at v4.11-rc5 43 kB view raw
1/* 2 * 3 * Copyright (c) 2011, Microsoft Corporation. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 * 14 * You should have received a copy of the GNU General Public License along with 15 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple 16 * Place - Suite 330, Boston, MA 02111-1307 USA. 17 * 18 * Authors: 19 * Haiyang Zhang <haiyangz@microsoft.com> 20 * Hank Janssen <hjanssen@microsoft.com> 21 * K. Y. Srinivasan <kys@microsoft.com> 22 * 23 */ 24 25#ifndef _HYPERV_H 26#define _HYPERV_H 27 28#include <uapi/linux/hyperv.h> 29#include <uapi/asm/hyperv.h> 30 31#include <linux/types.h> 32#include <linux/scatterlist.h> 33#include <linux/list.h> 34#include <linux/timer.h> 35#include <linux/completion.h> 36#include <linux/device.h> 37#include <linux/mod_devicetable.h> 38#include <linux/interrupt.h> 39 40#define MAX_PAGE_BUFFER_COUNT 32 41#define MAX_MULTIPAGE_BUFFER_COUNT 32 /* 128K */ 42 43#pragma pack(push, 1) 44 45/* Single-page buffer */ 46struct hv_page_buffer { 47 u32 len; 48 u32 offset; 49 u64 pfn; 50}; 51 52/* Multiple-page buffer */ 53struct hv_multipage_buffer { 54 /* Length and Offset determines the # of pfns in the array */ 55 u32 len; 56 u32 offset; 57 u64 pfn_array[MAX_MULTIPAGE_BUFFER_COUNT]; 58}; 59 60/* 61 * Multiple-page buffer array; the pfn array is variable size: 62 * The number of entries in the PFN array is determined by 63 * "len" and "offset". 64 */ 65struct hv_mpb_array { 66 /* Length and Offset determines the # of pfns in the array */ 67 u32 len; 68 u32 offset; 69 u64 pfn_array[]; 70}; 71 72/* 0x18 includes the proprietary packet header */ 73#define MAX_PAGE_BUFFER_PACKET (0x18 + \ 74 (sizeof(struct hv_page_buffer) * \ 75 MAX_PAGE_BUFFER_COUNT)) 76#define MAX_MULTIPAGE_BUFFER_PACKET (0x18 + \ 77 sizeof(struct hv_multipage_buffer)) 78 79 80#pragma pack(pop) 81 82struct hv_ring_buffer { 83 /* Offset in bytes from the start of ring data below */ 84 u32 write_index; 85 86 /* Offset in bytes from the start of ring data below */ 87 u32 read_index; 88 89 u32 interrupt_mask; 90 91 /* 92 * Win8 uses some of the reserved bits to implement 93 * interrupt driven flow management. On the send side 94 * we can request that the receiver interrupt the sender 95 * when the ring transitions from being full to being able 96 * to handle a message of size "pending_send_sz". 97 * 98 * Add necessary state for this enhancement. 99 */ 100 u32 pending_send_sz; 101 102 u32 reserved1[12]; 103 104 union { 105 struct { 106 u32 feat_pending_send_sz:1; 107 }; 108 u32 value; 109 } feature_bits; 110 111 /* Pad it to PAGE_SIZE so that data starts on page boundary */ 112 u8 reserved2[4028]; 113 114 /* 115 * Ring data starts here + RingDataStartOffset 116 * !!! DO NOT place any fields below this !!! 117 */ 118 u8 buffer[0]; 119} __packed; 120 121struct hv_ring_buffer_info { 122 struct hv_ring_buffer *ring_buffer; 123 u32 ring_size; /* Include the shared header */ 124 spinlock_t ring_lock; 125 126 u32 ring_datasize; /* < ring_size */ 127 u32 ring_data_startoffset; 128 u32 priv_write_index; 129 u32 priv_read_index; 130 u32 cached_read_index; 131}; 132 133/* 134 * 135 * hv_get_ringbuffer_availbytes() 136 * 137 * Get number of bytes available to read and to write to 138 * for the specified ring buffer 139 */ 140static inline void 141hv_get_ringbuffer_availbytes(const struct hv_ring_buffer_info *rbi, 142 u32 *read, u32 *write) 143{ 144 u32 read_loc, write_loc, dsize; 145 146 /* Capture the read/write indices before they changed */ 147 read_loc = rbi->ring_buffer->read_index; 148 write_loc = rbi->ring_buffer->write_index; 149 dsize = rbi->ring_datasize; 150 151 *write = write_loc >= read_loc ? dsize - (write_loc - read_loc) : 152 read_loc - write_loc; 153 *read = dsize - *write; 154} 155 156static inline u32 hv_get_bytes_to_read(const struct hv_ring_buffer_info *rbi) 157{ 158 u32 read_loc, write_loc, dsize, read; 159 160 dsize = rbi->ring_datasize; 161 read_loc = rbi->ring_buffer->read_index; 162 write_loc = READ_ONCE(rbi->ring_buffer->write_index); 163 164 read = write_loc >= read_loc ? (write_loc - read_loc) : 165 (dsize - read_loc) + write_loc; 166 167 return read; 168} 169 170static inline u32 hv_get_bytes_to_write(const struct hv_ring_buffer_info *rbi) 171{ 172 u32 read_loc, write_loc, dsize, write; 173 174 dsize = rbi->ring_datasize; 175 read_loc = READ_ONCE(rbi->ring_buffer->read_index); 176 write_loc = rbi->ring_buffer->write_index; 177 178 write = write_loc >= read_loc ? dsize - (write_loc - read_loc) : 179 read_loc - write_loc; 180 return write; 181} 182 183static inline u32 hv_get_cached_bytes_to_write( 184 const struct hv_ring_buffer_info *rbi) 185{ 186 u32 read_loc, write_loc, dsize, write; 187 188 dsize = rbi->ring_datasize; 189 read_loc = rbi->cached_read_index; 190 write_loc = rbi->ring_buffer->write_index; 191 192 write = write_loc >= read_loc ? dsize - (write_loc - read_loc) : 193 read_loc - write_loc; 194 return write; 195} 196/* 197 * VMBUS version is 32 bit entity broken up into 198 * two 16 bit quantities: major_number. minor_number. 199 * 200 * 0 . 13 (Windows Server 2008) 201 * 1 . 1 (Windows 7) 202 * 2 . 4 (Windows 8) 203 * 3 . 0 (Windows 8 R2) 204 * 4 . 0 (Windows 10) 205 */ 206 207#define VERSION_WS2008 ((0 << 16) | (13)) 208#define VERSION_WIN7 ((1 << 16) | (1)) 209#define VERSION_WIN8 ((2 << 16) | (4)) 210#define VERSION_WIN8_1 ((3 << 16) | (0)) 211#define VERSION_WIN10 ((4 << 16) | (0)) 212 213#define VERSION_INVAL -1 214 215#define VERSION_CURRENT VERSION_WIN10 216 217/* Make maximum size of pipe payload of 16K */ 218#define MAX_PIPE_DATA_PAYLOAD (sizeof(u8) * 16384) 219 220/* Define PipeMode values. */ 221#define VMBUS_PIPE_TYPE_BYTE 0x00000000 222#define VMBUS_PIPE_TYPE_MESSAGE 0x00000004 223 224/* The size of the user defined data buffer for non-pipe offers. */ 225#define MAX_USER_DEFINED_BYTES 120 226 227/* The size of the user defined data buffer for pipe offers. */ 228#define MAX_PIPE_USER_DEFINED_BYTES 116 229 230/* 231 * At the center of the Channel Management library is the Channel Offer. This 232 * struct contains the fundamental information about an offer. 233 */ 234struct vmbus_channel_offer { 235 uuid_le if_type; 236 uuid_le if_instance; 237 238 /* 239 * These two fields are not currently used. 240 */ 241 u64 reserved1; 242 u64 reserved2; 243 244 u16 chn_flags; 245 u16 mmio_megabytes; /* in bytes * 1024 * 1024 */ 246 247 union { 248 /* Non-pipes: The user has MAX_USER_DEFINED_BYTES bytes. */ 249 struct { 250 unsigned char user_def[MAX_USER_DEFINED_BYTES]; 251 } std; 252 253 /* 254 * Pipes: 255 * The following sructure is an integrated pipe protocol, which 256 * is implemented on top of standard user-defined data. Pipe 257 * clients have MAX_PIPE_USER_DEFINED_BYTES left for their own 258 * use. 259 */ 260 struct { 261 u32 pipe_mode; 262 unsigned char user_def[MAX_PIPE_USER_DEFINED_BYTES]; 263 } pipe; 264 } u; 265 /* 266 * The sub_channel_index is defined in win8. 267 */ 268 u16 sub_channel_index; 269 u16 reserved3; 270} __packed; 271 272/* Server Flags */ 273#define VMBUS_CHANNEL_ENUMERATE_DEVICE_INTERFACE 1 274#define VMBUS_CHANNEL_SERVER_SUPPORTS_TRANSFER_PAGES 2 275#define VMBUS_CHANNEL_SERVER_SUPPORTS_GPADLS 4 276#define VMBUS_CHANNEL_NAMED_PIPE_MODE 0x10 277#define VMBUS_CHANNEL_LOOPBACK_OFFER 0x100 278#define VMBUS_CHANNEL_PARENT_OFFER 0x200 279#define VMBUS_CHANNEL_REQUEST_MONITORED_NOTIFICATION 0x400 280#define VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER 0x2000 281 282struct vmpacket_descriptor { 283 u16 type; 284 u16 offset8; 285 u16 len8; 286 u16 flags; 287 u64 trans_id; 288} __packed; 289 290struct vmpacket_header { 291 u32 prev_pkt_start_offset; 292 struct vmpacket_descriptor descriptor; 293} __packed; 294 295struct vmtransfer_page_range { 296 u32 byte_count; 297 u32 byte_offset; 298} __packed; 299 300struct vmtransfer_page_packet_header { 301 struct vmpacket_descriptor d; 302 u16 xfer_pageset_id; 303 u8 sender_owns_set; 304 u8 reserved; 305 u32 range_cnt; 306 struct vmtransfer_page_range ranges[1]; 307} __packed; 308 309struct vmgpadl_packet_header { 310 struct vmpacket_descriptor d; 311 u32 gpadl; 312 u32 reserved; 313} __packed; 314 315struct vmadd_remove_transfer_page_set { 316 struct vmpacket_descriptor d; 317 u32 gpadl; 318 u16 xfer_pageset_id; 319 u16 reserved; 320} __packed; 321 322/* 323 * This structure defines a range in guest physical space that can be made to 324 * look virtually contiguous. 325 */ 326struct gpa_range { 327 u32 byte_count; 328 u32 byte_offset; 329 u64 pfn_array[0]; 330}; 331 332/* 333 * This is the format for an Establish Gpadl packet, which contains a handle by 334 * which this GPADL will be known and a set of GPA ranges associated with it. 335 * This can be converted to a MDL by the guest OS. If there are multiple GPA 336 * ranges, then the resulting MDL will be "chained," representing multiple VA 337 * ranges. 338 */ 339struct vmestablish_gpadl { 340 struct vmpacket_descriptor d; 341 u32 gpadl; 342 u32 range_cnt; 343 struct gpa_range range[1]; 344} __packed; 345 346/* 347 * This is the format for a Teardown Gpadl packet, which indicates that the 348 * GPADL handle in the Establish Gpadl packet will never be referenced again. 349 */ 350struct vmteardown_gpadl { 351 struct vmpacket_descriptor d; 352 u32 gpadl; 353 u32 reserved; /* for alignment to a 8-byte boundary */ 354} __packed; 355 356/* 357 * This is the format for a GPA-Direct packet, which contains a set of GPA 358 * ranges, in addition to commands and/or data. 359 */ 360struct vmdata_gpa_direct { 361 struct vmpacket_descriptor d; 362 u32 reserved; 363 u32 range_cnt; 364 struct gpa_range range[1]; 365} __packed; 366 367/* This is the format for a Additional Data Packet. */ 368struct vmadditional_data { 369 struct vmpacket_descriptor d; 370 u64 total_bytes; 371 u32 offset; 372 u32 byte_cnt; 373 unsigned char data[1]; 374} __packed; 375 376union vmpacket_largest_possible_header { 377 struct vmpacket_descriptor simple_hdr; 378 struct vmtransfer_page_packet_header xfer_page_hdr; 379 struct vmgpadl_packet_header gpadl_hdr; 380 struct vmadd_remove_transfer_page_set add_rm_xfer_page_hdr; 381 struct vmestablish_gpadl establish_gpadl_hdr; 382 struct vmteardown_gpadl teardown_gpadl_hdr; 383 struct vmdata_gpa_direct data_gpa_direct_hdr; 384}; 385 386#define VMPACKET_DATA_START_ADDRESS(__packet) \ 387 (void *)(((unsigned char *)__packet) + \ 388 ((struct vmpacket_descriptor)__packet)->offset8 * 8) 389 390#define VMPACKET_DATA_LENGTH(__packet) \ 391 ((((struct vmpacket_descriptor)__packet)->len8 - \ 392 ((struct vmpacket_descriptor)__packet)->offset8) * 8) 393 394#define VMPACKET_TRANSFER_MODE(__packet) \ 395 (((struct IMPACT)__packet)->type) 396 397enum vmbus_packet_type { 398 VM_PKT_INVALID = 0x0, 399 VM_PKT_SYNCH = 0x1, 400 VM_PKT_ADD_XFER_PAGESET = 0x2, 401 VM_PKT_RM_XFER_PAGESET = 0x3, 402 VM_PKT_ESTABLISH_GPADL = 0x4, 403 VM_PKT_TEARDOWN_GPADL = 0x5, 404 VM_PKT_DATA_INBAND = 0x6, 405 VM_PKT_DATA_USING_XFER_PAGES = 0x7, 406 VM_PKT_DATA_USING_GPADL = 0x8, 407 VM_PKT_DATA_USING_GPA_DIRECT = 0x9, 408 VM_PKT_CANCEL_REQUEST = 0xa, 409 VM_PKT_COMP = 0xb, 410 VM_PKT_DATA_USING_ADDITIONAL_PKT = 0xc, 411 VM_PKT_ADDITIONAL_DATA = 0xd 412}; 413 414#define VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED 1 415 416 417/* Version 1 messages */ 418enum vmbus_channel_message_type { 419 CHANNELMSG_INVALID = 0, 420 CHANNELMSG_OFFERCHANNEL = 1, 421 CHANNELMSG_RESCIND_CHANNELOFFER = 2, 422 CHANNELMSG_REQUESTOFFERS = 3, 423 CHANNELMSG_ALLOFFERS_DELIVERED = 4, 424 CHANNELMSG_OPENCHANNEL = 5, 425 CHANNELMSG_OPENCHANNEL_RESULT = 6, 426 CHANNELMSG_CLOSECHANNEL = 7, 427 CHANNELMSG_GPADL_HEADER = 8, 428 CHANNELMSG_GPADL_BODY = 9, 429 CHANNELMSG_GPADL_CREATED = 10, 430 CHANNELMSG_GPADL_TEARDOWN = 11, 431 CHANNELMSG_GPADL_TORNDOWN = 12, 432 CHANNELMSG_RELID_RELEASED = 13, 433 CHANNELMSG_INITIATE_CONTACT = 14, 434 CHANNELMSG_VERSION_RESPONSE = 15, 435 CHANNELMSG_UNLOAD = 16, 436 CHANNELMSG_UNLOAD_RESPONSE = 17, 437 CHANNELMSG_18 = 18, 438 CHANNELMSG_19 = 19, 439 CHANNELMSG_20 = 20, 440 CHANNELMSG_TL_CONNECT_REQUEST = 21, 441 CHANNELMSG_COUNT 442}; 443 444struct vmbus_channel_message_header { 445 enum vmbus_channel_message_type msgtype; 446 u32 padding; 447} __packed; 448 449/* Query VMBus Version parameters */ 450struct vmbus_channel_query_vmbus_version { 451 struct vmbus_channel_message_header header; 452 u32 version; 453} __packed; 454 455/* VMBus Version Supported parameters */ 456struct vmbus_channel_version_supported { 457 struct vmbus_channel_message_header header; 458 u8 version_supported; 459} __packed; 460 461/* Offer Channel parameters */ 462struct vmbus_channel_offer_channel { 463 struct vmbus_channel_message_header header; 464 struct vmbus_channel_offer offer; 465 u32 child_relid; 466 u8 monitorid; 467 /* 468 * win7 and beyond splits this field into a bit field. 469 */ 470 u8 monitor_allocated:1; 471 u8 reserved:7; 472 /* 473 * These are new fields added in win7 and later. 474 * Do not access these fields without checking the 475 * negotiated protocol. 476 * 477 * If "is_dedicated_interrupt" is set, we must not set the 478 * associated bit in the channel bitmap while sending the 479 * interrupt to the host. 480 * 481 * connection_id is to be used in signaling the host. 482 */ 483 u16 is_dedicated_interrupt:1; 484 u16 reserved1:15; 485 u32 connection_id; 486} __packed; 487 488/* Rescind Offer parameters */ 489struct vmbus_channel_rescind_offer { 490 struct vmbus_channel_message_header header; 491 u32 child_relid; 492} __packed; 493 494/* 495 * Request Offer -- no parameters, SynIC message contains the partition ID 496 * Set Snoop -- no parameters, SynIC message contains the partition ID 497 * Clear Snoop -- no parameters, SynIC message contains the partition ID 498 * All Offers Delivered -- no parameters, SynIC message contains the partition 499 * ID 500 * Flush Client -- no parameters, SynIC message contains the partition ID 501 */ 502 503/* Open Channel parameters */ 504struct vmbus_channel_open_channel { 505 struct vmbus_channel_message_header header; 506 507 /* Identifies the specific VMBus channel that is being opened. */ 508 u32 child_relid; 509 510 /* ID making a particular open request at a channel offer unique. */ 511 u32 openid; 512 513 /* GPADL for the channel's ring buffer. */ 514 u32 ringbuffer_gpadlhandle; 515 516 /* 517 * Starting with win8, this field will be used to specify 518 * the target virtual processor on which to deliver the interrupt for 519 * the host to guest communication. 520 * Prior to win8, incoming channel interrupts would only 521 * be delivered on cpu 0. Setting this value to 0 would 522 * preserve the earlier behavior. 523 */ 524 u32 target_vp; 525 526 /* 527 * The upstream ring buffer begins at offset zero in the memory 528 * described by RingBufferGpadlHandle. The downstream ring buffer 529 * follows it at this offset (in pages). 530 */ 531 u32 downstream_ringbuffer_pageoffset; 532 533 /* User-specific data to be passed along to the server endpoint. */ 534 unsigned char userdata[MAX_USER_DEFINED_BYTES]; 535} __packed; 536 537/* Open Channel Result parameters */ 538struct vmbus_channel_open_result { 539 struct vmbus_channel_message_header header; 540 u32 child_relid; 541 u32 openid; 542 u32 status; 543} __packed; 544 545/* Close channel parameters; */ 546struct vmbus_channel_close_channel { 547 struct vmbus_channel_message_header header; 548 u32 child_relid; 549} __packed; 550 551/* Channel Message GPADL */ 552#define GPADL_TYPE_RING_BUFFER 1 553#define GPADL_TYPE_SERVER_SAVE_AREA 2 554#define GPADL_TYPE_TRANSACTION 8 555 556/* 557 * The number of PFNs in a GPADL message is defined by the number of 558 * pages that would be spanned by ByteCount and ByteOffset. If the 559 * implied number of PFNs won't fit in this packet, there will be a 560 * follow-up packet that contains more. 561 */ 562struct vmbus_channel_gpadl_header { 563 struct vmbus_channel_message_header header; 564 u32 child_relid; 565 u32 gpadl; 566 u16 range_buflen; 567 u16 rangecount; 568 struct gpa_range range[0]; 569} __packed; 570 571/* This is the followup packet that contains more PFNs. */ 572struct vmbus_channel_gpadl_body { 573 struct vmbus_channel_message_header header; 574 u32 msgnumber; 575 u32 gpadl; 576 u64 pfn[0]; 577} __packed; 578 579struct vmbus_channel_gpadl_created { 580 struct vmbus_channel_message_header header; 581 u32 child_relid; 582 u32 gpadl; 583 u32 creation_status; 584} __packed; 585 586struct vmbus_channel_gpadl_teardown { 587 struct vmbus_channel_message_header header; 588 u32 child_relid; 589 u32 gpadl; 590} __packed; 591 592struct vmbus_channel_gpadl_torndown { 593 struct vmbus_channel_message_header header; 594 u32 gpadl; 595} __packed; 596 597struct vmbus_channel_relid_released { 598 struct vmbus_channel_message_header header; 599 u32 child_relid; 600} __packed; 601 602struct vmbus_channel_initiate_contact { 603 struct vmbus_channel_message_header header; 604 u32 vmbus_version_requested; 605 u32 target_vcpu; /* The VCPU the host should respond to */ 606 u64 interrupt_page; 607 u64 monitor_page1; 608 u64 monitor_page2; 609} __packed; 610 611/* Hyper-V socket: guest's connect()-ing to host */ 612struct vmbus_channel_tl_connect_request { 613 struct vmbus_channel_message_header header; 614 uuid_le guest_endpoint_id; 615 uuid_le host_service_id; 616} __packed; 617 618struct vmbus_channel_version_response { 619 struct vmbus_channel_message_header header; 620 u8 version_supported; 621} __packed; 622 623enum vmbus_channel_state { 624 CHANNEL_OFFER_STATE, 625 CHANNEL_OPENING_STATE, 626 CHANNEL_OPEN_STATE, 627 CHANNEL_OPENED_STATE, 628}; 629 630/* 631 * Represents each channel msg on the vmbus connection This is a 632 * variable-size data structure depending on the msg type itself 633 */ 634struct vmbus_channel_msginfo { 635 /* Bookkeeping stuff */ 636 struct list_head msglistentry; 637 638 /* So far, this is only used to handle gpadl body message */ 639 struct list_head submsglist; 640 641 /* Synchronize the request/response if needed */ 642 struct completion waitevent; 643 struct vmbus_channel *waiting_channel; 644 union { 645 struct vmbus_channel_version_supported version_supported; 646 struct vmbus_channel_open_result open_result; 647 struct vmbus_channel_gpadl_torndown gpadl_torndown; 648 struct vmbus_channel_gpadl_created gpadl_created; 649 struct vmbus_channel_version_response version_response; 650 } response; 651 652 u32 msgsize; 653 /* 654 * The channel message that goes out on the "wire". 655 * It will contain at minimum the VMBUS_CHANNEL_MESSAGE_HEADER header 656 */ 657 unsigned char msg[0]; 658}; 659 660struct vmbus_close_msg { 661 struct vmbus_channel_msginfo info; 662 struct vmbus_channel_close_channel msg; 663}; 664 665/* Define connection identifier type. */ 666union hv_connection_id { 667 u32 asu32; 668 struct { 669 u32 id:24; 670 u32 reserved:8; 671 } u; 672}; 673 674/* Definition of the hv_signal_event hypercall input structure. */ 675struct hv_input_signal_event { 676 union hv_connection_id connectionid; 677 u16 flag_number; 678 u16 rsvdz; 679}; 680 681struct hv_input_signal_event_buffer { 682 u64 align8; 683 struct hv_input_signal_event event; 684}; 685 686enum hv_numa_policy { 687 HV_BALANCED = 0, 688 HV_LOCALIZED, 689}; 690 691enum vmbus_device_type { 692 HV_IDE = 0, 693 HV_SCSI, 694 HV_FC, 695 HV_NIC, 696 HV_ND, 697 HV_PCIE, 698 HV_FB, 699 HV_KBD, 700 HV_MOUSE, 701 HV_KVP, 702 HV_TS, 703 HV_HB, 704 HV_SHUTDOWN, 705 HV_FCOPY, 706 HV_BACKUP, 707 HV_DM, 708 HV_UNKNOWN, 709}; 710 711struct vmbus_device { 712 u16 dev_type; 713 uuid_le guid; 714 bool perf_device; 715}; 716 717struct vmbus_channel { 718 struct list_head listentry; 719 720 struct hv_device *device_obj; 721 722 enum vmbus_channel_state state; 723 724 struct vmbus_channel_offer_channel offermsg; 725 /* 726 * These are based on the OfferMsg.MonitorId. 727 * Save it here for easy access. 728 */ 729 u8 monitor_grp; 730 u8 monitor_bit; 731 732 bool rescind; /* got rescind msg */ 733 734 u32 ringbuffer_gpadlhandle; 735 736 /* Allocated memory for ring buffer */ 737 void *ringbuffer_pages; 738 u32 ringbuffer_pagecount; 739 struct hv_ring_buffer_info outbound; /* send to parent */ 740 struct hv_ring_buffer_info inbound; /* receive from parent */ 741 spinlock_t inbound_lock; 742 743 struct vmbus_close_msg close_msg; 744 745 /* Channel callback's invoked in softirq context */ 746 struct tasklet_struct callback_event; 747 void (*onchannel_callback)(void *context); 748 void *channel_callback_context; 749 750 /* 751 * A channel can be marked for one of three modes of reading: 752 * BATCHED - callback called from taslket and should read 753 * channel until empty. Interrupts from the host 754 * are masked while read is in process (default). 755 * DIRECT - callback called from tasklet (softirq). 756 * ISR - callback called in interrupt context and must 757 * invoke its own deferred processing. 758 * Host interrupts are disabled and must be re-enabled 759 * when ring is empty. 760 */ 761 enum hv_callback_mode { 762 HV_CALL_BATCHED, 763 HV_CALL_DIRECT, 764 HV_CALL_ISR 765 } callback_mode; 766 767 bool is_dedicated_interrupt; 768 struct hv_input_signal_event_buffer sig_buf; 769 struct hv_input_signal_event *sig_event; 770 771 /* 772 * Starting with win8, this field will be used to specify 773 * the target virtual processor on which to deliver the interrupt for 774 * the host to guest communication. 775 * Prior to win8, incoming channel interrupts would only 776 * be delivered on cpu 0. Setting this value to 0 would 777 * preserve the earlier behavior. 778 */ 779 u32 target_vp; 780 /* The corresponding CPUID in the guest */ 781 u32 target_cpu; 782 /* 783 * State to manage the CPU affiliation of channels. 784 */ 785 struct cpumask alloced_cpus_in_node; 786 int numa_node; 787 /* 788 * Support for sub-channels. For high performance devices, 789 * it will be useful to have multiple sub-channels to support 790 * a scalable communication infrastructure with the host. 791 * The support for sub-channels is implemented as an extention 792 * to the current infrastructure. 793 * The initial offer is considered the primary channel and this 794 * offer message will indicate if the host supports sub-channels. 795 * The guest is free to ask for sub-channels to be offerred and can 796 * open these sub-channels as a normal "primary" channel. However, 797 * all sub-channels will have the same type and instance guids as the 798 * primary channel. Requests sent on a given channel will result in a 799 * response on the same channel. 800 */ 801 802 /* 803 * Sub-channel creation callback. This callback will be called in 804 * process context when a sub-channel offer is received from the host. 805 * The guest can open the sub-channel in the context of this callback. 806 */ 807 void (*sc_creation_callback)(struct vmbus_channel *new_sc); 808 809 /* 810 * Channel rescind callback. Some channels (the hvsock ones), need to 811 * register a callback which is invoked in vmbus_onoffer_rescind(). 812 */ 813 void (*chn_rescind_callback)(struct vmbus_channel *channel); 814 815 /* 816 * The spinlock to protect the structure. It is being used to protect 817 * test-and-set access to various attributes of the structure as well 818 * as all sc_list operations. 819 */ 820 spinlock_t lock; 821 /* 822 * All Sub-channels of a primary channel are linked here. 823 */ 824 struct list_head sc_list; 825 /* 826 * Current number of sub-channels. 827 */ 828 int num_sc; 829 /* 830 * Number of a sub-channel (position within sc_list) which is supposed 831 * to be used as the next outgoing channel. 832 */ 833 int next_oc; 834 /* 835 * The primary channel this sub-channel belongs to. 836 * This will be NULL for the primary channel. 837 */ 838 struct vmbus_channel *primary_channel; 839 /* 840 * Support per-channel state for use by vmbus drivers. 841 */ 842 void *per_channel_state; 843 /* 844 * To support per-cpu lookup mapping of relid to channel, 845 * link up channels based on their CPU affinity. 846 */ 847 struct list_head percpu_list; 848 849 /* 850 * Defer freeing channel until after all cpu's have 851 * gone through grace period. 852 */ 853 struct rcu_head rcu; 854 855 /* 856 * For performance critical channels (storage, networking 857 * etc,), Hyper-V has a mechanism to enhance the throughput 858 * at the expense of latency: 859 * When the host is to be signaled, we just set a bit in a shared page 860 * and this bit will be inspected by the hypervisor within a certain 861 * window and if the bit is set, the host will be signaled. The window 862 * of time is the monitor latency - currently around 100 usecs. This 863 * mechanism improves throughput by: 864 * 865 * A) Making the host more efficient - each time it wakes up, 866 * potentially it will process morev number of packets. The 867 * monitor latency allows a batch to build up. 868 * B) By deferring the hypercall to signal, we will also minimize 869 * the interrupts. 870 * 871 * Clearly, these optimizations improve throughput at the expense of 872 * latency. Furthermore, since the channel is shared for both 873 * control and data messages, control messages currently suffer 874 * unnecessary latency adversley impacting performance and boot 875 * time. To fix this issue, permit tagging the channel as being 876 * in "low latency" mode. In this mode, we will bypass the monitor 877 * mechanism. 878 */ 879 bool low_latency; 880 881 /* 882 * NUMA distribution policy: 883 * We support teo policies: 884 * 1) Balanced: Here all performance critical channels are 885 * distributed evenly amongst all the NUMA nodes. 886 * This policy will be the default policy. 887 * 2) Localized: All channels of a given instance of a 888 * performance critical service will be assigned CPUs 889 * within a selected NUMA node. 890 */ 891 enum hv_numa_policy affinity_policy; 892 893}; 894 895static inline bool is_hvsock_channel(const struct vmbus_channel *c) 896{ 897 return !!(c->offermsg.offer.chn_flags & 898 VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER); 899} 900 901static inline void set_channel_affinity_state(struct vmbus_channel *c, 902 enum hv_numa_policy policy) 903{ 904 c->affinity_policy = policy; 905} 906 907static inline void set_channel_read_mode(struct vmbus_channel *c, 908 enum hv_callback_mode mode) 909{ 910 c->callback_mode = mode; 911} 912 913static inline void set_per_channel_state(struct vmbus_channel *c, void *s) 914{ 915 c->per_channel_state = s; 916} 917 918static inline void *get_per_channel_state(struct vmbus_channel *c) 919{ 920 return c->per_channel_state; 921} 922 923static inline void set_channel_pending_send_size(struct vmbus_channel *c, 924 u32 size) 925{ 926 c->outbound.ring_buffer->pending_send_sz = size; 927} 928 929static inline void set_low_latency_mode(struct vmbus_channel *c) 930{ 931 c->low_latency = true; 932} 933 934static inline void clear_low_latency_mode(struct vmbus_channel *c) 935{ 936 c->low_latency = false; 937} 938 939void vmbus_onmessage(void *context); 940 941int vmbus_request_offers(void); 942 943/* 944 * APIs for managing sub-channels. 945 */ 946 947void vmbus_set_sc_create_callback(struct vmbus_channel *primary_channel, 948 void (*sc_cr_cb)(struct vmbus_channel *new_sc)); 949 950void vmbus_set_chn_rescind_callback(struct vmbus_channel *channel, 951 void (*chn_rescind_cb)(struct vmbus_channel *)); 952 953/* 954 * Retrieve the (sub) channel on which to send an outgoing request. 955 * When a primary channel has multiple sub-channels, we choose a 956 * channel whose VCPU binding is closest to the VCPU on which 957 * this call is being made. 958 */ 959struct vmbus_channel *vmbus_get_outgoing_channel(struct vmbus_channel *primary); 960 961/* 962 * Check if sub-channels have already been offerred. This API will be useful 963 * when the driver is unloaded after establishing sub-channels. In this case, 964 * when the driver is re-loaded, the driver would have to check if the 965 * subchannels have already been established before attempting to request 966 * the creation of sub-channels. 967 * This function returns TRUE to indicate that subchannels have already been 968 * created. 969 * This function should be invoked after setting the callback function for 970 * sub-channel creation. 971 */ 972bool vmbus_are_subchannels_present(struct vmbus_channel *primary); 973 974/* The format must be the same as struct vmdata_gpa_direct */ 975struct vmbus_channel_packet_page_buffer { 976 u16 type; 977 u16 dataoffset8; 978 u16 length8; 979 u16 flags; 980 u64 transactionid; 981 u32 reserved; 982 u32 rangecount; 983 struct hv_page_buffer range[MAX_PAGE_BUFFER_COUNT]; 984} __packed; 985 986/* The format must be the same as struct vmdata_gpa_direct */ 987struct vmbus_channel_packet_multipage_buffer { 988 u16 type; 989 u16 dataoffset8; 990 u16 length8; 991 u16 flags; 992 u64 transactionid; 993 u32 reserved; 994 u32 rangecount; /* Always 1 in this case */ 995 struct hv_multipage_buffer range; 996} __packed; 997 998/* The format must be the same as struct vmdata_gpa_direct */ 999struct vmbus_packet_mpb_array { 1000 u16 type; 1001 u16 dataoffset8; 1002 u16 length8; 1003 u16 flags; 1004 u64 transactionid; 1005 u32 reserved; 1006 u32 rangecount; /* Always 1 in this case */ 1007 struct hv_mpb_array range; 1008} __packed; 1009 1010 1011extern int vmbus_open(struct vmbus_channel *channel, 1012 u32 send_ringbuffersize, 1013 u32 recv_ringbuffersize, 1014 void *userdata, 1015 u32 userdatalen, 1016 void(*onchannel_callback)(void *context), 1017 void *context); 1018 1019extern void vmbus_close(struct vmbus_channel *channel); 1020 1021extern int vmbus_sendpacket(struct vmbus_channel *channel, 1022 void *buffer, 1023 u32 bufferLen, 1024 u64 requestid, 1025 enum vmbus_packet_type type, 1026 u32 flags); 1027 1028extern int vmbus_sendpacket_ctl(struct vmbus_channel *channel, 1029 void *buffer, 1030 u32 bufferLen, 1031 u64 requestid, 1032 enum vmbus_packet_type type, 1033 u32 flags); 1034 1035extern int vmbus_sendpacket_pagebuffer(struct vmbus_channel *channel, 1036 struct hv_page_buffer pagebuffers[], 1037 u32 pagecount, 1038 void *buffer, 1039 u32 bufferlen, 1040 u64 requestid); 1041 1042extern int vmbus_sendpacket_pagebuffer_ctl(struct vmbus_channel *channel, 1043 struct hv_page_buffer pagebuffers[], 1044 u32 pagecount, 1045 void *buffer, 1046 u32 bufferlen, 1047 u64 requestid, 1048 u32 flags); 1049 1050extern int vmbus_sendpacket_multipagebuffer(struct vmbus_channel *channel, 1051 struct hv_multipage_buffer *mpb, 1052 void *buffer, 1053 u32 bufferlen, 1054 u64 requestid); 1055 1056extern int vmbus_sendpacket_mpb_desc(struct vmbus_channel *channel, 1057 struct vmbus_packet_mpb_array *mpb, 1058 u32 desc_size, 1059 void *buffer, 1060 u32 bufferlen, 1061 u64 requestid); 1062 1063extern int vmbus_establish_gpadl(struct vmbus_channel *channel, 1064 void *kbuffer, 1065 u32 size, 1066 u32 *gpadl_handle); 1067 1068extern int vmbus_teardown_gpadl(struct vmbus_channel *channel, 1069 u32 gpadl_handle); 1070 1071extern int vmbus_recvpacket(struct vmbus_channel *channel, 1072 void *buffer, 1073 u32 bufferlen, 1074 u32 *buffer_actual_len, 1075 u64 *requestid); 1076 1077extern int vmbus_recvpacket_raw(struct vmbus_channel *channel, 1078 void *buffer, 1079 u32 bufferlen, 1080 u32 *buffer_actual_len, 1081 u64 *requestid); 1082 1083 1084extern void vmbus_ontimer(unsigned long data); 1085 1086/* Base driver object */ 1087struct hv_driver { 1088 const char *name; 1089 1090 /* 1091 * A hvsock offer, which has a VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER 1092 * channel flag, actually doesn't mean a synthetic device because the 1093 * offer's if_type/if_instance can change for every new hvsock 1094 * connection. 1095 * 1096 * However, to facilitate the notification of new-offer/rescind-offer 1097 * from vmbus driver to hvsock driver, we can handle hvsock offer as 1098 * a special vmbus device, and hence we need the below flag to 1099 * indicate if the driver is the hvsock driver or not: we need to 1100 * specially treat the hvosck offer & driver in vmbus_match(). 1101 */ 1102 bool hvsock; 1103 1104 /* the device type supported by this driver */ 1105 uuid_le dev_type; 1106 const struct hv_vmbus_device_id *id_table; 1107 1108 struct device_driver driver; 1109 1110 /* dynamic device GUID's */ 1111 struct { 1112 spinlock_t lock; 1113 struct list_head list; 1114 } dynids; 1115 1116 int (*probe)(struct hv_device *, const struct hv_vmbus_device_id *); 1117 int (*remove)(struct hv_device *); 1118 void (*shutdown)(struct hv_device *); 1119 1120}; 1121 1122/* Base device object */ 1123struct hv_device { 1124 /* the device type id of this device */ 1125 uuid_le dev_type; 1126 1127 /* the device instance id of this device */ 1128 uuid_le dev_instance; 1129 u16 vendor_id; 1130 u16 device_id; 1131 1132 struct device device; 1133 1134 struct vmbus_channel *channel; 1135}; 1136 1137 1138static inline struct hv_device *device_to_hv_device(struct device *d) 1139{ 1140 return container_of(d, struct hv_device, device); 1141} 1142 1143static inline struct hv_driver *drv_to_hv_drv(struct device_driver *d) 1144{ 1145 return container_of(d, struct hv_driver, driver); 1146} 1147 1148static inline void hv_set_drvdata(struct hv_device *dev, void *data) 1149{ 1150 dev_set_drvdata(&dev->device, data); 1151} 1152 1153static inline void *hv_get_drvdata(struct hv_device *dev) 1154{ 1155 return dev_get_drvdata(&dev->device); 1156} 1157 1158/* Vmbus interface */ 1159#define vmbus_driver_register(driver) \ 1160 __vmbus_driver_register(driver, THIS_MODULE, KBUILD_MODNAME) 1161int __must_check __vmbus_driver_register(struct hv_driver *hv_driver, 1162 struct module *owner, 1163 const char *mod_name); 1164void vmbus_driver_unregister(struct hv_driver *hv_driver); 1165 1166void vmbus_hvsock_device_unregister(struct vmbus_channel *channel); 1167 1168int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj, 1169 resource_size_t min, resource_size_t max, 1170 resource_size_t size, resource_size_t align, 1171 bool fb_overlap_ok); 1172void vmbus_free_mmio(resource_size_t start, resource_size_t size); 1173int vmbus_cpu_number_to_vp_number(int cpu_number); 1174u64 hv_do_hypercall(u64 control, void *input, void *output); 1175 1176/* 1177 * GUID definitions of various offer types - services offered to the guest. 1178 */ 1179 1180/* 1181 * Network GUID 1182 * {f8615163-df3e-46c5-913f-f2d2f965ed0e} 1183 */ 1184#define HV_NIC_GUID \ 1185 .guid = UUID_LE(0xf8615163, 0xdf3e, 0x46c5, 0x91, 0x3f, \ 1186 0xf2, 0xd2, 0xf9, 0x65, 0xed, 0x0e) 1187 1188/* 1189 * IDE GUID 1190 * {32412632-86cb-44a2-9b5c-50d1417354f5} 1191 */ 1192#define HV_IDE_GUID \ 1193 .guid = UUID_LE(0x32412632, 0x86cb, 0x44a2, 0x9b, 0x5c, \ 1194 0x50, 0xd1, 0x41, 0x73, 0x54, 0xf5) 1195 1196/* 1197 * SCSI GUID 1198 * {ba6163d9-04a1-4d29-b605-72e2ffb1dc7f} 1199 */ 1200#define HV_SCSI_GUID \ 1201 .guid = UUID_LE(0xba6163d9, 0x04a1, 0x4d29, 0xb6, 0x05, \ 1202 0x72, 0xe2, 0xff, 0xb1, 0xdc, 0x7f) 1203 1204/* 1205 * Shutdown GUID 1206 * {0e0b6031-5213-4934-818b-38d90ced39db} 1207 */ 1208#define HV_SHUTDOWN_GUID \ 1209 .guid = UUID_LE(0x0e0b6031, 0x5213, 0x4934, 0x81, 0x8b, \ 1210 0x38, 0xd9, 0x0c, 0xed, 0x39, 0xdb) 1211 1212/* 1213 * Time Synch GUID 1214 * {9527E630-D0AE-497b-ADCE-E80AB0175CAF} 1215 */ 1216#define HV_TS_GUID \ 1217 .guid = UUID_LE(0x9527e630, 0xd0ae, 0x497b, 0xad, 0xce, \ 1218 0xe8, 0x0a, 0xb0, 0x17, 0x5c, 0xaf) 1219 1220/* 1221 * Heartbeat GUID 1222 * {57164f39-9115-4e78-ab55-382f3bd5422d} 1223 */ 1224#define HV_HEART_BEAT_GUID \ 1225 .guid = UUID_LE(0x57164f39, 0x9115, 0x4e78, 0xab, 0x55, \ 1226 0x38, 0x2f, 0x3b, 0xd5, 0x42, 0x2d) 1227 1228/* 1229 * KVP GUID 1230 * {a9a0f4e7-5a45-4d96-b827-8a841e8c03e6} 1231 */ 1232#define HV_KVP_GUID \ 1233 .guid = UUID_LE(0xa9a0f4e7, 0x5a45, 0x4d96, 0xb8, 0x27, \ 1234 0x8a, 0x84, 0x1e, 0x8c, 0x03, 0xe6) 1235 1236/* 1237 * Dynamic memory GUID 1238 * {525074dc-8985-46e2-8057-a307dc18a502} 1239 */ 1240#define HV_DM_GUID \ 1241 .guid = UUID_LE(0x525074dc, 0x8985, 0x46e2, 0x80, 0x57, \ 1242 0xa3, 0x07, 0xdc, 0x18, 0xa5, 0x02) 1243 1244/* 1245 * Mouse GUID 1246 * {cfa8b69e-5b4a-4cc0-b98b-8ba1a1f3f95a} 1247 */ 1248#define HV_MOUSE_GUID \ 1249 .guid = UUID_LE(0xcfa8b69e, 0x5b4a, 0x4cc0, 0xb9, 0x8b, \ 1250 0x8b, 0xa1, 0xa1, 0xf3, 0xf9, 0x5a) 1251 1252/* 1253 * Keyboard GUID 1254 * {f912ad6d-2b17-48ea-bd65-f927a61c7684} 1255 */ 1256#define HV_KBD_GUID \ 1257 .guid = UUID_LE(0xf912ad6d, 0x2b17, 0x48ea, 0xbd, 0x65, \ 1258 0xf9, 0x27, 0xa6, 0x1c, 0x76, 0x84) 1259 1260/* 1261 * VSS (Backup/Restore) GUID 1262 */ 1263#define HV_VSS_GUID \ 1264 .guid = UUID_LE(0x35fa2e29, 0xea23, 0x4236, 0x96, 0xae, \ 1265 0x3a, 0x6e, 0xba, 0xcb, 0xa4, 0x40) 1266/* 1267 * Synthetic Video GUID 1268 * {DA0A7802-E377-4aac-8E77-0558EB1073F8} 1269 */ 1270#define HV_SYNTHVID_GUID \ 1271 .guid = UUID_LE(0xda0a7802, 0xe377, 0x4aac, 0x8e, 0x77, \ 1272 0x05, 0x58, 0xeb, 0x10, 0x73, 0xf8) 1273 1274/* 1275 * Synthetic FC GUID 1276 * {2f9bcc4a-0069-4af3-b76b-6fd0be528cda} 1277 */ 1278#define HV_SYNTHFC_GUID \ 1279 .guid = UUID_LE(0x2f9bcc4a, 0x0069, 0x4af3, 0xb7, 0x6b, \ 1280 0x6f, 0xd0, 0xbe, 0x52, 0x8c, 0xda) 1281 1282/* 1283 * Guest File Copy Service 1284 * {34D14BE3-DEE4-41c8-9AE7-6B174977C192} 1285 */ 1286 1287#define HV_FCOPY_GUID \ 1288 .guid = UUID_LE(0x34d14be3, 0xdee4, 0x41c8, 0x9a, 0xe7, \ 1289 0x6b, 0x17, 0x49, 0x77, 0xc1, 0x92) 1290 1291/* 1292 * NetworkDirect. This is the guest RDMA service. 1293 * {8c2eaf3d-32a7-4b09-ab99-bd1f1c86b501} 1294 */ 1295#define HV_ND_GUID \ 1296 .guid = UUID_LE(0x8c2eaf3d, 0x32a7, 0x4b09, 0xab, 0x99, \ 1297 0xbd, 0x1f, 0x1c, 0x86, 0xb5, 0x01) 1298 1299/* 1300 * PCI Express Pass Through 1301 * {44C4F61D-4444-4400-9D52-802E27EDE19F} 1302 */ 1303 1304#define HV_PCIE_GUID \ 1305 .guid = UUID_LE(0x44c4f61d, 0x4444, 0x4400, 0x9d, 0x52, \ 1306 0x80, 0x2e, 0x27, 0xed, 0xe1, 0x9f) 1307 1308/* 1309 * Linux doesn't support the 3 devices: the first two are for 1310 * Automatic Virtual Machine Activation, and the third is for 1311 * Remote Desktop Virtualization. 1312 * {f8e65716-3cb3-4a06-9a60-1889c5cccab5} 1313 * {3375baf4-9e15-4b30-b765-67acb10d607b} 1314 * {276aacf4-ac15-426c-98dd-7521ad3f01fe} 1315 */ 1316 1317#define HV_AVMA1_GUID \ 1318 .guid = UUID_LE(0xf8e65716, 0x3cb3, 0x4a06, 0x9a, 0x60, \ 1319 0x18, 0x89, 0xc5, 0xcc, 0xca, 0xb5) 1320 1321#define HV_AVMA2_GUID \ 1322 .guid = UUID_LE(0x3375baf4, 0x9e15, 0x4b30, 0xb7, 0x65, \ 1323 0x67, 0xac, 0xb1, 0x0d, 0x60, 0x7b) 1324 1325#define HV_RDV_GUID \ 1326 .guid = UUID_LE(0x276aacf4, 0xac15, 0x426c, 0x98, 0xdd, \ 1327 0x75, 0x21, 0xad, 0x3f, 0x01, 0xfe) 1328 1329/* 1330 * Common header for Hyper-V ICs 1331 */ 1332 1333#define ICMSGTYPE_NEGOTIATE 0 1334#define ICMSGTYPE_HEARTBEAT 1 1335#define ICMSGTYPE_KVPEXCHANGE 2 1336#define ICMSGTYPE_SHUTDOWN 3 1337#define ICMSGTYPE_TIMESYNC 4 1338#define ICMSGTYPE_VSS 5 1339 1340#define ICMSGHDRFLAG_TRANSACTION 1 1341#define ICMSGHDRFLAG_REQUEST 2 1342#define ICMSGHDRFLAG_RESPONSE 4 1343 1344 1345/* 1346 * While we want to handle util services as regular devices, 1347 * there is only one instance of each of these services; so 1348 * we statically allocate the service specific state. 1349 */ 1350 1351struct hv_util_service { 1352 u8 *recv_buffer; 1353 void *channel; 1354 void (*util_cb)(void *); 1355 int (*util_init)(struct hv_util_service *); 1356 void (*util_deinit)(void); 1357}; 1358 1359struct vmbuspipe_hdr { 1360 u32 flags; 1361 u32 msgsize; 1362} __packed; 1363 1364struct ic_version { 1365 u16 major; 1366 u16 minor; 1367} __packed; 1368 1369struct icmsg_hdr { 1370 struct ic_version icverframe; 1371 u16 icmsgtype; 1372 struct ic_version icvermsg; 1373 u16 icmsgsize; 1374 u32 status; 1375 u8 ictransaction_id; 1376 u8 icflags; 1377 u8 reserved[2]; 1378} __packed; 1379 1380struct icmsg_negotiate { 1381 u16 icframe_vercnt; 1382 u16 icmsg_vercnt; 1383 u32 reserved; 1384 struct ic_version icversion_data[1]; /* any size array */ 1385} __packed; 1386 1387struct shutdown_msg_data { 1388 u32 reason_code; 1389 u32 timeout_seconds; 1390 u32 flags; 1391 u8 display_message[2048]; 1392} __packed; 1393 1394struct heartbeat_msg_data { 1395 u64 seq_num; 1396 u32 reserved[8]; 1397} __packed; 1398 1399/* Time Sync IC defs */ 1400#define ICTIMESYNCFLAG_PROBE 0 1401#define ICTIMESYNCFLAG_SYNC 1 1402#define ICTIMESYNCFLAG_SAMPLE 2 1403 1404#ifdef __x86_64__ 1405#define WLTIMEDELTA 116444736000000000L /* in 100ns unit */ 1406#else 1407#define WLTIMEDELTA 116444736000000000LL 1408#endif 1409 1410struct ictimesync_data { 1411 u64 parenttime; 1412 u64 childtime; 1413 u64 roundtriptime; 1414 u8 flags; 1415} __packed; 1416 1417struct ictimesync_ref_data { 1418 u64 parenttime; 1419 u64 vmreferencetime; 1420 u8 flags; 1421 char leapflags; 1422 char stratum; 1423 u8 reserved[3]; 1424} __packed; 1425 1426struct hyperv_service_callback { 1427 u8 msg_type; 1428 char *log_msg; 1429 uuid_le data; 1430 struct vmbus_channel *channel; 1431 void (*callback) (void *context); 1432}; 1433 1434#define MAX_SRV_VER 0x7ffffff 1435extern bool vmbus_prep_negotiate_resp(struct icmsg_hdr *icmsghdrp, u8 *buf, 1436 const int *fw_version, int fw_vercnt, 1437 const int *srv_version, int srv_vercnt, 1438 int *nego_fw_version, int *nego_srv_version); 1439 1440void hv_process_channel_removal(struct vmbus_channel *channel, u32 relid); 1441 1442void vmbus_setevent(struct vmbus_channel *channel); 1443/* 1444 * Negotiated version with the Host. 1445 */ 1446 1447extern __u32 vmbus_proto_version; 1448 1449int vmbus_send_tl_connect_request(const uuid_le *shv_guest_servie_id, 1450 const uuid_le *shv_host_servie_id); 1451void vmbus_set_event(struct vmbus_channel *channel); 1452 1453/* Get the start of the ring buffer. */ 1454static inline void * 1455hv_get_ring_buffer(const struct hv_ring_buffer_info *ring_info) 1456{ 1457 return ring_info->ring_buffer->buffer; 1458} 1459 1460/* 1461 * To optimize the flow management on the send-side, 1462 * when the sender is blocked because of lack of 1463 * sufficient space in the ring buffer, potential the 1464 * consumer of the ring buffer can signal the producer. 1465 * This is controlled by the following parameters: 1466 * 1467 * 1. pending_send_sz: This is the size in bytes that the 1468 * producer is trying to send. 1469 * 2. The feature bit feat_pending_send_sz set to indicate if 1470 * the consumer of the ring will signal when the ring 1471 * state transitions from being full to a state where 1472 * there is room for the producer to send the pending packet. 1473 */ 1474 1475static inline void hv_signal_on_read(struct vmbus_channel *channel) 1476{ 1477 u32 cur_write_sz, cached_write_sz; 1478 u32 pending_sz; 1479 struct hv_ring_buffer_info *rbi = &channel->inbound; 1480 1481 /* 1482 * Issue a full memory barrier before making the signaling decision. 1483 * Here is the reason for having this barrier: 1484 * If the reading of the pend_sz (in this function) 1485 * were to be reordered and read before we commit the new read 1486 * index (in the calling function) we could 1487 * have a problem. If the host were to set the pending_sz after we 1488 * have sampled pending_sz and go to sleep before we commit the 1489 * read index, we could miss sending the interrupt. Issue a full 1490 * memory barrier to address this. 1491 */ 1492 virt_mb(); 1493 1494 pending_sz = READ_ONCE(rbi->ring_buffer->pending_send_sz); 1495 /* If the other end is not blocked on write don't bother. */ 1496 if (pending_sz == 0) 1497 return; 1498 1499 cur_write_sz = hv_get_bytes_to_write(rbi); 1500 1501 if (cur_write_sz < pending_sz) 1502 return; 1503 1504 cached_write_sz = hv_get_cached_bytes_to_write(rbi); 1505 if (cached_write_sz < pending_sz) 1506 vmbus_setevent(channel); 1507 1508 return; 1509} 1510 1511static inline void 1512init_cached_read_index(struct vmbus_channel *channel) 1513{ 1514 struct hv_ring_buffer_info *rbi = &channel->inbound; 1515 1516 rbi->cached_read_index = rbi->ring_buffer->read_index; 1517} 1518 1519/* 1520 * Mask off host interrupt callback notifications 1521 */ 1522static inline void hv_begin_read(struct hv_ring_buffer_info *rbi) 1523{ 1524 rbi->ring_buffer->interrupt_mask = 1; 1525 1526 /* make sure mask update is not reordered */ 1527 virt_mb(); 1528} 1529 1530/* 1531 * Re-enable host callback and return number of outstanding bytes 1532 */ 1533static inline u32 hv_end_read(struct hv_ring_buffer_info *rbi) 1534{ 1535 1536 rbi->ring_buffer->interrupt_mask = 0; 1537 1538 /* make sure mask update is not reordered */ 1539 virt_mb(); 1540 1541 /* 1542 * Now check to see if the ring buffer is still empty. 1543 * If it is not, we raced and we need to process new 1544 * incoming messages. 1545 */ 1546 return hv_get_bytes_to_read(rbi); 1547} 1548 1549/* 1550 * An API to support in-place processing of incoming VMBUS packets. 1551 */ 1552#define VMBUS_PKT_TRAILER 8 1553 1554static inline struct vmpacket_descriptor * 1555get_next_pkt_raw(struct vmbus_channel *channel) 1556{ 1557 struct hv_ring_buffer_info *ring_info = &channel->inbound; 1558 u32 priv_read_loc = ring_info->priv_read_index; 1559 void *ring_buffer = hv_get_ring_buffer(ring_info); 1560 u32 dsize = ring_info->ring_datasize; 1561 /* 1562 * delta is the difference between what is available to read and 1563 * what was already consumed in place. We commit read index after 1564 * the whole batch is processed. 1565 */ 1566 u32 delta = priv_read_loc >= ring_info->ring_buffer->read_index ? 1567 priv_read_loc - ring_info->ring_buffer->read_index : 1568 (dsize - ring_info->ring_buffer->read_index) + priv_read_loc; 1569 u32 bytes_avail_toread = (hv_get_bytes_to_read(ring_info) - delta); 1570 1571 if (bytes_avail_toread < sizeof(struct vmpacket_descriptor)) 1572 return NULL; 1573 1574 return ring_buffer + priv_read_loc; 1575} 1576 1577/* 1578 * A helper function to step through packets "in-place" 1579 * This API is to be called after each successful call 1580 * get_next_pkt_raw(). 1581 */ 1582static inline void put_pkt_raw(struct vmbus_channel *channel, 1583 struct vmpacket_descriptor *desc) 1584{ 1585 struct hv_ring_buffer_info *ring_info = &channel->inbound; 1586 u32 packetlen = desc->len8 << 3; 1587 u32 dsize = ring_info->ring_datasize; 1588 1589 /* 1590 * Include the packet trailer. 1591 */ 1592 ring_info->priv_read_index += packetlen + VMBUS_PKT_TRAILER; 1593 ring_info->priv_read_index %= dsize; 1594} 1595 1596/* 1597 * This call commits the read index and potentially signals the host. 1598 * Here is the pattern for using the "in-place" consumption APIs: 1599 * 1600 * init_cached_read_index(); 1601 * 1602 * while (get_next_pkt_raw() { 1603 * process the packet "in-place"; 1604 * put_pkt_raw(); 1605 * } 1606 * if (packets processed in place) 1607 * commit_rd_index(); 1608 */ 1609static inline void commit_rd_index(struct vmbus_channel *channel) 1610{ 1611 struct hv_ring_buffer_info *ring_info = &channel->inbound; 1612 /* 1613 * Make sure all reads are done before we update the read index since 1614 * the writer may start writing to the read area once the read index 1615 * is updated. 1616 */ 1617 virt_rmb(); 1618 ring_info->ring_buffer->read_index = ring_info->priv_read_index; 1619 1620 hv_signal_on_read(channel); 1621} 1622 1623 1624#endif /* _HYPERV_H */