at v4.11-rc2 43 kB view raw
1/* 2 * 3 * Copyright (c) 2011, Microsoft Corporation. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 * 14 * You should have received a copy of the GNU General Public License along with 15 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple 16 * Place - Suite 330, Boston, MA 02111-1307 USA. 17 * 18 * Authors: 19 * Haiyang Zhang <haiyangz@microsoft.com> 20 * Hank Janssen <hjanssen@microsoft.com> 21 * K. Y. Srinivasan <kys@microsoft.com> 22 * 23 */ 24 25#ifndef _HYPERV_H 26#define _HYPERV_H 27 28#include <uapi/linux/hyperv.h> 29#include <uapi/asm/hyperv.h> 30 31#include <linux/types.h> 32#include <linux/scatterlist.h> 33#include <linux/list.h> 34#include <linux/timer.h> 35#include <linux/completion.h> 36#include <linux/device.h> 37#include <linux/mod_devicetable.h> 38#include <linux/interrupt.h> 39 40#define MAX_PAGE_BUFFER_COUNT 32 41#define MAX_MULTIPAGE_BUFFER_COUNT 32 /* 128K */ 42 43#pragma pack(push, 1) 44 45/* Single-page buffer */ 46struct hv_page_buffer { 47 u32 len; 48 u32 offset; 49 u64 pfn; 50}; 51 52/* Multiple-page buffer */ 53struct hv_multipage_buffer { 54 /* Length and Offset determines the # of pfns in the array */ 55 u32 len; 56 u32 offset; 57 u64 pfn_array[MAX_MULTIPAGE_BUFFER_COUNT]; 58}; 59 60/* 61 * Multiple-page buffer array; the pfn array is variable size: 62 * The number of entries in the PFN array is determined by 63 * "len" and "offset". 64 */ 65struct hv_mpb_array { 66 /* Length and Offset determines the # of pfns in the array */ 67 u32 len; 68 u32 offset; 69 u64 pfn_array[]; 70}; 71 72/* 0x18 includes the proprietary packet header */ 73#define MAX_PAGE_BUFFER_PACKET (0x18 + \ 74 (sizeof(struct hv_page_buffer) * \ 75 MAX_PAGE_BUFFER_COUNT)) 76#define MAX_MULTIPAGE_BUFFER_PACKET (0x18 + \ 77 sizeof(struct hv_multipage_buffer)) 78 79 80#pragma pack(pop) 81 82struct hv_ring_buffer { 83 /* Offset in bytes from the start of ring data below */ 84 u32 write_index; 85 86 /* Offset in bytes from the start of ring data below */ 87 u32 read_index; 88 89 u32 interrupt_mask; 90 91 /* 92 * Win8 uses some of the reserved bits to implement 93 * interrupt driven flow management. On the send side 94 * we can request that the receiver interrupt the sender 95 * when the ring transitions from being full to being able 96 * to handle a message of size "pending_send_sz". 97 * 98 * Add necessary state for this enhancement. 99 */ 100 u32 pending_send_sz; 101 102 u32 reserved1[12]; 103 104 union { 105 struct { 106 u32 feat_pending_send_sz:1; 107 }; 108 u32 value; 109 } feature_bits; 110 111 /* Pad it to PAGE_SIZE so that data starts on page boundary */ 112 u8 reserved2[4028]; 113 114 /* 115 * Ring data starts here + RingDataStartOffset 116 * !!! DO NOT place any fields below this !!! 117 */ 118 u8 buffer[0]; 119} __packed; 120 121struct hv_ring_buffer_info { 122 struct hv_ring_buffer *ring_buffer; 123 u32 ring_size; /* Include the shared header */ 124 spinlock_t ring_lock; 125 126 u32 ring_datasize; /* < ring_size */ 127 u32 ring_data_startoffset; 128 u32 priv_write_index; 129 u32 priv_read_index; 130 u32 cached_read_index; 131}; 132 133/* 134 * 135 * hv_get_ringbuffer_availbytes() 136 * 137 * Get number of bytes available to read and to write to 138 * for the specified ring buffer 139 */ 140static inline void 141hv_get_ringbuffer_availbytes(const struct hv_ring_buffer_info *rbi, 142 u32 *read, u32 *write) 143{ 144 u32 read_loc, write_loc, dsize; 145 146 /* Capture the read/write indices before they changed */ 147 read_loc = rbi->ring_buffer->read_index; 148 write_loc = rbi->ring_buffer->write_index; 149 dsize = rbi->ring_datasize; 150 151 *write = write_loc >= read_loc ? dsize - (write_loc - read_loc) : 152 read_loc - write_loc; 153 *read = dsize - *write; 154} 155 156static inline u32 hv_get_bytes_to_read(const struct hv_ring_buffer_info *rbi) 157{ 158 u32 read_loc, write_loc, dsize, read; 159 160 dsize = rbi->ring_datasize; 161 read_loc = rbi->ring_buffer->read_index; 162 write_loc = READ_ONCE(rbi->ring_buffer->write_index); 163 164 read = write_loc >= read_loc ? (write_loc - read_loc) : 165 (dsize - read_loc) + write_loc; 166 167 return read; 168} 169 170static inline u32 hv_get_bytes_to_write(const struct hv_ring_buffer_info *rbi) 171{ 172 u32 read_loc, write_loc, dsize, write; 173 174 dsize = rbi->ring_datasize; 175 read_loc = READ_ONCE(rbi->ring_buffer->read_index); 176 write_loc = rbi->ring_buffer->write_index; 177 178 write = write_loc >= read_loc ? dsize - (write_loc - read_loc) : 179 read_loc - write_loc; 180 return write; 181} 182 183static inline u32 hv_get_cached_bytes_to_write( 184 const struct hv_ring_buffer_info *rbi) 185{ 186 u32 read_loc, write_loc, dsize, write; 187 188 dsize = rbi->ring_datasize; 189 read_loc = rbi->cached_read_index; 190 write_loc = rbi->ring_buffer->write_index; 191 192 write = write_loc >= read_loc ? dsize - (write_loc - read_loc) : 193 read_loc - write_loc; 194 return write; 195} 196/* 197 * VMBUS version is 32 bit entity broken up into 198 * two 16 bit quantities: major_number. minor_number. 199 * 200 * 0 . 13 (Windows Server 2008) 201 * 1 . 1 (Windows 7) 202 * 2 . 4 (Windows 8) 203 * 3 . 0 (Windows 8 R2) 204 * 4 . 0 (Windows 10) 205 */ 206 207#define VERSION_WS2008 ((0 << 16) | (13)) 208#define VERSION_WIN7 ((1 << 16) | (1)) 209#define VERSION_WIN8 ((2 << 16) | (4)) 210#define VERSION_WIN8_1 ((3 << 16) | (0)) 211#define VERSION_WIN10 ((4 << 16) | (0)) 212 213#define VERSION_INVAL -1 214 215#define VERSION_CURRENT VERSION_WIN10 216 217/* Make maximum size of pipe payload of 16K */ 218#define MAX_PIPE_DATA_PAYLOAD (sizeof(u8) * 16384) 219 220/* Define PipeMode values. */ 221#define VMBUS_PIPE_TYPE_BYTE 0x00000000 222#define VMBUS_PIPE_TYPE_MESSAGE 0x00000004 223 224/* The size of the user defined data buffer for non-pipe offers. */ 225#define MAX_USER_DEFINED_BYTES 120 226 227/* The size of the user defined data buffer for pipe offers. */ 228#define MAX_PIPE_USER_DEFINED_BYTES 116 229 230/* 231 * At the center of the Channel Management library is the Channel Offer. This 232 * struct contains the fundamental information about an offer. 233 */ 234struct vmbus_channel_offer { 235 uuid_le if_type; 236 uuid_le if_instance; 237 238 /* 239 * These two fields are not currently used. 240 */ 241 u64 reserved1; 242 u64 reserved2; 243 244 u16 chn_flags; 245 u16 mmio_megabytes; /* in bytes * 1024 * 1024 */ 246 247 union { 248 /* Non-pipes: The user has MAX_USER_DEFINED_BYTES bytes. */ 249 struct { 250 unsigned char user_def[MAX_USER_DEFINED_BYTES]; 251 } std; 252 253 /* 254 * Pipes: 255 * The following sructure is an integrated pipe protocol, which 256 * is implemented on top of standard user-defined data. Pipe 257 * clients have MAX_PIPE_USER_DEFINED_BYTES left for their own 258 * use. 259 */ 260 struct { 261 u32 pipe_mode; 262 unsigned char user_def[MAX_PIPE_USER_DEFINED_BYTES]; 263 } pipe; 264 } u; 265 /* 266 * The sub_channel_index is defined in win8. 267 */ 268 u16 sub_channel_index; 269 u16 reserved3; 270} __packed; 271 272/* Server Flags */ 273#define VMBUS_CHANNEL_ENUMERATE_DEVICE_INTERFACE 1 274#define VMBUS_CHANNEL_SERVER_SUPPORTS_TRANSFER_PAGES 2 275#define VMBUS_CHANNEL_SERVER_SUPPORTS_GPADLS 4 276#define VMBUS_CHANNEL_NAMED_PIPE_MODE 0x10 277#define VMBUS_CHANNEL_LOOPBACK_OFFER 0x100 278#define VMBUS_CHANNEL_PARENT_OFFER 0x200 279#define VMBUS_CHANNEL_REQUEST_MONITORED_NOTIFICATION 0x400 280#define VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER 0x2000 281 282struct vmpacket_descriptor { 283 u16 type; 284 u16 offset8; 285 u16 len8; 286 u16 flags; 287 u64 trans_id; 288} __packed; 289 290struct vmpacket_header { 291 u32 prev_pkt_start_offset; 292 struct vmpacket_descriptor descriptor; 293} __packed; 294 295struct vmtransfer_page_range { 296 u32 byte_count; 297 u32 byte_offset; 298} __packed; 299 300struct vmtransfer_page_packet_header { 301 struct vmpacket_descriptor d; 302 u16 xfer_pageset_id; 303 u8 sender_owns_set; 304 u8 reserved; 305 u32 range_cnt; 306 struct vmtransfer_page_range ranges[1]; 307} __packed; 308 309struct vmgpadl_packet_header { 310 struct vmpacket_descriptor d; 311 u32 gpadl; 312 u32 reserved; 313} __packed; 314 315struct vmadd_remove_transfer_page_set { 316 struct vmpacket_descriptor d; 317 u32 gpadl; 318 u16 xfer_pageset_id; 319 u16 reserved; 320} __packed; 321 322/* 323 * This structure defines a range in guest physical space that can be made to 324 * look virtually contiguous. 325 */ 326struct gpa_range { 327 u32 byte_count; 328 u32 byte_offset; 329 u64 pfn_array[0]; 330}; 331 332/* 333 * This is the format for an Establish Gpadl packet, which contains a handle by 334 * which this GPADL will be known and a set of GPA ranges associated with it. 335 * This can be converted to a MDL by the guest OS. If there are multiple GPA 336 * ranges, then the resulting MDL will be "chained," representing multiple VA 337 * ranges. 338 */ 339struct vmestablish_gpadl { 340 struct vmpacket_descriptor d; 341 u32 gpadl; 342 u32 range_cnt; 343 struct gpa_range range[1]; 344} __packed; 345 346/* 347 * This is the format for a Teardown Gpadl packet, which indicates that the 348 * GPADL handle in the Establish Gpadl packet will never be referenced again. 349 */ 350struct vmteardown_gpadl { 351 struct vmpacket_descriptor d; 352 u32 gpadl; 353 u32 reserved; /* for alignment to a 8-byte boundary */ 354} __packed; 355 356/* 357 * This is the format for a GPA-Direct packet, which contains a set of GPA 358 * ranges, in addition to commands and/or data. 359 */ 360struct vmdata_gpa_direct { 361 struct vmpacket_descriptor d; 362 u32 reserved; 363 u32 range_cnt; 364 struct gpa_range range[1]; 365} __packed; 366 367/* This is the format for a Additional Data Packet. */ 368struct vmadditional_data { 369 struct vmpacket_descriptor d; 370 u64 total_bytes; 371 u32 offset; 372 u32 byte_cnt; 373 unsigned char data[1]; 374} __packed; 375 376union vmpacket_largest_possible_header { 377 struct vmpacket_descriptor simple_hdr; 378 struct vmtransfer_page_packet_header xfer_page_hdr; 379 struct vmgpadl_packet_header gpadl_hdr; 380 struct vmadd_remove_transfer_page_set add_rm_xfer_page_hdr; 381 struct vmestablish_gpadl establish_gpadl_hdr; 382 struct vmteardown_gpadl teardown_gpadl_hdr; 383 struct vmdata_gpa_direct data_gpa_direct_hdr; 384}; 385 386#define VMPACKET_DATA_START_ADDRESS(__packet) \ 387 (void *)(((unsigned char *)__packet) + \ 388 ((struct vmpacket_descriptor)__packet)->offset8 * 8) 389 390#define VMPACKET_DATA_LENGTH(__packet) \ 391 ((((struct vmpacket_descriptor)__packet)->len8 - \ 392 ((struct vmpacket_descriptor)__packet)->offset8) * 8) 393 394#define VMPACKET_TRANSFER_MODE(__packet) \ 395 (((struct IMPACT)__packet)->type) 396 397enum vmbus_packet_type { 398 VM_PKT_INVALID = 0x0, 399 VM_PKT_SYNCH = 0x1, 400 VM_PKT_ADD_XFER_PAGESET = 0x2, 401 VM_PKT_RM_XFER_PAGESET = 0x3, 402 VM_PKT_ESTABLISH_GPADL = 0x4, 403 VM_PKT_TEARDOWN_GPADL = 0x5, 404 VM_PKT_DATA_INBAND = 0x6, 405 VM_PKT_DATA_USING_XFER_PAGES = 0x7, 406 VM_PKT_DATA_USING_GPADL = 0x8, 407 VM_PKT_DATA_USING_GPA_DIRECT = 0x9, 408 VM_PKT_CANCEL_REQUEST = 0xa, 409 VM_PKT_COMP = 0xb, 410 VM_PKT_DATA_USING_ADDITIONAL_PKT = 0xc, 411 VM_PKT_ADDITIONAL_DATA = 0xd 412}; 413 414#define VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED 1 415 416 417/* Version 1 messages */ 418enum vmbus_channel_message_type { 419 CHANNELMSG_INVALID = 0, 420 CHANNELMSG_OFFERCHANNEL = 1, 421 CHANNELMSG_RESCIND_CHANNELOFFER = 2, 422 CHANNELMSG_REQUESTOFFERS = 3, 423 CHANNELMSG_ALLOFFERS_DELIVERED = 4, 424 CHANNELMSG_OPENCHANNEL = 5, 425 CHANNELMSG_OPENCHANNEL_RESULT = 6, 426 CHANNELMSG_CLOSECHANNEL = 7, 427 CHANNELMSG_GPADL_HEADER = 8, 428 CHANNELMSG_GPADL_BODY = 9, 429 CHANNELMSG_GPADL_CREATED = 10, 430 CHANNELMSG_GPADL_TEARDOWN = 11, 431 CHANNELMSG_GPADL_TORNDOWN = 12, 432 CHANNELMSG_RELID_RELEASED = 13, 433 CHANNELMSG_INITIATE_CONTACT = 14, 434 CHANNELMSG_VERSION_RESPONSE = 15, 435 CHANNELMSG_UNLOAD = 16, 436 CHANNELMSG_UNLOAD_RESPONSE = 17, 437 CHANNELMSG_18 = 18, 438 CHANNELMSG_19 = 19, 439 CHANNELMSG_20 = 20, 440 CHANNELMSG_TL_CONNECT_REQUEST = 21, 441 CHANNELMSG_COUNT 442}; 443 444struct vmbus_channel_message_header { 445 enum vmbus_channel_message_type msgtype; 446 u32 padding; 447} __packed; 448 449/* Query VMBus Version parameters */ 450struct vmbus_channel_query_vmbus_version { 451 struct vmbus_channel_message_header header; 452 u32 version; 453} __packed; 454 455/* VMBus Version Supported parameters */ 456struct vmbus_channel_version_supported { 457 struct vmbus_channel_message_header header; 458 u8 version_supported; 459} __packed; 460 461/* Offer Channel parameters */ 462struct vmbus_channel_offer_channel { 463 struct vmbus_channel_message_header header; 464 struct vmbus_channel_offer offer; 465 u32 child_relid; 466 u8 monitorid; 467 /* 468 * win7 and beyond splits this field into a bit field. 469 */ 470 u8 monitor_allocated:1; 471 u8 reserved:7; 472 /* 473 * These are new fields added in win7 and later. 474 * Do not access these fields without checking the 475 * negotiated protocol. 476 * 477 * If "is_dedicated_interrupt" is set, we must not set the 478 * associated bit in the channel bitmap while sending the 479 * interrupt to the host. 480 * 481 * connection_id is to be used in signaling the host. 482 */ 483 u16 is_dedicated_interrupt:1; 484 u16 reserved1:15; 485 u32 connection_id; 486} __packed; 487 488/* Rescind Offer parameters */ 489struct vmbus_channel_rescind_offer { 490 struct vmbus_channel_message_header header; 491 u32 child_relid; 492} __packed; 493 494/* 495 * Request Offer -- no parameters, SynIC message contains the partition ID 496 * Set Snoop -- no parameters, SynIC message contains the partition ID 497 * Clear Snoop -- no parameters, SynIC message contains the partition ID 498 * All Offers Delivered -- no parameters, SynIC message contains the partition 499 * ID 500 * Flush Client -- no parameters, SynIC message contains the partition ID 501 */ 502 503/* Open Channel parameters */ 504struct vmbus_channel_open_channel { 505 struct vmbus_channel_message_header header; 506 507 /* Identifies the specific VMBus channel that is being opened. */ 508 u32 child_relid; 509 510 /* ID making a particular open request at a channel offer unique. */ 511 u32 openid; 512 513 /* GPADL for the channel's ring buffer. */ 514 u32 ringbuffer_gpadlhandle; 515 516 /* 517 * Starting with win8, this field will be used to specify 518 * the target virtual processor on which to deliver the interrupt for 519 * the host to guest communication. 520 * Prior to win8, incoming channel interrupts would only 521 * be delivered on cpu 0. Setting this value to 0 would 522 * preserve the earlier behavior. 523 */ 524 u32 target_vp; 525 526 /* 527 * The upstream ring buffer begins at offset zero in the memory 528 * described by RingBufferGpadlHandle. The downstream ring buffer 529 * follows it at this offset (in pages). 530 */ 531 u32 downstream_ringbuffer_pageoffset; 532 533 /* User-specific data to be passed along to the server endpoint. */ 534 unsigned char userdata[MAX_USER_DEFINED_BYTES]; 535} __packed; 536 537/* Open Channel Result parameters */ 538struct vmbus_channel_open_result { 539 struct vmbus_channel_message_header header; 540 u32 child_relid; 541 u32 openid; 542 u32 status; 543} __packed; 544 545/* Close channel parameters; */ 546struct vmbus_channel_close_channel { 547 struct vmbus_channel_message_header header; 548 u32 child_relid; 549} __packed; 550 551/* Channel Message GPADL */ 552#define GPADL_TYPE_RING_BUFFER 1 553#define GPADL_TYPE_SERVER_SAVE_AREA 2 554#define GPADL_TYPE_TRANSACTION 8 555 556/* 557 * The number of PFNs in a GPADL message is defined by the number of 558 * pages that would be spanned by ByteCount and ByteOffset. If the 559 * implied number of PFNs won't fit in this packet, there will be a 560 * follow-up packet that contains more. 561 */ 562struct vmbus_channel_gpadl_header { 563 struct vmbus_channel_message_header header; 564 u32 child_relid; 565 u32 gpadl; 566 u16 range_buflen; 567 u16 rangecount; 568 struct gpa_range range[0]; 569} __packed; 570 571/* This is the followup packet that contains more PFNs. */ 572struct vmbus_channel_gpadl_body { 573 struct vmbus_channel_message_header header; 574 u32 msgnumber; 575 u32 gpadl; 576 u64 pfn[0]; 577} __packed; 578 579struct vmbus_channel_gpadl_created { 580 struct vmbus_channel_message_header header; 581 u32 child_relid; 582 u32 gpadl; 583 u32 creation_status; 584} __packed; 585 586struct vmbus_channel_gpadl_teardown { 587 struct vmbus_channel_message_header header; 588 u32 child_relid; 589 u32 gpadl; 590} __packed; 591 592struct vmbus_channel_gpadl_torndown { 593 struct vmbus_channel_message_header header; 594 u32 gpadl; 595} __packed; 596 597struct vmbus_channel_relid_released { 598 struct vmbus_channel_message_header header; 599 u32 child_relid; 600} __packed; 601 602struct vmbus_channel_initiate_contact { 603 struct vmbus_channel_message_header header; 604 u32 vmbus_version_requested; 605 u32 target_vcpu; /* The VCPU the host should respond to */ 606 u64 interrupt_page; 607 u64 monitor_page1; 608 u64 monitor_page2; 609} __packed; 610 611/* Hyper-V socket: guest's connect()-ing to host */ 612struct vmbus_channel_tl_connect_request { 613 struct vmbus_channel_message_header header; 614 uuid_le guest_endpoint_id; 615 uuid_le host_service_id; 616} __packed; 617 618struct vmbus_channel_version_response { 619 struct vmbus_channel_message_header header; 620 u8 version_supported; 621} __packed; 622 623enum vmbus_channel_state { 624 CHANNEL_OFFER_STATE, 625 CHANNEL_OPENING_STATE, 626 CHANNEL_OPEN_STATE, 627 CHANNEL_OPENED_STATE, 628}; 629 630/* 631 * Represents each channel msg on the vmbus connection This is a 632 * variable-size data structure depending on the msg type itself 633 */ 634struct vmbus_channel_msginfo { 635 /* Bookkeeping stuff */ 636 struct list_head msglistentry; 637 638 /* So far, this is only used to handle gpadl body message */ 639 struct list_head submsglist; 640 641 /* Synchronize the request/response if needed */ 642 struct completion waitevent; 643 struct vmbus_channel *waiting_channel; 644 union { 645 struct vmbus_channel_version_supported version_supported; 646 struct vmbus_channel_open_result open_result; 647 struct vmbus_channel_gpadl_torndown gpadl_torndown; 648 struct vmbus_channel_gpadl_created gpadl_created; 649 struct vmbus_channel_version_response version_response; 650 } response; 651 652 u32 msgsize; 653 /* 654 * The channel message that goes out on the "wire". 655 * It will contain at minimum the VMBUS_CHANNEL_MESSAGE_HEADER header 656 */ 657 unsigned char msg[0]; 658}; 659 660struct vmbus_close_msg { 661 struct vmbus_channel_msginfo info; 662 struct vmbus_channel_close_channel msg; 663}; 664 665/* Define connection identifier type. */ 666union hv_connection_id { 667 u32 asu32; 668 struct { 669 u32 id:24; 670 u32 reserved:8; 671 } u; 672}; 673 674/* Definition of the hv_signal_event hypercall input structure. */ 675struct hv_input_signal_event { 676 union hv_connection_id connectionid; 677 u16 flag_number; 678 u16 rsvdz; 679}; 680 681struct hv_input_signal_event_buffer { 682 u64 align8; 683 struct hv_input_signal_event event; 684}; 685 686enum hv_numa_policy { 687 HV_BALANCED = 0, 688 HV_LOCALIZED, 689}; 690 691enum vmbus_device_type { 692 HV_IDE = 0, 693 HV_SCSI, 694 HV_FC, 695 HV_NIC, 696 HV_ND, 697 HV_PCIE, 698 HV_FB, 699 HV_KBD, 700 HV_MOUSE, 701 HV_KVP, 702 HV_TS, 703 HV_HB, 704 HV_SHUTDOWN, 705 HV_FCOPY, 706 HV_BACKUP, 707 HV_DM, 708 HV_UNKNOWN, 709}; 710 711struct vmbus_device { 712 u16 dev_type; 713 uuid_le guid; 714 bool perf_device; 715}; 716 717struct vmbus_channel { 718 struct list_head listentry; 719 720 struct hv_device *device_obj; 721 722 enum vmbus_channel_state state; 723 724 struct vmbus_channel_offer_channel offermsg; 725 /* 726 * These are based on the OfferMsg.MonitorId. 727 * Save it here for easy access. 728 */ 729 u8 monitor_grp; 730 u8 monitor_bit; 731 732 bool rescind; /* got rescind msg */ 733 734 u32 ringbuffer_gpadlhandle; 735 736 /* Allocated memory for ring buffer */ 737 void *ringbuffer_pages; 738 u32 ringbuffer_pagecount; 739 struct hv_ring_buffer_info outbound; /* send to parent */ 740 struct hv_ring_buffer_info inbound; /* receive from parent */ 741 spinlock_t inbound_lock; 742 743 struct vmbus_close_msg close_msg; 744 745 /* Channel callback's invoked in softirq context */ 746 struct tasklet_struct callback_event; 747 void (*onchannel_callback)(void *context); 748 void *channel_callback_context; 749 750 /* 751 * A channel can be marked for one of three modes of reading: 752 * BATCHED - callback called from taslket and should read 753 * channel until empty. Interrupts from the host 754 * are masked while read is in process (default). 755 * DIRECT - callback called from tasklet (softirq). 756 * ISR - callback called in interrupt context and must 757 * invoke its own deferred processing. 758 * Host interrupts are disabled and must be re-enabled 759 * when ring is empty. 760 */ 761 enum hv_callback_mode { 762 HV_CALL_BATCHED, 763 HV_CALL_DIRECT, 764 HV_CALL_ISR 765 } callback_mode; 766 767 bool is_dedicated_interrupt; 768 struct hv_input_signal_event_buffer sig_buf; 769 struct hv_input_signal_event *sig_event; 770 771 /* 772 * Starting with win8, this field will be used to specify 773 * the target virtual processor on which to deliver the interrupt for 774 * the host to guest communication. 775 * Prior to win8, incoming channel interrupts would only 776 * be delivered on cpu 0. Setting this value to 0 would 777 * preserve the earlier behavior. 778 */ 779 u32 target_vp; 780 /* The corresponding CPUID in the guest */ 781 u32 target_cpu; 782 /* 783 * State to manage the CPU affiliation of channels. 784 */ 785 struct cpumask alloced_cpus_in_node; 786 int numa_node; 787 /* 788 * Support for sub-channels. For high performance devices, 789 * it will be useful to have multiple sub-channels to support 790 * a scalable communication infrastructure with the host. 791 * The support for sub-channels is implemented as an extention 792 * to the current infrastructure. 793 * The initial offer is considered the primary channel and this 794 * offer message will indicate if the host supports sub-channels. 795 * The guest is free to ask for sub-channels to be offerred and can 796 * open these sub-channels as a normal "primary" channel. However, 797 * all sub-channels will have the same type and instance guids as the 798 * primary channel. Requests sent on a given channel will result in a 799 * response on the same channel. 800 */ 801 802 /* 803 * Sub-channel creation callback. This callback will be called in 804 * process context when a sub-channel offer is received from the host. 805 * The guest can open the sub-channel in the context of this callback. 806 */ 807 void (*sc_creation_callback)(struct vmbus_channel *new_sc); 808 809 /* 810 * Channel rescind callback. Some channels (the hvsock ones), need to 811 * register a callback which is invoked in vmbus_onoffer_rescind(). 812 */ 813 void (*chn_rescind_callback)(struct vmbus_channel *channel); 814 815 /* 816 * The spinlock to protect the structure. It is being used to protect 817 * test-and-set access to various attributes of the structure as well 818 * as all sc_list operations. 819 */ 820 spinlock_t lock; 821 /* 822 * All Sub-channels of a primary channel are linked here. 823 */ 824 struct list_head sc_list; 825 /* 826 * Current number of sub-channels. 827 */ 828 int num_sc; 829 /* 830 * Number of a sub-channel (position within sc_list) which is supposed 831 * to be used as the next outgoing channel. 832 */ 833 int next_oc; 834 /* 835 * The primary channel this sub-channel belongs to. 836 * This will be NULL for the primary channel. 837 */ 838 struct vmbus_channel *primary_channel; 839 /* 840 * Support per-channel state for use by vmbus drivers. 841 */ 842 void *per_channel_state; 843 /* 844 * To support per-cpu lookup mapping of relid to channel, 845 * link up channels based on their CPU affinity. 846 */ 847 struct list_head percpu_list; 848 /* 849 * For performance critical channels (storage, networking 850 * etc,), Hyper-V has a mechanism to enhance the throughput 851 * at the expense of latency: 852 * When the host is to be signaled, we just set a bit in a shared page 853 * and this bit will be inspected by the hypervisor within a certain 854 * window and if the bit is set, the host will be signaled. The window 855 * of time is the monitor latency - currently around 100 usecs. This 856 * mechanism improves throughput by: 857 * 858 * A) Making the host more efficient - each time it wakes up, 859 * potentially it will process morev number of packets. The 860 * monitor latency allows a batch to build up. 861 * B) By deferring the hypercall to signal, we will also minimize 862 * the interrupts. 863 * 864 * Clearly, these optimizations improve throughput at the expense of 865 * latency. Furthermore, since the channel is shared for both 866 * control and data messages, control messages currently suffer 867 * unnecessary latency adversley impacting performance and boot 868 * time. To fix this issue, permit tagging the channel as being 869 * in "low latency" mode. In this mode, we will bypass the monitor 870 * mechanism. 871 */ 872 bool low_latency; 873 874 /* 875 * NUMA distribution policy: 876 * We support teo policies: 877 * 1) Balanced: Here all performance critical channels are 878 * distributed evenly amongst all the NUMA nodes. 879 * This policy will be the default policy. 880 * 2) Localized: All channels of a given instance of a 881 * performance critical service will be assigned CPUs 882 * within a selected NUMA node. 883 */ 884 enum hv_numa_policy affinity_policy; 885 886}; 887 888static inline bool is_hvsock_channel(const struct vmbus_channel *c) 889{ 890 return !!(c->offermsg.offer.chn_flags & 891 VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER); 892} 893 894static inline void set_channel_affinity_state(struct vmbus_channel *c, 895 enum hv_numa_policy policy) 896{ 897 c->affinity_policy = policy; 898} 899 900static inline void set_channel_read_mode(struct vmbus_channel *c, 901 enum hv_callback_mode mode) 902{ 903 c->callback_mode = mode; 904} 905 906static inline void set_per_channel_state(struct vmbus_channel *c, void *s) 907{ 908 c->per_channel_state = s; 909} 910 911static inline void *get_per_channel_state(struct vmbus_channel *c) 912{ 913 return c->per_channel_state; 914} 915 916static inline void set_channel_pending_send_size(struct vmbus_channel *c, 917 u32 size) 918{ 919 c->outbound.ring_buffer->pending_send_sz = size; 920} 921 922static inline void set_low_latency_mode(struct vmbus_channel *c) 923{ 924 c->low_latency = true; 925} 926 927static inline void clear_low_latency_mode(struct vmbus_channel *c) 928{ 929 c->low_latency = false; 930} 931 932void vmbus_onmessage(void *context); 933 934int vmbus_request_offers(void); 935 936/* 937 * APIs for managing sub-channels. 938 */ 939 940void vmbus_set_sc_create_callback(struct vmbus_channel *primary_channel, 941 void (*sc_cr_cb)(struct vmbus_channel *new_sc)); 942 943void vmbus_set_chn_rescind_callback(struct vmbus_channel *channel, 944 void (*chn_rescind_cb)(struct vmbus_channel *)); 945 946/* 947 * Retrieve the (sub) channel on which to send an outgoing request. 948 * When a primary channel has multiple sub-channels, we choose a 949 * channel whose VCPU binding is closest to the VCPU on which 950 * this call is being made. 951 */ 952struct vmbus_channel *vmbus_get_outgoing_channel(struct vmbus_channel *primary); 953 954/* 955 * Check if sub-channels have already been offerred. This API will be useful 956 * when the driver is unloaded after establishing sub-channels. In this case, 957 * when the driver is re-loaded, the driver would have to check if the 958 * subchannels have already been established before attempting to request 959 * the creation of sub-channels. 960 * This function returns TRUE to indicate that subchannels have already been 961 * created. 962 * This function should be invoked after setting the callback function for 963 * sub-channel creation. 964 */ 965bool vmbus_are_subchannels_present(struct vmbus_channel *primary); 966 967/* The format must be the same as struct vmdata_gpa_direct */ 968struct vmbus_channel_packet_page_buffer { 969 u16 type; 970 u16 dataoffset8; 971 u16 length8; 972 u16 flags; 973 u64 transactionid; 974 u32 reserved; 975 u32 rangecount; 976 struct hv_page_buffer range[MAX_PAGE_BUFFER_COUNT]; 977} __packed; 978 979/* The format must be the same as struct vmdata_gpa_direct */ 980struct vmbus_channel_packet_multipage_buffer { 981 u16 type; 982 u16 dataoffset8; 983 u16 length8; 984 u16 flags; 985 u64 transactionid; 986 u32 reserved; 987 u32 rangecount; /* Always 1 in this case */ 988 struct hv_multipage_buffer range; 989} __packed; 990 991/* The format must be the same as struct vmdata_gpa_direct */ 992struct vmbus_packet_mpb_array { 993 u16 type; 994 u16 dataoffset8; 995 u16 length8; 996 u16 flags; 997 u64 transactionid; 998 u32 reserved; 999 u32 rangecount; /* Always 1 in this case */ 1000 struct hv_mpb_array range; 1001} __packed; 1002 1003 1004extern int vmbus_open(struct vmbus_channel *channel, 1005 u32 send_ringbuffersize, 1006 u32 recv_ringbuffersize, 1007 void *userdata, 1008 u32 userdatalen, 1009 void(*onchannel_callback)(void *context), 1010 void *context); 1011 1012extern void vmbus_close(struct vmbus_channel *channel); 1013 1014extern int vmbus_sendpacket(struct vmbus_channel *channel, 1015 void *buffer, 1016 u32 bufferLen, 1017 u64 requestid, 1018 enum vmbus_packet_type type, 1019 u32 flags); 1020 1021extern int vmbus_sendpacket_ctl(struct vmbus_channel *channel, 1022 void *buffer, 1023 u32 bufferLen, 1024 u64 requestid, 1025 enum vmbus_packet_type type, 1026 u32 flags); 1027 1028extern int vmbus_sendpacket_pagebuffer(struct vmbus_channel *channel, 1029 struct hv_page_buffer pagebuffers[], 1030 u32 pagecount, 1031 void *buffer, 1032 u32 bufferlen, 1033 u64 requestid); 1034 1035extern int vmbus_sendpacket_pagebuffer_ctl(struct vmbus_channel *channel, 1036 struct hv_page_buffer pagebuffers[], 1037 u32 pagecount, 1038 void *buffer, 1039 u32 bufferlen, 1040 u64 requestid, 1041 u32 flags); 1042 1043extern int vmbus_sendpacket_multipagebuffer(struct vmbus_channel *channel, 1044 struct hv_multipage_buffer *mpb, 1045 void *buffer, 1046 u32 bufferlen, 1047 u64 requestid); 1048 1049extern int vmbus_sendpacket_mpb_desc(struct vmbus_channel *channel, 1050 struct vmbus_packet_mpb_array *mpb, 1051 u32 desc_size, 1052 void *buffer, 1053 u32 bufferlen, 1054 u64 requestid); 1055 1056extern int vmbus_establish_gpadl(struct vmbus_channel *channel, 1057 void *kbuffer, 1058 u32 size, 1059 u32 *gpadl_handle); 1060 1061extern int vmbus_teardown_gpadl(struct vmbus_channel *channel, 1062 u32 gpadl_handle); 1063 1064extern int vmbus_recvpacket(struct vmbus_channel *channel, 1065 void *buffer, 1066 u32 bufferlen, 1067 u32 *buffer_actual_len, 1068 u64 *requestid); 1069 1070extern int vmbus_recvpacket_raw(struct vmbus_channel *channel, 1071 void *buffer, 1072 u32 bufferlen, 1073 u32 *buffer_actual_len, 1074 u64 *requestid); 1075 1076 1077extern void vmbus_ontimer(unsigned long data); 1078 1079/* Base driver object */ 1080struct hv_driver { 1081 const char *name; 1082 1083 /* 1084 * A hvsock offer, which has a VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER 1085 * channel flag, actually doesn't mean a synthetic device because the 1086 * offer's if_type/if_instance can change for every new hvsock 1087 * connection. 1088 * 1089 * However, to facilitate the notification of new-offer/rescind-offer 1090 * from vmbus driver to hvsock driver, we can handle hvsock offer as 1091 * a special vmbus device, and hence we need the below flag to 1092 * indicate if the driver is the hvsock driver or not: we need to 1093 * specially treat the hvosck offer & driver in vmbus_match(). 1094 */ 1095 bool hvsock; 1096 1097 /* the device type supported by this driver */ 1098 uuid_le dev_type; 1099 const struct hv_vmbus_device_id *id_table; 1100 1101 struct device_driver driver; 1102 1103 /* dynamic device GUID's */ 1104 struct { 1105 spinlock_t lock; 1106 struct list_head list; 1107 } dynids; 1108 1109 int (*probe)(struct hv_device *, const struct hv_vmbus_device_id *); 1110 int (*remove)(struct hv_device *); 1111 void (*shutdown)(struct hv_device *); 1112 1113}; 1114 1115/* Base device object */ 1116struct hv_device { 1117 /* the device type id of this device */ 1118 uuid_le dev_type; 1119 1120 /* the device instance id of this device */ 1121 uuid_le dev_instance; 1122 u16 vendor_id; 1123 u16 device_id; 1124 1125 struct device device; 1126 1127 struct vmbus_channel *channel; 1128}; 1129 1130 1131static inline struct hv_device *device_to_hv_device(struct device *d) 1132{ 1133 return container_of(d, struct hv_device, device); 1134} 1135 1136static inline struct hv_driver *drv_to_hv_drv(struct device_driver *d) 1137{ 1138 return container_of(d, struct hv_driver, driver); 1139} 1140 1141static inline void hv_set_drvdata(struct hv_device *dev, void *data) 1142{ 1143 dev_set_drvdata(&dev->device, data); 1144} 1145 1146static inline void *hv_get_drvdata(struct hv_device *dev) 1147{ 1148 return dev_get_drvdata(&dev->device); 1149} 1150 1151/* Vmbus interface */ 1152#define vmbus_driver_register(driver) \ 1153 __vmbus_driver_register(driver, THIS_MODULE, KBUILD_MODNAME) 1154int __must_check __vmbus_driver_register(struct hv_driver *hv_driver, 1155 struct module *owner, 1156 const char *mod_name); 1157void vmbus_driver_unregister(struct hv_driver *hv_driver); 1158 1159void vmbus_hvsock_device_unregister(struct vmbus_channel *channel); 1160 1161int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj, 1162 resource_size_t min, resource_size_t max, 1163 resource_size_t size, resource_size_t align, 1164 bool fb_overlap_ok); 1165void vmbus_free_mmio(resource_size_t start, resource_size_t size); 1166int vmbus_cpu_number_to_vp_number(int cpu_number); 1167u64 hv_do_hypercall(u64 control, void *input, void *output); 1168 1169/* 1170 * GUID definitions of various offer types - services offered to the guest. 1171 */ 1172 1173/* 1174 * Network GUID 1175 * {f8615163-df3e-46c5-913f-f2d2f965ed0e} 1176 */ 1177#define HV_NIC_GUID \ 1178 .guid = UUID_LE(0xf8615163, 0xdf3e, 0x46c5, 0x91, 0x3f, \ 1179 0xf2, 0xd2, 0xf9, 0x65, 0xed, 0x0e) 1180 1181/* 1182 * IDE GUID 1183 * {32412632-86cb-44a2-9b5c-50d1417354f5} 1184 */ 1185#define HV_IDE_GUID \ 1186 .guid = UUID_LE(0x32412632, 0x86cb, 0x44a2, 0x9b, 0x5c, \ 1187 0x50, 0xd1, 0x41, 0x73, 0x54, 0xf5) 1188 1189/* 1190 * SCSI GUID 1191 * {ba6163d9-04a1-4d29-b605-72e2ffb1dc7f} 1192 */ 1193#define HV_SCSI_GUID \ 1194 .guid = UUID_LE(0xba6163d9, 0x04a1, 0x4d29, 0xb6, 0x05, \ 1195 0x72, 0xe2, 0xff, 0xb1, 0xdc, 0x7f) 1196 1197/* 1198 * Shutdown GUID 1199 * {0e0b6031-5213-4934-818b-38d90ced39db} 1200 */ 1201#define HV_SHUTDOWN_GUID \ 1202 .guid = UUID_LE(0x0e0b6031, 0x5213, 0x4934, 0x81, 0x8b, \ 1203 0x38, 0xd9, 0x0c, 0xed, 0x39, 0xdb) 1204 1205/* 1206 * Time Synch GUID 1207 * {9527E630-D0AE-497b-ADCE-E80AB0175CAF} 1208 */ 1209#define HV_TS_GUID \ 1210 .guid = UUID_LE(0x9527e630, 0xd0ae, 0x497b, 0xad, 0xce, \ 1211 0xe8, 0x0a, 0xb0, 0x17, 0x5c, 0xaf) 1212 1213/* 1214 * Heartbeat GUID 1215 * {57164f39-9115-4e78-ab55-382f3bd5422d} 1216 */ 1217#define HV_HEART_BEAT_GUID \ 1218 .guid = UUID_LE(0x57164f39, 0x9115, 0x4e78, 0xab, 0x55, \ 1219 0x38, 0x2f, 0x3b, 0xd5, 0x42, 0x2d) 1220 1221/* 1222 * KVP GUID 1223 * {a9a0f4e7-5a45-4d96-b827-8a841e8c03e6} 1224 */ 1225#define HV_KVP_GUID \ 1226 .guid = UUID_LE(0xa9a0f4e7, 0x5a45, 0x4d96, 0xb8, 0x27, \ 1227 0x8a, 0x84, 0x1e, 0x8c, 0x03, 0xe6) 1228 1229/* 1230 * Dynamic memory GUID 1231 * {525074dc-8985-46e2-8057-a307dc18a502} 1232 */ 1233#define HV_DM_GUID \ 1234 .guid = UUID_LE(0x525074dc, 0x8985, 0x46e2, 0x80, 0x57, \ 1235 0xa3, 0x07, 0xdc, 0x18, 0xa5, 0x02) 1236 1237/* 1238 * Mouse GUID 1239 * {cfa8b69e-5b4a-4cc0-b98b-8ba1a1f3f95a} 1240 */ 1241#define HV_MOUSE_GUID \ 1242 .guid = UUID_LE(0xcfa8b69e, 0x5b4a, 0x4cc0, 0xb9, 0x8b, \ 1243 0x8b, 0xa1, 0xa1, 0xf3, 0xf9, 0x5a) 1244 1245/* 1246 * Keyboard GUID 1247 * {f912ad6d-2b17-48ea-bd65-f927a61c7684} 1248 */ 1249#define HV_KBD_GUID \ 1250 .guid = UUID_LE(0xf912ad6d, 0x2b17, 0x48ea, 0xbd, 0x65, \ 1251 0xf9, 0x27, 0xa6, 0x1c, 0x76, 0x84) 1252 1253/* 1254 * VSS (Backup/Restore) GUID 1255 */ 1256#define HV_VSS_GUID \ 1257 .guid = UUID_LE(0x35fa2e29, 0xea23, 0x4236, 0x96, 0xae, \ 1258 0x3a, 0x6e, 0xba, 0xcb, 0xa4, 0x40) 1259/* 1260 * Synthetic Video GUID 1261 * {DA0A7802-E377-4aac-8E77-0558EB1073F8} 1262 */ 1263#define HV_SYNTHVID_GUID \ 1264 .guid = UUID_LE(0xda0a7802, 0xe377, 0x4aac, 0x8e, 0x77, \ 1265 0x05, 0x58, 0xeb, 0x10, 0x73, 0xf8) 1266 1267/* 1268 * Synthetic FC GUID 1269 * {2f9bcc4a-0069-4af3-b76b-6fd0be528cda} 1270 */ 1271#define HV_SYNTHFC_GUID \ 1272 .guid = UUID_LE(0x2f9bcc4a, 0x0069, 0x4af3, 0xb7, 0x6b, \ 1273 0x6f, 0xd0, 0xbe, 0x52, 0x8c, 0xda) 1274 1275/* 1276 * Guest File Copy Service 1277 * {34D14BE3-DEE4-41c8-9AE7-6B174977C192} 1278 */ 1279 1280#define HV_FCOPY_GUID \ 1281 .guid = UUID_LE(0x34d14be3, 0xdee4, 0x41c8, 0x9a, 0xe7, \ 1282 0x6b, 0x17, 0x49, 0x77, 0xc1, 0x92) 1283 1284/* 1285 * NetworkDirect. This is the guest RDMA service. 1286 * {8c2eaf3d-32a7-4b09-ab99-bd1f1c86b501} 1287 */ 1288#define HV_ND_GUID \ 1289 .guid = UUID_LE(0x8c2eaf3d, 0x32a7, 0x4b09, 0xab, 0x99, \ 1290 0xbd, 0x1f, 0x1c, 0x86, 0xb5, 0x01) 1291 1292/* 1293 * PCI Express Pass Through 1294 * {44C4F61D-4444-4400-9D52-802E27EDE19F} 1295 */ 1296 1297#define HV_PCIE_GUID \ 1298 .guid = UUID_LE(0x44c4f61d, 0x4444, 0x4400, 0x9d, 0x52, \ 1299 0x80, 0x2e, 0x27, 0xed, 0xe1, 0x9f) 1300 1301/* 1302 * Linux doesn't support the 3 devices: the first two are for 1303 * Automatic Virtual Machine Activation, and the third is for 1304 * Remote Desktop Virtualization. 1305 * {f8e65716-3cb3-4a06-9a60-1889c5cccab5} 1306 * {3375baf4-9e15-4b30-b765-67acb10d607b} 1307 * {276aacf4-ac15-426c-98dd-7521ad3f01fe} 1308 */ 1309 1310#define HV_AVMA1_GUID \ 1311 .guid = UUID_LE(0xf8e65716, 0x3cb3, 0x4a06, 0x9a, 0x60, \ 1312 0x18, 0x89, 0xc5, 0xcc, 0xca, 0xb5) 1313 1314#define HV_AVMA2_GUID \ 1315 .guid = UUID_LE(0x3375baf4, 0x9e15, 0x4b30, 0xb7, 0x65, \ 1316 0x67, 0xac, 0xb1, 0x0d, 0x60, 0x7b) 1317 1318#define HV_RDV_GUID \ 1319 .guid = UUID_LE(0x276aacf4, 0xac15, 0x426c, 0x98, 0xdd, \ 1320 0x75, 0x21, 0xad, 0x3f, 0x01, 0xfe) 1321 1322/* 1323 * Common header for Hyper-V ICs 1324 */ 1325 1326#define ICMSGTYPE_NEGOTIATE 0 1327#define ICMSGTYPE_HEARTBEAT 1 1328#define ICMSGTYPE_KVPEXCHANGE 2 1329#define ICMSGTYPE_SHUTDOWN 3 1330#define ICMSGTYPE_TIMESYNC 4 1331#define ICMSGTYPE_VSS 5 1332 1333#define ICMSGHDRFLAG_TRANSACTION 1 1334#define ICMSGHDRFLAG_REQUEST 2 1335#define ICMSGHDRFLAG_RESPONSE 4 1336 1337 1338/* 1339 * While we want to handle util services as regular devices, 1340 * there is only one instance of each of these services; so 1341 * we statically allocate the service specific state. 1342 */ 1343 1344struct hv_util_service { 1345 u8 *recv_buffer; 1346 void *channel; 1347 void (*util_cb)(void *); 1348 int (*util_init)(struct hv_util_service *); 1349 void (*util_deinit)(void); 1350}; 1351 1352struct vmbuspipe_hdr { 1353 u32 flags; 1354 u32 msgsize; 1355} __packed; 1356 1357struct ic_version { 1358 u16 major; 1359 u16 minor; 1360} __packed; 1361 1362struct icmsg_hdr { 1363 struct ic_version icverframe; 1364 u16 icmsgtype; 1365 struct ic_version icvermsg; 1366 u16 icmsgsize; 1367 u32 status; 1368 u8 ictransaction_id; 1369 u8 icflags; 1370 u8 reserved[2]; 1371} __packed; 1372 1373struct icmsg_negotiate { 1374 u16 icframe_vercnt; 1375 u16 icmsg_vercnt; 1376 u32 reserved; 1377 struct ic_version icversion_data[1]; /* any size array */ 1378} __packed; 1379 1380struct shutdown_msg_data { 1381 u32 reason_code; 1382 u32 timeout_seconds; 1383 u32 flags; 1384 u8 display_message[2048]; 1385} __packed; 1386 1387struct heartbeat_msg_data { 1388 u64 seq_num; 1389 u32 reserved[8]; 1390} __packed; 1391 1392/* Time Sync IC defs */ 1393#define ICTIMESYNCFLAG_PROBE 0 1394#define ICTIMESYNCFLAG_SYNC 1 1395#define ICTIMESYNCFLAG_SAMPLE 2 1396 1397#ifdef __x86_64__ 1398#define WLTIMEDELTA 116444736000000000L /* in 100ns unit */ 1399#else 1400#define WLTIMEDELTA 116444736000000000LL 1401#endif 1402 1403struct ictimesync_data { 1404 u64 parenttime; 1405 u64 childtime; 1406 u64 roundtriptime; 1407 u8 flags; 1408} __packed; 1409 1410struct ictimesync_ref_data { 1411 u64 parenttime; 1412 u64 vmreferencetime; 1413 u8 flags; 1414 char leapflags; 1415 char stratum; 1416 u8 reserved[3]; 1417} __packed; 1418 1419struct hyperv_service_callback { 1420 u8 msg_type; 1421 char *log_msg; 1422 uuid_le data; 1423 struct vmbus_channel *channel; 1424 void (*callback) (void *context); 1425}; 1426 1427#define MAX_SRV_VER 0x7ffffff 1428extern bool vmbus_prep_negotiate_resp(struct icmsg_hdr *icmsghdrp, u8 *buf, 1429 const int *fw_version, int fw_vercnt, 1430 const int *srv_version, int srv_vercnt, 1431 int *nego_fw_version, int *nego_srv_version); 1432 1433void hv_event_tasklet_disable(struct vmbus_channel *channel); 1434void hv_event_tasklet_enable(struct vmbus_channel *channel); 1435 1436void hv_process_channel_removal(struct vmbus_channel *channel, u32 relid); 1437 1438void vmbus_setevent(struct vmbus_channel *channel); 1439/* 1440 * Negotiated version with the Host. 1441 */ 1442 1443extern __u32 vmbus_proto_version; 1444 1445int vmbus_send_tl_connect_request(const uuid_le *shv_guest_servie_id, 1446 const uuid_le *shv_host_servie_id); 1447void vmbus_set_event(struct vmbus_channel *channel); 1448 1449/* Get the start of the ring buffer. */ 1450static inline void * 1451hv_get_ring_buffer(const struct hv_ring_buffer_info *ring_info) 1452{ 1453 return ring_info->ring_buffer->buffer; 1454} 1455 1456/* 1457 * To optimize the flow management on the send-side, 1458 * when the sender is blocked because of lack of 1459 * sufficient space in the ring buffer, potential the 1460 * consumer of the ring buffer can signal the producer. 1461 * This is controlled by the following parameters: 1462 * 1463 * 1. pending_send_sz: This is the size in bytes that the 1464 * producer is trying to send. 1465 * 2. The feature bit feat_pending_send_sz set to indicate if 1466 * the consumer of the ring will signal when the ring 1467 * state transitions from being full to a state where 1468 * there is room for the producer to send the pending packet. 1469 */ 1470 1471static inline void hv_signal_on_read(struct vmbus_channel *channel) 1472{ 1473 u32 cur_write_sz, cached_write_sz; 1474 u32 pending_sz; 1475 struct hv_ring_buffer_info *rbi = &channel->inbound; 1476 1477 /* 1478 * Issue a full memory barrier before making the signaling decision. 1479 * Here is the reason for having this barrier: 1480 * If the reading of the pend_sz (in this function) 1481 * were to be reordered and read before we commit the new read 1482 * index (in the calling function) we could 1483 * have a problem. If the host were to set the pending_sz after we 1484 * have sampled pending_sz and go to sleep before we commit the 1485 * read index, we could miss sending the interrupt. Issue a full 1486 * memory barrier to address this. 1487 */ 1488 virt_mb(); 1489 1490 pending_sz = READ_ONCE(rbi->ring_buffer->pending_send_sz); 1491 /* If the other end is not blocked on write don't bother. */ 1492 if (pending_sz == 0) 1493 return; 1494 1495 cur_write_sz = hv_get_bytes_to_write(rbi); 1496 1497 if (cur_write_sz < pending_sz) 1498 return; 1499 1500 cached_write_sz = hv_get_cached_bytes_to_write(rbi); 1501 if (cached_write_sz < pending_sz) 1502 vmbus_setevent(channel); 1503 1504 return; 1505} 1506 1507static inline void 1508init_cached_read_index(struct vmbus_channel *channel) 1509{ 1510 struct hv_ring_buffer_info *rbi = &channel->inbound; 1511 1512 rbi->cached_read_index = rbi->ring_buffer->read_index; 1513} 1514 1515/* 1516 * Mask off host interrupt callback notifications 1517 */ 1518static inline void hv_begin_read(struct hv_ring_buffer_info *rbi) 1519{ 1520 rbi->ring_buffer->interrupt_mask = 1; 1521 1522 /* make sure mask update is not reordered */ 1523 virt_mb(); 1524} 1525 1526/* 1527 * Re-enable host callback and return number of outstanding bytes 1528 */ 1529static inline u32 hv_end_read(struct hv_ring_buffer_info *rbi) 1530{ 1531 1532 rbi->ring_buffer->interrupt_mask = 0; 1533 1534 /* make sure mask update is not reordered */ 1535 virt_mb(); 1536 1537 /* 1538 * Now check to see if the ring buffer is still empty. 1539 * If it is not, we raced and we need to process new 1540 * incoming messages. 1541 */ 1542 return hv_get_bytes_to_read(rbi); 1543} 1544 1545/* 1546 * An API to support in-place processing of incoming VMBUS packets. 1547 */ 1548#define VMBUS_PKT_TRAILER 8 1549 1550static inline struct vmpacket_descriptor * 1551get_next_pkt_raw(struct vmbus_channel *channel) 1552{ 1553 struct hv_ring_buffer_info *ring_info = &channel->inbound; 1554 u32 priv_read_loc = ring_info->priv_read_index; 1555 void *ring_buffer = hv_get_ring_buffer(ring_info); 1556 u32 dsize = ring_info->ring_datasize; 1557 /* 1558 * delta is the difference between what is available to read and 1559 * what was already consumed in place. We commit read index after 1560 * the whole batch is processed. 1561 */ 1562 u32 delta = priv_read_loc >= ring_info->ring_buffer->read_index ? 1563 priv_read_loc - ring_info->ring_buffer->read_index : 1564 (dsize - ring_info->ring_buffer->read_index) + priv_read_loc; 1565 u32 bytes_avail_toread = (hv_get_bytes_to_read(ring_info) - delta); 1566 1567 if (bytes_avail_toread < sizeof(struct vmpacket_descriptor)) 1568 return NULL; 1569 1570 return ring_buffer + priv_read_loc; 1571} 1572 1573/* 1574 * A helper function to step through packets "in-place" 1575 * This API is to be called after each successful call 1576 * get_next_pkt_raw(). 1577 */ 1578static inline void put_pkt_raw(struct vmbus_channel *channel, 1579 struct vmpacket_descriptor *desc) 1580{ 1581 struct hv_ring_buffer_info *ring_info = &channel->inbound; 1582 u32 packetlen = desc->len8 << 3; 1583 u32 dsize = ring_info->ring_datasize; 1584 1585 /* 1586 * Include the packet trailer. 1587 */ 1588 ring_info->priv_read_index += packetlen + VMBUS_PKT_TRAILER; 1589 ring_info->priv_read_index %= dsize; 1590} 1591 1592/* 1593 * This call commits the read index and potentially signals the host. 1594 * Here is the pattern for using the "in-place" consumption APIs: 1595 * 1596 * init_cached_read_index(); 1597 * 1598 * while (get_next_pkt_raw() { 1599 * process the packet "in-place"; 1600 * put_pkt_raw(); 1601 * } 1602 * if (packets processed in place) 1603 * commit_rd_index(); 1604 */ 1605static inline void commit_rd_index(struct vmbus_channel *channel) 1606{ 1607 struct hv_ring_buffer_info *ring_info = &channel->inbound; 1608 /* 1609 * Make sure all reads are done before we update the read index since 1610 * the writer may start writing to the read area once the read index 1611 * is updated. 1612 */ 1613 virt_rmb(); 1614 ring_info->ring_buffer->read_index = ring_info->priv_read_index; 1615 1616 hv_signal_on_read(channel); 1617} 1618 1619 1620#endif /* _HYPERV_H */