at v4.11-rc2 2540 lines 81 kB view raw
1#ifndef _LINUX_MM_H 2#define _LINUX_MM_H 3 4#include <linux/errno.h> 5 6#ifdef __KERNEL__ 7 8#include <linux/mmdebug.h> 9#include <linux/gfp.h> 10#include <linux/bug.h> 11#include <linux/list.h> 12#include <linux/mmzone.h> 13#include <linux/rbtree.h> 14#include <linux/atomic.h> 15#include <linux/debug_locks.h> 16#include <linux/mm_types.h> 17#include <linux/range.h> 18#include <linux/pfn.h> 19#include <linux/percpu-refcount.h> 20#include <linux/bit_spinlock.h> 21#include <linux/shrinker.h> 22#include <linux/resource.h> 23#include <linux/page_ext.h> 24#include <linux/err.h> 25#include <linux/page_ref.h> 26 27struct mempolicy; 28struct anon_vma; 29struct anon_vma_chain; 30struct file_ra_state; 31struct user_struct; 32struct writeback_control; 33struct bdi_writeback; 34 35#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */ 36extern unsigned long max_mapnr; 37 38static inline void set_max_mapnr(unsigned long limit) 39{ 40 max_mapnr = limit; 41} 42#else 43static inline void set_max_mapnr(unsigned long limit) { } 44#endif 45 46extern unsigned long totalram_pages; 47extern void * high_memory; 48extern int page_cluster; 49 50#ifdef CONFIG_SYSCTL 51extern int sysctl_legacy_va_layout; 52#else 53#define sysctl_legacy_va_layout 0 54#endif 55 56#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 57extern const int mmap_rnd_bits_min; 58extern const int mmap_rnd_bits_max; 59extern int mmap_rnd_bits __read_mostly; 60#endif 61#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 62extern const int mmap_rnd_compat_bits_min; 63extern const int mmap_rnd_compat_bits_max; 64extern int mmap_rnd_compat_bits __read_mostly; 65#endif 66 67#include <asm/page.h> 68#include <asm/pgtable.h> 69#include <asm/processor.h> 70 71#ifndef __pa_symbol 72#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 73#endif 74 75#ifndef page_to_virt 76#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x))) 77#endif 78 79#ifndef lm_alias 80#define lm_alias(x) __va(__pa_symbol(x)) 81#endif 82 83/* 84 * To prevent common memory management code establishing 85 * a zero page mapping on a read fault. 86 * This macro should be defined within <asm/pgtable.h>. 87 * s390 does this to prevent multiplexing of hardware bits 88 * related to the physical page in case of virtualization. 89 */ 90#ifndef mm_forbids_zeropage 91#define mm_forbids_zeropage(X) (0) 92#endif 93 94/* 95 * Default maximum number of active map areas, this limits the number of vmas 96 * per mm struct. Users can overwrite this number by sysctl but there is a 97 * problem. 98 * 99 * When a program's coredump is generated as ELF format, a section is created 100 * per a vma. In ELF, the number of sections is represented in unsigned short. 101 * This means the number of sections should be smaller than 65535 at coredump. 102 * Because the kernel adds some informative sections to a image of program at 103 * generating coredump, we need some margin. The number of extra sections is 104 * 1-3 now and depends on arch. We use "5" as safe margin, here. 105 * 106 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is 107 * not a hard limit any more. Although some userspace tools can be surprised by 108 * that. 109 */ 110#define MAPCOUNT_ELF_CORE_MARGIN (5) 111#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 112 113extern int sysctl_max_map_count; 114 115extern unsigned long sysctl_user_reserve_kbytes; 116extern unsigned long sysctl_admin_reserve_kbytes; 117 118extern int sysctl_overcommit_memory; 119extern int sysctl_overcommit_ratio; 120extern unsigned long sysctl_overcommit_kbytes; 121 122extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *, 123 size_t *, loff_t *); 124extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *, 125 size_t *, loff_t *); 126 127#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 128 129/* to align the pointer to the (next) page boundary */ 130#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 131 132/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 133#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE) 134 135/* 136 * Linux kernel virtual memory manager primitives. 137 * The idea being to have a "virtual" mm in the same way 138 * we have a virtual fs - giving a cleaner interface to the 139 * mm details, and allowing different kinds of memory mappings 140 * (from shared memory to executable loading to arbitrary 141 * mmap() functions). 142 */ 143 144extern struct kmem_cache *vm_area_cachep; 145 146#ifndef CONFIG_MMU 147extern struct rb_root nommu_region_tree; 148extern struct rw_semaphore nommu_region_sem; 149 150extern unsigned int kobjsize(const void *objp); 151#endif 152 153/* 154 * vm_flags in vm_area_struct, see mm_types.h. 155 * When changing, update also include/trace/events/mmflags.h 156 */ 157#define VM_NONE 0x00000000 158 159#define VM_READ 0x00000001 /* currently active flags */ 160#define VM_WRITE 0x00000002 161#define VM_EXEC 0x00000004 162#define VM_SHARED 0x00000008 163 164/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 165#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 166#define VM_MAYWRITE 0x00000020 167#define VM_MAYEXEC 0x00000040 168#define VM_MAYSHARE 0x00000080 169 170#define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 171#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */ 172#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 173#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 174#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */ 175 176#define VM_LOCKED 0x00002000 177#define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 178 179 /* Used by sys_madvise() */ 180#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 181#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 182 183#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 184#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 185#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */ 186#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 187#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 188#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 189#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 190#define VM_ARCH_2 0x02000000 191#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 192 193#ifdef CONFIG_MEM_SOFT_DIRTY 194# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 195#else 196# define VM_SOFTDIRTY 0 197#endif 198 199#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 200#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 201#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 202#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 203 204#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS 205#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */ 206#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */ 207#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */ 208#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */ 209#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0) 210#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1) 211#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2) 212#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3) 213#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */ 214 215#if defined(CONFIG_X86) 216# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 217#if defined (CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS) 218# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0 219# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */ 220# define VM_PKEY_BIT1 VM_HIGH_ARCH_1 221# define VM_PKEY_BIT2 VM_HIGH_ARCH_2 222# define VM_PKEY_BIT3 VM_HIGH_ARCH_3 223#endif 224#elif defined(CONFIG_PPC) 225# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 226#elif defined(CONFIG_PARISC) 227# define VM_GROWSUP VM_ARCH_1 228#elif defined(CONFIG_METAG) 229# define VM_GROWSUP VM_ARCH_1 230#elif defined(CONFIG_IA64) 231# define VM_GROWSUP VM_ARCH_1 232#elif !defined(CONFIG_MMU) 233# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 234#endif 235 236#if defined(CONFIG_X86) 237/* MPX specific bounds table or bounds directory */ 238# define VM_MPX VM_ARCH_2 239#endif 240 241#ifndef VM_GROWSUP 242# define VM_GROWSUP VM_NONE 243#endif 244 245/* Bits set in the VMA until the stack is in its final location */ 246#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) 247 248#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 249#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 250#endif 251 252#ifdef CONFIG_STACK_GROWSUP 253#define VM_STACK VM_GROWSUP 254#else 255#define VM_STACK VM_GROWSDOWN 256#endif 257 258#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 259 260/* 261 * Special vmas that are non-mergable, non-mlock()able. 262 * Note: mm/huge_memory.c VM_NO_THP depends on this definition. 263 */ 264#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 265 266/* This mask defines which mm->def_flags a process can inherit its parent */ 267#define VM_INIT_DEF_MASK VM_NOHUGEPAGE 268 269/* This mask is used to clear all the VMA flags used by mlock */ 270#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT)) 271 272/* 273 * mapping from the currently active vm_flags protection bits (the 274 * low four bits) to a page protection mask.. 275 */ 276extern pgprot_t protection_map[16]; 277 278#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */ 279#define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */ 280#define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */ 281#define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */ 282#define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */ 283#define FAULT_FLAG_TRIED 0x20 /* Second try */ 284#define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */ 285#define FAULT_FLAG_REMOTE 0x80 /* faulting for non current tsk/mm */ 286#define FAULT_FLAG_INSTRUCTION 0x100 /* The fault was during an instruction fetch */ 287 288#define FAULT_FLAG_TRACE \ 289 { FAULT_FLAG_WRITE, "WRITE" }, \ 290 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \ 291 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \ 292 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \ 293 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \ 294 { FAULT_FLAG_TRIED, "TRIED" }, \ 295 { FAULT_FLAG_USER, "USER" }, \ 296 { FAULT_FLAG_REMOTE, "REMOTE" }, \ 297 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" } 298 299/* 300 * vm_fault is filled by the the pagefault handler and passed to the vma's 301 * ->fault function. The vma's ->fault is responsible for returning a bitmask 302 * of VM_FAULT_xxx flags that give details about how the fault was handled. 303 * 304 * MM layer fills up gfp_mask for page allocations but fault handler might 305 * alter it if its implementation requires a different allocation context. 306 * 307 * pgoff should be used in favour of virtual_address, if possible. 308 */ 309struct vm_fault { 310 struct vm_area_struct *vma; /* Target VMA */ 311 unsigned int flags; /* FAULT_FLAG_xxx flags */ 312 gfp_t gfp_mask; /* gfp mask to be used for allocations */ 313 pgoff_t pgoff; /* Logical page offset based on vma */ 314 unsigned long address; /* Faulting virtual address */ 315 pmd_t *pmd; /* Pointer to pmd entry matching 316 * the 'address' */ 317 pud_t *pud; /* Pointer to pud entry matching 318 * the 'address' 319 */ 320 pte_t orig_pte; /* Value of PTE at the time of fault */ 321 322 struct page *cow_page; /* Page handler may use for COW fault */ 323 struct mem_cgroup *memcg; /* Cgroup cow_page belongs to */ 324 struct page *page; /* ->fault handlers should return a 325 * page here, unless VM_FAULT_NOPAGE 326 * is set (which is also implied by 327 * VM_FAULT_ERROR). 328 */ 329 /* These three entries are valid only while holding ptl lock */ 330 pte_t *pte; /* Pointer to pte entry matching 331 * the 'address'. NULL if the page 332 * table hasn't been allocated. 333 */ 334 spinlock_t *ptl; /* Page table lock. 335 * Protects pte page table if 'pte' 336 * is not NULL, otherwise pmd. 337 */ 338 pgtable_t prealloc_pte; /* Pre-allocated pte page table. 339 * vm_ops->map_pages() calls 340 * alloc_set_pte() from atomic context. 341 * do_fault_around() pre-allocates 342 * page table to avoid allocation from 343 * atomic context. 344 */ 345}; 346 347/* page entry size for vm->huge_fault() */ 348enum page_entry_size { 349 PE_SIZE_PTE = 0, 350 PE_SIZE_PMD, 351 PE_SIZE_PUD, 352}; 353 354/* 355 * These are the virtual MM functions - opening of an area, closing and 356 * unmapping it (needed to keep files on disk up-to-date etc), pointer 357 * to the functions called when a no-page or a wp-page exception occurs. 358 */ 359struct vm_operations_struct { 360 void (*open)(struct vm_area_struct * area); 361 void (*close)(struct vm_area_struct * area); 362 int (*mremap)(struct vm_area_struct * area); 363 int (*fault)(struct vm_fault *vmf); 364 int (*huge_fault)(struct vm_fault *vmf, enum page_entry_size pe_size); 365 void (*map_pages)(struct vm_fault *vmf, 366 pgoff_t start_pgoff, pgoff_t end_pgoff); 367 368 /* notification that a previously read-only page is about to become 369 * writable, if an error is returned it will cause a SIGBUS */ 370 int (*page_mkwrite)(struct vm_fault *vmf); 371 372 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ 373 int (*pfn_mkwrite)(struct vm_fault *vmf); 374 375 /* called by access_process_vm when get_user_pages() fails, typically 376 * for use by special VMAs that can switch between memory and hardware 377 */ 378 int (*access)(struct vm_area_struct *vma, unsigned long addr, 379 void *buf, int len, int write); 380 381 /* Called by the /proc/PID/maps code to ask the vma whether it 382 * has a special name. Returning non-NULL will also cause this 383 * vma to be dumped unconditionally. */ 384 const char *(*name)(struct vm_area_struct *vma); 385 386#ifdef CONFIG_NUMA 387 /* 388 * set_policy() op must add a reference to any non-NULL @new mempolicy 389 * to hold the policy upon return. Caller should pass NULL @new to 390 * remove a policy and fall back to surrounding context--i.e. do not 391 * install a MPOL_DEFAULT policy, nor the task or system default 392 * mempolicy. 393 */ 394 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 395 396 /* 397 * get_policy() op must add reference [mpol_get()] to any policy at 398 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 399 * in mm/mempolicy.c will do this automatically. 400 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 401 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem. 402 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 403 * must return NULL--i.e., do not "fallback" to task or system default 404 * policy. 405 */ 406 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 407 unsigned long addr); 408#endif 409 /* 410 * Called by vm_normal_page() for special PTEs to find the 411 * page for @addr. This is useful if the default behavior 412 * (using pte_page()) would not find the correct page. 413 */ 414 struct page *(*find_special_page)(struct vm_area_struct *vma, 415 unsigned long addr); 416}; 417 418struct mmu_gather; 419struct inode; 420 421#define page_private(page) ((page)->private) 422#define set_page_private(page, v) ((page)->private = (v)) 423 424#if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE) 425static inline int pmd_devmap(pmd_t pmd) 426{ 427 return 0; 428} 429static inline int pud_devmap(pud_t pud) 430{ 431 return 0; 432} 433#endif 434 435/* 436 * FIXME: take this include out, include page-flags.h in 437 * files which need it (119 of them) 438 */ 439#include <linux/page-flags.h> 440#include <linux/huge_mm.h> 441 442/* 443 * Methods to modify the page usage count. 444 * 445 * What counts for a page usage: 446 * - cache mapping (page->mapping) 447 * - private data (page->private) 448 * - page mapped in a task's page tables, each mapping 449 * is counted separately 450 * 451 * Also, many kernel routines increase the page count before a critical 452 * routine so they can be sure the page doesn't go away from under them. 453 */ 454 455/* 456 * Drop a ref, return true if the refcount fell to zero (the page has no users) 457 */ 458static inline int put_page_testzero(struct page *page) 459{ 460 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 461 return page_ref_dec_and_test(page); 462} 463 464/* 465 * Try to grab a ref unless the page has a refcount of zero, return false if 466 * that is the case. 467 * This can be called when MMU is off so it must not access 468 * any of the virtual mappings. 469 */ 470static inline int get_page_unless_zero(struct page *page) 471{ 472 return page_ref_add_unless(page, 1, 0); 473} 474 475extern int page_is_ram(unsigned long pfn); 476 477enum { 478 REGION_INTERSECTS, 479 REGION_DISJOINT, 480 REGION_MIXED, 481}; 482 483int region_intersects(resource_size_t offset, size_t size, unsigned long flags, 484 unsigned long desc); 485 486/* Support for virtually mapped pages */ 487struct page *vmalloc_to_page(const void *addr); 488unsigned long vmalloc_to_pfn(const void *addr); 489 490/* 491 * Determine if an address is within the vmalloc range 492 * 493 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 494 * is no special casing required. 495 */ 496static inline bool is_vmalloc_addr(const void *x) 497{ 498#ifdef CONFIG_MMU 499 unsigned long addr = (unsigned long)x; 500 501 return addr >= VMALLOC_START && addr < VMALLOC_END; 502#else 503 return false; 504#endif 505} 506#ifdef CONFIG_MMU 507extern int is_vmalloc_or_module_addr(const void *x); 508#else 509static inline int is_vmalloc_or_module_addr(const void *x) 510{ 511 return 0; 512} 513#endif 514 515extern void kvfree(const void *addr); 516 517static inline atomic_t *compound_mapcount_ptr(struct page *page) 518{ 519 return &page[1].compound_mapcount; 520} 521 522static inline int compound_mapcount(struct page *page) 523{ 524 VM_BUG_ON_PAGE(!PageCompound(page), page); 525 page = compound_head(page); 526 return atomic_read(compound_mapcount_ptr(page)) + 1; 527} 528 529/* 530 * The atomic page->_mapcount, starts from -1: so that transitions 531 * both from it and to it can be tracked, using atomic_inc_and_test 532 * and atomic_add_negative(-1). 533 */ 534static inline void page_mapcount_reset(struct page *page) 535{ 536 atomic_set(&(page)->_mapcount, -1); 537} 538 539int __page_mapcount(struct page *page); 540 541static inline int page_mapcount(struct page *page) 542{ 543 VM_BUG_ON_PAGE(PageSlab(page), page); 544 545 if (unlikely(PageCompound(page))) 546 return __page_mapcount(page); 547 return atomic_read(&page->_mapcount) + 1; 548} 549 550#ifdef CONFIG_TRANSPARENT_HUGEPAGE 551int total_mapcount(struct page *page); 552int page_trans_huge_mapcount(struct page *page, int *total_mapcount); 553#else 554static inline int total_mapcount(struct page *page) 555{ 556 return page_mapcount(page); 557} 558static inline int page_trans_huge_mapcount(struct page *page, 559 int *total_mapcount) 560{ 561 int mapcount = page_mapcount(page); 562 if (total_mapcount) 563 *total_mapcount = mapcount; 564 return mapcount; 565} 566#endif 567 568static inline struct page *virt_to_head_page(const void *x) 569{ 570 struct page *page = virt_to_page(x); 571 572 return compound_head(page); 573} 574 575void __put_page(struct page *page); 576 577void put_pages_list(struct list_head *pages); 578 579void split_page(struct page *page, unsigned int order); 580 581/* 582 * Compound pages have a destructor function. Provide a 583 * prototype for that function and accessor functions. 584 * These are _only_ valid on the head of a compound page. 585 */ 586typedef void compound_page_dtor(struct page *); 587 588/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */ 589enum compound_dtor_id { 590 NULL_COMPOUND_DTOR, 591 COMPOUND_PAGE_DTOR, 592#ifdef CONFIG_HUGETLB_PAGE 593 HUGETLB_PAGE_DTOR, 594#endif 595#ifdef CONFIG_TRANSPARENT_HUGEPAGE 596 TRANSHUGE_PAGE_DTOR, 597#endif 598 NR_COMPOUND_DTORS, 599}; 600extern compound_page_dtor * const compound_page_dtors[]; 601 602static inline void set_compound_page_dtor(struct page *page, 603 enum compound_dtor_id compound_dtor) 604{ 605 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page); 606 page[1].compound_dtor = compound_dtor; 607} 608 609static inline compound_page_dtor *get_compound_page_dtor(struct page *page) 610{ 611 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page); 612 return compound_page_dtors[page[1].compound_dtor]; 613} 614 615static inline unsigned int compound_order(struct page *page) 616{ 617 if (!PageHead(page)) 618 return 0; 619 return page[1].compound_order; 620} 621 622static inline void set_compound_order(struct page *page, unsigned int order) 623{ 624 page[1].compound_order = order; 625} 626 627void free_compound_page(struct page *page); 628 629#ifdef CONFIG_MMU 630/* 631 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 632 * servicing faults for write access. In the normal case, do always want 633 * pte_mkwrite. But get_user_pages can cause write faults for mappings 634 * that do not have writing enabled, when used by access_process_vm. 635 */ 636static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 637{ 638 if (likely(vma->vm_flags & VM_WRITE)) 639 pte = pte_mkwrite(pte); 640 return pte; 641} 642 643int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg, 644 struct page *page); 645int finish_fault(struct vm_fault *vmf); 646int finish_mkwrite_fault(struct vm_fault *vmf); 647#endif 648 649/* 650 * Multiple processes may "see" the same page. E.g. for untouched 651 * mappings of /dev/null, all processes see the same page full of 652 * zeroes, and text pages of executables and shared libraries have 653 * only one copy in memory, at most, normally. 654 * 655 * For the non-reserved pages, page_count(page) denotes a reference count. 656 * page_count() == 0 means the page is free. page->lru is then used for 657 * freelist management in the buddy allocator. 658 * page_count() > 0 means the page has been allocated. 659 * 660 * Pages are allocated by the slab allocator in order to provide memory 661 * to kmalloc and kmem_cache_alloc. In this case, the management of the 662 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 663 * unless a particular usage is carefully commented. (the responsibility of 664 * freeing the kmalloc memory is the caller's, of course). 665 * 666 * A page may be used by anyone else who does a __get_free_page(). 667 * In this case, page_count still tracks the references, and should only 668 * be used through the normal accessor functions. The top bits of page->flags 669 * and page->virtual store page management information, but all other fields 670 * are unused and could be used privately, carefully. The management of this 671 * page is the responsibility of the one who allocated it, and those who have 672 * subsequently been given references to it. 673 * 674 * The other pages (we may call them "pagecache pages") are completely 675 * managed by the Linux memory manager: I/O, buffers, swapping etc. 676 * The following discussion applies only to them. 677 * 678 * A pagecache page contains an opaque `private' member, which belongs to the 679 * page's address_space. Usually, this is the address of a circular list of 680 * the page's disk buffers. PG_private must be set to tell the VM to call 681 * into the filesystem to release these pages. 682 * 683 * A page may belong to an inode's memory mapping. In this case, page->mapping 684 * is the pointer to the inode, and page->index is the file offset of the page, 685 * in units of PAGE_SIZE. 686 * 687 * If pagecache pages are not associated with an inode, they are said to be 688 * anonymous pages. These may become associated with the swapcache, and in that 689 * case PG_swapcache is set, and page->private is an offset into the swapcache. 690 * 691 * In either case (swapcache or inode backed), the pagecache itself holds one 692 * reference to the page. Setting PG_private should also increment the 693 * refcount. The each user mapping also has a reference to the page. 694 * 695 * The pagecache pages are stored in a per-mapping radix tree, which is 696 * rooted at mapping->page_tree, and indexed by offset. 697 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 698 * lists, we instead now tag pages as dirty/writeback in the radix tree. 699 * 700 * All pagecache pages may be subject to I/O: 701 * - inode pages may need to be read from disk, 702 * - inode pages which have been modified and are MAP_SHARED may need 703 * to be written back to the inode on disk, 704 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 705 * modified may need to be swapped out to swap space and (later) to be read 706 * back into memory. 707 */ 708 709/* 710 * The zone field is never updated after free_area_init_core() 711 * sets it, so none of the operations on it need to be atomic. 712 */ 713 714/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */ 715#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 716#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 717#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 718#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH) 719 720/* 721 * Define the bit shifts to access each section. For non-existent 722 * sections we define the shift as 0; that plus a 0 mask ensures 723 * the compiler will optimise away reference to them. 724 */ 725#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 726#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 727#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 728#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0)) 729 730/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 731#ifdef NODE_NOT_IN_PAGE_FLAGS 732#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 733#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ 734 SECTIONS_PGOFF : ZONES_PGOFF) 735#else 736#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 737#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ 738 NODES_PGOFF : ZONES_PGOFF) 739#endif 740 741#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 742 743#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 744#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 745#endif 746 747#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 748#define NODES_MASK ((1UL << NODES_WIDTH) - 1) 749#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 750#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1) 751#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 752 753static inline enum zone_type page_zonenum(const struct page *page) 754{ 755 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 756} 757 758#ifdef CONFIG_ZONE_DEVICE 759void get_zone_device_page(struct page *page); 760void put_zone_device_page(struct page *page); 761static inline bool is_zone_device_page(const struct page *page) 762{ 763 return page_zonenum(page) == ZONE_DEVICE; 764} 765#else 766static inline void get_zone_device_page(struct page *page) 767{ 768} 769static inline void put_zone_device_page(struct page *page) 770{ 771} 772static inline bool is_zone_device_page(const struct page *page) 773{ 774 return false; 775} 776#endif 777 778static inline void get_page(struct page *page) 779{ 780 page = compound_head(page); 781 /* 782 * Getting a normal page or the head of a compound page 783 * requires to already have an elevated page->_refcount. 784 */ 785 VM_BUG_ON_PAGE(page_ref_count(page) <= 0, page); 786 page_ref_inc(page); 787 788 if (unlikely(is_zone_device_page(page))) 789 get_zone_device_page(page); 790} 791 792static inline void put_page(struct page *page) 793{ 794 page = compound_head(page); 795 796 if (put_page_testzero(page)) 797 __put_page(page); 798 799 if (unlikely(is_zone_device_page(page))) 800 put_zone_device_page(page); 801} 802 803#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 804#define SECTION_IN_PAGE_FLAGS 805#endif 806 807/* 808 * The identification function is mainly used by the buddy allocator for 809 * determining if two pages could be buddies. We are not really identifying 810 * the zone since we could be using the section number id if we do not have 811 * node id available in page flags. 812 * We only guarantee that it will return the same value for two combinable 813 * pages in a zone. 814 */ 815static inline int page_zone_id(struct page *page) 816{ 817 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 818} 819 820static inline int zone_to_nid(struct zone *zone) 821{ 822#ifdef CONFIG_NUMA 823 return zone->node; 824#else 825 return 0; 826#endif 827} 828 829#ifdef NODE_NOT_IN_PAGE_FLAGS 830extern int page_to_nid(const struct page *page); 831#else 832static inline int page_to_nid(const struct page *page) 833{ 834 return (page->flags >> NODES_PGSHIFT) & NODES_MASK; 835} 836#endif 837 838#ifdef CONFIG_NUMA_BALANCING 839static inline int cpu_pid_to_cpupid(int cpu, int pid) 840{ 841 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 842} 843 844static inline int cpupid_to_pid(int cpupid) 845{ 846 return cpupid & LAST__PID_MASK; 847} 848 849static inline int cpupid_to_cpu(int cpupid) 850{ 851 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 852} 853 854static inline int cpupid_to_nid(int cpupid) 855{ 856 return cpu_to_node(cpupid_to_cpu(cpupid)); 857} 858 859static inline bool cpupid_pid_unset(int cpupid) 860{ 861 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 862} 863 864static inline bool cpupid_cpu_unset(int cpupid) 865{ 866 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 867} 868 869static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 870{ 871 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 872} 873 874#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 875#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 876static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 877{ 878 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK); 879} 880 881static inline int page_cpupid_last(struct page *page) 882{ 883 return page->_last_cpupid; 884} 885static inline void page_cpupid_reset_last(struct page *page) 886{ 887 page->_last_cpupid = -1 & LAST_CPUPID_MASK; 888} 889#else 890static inline int page_cpupid_last(struct page *page) 891{ 892 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 893} 894 895extern int page_cpupid_xchg_last(struct page *page, int cpupid); 896 897static inline void page_cpupid_reset_last(struct page *page) 898{ 899 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT; 900} 901#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 902#else /* !CONFIG_NUMA_BALANCING */ 903static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 904{ 905 return page_to_nid(page); /* XXX */ 906} 907 908static inline int page_cpupid_last(struct page *page) 909{ 910 return page_to_nid(page); /* XXX */ 911} 912 913static inline int cpupid_to_nid(int cpupid) 914{ 915 return -1; 916} 917 918static inline int cpupid_to_pid(int cpupid) 919{ 920 return -1; 921} 922 923static inline int cpupid_to_cpu(int cpupid) 924{ 925 return -1; 926} 927 928static inline int cpu_pid_to_cpupid(int nid, int pid) 929{ 930 return -1; 931} 932 933static inline bool cpupid_pid_unset(int cpupid) 934{ 935 return 1; 936} 937 938static inline void page_cpupid_reset_last(struct page *page) 939{ 940} 941 942static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 943{ 944 return false; 945} 946#endif /* CONFIG_NUMA_BALANCING */ 947 948static inline struct zone *page_zone(const struct page *page) 949{ 950 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 951} 952 953static inline pg_data_t *page_pgdat(const struct page *page) 954{ 955 return NODE_DATA(page_to_nid(page)); 956} 957 958#ifdef SECTION_IN_PAGE_FLAGS 959static inline void set_page_section(struct page *page, unsigned long section) 960{ 961 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 962 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 963} 964 965static inline unsigned long page_to_section(const struct page *page) 966{ 967 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 968} 969#endif 970 971static inline void set_page_zone(struct page *page, enum zone_type zone) 972{ 973 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 974 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 975} 976 977static inline void set_page_node(struct page *page, unsigned long node) 978{ 979 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 980 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 981} 982 983static inline void set_page_links(struct page *page, enum zone_type zone, 984 unsigned long node, unsigned long pfn) 985{ 986 set_page_zone(page, zone); 987 set_page_node(page, node); 988#ifdef SECTION_IN_PAGE_FLAGS 989 set_page_section(page, pfn_to_section_nr(pfn)); 990#endif 991} 992 993#ifdef CONFIG_MEMCG 994static inline struct mem_cgroup *page_memcg(struct page *page) 995{ 996 return page->mem_cgroup; 997} 998static inline struct mem_cgroup *page_memcg_rcu(struct page *page) 999{ 1000 WARN_ON_ONCE(!rcu_read_lock_held()); 1001 return READ_ONCE(page->mem_cgroup); 1002} 1003#else 1004static inline struct mem_cgroup *page_memcg(struct page *page) 1005{ 1006 return NULL; 1007} 1008static inline struct mem_cgroup *page_memcg_rcu(struct page *page) 1009{ 1010 WARN_ON_ONCE(!rcu_read_lock_held()); 1011 return NULL; 1012} 1013#endif 1014 1015/* 1016 * Some inline functions in vmstat.h depend on page_zone() 1017 */ 1018#include <linux/vmstat.h> 1019 1020static __always_inline void *lowmem_page_address(const struct page *page) 1021{ 1022 return page_to_virt(page); 1023} 1024 1025#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 1026#define HASHED_PAGE_VIRTUAL 1027#endif 1028 1029#if defined(WANT_PAGE_VIRTUAL) 1030static inline void *page_address(const struct page *page) 1031{ 1032 return page->virtual; 1033} 1034static inline void set_page_address(struct page *page, void *address) 1035{ 1036 page->virtual = address; 1037} 1038#define page_address_init() do { } while(0) 1039#endif 1040 1041#if defined(HASHED_PAGE_VIRTUAL) 1042void *page_address(const struct page *page); 1043void set_page_address(struct page *page, void *virtual); 1044void page_address_init(void); 1045#endif 1046 1047#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 1048#define page_address(page) lowmem_page_address(page) 1049#define set_page_address(page, address) do { } while(0) 1050#define page_address_init() do { } while(0) 1051#endif 1052 1053extern void *page_rmapping(struct page *page); 1054extern struct anon_vma *page_anon_vma(struct page *page); 1055extern struct address_space *page_mapping(struct page *page); 1056 1057extern struct address_space *__page_file_mapping(struct page *); 1058 1059static inline 1060struct address_space *page_file_mapping(struct page *page) 1061{ 1062 if (unlikely(PageSwapCache(page))) 1063 return __page_file_mapping(page); 1064 1065 return page->mapping; 1066} 1067 1068extern pgoff_t __page_file_index(struct page *page); 1069 1070/* 1071 * Return the pagecache index of the passed page. Regular pagecache pages 1072 * use ->index whereas swapcache pages use swp_offset(->private) 1073 */ 1074static inline pgoff_t page_index(struct page *page) 1075{ 1076 if (unlikely(PageSwapCache(page))) 1077 return __page_file_index(page); 1078 return page->index; 1079} 1080 1081bool page_mapped(struct page *page); 1082struct address_space *page_mapping(struct page *page); 1083 1084/* 1085 * Return true only if the page has been allocated with 1086 * ALLOC_NO_WATERMARKS and the low watermark was not 1087 * met implying that the system is under some pressure. 1088 */ 1089static inline bool page_is_pfmemalloc(struct page *page) 1090{ 1091 /* 1092 * Page index cannot be this large so this must be 1093 * a pfmemalloc page. 1094 */ 1095 return page->index == -1UL; 1096} 1097 1098/* 1099 * Only to be called by the page allocator on a freshly allocated 1100 * page. 1101 */ 1102static inline void set_page_pfmemalloc(struct page *page) 1103{ 1104 page->index = -1UL; 1105} 1106 1107static inline void clear_page_pfmemalloc(struct page *page) 1108{ 1109 page->index = 0; 1110} 1111 1112/* 1113 * Different kinds of faults, as returned by handle_mm_fault(). 1114 * Used to decide whether a process gets delivered SIGBUS or 1115 * just gets major/minor fault counters bumped up. 1116 */ 1117 1118#define VM_FAULT_OOM 0x0001 1119#define VM_FAULT_SIGBUS 0x0002 1120#define VM_FAULT_MAJOR 0x0004 1121#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */ 1122#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */ 1123#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */ 1124#define VM_FAULT_SIGSEGV 0x0040 1125 1126#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */ 1127#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */ 1128#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */ 1129#define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */ 1130#define VM_FAULT_DONE_COW 0x1000 /* ->fault has fully handled COW */ 1131 1132#define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */ 1133 1134#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \ 1135 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \ 1136 VM_FAULT_FALLBACK) 1137 1138#define VM_FAULT_RESULT_TRACE \ 1139 { VM_FAULT_OOM, "OOM" }, \ 1140 { VM_FAULT_SIGBUS, "SIGBUS" }, \ 1141 { VM_FAULT_MAJOR, "MAJOR" }, \ 1142 { VM_FAULT_WRITE, "WRITE" }, \ 1143 { VM_FAULT_HWPOISON, "HWPOISON" }, \ 1144 { VM_FAULT_HWPOISON_LARGE, "HWPOISON_LARGE" }, \ 1145 { VM_FAULT_SIGSEGV, "SIGSEGV" }, \ 1146 { VM_FAULT_NOPAGE, "NOPAGE" }, \ 1147 { VM_FAULT_LOCKED, "LOCKED" }, \ 1148 { VM_FAULT_RETRY, "RETRY" }, \ 1149 { VM_FAULT_FALLBACK, "FALLBACK" }, \ 1150 { VM_FAULT_DONE_COW, "DONE_COW" } 1151 1152/* Encode hstate index for a hwpoisoned large page */ 1153#define VM_FAULT_SET_HINDEX(x) ((x) << 12) 1154#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf) 1155 1156/* 1157 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 1158 */ 1159extern void pagefault_out_of_memory(void); 1160 1161#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 1162 1163/* 1164 * Flags passed to show_mem() and show_free_areas() to suppress output in 1165 * various contexts. 1166 */ 1167#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */ 1168 1169extern void show_free_areas(unsigned int flags, nodemask_t *nodemask); 1170 1171extern bool can_do_mlock(void); 1172extern int user_shm_lock(size_t, struct user_struct *); 1173extern void user_shm_unlock(size_t, struct user_struct *); 1174 1175/* 1176 * Parameter block passed down to zap_pte_range in exceptional cases. 1177 */ 1178struct zap_details { 1179 struct address_space *check_mapping; /* Check page->mapping if set */ 1180 pgoff_t first_index; /* Lowest page->index to unmap */ 1181 pgoff_t last_index; /* Highest page->index to unmap */ 1182}; 1183 1184struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 1185 pte_t pte); 1186struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 1187 pmd_t pmd); 1188 1189int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1190 unsigned long size); 1191void zap_page_range(struct vm_area_struct *vma, unsigned long address, 1192 unsigned long size); 1193void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma, 1194 unsigned long start, unsigned long end); 1195 1196/** 1197 * mm_walk - callbacks for walk_page_range 1198 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry 1199 * this handler should only handle pud_trans_huge() puds. 1200 * the pmd_entry or pte_entry callbacks will be used for 1201 * regular PUDs. 1202 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry 1203 * this handler is required to be able to handle 1204 * pmd_trans_huge() pmds. They may simply choose to 1205 * split_huge_page() instead of handling it explicitly. 1206 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry 1207 * @pte_hole: if set, called for each hole at all levels 1208 * @hugetlb_entry: if set, called for each hugetlb entry 1209 * @test_walk: caller specific callback function to determine whether 1210 * we walk over the current vma or not. Returning 0 1211 * value means "do page table walk over the current vma," 1212 * and a negative one means "abort current page table walk 1213 * right now." 1 means "skip the current vma." 1214 * @mm: mm_struct representing the target process of page table walk 1215 * @vma: vma currently walked (NULL if walking outside vmas) 1216 * @private: private data for callbacks' usage 1217 * 1218 * (see the comment on walk_page_range() for more details) 1219 */ 1220struct mm_walk { 1221 int (*pud_entry)(pud_t *pud, unsigned long addr, 1222 unsigned long next, struct mm_walk *walk); 1223 int (*pmd_entry)(pmd_t *pmd, unsigned long addr, 1224 unsigned long next, struct mm_walk *walk); 1225 int (*pte_entry)(pte_t *pte, unsigned long addr, 1226 unsigned long next, struct mm_walk *walk); 1227 int (*pte_hole)(unsigned long addr, unsigned long next, 1228 struct mm_walk *walk); 1229 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask, 1230 unsigned long addr, unsigned long next, 1231 struct mm_walk *walk); 1232 int (*test_walk)(unsigned long addr, unsigned long next, 1233 struct mm_walk *walk); 1234 struct mm_struct *mm; 1235 struct vm_area_struct *vma; 1236 void *private; 1237}; 1238 1239int walk_page_range(unsigned long addr, unsigned long end, 1240 struct mm_walk *walk); 1241int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk); 1242void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 1243 unsigned long end, unsigned long floor, unsigned long ceiling); 1244int copy_page_range(struct mm_struct *dst, struct mm_struct *src, 1245 struct vm_area_struct *vma); 1246void unmap_mapping_range(struct address_space *mapping, 1247 loff_t const holebegin, loff_t const holelen, int even_cows); 1248int follow_pte_pmd(struct mm_struct *mm, unsigned long address, 1249 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp); 1250int follow_pfn(struct vm_area_struct *vma, unsigned long address, 1251 unsigned long *pfn); 1252int follow_phys(struct vm_area_struct *vma, unsigned long address, 1253 unsigned int flags, unsigned long *prot, resource_size_t *phys); 1254int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 1255 void *buf, int len, int write); 1256 1257static inline void unmap_shared_mapping_range(struct address_space *mapping, 1258 loff_t const holebegin, loff_t const holelen) 1259{ 1260 unmap_mapping_range(mapping, holebegin, holelen, 0); 1261} 1262 1263extern void truncate_pagecache(struct inode *inode, loff_t new); 1264extern void truncate_setsize(struct inode *inode, loff_t newsize); 1265void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); 1266void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 1267int truncate_inode_page(struct address_space *mapping, struct page *page); 1268int generic_error_remove_page(struct address_space *mapping, struct page *page); 1269int invalidate_inode_page(struct page *page); 1270 1271#ifdef CONFIG_MMU 1272extern int handle_mm_fault(struct vm_area_struct *vma, unsigned long address, 1273 unsigned int flags); 1274extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, 1275 unsigned long address, unsigned int fault_flags, 1276 bool *unlocked); 1277#else 1278static inline int handle_mm_fault(struct vm_area_struct *vma, 1279 unsigned long address, unsigned int flags) 1280{ 1281 /* should never happen if there's no MMU */ 1282 BUG(); 1283 return VM_FAULT_SIGBUS; 1284} 1285static inline int fixup_user_fault(struct task_struct *tsk, 1286 struct mm_struct *mm, unsigned long address, 1287 unsigned int fault_flags, bool *unlocked) 1288{ 1289 /* should never happen if there's no MMU */ 1290 BUG(); 1291 return -EFAULT; 1292} 1293#endif 1294 1295extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, 1296 unsigned int gup_flags); 1297extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1298 void *buf, int len, unsigned int gup_flags); 1299extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 1300 unsigned long addr, void *buf, int len, unsigned int gup_flags); 1301 1302long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm, 1303 unsigned long start, unsigned long nr_pages, 1304 unsigned int gup_flags, struct page **pages, 1305 struct vm_area_struct **vmas, int *locked); 1306long get_user_pages(unsigned long start, unsigned long nr_pages, 1307 unsigned int gup_flags, struct page **pages, 1308 struct vm_area_struct **vmas); 1309long get_user_pages_locked(unsigned long start, unsigned long nr_pages, 1310 unsigned int gup_flags, struct page **pages, int *locked); 1311long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 1312 struct page **pages, unsigned int gup_flags); 1313int get_user_pages_fast(unsigned long start, int nr_pages, int write, 1314 struct page **pages); 1315 1316/* Container for pinned pfns / pages */ 1317struct frame_vector { 1318 unsigned int nr_allocated; /* Number of frames we have space for */ 1319 unsigned int nr_frames; /* Number of frames stored in ptrs array */ 1320 bool got_ref; /* Did we pin pages by getting page ref? */ 1321 bool is_pfns; /* Does array contain pages or pfns? */ 1322 void *ptrs[0]; /* Array of pinned pfns / pages. Use 1323 * pfns_vector_pages() or pfns_vector_pfns() 1324 * for access */ 1325}; 1326 1327struct frame_vector *frame_vector_create(unsigned int nr_frames); 1328void frame_vector_destroy(struct frame_vector *vec); 1329int get_vaddr_frames(unsigned long start, unsigned int nr_pfns, 1330 unsigned int gup_flags, struct frame_vector *vec); 1331void put_vaddr_frames(struct frame_vector *vec); 1332int frame_vector_to_pages(struct frame_vector *vec); 1333void frame_vector_to_pfns(struct frame_vector *vec); 1334 1335static inline unsigned int frame_vector_count(struct frame_vector *vec) 1336{ 1337 return vec->nr_frames; 1338} 1339 1340static inline struct page **frame_vector_pages(struct frame_vector *vec) 1341{ 1342 if (vec->is_pfns) { 1343 int err = frame_vector_to_pages(vec); 1344 1345 if (err) 1346 return ERR_PTR(err); 1347 } 1348 return (struct page **)(vec->ptrs); 1349} 1350 1351static inline unsigned long *frame_vector_pfns(struct frame_vector *vec) 1352{ 1353 if (!vec->is_pfns) 1354 frame_vector_to_pfns(vec); 1355 return (unsigned long *)(vec->ptrs); 1356} 1357 1358struct kvec; 1359int get_kernel_pages(const struct kvec *iov, int nr_pages, int write, 1360 struct page **pages); 1361int get_kernel_page(unsigned long start, int write, struct page **pages); 1362struct page *get_dump_page(unsigned long addr); 1363 1364extern int try_to_release_page(struct page * page, gfp_t gfp_mask); 1365extern void do_invalidatepage(struct page *page, unsigned int offset, 1366 unsigned int length); 1367 1368int __set_page_dirty_nobuffers(struct page *page); 1369int __set_page_dirty_no_writeback(struct page *page); 1370int redirty_page_for_writepage(struct writeback_control *wbc, 1371 struct page *page); 1372void account_page_dirtied(struct page *page, struct address_space *mapping); 1373void account_page_cleaned(struct page *page, struct address_space *mapping, 1374 struct bdi_writeback *wb); 1375int set_page_dirty(struct page *page); 1376int set_page_dirty_lock(struct page *page); 1377void cancel_dirty_page(struct page *page); 1378int clear_page_dirty_for_io(struct page *page); 1379 1380int get_cmdline(struct task_struct *task, char *buffer, int buflen); 1381 1382/* Is the vma a continuation of the stack vma above it? */ 1383static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr) 1384{ 1385 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN); 1386} 1387 1388static inline bool vma_is_anonymous(struct vm_area_struct *vma) 1389{ 1390 return !vma->vm_ops; 1391} 1392 1393#ifdef CONFIG_SHMEM 1394/* 1395 * The vma_is_shmem is not inline because it is used only by slow 1396 * paths in userfault. 1397 */ 1398bool vma_is_shmem(struct vm_area_struct *vma); 1399#else 1400static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; } 1401#endif 1402 1403static inline int stack_guard_page_start(struct vm_area_struct *vma, 1404 unsigned long addr) 1405{ 1406 return (vma->vm_flags & VM_GROWSDOWN) && 1407 (vma->vm_start == addr) && 1408 !vma_growsdown(vma->vm_prev, addr); 1409} 1410 1411/* Is the vma a continuation of the stack vma below it? */ 1412static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr) 1413{ 1414 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP); 1415} 1416 1417static inline int stack_guard_page_end(struct vm_area_struct *vma, 1418 unsigned long addr) 1419{ 1420 return (vma->vm_flags & VM_GROWSUP) && 1421 (vma->vm_end == addr) && 1422 !vma_growsup(vma->vm_next, addr); 1423} 1424 1425int vma_is_stack_for_current(struct vm_area_struct *vma); 1426 1427extern unsigned long move_page_tables(struct vm_area_struct *vma, 1428 unsigned long old_addr, struct vm_area_struct *new_vma, 1429 unsigned long new_addr, unsigned long len, 1430 bool need_rmap_locks); 1431extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start, 1432 unsigned long end, pgprot_t newprot, 1433 int dirty_accountable, int prot_numa); 1434extern int mprotect_fixup(struct vm_area_struct *vma, 1435 struct vm_area_struct **pprev, unsigned long start, 1436 unsigned long end, unsigned long newflags); 1437 1438/* 1439 * doesn't attempt to fault and will return short. 1440 */ 1441int __get_user_pages_fast(unsigned long start, int nr_pages, int write, 1442 struct page **pages); 1443/* 1444 * per-process(per-mm_struct) statistics. 1445 */ 1446static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 1447{ 1448 long val = atomic_long_read(&mm->rss_stat.count[member]); 1449 1450#ifdef SPLIT_RSS_COUNTING 1451 /* 1452 * counter is updated in asynchronous manner and may go to minus. 1453 * But it's never be expected number for users. 1454 */ 1455 if (val < 0) 1456 val = 0; 1457#endif 1458 return (unsigned long)val; 1459} 1460 1461static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 1462{ 1463 atomic_long_add(value, &mm->rss_stat.count[member]); 1464} 1465 1466static inline void inc_mm_counter(struct mm_struct *mm, int member) 1467{ 1468 atomic_long_inc(&mm->rss_stat.count[member]); 1469} 1470 1471static inline void dec_mm_counter(struct mm_struct *mm, int member) 1472{ 1473 atomic_long_dec(&mm->rss_stat.count[member]); 1474} 1475 1476/* Optimized variant when page is already known not to be PageAnon */ 1477static inline int mm_counter_file(struct page *page) 1478{ 1479 if (PageSwapBacked(page)) 1480 return MM_SHMEMPAGES; 1481 return MM_FILEPAGES; 1482} 1483 1484static inline int mm_counter(struct page *page) 1485{ 1486 if (PageAnon(page)) 1487 return MM_ANONPAGES; 1488 return mm_counter_file(page); 1489} 1490 1491static inline unsigned long get_mm_rss(struct mm_struct *mm) 1492{ 1493 return get_mm_counter(mm, MM_FILEPAGES) + 1494 get_mm_counter(mm, MM_ANONPAGES) + 1495 get_mm_counter(mm, MM_SHMEMPAGES); 1496} 1497 1498static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 1499{ 1500 return max(mm->hiwater_rss, get_mm_rss(mm)); 1501} 1502 1503static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 1504{ 1505 return max(mm->hiwater_vm, mm->total_vm); 1506} 1507 1508static inline void update_hiwater_rss(struct mm_struct *mm) 1509{ 1510 unsigned long _rss = get_mm_rss(mm); 1511 1512 if ((mm)->hiwater_rss < _rss) 1513 (mm)->hiwater_rss = _rss; 1514} 1515 1516static inline void update_hiwater_vm(struct mm_struct *mm) 1517{ 1518 if (mm->hiwater_vm < mm->total_vm) 1519 mm->hiwater_vm = mm->total_vm; 1520} 1521 1522static inline void reset_mm_hiwater_rss(struct mm_struct *mm) 1523{ 1524 mm->hiwater_rss = get_mm_rss(mm); 1525} 1526 1527static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 1528 struct mm_struct *mm) 1529{ 1530 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 1531 1532 if (*maxrss < hiwater_rss) 1533 *maxrss = hiwater_rss; 1534} 1535 1536#if defined(SPLIT_RSS_COUNTING) 1537void sync_mm_rss(struct mm_struct *mm); 1538#else 1539static inline void sync_mm_rss(struct mm_struct *mm) 1540{ 1541} 1542#endif 1543 1544#ifndef __HAVE_ARCH_PTE_DEVMAP 1545static inline int pte_devmap(pte_t pte) 1546{ 1547 return 0; 1548} 1549#endif 1550 1551int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot); 1552 1553extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1554 spinlock_t **ptl); 1555static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 1556 spinlock_t **ptl) 1557{ 1558 pte_t *ptep; 1559 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 1560 return ptep; 1561} 1562 1563#ifdef __PAGETABLE_P4D_FOLDED 1564static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 1565 unsigned long address) 1566{ 1567 return 0; 1568} 1569#else 1570int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 1571#endif 1572 1573#ifdef __PAGETABLE_PUD_FOLDED 1574static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, 1575 unsigned long address) 1576{ 1577 return 0; 1578} 1579#else 1580int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address); 1581#endif 1582 1583#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) 1584static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 1585 unsigned long address) 1586{ 1587 return 0; 1588} 1589 1590static inline void mm_nr_pmds_init(struct mm_struct *mm) {} 1591 1592static inline unsigned long mm_nr_pmds(struct mm_struct *mm) 1593{ 1594 return 0; 1595} 1596 1597static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} 1598static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} 1599 1600#else 1601int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 1602 1603static inline void mm_nr_pmds_init(struct mm_struct *mm) 1604{ 1605 atomic_long_set(&mm->nr_pmds, 0); 1606} 1607 1608static inline unsigned long mm_nr_pmds(struct mm_struct *mm) 1609{ 1610 return atomic_long_read(&mm->nr_pmds); 1611} 1612 1613static inline void mm_inc_nr_pmds(struct mm_struct *mm) 1614{ 1615 atomic_long_inc(&mm->nr_pmds); 1616} 1617 1618static inline void mm_dec_nr_pmds(struct mm_struct *mm) 1619{ 1620 atomic_long_dec(&mm->nr_pmds); 1621} 1622#endif 1623 1624int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address); 1625int __pte_alloc_kernel(pmd_t *pmd, unsigned long address); 1626 1627/* 1628 * The following ifdef needed to get the 4level-fixup.h header to work. 1629 * Remove it when 4level-fixup.h has been removed. 1630 */ 1631#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK) 1632 1633#ifndef __ARCH_HAS_5LEVEL_HACK 1634static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 1635 unsigned long address) 1636{ 1637 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ? 1638 NULL : p4d_offset(pgd, address); 1639} 1640 1641static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d, 1642 unsigned long address) 1643{ 1644 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ? 1645 NULL : pud_offset(p4d, address); 1646} 1647#endif /* !__ARCH_HAS_5LEVEL_HACK */ 1648 1649static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 1650{ 1651 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 1652 NULL: pmd_offset(pud, address); 1653} 1654#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */ 1655 1656#if USE_SPLIT_PTE_PTLOCKS 1657#if ALLOC_SPLIT_PTLOCKS 1658void __init ptlock_cache_init(void); 1659extern bool ptlock_alloc(struct page *page); 1660extern void ptlock_free(struct page *page); 1661 1662static inline spinlock_t *ptlock_ptr(struct page *page) 1663{ 1664 return page->ptl; 1665} 1666#else /* ALLOC_SPLIT_PTLOCKS */ 1667static inline void ptlock_cache_init(void) 1668{ 1669} 1670 1671static inline bool ptlock_alloc(struct page *page) 1672{ 1673 return true; 1674} 1675 1676static inline void ptlock_free(struct page *page) 1677{ 1678} 1679 1680static inline spinlock_t *ptlock_ptr(struct page *page) 1681{ 1682 return &page->ptl; 1683} 1684#endif /* ALLOC_SPLIT_PTLOCKS */ 1685 1686static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 1687{ 1688 return ptlock_ptr(pmd_page(*pmd)); 1689} 1690 1691static inline bool ptlock_init(struct page *page) 1692{ 1693 /* 1694 * prep_new_page() initialize page->private (and therefore page->ptl) 1695 * with 0. Make sure nobody took it in use in between. 1696 * 1697 * It can happen if arch try to use slab for page table allocation: 1698 * slab code uses page->slab_cache, which share storage with page->ptl. 1699 */ 1700 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page); 1701 if (!ptlock_alloc(page)) 1702 return false; 1703 spin_lock_init(ptlock_ptr(page)); 1704 return true; 1705} 1706 1707/* Reset page->mapping so free_pages_check won't complain. */ 1708static inline void pte_lock_deinit(struct page *page) 1709{ 1710 page->mapping = NULL; 1711 ptlock_free(page); 1712} 1713 1714#else /* !USE_SPLIT_PTE_PTLOCKS */ 1715/* 1716 * We use mm->page_table_lock to guard all pagetable pages of the mm. 1717 */ 1718static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 1719{ 1720 return &mm->page_table_lock; 1721} 1722static inline void ptlock_cache_init(void) {} 1723static inline bool ptlock_init(struct page *page) { return true; } 1724static inline void pte_lock_deinit(struct page *page) {} 1725#endif /* USE_SPLIT_PTE_PTLOCKS */ 1726 1727static inline void pgtable_init(void) 1728{ 1729 ptlock_cache_init(); 1730 pgtable_cache_init(); 1731} 1732 1733static inline bool pgtable_page_ctor(struct page *page) 1734{ 1735 if (!ptlock_init(page)) 1736 return false; 1737 inc_zone_page_state(page, NR_PAGETABLE); 1738 return true; 1739} 1740 1741static inline void pgtable_page_dtor(struct page *page) 1742{ 1743 pte_lock_deinit(page); 1744 dec_zone_page_state(page, NR_PAGETABLE); 1745} 1746 1747#define pte_offset_map_lock(mm, pmd, address, ptlp) \ 1748({ \ 1749 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 1750 pte_t *__pte = pte_offset_map(pmd, address); \ 1751 *(ptlp) = __ptl; \ 1752 spin_lock(__ptl); \ 1753 __pte; \ 1754}) 1755 1756#define pte_unmap_unlock(pte, ptl) do { \ 1757 spin_unlock(ptl); \ 1758 pte_unmap(pte); \ 1759} while (0) 1760 1761#define pte_alloc(mm, pmd, address) \ 1762 (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd, address)) 1763 1764#define pte_alloc_map(mm, pmd, address) \ 1765 (pte_alloc(mm, pmd, address) ? NULL : pte_offset_map(pmd, address)) 1766 1767#define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 1768 (pte_alloc(mm, pmd, address) ? \ 1769 NULL : pte_offset_map_lock(mm, pmd, address, ptlp)) 1770 1771#define pte_alloc_kernel(pmd, address) \ 1772 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \ 1773 NULL: pte_offset_kernel(pmd, address)) 1774 1775#if USE_SPLIT_PMD_PTLOCKS 1776 1777static struct page *pmd_to_page(pmd_t *pmd) 1778{ 1779 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 1780 return virt_to_page((void *)((unsigned long) pmd & mask)); 1781} 1782 1783static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 1784{ 1785 return ptlock_ptr(pmd_to_page(pmd)); 1786} 1787 1788static inline bool pgtable_pmd_page_ctor(struct page *page) 1789{ 1790#ifdef CONFIG_TRANSPARENT_HUGEPAGE 1791 page->pmd_huge_pte = NULL; 1792#endif 1793 return ptlock_init(page); 1794} 1795 1796static inline void pgtable_pmd_page_dtor(struct page *page) 1797{ 1798#ifdef CONFIG_TRANSPARENT_HUGEPAGE 1799 VM_BUG_ON_PAGE(page->pmd_huge_pte, page); 1800#endif 1801 ptlock_free(page); 1802} 1803 1804#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte) 1805 1806#else 1807 1808static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 1809{ 1810 return &mm->page_table_lock; 1811} 1812 1813static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; } 1814static inline void pgtable_pmd_page_dtor(struct page *page) {} 1815 1816#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 1817 1818#endif 1819 1820static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 1821{ 1822 spinlock_t *ptl = pmd_lockptr(mm, pmd); 1823 spin_lock(ptl); 1824 return ptl; 1825} 1826 1827/* 1828 * No scalability reason to split PUD locks yet, but follow the same pattern 1829 * as the PMD locks to make it easier if we decide to. The VM should not be 1830 * considered ready to switch to split PUD locks yet; there may be places 1831 * which need to be converted from page_table_lock. 1832 */ 1833static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud) 1834{ 1835 return &mm->page_table_lock; 1836} 1837 1838static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud) 1839{ 1840 spinlock_t *ptl = pud_lockptr(mm, pud); 1841 1842 spin_lock(ptl); 1843 return ptl; 1844} 1845 1846extern void __init pagecache_init(void); 1847extern void free_area_init(unsigned long * zones_size); 1848extern void free_area_init_node(int nid, unsigned long * zones_size, 1849 unsigned long zone_start_pfn, unsigned long *zholes_size); 1850extern void free_initmem(void); 1851 1852/* 1853 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 1854 * into the buddy system. The freed pages will be poisoned with pattern 1855 * "poison" if it's within range [0, UCHAR_MAX]. 1856 * Return pages freed into the buddy system. 1857 */ 1858extern unsigned long free_reserved_area(void *start, void *end, 1859 int poison, char *s); 1860 1861#ifdef CONFIG_HIGHMEM 1862/* 1863 * Free a highmem page into the buddy system, adjusting totalhigh_pages 1864 * and totalram_pages. 1865 */ 1866extern void free_highmem_page(struct page *page); 1867#endif 1868 1869extern void adjust_managed_page_count(struct page *page, long count); 1870extern void mem_init_print_info(const char *str); 1871 1872extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end); 1873 1874/* Free the reserved page into the buddy system, so it gets managed. */ 1875static inline void __free_reserved_page(struct page *page) 1876{ 1877 ClearPageReserved(page); 1878 init_page_count(page); 1879 __free_page(page); 1880} 1881 1882static inline void free_reserved_page(struct page *page) 1883{ 1884 __free_reserved_page(page); 1885 adjust_managed_page_count(page, 1); 1886} 1887 1888static inline void mark_page_reserved(struct page *page) 1889{ 1890 SetPageReserved(page); 1891 adjust_managed_page_count(page, -1); 1892} 1893 1894/* 1895 * Default method to free all the __init memory into the buddy system. 1896 * The freed pages will be poisoned with pattern "poison" if it's within 1897 * range [0, UCHAR_MAX]. 1898 * Return pages freed into the buddy system. 1899 */ 1900static inline unsigned long free_initmem_default(int poison) 1901{ 1902 extern char __init_begin[], __init_end[]; 1903 1904 return free_reserved_area(&__init_begin, &__init_end, 1905 poison, "unused kernel"); 1906} 1907 1908static inline unsigned long get_num_physpages(void) 1909{ 1910 int nid; 1911 unsigned long phys_pages = 0; 1912 1913 for_each_online_node(nid) 1914 phys_pages += node_present_pages(nid); 1915 1916 return phys_pages; 1917} 1918 1919#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 1920/* 1921 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its 1922 * zones, allocate the backing mem_map and account for memory holes in a more 1923 * architecture independent manner. This is a substitute for creating the 1924 * zone_sizes[] and zholes_size[] arrays and passing them to 1925 * free_area_init_node() 1926 * 1927 * An architecture is expected to register range of page frames backed by 1928 * physical memory with memblock_add[_node]() before calling 1929 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic 1930 * usage, an architecture is expected to do something like 1931 * 1932 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 1933 * max_highmem_pfn}; 1934 * for_each_valid_physical_page_range() 1935 * memblock_add_node(base, size, nid) 1936 * free_area_init_nodes(max_zone_pfns); 1937 * 1938 * free_bootmem_with_active_regions() calls free_bootmem_node() for each 1939 * registered physical page range. Similarly 1940 * sparse_memory_present_with_active_regions() calls memory_present() for 1941 * each range when SPARSEMEM is enabled. 1942 * 1943 * See mm/page_alloc.c for more information on each function exposed by 1944 * CONFIG_HAVE_MEMBLOCK_NODE_MAP. 1945 */ 1946extern void free_area_init_nodes(unsigned long *max_zone_pfn); 1947unsigned long node_map_pfn_alignment(void); 1948unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, 1949 unsigned long end_pfn); 1950extern unsigned long absent_pages_in_range(unsigned long start_pfn, 1951 unsigned long end_pfn); 1952extern void get_pfn_range_for_nid(unsigned int nid, 1953 unsigned long *start_pfn, unsigned long *end_pfn); 1954extern unsigned long find_min_pfn_with_active_regions(void); 1955extern void free_bootmem_with_active_regions(int nid, 1956 unsigned long max_low_pfn); 1957extern void sparse_memory_present_with_active_regions(int nid); 1958 1959#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 1960 1961#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \ 1962 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) 1963static inline int __early_pfn_to_nid(unsigned long pfn, 1964 struct mminit_pfnnid_cache *state) 1965{ 1966 return 0; 1967} 1968#else 1969/* please see mm/page_alloc.c */ 1970extern int __meminit early_pfn_to_nid(unsigned long pfn); 1971/* there is a per-arch backend function. */ 1972extern int __meminit __early_pfn_to_nid(unsigned long pfn, 1973 struct mminit_pfnnid_cache *state); 1974#endif 1975 1976extern void set_dma_reserve(unsigned long new_dma_reserve); 1977extern void memmap_init_zone(unsigned long, int, unsigned long, 1978 unsigned long, enum memmap_context); 1979extern void setup_per_zone_wmarks(void); 1980extern int __meminit init_per_zone_wmark_min(void); 1981extern void mem_init(void); 1982extern void __init mmap_init(void); 1983extern void show_mem(unsigned int flags, nodemask_t *nodemask); 1984extern long si_mem_available(void); 1985extern void si_meminfo(struct sysinfo * val); 1986extern void si_meminfo_node(struct sysinfo *val, int nid); 1987#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES 1988extern unsigned long arch_reserved_kernel_pages(void); 1989#endif 1990 1991extern __printf(3, 4) 1992void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...); 1993 1994extern void setup_per_cpu_pageset(void); 1995 1996extern void zone_pcp_update(struct zone *zone); 1997extern void zone_pcp_reset(struct zone *zone); 1998 1999/* page_alloc.c */ 2000extern int min_free_kbytes; 2001extern int watermark_scale_factor; 2002 2003/* nommu.c */ 2004extern atomic_long_t mmap_pages_allocated; 2005extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 2006 2007/* interval_tree.c */ 2008void vma_interval_tree_insert(struct vm_area_struct *node, 2009 struct rb_root *root); 2010void vma_interval_tree_insert_after(struct vm_area_struct *node, 2011 struct vm_area_struct *prev, 2012 struct rb_root *root); 2013void vma_interval_tree_remove(struct vm_area_struct *node, 2014 struct rb_root *root); 2015struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root, 2016 unsigned long start, unsigned long last); 2017struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 2018 unsigned long start, unsigned long last); 2019 2020#define vma_interval_tree_foreach(vma, root, start, last) \ 2021 for (vma = vma_interval_tree_iter_first(root, start, last); \ 2022 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 2023 2024void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 2025 struct rb_root *root); 2026void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 2027 struct rb_root *root); 2028struct anon_vma_chain *anon_vma_interval_tree_iter_first( 2029 struct rb_root *root, unsigned long start, unsigned long last); 2030struct anon_vma_chain *anon_vma_interval_tree_iter_next( 2031 struct anon_vma_chain *node, unsigned long start, unsigned long last); 2032#ifdef CONFIG_DEBUG_VM_RB 2033void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 2034#endif 2035 2036#define anon_vma_interval_tree_foreach(avc, root, start, last) \ 2037 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 2038 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 2039 2040/* mmap.c */ 2041extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 2042extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start, 2043 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert, 2044 struct vm_area_struct *expand); 2045static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start, 2046 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert) 2047{ 2048 return __vma_adjust(vma, start, end, pgoff, insert, NULL); 2049} 2050extern struct vm_area_struct *vma_merge(struct mm_struct *, 2051 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 2052 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 2053 struct mempolicy *, struct vm_userfaultfd_ctx); 2054extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 2055extern int __split_vma(struct mm_struct *, struct vm_area_struct *, 2056 unsigned long addr, int new_below); 2057extern int split_vma(struct mm_struct *, struct vm_area_struct *, 2058 unsigned long addr, int new_below); 2059extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 2060extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 2061 struct rb_node **, struct rb_node *); 2062extern void unlink_file_vma(struct vm_area_struct *); 2063extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 2064 unsigned long addr, unsigned long len, pgoff_t pgoff, 2065 bool *need_rmap_locks); 2066extern void exit_mmap(struct mm_struct *); 2067 2068static inline int check_data_rlimit(unsigned long rlim, 2069 unsigned long new, 2070 unsigned long start, 2071 unsigned long end_data, 2072 unsigned long start_data) 2073{ 2074 if (rlim < RLIM_INFINITY) { 2075 if (((new - start) + (end_data - start_data)) > rlim) 2076 return -ENOSPC; 2077 } 2078 2079 return 0; 2080} 2081 2082extern int mm_take_all_locks(struct mm_struct *mm); 2083extern void mm_drop_all_locks(struct mm_struct *mm); 2084 2085extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 2086extern struct file *get_mm_exe_file(struct mm_struct *mm); 2087extern struct file *get_task_exe_file(struct task_struct *task); 2088 2089extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages); 2090extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages); 2091 2092extern bool vma_is_special_mapping(const struct vm_area_struct *vma, 2093 const struct vm_special_mapping *sm); 2094extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, 2095 unsigned long addr, unsigned long len, 2096 unsigned long flags, 2097 const struct vm_special_mapping *spec); 2098/* This is an obsolete alternative to _install_special_mapping. */ 2099extern int install_special_mapping(struct mm_struct *mm, 2100 unsigned long addr, unsigned long len, 2101 unsigned long flags, struct page **pages); 2102 2103extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 2104 2105extern unsigned long mmap_region(struct file *file, unsigned long addr, 2106 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 2107 struct list_head *uf); 2108extern unsigned long do_mmap(struct file *file, unsigned long addr, 2109 unsigned long len, unsigned long prot, unsigned long flags, 2110 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate, 2111 struct list_head *uf); 2112extern int do_munmap(struct mm_struct *, unsigned long, size_t, 2113 struct list_head *uf); 2114 2115static inline unsigned long 2116do_mmap_pgoff(struct file *file, unsigned long addr, 2117 unsigned long len, unsigned long prot, unsigned long flags, 2118 unsigned long pgoff, unsigned long *populate, 2119 struct list_head *uf) 2120{ 2121 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf); 2122} 2123 2124#ifdef CONFIG_MMU 2125extern int __mm_populate(unsigned long addr, unsigned long len, 2126 int ignore_errors); 2127static inline void mm_populate(unsigned long addr, unsigned long len) 2128{ 2129 /* Ignore errors */ 2130 (void) __mm_populate(addr, len, 1); 2131} 2132#else 2133static inline void mm_populate(unsigned long addr, unsigned long len) {} 2134#endif 2135 2136/* These take the mm semaphore themselves */ 2137extern int __must_check vm_brk(unsigned long, unsigned long); 2138extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long); 2139extern int vm_munmap(unsigned long, size_t); 2140extern unsigned long __must_check vm_mmap(struct file *, unsigned long, 2141 unsigned long, unsigned long, 2142 unsigned long, unsigned long); 2143 2144struct vm_unmapped_area_info { 2145#define VM_UNMAPPED_AREA_TOPDOWN 1 2146 unsigned long flags; 2147 unsigned long length; 2148 unsigned long low_limit; 2149 unsigned long high_limit; 2150 unsigned long align_mask; 2151 unsigned long align_offset; 2152}; 2153 2154extern unsigned long unmapped_area(struct vm_unmapped_area_info *info); 2155extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info); 2156 2157/* 2158 * Search for an unmapped address range. 2159 * 2160 * We are looking for a range that: 2161 * - does not intersect with any VMA; 2162 * - is contained within the [low_limit, high_limit) interval; 2163 * - is at least the desired size. 2164 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask) 2165 */ 2166static inline unsigned long 2167vm_unmapped_area(struct vm_unmapped_area_info *info) 2168{ 2169 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN) 2170 return unmapped_area_topdown(info); 2171 else 2172 return unmapped_area(info); 2173} 2174 2175/* truncate.c */ 2176extern void truncate_inode_pages(struct address_space *, loff_t); 2177extern void truncate_inode_pages_range(struct address_space *, 2178 loff_t lstart, loff_t lend); 2179extern void truncate_inode_pages_final(struct address_space *); 2180 2181/* generic vm_area_ops exported for stackable file systems */ 2182extern int filemap_fault(struct vm_fault *vmf); 2183extern void filemap_map_pages(struct vm_fault *vmf, 2184 pgoff_t start_pgoff, pgoff_t end_pgoff); 2185extern int filemap_page_mkwrite(struct vm_fault *vmf); 2186 2187/* mm/page-writeback.c */ 2188int write_one_page(struct page *page, int wait); 2189void task_dirty_inc(struct task_struct *tsk); 2190 2191/* readahead.c */ 2192#define VM_MAX_READAHEAD 128 /* kbytes */ 2193#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */ 2194 2195int force_page_cache_readahead(struct address_space *mapping, struct file *filp, 2196 pgoff_t offset, unsigned long nr_to_read); 2197 2198void page_cache_sync_readahead(struct address_space *mapping, 2199 struct file_ra_state *ra, 2200 struct file *filp, 2201 pgoff_t offset, 2202 unsigned long size); 2203 2204void page_cache_async_readahead(struct address_space *mapping, 2205 struct file_ra_state *ra, 2206 struct file *filp, 2207 struct page *pg, 2208 pgoff_t offset, 2209 unsigned long size); 2210 2211/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 2212extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 2213 2214/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */ 2215extern int expand_downwards(struct vm_area_struct *vma, 2216 unsigned long address); 2217#if VM_GROWSUP 2218extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 2219#else 2220 #define expand_upwards(vma, address) (0) 2221#endif 2222 2223/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 2224extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 2225extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 2226 struct vm_area_struct **pprev); 2227 2228/* Look up the first VMA which intersects the interval start_addr..end_addr-1, 2229 NULL if none. Assume start_addr < end_addr. */ 2230static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) 2231{ 2232 struct vm_area_struct * vma = find_vma(mm,start_addr); 2233 2234 if (vma && end_addr <= vma->vm_start) 2235 vma = NULL; 2236 return vma; 2237} 2238 2239static inline unsigned long vma_pages(struct vm_area_struct *vma) 2240{ 2241 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 2242} 2243 2244/* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 2245static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 2246 unsigned long vm_start, unsigned long vm_end) 2247{ 2248 struct vm_area_struct *vma = find_vma(mm, vm_start); 2249 2250 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 2251 vma = NULL; 2252 2253 return vma; 2254} 2255 2256#ifdef CONFIG_MMU 2257pgprot_t vm_get_page_prot(unsigned long vm_flags); 2258void vma_set_page_prot(struct vm_area_struct *vma); 2259#else 2260static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 2261{ 2262 return __pgprot(0); 2263} 2264static inline void vma_set_page_prot(struct vm_area_struct *vma) 2265{ 2266 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 2267} 2268#endif 2269 2270#ifdef CONFIG_NUMA_BALANCING 2271unsigned long change_prot_numa(struct vm_area_struct *vma, 2272 unsigned long start, unsigned long end); 2273#endif 2274 2275struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 2276int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 2277 unsigned long pfn, unsigned long size, pgprot_t); 2278int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 2279int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2280 unsigned long pfn); 2281int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 2282 unsigned long pfn, pgprot_t pgprot); 2283int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2284 pfn_t pfn); 2285int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 2286 2287 2288struct page *follow_page_mask(struct vm_area_struct *vma, 2289 unsigned long address, unsigned int foll_flags, 2290 unsigned int *page_mask); 2291 2292static inline struct page *follow_page(struct vm_area_struct *vma, 2293 unsigned long address, unsigned int foll_flags) 2294{ 2295 unsigned int unused_page_mask; 2296 return follow_page_mask(vma, address, foll_flags, &unused_page_mask); 2297} 2298 2299#define FOLL_WRITE 0x01 /* check pte is writable */ 2300#define FOLL_TOUCH 0x02 /* mark page accessed */ 2301#define FOLL_GET 0x04 /* do get_page on page */ 2302#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */ 2303#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */ 2304#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO 2305 * and return without waiting upon it */ 2306#define FOLL_POPULATE 0x40 /* fault in page */ 2307#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */ 2308#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */ 2309#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */ 2310#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */ 2311#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */ 2312#define FOLL_MLOCK 0x1000 /* lock present pages */ 2313#define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */ 2314#define FOLL_COW 0x4000 /* internal GUP flag */ 2315 2316typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr, 2317 void *data); 2318extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 2319 unsigned long size, pte_fn_t fn, void *data); 2320 2321 2322#ifdef CONFIG_PAGE_POISONING 2323extern bool page_poisoning_enabled(void); 2324extern void kernel_poison_pages(struct page *page, int numpages, int enable); 2325extern bool page_is_poisoned(struct page *page); 2326#else 2327static inline bool page_poisoning_enabled(void) { return false; } 2328static inline void kernel_poison_pages(struct page *page, int numpages, 2329 int enable) { } 2330static inline bool page_is_poisoned(struct page *page) { return false; } 2331#endif 2332 2333#ifdef CONFIG_DEBUG_PAGEALLOC 2334extern bool _debug_pagealloc_enabled; 2335extern void __kernel_map_pages(struct page *page, int numpages, int enable); 2336 2337static inline bool debug_pagealloc_enabled(void) 2338{ 2339 return _debug_pagealloc_enabled; 2340} 2341 2342static inline void 2343kernel_map_pages(struct page *page, int numpages, int enable) 2344{ 2345 if (!debug_pagealloc_enabled()) 2346 return; 2347 2348 __kernel_map_pages(page, numpages, enable); 2349} 2350#ifdef CONFIG_HIBERNATION 2351extern bool kernel_page_present(struct page *page); 2352#endif /* CONFIG_HIBERNATION */ 2353#else /* CONFIG_DEBUG_PAGEALLOC */ 2354static inline void 2355kernel_map_pages(struct page *page, int numpages, int enable) {} 2356#ifdef CONFIG_HIBERNATION 2357static inline bool kernel_page_present(struct page *page) { return true; } 2358#endif /* CONFIG_HIBERNATION */ 2359static inline bool debug_pagealloc_enabled(void) 2360{ 2361 return false; 2362} 2363#endif /* CONFIG_DEBUG_PAGEALLOC */ 2364 2365#ifdef __HAVE_ARCH_GATE_AREA 2366extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 2367extern int in_gate_area_no_mm(unsigned long addr); 2368extern int in_gate_area(struct mm_struct *mm, unsigned long addr); 2369#else 2370static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 2371{ 2372 return NULL; 2373} 2374static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } 2375static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) 2376{ 2377 return 0; 2378} 2379#endif /* __HAVE_ARCH_GATE_AREA */ 2380 2381extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm); 2382 2383#ifdef CONFIG_SYSCTL 2384extern int sysctl_drop_caches; 2385int drop_caches_sysctl_handler(struct ctl_table *, int, 2386 void __user *, size_t *, loff_t *); 2387#endif 2388 2389void drop_slab(void); 2390void drop_slab_node(int nid); 2391 2392#ifndef CONFIG_MMU 2393#define randomize_va_space 0 2394#else 2395extern int randomize_va_space; 2396#endif 2397 2398const char * arch_vma_name(struct vm_area_struct *vma); 2399void print_vma_addr(char *prefix, unsigned long rip); 2400 2401void sparse_mem_maps_populate_node(struct page **map_map, 2402 unsigned long pnum_begin, 2403 unsigned long pnum_end, 2404 unsigned long map_count, 2405 int nodeid); 2406 2407struct page *sparse_mem_map_populate(unsigned long pnum, int nid); 2408pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 2409p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node); 2410pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node); 2411pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 2412pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node); 2413void *vmemmap_alloc_block(unsigned long size, int node); 2414struct vmem_altmap; 2415void *__vmemmap_alloc_block_buf(unsigned long size, int node, 2416 struct vmem_altmap *altmap); 2417static inline void *vmemmap_alloc_block_buf(unsigned long size, int node) 2418{ 2419 return __vmemmap_alloc_block_buf(size, node, NULL); 2420} 2421 2422void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 2423int vmemmap_populate_basepages(unsigned long start, unsigned long end, 2424 int node); 2425int vmemmap_populate(unsigned long start, unsigned long end, int node); 2426void vmemmap_populate_print_last(void); 2427#ifdef CONFIG_MEMORY_HOTPLUG 2428void vmemmap_free(unsigned long start, unsigned long end); 2429#endif 2430void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, 2431 unsigned long size); 2432 2433enum mf_flags { 2434 MF_COUNT_INCREASED = 1 << 0, 2435 MF_ACTION_REQUIRED = 1 << 1, 2436 MF_MUST_KILL = 1 << 2, 2437 MF_SOFT_OFFLINE = 1 << 3, 2438}; 2439extern int memory_failure(unsigned long pfn, int trapno, int flags); 2440extern void memory_failure_queue(unsigned long pfn, int trapno, int flags); 2441extern int unpoison_memory(unsigned long pfn); 2442extern int get_hwpoison_page(struct page *page); 2443#define put_hwpoison_page(page) put_page(page) 2444extern int sysctl_memory_failure_early_kill; 2445extern int sysctl_memory_failure_recovery; 2446extern void shake_page(struct page *p, int access); 2447extern atomic_long_t num_poisoned_pages; 2448extern int soft_offline_page(struct page *page, int flags); 2449 2450 2451/* 2452 * Error handlers for various types of pages. 2453 */ 2454enum mf_result { 2455 MF_IGNORED, /* Error: cannot be handled */ 2456 MF_FAILED, /* Error: handling failed */ 2457 MF_DELAYED, /* Will be handled later */ 2458 MF_RECOVERED, /* Successfully recovered */ 2459}; 2460 2461enum mf_action_page_type { 2462 MF_MSG_KERNEL, 2463 MF_MSG_KERNEL_HIGH_ORDER, 2464 MF_MSG_SLAB, 2465 MF_MSG_DIFFERENT_COMPOUND, 2466 MF_MSG_POISONED_HUGE, 2467 MF_MSG_HUGE, 2468 MF_MSG_FREE_HUGE, 2469 MF_MSG_UNMAP_FAILED, 2470 MF_MSG_DIRTY_SWAPCACHE, 2471 MF_MSG_CLEAN_SWAPCACHE, 2472 MF_MSG_DIRTY_MLOCKED_LRU, 2473 MF_MSG_CLEAN_MLOCKED_LRU, 2474 MF_MSG_DIRTY_UNEVICTABLE_LRU, 2475 MF_MSG_CLEAN_UNEVICTABLE_LRU, 2476 MF_MSG_DIRTY_LRU, 2477 MF_MSG_CLEAN_LRU, 2478 MF_MSG_TRUNCATED_LRU, 2479 MF_MSG_BUDDY, 2480 MF_MSG_BUDDY_2ND, 2481 MF_MSG_UNKNOWN, 2482}; 2483 2484#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 2485extern void clear_huge_page(struct page *page, 2486 unsigned long addr, 2487 unsigned int pages_per_huge_page); 2488extern void copy_user_huge_page(struct page *dst, struct page *src, 2489 unsigned long addr, struct vm_area_struct *vma, 2490 unsigned int pages_per_huge_page); 2491extern long copy_huge_page_from_user(struct page *dst_page, 2492 const void __user *usr_src, 2493 unsigned int pages_per_huge_page, 2494 bool allow_pagefault); 2495#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 2496 2497extern struct page_ext_operations debug_guardpage_ops; 2498extern struct page_ext_operations page_poisoning_ops; 2499 2500#ifdef CONFIG_DEBUG_PAGEALLOC 2501extern unsigned int _debug_guardpage_minorder; 2502extern bool _debug_guardpage_enabled; 2503 2504static inline unsigned int debug_guardpage_minorder(void) 2505{ 2506 return _debug_guardpage_minorder; 2507} 2508 2509static inline bool debug_guardpage_enabled(void) 2510{ 2511 return _debug_guardpage_enabled; 2512} 2513 2514static inline bool page_is_guard(struct page *page) 2515{ 2516 struct page_ext *page_ext; 2517 2518 if (!debug_guardpage_enabled()) 2519 return false; 2520 2521 page_ext = lookup_page_ext(page); 2522 if (unlikely(!page_ext)) 2523 return false; 2524 2525 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); 2526} 2527#else 2528static inline unsigned int debug_guardpage_minorder(void) { return 0; } 2529static inline bool debug_guardpage_enabled(void) { return false; } 2530static inline bool page_is_guard(struct page *page) { return false; } 2531#endif /* CONFIG_DEBUG_PAGEALLOC */ 2532 2533#if MAX_NUMNODES > 1 2534void __init setup_nr_node_ids(void); 2535#else 2536static inline void setup_nr_node_ids(void) {} 2537#endif 2538 2539#endif /* __KERNEL__ */ 2540#endif /* _LINUX_MM_H */