->csum_cnt = 0;
4523 break;
4524 case CHECKSUM_UNNECESSARY:
4525 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4526 NAPI_GRO_CB(skb)->csum_valid = 0;
4527 break;
4528 default:
4529 NAPI_GRO_CB(skb)->csum_cnt = 0;
4530 NAPI_GRO_CB(skb)->csum_valid = 0;
4531 }
4532
4533 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4534 break;
4535 }
4536 rcu_read_unlock();
4537
4538 if (&ptype->list == head)
4539 goto normal;
4540
4541 if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
4542 ret = GRO_CONSUMED;
4543 goto ok;
4544 }
4545
4546 same_flow = NAPI_GRO_CB(skb)->same_flow;
4547 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4548
4549 if (pp) {
4550 struct sk_buff *nskb = *pp;
4551
4552 *pp = nskb->next;
4553 nskb->next = NULL;
4554 napi_gro_complete(nskb);
4555 napi->gro_count--;
4556 }
4557
4558 if (same_flow)
4559 goto ok;
4560
4561 if (NAPI_GRO_CB(skb)->flush)
4562 goto normal;
4563
4564 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4565 struct sk_buff *nskb = napi->gro_list;
4566
4567 /* locate the end of the list to select the 'oldest' flow */
4568 while (nskb->next) {
4569 pp = &nskb->next;
4570 nskb = *pp;
4571 }
4572 *pp = NULL;
4573 nskb->next = NULL;
4574 napi_gro_complete(nskb);
4575 } else {
4576 napi->gro_count++;
4577 }
4578 NAPI_GRO_CB(skb)->count = 1;
4579 NAPI_GRO_CB(skb)->age = jiffies;
4580 NAPI_GRO_CB(skb)->last = skb;
4581 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4582 skb->next = napi->gro_list;
4583 napi->gro_list = skb;
4584 ret = GRO_HELD;
4585
4586pull:
4587 grow = skb_gro_offset(skb) - skb_headlen(skb);
4588 if (grow > 0)
4589 gro_pull_from_frag0(skb, grow);
4590ok:
4591 return ret;
4592
4593normal:
4594 ret = GRO_NORMAL;
4595 goto pull;
4596}
4597
4598struct packet_offload *gro_find_receive_by_type(__be16 type)
4599{
4600 struct list_head *offload_head = &offload_base;
4601 struct packet_offload *ptype;
4602
4603 list_for_each_entry_rcu(ptype, offload_head, list) {
4604 if (ptype->type != type || !ptype->callbacks.gro_receive)
4605 continue;
4606 return ptype;
4607 }
4608 return NULL;
4609}
4610EXPORT_SYMBOL(gro_find_receive_by_type);
4611
4612struct packet_offload *gro_find_complete_by_type(__be16 type)
4613{
4614 struct list_head *offload_head = &offload_base;
4615 struct packet_offload *ptype;
4616
4617 list_for_each_entry_rcu(ptype, offload_head, list) {
4618 if (ptype->type != type || !ptype->callbacks.gro_complete)
4619 continue;
4620 return ptype;
4621 }
4622 return NULL;
4623}
4624EXPORT_SYMBOL(gro_find_complete_by_type);
4625
4626static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4627{
4628 switch (ret) {
4629 case GRO_NORMAL:
4630 if (netif_receive_skb_internal(skb))
4631 ret = GRO_DROP;
4632 break;
4633
4634 case GRO_DROP:
4635 kfree_skb(skb);
4636 break;
4637
4638 case GRO_MERGED_FREE:
4639 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) {
4640 skb_dst_drop(skb);
4641 secpath_reset(skb);
4642 kmem_cache_free(skbuff_head_cache, skb);
4643 } else {
4644 __kfree_skb(skb);
4645 }
4646 break;
4647
4648 case GRO_HELD:
4649 case GRO_MERGED:
4650 case GRO_CONSUMED:
4651 break;
4652 }
4653
4654 return ret;
4655}
4656
4657gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4658{
4659 skb_mark_napi_id(skb, napi);
4660 trace_napi_gro_receive_entry(skb);
4661
4662 skb_gro_reset_offset(skb);
4663
4664 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4665}
4666EXPORT_SYMBOL(napi_gro_receive);
4667
4668static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4669{
4670 if (unlikely(skb->pfmemalloc)) {
4671 consume_skb(skb);
4672 return;
4673 }
4674 __skb_pull(skb, skb_headlen(skb));
4675 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4676 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4677 skb->vlan_tci = 0;
4678 skb->dev = napi->dev;
4679 skb->skb_iif = 0;
4680 skb->encapsulation = 0;
4681 skb_shinfo(skb)->gso_type = 0;
4682 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4683 secpath_reset(skb);
4684
4685 napi->skb = skb;
4686}
4687
4688struct sk_buff *napi_get_frags(struct napi_struct *napi)
4689{
4690 struct sk_buff *skb = napi->skb;
4691
4692 if (!skb) {
4693 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4694 if (skb) {
4695 napi->skb = skb;
4696 skb_mark_napi_id(skb, napi);
4697 }
4698 }
4699 return skb;
4700}
4701EXPORT_SYMBOL(napi_get_frags);
4702
4703static gro_result_t napi_frags_finish(struct napi_struct *napi,
4704 struct sk_buff *skb,
4705 gro_result_t ret)
4706{
4707 switch (ret) {
4708 case GRO_NORMAL:
4709 case GRO_HELD:
4710 __skb_push(skb, ETH_HLEN);
4711 skb->protocol = eth_type_trans(skb, skb->dev);
4712 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4713 ret = GRO_DROP;
4714 break;
4715
4716 case GRO_DROP:
4717 case GRO_MERGED_FREE:
4718 napi_reuse_skb(napi, skb);
4719 break;
4720
4721 case GRO_MERGED:
4722 case GRO_CONSUMED:
4723 break;
4724 }
4725
4726 return ret;
4727}
4728
4729/* Upper GRO stack assumes network header starts at gro_offset=0
4730 * Drivers could call both napi_gro_frags() and napi_gro_receive()
4731 * We copy ethernet header into skb->data to have a common layout.
4732 */
4733static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4734{
4735 struct sk_buff *skb = napi->skb;
4736 const struct ethhdr *eth;
4737 unsigned int hlen = sizeof(*eth);
4738
4739 napi->skb = NULL;
4740
4741 skb_reset_mac_header(skb);
4742 skb_gro_reset_offset(skb);
4743
4744 eth = skb_gro_header_fast(skb, 0);
4745 if (unlikely(skb_gro_header_hard(skb, hlen))) {
4746 eth = skb_gro_header_slow(skb, hlen, 0);
4747 if (unlikely(!eth)) {
4748 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
4749 __func__, napi->dev->name);
4750 napi_reuse_skb(napi, skb);
4751 return NULL;
4752 }
4753 } else {
4754 gro_pull_from_frag0(skb, hlen);
4755 NAPI_GRO_CB(skb)->frag0 += hlen;
4756 NAPI_GRO_CB(skb)->frag0_len -= hlen;
4757 }
4758 __skb_pull(skb, hlen);
4759
4760 /*
4761 * This works because the only protocols we care about don't require
4762 * special handling.
4763 * We'll fix it up properly in napi_frags_finish()
4764 */
4765 skb->protocol = eth->h_proto;
4766
4767 return skb;
4768}
4769
4770gro_result_t napi_gro_frags(struct napi_struct *napi)
4771{
4772 struct sk_buff *skb = napi_frags_skb(napi);
4773
4774 if (!skb)
4775 return GRO_DROP;
4776
4777 trace_napi_gro_frags_entry(skb);
4778
4779 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4780}
4781EXPORT_SYMBOL(napi_gro_frags);
4782
4783/* Compute the checksum from gro_offset and return the folded value
4784 * after adding in any pseudo checksum.
4785 */
4786__sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4787{
4788 __wsum wsum;
4789 __sum16 sum;
4790
4791 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4792
4793 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4794 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4795 if (likely(!sum)) {
4796 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4797 !skb->csum_complete_sw)
4798 netdev_rx_csum_fault(skb->dev);
4799 }
4800
4801 NAPI_GRO_CB(skb)->csum = wsum;
4802 NAPI_GRO_CB(skb)->csum_valid = 1;
4803
4804 return sum;
4805}
4806EXPORT_SYMBOL(__skb_gro_checksum_complete);
4807
4808/*
4809 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4810 * Note: called with local irq disabled, but exits with local irq enabled.
4811 */
4812static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4813{
4814#ifdef CONFIG_RPS
4815 struct softnet_data *remsd = sd->rps_ipi_list;
4816
4817 if (remsd) {
4818 sd->rps_ipi_list = NULL;
4819
4820 local_irq_enable();
4821
4822 /* Send pending IPI's to kick RPS processing on remote cpus. */
4823 while (remsd) {
4824 struct softnet_data *next = remsd->rps_ipi_next;
4825
4826 if (cpu_online(remsd->cpu))
4827 smp_call_function_single_async(remsd->cpu,
4828 &remsd->csd);
4829 remsd = next;
4830 }
4831 } else
4832#endif
4833 local_irq_enable();
4834}
4835
4836static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4837{
4838#ifdef CONFIG_RPS
4839 return sd->rps_ipi_list != NULL;
4840#else
4841 return false;
4842#endif
4843}
4844
4845static int process_backlog(struct napi_struct *napi, int quota)
4846{
4847 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4848 bool again = true;
4849 int work = 0;
4850
4851 /* Check if we have pending ipi, its better to send them now,
4852 * not waiting net_rx_action() end.
4853 */
4854 if (sd_has_rps_ipi_waiting(sd)) {
4855 local_irq_disable();
4856 net_rps_action_and_irq_enable(sd);
4857 }
4858
4859 napi->weight = dev_rx_weight;
4860 while (again) {
4861 struct sk_buff *skb;
4862
4863 while ((skb = __skb_dequeue(&sd->process_queue))) {
4864 rcu_read_lock();
4865 __netif_receive_skb(skb);
4866 rcu_read_unlock();
4867 input_queue_head_incr(sd);
4868 if (++work >= quota)
4869 return work;
4870
4871 }
4872
4873 local_irq_disable();
4874 rps_lock(sd);
4875 if (skb_queue_empty(&sd->input_pkt_queue)) {
4876 /*
4877 * Inline a custom version of __napi_complete().
4878 * only current cpu owns and manipulates this napi,
4879 * and NAPI_STATE_SCHED is the only possible flag set
4880 * on backlog.
4881 * We can use a plain write instead of clear_bit(),
4882 * and we dont need an smp_mb() memory barrier.
4883 */
4884 napi->state = 0;
4885 again = false;
4886 } else {
4887 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4888 &sd->process_queue);
4889 }
4890 rps_unlock(sd);
4891 local_irq_enable();
4892 }
4893
4894 return work;
4895}
4896
4897/**
4898 * __napi_schedule - schedule for receive
4899 * @n: entry to schedule
4900 *
4901 * The entry's receive function will be scheduled to run.
4902 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
4903 */
4904void __napi_schedule(struct napi_struct *n)
4905{
4906 unsigned long flags;
4907
4908 local_irq_save(flags);
4909 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4910 local_irq_restore(flags);
4911}
4912EXPORT_SYMBOL(__napi_schedule);
4913
4914/**
4915 * napi_schedule_prep - check if napi can be scheduled
4916 * @n: napi context
4917 *
4918 * Test if NAPI routine is already running, and if not mark
4919 * it as running. This is used as a condition variable
4920 * insure only one NAPI poll instance runs. We also make
4921 * sure there is no pending NAPI disable.
4922 */
4923bool napi_schedule_prep(struct napi_struct *n)
4924{
4925 unsigned long val, new;
4926
4927 do {
4928 val = READ_ONCE(n->state);
4929 if (unlikely(val & NAPIF_STATE_DISABLE))
4930 return false;
4931 new = val | NAPIF_STATE_SCHED;
4932
4933 /* Sets STATE_MISSED bit if STATE_SCHED was already set
4934 * This was suggested by Alexander Duyck, as compiler
4935 * emits better code than :
4936 * if (val & NAPIF_STATE_SCHED)
4937 * new |= NAPIF_STATE_MISSED;
4938 */
4939 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
4940 NAPIF_STATE_MISSED;
4941 } while (cmpxchg(&n->state, val, new) != val);
4942
4943 return !(val & NAPIF_STATE_SCHED);
4944}
4945EXPORT_SYMBOL(napi_schedule_prep);
4946
4947/**
4948 * __napi_schedule_irqoff - schedule for receive
4949 * @n: entry to schedule
4950 *
4951 * Variant of __napi_schedule() assuming hard irqs are masked
4952 */
4953void __napi_schedule_irqoff(struct napi_struct *n)
4954{
4955 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4956}
4957EXPORT_SYMBOL(__napi_schedule_irqoff);
4958
4959bool napi_complete_done(struct napi_struct *n, int work_done)
4960{
4961 unsigned long flags, val, new;
4962
4963 /*
4964 * 1) Don't let napi dequeue from the cpu poll list
4965 * just in case its running on a different cpu.
4966 * 2) If we are busy polling, do nothing here, we have
4967 * the guarantee we will be called later.
4968 */
4969 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
4970 NAPIF_STATE_IN_BUSY_POLL)))
4971 return false;
4972
4973 if (n->gro_list) {
4974 unsigned long timeout = 0;
4975
4976 if (work_done)
4977 timeout = n->dev->gro_flush_timeout;
4978
4979 if (timeout)
4980 hrtimer_start(&n->timer, ns_to_ktime(timeout),
4981 HRTIMER_MODE_REL_PINNED);
4982 else
4983 napi_gro_flush(n, false);
4984 }
4985 if (unlikely(!list_empty(&n->poll_list))) {
4986 /* If n->poll_list is not empty, we need to mask irqs */
4987 local_irq_save(flags);
4988 list_del_init(&n->poll_list);
4989 local_irq_restore(flags);
4990 }
4991
4992 do {
4993 val = READ_ONCE(n->state);
4994
4995 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
4996
4997 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
4998
4999 /* If STATE_MISSED was set, leave STATE_SCHED set,
5000 * because we will call napi->poll() one more time.
5001 * This C code was suggested by Alexander Duyck to help gcc.
5002 */
5003 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
5004 NAPIF_STATE_SCHED;
5005 } while (cmpxchg(&n->state, val, new) != val);
5006
5007 if (unlikely(val & NAPIF_STATE_MISSED)) {
5008 __napi_schedule(n);
5009 return false;
5010 }
5011
5012 return true;
5013}
5014EXPORT_SYMBOL(napi_complete_done);
5015
5016/* must be called under rcu_read_lock(), as we dont take a reference */
5017static struct napi_struct *napi_by_id(unsigned int napi_id)
5018{
5019 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
5020 struct napi_struct *napi;
5021
5022 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
5023 if (napi->napi_id == napi_id)
5024 return napi;
5025
5026 return NULL;
5027}
5028
5029#if defined(CONFIG_NET_RX_BUSY_POLL)
5030
5031#define BUSY_POLL_BUDGET 8
5032
5033static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
5034{
5035 int rc;
5036
5037 /* Busy polling means there is a high chance device driver hard irq
5038 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
5039 * set in napi_schedule_prep().
5040 * Since we are about to call napi->poll() once more, we can safely
5041 * clear NAPI_STATE_MISSED.
5042 *
5043 * Note: x86 could use a single "lock and ..." instruction
5044 * to perform these two clear_bit()
5045 */
5046 clear_bit(NAPI_STATE_MISSED, &napi->state);
5047 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
5048
5049 local_bh_disable();
5050
5051 /* All we really want here is to re-enable device interrupts.
5052 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
5053 */
5054 rc = napi->poll(napi, BUSY_POLL_BUDGET);
5055 netpoll_poll_unlock(have_poll_lock);
5056 if (rc == BUSY_POLL_BUDGET)
5057 __napi_schedule(napi);
5058 local_bh_enable();
5059 if (local_softirq_pending())
5060 do_softirq();
5061}
5062
5063bool sk_busy_loop(struct sock *sk, int nonblock)
5064{
5065 unsigned long end_time = !nonblock ? sk_busy_loop_end_time(sk) : 0;
5066 int (*napi_poll)(struct napi_struct *napi, int budget);
5067 void *have_poll_lock = NULL;
5068 struct napi_struct *napi;
5069 int rc;
5070
5071restart:
5072 rc = false;
5073 napi_poll = NULL;
5074
5075 rcu_read_lock();
5076
5077 napi = napi_by_id(sk->sk_napi_id);
5078 if (!napi)
5079 goto out;
5080
5081 preempt_disable();
5082 for (;;) {
5083 rc = 0;
5084 local_bh_disable();
5085 if (!napi_poll) {
5086 unsigned long val = READ_ONCE(napi->state);
5087
5088 /* If multiple threads are competing for this napi,
5089 * we avoid dirtying napi->state as much as we can.
5090 */
5091 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
5092 NAPIF_STATE_IN_BUSY_POLL))
5093 goto count;
5094 if (cmpxchg(&napi->state, val,
5095 val | NAPIF_STATE_IN_BUSY_POLL |
5096 NAPIF_STATE_SCHED) != val)
5097 goto count;
5098 have_poll_lock = netpoll_poll_lock(napi);
5099 napi_poll = napi->poll;
5100 }
5101 rc = napi_poll(napi, BUSY_POLL_BUDGET);
5102 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
5103count:
5104 if (rc > 0)
5105 __NET_ADD_STATS(sock_net(sk),
5106 LINUX_MIB_BUSYPOLLRXPACKETS, rc);
5107 local_bh_enable();
5108
5109 if (nonblock || !skb_queue_empty(&sk->sk_receive_queue) ||
5110 busy_loop_timeout(end_time))
5111 break;
5112
5113 if (unlikely(need_resched())) {
5114 if (napi_poll)
5115 busy_poll_stop(napi, have_poll_lock);
5116 preempt_enable();
5117 rcu_read_unlock();
5118 cond_resched();
5119 rc = !skb_queue_empty(&sk->sk_receive_queue);
5120 if (rc || busy_loop_timeout(end_time))
5121 return rc;
5122 goto restart;
5123 }
5124 cpu_relax();
5125 }
5126 if (napi_poll)
5127 busy_poll_stop(napi, have_poll_lock);
5128 preempt_enable();
5129 rc = !skb_queue_empty(&sk->sk_receive_queue);
5130out:
5131 rcu_read_unlock();
5132 return rc;
5133}
5134EXPORT_SYMBOL(sk_busy_loop);
5135
5136#endif /* CONFIG_NET_RX_BUSY_POLL */
5137
5138static void napi_hash_add(struct napi_struct *napi)
5139{
5140 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5141 test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
5142 return;
5143
5144 spin_lock(&napi_hash_lock);
5145
5146 /* 0..NR_CPUS+1 range is reserved for sender_cpu use */
5147 do {
5148 if (unlikely(++napi_gen_id < NR_CPUS + 1))
5149 napi_gen_id = NR_CPUS + 1;
5150 } while (napi_by_id(napi_gen_id));
5151 napi->napi_id = napi_gen_id;
5152
5153 hlist_add_head_rcu(&napi->napi_hash_node,
5154 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
5155
5156 spin_unlock(&napi_hash_lock);
5157}
5158
5159/* Warning : caller is responsible to make sure rcu grace period
5160 * is respected before freeing memory containing @napi
5161 */
5162bool napi_hash_del(struct napi_struct *napi)
5163{
5164 bool rcu_sync_needed = false;
5165
5166 spin_lock(&napi_hash_lock);
5167
5168 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5169 rcu_sync_needed = true;
5170 hlist_del_rcu(&napi->napi_hash_node);
5171 }
5172 spin_unlock(&napi_hash_lock);
5173 return rcu_sync_needed;
5174}
5175EXPORT_SYMBOL_GPL(napi_hash_del);
5176
5177static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5178{
5179 struct napi_struct *napi;
5180
5181 napi = container_of(timer, struct napi_struct, timer);
5182
5183 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
5184 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
5185 */
5186 if (napi->gro_list && !napi_disable_pending(napi) &&
5187 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
5188 __napi_schedule_irqoff(napi);
5189
5190 return HRTIMER_NORESTART;
5191}
5192
5193void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5194 int (*poll)(struct napi_struct *, int), int weight)
5195{
5196 INIT_LIST_HEAD(&napi->poll_list);
5197 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5198 napi->timer.function = napi_watchdog;
5199 napi->gro_count = 0;
5200 napi->gro_list = NULL;
5201 napi->skb = NULL;
5202 napi->poll = poll;
5203 if (weight > NAPI_POLL_WEIGHT)
5204 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5205 weight, dev->name);
5206 napi->weight = weight;
5207 list_add(&napi->dev_list, &dev->napi_list);
5208 napi->dev = dev;
5209#ifdef CONFIG_NETPOLL
5210 napi->poll_owner = -1;
5211#endif
5212 set_bit(NAPI_STATE_SCHED, &napi->state);
5213 napi_hash_add(napi);
5214}
5215EXPORT_SYMBOL(netif_napi_add);
5216
5217void napi_disable(struct napi_struct *n)
5218{
5219 might_sleep();
5220 set_bit(NAPI_STATE_DISABLE, &n->state);
5221
5222 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5223 msleep(1);
5224 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5225 msleep(1);
5226
5227 hrtimer_cancel(&n->timer);
5228
5229 clear_bit(NAPI_STATE_DISABLE, &n->state);
5230}
5231EXPORT_SYMBOL(napi_disable);
5232
5233/* Must be called in process context */
5234void netif_napi_del(struct napi_struct *napi)
5235{
5236 might_sleep();
5237 if (napi_hash_del(napi))
5238 synchronize_net();
5239 list_del_init(&napi->dev_list);
5240 napi_free_frags(napi);
5241
5242 kfree_skb_list(napi->gro_list);
5243 napi->gro_list = NULL;
5244 napi->gro_count = 0;
5245}
5246EXPORT_SYMBOL(netif_napi_del);
5247
5248static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5249{
5250 void *have;
5251 int work, weight;
5252
5253 list_del_init(&n->poll_list);
5254
5255 have = netpoll_poll_lock(n);
5256
5257 weight = n->weight;
5258
5259 /* This NAPI_STATE_SCHED test is for avoiding a race
5260 * with netpoll's poll_napi(). Only the entity which
5261 * obtains the lock and sees NAPI_STATE_SCHED set will
5262 * actually make the ->poll() call. Therefore we avoid
5263 * accidentally calling ->poll() when NAPI is not scheduled.
5264 */
5265 work = 0;
5266 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5267 work = n->poll(n, weight);
5268 trace_napi_poll(n, work, weight);
5269 }
5270
5271 WARN_ON_ONCE(work > weight);
5272
5273 if (likely(work < weight))
5274 goto out_unlock;
5275
5276 /* Drivers must not modify the NAPI state if they
5277 * consume the entire weight. In such cases this code
5278 * still "owns" the NAPI instance and therefore can
5279 * move the instance around on the list at-will.
5280 */
5281 if (unlikely(napi_disable_pending(n))) {
5282 napi_complete(n);
5283 goto out_unlock;
5284 }
5285
5286 if (n->gro_list) {
5287 /* flush too old packets
5288 * If HZ < 1000, flush all packets.
5289 */
5290 napi_gro_flush(n, HZ >= 1000);
5291 }
5292
5293 /* Some drivers may have called napi_schedule
5294 * prior to exhausting their budget.
5295 */
5296 if (unlikely(!list_empty(&n->poll_list))) {
5297 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5298 n->dev ? n->dev->name : "backlog");
5299 goto out_unlock;
5300 }
5301
5302 list_add_tail(&n->poll_list, repoll);
5303
5304out_unlock:
5305 netpoll_poll_unlock(have);
5306
5307 return work;
5308}
5309
5310static __latent_entropy void net_rx_action(struct softirq_action *h)
5311{
5312 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5313 unsigned long time_limit = jiffies + 2;
5314 int budget = netdev_budget;
5315 LIST_HEAD(list);
5316 LIST_HEAD(repoll);
5317
5318 local_irq_disable();
5319 list_splice_init(&sd->poll_list, &list);
5320 local_irq_enable();
5321
5322 for (;;) {
5323 struct napi_struct *n;
5324
5325 if (list_empty(&list)) {
5326 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5327 goto out;
5328 break;
5329 }
5330
5331 n = list_first_entry(&list, struct napi_struct, poll_list);
5332 budget -= napi_poll(n, &repoll);
5333
5334 /* If softirq window is exhausted then punt.
5335 * Allow this to run for 2 jiffies since which will allow
5336 * an average latency of 1.5/HZ.
5337 */
5338 if (unlikely(budget <= 0 ||
5339 time_after_eq(jiffies, time_limit))) {
5340 sd->time_squeeze++;
5341 break;
5342 }
5343 }
5344
5345 local_irq_disable();
5346
5347 list_splice_tail_init(&sd->poll_list, &list);
5348 list_splice_tail(&repoll, &list);
5349 list_splice(&list, &sd->poll_list);
5350 if (!list_empty(&sd->poll_list))
5351 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5352
5353 net_rps_action_and_irq_enable(sd);
5354out:
5355 __kfree_skb_flush();
5356}
5357
5358struct netdev_adjacent {
5359 struct net_device *dev;
5360
5361 /* upper master flag, there can only be one master device per list */
5362 bool master;
5363
5364 /* counter for the number of times this device was added to us */
5365 u16 ref_nr;
5366
5367 /* private field for the users */
5368 void *private;
5369
5370 struct list_head list;
5371 struct rcu_head rcu;
5372};
5373
5374static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
5375 struct list_head *adj_list)
5376{
5377 struct netdev_adjacent *adj;
5378
5379 list_for_each_entry(adj, adj_list, list) {
5380 if (adj->dev == adj_dev)
5381 return adj;
5382 }
5383 return NULL;
5384}
5385
5386static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
5387{
5388 struct net_device *dev = data;
5389
5390 return upper_dev == dev;
5391}
5392
5393/**
5394 * netdev_has_upper_dev - Check if device is linked to an upper device
5395 * @dev: device
5396 * @upper_dev: upper device to check
5397 *
5398 * Find out if a device is linked to specified upper device and return true
5399 * in case it is. Note that this checks only immediate upper device,
5400 * not through a complete stack of devices. The caller must hold the RTNL lock.
5401 */
5402bool netdev_has_upper_dev(struct net_device *dev,
5403 struct net_device *upper_dev)
5404{
5405 ASSERT_RTNL();
5406
5407 return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5408 upper_dev);
5409}
5410EXPORT_SYMBOL(netdev_has_upper_dev);
5411
5412/**
5413 * netdev_has_upper_dev_all - Check if device is linked to an upper device
5414 * @dev: device
5415 * @upper_dev: upper device to check
5416 *
5417 * Find out if a device is linked to specified upper device and return true
5418 * in case it is. Note that this checks the entire upper device chain.
5419 * The caller must hold rcu lock.
5420 */
5421
5422bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
5423 struct net_device *upper_dev)
5424{
5425 return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5426 upper_dev);
5427}
5428EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
5429
5430/**
5431 * netdev_has_any_upper_dev - Check if device is linked to some device
5432 * @dev: device
5433 *
5434 * Find out if a device is linked to an upper device and return true in case
5435 * it is. The caller must hold the RTNL lock.
5436 */
5437static bool netdev_has_any_upper_dev(struct net_device *dev)
5438{
5439 ASSERT_RTNL();
5440
5441 return !list_empty(&dev->adj_list.upper);
5442}
5443
5444/**
5445 * netdev_master_upper_dev_get - Get master upper device
5446 * @dev: device
5447 *
5448 * Find a master upper device and return pointer to it or NULL in case
5449 * it's not there. The caller must hold the RTNL lock.
5450 */
5451struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5452{
5453 struct netdev_adjacent *upper;
5454
5455 ASSERT_RTNL();
5456
5457 if (list_empty(&dev->adj_list.upper))
5458 return NULL;
5459
5460 upper = list_first_entry(&dev->adj_list.upper,
5461 struct netdev_adjacent, list);
5462 if (likely(upper->master))
5463 return upper->dev;
5464 return NULL;
5465}
5466EXPORT_SYMBOL(netdev_master_upper_dev_get);
5467
5468/**
5469 * netdev_has_any_lower_dev - Check if device is linked to some device
5470 * @dev: device
5471 *
5472 * Find out if a device is linked to a lower device and return true in case
5473 * it is. The caller must hold the RTNL lock.
5474 */
5475static bool netdev_has_any_lower_dev(struct net_device *dev)
5476{
5477 ASSERT_RTNL();
5478
5479 return !list_empty(&dev->adj_list.lower);
5480}
5481
5482void *netdev_adjacent_get_private(struct list_head *adj_list)
5483{
5484 struct netdev_adjacent *adj;
5485
5486 adj = list_entry(adj_list, struct netdev_adjacent, list);
5487
5488 return adj->private;
5489}
5490EXPORT_SYMBOL(netdev_adjacent_get_private);
5491
5492/**
5493 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5494 * @dev: device
5495 * @iter: list_head ** of the current position
5496 *
5497 * Gets the next device from the dev's upper list, starting from iter
5498 * position. The caller must hold RCU read lock.
5499 */
5500struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5501 struct list_head **iter)
5502{
5503 struct netdev_adjacent *upper;
5504
5505 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5506
5507 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5508
5509 if (&upper->list == &dev->adj_list.upper)
5510 return NULL;
5511
5512 *iter = &upper->list;
5513
5514 return upper->dev;
5515}
5516EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5517
5518static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
5519 struct list_head **iter)
5520{
5521 struct netdev_adjacent *upper;
5522
5523 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5524
5525 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5526
5527 if (&upper->list == &dev->adj_list.upper)
5528 return NULL;
5529
5530 *iter = &upper->list;
5531
5532 return upper->dev;
5533}
5534
5535int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
5536 int (*fn)(struct net_device *dev,
5537 void *data),
5538 void *data)
5539{
5540 struct net_device *udev;
5541 struct list_head *iter;
5542 int ret;
5543
5544 for (iter = &dev->adj_list.upper,
5545 udev = netdev_next_upper_dev_rcu(dev, &iter);
5546 udev;
5547 udev = netdev_next_upper_dev_rcu(dev, &iter)) {
5548 /* first is the upper device itself */
5549 ret = fn(udev, data);
5550 if (ret)
5551 return ret;
5552
5553 /* then look at all of its upper devices */
5554 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
5555 if (ret)
5556 return ret;
5557 }
5558
5559 return 0;
5560}
5561EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
5562
5563/**
5564 * netdev_lower_get_next_private - Get the next ->private from the
5565 * lower neighbour list
5566 * @dev: device
5567 * @iter: list_head ** of the current position
5568 *
5569 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5570 * list, starting from iter position. The caller must hold either hold the
5571 * RTNL lock or its own locking that guarantees that the neighbour lower
5572 * list will remain unchanged.
5573 */
5574void *netdev_lower_get_next_private(struct net_device *dev,
5575 struct list_head **iter)
5576{
5577 struct netdev_adjacent *lower;
5578
5579 lower = list_entry(*iter, struct netdev_adjacent, list);
5580
5581 if (&lower->list == &dev->adj_list.lower)
5582 return NULL;
5583
5584 *iter = lower->list.next;
5585
5586 return lower->private;
5587}
5588EXPORT_SYMBOL(netdev_lower_get_next_private);
5589
5590/**
5591 * netdev_lower_get_next_private_rcu - Get the next ->private from the
5592 * lower neighbour list, RCU
5593 * variant
5594 * @dev: device
5595 * @iter: list_head ** of the current position
5596 *
5597 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5598 * list, starting from iter position. The caller must hold RCU read lock.
5599 */
5600void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5601 struct list_head **iter)
5602{
5603 struct netdev_adjacent *lower;
5604
5605 WARN_ON_ONCE(!rcu_read_lock_held());
5606
5607 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5608
5609 if (&lower->list == &dev->adj_list.lower)
5610 return NULL;
5611
5612 *iter = &lower->list;
5613
5614 return lower->private;
5615}
5616EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5617
5618/**
5619 * netdev_lower_get_next - Get the next device from the lower neighbour
5620 * list
5621 * @dev: device
5622 * @iter: list_head ** of the current position
5623 *
5624 * Gets the next netdev_adjacent from the dev's lower neighbour
5625 * list, starting from iter position. The caller must hold RTNL lock or
5626 * its own locking that guarantees that the neighbour lower
5627 * list will remain unchanged.
5628 */
5629void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5630{
5631 struct netdev_adjacent *lower;
5632
5633 lower = list_entry(*iter, struct netdev_adjacent, list);
5634
5635 if (&lower->list == &dev->adj_list.lower)
5636 return NULL;
5637
5638 *iter = lower->list.next;
5639
5640 return lower->dev;
5641}
5642EXPORT_SYMBOL(netdev_lower_get_next);
5643
5644static struct net_device *netdev_next_lower_dev(struct net_device *dev,
5645 struct list_head **iter)
5646{
5647 struct netdev_adjacent *lower;
5648
5649 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
5650
5651 if (&lower->list == &dev->adj_list.lower)
5652 return NULL;
5653
5654 *iter = &lower->list;
5655
5656 return lower->dev;
5657}
5658
5659int netdev_walk_all_lower_dev(struct net_device *dev,
5660 int (*fn)(struct net_device *dev,
5661 void *data),
5662 void *data)
5663{
5664 struct net_device *ldev;
5665 struct list_head *iter;
5666 int ret;
5667
5668 for (iter = &dev->adj_list.lower,
5669 ldev = netdev_next_lower_dev(dev, &iter);
5670 ldev;
5671 ldev = netdev_next_lower_dev(dev, &iter)) {
5672 /* first is the lower device itself */
5673 ret = fn(ldev, data);
5674 if (ret)
5675 return ret;
5676
5677 /* then look at all of its lower devices */
5678 ret = netdev_walk_all_lower_dev(ldev, fn, data);
5679 if (ret)
5680 return ret;
5681 }
5682
5683 return 0;
5684}
5685EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
5686
5687static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
5688 struct list_head **iter)
5689{
5690 struct netdev_adjacent *lower;
5691
5692 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5693 if (&lower->list == &dev->adj_list.lower)
5694 return NULL;
5695
5696 *iter = &lower->list;
5697
5698 return lower->dev;
5699}
5700
5701int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
5702 int (*fn)(struct net_device *dev,
5703 void *data),
5704 void *data)
5705{
5706 struct net_device *ldev;
5707 struct list_head *iter;
5708 int ret;
5709
5710 for (iter = &dev->adj_list.lower,
5711 ldev = netdev_next_lower_dev_rcu(dev, &iter);
5712 ldev;
5713 ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
5714 /* first is the lower device itself */
5715 ret = fn(ldev, data);
5716 if (ret)
5717 return ret;
5718
5719 /* then look at all of its lower devices */
5720 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
5721 if (ret)
5722 return ret;
5723 }
5724
5725 return 0;
5726}
5727EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
5728
5729/**
5730 * netdev_lower_get_first_private_rcu - Get the first ->private from the
5731 * lower neighbour list, RCU
5732 * variant
5733 * @dev: device
5734 *
5735 * Gets the first netdev_adjacent->private from the dev's lower neighbour
5736 * list. The caller must hold RCU read lock.
5737 */
5738void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5739{
5740 struct netdev_adjacent *lower;
5741
5742 lower = list_first_or_null_rcu(&dev->adj_list.lower,
5743 struct netdev_adjacent, list);
5744 if (lower)
5745 return lower->private;
5746 return NULL;
5747}
5748EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5749
5750/**
5751 * netdev_master_upper_dev_get_rcu - Get master upper device
5752 * @dev: device
5753 *
5754 * Find a master upper device and return pointer to it or NULL in case
5755 * it's not there. The caller must hold the RCU read lock.
5756 */
5757struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5758{
5759 struct netdev_adjacent *upper;
5760
5761 upper = list_first_or_null_rcu(&dev->adj_list.upper,
5762 struct netdev_adjacent, list);
5763 if (upper && likely(upper->master))
5764 return upper->dev;
5765 return NULL;
5766}
5767EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5768
5769static int netdev_adjacent_sysfs_add(struct net_device *dev,
5770 struct net_device *adj_dev,
5771 struct list_head *dev_list)
5772{
5773 char linkname[IFNAMSIZ+7];
5774
5775 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5776 "upper_%s" : "lower_%s", adj_dev->name);
5777 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5778 linkname);
5779}
5780static void netdev_adjacent_sysfs_del(struct net_device *dev,
5781 char *name,
5782 struct list_head *dev_list)
5783{
5784 char linkname[IFNAMSIZ+7];
5785
5786 sprintf(linkname, dev_list == &dev->adj_list.upper ?
5787 "upper_%s" : "lower_%s", name);
5788 sysfs_remove_link(&(dev->dev.kobj), linkname);
5789}
5790
5791static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5792 struct net_device *adj_dev,
5793 struct list_head *dev_list)
5794{
5795 return (dev_list == &dev->adj_list.upper ||
5796 dev_list == &dev->adj_list.lower) &&
5797 net_eq(dev_net(dev), dev_net(adj_dev));
5798}
5799
5800static int __netdev_adjacent_dev_insert(struct net_device *dev,
5801 struct net_device *adj_dev,
5802 struct list_head *dev_list,
5803 void *private, bool master)
5804{
5805 struct netdev_adjacent *adj;
5806 int ret;
5807
5808 adj = __netdev_find_adj(adj_dev, dev_list);
5809
5810 if (adj) {
5811 adj->ref_nr += 1;
5812 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
5813 dev->name, adj_dev->name, adj->ref_nr);
5814
5815 return 0;
5816 }
5817
5818 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5819 if (!adj)
5820 return -ENOMEM;
5821
5822 adj->dev = adj_dev;
5823 adj->master = master;
5824 adj->ref_nr = 1;
5825 adj->private = private;
5826 dev_hold(adj_dev);
5827
5828 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
5829 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
5830
5831 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
5832 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5833 if (ret)
5834 goto free_adj;
5835 }
5836
5837 /* Ensure that master link is always the first item in list. */
5838 if (master) {
5839 ret = sysfs_create_link(&(dev->dev.kobj),
5840 &(adj_dev->dev.kobj), "master");
5841 if (ret)
5842 goto remove_symlinks;
5843
5844 list_add_rcu(&adj->list, dev_list);
5845 } else {
5846 list_add_tail_rcu(&adj->list, dev_list);
5847 }
5848
5849 return 0;
5850
5851remove_symlinks:
5852 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5853 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5854free_adj:
5855 kfree(adj);
5856 dev_put(adj_dev);
5857
5858 return ret;
5859}
5860
5861static void __netdev_adjacent_dev_remove(struct net_device *dev,
5862 struct net_device *adj_dev,
5863 u16 ref_nr,
5864 struct list_head *dev_list)
5865{
5866 struct netdev_adjacent *adj;
5867
5868 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
5869 dev->name, adj_dev->name, ref_nr);
5870
5871 adj = __netdev_find_adj(adj_dev, dev_list);
5872
5873 if (!adj) {
5874 pr_err("Adjacency does not exist for device %s from %s\n",
5875 dev->name, adj_dev->name);
5876 WARN_ON(1);
5877 return;
5878 }
5879
5880 if (adj->ref_nr > ref_nr) {
5881 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
5882 dev->name, adj_dev->name, ref_nr,
5883 adj->ref_nr - ref_nr);
5884 adj->ref_nr -= ref_nr;
5885 return;
5886 }
5887
5888 if (adj->master)
5889 sysfs_remove_link(&(dev->dev.kobj), "master");
5890
5891 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5892 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5893
5894 list_del_rcu(&adj->list);
5895 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
5896 adj_dev->name, dev->name, adj_dev->name);
5897 dev_put(adj_dev);
5898 kfree_rcu(adj, rcu);
5899}
5900
5901static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5902 struct net_device *upper_dev,
5903 struct list_head *up_list,
5904 struct list_head *down_list,
5905 void *private, bool master)
5906{
5907 int ret;
5908
5909 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
5910 private, master);
5911 if (ret)
5912 return ret;
5913
5914 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
5915 private, false);
5916 if (ret) {
5917 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
5918 return ret;
5919 }
5920
5921 return 0;
5922}
5923
5924static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5925 struct net_device *upper_dev,
5926 u16 ref_nr,
5927 struct list_head *up_list,
5928 struct list_head *down_list)
5929{
5930 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
5931 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
5932}
5933
5934static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5935 struct net_device *upper_dev,
5936 void *private, bool master)
5937{
5938 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5939 &dev->adj_list.upper,
5940 &upper_dev->adj_list.lower,
5941 private, master);
5942}
5943
5944static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5945 struct net_device *upper_dev)
5946{
5947 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
5948 &dev->adj_list.upper,
5949 &upper_dev->adj_list.lower);
5950}
5951
5952static int __netdev_upper_dev_link(struct net_device *dev,
5953 struct net_device *upper_dev, bool master,
5954 void *upper_priv, void *upper_info)
5955{
5956 struct netdev_notifier_changeupper_info changeupper_info;
5957 int ret = 0;
5958
5959 ASSERT_RTNL();
5960
5961 if (dev == upper_dev)
5962 return -EBUSY;
5963
5964 /* To prevent loops, check if dev is not upper device to upper_dev. */
5965 if (netdev_has_upper_dev(upper_dev, dev))
5966 return -EBUSY;
5967
5968 if (netdev_has_upper_dev(dev, upper_dev))
5969 return -EEXIST;
5970
5971 if (master && netdev_master_upper_dev_get(dev))
5972 return -EBUSY;
5973
5974 changeupper_info.upper_dev = upper_dev;
5975 changeupper_info.master = master;
5976 changeupper_info.linking = true;
5977 changeupper_info.upper_info = upper_info;
5978
5979 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5980 &changeupper_info.info);
5981 ret = notifier_to_errno(ret);
5982 if (ret)
5983 return ret;
5984
5985 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
5986 master);
5987 if (ret)
5988 return ret;
5989
5990 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5991 &changeupper_info.info);
5992 ret = notifier_to_errno(ret);
5993 if (ret)
5994 goto rollback;
5995
5996 return 0;
5997
5998rollback:
5999 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6000
6001 return ret;
6002}
6003
6004/**
6005 * netdev_upper_dev_link - Add a link to the upper device
6006 * @dev: device
6007 * @upper_dev: new upper device
6008 *
6009 * Adds a link to device which is upper to this one. The caller must hold
6010 * the RTNL lock. On a failure a negative errno code is returned.
6011 * On success the reference counts are adjusted and the function
6012 * returns zero.
6013 */
6014int netdev_upper_dev_link(struct net_device *dev,
6015 struct net_device *upper_dev)
6016{
6017 return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL);
6018}
6019EXPORT_SYMBOL(netdev_upper_dev_link);
6020
6021/**
6022 * netdev_master_upper_dev_link - Add a master link to the upper device
6023 * @dev: device
6024 * @upper_dev: new upper device
6025 * @upper_priv: upper device private
6026 * @upper_info: upper info to be passed down via notifier
6027 *
6028 * Adds a link to device which is upper to this one. In this case, only
6029 * one master upper device can be linked, although other non-master devices
6030 * might be linked as well. The caller must hold the RTNL lock.
6031 * On a failure a negative errno code is returned. On success the reference
6032 * counts are adjusted and the function returns zero.
6033 */
6034int netdev_master_upper_dev_link(struct net_device *dev,
6035 struct net_device *upper_dev,
6036 void *upper_priv, void *upper_info)
6037{
6038 return __netdev_upper_dev_link(dev, upper_dev, true,
6039 upper_priv, upper_info);
6040}
6041EXPORT_SYMBOL(netdev_master_upper_dev_link);
6042
6043/**
6044 * netdev_upper_dev_unlink - Removes a link to upper device
6045 * @dev: device
6046 * @upper_dev: new upper device
6047 *
6048 * Removes a link to device which is upper to this one. The caller must hold
6049 * the RTNL lock.
6050 */
6051void netdev_upper_dev_unlink(struct net_device *dev,
6052 struct net_device *upper_dev)
6053{
6054 struct netdev_notifier_changeupper_info changeupper_info;
6055
6056 ASSERT_RTNL();
6057
6058 changeupper_info.upper_dev = upper_dev;
6059 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
6060 changeupper_info.linking = false;
6061
6062 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
6063 &changeupper_info.info);
6064
6065 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6066
6067 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
6068 &changeupper_info.info);
6069}
6070EXPORT_SYMBOL(netdev_upper_dev_unlink);
6071
6072/**
6073 * netdev_bonding_info_change - Dispatch event about slave change
6074 * @dev: device
6075 * @bonding_info: info to dispatch
6076 *
6077 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
6078 * The caller must hold the RTNL lock.
6079 */
6080void netdev_bonding_info_change(struct net_device *dev,
6081 struct netdev_bonding_info *bonding_info)
6082{
6083 struct netdev_notifier_bonding_info info;
6084
6085 memcpy(&info.bonding_info, bonding_info,
6086 sizeof(struct netdev_bonding_info));
6087 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
6088 &info.info);
6089}
6090EXPORT_SYMBOL(netdev_bonding_info_change);
6091
6092static void netdev_adjacent_add_links(struct net_device *dev)
6093{
6094 struct netdev_adjacent *iter;
6095
6096 struct net *net = dev_net(dev);
6097
6098 list_for_each_entry(iter, &dev->adj_list.upper, list) {
6099 if (!net_eq(net, dev_net(iter->dev)))
6100 continue;
6101 netdev_adjacent_sysfs_add(iter->dev, dev,
6102 &iter->dev->adj_list.lower);
6103 netdev_adjacent_sysfs_add(dev, iter->dev,
6104 &dev->adj_list.upper);
6105 }
6106
6107 list_for_each_entry(iter, &dev->adj_list.lower, list) {
6108 if (!net_eq(net, dev_net(iter->dev)))
6109 continue;
6110 netdev_adjacent_sysfs_add(iter->dev, dev,
6111 &iter->dev->adj_list.upper);
6112 netdev_adjacent_sysfs_add(dev, iter->dev,
6113 &dev->adj_list.lower);
6114 }
6115}
6116
6117static void netdev_adjacent_del_links(struct net_device *dev)
6118{
6119 struct netdev_adjacent *iter;
6120
6121 struct net *net = dev_net(dev);
6122
6123 list_for_each_entry(iter, &dev->adj_list.upper, list) {
6124 if (!net_eq(net, dev_net(iter->dev)))
6125 continue;
6126 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6127 &iter->dev->adj_list.lower);
6128 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6129 &dev->adj_list.upper);
6130 }
6131
6132 list_for_each_entry(iter, &dev->adj_list.lower, list) {
6133 if (!net_eq(net, dev_net(iter->dev)))
6134 continue;
6135 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6136 &iter->dev->adj_list.upper);
6137 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6138 &dev->adj_list.lower);
6139 }
6140}
6141
6142void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
6143{
6144 struct netdev_adjacent *iter;
6145
6146 struct net *net = dev_net(dev);
6147
6148 list_for_each_entry(iter, &dev->adj_list.upper, list) {
6149 if (!net_eq(net, dev_net(iter->dev)))
6150 continue;
6151 netdev_adjacent_sysfs_del(iter->dev, oldname,
6152 &iter->dev->adj_list.lower);
6153 netdev_adjacent_sysfs_add(iter->dev, dev,
6154 &iter->dev->adj_list.lower);
6155 }
6156
6157 list_for_each_entry(iter, &dev->adj_list.lower, list) {
6158 if (!net_eq(net, dev_net(iter->dev)))
6159 continue;
6160 netdev_adjacent_sysfs_del(iter->dev, oldname,
6161 &iter->dev->adj_list.upper);
6162 netdev_adjacent_sysfs_add(iter->dev, dev,
6163 &iter->dev->adj_list.upper);
6164 }
6165}
6166
6167void *netdev_lower_dev_get_private(struct net_device *dev,
6168 struct net_device *lower_dev)
6169{
6170 struct netdev_adjacent *lower;
6171
6172 if (!lower_dev)
6173 return NULL;
6174 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
6175 if (!lower)
6176 return NULL;
6177
6178 return lower->private;
6179}
6180EXPORT_SYMBOL(netdev_lower_dev_get_private);
6181
6182
6183int dev_get_nest_level(struct net_device *dev)
6184{
6185 struct net_device *lower = NULL;
6186 struct list_head *iter;
6187 int max_nest = -1;
6188 int nest;
6189
6190 ASSERT_RTNL();
6191
6192 netdev_for_each_lower_dev(dev, lower, iter) {
6193 nest = dev_get_nest_level(lower);
6194 if (max_nest < nest)
6195 max_nest = nest;
6196 }
6197
6198 return max_nest + 1;
6199}
6200EXPORT_SYMBOL(dev_get_nest_level);
6201
6202/**
6203 * netdev_lower_change - Dispatch event about lower device state change
6204 * @lower_dev: device
6205 * @lower_state_info: state to dispatch
6206 *
6207 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6208 * The caller must hold the RTNL lock.
6209 */
6210void netdev_lower_state_changed(struct net_device *lower_dev,
6211 void *lower_state_info)
6212{
6213 struct netdev_notifier_changelowerstate_info changelowerstate_info;
6214
6215 ASSERT_RTNL();
6216 changelowerstate_info.lower_state_info = lower_state_info;
6217 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev,
6218 &changelowerstate_info.info);
6219}
6220EXPORT_SYMBOL(netdev_lower_state_changed);
6221
6222static void dev_change_rx_flags(struct net_device *dev, int flags)
6223{
6224 const struct net_device_ops *ops = dev->netdev_ops;
6225
6226 if (ops->ndo_change_rx_flags)
6227 ops->ndo_change_rx_flags(dev, flags);
6228}
6229
6230static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
6231{
6232 unsigned int old_flags = dev->flags;
6233 kuid_t uid;
6234 kgid_t gid;
6235
6236 ASSERT_RTNL();
6237
6238 dev->flags |= IFF_PROMISC;
6239 dev->promiscuity += inc;
6240 if (dev->promiscuity == 0) {
6241 /*
6242 * Avoid overflow.
6243 * If inc causes overflow, untouch promisc and return error.
6244 */
6245 if (inc < 0)
6246 dev->flags &= ~IFF_PROMISC;
6247 else {
6248 dev->promiscuity -= inc;
6249 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6250 dev->name);
6251 return -EOVERFLOW;
6252 }
6253 }
6254 if (dev->flags != old_flags) {
6255 pr_info("device %s %s promiscuous mode\n",
6256 dev->name,
6257 dev->flags & IFF_PROMISC ? "entered" : "left");
6258 if (audit_enabled) {
6259 current_uid_gid(&uid, &gid);
6260 audit_log(current->audit_context, GFP_ATOMIC,
6261 AUDIT_ANOM_PROMISCUOUS,
6262 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6263 dev->name, (dev->flags & IFF_PROMISC),
6264 (old_flags & IFF_PROMISC),
6265 from_kuid(&init_user_ns, audit_get_loginuid(current)),
6266 from_kuid(&init_user_ns, uid),
6267 from_kgid(&init_user_ns, gid),
6268 audit_get_sessionid(current));
6269 }
6270
6271 dev_change_rx_flags(dev, IFF_PROMISC);
6272 }
6273 if (notify)
6274 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
6275 return 0;
6276}
6277
6278/**
6279 * dev_set_promiscuity - update promiscuity count on a device
6280 * @dev: device
6281 * @inc: modifier
6282 *
6283 * Add or remove promiscuity from a device. While the count in the device
6284 * remains above zero the interface remains promiscuous. Once it hits zero
6285 * the device reverts back to normal filtering operation. A negative inc
6286 * value is used to drop promiscuity on the device.
6287 * Return 0 if successful or a negative errno code on error.
6288 */
6289int dev_set_promiscuity(struct net_device *dev, int inc)
6290{
6291 unsigned int old_flags = dev->flags;
6292 int err;
6293
6294 err = __dev_set_promiscuity(dev, inc, true);
6295 if (err < 0)
6296 return err;
6297 if (dev->flags != old_flags)
6298 dev_set_rx_mode(dev);
6299 return err;
6300}
6301EXPORT_SYMBOL(dev_set_promiscuity);
6302
6303static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
6304{
6305 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
6306
6307 ASSERT_RTNL();
6308
6309 dev->flags |= IFF_ALLMULTI;
6310 dev->allmulti += inc;
6311 if (dev->allmulti == 0) {
6312 /*
6313 * Avoid overflow.
6314 * If inc causes overflow, untouch allmulti and return error.
6315 */
6316 if (inc < 0)
6317 dev->flags &= ~IFF_ALLMULTI;
6318 else {
6319 dev->allmulti -= inc;
6320 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6321 dev->name);
6322 return -EOVERFLOW;
6323 }
6324 }
6325 if (dev->flags ^ old_flags) {
6326 dev_change_rx_flags(dev, IFF_ALLMULTI);
6327 dev_set_rx_mode(dev);
6328 if (notify)
6329 __dev_notify_flags(dev, old_flags,
6330 dev->gflags ^ old_gflags);
6331 }
6332 return 0;
6333}
6334
6335/**
6336 * dev_set_allmulti - update allmulti count on a device
6337 * @dev: device
6338 * @inc: modifier
6339 *
6340 * Add or remove reception of all multicast frames to a device. While the
6341 * count in the device remains above zero the interface remains listening
6342 * to all interfaces. Once it hits zero the device reverts back to normal
6343 * filtering operation. A negative @inc value is used to drop the counter
6344 * when releasing a resource needing all multicasts.
6345 * Return 0 if successful or a negative errno code on error.
6346 */
6347
6348int dev_set_allmulti(struct net_device *dev, int inc)
6349{
6350 return __dev_set_allmulti(dev, inc, true);
6351}
6352EXPORT_SYMBOL(dev_set_allmulti);
6353
6354/*
6355 * Upload unicast and multicast address lists to device and
6356 * configure RX filtering. When the device doesn't support unicast
6357 * filtering it is put in promiscuous mode while unicast addresses
6358 * are present.
6359 */
6360void __dev_set_rx_mode(struct net_device *dev)
6361{
6362 const struct net_device_ops *ops = dev->netdev_ops;
6363
6364 /* dev_open will call this function so the list will stay sane. */
6365 if (!(dev->flags&IFF_UP))
6366 return;
6367
6368 if (!netif_device_present(dev))
6369 return;
6370
6371 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
6372 /* Unicast addresses changes may only happen under the rtnl,
6373 * therefore calling __dev_set_promiscuity here is safe.
6374 */
6375 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
6376 __dev_set_promiscuity(dev, 1, false);
6377 dev->uc_promisc = true;
6378 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
6379 __dev_set_promiscuity(dev, -1, false);
6380 dev->uc_promisc = false;
6381 }
6382 }
6383
6384 if (ops->ndo_set_rx_mode)
6385 ops->ndo_set_rx_mode(dev);
6386}
6387
6388void dev_set_rx_mode(struct net_device *dev)
6389{
6390 netif_addr_lock_bh(dev);
6391 __dev_set_rx_mode(dev);
6392 netif_addr_unlock_bh(dev);
6393}
6394
6395/**
6396 * dev_get_flags - get flags reported to userspace
6397 * @dev: device
6398 *
6399 * Get the combination of flag bits exported through APIs to userspace.
6400 */
6401unsigned int dev_get_flags(const struct net_device *dev)
6402{
6403 unsigned int flags;
6404
6405 flags = (dev->flags & ~(IFF_PROMISC |
6406 IFF_ALLMULTI |
6407 IFF_RUNNING |
6408 IFF_LOWER_UP |
6409 IFF_DORMANT)) |
6410 (dev->gflags & (IFF_PROMISC |
6411 IFF_ALLMULTI));
6412
6413 if (netif_running(dev)) {
6414 if (netif_oper_up(dev))
6415 flags |= IFF_RUNNING;
6416 if (netif_carrier_ok(dev))
6417 flags |= IFF_LOWER_UP;
6418 if (netif_dormant(dev))
6419 flags |= IFF_DORMANT;
6420 }
6421
6422 return flags;
6423}
6424EXPORT_SYMBOL(dev_get_flags);
6425
6426int __dev_change_flags(struct net_device *dev, unsigned int flags)
6427{
6428 unsigned int old_flags = dev->flags;
6429 int ret;
6430
6431 ASSERT_RTNL();
6432
6433 /*
6434 * Set the flags on our device.
6435 */
6436
6437 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6438 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6439 IFF_AUTOMEDIA)) |
6440 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6441 IFF_ALLMULTI));
6442
6443 /*
6444 * Load in the correct multicast list now the flags have changed.
6445 */
6446
6447 if ((old_flags ^ flags) & IFF_MULTICAST)
6448 dev_change_rx_flags(dev, IFF_MULTICAST);
6449
6450 dev_set_rx_mode(dev);
6451
6452 /*
6453 * Have we downed the interface. We handle IFF_UP ourselves
6454 * according to user attempts to set it, rather than blindly
6455 * setting it.
6456 */
6457
6458 ret = 0;
6459 if ((old_flags ^ flags) & IFF_UP)
6460 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
6461
6462 if ((flags ^ dev->gflags) & IFF_PROMISC) {
6463 int inc = (flags & IFF_PROMISC) ? 1 : -1;
6464 unsigned int old_flags = dev->flags;
6465
6466 dev->gflags ^= IFF_PROMISC;
6467
6468 if (__dev_set_promiscuity(dev, inc, false) >= 0)
6469 if (dev->flags != old_flags)
6470 dev_set_rx_mode(dev);
6471 }
6472
6473 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6474 * is important. Some (broken) drivers set IFF_PROMISC, when
6475 * IFF_ALLMULTI is requested not asking us and not reporting.
6476 */
6477 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
6478 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6479
6480 dev->gflags ^= IFF_ALLMULTI;
6481 __dev_set_allmulti(dev, inc, false);
6482 }
6483
6484 return ret;
6485}
6486
6487void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6488 unsigned int gchanges)
6489{
6490 unsigned int changes = dev->flags ^ old_flags;
6491
6492 if (gchanges)
6493 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
6494
6495 if (changes & IFF_UP) {
6496 if (dev->flags & IFF_UP)
6497 call_netdevice_notifiers(NETDEV_UP, dev);
6498 else
6499 call_netdevice_notifiers(NETDEV_DOWN, dev);
6500 }
6501
6502 if (dev->flags & IFF_UP &&
6503 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6504 struct netdev_notifier_change_info change_info;
6505
6506 change_info.flags_changed = changes;
6507 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
6508 &change_info.info);
6509 }
6510}
6511
6512/**
6513 * dev_change_flags - change device settings
6514 * @dev: device
6515 * @flags: device state flags
6516 *
6517 * Change settings on device based state flags. The flags are
6518 * in the userspace exported format.
6519 */
6520int dev_change_flags(struct net_device *dev, unsigned int flags)
6521{
6522 int ret;
6523 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
6524
6525 ret = __dev_change_flags(dev, flags);
6526 if (ret < 0)
6527 return ret;
6528
6529 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
6530 __dev_notify_flags(dev, old_flags, changes);
6531 return ret;
6532}
6533EXPORT_SYMBOL(dev_change_flags);
6534
6535static int __dev_set_mtu(struct net_device *dev, int new_mtu)
6536{
6537 const struct net_device_ops *ops = dev->netdev_ops;
6538
6539 if (ops->ndo_change_mtu)
6540 return ops->ndo_change_mtu(dev, new_mtu);
6541
6542 dev->mtu = new_mtu;
6543 return 0;
6544}
6545
6546/**
6547 * dev_set_mtu - Change maximum transfer unit
6548 * @dev: device
6549 * @new_mtu: new transfer unit
6550 *
6551 * Change the maximum transfer size of the network device.
6552 */
6553int dev_set_mtu(struct net_device *dev, int new_mtu)
6554{
6555 int err, orig_mtu;
6556
6557 if (new_mtu == dev->mtu)
6558 return 0;
6559
6560 /* MTU must be positive, and in range */
6561 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
6562 net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n",
6563 dev->name, new_mtu, dev->min_mtu);
6564 return -EINVAL;
6565 }
6566
6567 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
6568 net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n",
6569 dev->name, new_mtu, dev->max_mtu);
6570 return -EINVAL;
6571 }
6572
6573 if (!netif_device_present(dev))
6574 return -ENODEV;
6575
6576 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6577 err = notifier_to_errno(err);
6578 if (err)
6579 return err;
6580
6581 orig_mtu = dev->mtu;
6582 err = __dev_set_mtu(dev, new_mtu);
6583
6584 if (!err) {
6585 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6586 err = notifier_to_errno(err);
6587 if (err) {
6588 /* setting mtu back and notifying everyone again,
6589 * so that they have a chance to revert changes.
6590 */
6591 __dev_set_mtu(dev, orig_mtu);
6592 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6593 }
6594 }
6595 return err;
6596}
6597EXPORT_SYMBOL(dev_set_mtu);
6598
6599/**
6600 * dev_set_group - Change group this device belongs to
6601 * @dev: device
6602 * @new_group: group this device should belong to
6603 */
6604void dev_set_group(struct net_device *dev, int new_group)
6605{
6606 dev->group = new_group;
6607}
6608EXPORT_SYMBOL(dev_set_group);
6609
6610/**
6611 * dev_set_mac_address - Change Media Access Control Address
6612 * @dev: device
6613 * @sa: new address
6614 *
6615 * Change the hardware (MAC) address of the device
6616 */
6617int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6618{
6619 const struct net_device_ops *ops = dev->netdev_ops;
6620 int err;
6621
6622 if (!ops->ndo_set_mac_address)
6623 return -EOPNOTSUPP;
6624 if (sa->sa_family != dev->type)
6625 return -EINVAL;
6626 if (!netif_device_present(dev))
6627 return -ENODEV;
6628 err = ops->ndo_set_mac_address(dev, sa);
6629 if (err)
6630 return err;
6631 dev->addr_assign_type = NET_ADDR_SET;
6632 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
6633 add_device_randomness(dev->dev_addr, dev->addr_len);
6634 return 0;
6635}
6636EXPORT_SYMBOL(dev_set_mac_address);
6637
6638/**
6639 * dev_change_carrier - Change device carrier
6640 * @dev: device
6641 * @new_carrier: new value
6642 *
6643 * Change device carrier
6644 */
6645int dev_change_carrier(struct net_device *dev, bool new_carrier)
6646{
6647 const struct net_device_ops *ops = dev->netdev_ops;
6648
6649 if (!ops->ndo_change_carrier)
6650 return -EOPNOTSUPP;
6651 if (!netif_device_present(dev))
6652 return -ENODEV;
6653 return ops->ndo_change_carrier(dev, new_carrier);
6654}
6655EXPORT_SYMBOL(dev_change_carrier);
6656
6657/**
6658 * dev_get_phys_port_id - Get device physical port ID
6659 * @dev: device
6660 * @ppid: port ID
6661 *
6662 * Get device physical port ID
6663 */
6664int dev_get_phys_port_id(struct net_device *dev,
6665 struct netdev_phys_item_id *ppid)
6666{
6667 const struct net_device_ops *ops = dev->netdev_ops;
6668
6669 if (!ops->ndo_get_phys_port_id)
6670 return -EOPNOTSUPP;
6671 return ops->ndo_get_phys_port_id(dev, ppid);
6672}
6673EXPORT_SYMBOL(dev_get_phys_port_id);
6674
6675/**
6676 * dev_get_phys_port_name - Get device physical port name
6677 * @dev: device
6678 * @name: port name
6679 * @len: limit of bytes to copy to name
6680 *
6681 * Get device physical port name
6682 */
6683int dev_get_phys_port_name(struct net_device *dev,
6684 char *name, size_t len)
6685{
6686 const struct net_device_ops *ops = dev->netdev_ops;
6687
6688 if (!ops->ndo_get_phys_port_name)
6689 return -EOPNOTSUPP;
6690 return ops->ndo_get_phys_port_name(dev, name, len);
6691}
6692EXPORT_SYMBOL(dev_get_phys_port_name);
6693
6694/**
6695 * dev_change_proto_down - update protocol port state information
6696 * @dev: device
6697 * @proto_down: new value
6698 *
6699 * This info can be used by switch drivers to set the phys state of the
6700 * port.
6701 */
6702int dev_change_proto_down(struct net_device *dev, bool proto_down)
6703{
6704 const struct net_device_ops *ops = dev->netdev_ops;
6705
6706 if (!ops->ndo_change_proto_down)
6707 return -EOPNOTSUPP;
6708 if (!netif_device_present(dev))
6709 return -ENODEV;
6710 return ops->ndo_change_proto_down(dev, proto_down);
6711}
6712EXPORT_SYMBOL(dev_change_proto_down);
6713
6714/**
6715 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
6716 * @dev: device
6717 * @fd: new program fd or negative value to clear
6718 * @flags: xdp-related flags
6719 *
6720 * Set or clear a bpf program for a device
6721 */
6722int dev_change_xdp_fd(struct net_device *dev, int fd, u32 flags)
6723{
6724 const struct net_device_ops *ops = dev->netdev_ops;
6725 struct bpf_prog *prog = NULL;
6726 struct netdev_xdp xdp;
6727 int err;
6728
6729 ASSERT_RTNL();
6730
6731 if (!ops->ndo_xdp)
6732 return -EOPNOTSUPP;
6733 if (fd >= 0) {
6734 if (flags & XDP_FLAGS_UPDATE_IF_NOEXIST) {
6735 memset(&xdp, 0, sizeof(xdp));
6736 xdp.command = XDP_QUERY_PROG;
6737
6738 err = ops->ndo_xdp(dev, &xdp);
6739 if (err < 0)
6740 return err;
6741 if (xdp.prog_attached)
6742 return -EBUSY;
6743 }
6744
6745 prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
6746 if (IS_ERR(prog))
6747 return PTR_ERR(prog);
6748 }
6749
6750 memset(&xdp, 0, sizeof(xdp));
6751 xdp.command = XDP_SETUP_PROG;
6752 xdp.prog = prog;
6753
6754 err = ops->ndo_xdp(dev, &xdp);
6755 if (err < 0 && prog)
6756 bpf_prog_put(prog);
6757
6758 return err;
6759}
6760EXPORT_SYMBOL(dev_change_xdp_fd);
6761
6762/**
6763 * dev_new_index - allocate an ifindex
6764 * @net: the applicable net namespace
6765 *
6766 * Returns a suitable unique value for a new device interface
6767 * number. The caller must hold the rtnl semaphore or the
6768 * dev_base_lock to be sure it remains unique.
6769 */
6770static int dev_new_index(struct net *net)
6771{
6772 int ifindex = net->ifindex;
6773
6774 for (;;) {
6775 if (++ifindex <= 0)
6776 ifindex = 1;
6777 if (!__dev_get_by_index(net, ifindex))
6778 return net->ifindex = ifindex;
6779 }
6780}
6781
6782/* Delayed registration/unregisteration */
6783static LIST_HEAD(net_todo_list);
6784DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
6785
6786static void net_set_todo(struct net_device *dev)
6787{
6788 list_add_tail(&dev->todo_list, &net_todo_list);
6789 dev_net(dev)->dev_unreg_count++;
6790}
6791
6792static void rollback_registered_many(struct list_head *head)
6793{
6794 struct net_device *dev, *tmp;
6795 LIST_HEAD(close_head);
6796
6797 BUG_ON(dev_boot_phase);
6798 ASSERT_RTNL();
6799
6800 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
6801 /* Some devices call without registering
6802 * for initialization unwind. Remove those
6803 * devices and proceed with the remaining.
6804 */
6805 if (dev->reg_state == NETREG_UNINITIALIZED) {
6806 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6807 dev->name, dev);
6808
6809 WARN_ON(1);
6810 list_del(&dev->unreg_list);
6811 continue;
6812 }
6813 dev->dismantle = true;
6814 BUG_ON(dev->reg_state != NETREG_REGISTERED);
6815 }
6816
6817 /* If device is running, close it first. */
6818 list_for_each_entry(dev, head, unreg_list)
6819 list_add_tail(&dev->close_list, &close_head);
6820 dev_close_many(&close_head, true);
6821
6822 list_for_each_entry(dev, head, unreg_list) {
6823 /* And unlink it from device chain. */
6824 unlist_netdevice(dev);
6825
6826 dev->reg_state = NETREG_UNREGISTERING;
6827 }
6828 flush_all_backlogs();
6829
6830 synchronize_net();
6831
6832 list_for_each_entry(dev, head, unreg_list) {
6833 struct sk_buff *skb = NULL;
6834
6835 /* Shutdown queueing discipline. */
6836 dev_shutdown(dev);
6837
6838
6839 /* Notify protocols, that we are about to destroy
6840 * this device. They should clean all the things.
6841 */
6842 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6843
6844 if (!dev->rtnl_link_ops ||
6845 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6846 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6847 GFP_KERNEL);
6848
6849 /*
6850 * Flush the unicast and multicast chains
6851 */
6852 dev_uc_flush(dev);
6853 dev_mc_flush(dev);
6854
6855 if (dev->netdev_ops->ndo_uninit)
6856 dev->netdev_ops->ndo_uninit(dev);
6857
6858 if (skb)
6859 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
6860
6861 /* Notifier chain MUST detach us all upper devices. */
6862 WARN_ON(netdev_has_any_upper_dev(dev));
6863 WARN_ON(netdev_has_any_lower_dev(dev));
6864
6865 /* Remove entries from kobject tree */
6866 netdev_unregister_kobject(dev);
6867#ifdef CONFIG_XPS
6868 /* Remove XPS queueing entries */
6869 netif_reset_xps_queues_gt(dev, 0);
6870#endif
6871 }
6872
6873 synchronize_net();
6874
6875 list_for_each_entry(dev, head, unreg_list)
6876 dev_put(dev);
6877}
6878
6879static void rollback_registered(struct net_device *dev)
6880{
6881 LIST_HEAD(single);
6882
6883 list_add(&dev->unreg_list, &single);
6884 rollback_registered_many(&single);
6885 list_del(&single);
6886}
6887
6888static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
6889 struct net_device *upper, netdev_features_t features)
6890{
6891 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6892 netdev_features_t feature;
6893 int feature_bit;
6894
6895 for_each_netdev_feature(&upper_disables, feature_bit) {
6896 feature = __NETIF_F_BIT(feature_bit);
6897 if (!(upper->wanted_features & feature)
6898 && (features & feature)) {
6899 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
6900 &feature, upper->name);
6901 features &= ~feature;
6902 }
6903 }
6904
6905 return features;
6906}
6907
6908static void netdev_sync_lower_features(struct net_device *upper,
6909 struct net_device *lower, netdev_features_t features)
6910{
6911 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6912 netdev_features_t feature;
6913 int feature_bit;
6914
6915 for_each_netdev_feature(&upper_disables, feature_bit) {
6916 feature = __NETIF_F_BIT(feature_bit);
6917 if (!(features & feature) && (lower->features & feature)) {
6918 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
6919 &feature, lower->name);
6920 lower->wanted_features &= ~feature;
6921 netdev_update_features(lower);
6922
6923 if (unlikely(lower->features & feature))
6924 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
6925 &feature, lower->name);
6926 }
6927 }
6928}
6929
6930static netdev_features_t netdev_fix_features(struct net_device *dev,
6931 netdev_features_t features)
6932{
6933 /* Fix illegal checksum combinations */
6934 if ((features & NETIF_F_HW_CSUM) &&
6935 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6936 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
6937 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6938 }
6939
6940 /* TSO requires that SG is present as well. */
6941 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6942 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
6943 features &= ~NETIF_F_ALL_TSO;
6944 }
6945
6946 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6947 !(features & NETIF_F_IP_CSUM)) {
6948 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6949 features &= ~NETIF_F_TSO;
6950 features &= ~NETIF_F_TSO_ECN;
6951 }
6952
6953 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6954 !(features & NETIF_F_IPV6_CSUM)) {
6955 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6956 features &= ~NETIF_F_TSO6;
6957 }
6958
6959 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
6960 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
6961 features &= ~NETIF_F_TSO_MANGLEID;
6962
6963 /* TSO ECN requires that TSO is present as well. */
6964 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6965 features &= ~NETIF_F_TSO_ECN;
6966
6967 /* Software GSO depends on SG. */
6968 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6969 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
6970 features &= ~NETIF_F_GSO;
6971 }
6972
6973 /* UFO needs SG and checksumming */
6974 if (features & NETIF_F_UFO) {
6975 /* maybe split UFO into V4 and V6? */
6976 if (!(features & NETIF_F_HW_CSUM) &&
6977 ((features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) !=
6978 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))) {
6979 netdev_dbg(dev,
6980 "Dropping NETIF_F_UFO since no checksum offload features.\n");
6981 features &= ~NETIF_F_UFO;
6982 }
6983
6984 if (!(features & NETIF_F_SG)) {
6985 netdev_dbg(dev,
6986 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
6987 features &= ~NETIF_F_UFO;
6988 }
6989 }
6990
6991 /* GSO partial features require GSO partial be set */
6992 if ((features & dev->gso_partial_features) &&
6993 !(features & NETIF_F_GSO_PARTIAL)) {
6994 netdev_dbg(dev,
6995 "Dropping partially supported GSO features since no GSO partial.\n");
6996 features &= ~dev->gso_partial_features;
6997 }
6998
6999 return features;
7000}
7001
7002int __netdev_update_features(struct net_device *dev)
7003{
7004 struct net_device *upper, *lower;
7005 netdev_features_t features;
7006 struct list_head *iter;
7007 int err = -1;
7008
7009 ASSERT_RTNL();
7010
7011 features = netdev_get_wanted_features(dev);
7012
7013 if (dev->netdev_ops->ndo_fix_features)
7014 features = dev->netdev_ops->ndo_fix_features(dev, features);
7015
7016 /* driver might be less strict about feature dependencies */
7017 features = netdev_fix_features(dev, features);
7018
7019 /* some features can't be enabled if they're off an an upper device */
7020 netdev_for_each_upper_dev_rcu(dev, upper, iter)
7021 features = netdev_sync_upper_features(dev, upper, features);
7022
7023 if (dev->features == features)
7024 goto sync_lower;
7025
7026 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
7027 &dev->features, &features);
7028
7029 if (dev->netdev_ops->ndo_set_features)
7030 err = dev->netdev_ops->ndo_set_features(dev, features);
7031 else
7032 err = 0;
7033
7034 if (unlikely(err < 0)) {
7035 netdev_err(dev,
7036 "set_features() failed (%d); wanted %pNF, left %pNF\n",
7037 err, &features, &dev->features);
7038 /* return non-0 since some features might have changed and
7039 * it's better to fire a spurious notification than miss it
7040 */
7041 return -1;
7042 }
7043
7044sync_lower:
7045 /* some features must be disabled on lower devices when disabled
7046 * on an upper device (think: bonding master or bridge)
7047 */
7048 netdev_for_each_lower_dev(dev, lower, iter)
7049 netdev_sync_lower_features(dev, lower, features);
7050
7051 if (!err)
7052 dev->features = features;
7053
7054 return err < 0 ? 0 : 1;
7055}
7056
7057/**
7058 * netdev_update_features - recalculate device features
7059 * @dev: the device to check
7060 *
7061 * Recalculate dev->features set and send notifications if it
7062 * has changed. Should be called after driver or hardware dependent
7063 * conditions might have changed that influence the features.
7064 */
7065void netdev_update_features(struct net_device *dev)
7066{
7067 if (__netdev_update_features(dev))
7068 netdev_features_change(dev);
7069}
7070EXPORT_SYMBOL(netdev_update_features);
7071
7072/**
7073 * netdev_change_features - recalculate device features
7074 * @dev: the device to check
7075 *
7076 * Recalculate dev->features set and send notifications even
7077 * if they have not changed. Should be called instead of
7078 * netdev_update_features() if also dev->vlan_features might
7079 * have changed to allow the changes to be propagated to stacked
7080 * VLAN devices.
7081 */
7082void netdev_change_features(struct net_device *dev)
7083{
7084 __netdev_update_features(dev);
7085 netdev_features_change(dev);
7086}
7087EXPORT_SYMBOL(netdev_change_features);
7088
7089/**
7090 * netif_stacked_transfer_operstate - transfer operstate
7091 * @rootdev: the root or lower level device to transfer state from
7092 * @dev: the device to transfer operstate to
7093 *
7094 * Transfer operational state from root to device. This is normally
7095 * called when a stacking relationship exists between the root
7096 * device and the device(a leaf device).
7097 */
7098void netif_stacked_transfer_operstate(const struct net_device *rootdev,
7099 struct net_device *dev)
7100{
7101 if (rootdev->operstate == IF_OPER_DORMANT)
7102 netif_dormant_on(dev);
7103 else
7104 netif_dormant_off(dev);
7105
7106 if (netif_carrier_ok(rootdev)) {
7107 if (!netif_carrier_ok(dev))
7108 netif_carrier_on(dev);
7109 } else {
7110 if (netif_carrier_ok(dev))
7111 netif_carrier_off(dev);
7112 }
7113}
7114EXPORT_SYMBOL(netif_stacked_transfer_operstate);
7115
7116#ifdef CONFIG_SYSFS
7117static int netif_alloc_rx_queues(struct net_device *dev)
7118{
7119 unsigned int i, count = dev->num_rx_queues;
7120 struct netdev_rx_queue *rx;
7121 size_t sz = count * sizeof(*rx);
7122
7123 BUG_ON(count < 1);
7124
7125 rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7126 if (!rx) {
7127 rx = vzalloc(sz);
7128 if (!rx)
7129 return -ENOMEM;
7130 }
7131 dev->_rx = rx;
7132
7133 for (i = 0; i < count; i++)
7134 rx[i].dev = dev;
7135 return 0;
7136}
7137#endif
7138
7139static void netdev_init_one_queue(struct net_device *dev,
7140 struct netdev_queue *queue, void *_unused)
7141{
7142 /* Initialize queue lock */
7143 spin_lock_init(&queue->_xmit_lock);
7144 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7145 queue->xmit_lock_owner = -1;
7146 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
7147 queue->dev = dev;
7148#ifdef CONFIG_BQL
7149 dql_init(&queue->dql, HZ);
7150#endif
7151}
7152
7153static void netif_free_tx_queues(struct net_device *dev)
7154{
7155 kvfree(dev->_tx);
7156}
7157
7158static int netif_alloc_netdev_queues(struct net_device *dev)
7159{
7160 unsigned int count = dev->num_tx_queues;
7161 struct netdev_queue *tx;
7162 size_t sz = count * sizeof(*tx);
7163
7164 if (count < 1 || count > 0xffff)
7165 return -EINVAL;
7166
7167 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7168 if (!tx) {
7169 tx = vzalloc(sz);
7170 if (!tx)
7171 return -ENOMEM;
7172 }
7173 dev->_tx = tx;
7174
7175 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7176 spin_lock_init(&dev->tx_global_lock);
7177
7178 return 0;
7179}
7180
7181void netif_tx_stop_all_queues(struct net_device *dev)
7182{
7183 unsigned int i;
7184
7185 for (i = 0; i < dev->num_tx_queues; i++) {
7186 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
7187
7188 netif_tx_stop_queue(txq);
7189 }
7190}
7191EXPORT_SYMBOL(netif_tx_stop_all_queues);
7192
7193/**
7194 * register_netdevice - register a network device
7195 * @dev: device to register
7196 *
7197 * Take a completed network device structure and add it to the kernel
7198 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7199 * chain. 0 is returned on success. A negative errno code is returned
7200 * on a failure to set up the device, or if the name is a duplicate.
7201 *
7202 * Callers must hold the rtnl semaphore. You may want
7203 * register_netdev() instead of this.
7204 *
7205 * BUGS:
7206 * The locking appears insufficient to guarantee two parallel registers
7207 * will not get the same name.
7208 */
7209
7210int register_netdevice(struct net_device *dev)
7211{
7212 int ret;
7213 struct net *net = dev_net(dev);
7214
7215 BUG_ON(dev_boot_phase);
7216 ASSERT_RTNL();
7217
7218 might_sleep();
7219
7220 /* When net_device's are persistent, this will be fatal. */
7221 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
7222 BUG_ON(!net);
7223
7224 spin_lock_init(&dev->addr_list_lock);
7225 netdev_set_addr_lockdep_class(dev);
7226
7227 ret = dev_get_valid_name(net, dev, dev->name);
7228 if (ret < 0)
7229 goto out;
7230
7231 /* Init, if this function is available */
7232 if (dev->netdev_ops->ndo_init) {
7233 ret = dev->netdev_ops->ndo_init(dev);
7234 if (ret) {
7235 if (ret > 0)
7236 ret = -EIO;
7237 goto out;
7238 }
7239 }
7240
7241 if (((dev->hw_features | dev->features) &
7242 NETIF_F_HW_VLAN_CTAG_FILTER) &&
7243 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7244 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7245 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7246 ret = -EINVAL;
7247 goto err_uninit;
7248 }
7249
7250 ret = -EBUSY;
7251 if (!dev->ifindex)
7252 dev->ifindex = dev_new_index(net);
7253 else if (__dev_get_by_index(net, dev->ifindex))
7254 goto err_uninit;
7255
7256 /* Transfer changeable features to wanted_features and enable
7257 * software offloads (GSO and GRO).
7258 */
7259 dev->hw_features |= NETIF_F_SOFT_FEATURES;
7260 dev->features |= NETIF_F_SOFT_FEATURES;
7261 dev->wanted_features = dev->features & dev->hw_features;
7262
7263 if (!(dev->flags & IFF_LOOPBACK))
7264 dev->hw_features |= NETIF_F_NOCACHE_COPY;
7265
7266 /* If IPv4 TCP segmentation offload is supported we should also
7267 * allow the device to enable segmenting the frame with the option
7268 * of ignoring a static IP ID value. This doesn't enable the
7269 * feature itself but allows the user to enable it later.
7270 */
7271 if (dev->hw_features & NETIF_F_TSO)
7272 dev->hw_features |= NETIF_F_TSO_MANGLEID;
7273 if (dev->vlan_features & NETIF_F_TSO)
7274 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7275 if (dev->mpls_features & NETIF_F_TSO)
7276 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7277 if (dev->hw_enc_features & NETIF_F_TSO)
7278 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
7279
7280 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
7281 */
7282 dev->vlan_features |= NETIF_F_HIGHDMA;
7283
7284 /* Make NETIF_F_SG inheritable to tunnel devices.
7285 */
7286 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
7287
7288 /* Make NETIF_F_SG inheritable to MPLS.
7289 */
7290 dev->mpls_features |= NETIF_F_SG;
7291
7292 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7293 ret = notifier_to_errno(ret);
7294 if (ret)
7295 goto err_uninit;
7296
7297 ret = netdev_register_kobject(dev);
7298 if (ret)
7299 goto err_uninit;
7300 dev->reg_state = NETREG_REGISTERED;
7301
7302 __netdev_update_features(dev);
7303
7304 /*
7305 * Default initial state at registry is that the
7306 * device is present.
7307 */
7308
7309 set_bit(__LINK_STATE_PRESENT, &dev->state);
7310
7311 linkwatch_init_dev(dev);
7312
7313 dev_init_scheduler(dev);
7314 dev_hold(dev);
7315 list_netdevice(dev);
7316 add_device_randomness(dev->dev_addr, dev->addr_len);
7317
7318 /* If the device has permanent device address, driver should
7319 * set dev_addr and also addr_assign_type should be set to
7320 * NET_ADDR_PERM (default value).
7321 */
7322 if (dev->addr_assign_type == NET_ADDR_PERM)
7323 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7324
7325 /* Notify protocols, that a new device appeared. */
7326 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
7327 ret = notifier_to_errno(ret);
7328 if (ret) {
7329 rollback_registered(dev);
7330 dev->reg_state = NETREG_UNREGISTERED;
7331 }
7332 /*
7333 * Prevent userspace races by waiting until the network
7334 * device is fully setup before sending notifications.
7335 */
7336 if (!dev->rtnl_link_ops ||
7337 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7338 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7339
7340out:
7341 return ret;
7342
7343err_uninit:
7344 if (dev->netdev_ops->ndo_uninit)
7345 dev->netdev_ops->ndo_uninit(dev);
7346 goto out;
7347}
7348EXPORT_SYMBOL(register_netdevice);
7349
7350/**
7351 * init_dummy_netdev - init a dummy network device for NAPI
7352 * @dev: device to init
7353 *
7354 * This takes a network device structure and initialize the minimum
7355 * amount of fields so it can be used to schedule NAPI polls without
7356 * registering a full blown interface. This is to be used by drivers
7357 * that need to tie several hardware interfaces to a single NAPI
7358 * poll scheduler due to HW limitations.
7359 */
7360int init_dummy_netdev(struct net_device *dev)
7361{
7362 /* Clear everything. Note we don't initialize spinlocks
7363 * are they aren't supposed to be taken by any of the
7364 * NAPI code and this dummy netdev is supposed to be
7365 * only ever used for NAPI polls
7366 */
7367 memset(dev, 0, sizeof(struct net_device));
7368
7369 /* make sure we BUG if trying to hit standard
7370 * register/unregister code path
7371 */
7372 dev->reg_state = NETREG_DUMMY;
7373
7374 /* NAPI wants this */
7375 INIT_LIST_HEAD(&dev->napi_list);
7376
7377 /* a dummy interface is started by default */
7378 set_bit(__LINK_STATE_PRESENT, &dev->state);
7379 set_bit(__LINK_STATE_START, &dev->state);
7380
7381 /* Note : We dont allocate pcpu_refcnt for dummy devices,
7382 * because users of this 'device' dont need to change
7383 * its refcount.
7384 */
7385
7386 return 0;
7387}
7388EXPORT_SYMBOL_GPL(init_dummy_netdev);
7389
7390
7391/**
7392 * register_netdev - register a network device
7393 * @dev: device to register
7394 *
7395 * Take a completed network device structure and add it to the kernel
7396 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7397 * chain. 0 is returned on success. A negative errno code is returned
7398 * on a failure to set up the device, or if the name is a duplicate.
7399 *
7400 * This is a wrapper around register_netdevice that takes the rtnl semaphore
7401 * and expands the device name if you passed a format string to
7402 * alloc_netdev.
7403 */
7404int register_netdev(struct net_device *dev)
7405{
7406 int err;
7407
7408 rtnl_lock();
7409 err = register_netdevice(dev);
7410 rtnl_unlock();
7411 return err;
7412}
7413EXPORT_SYMBOL(register_netdev);
7414
7415int netdev_refcnt_read(const struct net_device *dev)
7416{
7417 int i, refcnt = 0;
7418
7419 for_each_possible_cpu(i)
7420 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7421 return refcnt;
7422}
7423EXPORT_SYMBOL(netdev_refcnt_read);
7424
7425/**
7426 * netdev_wait_allrefs - wait until all references are gone.
7427 * @dev: target net_device
7428 *
7429 * This is called when unregistering network devices.
7430 *
7431 * Any protocol or device that holds a reference should register
7432 * for netdevice notification, and cleanup and put back the
7433 * reference if they receive an UNREGISTER event.
7434 * We can get stuck here if buggy protocols don't correctly
7435 * call dev_put.
7436 */
7437static void netdev_wait_allrefs(struct net_device *dev)
7438{
7439 unsigned long rebroadcast_time, warning_time;
7440 int refcnt;
7441
7442 linkwatch_forget_dev(dev);
7443
7444 rebroadcast_time = warning_time = jiffies;
7445 refcnt = netdev_refcnt_read(dev);
7446
7447 while (refcnt != 0) {
7448 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
7449 rtnl_lock();
7450
7451 /* Rebroadcast unregister notification */
7452 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7453
7454 __rtnl_unlock();
7455 rcu_barrier();
7456 rtnl_lock();
7457
7458 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7459 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7460 &dev->state)) {
7461 /* We must not have linkwatch events
7462 * pending on unregister. If this
7463 * happens, we simply run the queue
7464 * unscheduled, resulting in a noop
7465 * for this device.
7466 */
7467 linkwatch_run_queue();
7468 }
7469
7470 __rtnl_unlock();
7471
7472 rebroadcast_time = jiffies;
7473 }
7474
7475 msleep(250);
7476
7477 refcnt = netdev_refcnt_read(dev);
7478
7479 if (time_after(jiffies, warning_time + 10 * HZ)) {
7480 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7481 dev->name, refcnt);
7482 warning_time = jiffies;
7483 }
7484 }
7485}
7486
7487/* The sequence is:
7488 *
7489 * rtnl_lock();
7490 * ...
7491 * register_netdevice(x1);
7492 * register_netdevice(x2);
7493 * ...
7494 * unregister_netdevice(y1);
7495 * unregister_netdevice(y2);
7496 * ...
7497 * rtnl_unlock();
7498 * free_netdev(y1);
7499 * free_netdev(y2);
7500 *
7501 * We are invoked by rtnl_unlock().
7502 * This allows us to deal with problems:
7503 * 1) We can delete sysfs objects which invoke hotplug
7504 * without deadlocking with linkwatch via keventd.
7505 * 2) Since we run with the RTNL semaphore not held, we can sleep
7506 * safely in order to wait for the netdev refcnt to drop to zero.
7507 *
7508 * We must not return until all unregister events added during
7509 * the interval the lock was held have been completed.
7510 */
7511void netdev_run_todo(void)
7512{
7513 struct list_head list;
7514
7515 /* Snapshot list, allow later requests */
7516 list_replace_init(&net_todo_list, &list);
7517
7518 __rtnl_unlock();
7519
7520
7521 /* Wait for rcu callbacks to finish before next phase */
7522 if (!list_empty(&list))
7523 rcu_barrier();
7524
7525 while (!list_empty(&list)) {
7526 struct net_device *dev
7527 = list_first_entry(&list, struct net_device, todo_list);
7528 list_del(&dev->todo_list);
7529
7530 rtnl_lock();
7531 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7532 __rtnl_unlock();
7533
7534 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7535 pr_err("network todo '%s' but state %d\n",
7536 dev->name, dev->reg_state);
7537 dump_stack();
7538 continue;
7539 }
7540
7541 dev->reg_state = NETREG_UNREGISTERED;
7542
7543 netdev_wait_allrefs(dev);
7544
7545 /* paranoia */
7546 BUG_ON(netdev_refcnt_read(dev));
7547 BUG_ON(!list_empty(&dev->ptype_all));
7548 BUG_ON(!list_empty(&dev->ptype_specific));
7549 WARN_ON(rcu_access_pointer(dev->ip_ptr));
7550 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
7551 WARN_ON(dev->dn_ptr);
7552
7553 if (dev->destructor)
7554 dev->destructor(dev);
7555
7556 /* Report a network device has been unregistered */
7557 rtnl_lock();
7558 dev_net(dev)->dev_unreg_count--;
7559 __rtnl_unlock();
7560 wake_up(&netdev_unregistering_wq);
7561
7562 /* Free network device */
7563 kobject_put(&dev->dev.kobj);
7564 }
7565}
7566
7567/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
7568 * all the same fields in the same order as net_device_stats, with only
7569 * the type differing, but rtnl_link_stats64 may have additional fields
7570 * at the end for newer counters.
7571 */
7572void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7573 const struct net_device_stats *netdev_stats)
7574{
7575#if BITS_PER_LONG == 64
7576 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
7577 memcpy(stats64, netdev_stats, sizeof(*stats64));
7578 /* zero out counters that only exist in rtnl_link_stats64 */
7579 memset((char *)stats64 + sizeof(*netdev_stats), 0,
7580 sizeof(*stats64) - sizeof(*netdev_stats));
7581#else
7582 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
7583 const unsigned long *src = (const unsigned long *)netdev_stats;
7584 u64 *dst = (u64 *)stats64;
7585
7586 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
7587 for (i = 0; i < n; i++)
7588 dst[i] = src[i];
7589 /* zero out counters that only exist in rtnl_link_stats64 */
7590 memset((char *)stats64 + n * sizeof(u64), 0,
7591 sizeof(*stats64) - n * sizeof(u64));
7592#endif
7593}
7594EXPORT_SYMBOL(netdev_stats_to_stats64);
7595
7596/**
7597 * dev_get_stats - get network device statistics
7598 * @dev: device to get statistics from
7599 * @storage: place to store stats
7600 *
7601 * Get network statistics from device. Return @storage.
7602 * The device driver may provide its own method by setting
7603 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
7604 * otherwise the internal statistics structure is used.
7605 */
7606struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
7607 struct rtnl_link_stats64 *storage)
7608{
7609 const struct net_device_ops *ops = dev->netdev_ops;
7610
7611 if (ops->ndo_get_stats64) {
7612 memset(storage, 0, sizeof(*storage));
7613 ops->ndo_get_stats64(dev, storage);
7614 } else if (ops->ndo_get_stats) {
7615 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
7616 } else {
7617 netdev_stats_to_stats64(storage, &dev->stats);
7618 }
7619 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
7620 storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
7621 storage->rx_nohandler += atomic_long_read(&dev->rx_nohandler);
7622 return storage;
7623}
7624EXPORT_SYMBOL(dev_get_stats);
7625
7626struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
7627{
7628 struct netdev_queue *queue = dev_ingress_queue(dev);
7629
7630#ifdef CONFIG_NET_CLS_ACT
7631 if (queue)
7632 return queue;
7633 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7634 if (!queue)
7635 return NULL;
7636 netdev_init_one_queue(dev, queue, NULL);
7637 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
7638 queue->qdisc_sleeping = &noop_qdisc;
7639 rcu_assign_pointer(dev->ingress_queue, queue);
7640#endif
7641 return queue;
7642}
7643
7644static const struct ethtool_ops default_ethtool_ops;
7645
7646void netdev_set_default_ethtool_ops(struct net_device *dev,
7647 const struct ethtool_ops *ops)
7648{
7649 if (dev->ethtool_ops == &default_ethtool_ops)
7650 dev->ethtool_ops = ops;
7651}
7652EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7653
7654void netdev_freemem(struct net_device *dev)
7655{
7656 char *addr = (char *)dev - dev->padded;
7657
7658 kvfree(addr);
7659}
7660
7661/**
7662 * alloc_netdev_mqs - allocate network device
7663 * @sizeof_priv: size of private data to allocate space for
7664 * @name: device name format string
7665 * @name_assign_type: origin of device name
7666 * @setup: callback to initialize device
7667 * @txqs: the number of TX subqueues to allocate
7668 * @rxqs: the number of RX subqueues to allocate
7669 *
7670 * Allocates a struct net_device with private data area for driver use
7671 * and performs basic initialization. Also allocates subqueue structs
7672 * for each queue on the device.
7673 */
7674struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
7675 unsigned char name_assign_type,
7676 void (*setup)(struct net_device *),
7677 unsigned int txqs, unsigned int rxqs)
7678{
7679 struct net_device *dev;
7680 size_t alloc_size;
7681 struct net_device *p;
7682
7683 BUG_ON(strlen(name) >= sizeof(dev->name));
7684
7685 if (txqs < 1) {
7686 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
7687 return NULL;
7688 }
7689
7690#ifdef CONFIG_SYSFS
7691 if (rxqs < 1) {
7692 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
7693 return NULL;
7694 }
7695#endif
7696
7697 alloc_size = sizeof(struct net_device);
7698 if (sizeof_priv) {
7699 /* ensure 32-byte alignment of private area */
7700 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
7701 alloc_size += sizeof_priv;
7702 }
7703 /* ensure 32-byte alignment of whole construct */
7704 alloc_size += NETDEV_ALIGN - 1;
7705
7706 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7707 if (!p)
7708 p = vzalloc(alloc_size);
7709 if (!p)
7710 return NULL;
7711
7712 dev = PTR_ALIGN(p, NETDEV_ALIGN);
7713 dev->padded = (char *)dev - (char *)p;
7714
7715 dev->pcpu_refcnt = alloc_percpu(int);
7716 if (!dev->pcpu_refcnt)
7717 goto free_dev;
7718
7719 if (dev_addr_init(dev))
7720 goto free_pcpu;
7721
7722 dev_mc_init(dev);
7723 dev_uc_init(dev);
7724
7725 dev_net_set(dev, &init_net);
7726
7727 dev->gso_max_size = GSO_MAX_SIZE;
7728 dev->gso_max_segs = GSO_MAX_SEGS;
7729
7730 INIT_LIST_HEAD(&dev->napi_list);
7731 INIT_LIST_HEAD(&dev->unreg_list);
7732 INIT_LIST_HEAD(&dev->close_list);
7733 INIT_LIST_HEAD(&dev->link_watch_list);
7734 INIT_LIST_HEAD(&dev->adj_list.upper);
7735 INIT_LIST_HEAD(&dev->adj_list.lower);
7736 INIT_LIST_HEAD(&dev->ptype_all);
7737 INIT_LIST_HEAD(&dev->ptype_specific);
7738#ifdef CONFIG_NET_SCHED
7739 hash_init(dev->qdisc_hash);
7740#endif
7741 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
7742 setup(dev);
7743
7744 if (!dev->tx_queue_len) {
7745 dev->priv_flags |= IFF_NO_QUEUE;
7746 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
7747 }
7748
7749 dev->num_tx_queues = txqs;
7750 dev->real_num_tx_queues = txqs;
7751 if (netif_alloc_netdev_queues(dev))
7752 goto free_all;
7753
7754#ifdef CONFIG_SYSFS
7755 dev->num_rx_queues = rxqs;
7756 dev->real_num_rx_queues = rxqs;
7757 if (netif_alloc_rx_queues(dev))
7758 goto free_all;
7759#endif
7760
7761 strcpy(dev->name, name);
7762 dev->name_assign_type = name_assign_type;
7763 dev->group = INIT_NETDEV_GROUP;
7764 if (!dev->ethtool_ops)
7765 dev->ethtool_ops = &default_ethtool_ops;
7766
7767 nf_hook_ingress_init(dev);
7768
7769 return dev;
7770
7771free_all:
7772 free_netdev(dev);
7773 return NULL;
7774
7775free_pcpu:
7776 free_percpu(dev->pcpu_refcnt);
7777free_dev:
7778 netdev_freemem(dev);
7779 return NULL;
7780}
7781EXPORT_SYMBOL(alloc_netdev_mqs);
7782
7783/**
7784 * free_netdev - free network device
7785 * @dev: device
7786 *
7787 * This function does the last stage of destroying an allocated device
7788 * interface. The reference to the device object is released. If this
7789 * is the last reference then it will be freed.Must be called in process
7790 * context.
7791 */
7792void free_netdev(struct net_device *dev)
7793{
7794 struct napi_struct *p, *n;
7795
7796 might_sleep();
7797 netif_free_tx_queues(dev);
7798#ifdef CONFIG_SYSFS
7799 kvfree(dev->_rx);
7800#endif
7801
7802 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
7803
7804 /* Flush device addresses */
7805 dev_addr_flush(dev);
7806
7807 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7808 netif_napi_del(p);
7809
7810 free_percpu(dev->pcpu_refcnt);
7811 dev->pcpu_refcnt = NULL;
7812
7813 /* Compatibility with error handling in drivers */
7814 if (dev->reg_state == NETREG_UNINITIALIZED) {
7815 netdev_freemem(dev);
7816 return;
7817 }
7818
7819 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7820 dev->reg_state = NETREG_RELEASED;
7821
7822 /* will free via device release */
7823 put_device(&dev->dev);
7824}
7825EXPORT_SYMBOL(free_netdev);
7826
7827/**
7828 * synchronize_net - Synchronize with packet receive processing
7829 *
7830 * Wait for packets currently being received to be done.
7831 * Does not block later packets from starting.
7832 */
7833void synchronize_net(void)
7834{
7835 might_sleep();
7836 if (rtnl_is_locked())
7837 synchronize_rcu_expedited();
7838 else
7839 synchronize_rcu();
7840}
7841EXPORT_SYMBOL(synchronize_net);
7842
7843/**
7844 * unregister_netdevice_queue - remove device from the kernel
7845 * @dev: device
7846 * @head: list
7847 *
7848 * This function shuts down a device interface and removes it
7849 * from the kernel tables.
7850 * If head not NULL, device is queued to be unregistered later.
7851 *
7852 * Callers must hold the rtnl semaphore. You may want
7853 * unregister_netdev() instead of this.
7854 */
7855
7856void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
7857{
7858 ASSERT_RTNL();
7859
7860 if (head) {
7861 list_move_tail(&dev->unreg_list, head);
7862 } else {
7863 rollback_registered(dev);
7864 /* Finish processing unregister after unlock */
7865 net_set_todo(dev);
7866 }
7867}
7868EXPORT_SYMBOL(unregister_netdevice_queue);
7869
7870/**
7871 * unregister_netdevice_many - unregister many devices
7872 * @head: list of devices
7873 *
7874 * Note: As most callers use a stack allocated list_head,
7875 * we force a list_del() to make sure stack wont be corrupted later.
7876 */
7877void unregister_netdevice_many(struct list_head *head)
7878{
7879 struct net_device *dev;
7880
7881 if (!list_empty(head)) {
7882 rollback_registered_many(head);
7883 list_for_each_entry(dev, head, unreg_list)
7884 net_set_todo(dev);
7885 list_del(head);
7886 }
7887}
7888EXPORT_SYMBOL(unregister_netdevice_many);
7889
7890/**
7891 * unregister_netdev - remove device from the kernel
7892 * @dev: device
7893 *
7894 * This function shuts down a device interface and removes it
7895 * from the kernel tables.
7896 *
7897 * This is just a wrapper for unregister_netdevice that takes
7898 * the rtnl semaphore. In general you want to use this and not
7899 * unregister_netdevice.
7900 */
7901void unregister_netdev(struct net_device *dev)
7902{
7903 rtnl_lock();
7904 unregister_netdevice(dev);
7905 rtnl_unlock();
7906}
7907EXPORT_SYMBOL(unregister_netdev);
7908
7909/**
7910 * dev_change_net_namespace - move device to different nethost namespace
7911 * @dev: device
7912 * @net: network namespace
7913 * @pat: If not NULL name pattern to try if the current device name
7914 * is already taken in the destination network namespace.
7915 *
7916 * This function shuts down a device interface and moves it
7917 * to a new network namespace. On success 0 is returned, on
7918 * a failure a netagive errno code is returned.
7919 *
7920 * Callers must hold the rtnl semaphore.
7921 */
7922
7923int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7924{
7925 int err;
7926
7927 ASSERT_RTNL();
7928
7929 /* Don't allow namespace local devices to be moved. */
7930 err = -EINVAL;
7931 if (dev->features & NETIF_F_NETNS_LOCAL)
7932 goto out;
7933
7934 /* Ensure the device has been registrered */
7935 if (dev->reg_state != NETREG_REGISTERED)
7936 goto out;
7937
7938 /* Get out if there is nothing todo */
7939 err = 0;
7940 if (net_eq(dev_net(dev), net))
7941 goto out;
7942
7943 /* Pick the destination device name, and ensure
7944 * we can use it in the destination network namespace.
7945 */
7946 err = -EEXIST;
7947 if (__dev_get_by_name(net, dev->name)) {
7948 /* We get here if we can't use the current device name */
7949 if (!pat)
7950 goto out;
7951 if (dev_get_valid_name(net, dev, pat) < 0)
7952 goto out;
7953 }
7954
7955 /*
7956 * And now a mini version of register_netdevice unregister_netdevice.
7957 */
7958
7959 /* If device is running close it first. */
7960 dev_close(dev);
7961
7962 /* And unlink it from device chain */
7963 err = -ENODEV;
7964 unlist_netdevice(dev);
7965
7966 synchronize_net();
7967
7968 /* Shutdown queueing discipline. */
7969 dev_shutdown(dev);
7970
7971 /* Notify protocols, that we are about to destroy
7972 * this device. They should clean all the things.
7973 *
7974 * Note that dev->reg_state stays at NETREG_REGISTERED.
7975 * This is wanted because this way 8021q and macvlan know
7976 * the device is just moving and can keep their slaves up.
7977 */
7978 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7979 rcu_barrier();
7980 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7981 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
7982
7983 /*
7984 * Flush the unicast and multicast chains
7985 */
7986 dev_uc_flush(dev);
7987 dev_mc_flush(dev);
7988
7989 /* Send a netdev-removed uevent to the old namespace */
7990 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
7991 netdev_adjacent_del_links(dev);
7992
7993 /* Actually switch the network namespace */
7994 dev_net_set(dev, net);
7995
7996 /* If there is an ifindex conflict assign a new one */
7997 if (__dev_get_by_index(net, dev->ifindex))
7998 dev->ifindex = dev_new_index(net);
7999
8000 /* Send a netdev-add uevent to the new namespace */
8001 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
8002 netdev_adjacent_add_links(dev);
8003
8004 /* Fixup kobjects */
8005 err = device_rename(&dev->dev, dev->name);
8006 WARN_ON(err);
8007
8008 /* Add the device back in the hashes */
8009 list_netdevice(dev);
8010
8011 /* Notify protocols, that a new device appeared. */
8012 call_netdevice_notifiers(NETDEV_REGISTER, dev);
8013
8014 /*
8015 * Prevent userspace races by waiting until the network
8016 * device is fully setup before sending notifications.
8017 */
8018 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8019
8020 synchronize_net();
8021 err = 0;
8022out:
8023 return err;
8024}
8025EXPORT_SYMBOL_GPL(dev_change_net_namespace);
8026
8027static int dev_cpu_dead(unsigned int oldcpu)
8028{
8029 struct sk_buff **list_skb;
8030 struct sk_buff *skb;
8031 unsigned int cpu;
8032 struct softnet_data *sd, *oldsd;
8033
8034 local_irq_disable();
8035 cpu = smp_processor_id();
8036 sd = &per_cpu(softnet_data, cpu);
8037 oldsd = &per_cpu(softnet_data, oldcpu);
8038
8039 /* Find end of our completion_queue. */
8040 list_skb = &sd->completion_queue;
8041 while (*list_skb)
8042 list_skb = &(*list_skb)->next;
8043 /* Append completion queue from offline CPU. */
8044 *list_skb = oldsd->completion_queue;
8045 oldsd->completion_queue = NULL;
8046
8047 /* Append output queue from offline CPU. */
8048 if (oldsd->output_queue) {
8049 *sd->output_queue_tailp = oldsd->output_queue;
8050 sd->output_queue_tailp = oldsd->output_queue_tailp;
8051 oldsd->output_queue = NULL;
8052 oldsd->output_queue_tailp = &oldsd->output_queue;
8053 }
8054 /* Append NAPI poll list from offline CPU, with one exception :
8055 * process_backlog() must be called by cpu owning percpu backlog.
8056 * We properly handle process_queue & input_pkt_queue later.
8057 */
8058 while (!list_empty(&oldsd->poll_list)) {
8059 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
8060 struct napi_struct,
8061 poll_list);
8062
8063 list_del_init(&napi->poll_list);
8064 if (napi->poll == process_backlog)
8065 napi->state = 0;
8066 else
8067 ____napi_schedule(sd, napi);
8068 }
8069
8070 raise_softirq_irqoff(NET_TX_SOFTIRQ);
8071 local_irq_enable();
8072
8073 /* Process offline CPU's input_pkt_queue */
8074 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
8075 netif_rx_ni(skb);
8076 input_queue_head_incr(oldsd);
8077 }
8078 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
8079 netif_rx_ni(skb);
8080 input_queue_head_incr(oldsd);
8081 }
8082
8083 return 0;
8084}
8085
8086/**
8087 * netdev_increment_features - increment feature set by one
8088 * @all: current feature set
8089 * @one: new feature set
8090 * @mask: mask feature set
8091 *
8092 * Computes a new feature set after adding a device with feature set
8093 * @one to the master device with current feature set @all. Will not
8094 * enable anything that is off in @mask. Returns the new feature set.
8095 */
8096netdev_features_t netdev_increment_features(netdev_features_t all,
8097 netdev_features_t one, netdev_features_t mask)
8098{
8099 if (mask & NETIF_F_HW_CSUM)
8100 mask |= NETIF_F_CSUM_MASK;
8101 mask |= NETIF_F_VLAN_CHALLENGED;
8102
8103 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
8104 all &= one | ~NETIF_F_ALL_FOR_ALL;
8105
8106 /* If one device supports hw checksumming, set for all. */
8107 if (all & NETIF_F_HW_CSUM)
8108 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
8109
8110 return all;
8111}
8112EXPORT_SYMBOL(netdev_increment_features);
8113
8114static struct hlist_head * __net_init netdev_create_hash(void)
8115{
8116 int i;
8117 struct hlist_head *hash;
8118
8119 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
8120 if (hash != NULL)
8121 for (i = 0; i < NETDEV_HASHENTRIES; i++)
8122 INIT_HLIST_HEAD(&hash[i]);
8123
8124 return hash;
8125}
8126
8127/* Initialize per network namespace state */
8128static int __net_init netdev_init(struct net *net)
8129{
8130 if (net != &init_net)
8131 INIT_LIST_HEAD(&net->dev_base_head);
8132
8133 net->dev_name_head = netdev_create_hash();
8134 if (net->dev_name_head == NULL)
8135 goto err_name;
8136
8137 net->dev_index_head = netdev_create_hash();
8138 if (net->dev_index_head == NULL)
8139 goto err_idx;
8140
8141 return 0;
8142
8143err_idx:
8144 kfree(net->dev_name_head);
8145err_name:
8146 return -ENOMEM;
8147}
8148
8149/**
8150 * netdev_drivername - network driver for the device
8151 * @dev: network device
8152 *
8153 * Determine network driver for device.
8154 */
8155const char *netdev_drivername(const struct net_device *dev)
8156{
8157 const struct device_driver *driver;
8158 const struct device *parent;
8159 const char *empty = "";
8160
8161 parent = dev->dev.parent;
8162 if (!parent)
8163 return empty;
8164
8165 driver = parent->driver;
8166 if (driver && driver->name)
8167 return driver->name;
8168 return empty;
8169}
8170
8171static void __netdev_printk(const char *level, const struct net_device *dev,
8172 struct va_format *vaf)
8173{
8174 if (dev && dev->dev.parent) {
8175 dev_printk_emit(level[1] - '0',
8176 dev->dev.parent,
8177 "%s %s %s%s: %pV",
8178 dev_driver_string(dev->dev.parent),
8179 dev_name(dev->dev.parent),
8180 netdev_name(dev), netdev_reg_state(dev),
8181 vaf);
8182 } else if (dev) {
8183 printk("%s%s%s: %pV",
8184 level, netdev_name(dev), netdev_reg_state(dev), vaf);
8185 } else {
8186 printk("%s(NULL net_device): %pV", level, vaf);
8187 }
8188}
8189
8190void netdev_printk(const char *level, const struct net_device *dev,
8191 const char *format, ...)
8192{
8193 struct va_format vaf;
8194 va_list args;
8195
8196 va_start(args, format);
8197
8198 vaf.fmt = format;
8199 vaf.va = &args;
8200
8201 __netdev_printk(level, dev, &vaf);
8202
8203 va_end(args);
8204}
8205EXPORT_SYMBOL(netdev_printk);
8206
8207#define define_netdev_printk_level(func, level) \
8208void func(const struct net_device *dev, const char *fmt, ...) \
8209{ \
8210 struct va_format vaf; \
8211 va_list args; \
8212 \
8213 va_start(args, fmt); \
8214 \
8215 vaf.fmt = fmt; \
8216 vaf.va = &args; \
8217 \
8218 __netdev_printk(level, dev, &vaf); \
8219 \
8220 va_end(args); \
8221} \
8222EXPORT_SYMBOL(func);
8223
8224define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8225define_netdev_printk_level(netdev_alert, KERN_ALERT);
8226define_netdev_printk_level(netdev_crit, KERN_CRIT);
8227define_netdev_printk_level(netdev_err, KERN_ERR);
8228define_netdev_printk_level(netdev_warn, KERN_WARNING);
8229define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8230define_netdev_printk_level(netdev_info, KERN_INFO);
8231
8232static void __net_exit netdev_exit(struct net *net)
8233{
8234 kfree(net->dev_name_head);
8235 kfree(net->dev_index_head);
8236}
8237
8238static struct pernet_operations __net_initdata netdev_net_ops = {
8239 .init = netdev_init,
8240 .exit = netdev_exit,
8241};
8242
8243static void __net_exit default_device_exit(struct net *net)
8244{
8245 struct net_device *dev, *aux;
8246 /*
8247 * Push all migratable network devices back to the
8248 * initial network namespace
8249 */
8250 rtnl_lock();
8251 for_each_netdev_safe(net, dev, aux) {
8252 int err;
8253 char fb_name[IFNAMSIZ];
8254
8255 /* Ignore unmoveable devices (i.e. loopback) */
8256 if (dev->features & NETIF_F_NETNS_LOCAL)
8257 continue;
8258
8259 /* Leave virtual devices for the generic cleanup */
8260 if (dev->rtnl_link_ops)
8261 continue;
8262
8263 /* Push remaining network devices to init_net */
8264 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8265 err = dev_change_net_namespace(dev, &init_net, fb_name);
8266 if (err) {
8267 pr_emerg("%s: failed to move %s to init_net: %d\n",
8268 __func__, dev->name, err);
8269 BUG();
8270 }
8271 }
8272 rtnl_unlock();
8273}
8274
8275static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8276{
8277 /* Return with the rtnl_lock held when there are no network
8278 * devices unregistering in any network namespace in net_list.
8279 */
8280 struct net *net;
8281 bool unregistering;
8282 DEFINE_WAIT_FUNC(wait, woken_wake_function);
8283
8284 add_wait_queue(&netdev_unregistering_wq, &wait);
8285 for (;;) {
8286 unregistering = false;
8287 rtnl_lock();
8288 list_for_each_entry(net, net_list, exit_list) {
8289 if (net->dev_unreg_count > 0) {
8290 unregistering = true;
8291 break;
8292 }
8293 }
8294 if (!unregistering)
8295 break;
8296 __rtnl_unlock();
8297
8298 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
8299 }
8300 remove_wait_queue(&netdev_unregistering_wq, &wait);
8301}
8302
8303static void __net_exit default_device_exit_batch(struct list_head *net_list)
8304{
8305 /* At exit all network devices most be removed from a network
8306 * namespace. Do this in the reverse order of registration.
8307 * Do this across as many network namespaces as possible to
8308 * improve batching efficiency.
8309 */
8310 struct net_device *dev;
8311 struct net *net;
8312 LIST_HEAD(dev_kill_list);
8313
8314 /* To prevent network device cleanup code from dereferencing
8315 * loopback devices or network devices that have been freed
8316 * wait here for all pending unregistrations to complete,
8317 * before unregistring the loopback device and allowing the
8318 * network namespace be freed.
8319 *
8320 * The netdev todo list containing all network devices
8321 * unregistrations that happen in default_device_exit_batch
8322 * will run in the rtnl_unlock() at the end of
8323 * default_device_exit_batch.
8324 */
8325 rtnl_lock_unregistering(net_list);
8326 list_for_each_entry(net, net_list, exit_list) {
8327 for_each_netdev_reverse(net, dev) {
8328 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
8329 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8330 else
8331 unregister_netdevice_queue(dev, &dev_kill_list);
8332 }
8333 }
8334 unregister_netdevice_many(&dev_kill_list);
8335 rtnl_unlock();
8336}
8337
8338static struct pernet_operations __net_initdata default_device_ops = {
8339 .exit = default_device_exit,
8340 .exit_batch = default_device_exit_batch,
8341};
8342
8343/*
8344 * Initialize the DEV module. At boot time this walks the device list and
8345 * unhooks any devices that fail to initialise (normally hardware not
8346 * present) and leaves us with a valid list of present and active devices.
8347 *
8348 */
8349
8350/*
8351 * This is called single threaded during boot, so no need
8352 * to take the rtnl semaphore.
8353 */
8354static int __init net_dev_init(void)
8355{
8356 int i, rc = -ENOMEM;
8357
8358 BUG_ON(!dev_boot_phase);
8359
8360 if (dev_proc_init())
8361 goto out;
8362
8363 if (netdev_kobject_init())
8364 goto out;
8365
8366 INIT_LIST_HEAD(&ptype_all);
8367 for (i = 0; i < PTYPE_HASH_SIZE; i++)
8368 INIT_LIST_HEAD(&ptype_base[i]);
8369
8370 INIT_LIST_HEAD(&offload_base);
8371
8372 if (register_pernet_subsys(&netdev_net_ops))
8373 goto out;
8374
8375 /*
8376 * Initialise the packet receive queues.
8377 */
8378
8379 for_each_possible_cpu(i) {
8380 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
8381 struct softnet_data *sd = &per_cpu(softnet_data, i);
8382
8383 INIT_WORK(flush, flush_backlog);
8384
8385 skb_queue_head_init(&sd->input_pkt_queue);
8386 skb_queue_head_init(&sd->process_queue);
8387 INIT_LIST_HEAD(&sd->poll_list);
8388 sd->output_queue_tailp = &sd->output_queue;
8389#ifdef CONFIG_RPS
8390 sd->csd.func = rps_trigger_softirq;
8391 sd->csd.info = sd;
8392 sd->cpu = i;
8393#endif
8394
8395 sd->backlog.poll = process_backlog;
8396 sd->backlog.weight = weight_p;
8397 }
8398
8399 dev_boot_phase = 0;
8400
8401 /* The loopback device is special if any other network devices
8402 * is present in a network namespace the loopback device must
8403 * be present. Since we now dynamically allocate and free the
8404 * loopback device ensure this invariant is maintained by
8405 * keeping the loopback device as the first device on the
8406 * list of network devices. Ensuring the loopback devices
8407 * is the first device that appears and the last network device
8408 * that disappears.
8409 */
8410 if (register_pernet_device(&loopback_net_ops))
8411 goto out;
8412
8413 if (register_pernet_device(&default_device_ops))
8414 goto out;
8415
8416 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8417 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
8418
8419 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
8420 NULL, dev_cpu_dead);
8421 WARN_ON(rc < 0);
8422 dst_subsys_init();
8423 rc = 0;
8424out:
8425 return rc;
8426}
8427
8428subsys_initcall(net_dev_init);