at v4.10 214 kB view raw
1/* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75#include <linux/uaccess.h> 76#include <linux/bitops.h> 77#include <linux/capability.h> 78#include <linux/cpu.h> 79#include <linux/types.h> 80#include <linux/kernel.h> 81#include <linux/hash.h> 82#include <linux/slab.h> 83#include <linux/sched.h> 84#include <linux/mutex.h> 85#include <linux/string.h> 86#include <linux/mm.h> 87#include <linux/socket.h> 88#include <linux/sockios.h> 89#include <linux/errno.h> 90#include <linux/interrupt.h> 91#include <linux/if_ether.h> 92#include <linux/netdevice.h> 93#include <linux/etherdevice.h> 94#include <linux/ethtool.h> 95#include <linux/notifier.h> 96#include <linux/skbuff.h> 97#include <linux/bpf.h> 98#include <net/net_namespace.h> 99#include <net/sock.h> 100#include <net/busy_poll.h> 101#include <linux/rtnetlink.h> 102#include <linux/stat.h> 103#include <net/dst.h> 104#include <net/dst_metadata.h> 105#include <net/pkt_sched.h> 106#include <net/checksum.h> 107#include <net/xfrm.h> 108#include <linux/highmem.h> 109#include <linux/init.h> 110#include <linux/module.h> 111#include <linux/netpoll.h> 112#include <linux/rcupdate.h> 113#include <linux/delay.h> 114#include <net/iw_handler.h> 115#include <asm/current.h> 116#include <linux/audit.h> 117#include <linux/dmaengine.h> 118#include <linux/err.h> 119#include <linux/ctype.h> 120#include <linux/if_arp.h> 121#include <linux/if_vlan.h> 122#include <linux/ip.h> 123#include <net/ip.h> 124#include <net/mpls.h> 125#include <linux/ipv6.h> 126#include <linux/in.h> 127#include <linux/jhash.h> 128#include <linux/random.h> 129#include <trace/events/napi.h> 130#include <trace/events/net.h> 131#include <trace/events/skb.h> 132#include <linux/pci.h> 133#include <linux/inetdevice.h> 134#include <linux/cpu_rmap.h> 135#include <linux/static_key.h> 136#include <linux/hashtable.h> 137#include <linux/vmalloc.h> 138#include <linux/if_macvlan.h> 139#include <linux/errqueue.h> 140#include <linux/hrtimer.h> 141#include <linux/netfilter_ingress.h> 142#include <linux/crash_dump.h> 143 144#include "net-sysfs.h" 145 146/* Instead of increasing this, you should create a hash table. */ 147#define MAX_GRO_SKBS 8 148 149/* This should be increased if a protocol with a bigger head is added. */ 150#define GRO_MAX_HEAD (MAX_HEADER + 128) 151 152static DEFINE_SPINLOCK(ptype_lock); 153static DEFINE_SPINLOCK(offload_lock); 154struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 155struct list_head ptype_all __read_mostly; /* Taps */ 156static struct list_head offload_base __read_mostly; 157 158static int netif_rx_internal(struct sk_buff *skb); 159static int call_netdevice_notifiers_info(unsigned long val, 160 struct net_device *dev, 161 struct netdev_notifier_info *info); 162 163/* 164 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 165 * semaphore. 166 * 167 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 168 * 169 * Writers must hold the rtnl semaphore while they loop through the 170 * dev_base_head list, and hold dev_base_lock for writing when they do the 171 * actual updates. This allows pure readers to access the list even 172 * while a writer is preparing to update it. 173 * 174 * To put it another way, dev_base_lock is held for writing only to 175 * protect against pure readers; the rtnl semaphore provides the 176 * protection against other writers. 177 * 178 * See, for example usages, register_netdevice() and 179 * unregister_netdevice(), which must be called with the rtnl 180 * semaphore held. 181 */ 182DEFINE_RWLOCK(dev_base_lock); 183EXPORT_SYMBOL(dev_base_lock); 184 185/* protects napi_hash addition/deletion and napi_gen_id */ 186static DEFINE_SPINLOCK(napi_hash_lock); 187 188static unsigned int napi_gen_id = NR_CPUS; 189static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8); 190 191static seqcount_t devnet_rename_seq; 192 193static inline void dev_base_seq_inc(struct net *net) 194{ 195 while (++net->dev_base_seq == 0); 196} 197 198static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 199{ 200 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ)); 201 202 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 203} 204 205static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 206{ 207 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 208} 209 210static inline void rps_lock(struct softnet_data *sd) 211{ 212#ifdef CONFIG_RPS 213 spin_lock(&sd->input_pkt_queue.lock); 214#endif 215} 216 217static inline void rps_unlock(struct softnet_data *sd) 218{ 219#ifdef CONFIG_RPS 220 spin_unlock(&sd->input_pkt_queue.lock); 221#endif 222} 223 224/* Device list insertion */ 225static void list_netdevice(struct net_device *dev) 226{ 227 struct net *net = dev_net(dev); 228 229 ASSERT_RTNL(); 230 231 write_lock_bh(&dev_base_lock); 232 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 233 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 234 hlist_add_head_rcu(&dev->index_hlist, 235 dev_index_hash(net, dev->ifindex)); 236 write_unlock_bh(&dev_base_lock); 237 238 dev_base_seq_inc(net); 239} 240 241/* Device list removal 242 * caller must respect a RCU grace period before freeing/reusing dev 243 */ 244static void unlist_netdevice(struct net_device *dev) 245{ 246 ASSERT_RTNL(); 247 248 /* Unlink dev from the device chain */ 249 write_lock_bh(&dev_base_lock); 250 list_del_rcu(&dev->dev_list); 251 hlist_del_rcu(&dev->name_hlist); 252 hlist_del_rcu(&dev->index_hlist); 253 write_unlock_bh(&dev_base_lock); 254 255 dev_base_seq_inc(dev_net(dev)); 256} 257 258/* 259 * Our notifier list 260 */ 261 262static RAW_NOTIFIER_HEAD(netdev_chain); 263 264/* 265 * Device drivers call our routines to queue packets here. We empty the 266 * queue in the local softnet handler. 267 */ 268 269DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 270EXPORT_PER_CPU_SYMBOL(softnet_data); 271 272#ifdef CONFIG_LOCKDEP 273/* 274 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 275 * according to dev->type 276 */ 277static const unsigned short netdev_lock_type[] = 278 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 279 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 280 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 281 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 282 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 283 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 284 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 285 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 286 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 287 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 288 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 289 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 290 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 291 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 292 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 293 294static const char *const netdev_lock_name[] = 295 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 296 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 297 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 298 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 299 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 300 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 301 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 302 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 303 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 304 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 305 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 306 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 307 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 308 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 309 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 310 311static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 312static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 313 314static inline unsigned short netdev_lock_pos(unsigned short dev_type) 315{ 316 int i; 317 318 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 319 if (netdev_lock_type[i] == dev_type) 320 return i; 321 /* the last key is used by default */ 322 return ARRAY_SIZE(netdev_lock_type) - 1; 323} 324 325static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 326 unsigned short dev_type) 327{ 328 int i; 329 330 i = netdev_lock_pos(dev_type); 331 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 332 netdev_lock_name[i]); 333} 334 335static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 336{ 337 int i; 338 339 i = netdev_lock_pos(dev->type); 340 lockdep_set_class_and_name(&dev->addr_list_lock, 341 &netdev_addr_lock_key[i], 342 netdev_lock_name[i]); 343} 344#else 345static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 346 unsigned short dev_type) 347{ 348} 349static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 350{ 351} 352#endif 353 354/******************************************************************************* 355 356 Protocol management and registration routines 357 358*******************************************************************************/ 359 360/* 361 * Add a protocol ID to the list. Now that the input handler is 362 * smarter we can dispense with all the messy stuff that used to be 363 * here. 364 * 365 * BEWARE!!! Protocol handlers, mangling input packets, 366 * MUST BE last in hash buckets and checking protocol handlers 367 * MUST start from promiscuous ptype_all chain in net_bh. 368 * It is true now, do not change it. 369 * Explanation follows: if protocol handler, mangling packet, will 370 * be the first on list, it is not able to sense, that packet 371 * is cloned and should be copied-on-write, so that it will 372 * change it and subsequent readers will get broken packet. 373 * --ANK (980803) 374 */ 375 376static inline struct list_head *ptype_head(const struct packet_type *pt) 377{ 378 if (pt->type == htons(ETH_P_ALL)) 379 return pt->dev ? &pt->dev->ptype_all : &ptype_all; 380 else 381 return pt->dev ? &pt->dev->ptype_specific : 382 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 383} 384 385/** 386 * dev_add_pack - add packet handler 387 * @pt: packet type declaration 388 * 389 * Add a protocol handler to the networking stack. The passed &packet_type 390 * is linked into kernel lists and may not be freed until it has been 391 * removed from the kernel lists. 392 * 393 * This call does not sleep therefore it can not 394 * guarantee all CPU's that are in middle of receiving packets 395 * will see the new packet type (until the next received packet). 396 */ 397 398void dev_add_pack(struct packet_type *pt) 399{ 400 struct list_head *head = ptype_head(pt); 401 402 spin_lock(&ptype_lock); 403 list_add_rcu(&pt->list, head); 404 spin_unlock(&ptype_lock); 405} 406EXPORT_SYMBOL(dev_add_pack); 407 408/** 409 * __dev_remove_pack - remove packet handler 410 * @pt: packet type declaration 411 * 412 * Remove a protocol handler that was previously added to the kernel 413 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 414 * from the kernel lists and can be freed or reused once this function 415 * returns. 416 * 417 * The packet type might still be in use by receivers 418 * and must not be freed until after all the CPU's have gone 419 * through a quiescent state. 420 */ 421void __dev_remove_pack(struct packet_type *pt) 422{ 423 struct list_head *head = ptype_head(pt); 424 struct packet_type *pt1; 425 426 spin_lock(&ptype_lock); 427 428 list_for_each_entry(pt1, head, list) { 429 if (pt == pt1) { 430 list_del_rcu(&pt->list); 431 goto out; 432 } 433 } 434 435 pr_warn("dev_remove_pack: %p not found\n", pt); 436out: 437 spin_unlock(&ptype_lock); 438} 439EXPORT_SYMBOL(__dev_remove_pack); 440 441/** 442 * dev_remove_pack - remove packet handler 443 * @pt: packet type declaration 444 * 445 * Remove a protocol handler that was previously added to the kernel 446 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 447 * from the kernel lists and can be freed or reused once this function 448 * returns. 449 * 450 * This call sleeps to guarantee that no CPU is looking at the packet 451 * type after return. 452 */ 453void dev_remove_pack(struct packet_type *pt) 454{ 455 __dev_remove_pack(pt); 456 457 synchronize_net(); 458} 459EXPORT_SYMBOL(dev_remove_pack); 460 461 462/** 463 * dev_add_offload - register offload handlers 464 * @po: protocol offload declaration 465 * 466 * Add protocol offload handlers to the networking stack. The passed 467 * &proto_offload is linked into kernel lists and may not be freed until 468 * it has been removed from the kernel lists. 469 * 470 * This call does not sleep therefore it can not 471 * guarantee all CPU's that are in middle of receiving packets 472 * will see the new offload handlers (until the next received packet). 473 */ 474void dev_add_offload(struct packet_offload *po) 475{ 476 struct packet_offload *elem; 477 478 spin_lock(&offload_lock); 479 list_for_each_entry(elem, &offload_base, list) { 480 if (po->priority < elem->priority) 481 break; 482 } 483 list_add_rcu(&po->list, elem->list.prev); 484 spin_unlock(&offload_lock); 485} 486EXPORT_SYMBOL(dev_add_offload); 487 488/** 489 * __dev_remove_offload - remove offload handler 490 * @po: packet offload declaration 491 * 492 * Remove a protocol offload handler that was previously added to the 493 * kernel offload handlers by dev_add_offload(). The passed &offload_type 494 * is removed from the kernel lists and can be freed or reused once this 495 * function returns. 496 * 497 * The packet type might still be in use by receivers 498 * and must not be freed until after all the CPU's have gone 499 * through a quiescent state. 500 */ 501static void __dev_remove_offload(struct packet_offload *po) 502{ 503 struct list_head *head = &offload_base; 504 struct packet_offload *po1; 505 506 spin_lock(&offload_lock); 507 508 list_for_each_entry(po1, head, list) { 509 if (po == po1) { 510 list_del_rcu(&po->list); 511 goto out; 512 } 513 } 514 515 pr_warn("dev_remove_offload: %p not found\n", po); 516out: 517 spin_unlock(&offload_lock); 518} 519 520/** 521 * dev_remove_offload - remove packet offload handler 522 * @po: packet offload declaration 523 * 524 * Remove a packet offload handler that was previously added to the kernel 525 * offload handlers by dev_add_offload(). The passed &offload_type is 526 * removed from the kernel lists and can be freed or reused once this 527 * function returns. 528 * 529 * This call sleeps to guarantee that no CPU is looking at the packet 530 * type after return. 531 */ 532void dev_remove_offload(struct packet_offload *po) 533{ 534 __dev_remove_offload(po); 535 536 synchronize_net(); 537} 538EXPORT_SYMBOL(dev_remove_offload); 539 540/****************************************************************************** 541 542 Device Boot-time Settings Routines 543 544*******************************************************************************/ 545 546/* Boot time configuration table */ 547static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 548 549/** 550 * netdev_boot_setup_add - add new setup entry 551 * @name: name of the device 552 * @map: configured settings for the device 553 * 554 * Adds new setup entry to the dev_boot_setup list. The function 555 * returns 0 on error and 1 on success. This is a generic routine to 556 * all netdevices. 557 */ 558static int netdev_boot_setup_add(char *name, struct ifmap *map) 559{ 560 struct netdev_boot_setup *s; 561 int i; 562 563 s = dev_boot_setup; 564 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 565 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 566 memset(s[i].name, 0, sizeof(s[i].name)); 567 strlcpy(s[i].name, name, IFNAMSIZ); 568 memcpy(&s[i].map, map, sizeof(s[i].map)); 569 break; 570 } 571 } 572 573 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 574} 575 576/** 577 * netdev_boot_setup_check - check boot time settings 578 * @dev: the netdevice 579 * 580 * Check boot time settings for the device. 581 * The found settings are set for the device to be used 582 * later in the device probing. 583 * Returns 0 if no settings found, 1 if they are. 584 */ 585int netdev_boot_setup_check(struct net_device *dev) 586{ 587 struct netdev_boot_setup *s = dev_boot_setup; 588 int i; 589 590 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 591 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 592 !strcmp(dev->name, s[i].name)) { 593 dev->irq = s[i].map.irq; 594 dev->base_addr = s[i].map.base_addr; 595 dev->mem_start = s[i].map.mem_start; 596 dev->mem_end = s[i].map.mem_end; 597 return 1; 598 } 599 } 600 return 0; 601} 602EXPORT_SYMBOL(netdev_boot_setup_check); 603 604 605/** 606 * netdev_boot_base - get address from boot time settings 607 * @prefix: prefix for network device 608 * @unit: id for network device 609 * 610 * Check boot time settings for the base address of device. 611 * The found settings are set for the device to be used 612 * later in the device probing. 613 * Returns 0 if no settings found. 614 */ 615unsigned long netdev_boot_base(const char *prefix, int unit) 616{ 617 const struct netdev_boot_setup *s = dev_boot_setup; 618 char name[IFNAMSIZ]; 619 int i; 620 621 sprintf(name, "%s%d", prefix, unit); 622 623 /* 624 * If device already registered then return base of 1 625 * to indicate not to probe for this interface 626 */ 627 if (__dev_get_by_name(&init_net, name)) 628 return 1; 629 630 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 631 if (!strcmp(name, s[i].name)) 632 return s[i].map.base_addr; 633 return 0; 634} 635 636/* 637 * Saves at boot time configured settings for any netdevice. 638 */ 639int __init netdev_boot_setup(char *str) 640{ 641 int ints[5]; 642 struct ifmap map; 643 644 str = get_options(str, ARRAY_SIZE(ints), ints); 645 if (!str || !*str) 646 return 0; 647 648 /* Save settings */ 649 memset(&map, 0, sizeof(map)); 650 if (ints[0] > 0) 651 map.irq = ints[1]; 652 if (ints[0] > 1) 653 map.base_addr = ints[2]; 654 if (ints[0] > 2) 655 map.mem_start = ints[3]; 656 if (ints[0] > 3) 657 map.mem_end = ints[4]; 658 659 /* Add new entry to the list */ 660 return netdev_boot_setup_add(str, &map); 661} 662 663__setup("netdev=", netdev_boot_setup); 664 665/******************************************************************************* 666 667 Device Interface Subroutines 668 669*******************************************************************************/ 670 671/** 672 * dev_get_iflink - get 'iflink' value of a interface 673 * @dev: targeted interface 674 * 675 * Indicates the ifindex the interface is linked to. 676 * Physical interfaces have the same 'ifindex' and 'iflink' values. 677 */ 678 679int dev_get_iflink(const struct net_device *dev) 680{ 681 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink) 682 return dev->netdev_ops->ndo_get_iflink(dev); 683 684 return dev->ifindex; 685} 686EXPORT_SYMBOL(dev_get_iflink); 687 688/** 689 * dev_fill_metadata_dst - Retrieve tunnel egress information. 690 * @dev: targeted interface 691 * @skb: The packet. 692 * 693 * For better visibility of tunnel traffic OVS needs to retrieve 694 * egress tunnel information for a packet. Following API allows 695 * user to get this info. 696 */ 697int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb) 698{ 699 struct ip_tunnel_info *info; 700 701 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst) 702 return -EINVAL; 703 704 info = skb_tunnel_info_unclone(skb); 705 if (!info) 706 return -ENOMEM; 707 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX))) 708 return -EINVAL; 709 710 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb); 711} 712EXPORT_SYMBOL_GPL(dev_fill_metadata_dst); 713 714/** 715 * __dev_get_by_name - find a device by its name 716 * @net: the applicable net namespace 717 * @name: name to find 718 * 719 * Find an interface by name. Must be called under RTNL semaphore 720 * or @dev_base_lock. If the name is found a pointer to the device 721 * is returned. If the name is not found then %NULL is returned. The 722 * reference counters are not incremented so the caller must be 723 * careful with locks. 724 */ 725 726struct net_device *__dev_get_by_name(struct net *net, const char *name) 727{ 728 struct net_device *dev; 729 struct hlist_head *head = dev_name_hash(net, name); 730 731 hlist_for_each_entry(dev, head, name_hlist) 732 if (!strncmp(dev->name, name, IFNAMSIZ)) 733 return dev; 734 735 return NULL; 736} 737EXPORT_SYMBOL(__dev_get_by_name); 738 739/** 740 * dev_get_by_name_rcu - find a device by its name 741 * @net: the applicable net namespace 742 * @name: name to find 743 * 744 * Find an interface by name. 745 * If the name is found a pointer to the device is returned. 746 * If the name is not found then %NULL is returned. 747 * The reference counters are not incremented so the caller must be 748 * careful with locks. The caller must hold RCU lock. 749 */ 750 751struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 752{ 753 struct net_device *dev; 754 struct hlist_head *head = dev_name_hash(net, name); 755 756 hlist_for_each_entry_rcu(dev, head, name_hlist) 757 if (!strncmp(dev->name, name, IFNAMSIZ)) 758 return dev; 759 760 return NULL; 761} 762EXPORT_SYMBOL(dev_get_by_name_rcu); 763 764/** 765 * dev_get_by_name - find a device by its name 766 * @net: the applicable net namespace 767 * @name: name to find 768 * 769 * Find an interface by name. This can be called from any 770 * context and does its own locking. The returned handle has 771 * the usage count incremented and the caller must use dev_put() to 772 * release it when it is no longer needed. %NULL is returned if no 773 * matching device is found. 774 */ 775 776struct net_device *dev_get_by_name(struct net *net, const char *name) 777{ 778 struct net_device *dev; 779 780 rcu_read_lock(); 781 dev = dev_get_by_name_rcu(net, name); 782 if (dev) 783 dev_hold(dev); 784 rcu_read_unlock(); 785 return dev; 786} 787EXPORT_SYMBOL(dev_get_by_name); 788 789/** 790 * __dev_get_by_index - find a device by its ifindex 791 * @net: the applicable net namespace 792 * @ifindex: index of device 793 * 794 * Search for an interface by index. Returns %NULL if the device 795 * is not found or a pointer to the device. The device has not 796 * had its reference counter increased so the caller must be careful 797 * about locking. The caller must hold either the RTNL semaphore 798 * or @dev_base_lock. 799 */ 800 801struct net_device *__dev_get_by_index(struct net *net, int ifindex) 802{ 803 struct net_device *dev; 804 struct hlist_head *head = dev_index_hash(net, ifindex); 805 806 hlist_for_each_entry(dev, head, index_hlist) 807 if (dev->ifindex == ifindex) 808 return dev; 809 810 return NULL; 811} 812EXPORT_SYMBOL(__dev_get_by_index); 813 814/** 815 * dev_get_by_index_rcu - find a device by its ifindex 816 * @net: the applicable net namespace 817 * @ifindex: index of device 818 * 819 * Search for an interface by index. Returns %NULL if the device 820 * is not found or a pointer to the device. The device has not 821 * had its reference counter increased so the caller must be careful 822 * about locking. The caller must hold RCU lock. 823 */ 824 825struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 826{ 827 struct net_device *dev; 828 struct hlist_head *head = dev_index_hash(net, ifindex); 829 830 hlist_for_each_entry_rcu(dev, head, index_hlist) 831 if (dev->ifindex == ifindex) 832 return dev; 833 834 return NULL; 835} 836EXPORT_SYMBOL(dev_get_by_index_rcu); 837 838 839/** 840 * dev_get_by_index - find a device by its ifindex 841 * @net: the applicable net namespace 842 * @ifindex: index of device 843 * 844 * Search for an interface by index. Returns NULL if the device 845 * is not found or a pointer to the device. The device returned has 846 * had a reference added and the pointer is safe until the user calls 847 * dev_put to indicate they have finished with it. 848 */ 849 850struct net_device *dev_get_by_index(struct net *net, int ifindex) 851{ 852 struct net_device *dev; 853 854 rcu_read_lock(); 855 dev = dev_get_by_index_rcu(net, ifindex); 856 if (dev) 857 dev_hold(dev); 858 rcu_read_unlock(); 859 return dev; 860} 861EXPORT_SYMBOL(dev_get_by_index); 862 863/** 864 * netdev_get_name - get a netdevice name, knowing its ifindex. 865 * @net: network namespace 866 * @name: a pointer to the buffer where the name will be stored. 867 * @ifindex: the ifindex of the interface to get the name from. 868 * 869 * The use of raw_seqcount_begin() and cond_resched() before 870 * retrying is required as we want to give the writers a chance 871 * to complete when CONFIG_PREEMPT is not set. 872 */ 873int netdev_get_name(struct net *net, char *name, int ifindex) 874{ 875 struct net_device *dev; 876 unsigned int seq; 877 878retry: 879 seq = raw_seqcount_begin(&devnet_rename_seq); 880 rcu_read_lock(); 881 dev = dev_get_by_index_rcu(net, ifindex); 882 if (!dev) { 883 rcu_read_unlock(); 884 return -ENODEV; 885 } 886 887 strcpy(name, dev->name); 888 rcu_read_unlock(); 889 if (read_seqcount_retry(&devnet_rename_seq, seq)) { 890 cond_resched(); 891 goto retry; 892 } 893 894 return 0; 895} 896 897/** 898 * dev_getbyhwaddr_rcu - find a device by its hardware address 899 * @net: the applicable net namespace 900 * @type: media type of device 901 * @ha: hardware address 902 * 903 * Search for an interface by MAC address. Returns NULL if the device 904 * is not found or a pointer to the device. 905 * The caller must hold RCU or RTNL. 906 * The returned device has not had its ref count increased 907 * and the caller must therefore be careful about locking 908 * 909 */ 910 911struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 912 const char *ha) 913{ 914 struct net_device *dev; 915 916 for_each_netdev_rcu(net, dev) 917 if (dev->type == type && 918 !memcmp(dev->dev_addr, ha, dev->addr_len)) 919 return dev; 920 921 return NULL; 922} 923EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 924 925struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 926{ 927 struct net_device *dev; 928 929 ASSERT_RTNL(); 930 for_each_netdev(net, dev) 931 if (dev->type == type) 932 return dev; 933 934 return NULL; 935} 936EXPORT_SYMBOL(__dev_getfirstbyhwtype); 937 938struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 939{ 940 struct net_device *dev, *ret = NULL; 941 942 rcu_read_lock(); 943 for_each_netdev_rcu(net, dev) 944 if (dev->type == type) { 945 dev_hold(dev); 946 ret = dev; 947 break; 948 } 949 rcu_read_unlock(); 950 return ret; 951} 952EXPORT_SYMBOL(dev_getfirstbyhwtype); 953 954/** 955 * __dev_get_by_flags - find any device with given flags 956 * @net: the applicable net namespace 957 * @if_flags: IFF_* values 958 * @mask: bitmask of bits in if_flags to check 959 * 960 * Search for any interface with the given flags. Returns NULL if a device 961 * is not found or a pointer to the device. Must be called inside 962 * rtnl_lock(), and result refcount is unchanged. 963 */ 964 965struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags, 966 unsigned short mask) 967{ 968 struct net_device *dev, *ret; 969 970 ASSERT_RTNL(); 971 972 ret = NULL; 973 for_each_netdev(net, dev) { 974 if (((dev->flags ^ if_flags) & mask) == 0) { 975 ret = dev; 976 break; 977 } 978 } 979 return ret; 980} 981EXPORT_SYMBOL(__dev_get_by_flags); 982 983/** 984 * dev_valid_name - check if name is okay for network device 985 * @name: name string 986 * 987 * Network device names need to be valid file names to 988 * to allow sysfs to work. We also disallow any kind of 989 * whitespace. 990 */ 991bool dev_valid_name(const char *name) 992{ 993 if (*name == '\0') 994 return false; 995 if (strlen(name) >= IFNAMSIZ) 996 return false; 997 if (!strcmp(name, ".") || !strcmp(name, "..")) 998 return false; 999 1000 while (*name) { 1001 if (*name == '/' || *name == ':' || isspace(*name)) 1002 return false; 1003 name++; 1004 } 1005 return true; 1006} 1007EXPORT_SYMBOL(dev_valid_name); 1008 1009/** 1010 * __dev_alloc_name - allocate a name for a device 1011 * @net: network namespace to allocate the device name in 1012 * @name: name format string 1013 * @buf: scratch buffer and result name string 1014 * 1015 * Passed a format string - eg "lt%d" it will try and find a suitable 1016 * id. It scans list of devices to build up a free map, then chooses 1017 * the first empty slot. The caller must hold the dev_base or rtnl lock 1018 * while allocating the name and adding the device in order to avoid 1019 * duplicates. 1020 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1021 * Returns the number of the unit assigned or a negative errno code. 1022 */ 1023 1024static int __dev_alloc_name(struct net *net, const char *name, char *buf) 1025{ 1026 int i = 0; 1027 const char *p; 1028 const int max_netdevices = 8*PAGE_SIZE; 1029 unsigned long *inuse; 1030 struct net_device *d; 1031 1032 p = strnchr(name, IFNAMSIZ-1, '%'); 1033 if (p) { 1034 /* 1035 * Verify the string as this thing may have come from 1036 * the user. There must be either one "%d" and no other "%" 1037 * characters. 1038 */ 1039 if (p[1] != 'd' || strchr(p + 2, '%')) 1040 return -EINVAL; 1041 1042 /* Use one page as a bit array of possible slots */ 1043 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 1044 if (!inuse) 1045 return -ENOMEM; 1046 1047 for_each_netdev(net, d) { 1048 if (!sscanf(d->name, name, &i)) 1049 continue; 1050 if (i < 0 || i >= max_netdevices) 1051 continue; 1052 1053 /* avoid cases where sscanf is not exact inverse of printf */ 1054 snprintf(buf, IFNAMSIZ, name, i); 1055 if (!strncmp(buf, d->name, IFNAMSIZ)) 1056 set_bit(i, inuse); 1057 } 1058 1059 i = find_first_zero_bit(inuse, max_netdevices); 1060 free_page((unsigned long) inuse); 1061 } 1062 1063 if (buf != name) 1064 snprintf(buf, IFNAMSIZ, name, i); 1065 if (!__dev_get_by_name(net, buf)) 1066 return i; 1067 1068 /* It is possible to run out of possible slots 1069 * when the name is long and there isn't enough space left 1070 * for the digits, or if all bits are used. 1071 */ 1072 return -ENFILE; 1073} 1074 1075/** 1076 * dev_alloc_name - allocate a name for a device 1077 * @dev: device 1078 * @name: name format string 1079 * 1080 * Passed a format string - eg "lt%d" it will try and find a suitable 1081 * id. It scans list of devices to build up a free map, then chooses 1082 * the first empty slot. The caller must hold the dev_base or rtnl lock 1083 * while allocating the name and adding the device in order to avoid 1084 * duplicates. 1085 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1086 * Returns the number of the unit assigned or a negative errno code. 1087 */ 1088 1089int dev_alloc_name(struct net_device *dev, const char *name) 1090{ 1091 char buf[IFNAMSIZ]; 1092 struct net *net; 1093 int ret; 1094 1095 BUG_ON(!dev_net(dev)); 1096 net = dev_net(dev); 1097 ret = __dev_alloc_name(net, name, buf); 1098 if (ret >= 0) 1099 strlcpy(dev->name, buf, IFNAMSIZ); 1100 return ret; 1101} 1102EXPORT_SYMBOL(dev_alloc_name); 1103 1104static int dev_alloc_name_ns(struct net *net, 1105 struct net_device *dev, 1106 const char *name) 1107{ 1108 char buf[IFNAMSIZ]; 1109 int ret; 1110 1111 ret = __dev_alloc_name(net, name, buf); 1112 if (ret >= 0) 1113 strlcpy(dev->name, buf, IFNAMSIZ); 1114 return ret; 1115} 1116 1117static int dev_get_valid_name(struct net *net, 1118 struct net_device *dev, 1119 const char *name) 1120{ 1121 BUG_ON(!net); 1122 1123 if (!dev_valid_name(name)) 1124 return -EINVAL; 1125 1126 if (strchr(name, '%')) 1127 return dev_alloc_name_ns(net, dev, name); 1128 else if (__dev_get_by_name(net, name)) 1129 return -EEXIST; 1130 else if (dev->name != name) 1131 strlcpy(dev->name, name, IFNAMSIZ); 1132 1133 return 0; 1134} 1135 1136/** 1137 * dev_change_name - change name of a device 1138 * @dev: device 1139 * @newname: name (or format string) must be at least IFNAMSIZ 1140 * 1141 * Change name of a device, can pass format strings "eth%d". 1142 * for wildcarding. 1143 */ 1144int dev_change_name(struct net_device *dev, const char *newname) 1145{ 1146 unsigned char old_assign_type; 1147 char oldname[IFNAMSIZ]; 1148 int err = 0; 1149 int ret; 1150 struct net *net; 1151 1152 ASSERT_RTNL(); 1153 BUG_ON(!dev_net(dev)); 1154 1155 net = dev_net(dev); 1156 if (dev->flags & IFF_UP) 1157 return -EBUSY; 1158 1159 write_seqcount_begin(&devnet_rename_seq); 1160 1161 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) { 1162 write_seqcount_end(&devnet_rename_seq); 1163 return 0; 1164 } 1165 1166 memcpy(oldname, dev->name, IFNAMSIZ); 1167 1168 err = dev_get_valid_name(net, dev, newname); 1169 if (err < 0) { 1170 write_seqcount_end(&devnet_rename_seq); 1171 return err; 1172 } 1173 1174 if (oldname[0] && !strchr(oldname, '%')) 1175 netdev_info(dev, "renamed from %s\n", oldname); 1176 1177 old_assign_type = dev->name_assign_type; 1178 dev->name_assign_type = NET_NAME_RENAMED; 1179 1180rollback: 1181 ret = device_rename(&dev->dev, dev->name); 1182 if (ret) { 1183 memcpy(dev->name, oldname, IFNAMSIZ); 1184 dev->name_assign_type = old_assign_type; 1185 write_seqcount_end(&devnet_rename_seq); 1186 return ret; 1187 } 1188 1189 write_seqcount_end(&devnet_rename_seq); 1190 1191 netdev_adjacent_rename_links(dev, oldname); 1192 1193 write_lock_bh(&dev_base_lock); 1194 hlist_del_rcu(&dev->name_hlist); 1195 write_unlock_bh(&dev_base_lock); 1196 1197 synchronize_rcu(); 1198 1199 write_lock_bh(&dev_base_lock); 1200 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 1201 write_unlock_bh(&dev_base_lock); 1202 1203 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1204 ret = notifier_to_errno(ret); 1205 1206 if (ret) { 1207 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1208 if (err >= 0) { 1209 err = ret; 1210 write_seqcount_begin(&devnet_rename_seq); 1211 memcpy(dev->name, oldname, IFNAMSIZ); 1212 memcpy(oldname, newname, IFNAMSIZ); 1213 dev->name_assign_type = old_assign_type; 1214 old_assign_type = NET_NAME_RENAMED; 1215 goto rollback; 1216 } else { 1217 pr_err("%s: name change rollback failed: %d\n", 1218 dev->name, ret); 1219 } 1220 } 1221 1222 return err; 1223} 1224 1225/** 1226 * dev_set_alias - change ifalias of a device 1227 * @dev: device 1228 * @alias: name up to IFALIASZ 1229 * @len: limit of bytes to copy from info 1230 * 1231 * Set ifalias for a device, 1232 */ 1233int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1234{ 1235 char *new_ifalias; 1236 1237 ASSERT_RTNL(); 1238 1239 if (len >= IFALIASZ) 1240 return -EINVAL; 1241 1242 if (!len) { 1243 kfree(dev->ifalias); 1244 dev->ifalias = NULL; 1245 return 0; 1246 } 1247 1248 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL); 1249 if (!new_ifalias) 1250 return -ENOMEM; 1251 dev->ifalias = new_ifalias; 1252 1253 strlcpy(dev->ifalias, alias, len+1); 1254 return len; 1255} 1256 1257 1258/** 1259 * netdev_features_change - device changes features 1260 * @dev: device to cause notification 1261 * 1262 * Called to indicate a device has changed features. 1263 */ 1264void netdev_features_change(struct net_device *dev) 1265{ 1266 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1267} 1268EXPORT_SYMBOL(netdev_features_change); 1269 1270/** 1271 * netdev_state_change - device changes state 1272 * @dev: device to cause notification 1273 * 1274 * Called to indicate a device has changed state. This function calls 1275 * the notifier chains for netdev_chain and sends a NEWLINK message 1276 * to the routing socket. 1277 */ 1278void netdev_state_change(struct net_device *dev) 1279{ 1280 if (dev->flags & IFF_UP) { 1281 struct netdev_notifier_change_info change_info; 1282 1283 change_info.flags_changed = 0; 1284 call_netdevice_notifiers_info(NETDEV_CHANGE, dev, 1285 &change_info.info); 1286 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL); 1287 } 1288} 1289EXPORT_SYMBOL(netdev_state_change); 1290 1291/** 1292 * netdev_notify_peers - notify network peers about existence of @dev 1293 * @dev: network device 1294 * 1295 * Generate traffic such that interested network peers are aware of 1296 * @dev, such as by generating a gratuitous ARP. This may be used when 1297 * a device wants to inform the rest of the network about some sort of 1298 * reconfiguration such as a failover event or virtual machine 1299 * migration. 1300 */ 1301void netdev_notify_peers(struct net_device *dev) 1302{ 1303 rtnl_lock(); 1304 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1305 rtnl_unlock(); 1306} 1307EXPORT_SYMBOL(netdev_notify_peers); 1308 1309static int __dev_open(struct net_device *dev) 1310{ 1311 const struct net_device_ops *ops = dev->netdev_ops; 1312 int ret; 1313 1314 ASSERT_RTNL(); 1315 1316 if (!netif_device_present(dev)) 1317 return -ENODEV; 1318 1319 /* Block netpoll from trying to do any rx path servicing. 1320 * If we don't do this there is a chance ndo_poll_controller 1321 * or ndo_poll may be running while we open the device 1322 */ 1323 netpoll_poll_disable(dev); 1324 1325 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev); 1326 ret = notifier_to_errno(ret); 1327 if (ret) 1328 return ret; 1329 1330 set_bit(__LINK_STATE_START, &dev->state); 1331 1332 if (ops->ndo_validate_addr) 1333 ret = ops->ndo_validate_addr(dev); 1334 1335 if (!ret && ops->ndo_open) 1336 ret = ops->ndo_open(dev); 1337 1338 netpoll_poll_enable(dev); 1339 1340 if (ret) 1341 clear_bit(__LINK_STATE_START, &dev->state); 1342 else { 1343 dev->flags |= IFF_UP; 1344 dev_set_rx_mode(dev); 1345 dev_activate(dev); 1346 add_device_randomness(dev->dev_addr, dev->addr_len); 1347 } 1348 1349 return ret; 1350} 1351 1352/** 1353 * dev_open - prepare an interface for use. 1354 * @dev: device to open 1355 * 1356 * Takes a device from down to up state. The device's private open 1357 * function is invoked and then the multicast lists are loaded. Finally 1358 * the device is moved into the up state and a %NETDEV_UP message is 1359 * sent to the netdev notifier chain. 1360 * 1361 * Calling this function on an active interface is a nop. On a failure 1362 * a negative errno code is returned. 1363 */ 1364int dev_open(struct net_device *dev) 1365{ 1366 int ret; 1367 1368 if (dev->flags & IFF_UP) 1369 return 0; 1370 1371 ret = __dev_open(dev); 1372 if (ret < 0) 1373 return ret; 1374 1375 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1376 call_netdevice_notifiers(NETDEV_UP, dev); 1377 1378 return ret; 1379} 1380EXPORT_SYMBOL(dev_open); 1381 1382static int __dev_close_many(struct list_head *head) 1383{ 1384 struct net_device *dev; 1385 1386 ASSERT_RTNL(); 1387 might_sleep(); 1388 1389 list_for_each_entry(dev, head, close_list) { 1390 /* Temporarily disable netpoll until the interface is down */ 1391 netpoll_poll_disable(dev); 1392 1393 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1394 1395 clear_bit(__LINK_STATE_START, &dev->state); 1396 1397 /* Synchronize to scheduled poll. We cannot touch poll list, it 1398 * can be even on different cpu. So just clear netif_running(). 1399 * 1400 * dev->stop() will invoke napi_disable() on all of it's 1401 * napi_struct instances on this device. 1402 */ 1403 smp_mb__after_atomic(); /* Commit netif_running(). */ 1404 } 1405 1406 dev_deactivate_many(head); 1407 1408 list_for_each_entry(dev, head, close_list) { 1409 const struct net_device_ops *ops = dev->netdev_ops; 1410 1411 /* 1412 * Call the device specific close. This cannot fail. 1413 * Only if device is UP 1414 * 1415 * We allow it to be called even after a DETACH hot-plug 1416 * event. 1417 */ 1418 if (ops->ndo_stop) 1419 ops->ndo_stop(dev); 1420 1421 dev->flags &= ~IFF_UP; 1422 netpoll_poll_enable(dev); 1423 } 1424 1425 return 0; 1426} 1427 1428static int __dev_close(struct net_device *dev) 1429{ 1430 int retval; 1431 LIST_HEAD(single); 1432 1433 list_add(&dev->close_list, &single); 1434 retval = __dev_close_many(&single); 1435 list_del(&single); 1436 1437 return retval; 1438} 1439 1440int dev_close_many(struct list_head *head, bool unlink) 1441{ 1442 struct net_device *dev, *tmp; 1443 1444 /* Remove the devices that don't need to be closed */ 1445 list_for_each_entry_safe(dev, tmp, head, close_list) 1446 if (!(dev->flags & IFF_UP)) 1447 list_del_init(&dev->close_list); 1448 1449 __dev_close_many(head); 1450 1451 list_for_each_entry_safe(dev, tmp, head, close_list) { 1452 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1453 call_netdevice_notifiers(NETDEV_DOWN, dev); 1454 if (unlink) 1455 list_del_init(&dev->close_list); 1456 } 1457 1458 return 0; 1459} 1460EXPORT_SYMBOL(dev_close_many); 1461 1462/** 1463 * dev_close - shutdown an interface. 1464 * @dev: device to shutdown 1465 * 1466 * This function moves an active device into down state. A 1467 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1468 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1469 * chain. 1470 */ 1471int dev_close(struct net_device *dev) 1472{ 1473 if (dev->flags & IFF_UP) { 1474 LIST_HEAD(single); 1475 1476 list_add(&dev->close_list, &single); 1477 dev_close_many(&single, true); 1478 list_del(&single); 1479 } 1480 return 0; 1481} 1482EXPORT_SYMBOL(dev_close); 1483 1484 1485/** 1486 * dev_disable_lro - disable Large Receive Offload on a device 1487 * @dev: device 1488 * 1489 * Disable Large Receive Offload (LRO) on a net device. Must be 1490 * called under RTNL. This is needed if received packets may be 1491 * forwarded to another interface. 1492 */ 1493void dev_disable_lro(struct net_device *dev) 1494{ 1495 struct net_device *lower_dev; 1496 struct list_head *iter; 1497 1498 dev->wanted_features &= ~NETIF_F_LRO; 1499 netdev_update_features(dev); 1500 1501 if (unlikely(dev->features & NETIF_F_LRO)) 1502 netdev_WARN(dev, "failed to disable LRO!\n"); 1503 1504 netdev_for_each_lower_dev(dev, lower_dev, iter) 1505 dev_disable_lro(lower_dev); 1506} 1507EXPORT_SYMBOL(dev_disable_lro); 1508 1509static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, 1510 struct net_device *dev) 1511{ 1512 struct netdev_notifier_info info; 1513 1514 netdev_notifier_info_init(&info, dev); 1515 return nb->notifier_call(nb, val, &info); 1516} 1517 1518static int dev_boot_phase = 1; 1519 1520/** 1521 * register_netdevice_notifier - register a network notifier block 1522 * @nb: notifier 1523 * 1524 * Register a notifier to be called when network device events occur. 1525 * The notifier passed is linked into the kernel structures and must 1526 * not be reused until it has been unregistered. A negative errno code 1527 * is returned on a failure. 1528 * 1529 * When registered all registration and up events are replayed 1530 * to the new notifier to allow device to have a race free 1531 * view of the network device list. 1532 */ 1533 1534int register_netdevice_notifier(struct notifier_block *nb) 1535{ 1536 struct net_device *dev; 1537 struct net_device *last; 1538 struct net *net; 1539 int err; 1540 1541 rtnl_lock(); 1542 err = raw_notifier_chain_register(&netdev_chain, nb); 1543 if (err) 1544 goto unlock; 1545 if (dev_boot_phase) 1546 goto unlock; 1547 for_each_net(net) { 1548 for_each_netdev(net, dev) { 1549 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); 1550 err = notifier_to_errno(err); 1551 if (err) 1552 goto rollback; 1553 1554 if (!(dev->flags & IFF_UP)) 1555 continue; 1556 1557 call_netdevice_notifier(nb, NETDEV_UP, dev); 1558 } 1559 } 1560 1561unlock: 1562 rtnl_unlock(); 1563 return err; 1564 1565rollback: 1566 last = dev; 1567 for_each_net(net) { 1568 for_each_netdev(net, dev) { 1569 if (dev == last) 1570 goto outroll; 1571 1572 if (dev->flags & IFF_UP) { 1573 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1574 dev); 1575 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1576 } 1577 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1578 } 1579 } 1580 1581outroll: 1582 raw_notifier_chain_unregister(&netdev_chain, nb); 1583 goto unlock; 1584} 1585EXPORT_SYMBOL(register_netdevice_notifier); 1586 1587/** 1588 * unregister_netdevice_notifier - unregister a network notifier block 1589 * @nb: notifier 1590 * 1591 * Unregister a notifier previously registered by 1592 * register_netdevice_notifier(). The notifier is unlinked into the 1593 * kernel structures and may then be reused. A negative errno code 1594 * is returned on a failure. 1595 * 1596 * After unregistering unregister and down device events are synthesized 1597 * for all devices on the device list to the removed notifier to remove 1598 * the need for special case cleanup code. 1599 */ 1600 1601int unregister_netdevice_notifier(struct notifier_block *nb) 1602{ 1603 struct net_device *dev; 1604 struct net *net; 1605 int err; 1606 1607 rtnl_lock(); 1608 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1609 if (err) 1610 goto unlock; 1611 1612 for_each_net(net) { 1613 for_each_netdev(net, dev) { 1614 if (dev->flags & IFF_UP) { 1615 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1616 dev); 1617 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1618 } 1619 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1620 } 1621 } 1622unlock: 1623 rtnl_unlock(); 1624 return err; 1625} 1626EXPORT_SYMBOL(unregister_netdevice_notifier); 1627 1628/** 1629 * call_netdevice_notifiers_info - call all network notifier blocks 1630 * @val: value passed unmodified to notifier function 1631 * @dev: net_device pointer passed unmodified to notifier function 1632 * @info: notifier information data 1633 * 1634 * Call all network notifier blocks. Parameters and return value 1635 * are as for raw_notifier_call_chain(). 1636 */ 1637 1638static int call_netdevice_notifiers_info(unsigned long val, 1639 struct net_device *dev, 1640 struct netdev_notifier_info *info) 1641{ 1642 ASSERT_RTNL(); 1643 netdev_notifier_info_init(info, dev); 1644 return raw_notifier_call_chain(&netdev_chain, val, info); 1645} 1646 1647/** 1648 * call_netdevice_notifiers - call all network notifier blocks 1649 * @val: value passed unmodified to notifier function 1650 * @dev: net_device pointer passed unmodified to notifier function 1651 * 1652 * Call all network notifier blocks. Parameters and return value 1653 * are as for raw_notifier_call_chain(). 1654 */ 1655 1656int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1657{ 1658 struct netdev_notifier_info info; 1659 1660 return call_netdevice_notifiers_info(val, dev, &info); 1661} 1662EXPORT_SYMBOL(call_netdevice_notifiers); 1663 1664#ifdef CONFIG_NET_INGRESS 1665static struct static_key ingress_needed __read_mostly; 1666 1667void net_inc_ingress_queue(void) 1668{ 1669 static_key_slow_inc(&ingress_needed); 1670} 1671EXPORT_SYMBOL_GPL(net_inc_ingress_queue); 1672 1673void net_dec_ingress_queue(void) 1674{ 1675 static_key_slow_dec(&ingress_needed); 1676} 1677EXPORT_SYMBOL_GPL(net_dec_ingress_queue); 1678#endif 1679 1680#ifdef CONFIG_NET_EGRESS 1681static struct static_key egress_needed __read_mostly; 1682 1683void net_inc_egress_queue(void) 1684{ 1685 static_key_slow_inc(&egress_needed); 1686} 1687EXPORT_SYMBOL_GPL(net_inc_egress_queue); 1688 1689void net_dec_egress_queue(void) 1690{ 1691 static_key_slow_dec(&egress_needed); 1692} 1693EXPORT_SYMBOL_GPL(net_dec_egress_queue); 1694#endif 1695 1696static struct static_key netstamp_needed __read_mostly; 1697#ifdef HAVE_JUMP_LABEL 1698static atomic_t netstamp_needed_deferred; 1699static void netstamp_clear(struct work_struct *work) 1700{ 1701 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 1702 1703 while (deferred--) 1704 static_key_slow_dec(&netstamp_needed); 1705} 1706static DECLARE_WORK(netstamp_work, netstamp_clear); 1707#endif 1708 1709void net_enable_timestamp(void) 1710{ 1711 static_key_slow_inc(&netstamp_needed); 1712} 1713EXPORT_SYMBOL(net_enable_timestamp); 1714 1715void net_disable_timestamp(void) 1716{ 1717#ifdef HAVE_JUMP_LABEL 1718 /* net_disable_timestamp() can be called from non process context */ 1719 atomic_inc(&netstamp_needed_deferred); 1720 schedule_work(&netstamp_work); 1721#else 1722 static_key_slow_dec(&netstamp_needed); 1723#endif 1724} 1725EXPORT_SYMBOL(net_disable_timestamp); 1726 1727static inline void net_timestamp_set(struct sk_buff *skb) 1728{ 1729 skb->tstamp = 0; 1730 if (static_key_false(&netstamp_needed)) 1731 __net_timestamp(skb); 1732} 1733 1734#define net_timestamp_check(COND, SKB) \ 1735 if (static_key_false(&netstamp_needed)) { \ 1736 if ((COND) && !(SKB)->tstamp) \ 1737 __net_timestamp(SKB); \ 1738 } \ 1739 1740bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb) 1741{ 1742 unsigned int len; 1743 1744 if (!(dev->flags & IFF_UP)) 1745 return false; 1746 1747 len = dev->mtu + dev->hard_header_len + VLAN_HLEN; 1748 if (skb->len <= len) 1749 return true; 1750 1751 /* if TSO is enabled, we don't care about the length as the packet 1752 * could be forwarded without being segmented before 1753 */ 1754 if (skb_is_gso(skb)) 1755 return true; 1756 1757 return false; 1758} 1759EXPORT_SYMBOL_GPL(is_skb_forwardable); 1760 1761int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1762{ 1763 int ret = ____dev_forward_skb(dev, skb); 1764 1765 if (likely(!ret)) { 1766 skb->protocol = eth_type_trans(skb, dev); 1767 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN); 1768 } 1769 1770 return ret; 1771} 1772EXPORT_SYMBOL_GPL(__dev_forward_skb); 1773 1774/** 1775 * dev_forward_skb - loopback an skb to another netif 1776 * 1777 * @dev: destination network device 1778 * @skb: buffer to forward 1779 * 1780 * return values: 1781 * NET_RX_SUCCESS (no congestion) 1782 * NET_RX_DROP (packet was dropped, but freed) 1783 * 1784 * dev_forward_skb can be used for injecting an skb from the 1785 * start_xmit function of one device into the receive queue 1786 * of another device. 1787 * 1788 * The receiving device may be in another namespace, so 1789 * we have to clear all information in the skb that could 1790 * impact namespace isolation. 1791 */ 1792int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1793{ 1794 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb); 1795} 1796EXPORT_SYMBOL_GPL(dev_forward_skb); 1797 1798static inline int deliver_skb(struct sk_buff *skb, 1799 struct packet_type *pt_prev, 1800 struct net_device *orig_dev) 1801{ 1802 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC))) 1803 return -ENOMEM; 1804 atomic_inc(&skb->users); 1805 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1806} 1807 1808static inline void deliver_ptype_list_skb(struct sk_buff *skb, 1809 struct packet_type **pt, 1810 struct net_device *orig_dev, 1811 __be16 type, 1812 struct list_head *ptype_list) 1813{ 1814 struct packet_type *ptype, *pt_prev = *pt; 1815 1816 list_for_each_entry_rcu(ptype, ptype_list, list) { 1817 if (ptype->type != type) 1818 continue; 1819 if (pt_prev) 1820 deliver_skb(skb, pt_prev, orig_dev); 1821 pt_prev = ptype; 1822 } 1823 *pt = pt_prev; 1824} 1825 1826static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 1827{ 1828 if (!ptype->af_packet_priv || !skb->sk) 1829 return false; 1830 1831 if (ptype->id_match) 1832 return ptype->id_match(ptype, skb->sk); 1833 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 1834 return true; 1835 1836 return false; 1837} 1838 1839/* 1840 * Support routine. Sends outgoing frames to any network 1841 * taps currently in use. 1842 */ 1843 1844void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1845{ 1846 struct packet_type *ptype; 1847 struct sk_buff *skb2 = NULL; 1848 struct packet_type *pt_prev = NULL; 1849 struct list_head *ptype_list = &ptype_all; 1850 1851 rcu_read_lock(); 1852again: 1853 list_for_each_entry_rcu(ptype, ptype_list, list) { 1854 /* Never send packets back to the socket 1855 * they originated from - MvS (miquels@drinkel.ow.org) 1856 */ 1857 if (skb_loop_sk(ptype, skb)) 1858 continue; 1859 1860 if (pt_prev) { 1861 deliver_skb(skb2, pt_prev, skb->dev); 1862 pt_prev = ptype; 1863 continue; 1864 } 1865 1866 /* need to clone skb, done only once */ 1867 skb2 = skb_clone(skb, GFP_ATOMIC); 1868 if (!skb2) 1869 goto out_unlock; 1870 1871 net_timestamp_set(skb2); 1872 1873 /* skb->nh should be correctly 1874 * set by sender, so that the second statement is 1875 * just protection against buggy protocols. 1876 */ 1877 skb_reset_mac_header(skb2); 1878 1879 if (skb_network_header(skb2) < skb2->data || 1880 skb_network_header(skb2) > skb_tail_pointer(skb2)) { 1881 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 1882 ntohs(skb2->protocol), 1883 dev->name); 1884 skb_reset_network_header(skb2); 1885 } 1886 1887 skb2->transport_header = skb2->network_header; 1888 skb2->pkt_type = PACKET_OUTGOING; 1889 pt_prev = ptype; 1890 } 1891 1892 if (ptype_list == &ptype_all) { 1893 ptype_list = &dev->ptype_all; 1894 goto again; 1895 } 1896out_unlock: 1897 if (pt_prev) 1898 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 1899 rcu_read_unlock(); 1900} 1901EXPORT_SYMBOL_GPL(dev_queue_xmit_nit); 1902 1903/** 1904 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 1905 * @dev: Network device 1906 * @txq: number of queues available 1907 * 1908 * If real_num_tx_queues is changed the tc mappings may no longer be 1909 * valid. To resolve this verify the tc mapping remains valid and if 1910 * not NULL the mapping. With no priorities mapping to this 1911 * offset/count pair it will no longer be used. In the worst case TC0 1912 * is invalid nothing can be done so disable priority mappings. If is 1913 * expected that drivers will fix this mapping if they can before 1914 * calling netif_set_real_num_tx_queues. 1915 */ 1916static void netif_setup_tc(struct net_device *dev, unsigned int txq) 1917{ 1918 int i; 1919 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 1920 1921 /* If TC0 is invalidated disable TC mapping */ 1922 if (tc->offset + tc->count > txq) { 1923 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 1924 dev->num_tc = 0; 1925 return; 1926 } 1927 1928 /* Invalidated prio to tc mappings set to TC0 */ 1929 for (i = 1; i < TC_BITMASK + 1; i++) { 1930 int q = netdev_get_prio_tc_map(dev, i); 1931 1932 tc = &dev->tc_to_txq[q]; 1933 if (tc->offset + tc->count > txq) { 1934 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 1935 i, q); 1936 netdev_set_prio_tc_map(dev, i, 0); 1937 } 1938 } 1939} 1940 1941int netdev_txq_to_tc(struct net_device *dev, unsigned int txq) 1942{ 1943 if (dev->num_tc) { 1944 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 1945 int i; 1946 1947 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) { 1948 if ((txq - tc->offset) < tc->count) 1949 return i; 1950 } 1951 1952 return -1; 1953 } 1954 1955 return 0; 1956} 1957 1958#ifdef CONFIG_XPS 1959static DEFINE_MUTEX(xps_map_mutex); 1960#define xmap_dereference(P) \ 1961 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 1962 1963static bool remove_xps_queue(struct xps_dev_maps *dev_maps, 1964 int tci, u16 index) 1965{ 1966 struct xps_map *map = NULL; 1967 int pos; 1968 1969 if (dev_maps) 1970 map = xmap_dereference(dev_maps->cpu_map[tci]); 1971 if (!map) 1972 return false; 1973 1974 for (pos = map->len; pos--;) { 1975 if (map->queues[pos] != index) 1976 continue; 1977 1978 if (map->len > 1) { 1979 map->queues[pos] = map->queues[--map->len]; 1980 break; 1981 } 1982 1983 RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL); 1984 kfree_rcu(map, rcu); 1985 return false; 1986 } 1987 1988 return true; 1989} 1990 1991static bool remove_xps_queue_cpu(struct net_device *dev, 1992 struct xps_dev_maps *dev_maps, 1993 int cpu, u16 offset, u16 count) 1994{ 1995 int num_tc = dev->num_tc ? : 1; 1996 bool active = false; 1997 int tci; 1998 1999 for (tci = cpu * num_tc; num_tc--; tci++) { 2000 int i, j; 2001 2002 for (i = count, j = offset; i--; j++) { 2003 if (!remove_xps_queue(dev_maps, cpu, j)) 2004 break; 2005 } 2006 2007 active |= i < 0; 2008 } 2009 2010 return active; 2011} 2012 2013static void netif_reset_xps_queues(struct net_device *dev, u16 offset, 2014 u16 count) 2015{ 2016 struct xps_dev_maps *dev_maps; 2017 int cpu, i; 2018 bool active = false; 2019 2020 mutex_lock(&xps_map_mutex); 2021 dev_maps = xmap_dereference(dev->xps_maps); 2022 2023 if (!dev_maps) 2024 goto out_no_maps; 2025 2026 for_each_possible_cpu(cpu) 2027 active |= remove_xps_queue_cpu(dev, dev_maps, cpu, 2028 offset, count); 2029 2030 if (!active) { 2031 RCU_INIT_POINTER(dev->xps_maps, NULL); 2032 kfree_rcu(dev_maps, rcu); 2033 } 2034 2035 for (i = offset + (count - 1); count--; i--) 2036 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i), 2037 NUMA_NO_NODE); 2038 2039out_no_maps: 2040 mutex_unlock(&xps_map_mutex); 2041} 2042 2043static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 2044{ 2045 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index); 2046} 2047 2048static struct xps_map *expand_xps_map(struct xps_map *map, 2049 int cpu, u16 index) 2050{ 2051 struct xps_map *new_map; 2052 int alloc_len = XPS_MIN_MAP_ALLOC; 2053 int i, pos; 2054 2055 for (pos = 0; map && pos < map->len; pos++) { 2056 if (map->queues[pos] != index) 2057 continue; 2058 return map; 2059 } 2060 2061 /* Need to add queue to this CPU's existing map */ 2062 if (map) { 2063 if (pos < map->alloc_len) 2064 return map; 2065 2066 alloc_len = map->alloc_len * 2; 2067 } 2068 2069 /* Need to allocate new map to store queue on this CPU's map */ 2070 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 2071 cpu_to_node(cpu)); 2072 if (!new_map) 2073 return NULL; 2074 2075 for (i = 0; i < pos; i++) 2076 new_map->queues[i] = map->queues[i]; 2077 new_map->alloc_len = alloc_len; 2078 new_map->len = pos; 2079 2080 return new_map; 2081} 2082 2083int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 2084 u16 index) 2085{ 2086 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL; 2087 int i, cpu, tci, numa_node_id = -2; 2088 int maps_sz, num_tc = 1, tc = 0; 2089 struct xps_map *map, *new_map; 2090 bool active = false; 2091 2092 if (dev->num_tc) { 2093 num_tc = dev->num_tc; 2094 tc = netdev_txq_to_tc(dev, index); 2095 if (tc < 0) 2096 return -EINVAL; 2097 } 2098 2099 maps_sz = XPS_DEV_MAPS_SIZE(num_tc); 2100 if (maps_sz < L1_CACHE_BYTES) 2101 maps_sz = L1_CACHE_BYTES; 2102 2103 mutex_lock(&xps_map_mutex); 2104 2105 dev_maps = xmap_dereference(dev->xps_maps); 2106 2107 /* allocate memory for queue storage */ 2108 for_each_cpu_and(cpu, cpu_online_mask, mask) { 2109 if (!new_dev_maps) 2110 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 2111 if (!new_dev_maps) { 2112 mutex_unlock(&xps_map_mutex); 2113 return -ENOMEM; 2114 } 2115 2116 tci = cpu * num_tc + tc; 2117 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) : 2118 NULL; 2119 2120 map = expand_xps_map(map, cpu, index); 2121 if (!map) 2122 goto error; 2123 2124 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map); 2125 } 2126 2127 if (!new_dev_maps) 2128 goto out_no_new_maps; 2129 2130 for_each_possible_cpu(cpu) { 2131 /* copy maps belonging to foreign traffic classes */ 2132 for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) { 2133 /* fill in the new device map from the old device map */ 2134 map = xmap_dereference(dev_maps->cpu_map[tci]); 2135 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map); 2136 } 2137 2138 /* We need to explicitly update tci as prevous loop 2139 * could break out early if dev_maps is NULL. 2140 */ 2141 tci = cpu * num_tc + tc; 2142 2143 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) { 2144 /* add queue to CPU maps */ 2145 int pos = 0; 2146 2147 map = xmap_dereference(new_dev_maps->cpu_map[tci]); 2148 while ((pos < map->len) && (map->queues[pos] != index)) 2149 pos++; 2150 2151 if (pos == map->len) 2152 map->queues[map->len++] = index; 2153#ifdef CONFIG_NUMA 2154 if (numa_node_id == -2) 2155 numa_node_id = cpu_to_node(cpu); 2156 else if (numa_node_id != cpu_to_node(cpu)) 2157 numa_node_id = -1; 2158#endif 2159 } else if (dev_maps) { 2160 /* fill in the new device map from the old device map */ 2161 map = xmap_dereference(dev_maps->cpu_map[tci]); 2162 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map); 2163 } 2164 2165 /* copy maps belonging to foreign traffic classes */ 2166 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) { 2167 /* fill in the new device map from the old device map */ 2168 map = xmap_dereference(dev_maps->cpu_map[tci]); 2169 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map); 2170 } 2171 } 2172 2173 rcu_assign_pointer(dev->xps_maps, new_dev_maps); 2174 2175 /* Cleanup old maps */ 2176 if (!dev_maps) 2177 goto out_no_old_maps; 2178 2179 for_each_possible_cpu(cpu) { 2180 for (i = num_tc, tci = cpu * num_tc; i--; tci++) { 2181 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]); 2182 map = xmap_dereference(dev_maps->cpu_map[tci]); 2183 if (map && map != new_map) 2184 kfree_rcu(map, rcu); 2185 } 2186 } 2187 2188 kfree_rcu(dev_maps, rcu); 2189 2190out_no_old_maps: 2191 dev_maps = new_dev_maps; 2192 active = true; 2193 2194out_no_new_maps: 2195 /* update Tx queue numa node */ 2196 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 2197 (numa_node_id >= 0) ? numa_node_id : 2198 NUMA_NO_NODE); 2199 2200 if (!dev_maps) 2201 goto out_no_maps; 2202 2203 /* removes queue from unused CPUs */ 2204 for_each_possible_cpu(cpu) { 2205 for (i = tc, tci = cpu * num_tc; i--; tci++) 2206 active |= remove_xps_queue(dev_maps, tci, index); 2207 if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu)) 2208 active |= remove_xps_queue(dev_maps, tci, index); 2209 for (i = num_tc - tc, tci++; --i; tci++) 2210 active |= remove_xps_queue(dev_maps, tci, index); 2211 } 2212 2213 /* free map if not active */ 2214 if (!active) { 2215 RCU_INIT_POINTER(dev->xps_maps, NULL); 2216 kfree_rcu(dev_maps, rcu); 2217 } 2218 2219out_no_maps: 2220 mutex_unlock(&xps_map_mutex); 2221 2222 return 0; 2223error: 2224 /* remove any maps that we added */ 2225 for_each_possible_cpu(cpu) { 2226 for (i = num_tc, tci = cpu * num_tc; i--; tci++) { 2227 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]); 2228 map = dev_maps ? 2229 xmap_dereference(dev_maps->cpu_map[tci]) : 2230 NULL; 2231 if (new_map && new_map != map) 2232 kfree(new_map); 2233 } 2234 } 2235 2236 mutex_unlock(&xps_map_mutex); 2237 2238 kfree(new_dev_maps); 2239 return -ENOMEM; 2240} 2241EXPORT_SYMBOL(netif_set_xps_queue); 2242 2243#endif 2244void netdev_reset_tc(struct net_device *dev) 2245{ 2246#ifdef CONFIG_XPS 2247 netif_reset_xps_queues_gt(dev, 0); 2248#endif 2249 dev->num_tc = 0; 2250 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 2251 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 2252} 2253EXPORT_SYMBOL(netdev_reset_tc); 2254 2255int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 2256{ 2257 if (tc >= dev->num_tc) 2258 return -EINVAL; 2259 2260#ifdef CONFIG_XPS 2261 netif_reset_xps_queues(dev, offset, count); 2262#endif 2263 dev->tc_to_txq[tc].count = count; 2264 dev->tc_to_txq[tc].offset = offset; 2265 return 0; 2266} 2267EXPORT_SYMBOL(netdev_set_tc_queue); 2268 2269int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 2270{ 2271 if (num_tc > TC_MAX_QUEUE) 2272 return -EINVAL; 2273 2274#ifdef CONFIG_XPS 2275 netif_reset_xps_queues_gt(dev, 0); 2276#endif 2277 dev->num_tc = num_tc; 2278 return 0; 2279} 2280EXPORT_SYMBOL(netdev_set_num_tc); 2281 2282/* 2283 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 2284 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed. 2285 */ 2286int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 2287{ 2288 int rc; 2289 2290 if (txq < 1 || txq > dev->num_tx_queues) 2291 return -EINVAL; 2292 2293 if (dev->reg_state == NETREG_REGISTERED || 2294 dev->reg_state == NETREG_UNREGISTERING) { 2295 ASSERT_RTNL(); 2296 2297 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 2298 txq); 2299 if (rc) 2300 return rc; 2301 2302 if (dev->num_tc) 2303 netif_setup_tc(dev, txq); 2304 2305 if (txq < dev->real_num_tx_queues) { 2306 qdisc_reset_all_tx_gt(dev, txq); 2307#ifdef CONFIG_XPS 2308 netif_reset_xps_queues_gt(dev, txq); 2309#endif 2310 } 2311 } 2312 2313 dev->real_num_tx_queues = txq; 2314 return 0; 2315} 2316EXPORT_SYMBOL(netif_set_real_num_tx_queues); 2317 2318#ifdef CONFIG_SYSFS 2319/** 2320 * netif_set_real_num_rx_queues - set actual number of RX queues used 2321 * @dev: Network device 2322 * @rxq: Actual number of RX queues 2323 * 2324 * This must be called either with the rtnl_lock held or before 2325 * registration of the net device. Returns 0 on success, or a 2326 * negative error code. If called before registration, it always 2327 * succeeds. 2328 */ 2329int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 2330{ 2331 int rc; 2332 2333 if (rxq < 1 || rxq > dev->num_rx_queues) 2334 return -EINVAL; 2335 2336 if (dev->reg_state == NETREG_REGISTERED) { 2337 ASSERT_RTNL(); 2338 2339 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 2340 rxq); 2341 if (rc) 2342 return rc; 2343 } 2344 2345 dev->real_num_rx_queues = rxq; 2346 return 0; 2347} 2348EXPORT_SYMBOL(netif_set_real_num_rx_queues); 2349#endif 2350 2351/** 2352 * netif_get_num_default_rss_queues - default number of RSS queues 2353 * 2354 * This routine should set an upper limit on the number of RSS queues 2355 * used by default by multiqueue devices. 2356 */ 2357int netif_get_num_default_rss_queues(void) 2358{ 2359 return is_kdump_kernel() ? 2360 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus()); 2361} 2362EXPORT_SYMBOL(netif_get_num_default_rss_queues); 2363 2364static void __netif_reschedule(struct Qdisc *q) 2365{ 2366 struct softnet_data *sd; 2367 unsigned long flags; 2368 2369 local_irq_save(flags); 2370 sd = this_cpu_ptr(&softnet_data); 2371 q->next_sched = NULL; 2372 *sd->output_queue_tailp = q; 2373 sd->output_queue_tailp = &q->next_sched; 2374 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2375 local_irq_restore(flags); 2376} 2377 2378void __netif_schedule(struct Qdisc *q) 2379{ 2380 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 2381 __netif_reschedule(q); 2382} 2383EXPORT_SYMBOL(__netif_schedule); 2384 2385struct dev_kfree_skb_cb { 2386 enum skb_free_reason reason; 2387}; 2388 2389static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb) 2390{ 2391 return (struct dev_kfree_skb_cb *)skb->cb; 2392} 2393 2394void netif_schedule_queue(struct netdev_queue *txq) 2395{ 2396 rcu_read_lock(); 2397 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) { 2398 struct Qdisc *q = rcu_dereference(txq->qdisc); 2399 2400 __netif_schedule(q); 2401 } 2402 rcu_read_unlock(); 2403} 2404EXPORT_SYMBOL(netif_schedule_queue); 2405 2406/** 2407 * netif_wake_subqueue - allow sending packets on subqueue 2408 * @dev: network device 2409 * @queue_index: sub queue index 2410 * 2411 * Resume individual transmit queue of a device with multiple transmit queues. 2412 */ 2413void netif_wake_subqueue(struct net_device *dev, u16 queue_index) 2414{ 2415 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 2416 2417 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) { 2418 struct Qdisc *q; 2419 2420 rcu_read_lock(); 2421 q = rcu_dereference(txq->qdisc); 2422 __netif_schedule(q); 2423 rcu_read_unlock(); 2424 } 2425} 2426EXPORT_SYMBOL(netif_wake_subqueue); 2427 2428void netif_tx_wake_queue(struct netdev_queue *dev_queue) 2429{ 2430 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) { 2431 struct Qdisc *q; 2432 2433 rcu_read_lock(); 2434 q = rcu_dereference(dev_queue->qdisc); 2435 __netif_schedule(q); 2436 rcu_read_unlock(); 2437 } 2438} 2439EXPORT_SYMBOL(netif_tx_wake_queue); 2440 2441void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason) 2442{ 2443 unsigned long flags; 2444 2445 if (likely(atomic_read(&skb->users) == 1)) { 2446 smp_rmb(); 2447 atomic_set(&skb->users, 0); 2448 } else if (likely(!atomic_dec_and_test(&skb->users))) { 2449 return; 2450 } 2451 get_kfree_skb_cb(skb)->reason = reason; 2452 local_irq_save(flags); 2453 skb->next = __this_cpu_read(softnet_data.completion_queue); 2454 __this_cpu_write(softnet_data.completion_queue, skb); 2455 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2456 local_irq_restore(flags); 2457} 2458EXPORT_SYMBOL(__dev_kfree_skb_irq); 2459 2460void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason) 2461{ 2462 if (in_irq() || irqs_disabled()) 2463 __dev_kfree_skb_irq(skb, reason); 2464 else 2465 dev_kfree_skb(skb); 2466} 2467EXPORT_SYMBOL(__dev_kfree_skb_any); 2468 2469 2470/** 2471 * netif_device_detach - mark device as removed 2472 * @dev: network device 2473 * 2474 * Mark device as removed from system and therefore no longer available. 2475 */ 2476void netif_device_detach(struct net_device *dev) 2477{ 2478 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 2479 netif_running(dev)) { 2480 netif_tx_stop_all_queues(dev); 2481 } 2482} 2483EXPORT_SYMBOL(netif_device_detach); 2484 2485/** 2486 * netif_device_attach - mark device as attached 2487 * @dev: network device 2488 * 2489 * Mark device as attached from system and restart if needed. 2490 */ 2491void netif_device_attach(struct net_device *dev) 2492{ 2493 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 2494 netif_running(dev)) { 2495 netif_tx_wake_all_queues(dev); 2496 __netdev_watchdog_up(dev); 2497 } 2498} 2499EXPORT_SYMBOL(netif_device_attach); 2500 2501/* 2502 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 2503 * to be used as a distribution range. 2504 */ 2505u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb, 2506 unsigned int num_tx_queues) 2507{ 2508 u32 hash; 2509 u16 qoffset = 0; 2510 u16 qcount = num_tx_queues; 2511 2512 if (skb_rx_queue_recorded(skb)) { 2513 hash = skb_get_rx_queue(skb); 2514 while (unlikely(hash >= num_tx_queues)) 2515 hash -= num_tx_queues; 2516 return hash; 2517 } 2518 2519 if (dev->num_tc) { 2520 u8 tc = netdev_get_prio_tc_map(dev, skb->priority); 2521 qoffset = dev->tc_to_txq[tc].offset; 2522 qcount = dev->tc_to_txq[tc].count; 2523 } 2524 2525 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset; 2526} 2527EXPORT_SYMBOL(__skb_tx_hash); 2528 2529static void skb_warn_bad_offload(const struct sk_buff *skb) 2530{ 2531 static const netdev_features_t null_features; 2532 struct net_device *dev = skb->dev; 2533 const char *name = ""; 2534 2535 if (!net_ratelimit()) 2536 return; 2537 2538 if (dev) { 2539 if (dev->dev.parent) 2540 name = dev_driver_string(dev->dev.parent); 2541 else 2542 name = netdev_name(dev); 2543 } 2544 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d " 2545 "gso_type=%d ip_summed=%d\n", 2546 name, dev ? &dev->features : &null_features, 2547 skb->sk ? &skb->sk->sk_route_caps : &null_features, 2548 skb->len, skb->data_len, skb_shinfo(skb)->gso_size, 2549 skb_shinfo(skb)->gso_type, skb->ip_summed); 2550} 2551 2552/* 2553 * Invalidate hardware checksum when packet is to be mangled, and 2554 * complete checksum manually on outgoing path. 2555 */ 2556int skb_checksum_help(struct sk_buff *skb) 2557{ 2558 __wsum csum; 2559 int ret = 0, offset; 2560 2561 if (skb->ip_summed == CHECKSUM_COMPLETE) 2562 goto out_set_summed; 2563 2564 if (unlikely(skb_shinfo(skb)->gso_size)) { 2565 skb_warn_bad_offload(skb); 2566 return -EINVAL; 2567 } 2568 2569 /* Before computing a checksum, we should make sure no frag could 2570 * be modified by an external entity : checksum could be wrong. 2571 */ 2572 if (skb_has_shared_frag(skb)) { 2573 ret = __skb_linearize(skb); 2574 if (ret) 2575 goto out; 2576 } 2577 2578 offset = skb_checksum_start_offset(skb); 2579 BUG_ON(offset >= skb_headlen(skb)); 2580 csum = skb_checksum(skb, offset, skb->len - offset, 0); 2581 2582 offset += skb->csum_offset; 2583 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 2584 2585 if (skb_cloned(skb) && 2586 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 2587 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2588 if (ret) 2589 goto out; 2590 } 2591 2592 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0; 2593out_set_summed: 2594 skb->ip_summed = CHECKSUM_NONE; 2595out: 2596 return ret; 2597} 2598EXPORT_SYMBOL(skb_checksum_help); 2599 2600__be16 skb_network_protocol(struct sk_buff *skb, int *depth) 2601{ 2602 __be16 type = skb->protocol; 2603 2604 /* Tunnel gso handlers can set protocol to ethernet. */ 2605 if (type == htons(ETH_P_TEB)) { 2606 struct ethhdr *eth; 2607 2608 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) 2609 return 0; 2610 2611 eth = (struct ethhdr *)skb_mac_header(skb); 2612 type = eth->h_proto; 2613 } 2614 2615 return __vlan_get_protocol(skb, type, depth); 2616} 2617 2618/** 2619 * skb_mac_gso_segment - mac layer segmentation handler. 2620 * @skb: buffer to segment 2621 * @features: features for the output path (see dev->features) 2622 */ 2623struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 2624 netdev_features_t features) 2625{ 2626 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 2627 struct packet_offload *ptype; 2628 int vlan_depth = skb->mac_len; 2629 __be16 type = skb_network_protocol(skb, &vlan_depth); 2630 2631 if (unlikely(!type)) 2632 return ERR_PTR(-EINVAL); 2633 2634 __skb_pull(skb, vlan_depth); 2635 2636 rcu_read_lock(); 2637 list_for_each_entry_rcu(ptype, &offload_base, list) { 2638 if (ptype->type == type && ptype->callbacks.gso_segment) { 2639 segs = ptype->callbacks.gso_segment(skb, features); 2640 break; 2641 } 2642 } 2643 rcu_read_unlock(); 2644 2645 __skb_push(skb, skb->data - skb_mac_header(skb)); 2646 2647 return segs; 2648} 2649EXPORT_SYMBOL(skb_mac_gso_segment); 2650 2651 2652/* openvswitch calls this on rx path, so we need a different check. 2653 */ 2654static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path) 2655{ 2656 if (tx_path) 2657 return skb->ip_summed != CHECKSUM_PARTIAL; 2658 else 2659 return skb->ip_summed == CHECKSUM_NONE; 2660} 2661 2662/** 2663 * __skb_gso_segment - Perform segmentation on skb. 2664 * @skb: buffer to segment 2665 * @features: features for the output path (see dev->features) 2666 * @tx_path: whether it is called in TX path 2667 * 2668 * This function segments the given skb and returns a list of segments. 2669 * 2670 * It may return NULL if the skb requires no segmentation. This is 2671 * only possible when GSO is used for verifying header integrity. 2672 * 2673 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb. 2674 */ 2675struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 2676 netdev_features_t features, bool tx_path) 2677{ 2678 if (unlikely(skb_needs_check(skb, tx_path))) { 2679 int err; 2680 2681 skb_warn_bad_offload(skb); 2682 2683 err = skb_cow_head(skb, 0); 2684 if (err < 0) 2685 return ERR_PTR(err); 2686 } 2687 2688 /* Only report GSO partial support if it will enable us to 2689 * support segmentation on this frame without needing additional 2690 * work. 2691 */ 2692 if (features & NETIF_F_GSO_PARTIAL) { 2693 netdev_features_t partial_features = NETIF_F_GSO_ROBUST; 2694 struct net_device *dev = skb->dev; 2695 2696 partial_features |= dev->features & dev->gso_partial_features; 2697 if (!skb_gso_ok(skb, features | partial_features)) 2698 features &= ~NETIF_F_GSO_PARTIAL; 2699 } 2700 2701 BUILD_BUG_ON(SKB_SGO_CB_OFFSET + 2702 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb)); 2703 2704 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb); 2705 SKB_GSO_CB(skb)->encap_level = 0; 2706 2707 skb_reset_mac_header(skb); 2708 skb_reset_mac_len(skb); 2709 2710 return skb_mac_gso_segment(skb, features); 2711} 2712EXPORT_SYMBOL(__skb_gso_segment); 2713 2714/* Take action when hardware reception checksum errors are detected. */ 2715#ifdef CONFIG_BUG 2716void netdev_rx_csum_fault(struct net_device *dev) 2717{ 2718 if (net_ratelimit()) { 2719 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>"); 2720 dump_stack(); 2721 } 2722} 2723EXPORT_SYMBOL(netdev_rx_csum_fault); 2724#endif 2725 2726/* Actually, we should eliminate this check as soon as we know, that: 2727 * 1. IOMMU is present and allows to map all the memory. 2728 * 2. No high memory really exists on this machine. 2729 */ 2730 2731static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 2732{ 2733#ifdef CONFIG_HIGHMEM 2734 int i; 2735 if (!(dev->features & NETIF_F_HIGHDMA)) { 2736 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2737 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2738 if (PageHighMem(skb_frag_page(frag))) 2739 return 1; 2740 } 2741 } 2742 2743 if (PCI_DMA_BUS_IS_PHYS) { 2744 struct device *pdev = dev->dev.parent; 2745 2746 if (!pdev) 2747 return 0; 2748 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2749 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2750 dma_addr_t addr = page_to_phys(skb_frag_page(frag)); 2751 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask) 2752 return 1; 2753 } 2754 } 2755#endif 2756 return 0; 2757} 2758 2759/* If MPLS offload request, verify we are testing hardware MPLS features 2760 * instead of standard features for the netdev. 2761 */ 2762#if IS_ENABLED(CONFIG_NET_MPLS_GSO) 2763static netdev_features_t net_mpls_features(struct sk_buff *skb, 2764 netdev_features_t features, 2765 __be16 type) 2766{ 2767 if (eth_p_mpls(type)) 2768 features &= skb->dev->mpls_features; 2769 2770 return features; 2771} 2772#else 2773static netdev_features_t net_mpls_features(struct sk_buff *skb, 2774 netdev_features_t features, 2775 __be16 type) 2776{ 2777 return features; 2778} 2779#endif 2780 2781static netdev_features_t harmonize_features(struct sk_buff *skb, 2782 netdev_features_t features) 2783{ 2784 int tmp; 2785 __be16 type; 2786 2787 type = skb_network_protocol(skb, &tmp); 2788 features = net_mpls_features(skb, features, type); 2789 2790 if (skb->ip_summed != CHECKSUM_NONE && 2791 !can_checksum_protocol(features, type)) { 2792 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 2793 } 2794 if (illegal_highdma(skb->dev, skb)) 2795 features &= ~NETIF_F_SG; 2796 2797 return features; 2798} 2799 2800netdev_features_t passthru_features_check(struct sk_buff *skb, 2801 struct net_device *dev, 2802 netdev_features_t features) 2803{ 2804 return features; 2805} 2806EXPORT_SYMBOL(passthru_features_check); 2807 2808static netdev_features_t dflt_features_check(const struct sk_buff *skb, 2809 struct net_device *dev, 2810 netdev_features_t features) 2811{ 2812 return vlan_features_check(skb, features); 2813} 2814 2815static netdev_features_t gso_features_check(const struct sk_buff *skb, 2816 struct net_device *dev, 2817 netdev_features_t features) 2818{ 2819 u16 gso_segs = skb_shinfo(skb)->gso_segs; 2820 2821 if (gso_segs > dev->gso_max_segs) 2822 return features & ~NETIF_F_GSO_MASK; 2823 2824 /* Support for GSO partial features requires software 2825 * intervention before we can actually process the packets 2826 * so we need to strip support for any partial features now 2827 * and we can pull them back in after we have partially 2828 * segmented the frame. 2829 */ 2830 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL)) 2831 features &= ~dev->gso_partial_features; 2832 2833 /* Make sure to clear the IPv4 ID mangling feature if the 2834 * IPv4 header has the potential to be fragmented. 2835 */ 2836 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) { 2837 struct iphdr *iph = skb->encapsulation ? 2838 inner_ip_hdr(skb) : ip_hdr(skb); 2839 2840 if (!(iph->frag_off & htons(IP_DF))) 2841 features &= ~NETIF_F_TSO_MANGLEID; 2842 } 2843 2844 return features; 2845} 2846 2847netdev_features_t netif_skb_features(struct sk_buff *skb) 2848{ 2849 struct net_device *dev = skb->dev; 2850 netdev_features_t features = dev->features; 2851 2852 if (skb_is_gso(skb)) 2853 features = gso_features_check(skb, dev, features); 2854 2855 /* If encapsulation offload request, verify we are testing 2856 * hardware encapsulation features instead of standard 2857 * features for the netdev 2858 */ 2859 if (skb->encapsulation) 2860 features &= dev->hw_enc_features; 2861 2862 if (skb_vlan_tagged(skb)) 2863 features = netdev_intersect_features(features, 2864 dev->vlan_features | 2865 NETIF_F_HW_VLAN_CTAG_TX | 2866 NETIF_F_HW_VLAN_STAG_TX); 2867 2868 if (dev->netdev_ops->ndo_features_check) 2869 features &= dev->netdev_ops->ndo_features_check(skb, dev, 2870 features); 2871 else 2872 features &= dflt_features_check(skb, dev, features); 2873 2874 return harmonize_features(skb, features); 2875} 2876EXPORT_SYMBOL(netif_skb_features); 2877 2878static int xmit_one(struct sk_buff *skb, struct net_device *dev, 2879 struct netdev_queue *txq, bool more) 2880{ 2881 unsigned int len; 2882 int rc; 2883 2884 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all)) 2885 dev_queue_xmit_nit(skb, dev); 2886 2887 len = skb->len; 2888 trace_net_dev_start_xmit(skb, dev); 2889 rc = netdev_start_xmit(skb, dev, txq, more); 2890 trace_net_dev_xmit(skb, rc, dev, len); 2891 2892 return rc; 2893} 2894 2895struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev, 2896 struct netdev_queue *txq, int *ret) 2897{ 2898 struct sk_buff *skb = first; 2899 int rc = NETDEV_TX_OK; 2900 2901 while (skb) { 2902 struct sk_buff *next = skb->next; 2903 2904 skb->next = NULL; 2905 rc = xmit_one(skb, dev, txq, next != NULL); 2906 if (unlikely(!dev_xmit_complete(rc))) { 2907 skb->next = next; 2908 goto out; 2909 } 2910 2911 skb = next; 2912 if (netif_xmit_stopped(txq) && skb) { 2913 rc = NETDEV_TX_BUSY; 2914 break; 2915 } 2916 } 2917 2918out: 2919 *ret = rc; 2920 return skb; 2921} 2922 2923static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb, 2924 netdev_features_t features) 2925{ 2926 if (skb_vlan_tag_present(skb) && 2927 !vlan_hw_offload_capable(features, skb->vlan_proto)) 2928 skb = __vlan_hwaccel_push_inside(skb); 2929 return skb; 2930} 2931 2932static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev) 2933{ 2934 netdev_features_t features; 2935 2936 features = netif_skb_features(skb); 2937 skb = validate_xmit_vlan(skb, features); 2938 if (unlikely(!skb)) 2939 goto out_null; 2940 2941 if (netif_needs_gso(skb, features)) { 2942 struct sk_buff *segs; 2943 2944 segs = skb_gso_segment(skb, features); 2945 if (IS_ERR(segs)) { 2946 goto out_kfree_skb; 2947 } else if (segs) { 2948 consume_skb(skb); 2949 skb = segs; 2950 } 2951 } else { 2952 if (skb_needs_linearize(skb, features) && 2953 __skb_linearize(skb)) 2954 goto out_kfree_skb; 2955 2956 /* If packet is not checksummed and device does not 2957 * support checksumming for this protocol, complete 2958 * checksumming here. 2959 */ 2960 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2961 if (skb->encapsulation) 2962 skb_set_inner_transport_header(skb, 2963 skb_checksum_start_offset(skb)); 2964 else 2965 skb_set_transport_header(skb, 2966 skb_checksum_start_offset(skb)); 2967 if (!(features & NETIF_F_CSUM_MASK) && 2968 skb_checksum_help(skb)) 2969 goto out_kfree_skb; 2970 } 2971 } 2972 2973 return skb; 2974 2975out_kfree_skb: 2976 kfree_skb(skb); 2977out_null: 2978 atomic_long_inc(&dev->tx_dropped); 2979 return NULL; 2980} 2981 2982struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev) 2983{ 2984 struct sk_buff *next, *head = NULL, *tail; 2985 2986 for (; skb != NULL; skb = next) { 2987 next = skb->next; 2988 skb->next = NULL; 2989 2990 /* in case skb wont be segmented, point to itself */ 2991 skb->prev = skb; 2992 2993 skb = validate_xmit_skb(skb, dev); 2994 if (!skb) 2995 continue; 2996 2997 if (!head) 2998 head = skb; 2999 else 3000 tail->next = skb; 3001 /* If skb was segmented, skb->prev points to 3002 * the last segment. If not, it still contains skb. 3003 */ 3004 tail = skb->prev; 3005 } 3006 return head; 3007} 3008EXPORT_SYMBOL_GPL(validate_xmit_skb_list); 3009 3010static void qdisc_pkt_len_init(struct sk_buff *skb) 3011{ 3012 const struct skb_shared_info *shinfo = skb_shinfo(skb); 3013 3014 qdisc_skb_cb(skb)->pkt_len = skb->len; 3015 3016 /* To get more precise estimation of bytes sent on wire, 3017 * we add to pkt_len the headers size of all segments 3018 */ 3019 if (shinfo->gso_size) { 3020 unsigned int hdr_len; 3021 u16 gso_segs = shinfo->gso_segs; 3022 3023 /* mac layer + network layer */ 3024 hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 3025 3026 /* + transport layer */ 3027 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) 3028 hdr_len += tcp_hdrlen(skb); 3029 else 3030 hdr_len += sizeof(struct udphdr); 3031 3032 if (shinfo->gso_type & SKB_GSO_DODGY) 3033 gso_segs = DIV_ROUND_UP(skb->len - hdr_len, 3034 shinfo->gso_size); 3035 3036 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 3037 } 3038} 3039 3040static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 3041 struct net_device *dev, 3042 struct netdev_queue *txq) 3043{ 3044 spinlock_t *root_lock = qdisc_lock(q); 3045 struct sk_buff *to_free = NULL; 3046 bool contended; 3047 int rc; 3048 3049 qdisc_calculate_pkt_len(skb, q); 3050 /* 3051 * Heuristic to force contended enqueues to serialize on a 3052 * separate lock before trying to get qdisc main lock. 3053 * This permits qdisc->running owner to get the lock more 3054 * often and dequeue packets faster. 3055 */ 3056 contended = qdisc_is_running(q); 3057 if (unlikely(contended)) 3058 spin_lock(&q->busylock); 3059 3060 spin_lock(root_lock); 3061 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 3062 __qdisc_drop(skb, &to_free); 3063 rc = NET_XMIT_DROP; 3064 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 3065 qdisc_run_begin(q)) { 3066 /* 3067 * This is a work-conserving queue; there are no old skbs 3068 * waiting to be sent out; and the qdisc is not running - 3069 * xmit the skb directly. 3070 */ 3071 3072 qdisc_bstats_update(q, skb); 3073 3074 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) { 3075 if (unlikely(contended)) { 3076 spin_unlock(&q->busylock); 3077 contended = false; 3078 } 3079 __qdisc_run(q); 3080 } else 3081 qdisc_run_end(q); 3082 3083 rc = NET_XMIT_SUCCESS; 3084 } else { 3085 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK; 3086 if (qdisc_run_begin(q)) { 3087 if (unlikely(contended)) { 3088 spin_unlock(&q->busylock); 3089 contended = false; 3090 } 3091 __qdisc_run(q); 3092 } 3093 } 3094 spin_unlock(root_lock); 3095 if (unlikely(to_free)) 3096 kfree_skb_list(to_free); 3097 if (unlikely(contended)) 3098 spin_unlock(&q->busylock); 3099 return rc; 3100} 3101 3102#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 3103static void skb_update_prio(struct sk_buff *skb) 3104{ 3105 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap); 3106 3107 if (!skb->priority && skb->sk && map) { 3108 unsigned int prioidx = 3109 sock_cgroup_prioidx(&skb->sk->sk_cgrp_data); 3110 3111 if (prioidx < map->priomap_len) 3112 skb->priority = map->priomap[prioidx]; 3113 } 3114} 3115#else 3116#define skb_update_prio(skb) 3117#endif 3118 3119DEFINE_PER_CPU(int, xmit_recursion); 3120EXPORT_SYMBOL(xmit_recursion); 3121 3122/** 3123 * dev_loopback_xmit - loop back @skb 3124 * @net: network namespace this loopback is happening in 3125 * @sk: sk needed to be a netfilter okfn 3126 * @skb: buffer to transmit 3127 */ 3128int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb) 3129{ 3130 skb_reset_mac_header(skb); 3131 __skb_pull(skb, skb_network_offset(skb)); 3132 skb->pkt_type = PACKET_LOOPBACK; 3133 skb->ip_summed = CHECKSUM_UNNECESSARY; 3134 WARN_ON(!skb_dst(skb)); 3135 skb_dst_force(skb); 3136 netif_rx_ni(skb); 3137 return 0; 3138} 3139EXPORT_SYMBOL(dev_loopback_xmit); 3140 3141#ifdef CONFIG_NET_EGRESS 3142static struct sk_buff * 3143sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) 3144{ 3145 struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list); 3146 struct tcf_result cl_res; 3147 3148 if (!cl) 3149 return skb; 3150 3151 /* skb->tc_verd and qdisc_skb_cb(skb)->pkt_len were already set 3152 * earlier by the caller. 3153 */ 3154 qdisc_bstats_cpu_update(cl->q, skb); 3155 3156 switch (tc_classify(skb, cl, &cl_res, false)) { 3157 case TC_ACT_OK: 3158 case TC_ACT_RECLASSIFY: 3159 skb->tc_index = TC_H_MIN(cl_res.classid); 3160 break; 3161 case TC_ACT_SHOT: 3162 qdisc_qstats_cpu_drop(cl->q); 3163 *ret = NET_XMIT_DROP; 3164 kfree_skb(skb); 3165 return NULL; 3166 case TC_ACT_STOLEN: 3167 case TC_ACT_QUEUED: 3168 *ret = NET_XMIT_SUCCESS; 3169 consume_skb(skb); 3170 return NULL; 3171 case TC_ACT_REDIRECT: 3172 /* No need to push/pop skb's mac_header here on egress! */ 3173 skb_do_redirect(skb); 3174 *ret = NET_XMIT_SUCCESS; 3175 return NULL; 3176 default: 3177 break; 3178 } 3179 3180 return skb; 3181} 3182#endif /* CONFIG_NET_EGRESS */ 3183 3184static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb) 3185{ 3186#ifdef CONFIG_XPS 3187 struct xps_dev_maps *dev_maps; 3188 struct xps_map *map; 3189 int queue_index = -1; 3190 3191 rcu_read_lock(); 3192 dev_maps = rcu_dereference(dev->xps_maps); 3193 if (dev_maps) { 3194 unsigned int tci = skb->sender_cpu - 1; 3195 3196 if (dev->num_tc) { 3197 tci *= dev->num_tc; 3198 tci += netdev_get_prio_tc_map(dev, skb->priority); 3199 } 3200 3201 map = rcu_dereference(dev_maps->cpu_map[tci]); 3202 if (map) { 3203 if (map->len == 1) 3204 queue_index = map->queues[0]; 3205 else 3206 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb), 3207 map->len)]; 3208 if (unlikely(queue_index >= dev->real_num_tx_queues)) 3209 queue_index = -1; 3210 } 3211 } 3212 rcu_read_unlock(); 3213 3214 return queue_index; 3215#else 3216 return -1; 3217#endif 3218} 3219 3220static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb) 3221{ 3222 struct sock *sk = skb->sk; 3223 int queue_index = sk_tx_queue_get(sk); 3224 3225 if (queue_index < 0 || skb->ooo_okay || 3226 queue_index >= dev->real_num_tx_queues) { 3227 int new_index = get_xps_queue(dev, skb); 3228 if (new_index < 0) 3229 new_index = skb_tx_hash(dev, skb); 3230 3231 if (queue_index != new_index && sk && 3232 sk_fullsock(sk) && 3233 rcu_access_pointer(sk->sk_dst_cache)) 3234 sk_tx_queue_set(sk, new_index); 3235 3236 queue_index = new_index; 3237 } 3238 3239 return queue_index; 3240} 3241 3242struct netdev_queue *netdev_pick_tx(struct net_device *dev, 3243 struct sk_buff *skb, 3244 void *accel_priv) 3245{ 3246 int queue_index = 0; 3247 3248#ifdef CONFIG_XPS 3249 u32 sender_cpu = skb->sender_cpu - 1; 3250 3251 if (sender_cpu >= (u32)NR_CPUS) 3252 skb->sender_cpu = raw_smp_processor_id() + 1; 3253#endif 3254 3255 if (dev->real_num_tx_queues != 1) { 3256 const struct net_device_ops *ops = dev->netdev_ops; 3257 if (ops->ndo_select_queue) 3258 queue_index = ops->ndo_select_queue(dev, skb, accel_priv, 3259 __netdev_pick_tx); 3260 else 3261 queue_index = __netdev_pick_tx(dev, skb); 3262 3263 if (!accel_priv) 3264 queue_index = netdev_cap_txqueue(dev, queue_index); 3265 } 3266 3267 skb_set_queue_mapping(skb, queue_index); 3268 return netdev_get_tx_queue(dev, queue_index); 3269} 3270 3271/** 3272 * __dev_queue_xmit - transmit a buffer 3273 * @skb: buffer to transmit 3274 * @accel_priv: private data used for L2 forwarding offload 3275 * 3276 * Queue a buffer for transmission to a network device. The caller must 3277 * have set the device and priority and built the buffer before calling 3278 * this function. The function can be called from an interrupt. 3279 * 3280 * A negative errno code is returned on a failure. A success does not 3281 * guarantee the frame will be transmitted as it may be dropped due 3282 * to congestion or traffic shaping. 3283 * 3284 * ----------------------------------------------------------------------------------- 3285 * I notice this method can also return errors from the queue disciplines, 3286 * including NET_XMIT_DROP, which is a positive value. So, errors can also 3287 * be positive. 3288 * 3289 * Regardless of the return value, the skb is consumed, so it is currently 3290 * difficult to retry a send to this method. (You can bump the ref count 3291 * before sending to hold a reference for retry if you are careful.) 3292 * 3293 * When calling this method, interrupts MUST be enabled. This is because 3294 * the BH enable code must have IRQs enabled so that it will not deadlock. 3295 * --BLG 3296 */ 3297static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv) 3298{ 3299 struct net_device *dev = skb->dev; 3300 struct netdev_queue *txq; 3301 struct Qdisc *q; 3302 int rc = -ENOMEM; 3303 3304 skb_reset_mac_header(skb); 3305 3306 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP)) 3307 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED); 3308 3309 /* Disable soft irqs for various locks below. Also 3310 * stops preemption for RCU. 3311 */ 3312 rcu_read_lock_bh(); 3313 3314 skb_update_prio(skb); 3315 3316 qdisc_pkt_len_init(skb); 3317#ifdef CONFIG_NET_CLS_ACT 3318 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS); 3319# ifdef CONFIG_NET_EGRESS 3320 if (static_key_false(&egress_needed)) { 3321 skb = sch_handle_egress(skb, &rc, dev); 3322 if (!skb) 3323 goto out; 3324 } 3325# endif 3326#endif 3327 /* If device/qdisc don't need skb->dst, release it right now while 3328 * its hot in this cpu cache. 3329 */ 3330 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 3331 skb_dst_drop(skb); 3332 else 3333 skb_dst_force(skb); 3334 3335 txq = netdev_pick_tx(dev, skb, accel_priv); 3336 q = rcu_dereference_bh(txq->qdisc); 3337 3338 trace_net_dev_queue(skb); 3339 if (q->enqueue) { 3340 rc = __dev_xmit_skb(skb, q, dev, txq); 3341 goto out; 3342 } 3343 3344 /* The device has no queue. Common case for software devices: 3345 loopback, all the sorts of tunnels... 3346 3347 Really, it is unlikely that netif_tx_lock protection is necessary 3348 here. (f.e. loopback and IP tunnels are clean ignoring statistics 3349 counters.) 3350 However, it is possible, that they rely on protection 3351 made by us here. 3352 3353 Check this and shot the lock. It is not prone from deadlocks. 3354 Either shot noqueue qdisc, it is even simpler 8) 3355 */ 3356 if (dev->flags & IFF_UP) { 3357 int cpu = smp_processor_id(); /* ok because BHs are off */ 3358 3359 if (txq->xmit_lock_owner != cpu) { 3360 if (unlikely(__this_cpu_read(xmit_recursion) > 3361 XMIT_RECURSION_LIMIT)) 3362 goto recursion_alert; 3363 3364 skb = validate_xmit_skb(skb, dev); 3365 if (!skb) 3366 goto out; 3367 3368 HARD_TX_LOCK(dev, txq, cpu); 3369 3370 if (!netif_xmit_stopped(txq)) { 3371 __this_cpu_inc(xmit_recursion); 3372 skb = dev_hard_start_xmit(skb, dev, txq, &rc); 3373 __this_cpu_dec(xmit_recursion); 3374 if (dev_xmit_complete(rc)) { 3375 HARD_TX_UNLOCK(dev, txq); 3376 goto out; 3377 } 3378 } 3379 HARD_TX_UNLOCK(dev, txq); 3380 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 3381 dev->name); 3382 } else { 3383 /* Recursion is detected! It is possible, 3384 * unfortunately 3385 */ 3386recursion_alert: 3387 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 3388 dev->name); 3389 } 3390 } 3391 3392 rc = -ENETDOWN; 3393 rcu_read_unlock_bh(); 3394 3395 atomic_long_inc(&dev->tx_dropped); 3396 kfree_skb_list(skb); 3397 return rc; 3398out: 3399 rcu_read_unlock_bh(); 3400 return rc; 3401} 3402 3403int dev_queue_xmit(struct sk_buff *skb) 3404{ 3405 return __dev_queue_xmit(skb, NULL); 3406} 3407EXPORT_SYMBOL(dev_queue_xmit); 3408 3409int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv) 3410{ 3411 return __dev_queue_xmit(skb, accel_priv); 3412} 3413EXPORT_SYMBOL(dev_queue_xmit_accel); 3414 3415 3416/*======================================================================= 3417 Receiver routines 3418 =======================================================================*/ 3419 3420int netdev_max_backlog __read_mostly = 1000; 3421EXPORT_SYMBOL(netdev_max_backlog); 3422 3423int netdev_tstamp_prequeue __read_mostly = 1; 3424int netdev_budget __read_mostly = 300; 3425int weight_p __read_mostly = 64; /* old backlog weight */ 3426 3427/* Called with irq disabled */ 3428static inline void ____napi_schedule(struct softnet_data *sd, 3429 struct napi_struct *napi) 3430{ 3431 list_add_tail(&napi->poll_list, &sd->poll_list); 3432 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3433} 3434 3435#ifdef CONFIG_RPS 3436 3437/* One global table that all flow-based protocols share. */ 3438struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 3439EXPORT_SYMBOL(rps_sock_flow_table); 3440u32 rps_cpu_mask __read_mostly; 3441EXPORT_SYMBOL(rps_cpu_mask); 3442 3443struct static_key rps_needed __read_mostly; 3444EXPORT_SYMBOL(rps_needed); 3445struct static_key rfs_needed __read_mostly; 3446EXPORT_SYMBOL(rfs_needed); 3447 3448static struct rps_dev_flow * 3449set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 3450 struct rps_dev_flow *rflow, u16 next_cpu) 3451{ 3452 if (next_cpu < nr_cpu_ids) { 3453#ifdef CONFIG_RFS_ACCEL 3454 struct netdev_rx_queue *rxqueue; 3455 struct rps_dev_flow_table *flow_table; 3456 struct rps_dev_flow *old_rflow; 3457 u32 flow_id; 3458 u16 rxq_index; 3459 int rc; 3460 3461 /* Should we steer this flow to a different hardware queue? */ 3462 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 3463 !(dev->features & NETIF_F_NTUPLE)) 3464 goto out; 3465 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 3466 if (rxq_index == skb_get_rx_queue(skb)) 3467 goto out; 3468 3469 rxqueue = dev->_rx + rxq_index; 3470 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3471 if (!flow_table) 3472 goto out; 3473 flow_id = skb_get_hash(skb) & flow_table->mask; 3474 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 3475 rxq_index, flow_id); 3476 if (rc < 0) 3477 goto out; 3478 old_rflow = rflow; 3479 rflow = &flow_table->flows[flow_id]; 3480 rflow->filter = rc; 3481 if (old_rflow->filter == rflow->filter) 3482 old_rflow->filter = RPS_NO_FILTER; 3483 out: 3484#endif 3485 rflow->last_qtail = 3486 per_cpu(softnet_data, next_cpu).input_queue_head; 3487 } 3488 3489 rflow->cpu = next_cpu; 3490 return rflow; 3491} 3492 3493/* 3494 * get_rps_cpu is called from netif_receive_skb and returns the target 3495 * CPU from the RPS map of the receiving queue for a given skb. 3496 * rcu_read_lock must be held on entry. 3497 */ 3498static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 3499 struct rps_dev_flow **rflowp) 3500{ 3501 const struct rps_sock_flow_table *sock_flow_table; 3502 struct netdev_rx_queue *rxqueue = dev->_rx; 3503 struct rps_dev_flow_table *flow_table; 3504 struct rps_map *map; 3505 int cpu = -1; 3506 u32 tcpu; 3507 u32 hash; 3508 3509 if (skb_rx_queue_recorded(skb)) { 3510 u16 index = skb_get_rx_queue(skb); 3511 3512 if (unlikely(index >= dev->real_num_rx_queues)) { 3513 WARN_ONCE(dev->real_num_rx_queues > 1, 3514 "%s received packet on queue %u, but number " 3515 "of RX queues is %u\n", 3516 dev->name, index, dev->real_num_rx_queues); 3517 goto done; 3518 } 3519 rxqueue += index; 3520 } 3521 3522 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */ 3523 3524 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3525 map = rcu_dereference(rxqueue->rps_map); 3526 if (!flow_table && !map) 3527 goto done; 3528 3529 skb_reset_network_header(skb); 3530 hash = skb_get_hash(skb); 3531 if (!hash) 3532 goto done; 3533 3534 sock_flow_table = rcu_dereference(rps_sock_flow_table); 3535 if (flow_table && sock_flow_table) { 3536 struct rps_dev_flow *rflow; 3537 u32 next_cpu; 3538 u32 ident; 3539 3540 /* First check into global flow table if there is a match */ 3541 ident = sock_flow_table->ents[hash & sock_flow_table->mask]; 3542 if ((ident ^ hash) & ~rps_cpu_mask) 3543 goto try_rps; 3544 3545 next_cpu = ident & rps_cpu_mask; 3546 3547 /* OK, now we know there is a match, 3548 * we can look at the local (per receive queue) flow table 3549 */ 3550 rflow = &flow_table->flows[hash & flow_table->mask]; 3551 tcpu = rflow->cpu; 3552 3553 /* 3554 * If the desired CPU (where last recvmsg was done) is 3555 * different from current CPU (one in the rx-queue flow 3556 * table entry), switch if one of the following holds: 3557 * - Current CPU is unset (>= nr_cpu_ids). 3558 * - Current CPU is offline. 3559 * - The current CPU's queue tail has advanced beyond the 3560 * last packet that was enqueued using this table entry. 3561 * This guarantees that all previous packets for the flow 3562 * have been dequeued, thus preserving in order delivery. 3563 */ 3564 if (unlikely(tcpu != next_cpu) && 3565 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) || 3566 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 3567 rflow->last_qtail)) >= 0)) { 3568 tcpu = next_cpu; 3569 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 3570 } 3571 3572 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) { 3573 *rflowp = rflow; 3574 cpu = tcpu; 3575 goto done; 3576 } 3577 } 3578 3579try_rps: 3580 3581 if (map) { 3582 tcpu = map->cpus[reciprocal_scale(hash, map->len)]; 3583 if (cpu_online(tcpu)) { 3584 cpu = tcpu; 3585 goto done; 3586 } 3587 } 3588 3589done: 3590 return cpu; 3591} 3592 3593#ifdef CONFIG_RFS_ACCEL 3594 3595/** 3596 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 3597 * @dev: Device on which the filter was set 3598 * @rxq_index: RX queue index 3599 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 3600 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 3601 * 3602 * Drivers that implement ndo_rx_flow_steer() should periodically call 3603 * this function for each installed filter and remove the filters for 3604 * which it returns %true. 3605 */ 3606bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 3607 u32 flow_id, u16 filter_id) 3608{ 3609 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 3610 struct rps_dev_flow_table *flow_table; 3611 struct rps_dev_flow *rflow; 3612 bool expire = true; 3613 unsigned int cpu; 3614 3615 rcu_read_lock(); 3616 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3617 if (flow_table && flow_id <= flow_table->mask) { 3618 rflow = &flow_table->flows[flow_id]; 3619 cpu = ACCESS_ONCE(rflow->cpu); 3620 if (rflow->filter == filter_id && cpu < nr_cpu_ids && 3621 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 3622 rflow->last_qtail) < 3623 (int)(10 * flow_table->mask))) 3624 expire = false; 3625 } 3626 rcu_read_unlock(); 3627 return expire; 3628} 3629EXPORT_SYMBOL(rps_may_expire_flow); 3630 3631#endif /* CONFIG_RFS_ACCEL */ 3632 3633/* Called from hardirq (IPI) context */ 3634static void rps_trigger_softirq(void *data) 3635{ 3636 struct softnet_data *sd = data; 3637 3638 ____napi_schedule(sd, &sd->backlog); 3639 sd->received_rps++; 3640} 3641 3642#endif /* CONFIG_RPS */ 3643 3644/* 3645 * Check if this softnet_data structure is another cpu one 3646 * If yes, queue it to our IPI list and return 1 3647 * If no, return 0 3648 */ 3649static int rps_ipi_queued(struct softnet_data *sd) 3650{ 3651#ifdef CONFIG_RPS 3652 struct softnet_data *mysd = this_cpu_ptr(&softnet_data); 3653 3654 if (sd != mysd) { 3655 sd->rps_ipi_next = mysd->rps_ipi_list; 3656 mysd->rps_ipi_list = sd; 3657 3658 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3659 return 1; 3660 } 3661#endif /* CONFIG_RPS */ 3662 return 0; 3663} 3664 3665#ifdef CONFIG_NET_FLOW_LIMIT 3666int netdev_flow_limit_table_len __read_mostly = (1 << 12); 3667#endif 3668 3669static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen) 3670{ 3671#ifdef CONFIG_NET_FLOW_LIMIT 3672 struct sd_flow_limit *fl; 3673 struct softnet_data *sd; 3674 unsigned int old_flow, new_flow; 3675 3676 if (qlen < (netdev_max_backlog >> 1)) 3677 return false; 3678 3679 sd = this_cpu_ptr(&softnet_data); 3680 3681 rcu_read_lock(); 3682 fl = rcu_dereference(sd->flow_limit); 3683 if (fl) { 3684 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1); 3685 old_flow = fl->history[fl->history_head]; 3686 fl->history[fl->history_head] = new_flow; 3687 3688 fl->history_head++; 3689 fl->history_head &= FLOW_LIMIT_HISTORY - 1; 3690 3691 if (likely(fl->buckets[old_flow])) 3692 fl->buckets[old_flow]--; 3693 3694 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { 3695 fl->count++; 3696 rcu_read_unlock(); 3697 return true; 3698 } 3699 } 3700 rcu_read_unlock(); 3701#endif 3702 return false; 3703} 3704 3705/* 3706 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 3707 * queue (may be a remote CPU queue). 3708 */ 3709static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 3710 unsigned int *qtail) 3711{ 3712 struct softnet_data *sd; 3713 unsigned long flags; 3714 unsigned int qlen; 3715 3716 sd = &per_cpu(softnet_data, cpu); 3717 3718 local_irq_save(flags); 3719 3720 rps_lock(sd); 3721 if (!netif_running(skb->dev)) 3722 goto drop; 3723 qlen = skb_queue_len(&sd->input_pkt_queue); 3724 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) { 3725 if (qlen) { 3726enqueue: 3727 __skb_queue_tail(&sd->input_pkt_queue, skb); 3728 input_queue_tail_incr_save(sd, qtail); 3729 rps_unlock(sd); 3730 local_irq_restore(flags); 3731 return NET_RX_SUCCESS; 3732 } 3733 3734 /* Schedule NAPI for backlog device 3735 * We can use non atomic operation since we own the queue lock 3736 */ 3737 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 3738 if (!rps_ipi_queued(sd)) 3739 ____napi_schedule(sd, &sd->backlog); 3740 } 3741 goto enqueue; 3742 } 3743 3744drop: 3745 sd->dropped++; 3746 rps_unlock(sd); 3747 3748 local_irq_restore(flags); 3749 3750 atomic_long_inc(&skb->dev->rx_dropped); 3751 kfree_skb(skb); 3752 return NET_RX_DROP; 3753} 3754 3755static int netif_rx_internal(struct sk_buff *skb) 3756{ 3757 int ret; 3758 3759 net_timestamp_check(netdev_tstamp_prequeue, skb); 3760 3761 trace_netif_rx(skb); 3762#ifdef CONFIG_RPS 3763 if (static_key_false(&rps_needed)) { 3764 struct rps_dev_flow voidflow, *rflow = &voidflow; 3765 int cpu; 3766 3767 preempt_disable(); 3768 rcu_read_lock(); 3769 3770 cpu = get_rps_cpu(skb->dev, skb, &rflow); 3771 if (cpu < 0) 3772 cpu = smp_processor_id(); 3773 3774 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 3775 3776 rcu_read_unlock(); 3777 preempt_enable(); 3778 } else 3779#endif 3780 { 3781 unsigned int qtail; 3782 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 3783 put_cpu(); 3784 } 3785 return ret; 3786} 3787 3788/** 3789 * netif_rx - post buffer to the network code 3790 * @skb: buffer to post 3791 * 3792 * This function receives a packet from a device driver and queues it for 3793 * the upper (protocol) levels to process. It always succeeds. The buffer 3794 * may be dropped during processing for congestion control or by the 3795 * protocol layers. 3796 * 3797 * return values: 3798 * NET_RX_SUCCESS (no congestion) 3799 * NET_RX_DROP (packet was dropped) 3800 * 3801 */ 3802 3803int netif_rx(struct sk_buff *skb) 3804{ 3805 trace_netif_rx_entry(skb); 3806 3807 return netif_rx_internal(skb); 3808} 3809EXPORT_SYMBOL(netif_rx); 3810 3811int netif_rx_ni(struct sk_buff *skb) 3812{ 3813 int err; 3814 3815 trace_netif_rx_ni_entry(skb); 3816 3817 preempt_disable(); 3818 err = netif_rx_internal(skb); 3819 if (local_softirq_pending()) 3820 do_softirq(); 3821 preempt_enable(); 3822 3823 return err; 3824} 3825EXPORT_SYMBOL(netif_rx_ni); 3826 3827static __latent_entropy void net_tx_action(struct softirq_action *h) 3828{ 3829 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 3830 3831 if (sd->completion_queue) { 3832 struct sk_buff *clist; 3833 3834 local_irq_disable(); 3835 clist = sd->completion_queue; 3836 sd->completion_queue = NULL; 3837 local_irq_enable(); 3838 3839 while (clist) { 3840 struct sk_buff *skb = clist; 3841 clist = clist->next; 3842 3843 WARN_ON(atomic_read(&skb->users)); 3844 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED)) 3845 trace_consume_skb(skb); 3846 else 3847 trace_kfree_skb(skb, net_tx_action); 3848 3849 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) 3850 __kfree_skb(skb); 3851 else 3852 __kfree_skb_defer(skb); 3853 } 3854 3855 __kfree_skb_flush(); 3856 } 3857 3858 if (sd->output_queue) { 3859 struct Qdisc *head; 3860 3861 local_irq_disable(); 3862 head = sd->output_queue; 3863 sd->output_queue = NULL; 3864 sd->output_queue_tailp = &sd->output_queue; 3865 local_irq_enable(); 3866 3867 while (head) { 3868 struct Qdisc *q = head; 3869 spinlock_t *root_lock; 3870 3871 head = head->next_sched; 3872 3873 root_lock = qdisc_lock(q); 3874 spin_lock(root_lock); 3875 /* We need to make sure head->next_sched is read 3876 * before clearing __QDISC_STATE_SCHED 3877 */ 3878 smp_mb__before_atomic(); 3879 clear_bit(__QDISC_STATE_SCHED, &q->state); 3880 qdisc_run(q); 3881 spin_unlock(root_lock); 3882 } 3883 } 3884} 3885 3886#if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE) 3887/* This hook is defined here for ATM LANE */ 3888int (*br_fdb_test_addr_hook)(struct net_device *dev, 3889 unsigned char *addr) __read_mostly; 3890EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 3891#endif 3892 3893static inline struct sk_buff * 3894sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, 3895 struct net_device *orig_dev) 3896{ 3897#ifdef CONFIG_NET_CLS_ACT 3898 struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list); 3899 struct tcf_result cl_res; 3900 3901 /* If there's at least one ingress present somewhere (so 3902 * we get here via enabled static key), remaining devices 3903 * that are not configured with an ingress qdisc will bail 3904 * out here. 3905 */ 3906 if (!cl) 3907 return skb; 3908 if (*pt_prev) { 3909 *ret = deliver_skb(skb, *pt_prev, orig_dev); 3910 *pt_prev = NULL; 3911 } 3912 3913 qdisc_skb_cb(skb)->pkt_len = skb->len; 3914 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS); 3915 qdisc_bstats_cpu_update(cl->q, skb); 3916 3917 switch (tc_classify(skb, cl, &cl_res, false)) { 3918 case TC_ACT_OK: 3919 case TC_ACT_RECLASSIFY: 3920 skb->tc_index = TC_H_MIN(cl_res.classid); 3921 break; 3922 case TC_ACT_SHOT: 3923 qdisc_qstats_cpu_drop(cl->q); 3924 kfree_skb(skb); 3925 return NULL; 3926 case TC_ACT_STOLEN: 3927 case TC_ACT_QUEUED: 3928 consume_skb(skb); 3929 return NULL; 3930 case TC_ACT_REDIRECT: 3931 /* skb_mac_header check was done by cls/act_bpf, so 3932 * we can safely push the L2 header back before 3933 * redirecting to another netdev 3934 */ 3935 __skb_push(skb, skb->mac_len); 3936 skb_do_redirect(skb); 3937 return NULL; 3938 default: 3939 break; 3940 } 3941#endif /* CONFIG_NET_CLS_ACT */ 3942 return skb; 3943} 3944 3945/** 3946 * netdev_is_rx_handler_busy - check if receive handler is registered 3947 * @dev: device to check 3948 * 3949 * Check if a receive handler is already registered for a given device. 3950 * Return true if there one. 3951 * 3952 * The caller must hold the rtnl_mutex. 3953 */ 3954bool netdev_is_rx_handler_busy(struct net_device *dev) 3955{ 3956 ASSERT_RTNL(); 3957 return dev && rtnl_dereference(dev->rx_handler); 3958} 3959EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy); 3960 3961/** 3962 * netdev_rx_handler_register - register receive handler 3963 * @dev: device to register a handler for 3964 * @rx_handler: receive handler to register 3965 * @rx_handler_data: data pointer that is used by rx handler 3966 * 3967 * Register a receive handler for a device. This handler will then be 3968 * called from __netif_receive_skb. A negative errno code is returned 3969 * on a failure. 3970 * 3971 * The caller must hold the rtnl_mutex. 3972 * 3973 * For a general description of rx_handler, see enum rx_handler_result. 3974 */ 3975int netdev_rx_handler_register(struct net_device *dev, 3976 rx_handler_func_t *rx_handler, 3977 void *rx_handler_data) 3978{ 3979 ASSERT_RTNL(); 3980 3981 if (dev->rx_handler) 3982 return -EBUSY; 3983 3984 /* Note: rx_handler_data must be set before rx_handler */ 3985 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 3986 rcu_assign_pointer(dev->rx_handler, rx_handler); 3987 3988 return 0; 3989} 3990EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 3991 3992/** 3993 * netdev_rx_handler_unregister - unregister receive handler 3994 * @dev: device to unregister a handler from 3995 * 3996 * Unregister a receive handler from a device. 3997 * 3998 * The caller must hold the rtnl_mutex. 3999 */ 4000void netdev_rx_handler_unregister(struct net_device *dev) 4001{ 4002 4003 ASSERT_RTNL(); 4004 RCU_INIT_POINTER(dev->rx_handler, NULL); 4005 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 4006 * section has a guarantee to see a non NULL rx_handler_data 4007 * as well. 4008 */ 4009 synchronize_net(); 4010 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 4011} 4012EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 4013 4014/* 4015 * Limit the use of PFMEMALLOC reserves to those protocols that implement 4016 * the special handling of PFMEMALLOC skbs. 4017 */ 4018static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 4019{ 4020 switch (skb->protocol) { 4021 case htons(ETH_P_ARP): 4022 case htons(ETH_P_IP): 4023 case htons(ETH_P_IPV6): 4024 case htons(ETH_P_8021Q): 4025 case htons(ETH_P_8021AD): 4026 return true; 4027 default: 4028 return false; 4029 } 4030} 4031 4032static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev, 4033 int *ret, struct net_device *orig_dev) 4034{ 4035#ifdef CONFIG_NETFILTER_INGRESS 4036 if (nf_hook_ingress_active(skb)) { 4037 int ingress_retval; 4038 4039 if (*pt_prev) { 4040 *ret = deliver_skb(skb, *pt_prev, orig_dev); 4041 *pt_prev = NULL; 4042 } 4043 4044 rcu_read_lock(); 4045 ingress_retval = nf_hook_ingress(skb); 4046 rcu_read_unlock(); 4047 return ingress_retval; 4048 } 4049#endif /* CONFIG_NETFILTER_INGRESS */ 4050 return 0; 4051} 4052 4053static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc) 4054{ 4055 struct packet_type *ptype, *pt_prev; 4056 rx_handler_func_t *rx_handler; 4057 struct net_device *orig_dev; 4058 bool deliver_exact = false; 4059 int ret = NET_RX_DROP; 4060 __be16 type; 4061 4062 net_timestamp_check(!netdev_tstamp_prequeue, skb); 4063 4064 trace_netif_receive_skb(skb); 4065 4066 orig_dev = skb->dev; 4067 4068 skb_reset_network_header(skb); 4069 if (!skb_transport_header_was_set(skb)) 4070 skb_reset_transport_header(skb); 4071 skb_reset_mac_len(skb); 4072 4073 pt_prev = NULL; 4074 4075another_round: 4076 skb->skb_iif = skb->dev->ifindex; 4077 4078 __this_cpu_inc(softnet_data.processed); 4079 4080 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) || 4081 skb->protocol == cpu_to_be16(ETH_P_8021AD)) { 4082 skb = skb_vlan_untag(skb); 4083 if (unlikely(!skb)) 4084 goto out; 4085 } 4086 4087#ifdef CONFIG_NET_CLS_ACT 4088 if (skb->tc_verd & TC_NCLS) { 4089 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd); 4090 goto ncls; 4091 } 4092#endif 4093 4094 if (pfmemalloc) 4095 goto skip_taps; 4096 4097 list_for_each_entry_rcu(ptype, &ptype_all, list) { 4098 if (pt_prev) 4099 ret = deliver_skb(skb, pt_prev, orig_dev); 4100 pt_prev = ptype; 4101 } 4102 4103 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) { 4104 if (pt_prev) 4105 ret = deliver_skb(skb, pt_prev, orig_dev); 4106 pt_prev = ptype; 4107 } 4108 4109skip_taps: 4110#ifdef CONFIG_NET_INGRESS 4111 if (static_key_false(&ingress_needed)) { 4112 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev); 4113 if (!skb) 4114 goto out; 4115 4116 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0) 4117 goto out; 4118 } 4119#endif 4120#ifdef CONFIG_NET_CLS_ACT 4121 skb->tc_verd = 0; 4122ncls: 4123#endif 4124 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) 4125 goto drop; 4126 4127 if (skb_vlan_tag_present(skb)) { 4128 if (pt_prev) { 4129 ret = deliver_skb(skb, pt_prev, orig_dev); 4130 pt_prev = NULL; 4131 } 4132 if (vlan_do_receive(&skb)) 4133 goto another_round; 4134 else if (unlikely(!skb)) 4135 goto out; 4136 } 4137 4138 rx_handler = rcu_dereference(skb->dev->rx_handler); 4139 if (rx_handler) { 4140 if (pt_prev) { 4141 ret = deliver_skb(skb, pt_prev, orig_dev); 4142 pt_prev = NULL; 4143 } 4144 switch (rx_handler(&skb)) { 4145 case RX_HANDLER_CONSUMED: 4146 ret = NET_RX_SUCCESS; 4147 goto out; 4148 case RX_HANDLER_ANOTHER: 4149 goto another_round; 4150 case RX_HANDLER_EXACT: 4151 deliver_exact = true; 4152 case RX_HANDLER_PASS: 4153 break; 4154 default: 4155 BUG(); 4156 } 4157 } 4158 4159 if (unlikely(skb_vlan_tag_present(skb))) { 4160 if (skb_vlan_tag_get_id(skb)) 4161 skb->pkt_type = PACKET_OTHERHOST; 4162 /* Note: we might in the future use prio bits 4163 * and set skb->priority like in vlan_do_receive() 4164 * For the time being, just ignore Priority Code Point 4165 */ 4166 skb->vlan_tci = 0; 4167 } 4168 4169 type = skb->protocol; 4170 4171 /* deliver only exact match when indicated */ 4172 if (likely(!deliver_exact)) { 4173 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4174 &ptype_base[ntohs(type) & 4175 PTYPE_HASH_MASK]); 4176 } 4177 4178 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4179 &orig_dev->ptype_specific); 4180 4181 if (unlikely(skb->dev != orig_dev)) { 4182 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4183 &skb->dev->ptype_specific); 4184 } 4185 4186 if (pt_prev) { 4187 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC))) 4188 goto drop; 4189 else 4190 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 4191 } else { 4192drop: 4193 if (!deliver_exact) 4194 atomic_long_inc(&skb->dev->rx_dropped); 4195 else 4196 atomic_long_inc(&skb->dev->rx_nohandler); 4197 kfree_skb(skb); 4198 /* Jamal, now you will not able to escape explaining 4199 * me how you were going to use this. :-) 4200 */ 4201 ret = NET_RX_DROP; 4202 } 4203 4204out: 4205 return ret; 4206} 4207 4208static int __netif_receive_skb(struct sk_buff *skb) 4209{ 4210 int ret; 4211 4212 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 4213 unsigned long pflags = current->flags; 4214 4215 /* 4216 * PFMEMALLOC skbs are special, they should 4217 * - be delivered to SOCK_MEMALLOC sockets only 4218 * - stay away from userspace 4219 * - have bounded memory usage 4220 * 4221 * Use PF_MEMALLOC as this saves us from propagating the allocation 4222 * context down to all allocation sites. 4223 */ 4224 current->flags |= PF_MEMALLOC; 4225 ret = __netif_receive_skb_core(skb, true); 4226 tsk_restore_flags(current, pflags, PF_MEMALLOC); 4227 } else 4228 ret = __netif_receive_skb_core(skb, false); 4229 4230 return ret; 4231} 4232 4233static int netif_receive_skb_internal(struct sk_buff *skb) 4234{ 4235 int ret; 4236 4237 net_timestamp_check(netdev_tstamp_prequeue, skb); 4238 4239 if (skb_defer_rx_timestamp(skb)) 4240 return NET_RX_SUCCESS; 4241 4242 rcu_read_lock(); 4243 4244#ifdef CONFIG_RPS 4245 if (static_key_false(&rps_needed)) { 4246 struct rps_dev_flow voidflow, *rflow = &voidflow; 4247 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 4248 4249 if (cpu >= 0) { 4250 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 4251 rcu_read_unlock(); 4252 return ret; 4253 } 4254 } 4255#endif 4256 ret = __netif_receive_skb(skb); 4257 rcu_read_unlock(); 4258 return ret; 4259} 4260 4261/** 4262 * netif_receive_skb - process receive buffer from network 4263 * @skb: buffer to process 4264 * 4265 * netif_receive_skb() is the main receive data processing function. 4266 * It always succeeds. The buffer may be dropped during processing 4267 * for congestion control or by the protocol layers. 4268 * 4269 * This function may only be called from softirq context and interrupts 4270 * should be enabled. 4271 * 4272 * Return values (usually ignored): 4273 * NET_RX_SUCCESS: no congestion 4274 * NET_RX_DROP: packet was dropped 4275 */ 4276int netif_receive_skb(struct sk_buff *skb) 4277{ 4278 trace_netif_receive_skb_entry(skb); 4279 4280 return netif_receive_skb_internal(skb); 4281} 4282EXPORT_SYMBOL(netif_receive_skb); 4283 4284DEFINE_PER_CPU(struct work_struct, flush_works); 4285 4286/* Network device is going away, flush any packets still pending */ 4287static void flush_backlog(struct work_struct *work) 4288{ 4289 struct sk_buff *skb, *tmp; 4290 struct softnet_data *sd; 4291 4292 local_bh_disable(); 4293 sd = this_cpu_ptr(&softnet_data); 4294 4295 local_irq_disable(); 4296 rps_lock(sd); 4297 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 4298 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 4299 __skb_unlink(skb, &sd->input_pkt_queue); 4300 kfree_skb(skb); 4301 input_queue_head_incr(sd); 4302 } 4303 } 4304 rps_unlock(sd); 4305 local_irq_enable(); 4306 4307 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 4308 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 4309 __skb_unlink(skb, &sd->process_queue); 4310 kfree_skb(skb); 4311 input_queue_head_incr(sd); 4312 } 4313 } 4314 local_bh_enable(); 4315} 4316 4317static void flush_all_backlogs(void) 4318{ 4319 unsigned int cpu; 4320 4321 get_online_cpus(); 4322 4323 for_each_online_cpu(cpu) 4324 queue_work_on(cpu, system_highpri_wq, 4325 per_cpu_ptr(&flush_works, cpu)); 4326 4327 for_each_online_cpu(cpu) 4328 flush_work(per_cpu_ptr(&flush_works, cpu)); 4329 4330 put_online_cpus(); 4331} 4332 4333static int napi_gro_complete(struct sk_buff *skb) 4334{ 4335 struct packet_offload *ptype; 4336 __be16 type = skb->protocol; 4337 struct list_head *head = &offload_base; 4338 int err = -ENOENT; 4339 4340 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb)); 4341 4342 if (NAPI_GRO_CB(skb)->count == 1) { 4343 skb_shinfo(skb)->gso_size = 0; 4344 goto out; 4345 } 4346 4347 rcu_read_lock(); 4348 list_for_each_entry_rcu(ptype, head, list) { 4349 if (ptype->type != type || !ptype->callbacks.gro_complete) 4350 continue; 4351 4352 err = ptype->callbacks.gro_complete(skb, 0); 4353 break; 4354 } 4355 rcu_read_unlock(); 4356 4357 if (err) { 4358 WARN_ON(&ptype->list == head); 4359 kfree_skb(skb); 4360 return NET_RX_SUCCESS; 4361 } 4362 4363out: 4364 return netif_receive_skb_internal(skb); 4365} 4366 4367/* napi->gro_list contains packets ordered by age. 4368 * youngest packets at the head of it. 4369 * Complete skbs in reverse order to reduce latencies. 4370 */ 4371void napi_gro_flush(struct napi_struct *napi, bool flush_old) 4372{ 4373 struct sk_buff *skb, *prev = NULL; 4374 4375 /* scan list and build reverse chain */ 4376 for (skb = napi->gro_list; skb != NULL; skb = skb->next) { 4377 skb->prev = prev; 4378 prev = skb; 4379 } 4380 4381 for (skb = prev; skb; skb = prev) { 4382 skb->next = NULL; 4383 4384 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies) 4385 return; 4386 4387 prev = skb->prev; 4388 napi_gro_complete(skb); 4389 napi->gro_count--; 4390 } 4391 4392 napi->gro_list = NULL; 4393} 4394EXPORT_SYMBOL(napi_gro_flush); 4395 4396static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb) 4397{ 4398 struct sk_buff *p; 4399 unsigned int maclen = skb->dev->hard_header_len; 4400 u32 hash = skb_get_hash_raw(skb); 4401 4402 for (p = napi->gro_list; p; p = p->next) { 4403 unsigned long diffs; 4404 4405 NAPI_GRO_CB(p)->flush = 0; 4406 4407 if (hash != skb_get_hash_raw(p)) { 4408 NAPI_GRO_CB(p)->same_flow = 0; 4409 continue; 4410 } 4411 4412 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; 4413 diffs |= p->vlan_tci ^ skb->vlan_tci; 4414 diffs |= skb_metadata_dst_cmp(p, skb); 4415 if (maclen == ETH_HLEN) 4416 diffs |= compare_ether_header(skb_mac_header(p), 4417 skb_mac_header(skb)); 4418 else if (!diffs) 4419 diffs = memcmp(skb_mac_header(p), 4420 skb_mac_header(skb), 4421 maclen); 4422 NAPI_GRO_CB(p)->same_flow = !diffs; 4423 } 4424} 4425 4426static void skb_gro_reset_offset(struct sk_buff *skb) 4427{ 4428 const struct skb_shared_info *pinfo = skb_shinfo(skb); 4429 const skb_frag_t *frag0 = &pinfo->frags[0]; 4430 4431 NAPI_GRO_CB(skb)->data_offset = 0; 4432 NAPI_GRO_CB(skb)->frag0 = NULL; 4433 NAPI_GRO_CB(skb)->frag0_len = 0; 4434 4435 if (skb_mac_header(skb) == skb_tail_pointer(skb) && 4436 pinfo->nr_frags && 4437 !PageHighMem(skb_frag_page(frag0))) { 4438 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0); 4439 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int, 4440 skb_frag_size(frag0), 4441 skb->end - skb->tail); 4442 } 4443} 4444 4445static void gro_pull_from_frag0(struct sk_buff *skb, int grow) 4446{ 4447 struct skb_shared_info *pinfo = skb_shinfo(skb); 4448 4449 BUG_ON(skb->end - skb->tail < grow); 4450 4451 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 4452 4453 skb->data_len -= grow; 4454 skb->tail += grow; 4455 4456 pinfo->frags[0].page_offset += grow; 4457 skb_frag_size_sub(&pinfo->frags[0], grow); 4458 4459 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) { 4460 skb_frag_unref(skb, 0); 4461 memmove(pinfo->frags, pinfo->frags + 1, 4462 --pinfo->nr_frags * sizeof(pinfo->frags[0])); 4463 } 4464} 4465 4466static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 4467{ 4468 struct sk_buff **pp = NULL; 4469 struct packet_offload *ptype; 4470 __be16 type = skb->protocol; 4471 struct list_head *head = &offload_base; 4472 int same_flow; 4473 enum gro_result ret; 4474 int grow; 4475 4476 if (!(skb->dev->features & NETIF_F_GRO)) 4477 goto normal; 4478 4479 if (skb->csum_bad) 4480 goto normal; 4481 4482 gro_list_prepare(napi, skb); 4483 4484 rcu_read_lock(); 4485 list_for_each_entry_rcu(ptype, head, list) { 4486 if (ptype->type != type || !ptype->callbacks.gro_receive) 4487 continue; 4488 4489 skb_set_network_header(skb, skb_gro_offset(skb)); 4490 skb_reset_mac_len(skb); 4491 NAPI_GRO_CB(skb)->same_flow = 0; 4492 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb); 4493 NAPI_GRO_CB(skb)->free = 0; 4494 NAPI_GRO_CB(skb)->encap_mark = 0; 4495 NAPI_GRO_CB(skb)->recursion_counter = 0; 4496 NAPI_GRO_CB(skb)->is_fou = 0; 4497 NAPI_GRO_CB(skb)->is_atomic = 1; 4498 NAPI_GRO_CB(skb)->gro_remcsum_start = 0; 4499 4500 /* Setup for GRO checksum validation */ 4501 switch (skb->ip_summed) { 4502 case CHECKSUM_COMPLETE: 4503 NAPI_GRO_CB(skb)->csum = skb->csum; 4504 NAPI_GRO_CB(skb)->csum_valid = 1; 4505 NAPI_GRO_CB(skb)->csum_cnt = 0; 4506 break; 4507 case CHECKSUM_UNNECESSARY: 4508 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1; 4509 NAPI_GRO_CB(skb)->csum_valid = 0; 4510 break; 4511 default: 4512 NAPI_GRO_CB(skb)->csum_cnt = 0; 4513 NAPI_GRO_CB(skb)->csum_valid = 0; 4514 } 4515 4516 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb); 4517 break; 4518 } 4519 rcu_read_unlock(); 4520 4521 if (&ptype->list == head) 4522 goto normal; 4523 4524 same_flow = NAPI_GRO_CB(skb)->same_flow; 4525 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 4526 4527 if (pp) { 4528 struct sk_buff *nskb = *pp; 4529 4530 *pp = nskb->next; 4531 nskb->next = NULL; 4532 napi_gro_complete(nskb); 4533 napi->gro_count--; 4534 } 4535 4536 if (same_flow) 4537 goto ok; 4538 4539 if (NAPI_GRO_CB(skb)->flush) 4540 goto normal; 4541 4542 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) { 4543 struct sk_buff *nskb = napi->gro_list; 4544 4545 /* locate the end of the list to select the 'oldest' flow */ 4546 while (nskb->next) { 4547 pp = &nskb->next; 4548 nskb = *pp; 4549 } 4550 *pp = NULL; 4551 nskb->next = NULL; 4552 napi_gro_complete(nskb); 4553 } else { 4554 napi->gro_count++; 4555 } 4556 NAPI_GRO_CB(skb)->count = 1; 4557 NAPI_GRO_CB(skb)->age = jiffies; 4558 NAPI_GRO_CB(skb)->last = skb; 4559 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 4560 skb->next = napi->gro_list; 4561 napi->gro_list = skb; 4562 ret = GRO_HELD; 4563 4564pull: 4565 grow = skb_gro_offset(skb) - skb_headlen(skb); 4566 if (grow > 0) 4567 gro_pull_from_frag0(skb, grow); 4568ok: 4569 return ret; 4570 4571normal: 4572 ret = GRO_NORMAL; 4573 goto pull; 4574} 4575 4576struct packet_offload *gro_find_receive_by_type(__be16 type) 4577{ 4578 struct list_head *offload_head = &offload_base; 4579 struct packet_offload *ptype; 4580 4581 list_for_each_entry_rcu(ptype, offload_head, list) { 4582 if (ptype->type != type || !ptype->callbacks.gro_receive) 4583 continue; 4584 return ptype; 4585 } 4586 return NULL; 4587} 4588EXPORT_SYMBOL(gro_find_receive_by_type); 4589 4590struct packet_offload *gro_find_complete_by_type(__be16 type) 4591{ 4592 struct list_head *offload_head = &offload_base; 4593 struct packet_offload *ptype; 4594 4595 list_for_each_entry_rcu(ptype, offload_head, list) { 4596 if (ptype->type != type || !ptype->callbacks.gro_complete) 4597 continue; 4598 return ptype; 4599 } 4600 return NULL; 4601} 4602EXPORT_SYMBOL(gro_find_complete_by_type); 4603 4604static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb) 4605{ 4606 switch (ret) { 4607 case GRO_NORMAL: 4608 if (netif_receive_skb_internal(skb)) 4609 ret = GRO_DROP; 4610 break; 4611 4612 case GRO_DROP: 4613 kfree_skb(skb); 4614 break; 4615 4616 case GRO_MERGED_FREE: 4617 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) { 4618 skb_dst_drop(skb); 4619 kmem_cache_free(skbuff_head_cache, skb); 4620 } else { 4621 __kfree_skb(skb); 4622 } 4623 break; 4624 4625 case GRO_HELD: 4626 case GRO_MERGED: 4627 break; 4628 } 4629 4630 return ret; 4631} 4632 4633gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 4634{ 4635 skb_mark_napi_id(skb, napi); 4636 trace_napi_gro_receive_entry(skb); 4637 4638 skb_gro_reset_offset(skb); 4639 4640 return napi_skb_finish(dev_gro_receive(napi, skb), skb); 4641} 4642EXPORT_SYMBOL(napi_gro_receive); 4643 4644static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 4645{ 4646 if (unlikely(skb->pfmemalloc)) { 4647 consume_skb(skb); 4648 return; 4649 } 4650 __skb_pull(skb, skb_headlen(skb)); 4651 /* restore the reserve we had after netdev_alloc_skb_ip_align() */ 4652 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb)); 4653 skb->vlan_tci = 0; 4654 skb->dev = napi->dev; 4655 skb->skb_iif = 0; 4656 skb->encapsulation = 0; 4657 skb_shinfo(skb)->gso_type = 0; 4658 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 4659 4660 napi->skb = skb; 4661} 4662 4663struct sk_buff *napi_get_frags(struct napi_struct *napi) 4664{ 4665 struct sk_buff *skb = napi->skb; 4666 4667 if (!skb) { 4668 skb = napi_alloc_skb(napi, GRO_MAX_HEAD); 4669 if (skb) { 4670 napi->skb = skb; 4671 skb_mark_napi_id(skb, napi); 4672 } 4673 } 4674 return skb; 4675} 4676EXPORT_SYMBOL(napi_get_frags); 4677 4678static gro_result_t napi_frags_finish(struct napi_struct *napi, 4679 struct sk_buff *skb, 4680 gro_result_t ret) 4681{ 4682 switch (ret) { 4683 case GRO_NORMAL: 4684 case GRO_HELD: 4685 __skb_push(skb, ETH_HLEN); 4686 skb->protocol = eth_type_trans(skb, skb->dev); 4687 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb)) 4688 ret = GRO_DROP; 4689 break; 4690 4691 case GRO_DROP: 4692 case GRO_MERGED_FREE: 4693 napi_reuse_skb(napi, skb); 4694 break; 4695 4696 case GRO_MERGED: 4697 break; 4698 } 4699 4700 return ret; 4701} 4702 4703/* Upper GRO stack assumes network header starts at gro_offset=0 4704 * Drivers could call both napi_gro_frags() and napi_gro_receive() 4705 * We copy ethernet header into skb->data to have a common layout. 4706 */ 4707static struct sk_buff *napi_frags_skb(struct napi_struct *napi) 4708{ 4709 struct sk_buff *skb = napi->skb; 4710 const struct ethhdr *eth; 4711 unsigned int hlen = sizeof(*eth); 4712 4713 napi->skb = NULL; 4714 4715 skb_reset_mac_header(skb); 4716 skb_gro_reset_offset(skb); 4717 4718 eth = skb_gro_header_fast(skb, 0); 4719 if (unlikely(skb_gro_header_hard(skb, hlen))) { 4720 eth = skb_gro_header_slow(skb, hlen, 0); 4721 if (unlikely(!eth)) { 4722 net_warn_ratelimited("%s: dropping impossible skb from %s\n", 4723 __func__, napi->dev->name); 4724 napi_reuse_skb(napi, skb); 4725 return NULL; 4726 } 4727 } else { 4728 gro_pull_from_frag0(skb, hlen); 4729 NAPI_GRO_CB(skb)->frag0 += hlen; 4730 NAPI_GRO_CB(skb)->frag0_len -= hlen; 4731 } 4732 __skb_pull(skb, hlen); 4733 4734 /* 4735 * This works because the only protocols we care about don't require 4736 * special handling. 4737 * We'll fix it up properly in napi_frags_finish() 4738 */ 4739 skb->protocol = eth->h_proto; 4740 4741 return skb; 4742} 4743 4744gro_result_t napi_gro_frags(struct napi_struct *napi) 4745{ 4746 struct sk_buff *skb = napi_frags_skb(napi); 4747 4748 if (!skb) 4749 return GRO_DROP; 4750 4751 trace_napi_gro_frags_entry(skb); 4752 4753 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb)); 4754} 4755EXPORT_SYMBOL(napi_gro_frags); 4756 4757/* Compute the checksum from gro_offset and return the folded value 4758 * after adding in any pseudo checksum. 4759 */ 4760__sum16 __skb_gro_checksum_complete(struct sk_buff *skb) 4761{ 4762 __wsum wsum; 4763 __sum16 sum; 4764 4765 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0); 4766 4767 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */ 4768 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum)); 4769 if (likely(!sum)) { 4770 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 4771 !skb->csum_complete_sw) 4772 netdev_rx_csum_fault(skb->dev); 4773 } 4774 4775 NAPI_GRO_CB(skb)->csum = wsum; 4776 NAPI_GRO_CB(skb)->csum_valid = 1; 4777 4778 return sum; 4779} 4780EXPORT_SYMBOL(__skb_gro_checksum_complete); 4781 4782/* 4783 * net_rps_action_and_irq_enable sends any pending IPI's for rps. 4784 * Note: called with local irq disabled, but exits with local irq enabled. 4785 */ 4786static void net_rps_action_and_irq_enable(struct softnet_data *sd) 4787{ 4788#ifdef CONFIG_RPS 4789 struct softnet_data *remsd = sd->rps_ipi_list; 4790 4791 if (remsd) { 4792 sd->rps_ipi_list = NULL; 4793 4794 local_irq_enable(); 4795 4796 /* Send pending IPI's to kick RPS processing on remote cpus. */ 4797 while (remsd) { 4798 struct softnet_data *next = remsd->rps_ipi_next; 4799 4800 if (cpu_online(remsd->cpu)) 4801 smp_call_function_single_async(remsd->cpu, 4802 &remsd->csd); 4803 remsd = next; 4804 } 4805 } else 4806#endif 4807 local_irq_enable(); 4808} 4809 4810static bool sd_has_rps_ipi_waiting(struct softnet_data *sd) 4811{ 4812#ifdef CONFIG_RPS 4813 return sd->rps_ipi_list != NULL; 4814#else 4815 return false; 4816#endif 4817} 4818 4819static int process_backlog(struct napi_struct *napi, int quota) 4820{ 4821 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 4822 bool again = true; 4823 int work = 0; 4824 4825 /* Check if we have pending ipi, its better to send them now, 4826 * not waiting net_rx_action() end. 4827 */ 4828 if (sd_has_rps_ipi_waiting(sd)) { 4829 local_irq_disable(); 4830 net_rps_action_and_irq_enable(sd); 4831 } 4832 4833 napi->weight = weight_p; 4834 while (again) { 4835 struct sk_buff *skb; 4836 4837 while ((skb = __skb_dequeue(&sd->process_queue))) { 4838 rcu_read_lock(); 4839 __netif_receive_skb(skb); 4840 rcu_read_unlock(); 4841 input_queue_head_incr(sd); 4842 if (++work >= quota) 4843 return work; 4844 4845 } 4846 4847 local_irq_disable(); 4848 rps_lock(sd); 4849 if (skb_queue_empty(&sd->input_pkt_queue)) { 4850 /* 4851 * Inline a custom version of __napi_complete(). 4852 * only current cpu owns and manipulates this napi, 4853 * and NAPI_STATE_SCHED is the only possible flag set 4854 * on backlog. 4855 * We can use a plain write instead of clear_bit(), 4856 * and we dont need an smp_mb() memory barrier. 4857 */ 4858 napi->state = 0; 4859 again = false; 4860 } else { 4861 skb_queue_splice_tail_init(&sd->input_pkt_queue, 4862 &sd->process_queue); 4863 } 4864 rps_unlock(sd); 4865 local_irq_enable(); 4866 } 4867 4868 return work; 4869} 4870 4871/** 4872 * __napi_schedule - schedule for receive 4873 * @n: entry to schedule 4874 * 4875 * The entry's receive function will be scheduled to run. 4876 * Consider using __napi_schedule_irqoff() if hard irqs are masked. 4877 */ 4878void __napi_schedule(struct napi_struct *n) 4879{ 4880 unsigned long flags; 4881 4882 local_irq_save(flags); 4883 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 4884 local_irq_restore(flags); 4885} 4886EXPORT_SYMBOL(__napi_schedule); 4887 4888/** 4889 * __napi_schedule_irqoff - schedule for receive 4890 * @n: entry to schedule 4891 * 4892 * Variant of __napi_schedule() assuming hard irqs are masked 4893 */ 4894void __napi_schedule_irqoff(struct napi_struct *n) 4895{ 4896 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 4897} 4898EXPORT_SYMBOL(__napi_schedule_irqoff); 4899 4900bool __napi_complete(struct napi_struct *n) 4901{ 4902 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 4903 4904 /* Some drivers call us directly, instead of calling 4905 * napi_complete_done(). 4906 */ 4907 if (unlikely(test_bit(NAPI_STATE_IN_BUSY_POLL, &n->state))) 4908 return false; 4909 4910 list_del_init(&n->poll_list); 4911 smp_mb__before_atomic(); 4912 clear_bit(NAPI_STATE_SCHED, &n->state); 4913 return true; 4914} 4915EXPORT_SYMBOL(__napi_complete); 4916 4917bool napi_complete_done(struct napi_struct *n, int work_done) 4918{ 4919 unsigned long flags; 4920 4921 /* 4922 * 1) Don't let napi dequeue from the cpu poll list 4923 * just in case its running on a different cpu. 4924 * 2) If we are busy polling, do nothing here, we have 4925 * the guarantee we will be called later. 4926 */ 4927 if (unlikely(n->state & (NAPIF_STATE_NPSVC | 4928 NAPIF_STATE_IN_BUSY_POLL))) 4929 return false; 4930 4931 if (n->gro_list) { 4932 unsigned long timeout = 0; 4933 4934 if (work_done) 4935 timeout = n->dev->gro_flush_timeout; 4936 4937 if (timeout) 4938 hrtimer_start(&n->timer, ns_to_ktime(timeout), 4939 HRTIMER_MODE_REL_PINNED); 4940 else 4941 napi_gro_flush(n, false); 4942 } 4943 if (likely(list_empty(&n->poll_list))) { 4944 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state)); 4945 } else { 4946 /* If n->poll_list is not empty, we need to mask irqs */ 4947 local_irq_save(flags); 4948 __napi_complete(n); 4949 local_irq_restore(flags); 4950 } 4951 return true; 4952} 4953EXPORT_SYMBOL(napi_complete_done); 4954 4955/* must be called under rcu_read_lock(), as we dont take a reference */ 4956static struct napi_struct *napi_by_id(unsigned int napi_id) 4957{ 4958 unsigned int hash = napi_id % HASH_SIZE(napi_hash); 4959 struct napi_struct *napi; 4960 4961 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) 4962 if (napi->napi_id == napi_id) 4963 return napi; 4964 4965 return NULL; 4966} 4967 4968#if defined(CONFIG_NET_RX_BUSY_POLL) 4969 4970#define BUSY_POLL_BUDGET 8 4971 4972static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock) 4973{ 4974 int rc; 4975 4976 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state); 4977 4978 local_bh_disable(); 4979 4980 /* All we really want here is to re-enable device interrupts. 4981 * Ideally, a new ndo_busy_poll_stop() could avoid another round. 4982 */ 4983 rc = napi->poll(napi, BUSY_POLL_BUDGET); 4984 netpoll_poll_unlock(have_poll_lock); 4985 if (rc == BUSY_POLL_BUDGET) 4986 __napi_schedule(napi); 4987 local_bh_enable(); 4988 if (local_softirq_pending()) 4989 do_softirq(); 4990} 4991 4992bool sk_busy_loop(struct sock *sk, int nonblock) 4993{ 4994 unsigned long end_time = !nonblock ? sk_busy_loop_end_time(sk) : 0; 4995 int (*napi_poll)(struct napi_struct *napi, int budget); 4996 int (*busy_poll)(struct napi_struct *dev); 4997 void *have_poll_lock = NULL; 4998 struct napi_struct *napi; 4999 int rc; 5000 5001restart: 5002 rc = false; 5003 napi_poll = NULL; 5004 5005 rcu_read_lock(); 5006 5007 napi = napi_by_id(sk->sk_napi_id); 5008 if (!napi) 5009 goto out; 5010 5011 /* Note: ndo_busy_poll method is optional in linux-4.5 */ 5012 busy_poll = napi->dev->netdev_ops->ndo_busy_poll; 5013 5014 preempt_disable(); 5015 for (;;) { 5016 rc = 0; 5017 local_bh_disable(); 5018 if (busy_poll) { 5019 rc = busy_poll(napi); 5020 goto count; 5021 } 5022 if (!napi_poll) { 5023 unsigned long val = READ_ONCE(napi->state); 5024 5025 /* If multiple threads are competing for this napi, 5026 * we avoid dirtying napi->state as much as we can. 5027 */ 5028 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED | 5029 NAPIF_STATE_IN_BUSY_POLL)) 5030 goto count; 5031 if (cmpxchg(&napi->state, val, 5032 val | NAPIF_STATE_IN_BUSY_POLL | 5033 NAPIF_STATE_SCHED) != val) 5034 goto count; 5035 have_poll_lock = netpoll_poll_lock(napi); 5036 napi_poll = napi->poll; 5037 } 5038 rc = napi_poll(napi, BUSY_POLL_BUDGET); 5039 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET); 5040count: 5041 if (rc > 0) 5042 __NET_ADD_STATS(sock_net(sk), 5043 LINUX_MIB_BUSYPOLLRXPACKETS, rc); 5044 local_bh_enable(); 5045 5046 if (rc == LL_FLUSH_FAILED) 5047 break; /* permanent failure */ 5048 5049 if (nonblock || !skb_queue_empty(&sk->sk_receive_queue) || 5050 busy_loop_timeout(end_time)) 5051 break; 5052 5053 if (unlikely(need_resched())) { 5054 if (napi_poll) 5055 busy_poll_stop(napi, have_poll_lock); 5056 preempt_enable(); 5057 rcu_read_unlock(); 5058 cond_resched(); 5059 rc = !skb_queue_empty(&sk->sk_receive_queue); 5060 if (rc || busy_loop_timeout(end_time)) 5061 return rc; 5062 goto restart; 5063 } 5064 cpu_relax(); 5065 } 5066 if (napi_poll) 5067 busy_poll_stop(napi, have_poll_lock); 5068 preempt_enable(); 5069 rc = !skb_queue_empty(&sk->sk_receive_queue); 5070out: 5071 rcu_read_unlock(); 5072 return rc; 5073} 5074EXPORT_SYMBOL(sk_busy_loop); 5075 5076#endif /* CONFIG_NET_RX_BUSY_POLL */ 5077 5078static void napi_hash_add(struct napi_struct *napi) 5079{ 5080 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) || 5081 test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) 5082 return; 5083 5084 spin_lock(&napi_hash_lock); 5085 5086 /* 0..NR_CPUS+1 range is reserved for sender_cpu use */ 5087 do { 5088 if (unlikely(++napi_gen_id < NR_CPUS + 1)) 5089 napi_gen_id = NR_CPUS + 1; 5090 } while (napi_by_id(napi_gen_id)); 5091 napi->napi_id = napi_gen_id; 5092 5093 hlist_add_head_rcu(&napi->napi_hash_node, 5094 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); 5095 5096 spin_unlock(&napi_hash_lock); 5097} 5098 5099/* Warning : caller is responsible to make sure rcu grace period 5100 * is respected before freeing memory containing @napi 5101 */ 5102bool napi_hash_del(struct napi_struct *napi) 5103{ 5104 bool rcu_sync_needed = false; 5105 5106 spin_lock(&napi_hash_lock); 5107 5108 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) { 5109 rcu_sync_needed = true; 5110 hlist_del_rcu(&napi->napi_hash_node); 5111 } 5112 spin_unlock(&napi_hash_lock); 5113 return rcu_sync_needed; 5114} 5115EXPORT_SYMBOL_GPL(napi_hash_del); 5116 5117static enum hrtimer_restart napi_watchdog(struct hrtimer *timer) 5118{ 5119 struct napi_struct *napi; 5120 5121 napi = container_of(timer, struct napi_struct, timer); 5122 if (napi->gro_list) 5123 napi_schedule(napi); 5124 5125 return HRTIMER_NORESTART; 5126} 5127 5128void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 5129 int (*poll)(struct napi_struct *, int), int weight) 5130{ 5131 INIT_LIST_HEAD(&napi->poll_list); 5132 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); 5133 napi->timer.function = napi_watchdog; 5134 napi->gro_count = 0; 5135 napi->gro_list = NULL; 5136 napi->skb = NULL; 5137 napi->poll = poll; 5138 if (weight > NAPI_POLL_WEIGHT) 5139 pr_err_once("netif_napi_add() called with weight %d on device %s\n", 5140 weight, dev->name); 5141 napi->weight = weight; 5142 list_add(&napi->dev_list, &dev->napi_list); 5143 napi->dev = dev; 5144#ifdef CONFIG_NETPOLL 5145 napi->poll_owner = -1; 5146#endif 5147 set_bit(NAPI_STATE_SCHED, &napi->state); 5148 napi_hash_add(napi); 5149} 5150EXPORT_SYMBOL(netif_napi_add); 5151 5152void napi_disable(struct napi_struct *n) 5153{ 5154 might_sleep(); 5155 set_bit(NAPI_STATE_DISABLE, &n->state); 5156 5157 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state)) 5158 msleep(1); 5159 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state)) 5160 msleep(1); 5161 5162 hrtimer_cancel(&n->timer); 5163 5164 clear_bit(NAPI_STATE_DISABLE, &n->state); 5165} 5166EXPORT_SYMBOL(napi_disable); 5167 5168/* Must be called in process context */ 5169void netif_napi_del(struct napi_struct *napi) 5170{ 5171 might_sleep(); 5172 if (napi_hash_del(napi)) 5173 synchronize_net(); 5174 list_del_init(&napi->dev_list); 5175 napi_free_frags(napi); 5176 5177 kfree_skb_list(napi->gro_list); 5178 napi->gro_list = NULL; 5179 napi->gro_count = 0; 5180} 5181EXPORT_SYMBOL(netif_napi_del); 5182 5183static int napi_poll(struct napi_struct *n, struct list_head *repoll) 5184{ 5185 void *have; 5186 int work, weight; 5187 5188 list_del_init(&n->poll_list); 5189 5190 have = netpoll_poll_lock(n); 5191 5192 weight = n->weight; 5193 5194 /* This NAPI_STATE_SCHED test is for avoiding a race 5195 * with netpoll's poll_napi(). Only the entity which 5196 * obtains the lock and sees NAPI_STATE_SCHED set will 5197 * actually make the ->poll() call. Therefore we avoid 5198 * accidentally calling ->poll() when NAPI is not scheduled. 5199 */ 5200 work = 0; 5201 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 5202 work = n->poll(n, weight); 5203 trace_napi_poll(n, work, weight); 5204 } 5205 5206 WARN_ON_ONCE(work > weight); 5207 5208 if (likely(work < weight)) 5209 goto out_unlock; 5210 5211 /* Drivers must not modify the NAPI state if they 5212 * consume the entire weight. In such cases this code 5213 * still "owns" the NAPI instance and therefore can 5214 * move the instance around on the list at-will. 5215 */ 5216 if (unlikely(napi_disable_pending(n))) { 5217 napi_complete(n); 5218 goto out_unlock; 5219 } 5220 5221 if (n->gro_list) { 5222 /* flush too old packets 5223 * If HZ < 1000, flush all packets. 5224 */ 5225 napi_gro_flush(n, HZ >= 1000); 5226 } 5227 5228 /* Some drivers may have called napi_schedule 5229 * prior to exhausting their budget. 5230 */ 5231 if (unlikely(!list_empty(&n->poll_list))) { 5232 pr_warn_once("%s: Budget exhausted after napi rescheduled\n", 5233 n->dev ? n->dev->name : "backlog"); 5234 goto out_unlock; 5235 } 5236 5237 list_add_tail(&n->poll_list, repoll); 5238 5239out_unlock: 5240 netpoll_poll_unlock(have); 5241 5242 return work; 5243} 5244 5245static __latent_entropy void net_rx_action(struct softirq_action *h) 5246{ 5247 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 5248 unsigned long time_limit = jiffies + 2; 5249 int budget = netdev_budget; 5250 LIST_HEAD(list); 5251 LIST_HEAD(repoll); 5252 5253 local_irq_disable(); 5254 list_splice_init(&sd->poll_list, &list); 5255 local_irq_enable(); 5256 5257 for (;;) { 5258 struct napi_struct *n; 5259 5260 if (list_empty(&list)) { 5261 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll)) 5262 goto out; 5263 break; 5264 } 5265 5266 n = list_first_entry(&list, struct napi_struct, poll_list); 5267 budget -= napi_poll(n, &repoll); 5268 5269 /* If softirq window is exhausted then punt. 5270 * Allow this to run for 2 jiffies since which will allow 5271 * an average latency of 1.5/HZ. 5272 */ 5273 if (unlikely(budget <= 0 || 5274 time_after_eq(jiffies, time_limit))) { 5275 sd->time_squeeze++; 5276 break; 5277 } 5278 } 5279 5280 local_irq_disable(); 5281 5282 list_splice_tail_init(&sd->poll_list, &list); 5283 list_splice_tail(&repoll, &list); 5284 list_splice(&list, &sd->poll_list); 5285 if (!list_empty(&sd->poll_list)) 5286 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 5287 5288 net_rps_action_and_irq_enable(sd); 5289out: 5290 __kfree_skb_flush(); 5291} 5292 5293struct netdev_adjacent { 5294 struct net_device *dev; 5295 5296 /* upper master flag, there can only be one master device per list */ 5297 bool master; 5298 5299 /* counter for the number of times this device was added to us */ 5300 u16 ref_nr; 5301 5302 /* private field for the users */ 5303 void *private; 5304 5305 struct list_head list; 5306 struct rcu_head rcu; 5307}; 5308 5309static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev, 5310 struct list_head *adj_list) 5311{ 5312 struct netdev_adjacent *adj; 5313 5314 list_for_each_entry(adj, adj_list, list) { 5315 if (adj->dev == adj_dev) 5316 return adj; 5317 } 5318 return NULL; 5319} 5320 5321static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data) 5322{ 5323 struct net_device *dev = data; 5324 5325 return upper_dev == dev; 5326} 5327 5328/** 5329 * netdev_has_upper_dev - Check if device is linked to an upper device 5330 * @dev: device 5331 * @upper_dev: upper device to check 5332 * 5333 * Find out if a device is linked to specified upper device and return true 5334 * in case it is. Note that this checks only immediate upper device, 5335 * not through a complete stack of devices. The caller must hold the RTNL lock. 5336 */ 5337bool netdev_has_upper_dev(struct net_device *dev, 5338 struct net_device *upper_dev) 5339{ 5340 ASSERT_RTNL(); 5341 5342 return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev, 5343 upper_dev); 5344} 5345EXPORT_SYMBOL(netdev_has_upper_dev); 5346 5347/** 5348 * netdev_has_upper_dev_all - Check if device is linked to an upper device 5349 * @dev: device 5350 * @upper_dev: upper device to check 5351 * 5352 * Find out if a device is linked to specified upper device and return true 5353 * in case it is. Note that this checks the entire upper device chain. 5354 * The caller must hold rcu lock. 5355 */ 5356 5357bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 5358 struct net_device *upper_dev) 5359{ 5360 return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev, 5361 upper_dev); 5362} 5363EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu); 5364 5365/** 5366 * netdev_has_any_upper_dev - Check if device is linked to some device 5367 * @dev: device 5368 * 5369 * Find out if a device is linked to an upper device and return true in case 5370 * it is. The caller must hold the RTNL lock. 5371 */ 5372static bool netdev_has_any_upper_dev(struct net_device *dev) 5373{ 5374 ASSERT_RTNL(); 5375 5376 return !list_empty(&dev->adj_list.upper); 5377} 5378 5379/** 5380 * netdev_master_upper_dev_get - Get master upper device 5381 * @dev: device 5382 * 5383 * Find a master upper device and return pointer to it or NULL in case 5384 * it's not there. The caller must hold the RTNL lock. 5385 */ 5386struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 5387{ 5388 struct netdev_adjacent *upper; 5389 5390 ASSERT_RTNL(); 5391 5392 if (list_empty(&dev->adj_list.upper)) 5393 return NULL; 5394 5395 upper = list_first_entry(&dev->adj_list.upper, 5396 struct netdev_adjacent, list); 5397 if (likely(upper->master)) 5398 return upper->dev; 5399 return NULL; 5400} 5401EXPORT_SYMBOL(netdev_master_upper_dev_get); 5402 5403/** 5404 * netdev_has_any_lower_dev - Check if device is linked to some device 5405 * @dev: device 5406 * 5407 * Find out if a device is linked to a lower device and return true in case 5408 * it is. The caller must hold the RTNL lock. 5409 */ 5410static bool netdev_has_any_lower_dev(struct net_device *dev) 5411{ 5412 ASSERT_RTNL(); 5413 5414 return !list_empty(&dev->adj_list.lower); 5415} 5416 5417void *netdev_adjacent_get_private(struct list_head *adj_list) 5418{ 5419 struct netdev_adjacent *adj; 5420 5421 adj = list_entry(adj_list, struct netdev_adjacent, list); 5422 5423 return adj->private; 5424} 5425EXPORT_SYMBOL(netdev_adjacent_get_private); 5426 5427/** 5428 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list 5429 * @dev: device 5430 * @iter: list_head ** of the current position 5431 * 5432 * Gets the next device from the dev's upper list, starting from iter 5433 * position. The caller must hold RCU read lock. 5434 */ 5435struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 5436 struct list_head **iter) 5437{ 5438 struct netdev_adjacent *upper; 5439 5440 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 5441 5442 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 5443 5444 if (&upper->list == &dev->adj_list.upper) 5445 return NULL; 5446 5447 *iter = &upper->list; 5448 5449 return upper->dev; 5450} 5451EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu); 5452 5453static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev, 5454 struct list_head **iter) 5455{ 5456 struct netdev_adjacent *upper; 5457 5458 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 5459 5460 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 5461 5462 if (&upper->list == &dev->adj_list.upper) 5463 return NULL; 5464 5465 *iter = &upper->list; 5466 5467 return upper->dev; 5468} 5469 5470int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 5471 int (*fn)(struct net_device *dev, 5472 void *data), 5473 void *data) 5474{ 5475 struct net_device *udev; 5476 struct list_head *iter; 5477 int ret; 5478 5479 for (iter = &dev->adj_list.upper, 5480 udev = netdev_next_upper_dev_rcu(dev, &iter); 5481 udev; 5482 udev = netdev_next_upper_dev_rcu(dev, &iter)) { 5483 /* first is the upper device itself */ 5484 ret = fn(udev, data); 5485 if (ret) 5486 return ret; 5487 5488 /* then look at all of its upper devices */ 5489 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data); 5490 if (ret) 5491 return ret; 5492 } 5493 5494 return 0; 5495} 5496EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu); 5497 5498/** 5499 * netdev_lower_get_next_private - Get the next ->private from the 5500 * lower neighbour list 5501 * @dev: device 5502 * @iter: list_head ** of the current position 5503 * 5504 * Gets the next netdev_adjacent->private from the dev's lower neighbour 5505 * list, starting from iter position. The caller must hold either hold the 5506 * RTNL lock or its own locking that guarantees that the neighbour lower 5507 * list will remain unchanged. 5508 */ 5509void *netdev_lower_get_next_private(struct net_device *dev, 5510 struct list_head **iter) 5511{ 5512 struct netdev_adjacent *lower; 5513 5514 lower = list_entry(*iter, struct netdev_adjacent, list); 5515 5516 if (&lower->list == &dev->adj_list.lower) 5517 return NULL; 5518 5519 *iter = lower->list.next; 5520 5521 return lower->private; 5522} 5523EXPORT_SYMBOL(netdev_lower_get_next_private); 5524 5525/** 5526 * netdev_lower_get_next_private_rcu - Get the next ->private from the 5527 * lower neighbour list, RCU 5528 * variant 5529 * @dev: device 5530 * @iter: list_head ** of the current position 5531 * 5532 * Gets the next netdev_adjacent->private from the dev's lower neighbour 5533 * list, starting from iter position. The caller must hold RCU read lock. 5534 */ 5535void *netdev_lower_get_next_private_rcu(struct net_device *dev, 5536 struct list_head **iter) 5537{ 5538 struct netdev_adjacent *lower; 5539 5540 WARN_ON_ONCE(!rcu_read_lock_held()); 5541 5542 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 5543 5544 if (&lower->list == &dev->adj_list.lower) 5545 return NULL; 5546 5547 *iter = &lower->list; 5548 5549 return lower->private; 5550} 5551EXPORT_SYMBOL(netdev_lower_get_next_private_rcu); 5552 5553/** 5554 * netdev_lower_get_next - Get the next device from the lower neighbour 5555 * list 5556 * @dev: device 5557 * @iter: list_head ** of the current position 5558 * 5559 * Gets the next netdev_adjacent from the dev's lower neighbour 5560 * list, starting from iter position. The caller must hold RTNL lock or 5561 * its own locking that guarantees that the neighbour lower 5562 * list will remain unchanged. 5563 */ 5564void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter) 5565{ 5566 struct netdev_adjacent *lower; 5567 5568 lower = list_entry(*iter, struct netdev_adjacent, list); 5569 5570 if (&lower->list == &dev->adj_list.lower) 5571 return NULL; 5572 5573 *iter = lower->list.next; 5574 5575 return lower->dev; 5576} 5577EXPORT_SYMBOL(netdev_lower_get_next); 5578 5579static struct net_device *netdev_next_lower_dev(struct net_device *dev, 5580 struct list_head **iter) 5581{ 5582 struct netdev_adjacent *lower; 5583 5584 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 5585 5586 if (&lower->list == &dev->adj_list.lower) 5587 return NULL; 5588 5589 *iter = &lower->list; 5590 5591 return lower->dev; 5592} 5593 5594int netdev_walk_all_lower_dev(struct net_device *dev, 5595 int (*fn)(struct net_device *dev, 5596 void *data), 5597 void *data) 5598{ 5599 struct net_device *ldev; 5600 struct list_head *iter; 5601 int ret; 5602 5603 for (iter = &dev->adj_list.lower, 5604 ldev = netdev_next_lower_dev(dev, &iter); 5605 ldev; 5606 ldev = netdev_next_lower_dev(dev, &iter)) { 5607 /* first is the lower device itself */ 5608 ret = fn(ldev, data); 5609 if (ret) 5610 return ret; 5611 5612 /* then look at all of its lower devices */ 5613 ret = netdev_walk_all_lower_dev(ldev, fn, data); 5614 if (ret) 5615 return ret; 5616 } 5617 5618 return 0; 5619} 5620EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev); 5621 5622static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 5623 struct list_head **iter) 5624{ 5625 struct netdev_adjacent *lower; 5626 5627 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 5628 if (&lower->list == &dev->adj_list.lower) 5629 return NULL; 5630 5631 *iter = &lower->list; 5632 5633 return lower->dev; 5634} 5635 5636int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 5637 int (*fn)(struct net_device *dev, 5638 void *data), 5639 void *data) 5640{ 5641 struct net_device *ldev; 5642 struct list_head *iter; 5643 int ret; 5644 5645 for (iter = &dev->adj_list.lower, 5646 ldev = netdev_next_lower_dev_rcu(dev, &iter); 5647 ldev; 5648 ldev = netdev_next_lower_dev_rcu(dev, &iter)) { 5649 /* first is the lower device itself */ 5650 ret = fn(ldev, data); 5651 if (ret) 5652 return ret; 5653 5654 /* then look at all of its lower devices */ 5655 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data); 5656 if (ret) 5657 return ret; 5658 } 5659 5660 return 0; 5661} 5662EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu); 5663 5664/** 5665 * netdev_lower_get_first_private_rcu - Get the first ->private from the 5666 * lower neighbour list, RCU 5667 * variant 5668 * @dev: device 5669 * 5670 * Gets the first netdev_adjacent->private from the dev's lower neighbour 5671 * list. The caller must hold RCU read lock. 5672 */ 5673void *netdev_lower_get_first_private_rcu(struct net_device *dev) 5674{ 5675 struct netdev_adjacent *lower; 5676 5677 lower = list_first_or_null_rcu(&dev->adj_list.lower, 5678 struct netdev_adjacent, list); 5679 if (lower) 5680 return lower->private; 5681 return NULL; 5682} 5683EXPORT_SYMBOL(netdev_lower_get_first_private_rcu); 5684 5685/** 5686 * netdev_master_upper_dev_get_rcu - Get master upper device 5687 * @dev: device 5688 * 5689 * Find a master upper device and return pointer to it or NULL in case 5690 * it's not there. The caller must hold the RCU read lock. 5691 */ 5692struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 5693{ 5694 struct netdev_adjacent *upper; 5695 5696 upper = list_first_or_null_rcu(&dev->adj_list.upper, 5697 struct netdev_adjacent, list); 5698 if (upper && likely(upper->master)) 5699 return upper->dev; 5700 return NULL; 5701} 5702EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 5703 5704static int netdev_adjacent_sysfs_add(struct net_device *dev, 5705 struct net_device *adj_dev, 5706 struct list_head *dev_list) 5707{ 5708 char linkname[IFNAMSIZ+7]; 5709 sprintf(linkname, dev_list == &dev->adj_list.upper ? 5710 "upper_%s" : "lower_%s", adj_dev->name); 5711 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj), 5712 linkname); 5713} 5714static void netdev_adjacent_sysfs_del(struct net_device *dev, 5715 char *name, 5716 struct list_head *dev_list) 5717{ 5718 char linkname[IFNAMSIZ+7]; 5719 sprintf(linkname, dev_list == &dev->adj_list.upper ? 5720 "upper_%s" : "lower_%s", name); 5721 sysfs_remove_link(&(dev->dev.kobj), linkname); 5722} 5723 5724static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev, 5725 struct net_device *adj_dev, 5726 struct list_head *dev_list) 5727{ 5728 return (dev_list == &dev->adj_list.upper || 5729 dev_list == &dev->adj_list.lower) && 5730 net_eq(dev_net(dev), dev_net(adj_dev)); 5731} 5732 5733static int __netdev_adjacent_dev_insert(struct net_device *dev, 5734 struct net_device *adj_dev, 5735 struct list_head *dev_list, 5736 void *private, bool master) 5737{ 5738 struct netdev_adjacent *adj; 5739 int ret; 5740 5741 adj = __netdev_find_adj(adj_dev, dev_list); 5742 5743 if (adj) { 5744 adj->ref_nr += 1; 5745 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n", 5746 dev->name, adj_dev->name, adj->ref_nr); 5747 5748 return 0; 5749 } 5750 5751 adj = kmalloc(sizeof(*adj), GFP_KERNEL); 5752 if (!adj) 5753 return -ENOMEM; 5754 5755 adj->dev = adj_dev; 5756 adj->master = master; 5757 adj->ref_nr = 1; 5758 adj->private = private; 5759 dev_hold(adj_dev); 5760 5761 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n", 5762 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name); 5763 5764 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) { 5765 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list); 5766 if (ret) 5767 goto free_adj; 5768 } 5769 5770 /* Ensure that master link is always the first item in list. */ 5771 if (master) { 5772 ret = sysfs_create_link(&(dev->dev.kobj), 5773 &(adj_dev->dev.kobj), "master"); 5774 if (ret) 5775 goto remove_symlinks; 5776 5777 list_add_rcu(&adj->list, dev_list); 5778 } else { 5779 list_add_tail_rcu(&adj->list, dev_list); 5780 } 5781 5782 return 0; 5783 5784remove_symlinks: 5785 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 5786 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 5787free_adj: 5788 kfree(adj); 5789 dev_put(adj_dev); 5790 5791 return ret; 5792} 5793 5794static void __netdev_adjacent_dev_remove(struct net_device *dev, 5795 struct net_device *adj_dev, 5796 u16 ref_nr, 5797 struct list_head *dev_list) 5798{ 5799 struct netdev_adjacent *adj; 5800 5801 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n", 5802 dev->name, adj_dev->name, ref_nr); 5803 5804 adj = __netdev_find_adj(adj_dev, dev_list); 5805 5806 if (!adj) { 5807 pr_err("Adjacency does not exist for device %s from %s\n", 5808 dev->name, adj_dev->name); 5809 WARN_ON(1); 5810 return; 5811 } 5812 5813 if (adj->ref_nr > ref_nr) { 5814 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n", 5815 dev->name, adj_dev->name, ref_nr, 5816 adj->ref_nr - ref_nr); 5817 adj->ref_nr -= ref_nr; 5818 return; 5819 } 5820 5821 if (adj->master) 5822 sysfs_remove_link(&(dev->dev.kobj), "master"); 5823 5824 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 5825 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 5826 5827 list_del_rcu(&adj->list); 5828 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n", 5829 adj_dev->name, dev->name, adj_dev->name); 5830 dev_put(adj_dev); 5831 kfree_rcu(adj, rcu); 5832} 5833 5834static int __netdev_adjacent_dev_link_lists(struct net_device *dev, 5835 struct net_device *upper_dev, 5836 struct list_head *up_list, 5837 struct list_head *down_list, 5838 void *private, bool master) 5839{ 5840 int ret; 5841 5842 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, 5843 private, master); 5844 if (ret) 5845 return ret; 5846 5847 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, 5848 private, false); 5849 if (ret) { 5850 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list); 5851 return ret; 5852 } 5853 5854 return 0; 5855} 5856 5857static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev, 5858 struct net_device *upper_dev, 5859 u16 ref_nr, 5860 struct list_head *up_list, 5861 struct list_head *down_list) 5862{ 5863 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list); 5864 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list); 5865} 5866 5867static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, 5868 struct net_device *upper_dev, 5869 void *private, bool master) 5870{ 5871 return __netdev_adjacent_dev_link_lists(dev, upper_dev, 5872 &dev->adj_list.upper, 5873 &upper_dev->adj_list.lower, 5874 private, master); 5875} 5876 5877static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev, 5878 struct net_device *upper_dev) 5879{ 5880 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1, 5881 &dev->adj_list.upper, 5882 &upper_dev->adj_list.lower); 5883} 5884 5885static int __netdev_upper_dev_link(struct net_device *dev, 5886 struct net_device *upper_dev, bool master, 5887 void *upper_priv, void *upper_info) 5888{ 5889 struct netdev_notifier_changeupper_info changeupper_info; 5890 int ret = 0; 5891 5892 ASSERT_RTNL(); 5893 5894 if (dev == upper_dev) 5895 return -EBUSY; 5896 5897 /* To prevent loops, check if dev is not upper device to upper_dev. */ 5898 if (netdev_has_upper_dev(upper_dev, dev)) 5899 return -EBUSY; 5900 5901 if (netdev_has_upper_dev(dev, upper_dev)) 5902 return -EEXIST; 5903 5904 if (master && netdev_master_upper_dev_get(dev)) 5905 return -EBUSY; 5906 5907 changeupper_info.upper_dev = upper_dev; 5908 changeupper_info.master = master; 5909 changeupper_info.linking = true; 5910 changeupper_info.upper_info = upper_info; 5911 5912 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev, 5913 &changeupper_info.info); 5914 ret = notifier_to_errno(ret); 5915 if (ret) 5916 return ret; 5917 5918 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv, 5919 master); 5920 if (ret) 5921 return ret; 5922 5923 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev, 5924 &changeupper_info.info); 5925 ret = notifier_to_errno(ret); 5926 if (ret) 5927 goto rollback; 5928 5929 return 0; 5930 5931rollback: 5932 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 5933 5934 return ret; 5935} 5936 5937/** 5938 * netdev_upper_dev_link - Add a link to the upper device 5939 * @dev: device 5940 * @upper_dev: new upper device 5941 * 5942 * Adds a link to device which is upper to this one. The caller must hold 5943 * the RTNL lock. On a failure a negative errno code is returned. 5944 * On success the reference counts are adjusted and the function 5945 * returns zero. 5946 */ 5947int netdev_upper_dev_link(struct net_device *dev, 5948 struct net_device *upper_dev) 5949{ 5950 return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL); 5951} 5952EXPORT_SYMBOL(netdev_upper_dev_link); 5953 5954/** 5955 * netdev_master_upper_dev_link - Add a master link to the upper device 5956 * @dev: device 5957 * @upper_dev: new upper device 5958 * @upper_priv: upper device private 5959 * @upper_info: upper info to be passed down via notifier 5960 * 5961 * Adds a link to device which is upper to this one. In this case, only 5962 * one master upper device can be linked, although other non-master devices 5963 * might be linked as well. The caller must hold the RTNL lock. 5964 * On a failure a negative errno code is returned. On success the reference 5965 * counts are adjusted and the function returns zero. 5966 */ 5967int netdev_master_upper_dev_link(struct net_device *dev, 5968 struct net_device *upper_dev, 5969 void *upper_priv, void *upper_info) 5970{ 5971 return __netdev_upper_dev_link(dev, upper_dev, true, 5972 upper_priv, upper_info); 5973} 5974EXPORT_SYMBOL(netdev_master_upper_dev_link); 5975 5976/** 5977 * netdev_upper_dev_unlink - Removes a link to upper device 5978 * @dev: device 5979 * @upper_dev: new upper device 5980 * 5981 * Removes a link to device which is upper to this one. The caller must hold 5982 * the RTNL lock. 5983 */ 5984void netdev_upper_dev_unlink(struct net_device *dev, 5985 struct net_device *upper_dev) 5986{ 5987 struct netdev_notifier_changeupper_info changeupper_info; 5988 ASSERT_RTNL(); 5989 5990 changeupper_info.upper_dev = upper_dev; 5991 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev; 5992 changeupper_info.linking = false; 5993 5994 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev, 5995 &changeupper_info.info); 5996 5997 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 5998 5999 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev, 6000 &changeupper_info.info); 6001} 6002EXPORT_SYMBOL(netdev_upper_dev_unlink); 6003 6004/** 6005 * netdev_bonding_info_change - Dispatch event about slave change 6006 * @dev: device 6007 * @bonding_info: info to dispatch 6008 * 6009 * Send NETDEV_BONDING_INFO to netdev notifiers with info. 6010 * The caller must hold the RTNL lock. 6011 */ 6012void netdev_bonding_info_change(struct net_device *dev, 6013 struct netdev_bonding_info *bonding_info) 6014{ 6015 struct netdev_notifier_bonding_info info; 6016 6017 memcpy(&info.bonding_info, bonding_info, 6018 sizeof(struct netdev_bonding_info)); 6019 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev, 6020 &info.info); 6021} 6022EXPORT_SYMBOL(netdev_bonding_info_change); 6023 6024static void netdev_adjacent_add_links(struct net_device *dev) 6025{ 6026 struct netdev_adjacent *iter; 6027 6028 struct net *net = dev_net(dev); 6029 6030 list_for_each_entry(iter, &dev->adj_list.upper, list) { 6031 if (!net_eq(net, dev_net(iter->dev))) 6032 continue; 6033 netdev_adjacent_sysfs_add(iter->dev, dev, 6034 &iter->dev->adj_list.lower); 6035 netdev_adjacent_sysfs_add(dev, iter->dev, 6036 &dev->adj_list.upper); 6037 } 6038 6039 list_for_each_entry(iter, &dev->adj_list.lower, list) { 6040 if (!net_eq(net, dev_net(iter->dev))) 6041 continue; 6042 netdev_adjacent_sysfs_add(iter->dev, dev, 6043 &iter->dev->adj_list.upper); 6044 netdev_adjacent_sysfs_add(dev, iter->dev, 6045 &dev->adj_list.lower); 6046 } 6047} 6048 6049static void netdev_adjacent_del_links(struct net_device *dev) 6050{ 6051 struct netdev_adjacent *iter; 6052 6053 struct net *net = dev_net(dev); 6054 6055 list_for_each_entry(iter, &dev->adj_list.upper, list) { 6056 if (!net_eq(net, dev_net(iter->dev))) 6057 continue; 6058 netdev_adjacent_sysfs_del(iter->dev, dev->name, 6059 &iter->dev->adj_list.lower); 6060 netdev_adjacent_sysfs_del(dev, iter->dev->name, 6061 &dev->adj_list.upper); 6062 } 6063 6064 list_for_each_entry(iter, &dev->adj_list.lower, list) { 6065 if (!net_eq(net, dev_net(iter->dev))) 6066 continue; 6067 netdev_adjacent_sysfs_del(iter->dev, dev->name, 6068 &iter->dev->adj_list.upper); 6069 netdev_adjacent_sysfs_del(dev, iter->dev->name, 6070 &dev->adj_list.lower); 6071 } 6072} 6073 6074void netdev_adjacent_rename_links(struct net_device *dev, char *oldname) 6075{ 6076 struct netdev_adjacent *iter; 6077 6078 struct net *net = dev_net(dev); 6079 6080 list_for_each_entry(iter, &dev->adj_list.upper, list) { 6081 if (!net_eq(net, dev_net(iter->dev))) 6082 continue; 6083 netdev_adjacent_sysfs_del(iter->dev, oldname, 6084 &iter->dev->adj_list.lower); 6085 netdev_adjacent_sysfs_add(iter->dev, dev, 6086 &iter->dev->adj_list.lower); 6087 } 6088 6089 list_for_each_entry(iter, &dev->adj_list.lower, list) { 6090 if (!net_eq(net, dev_net(iter->dev))) 6091 continue; 6092 netdev_adjacent_sysfs_del(iter->dev, oldname, 6093 &iter->dev->adj_list.upper); 6094 netdev_adjacent_sysfs_add(iter->dev, dev, 6095 &iter->dev->adj_list.upper); 6096 } 6097} 6098 6099void *netdev_lower_dev_get_private(struct net_device *dev, 6100 struct net_device *lower_dev) 6101{ 6102 struct netdev_adjacent *lower; 6103 6104 if (!lower_dev) 6105 return NULL; 6106 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower); 6107 if (!lower) 6108 return NULL; 6109 6110 return lower->private; 6111} 6112EXPORT_SYMBOL(netdev_lower_dev_get_private); 6113 6114 6115int dev_get_nest_level(struct net_device *dev) 6116{ 6117 struct net_device *lower = NULL; 6118 struct list_head *iter; 6119 int max_nest = -1; 6120 int nest; 6121 6122 ASSERT_RTNL(); 6123 6124 netdev_for_each_lower_dev(dev, lower, iter) { 6125 nest = dev_get_nest_level(lower); 6126 if (max_nest < nest) 6127 max_nest = nest; 6128 } 6129 6130 return max_nest + 1; 6131} 6132EXPORT_SYMBOL(dev_get_nest_level); 6133 6134/** 6135 * netdev_lower_change - Dispatch event about lower device state change 6136 * @lower_dev: device 6137 * @lower_state_info: state to dispatch 6138 * 6139 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info. 6140 * The caller must hold the RTNL lock. 6141 */ 6142void netdev_lower_state_changed(struct net_device *lower_dev, 6143 void *lower_state_info) 6144{ 6145 struct netdev_notifier_changelowerstate_info changelowerstate_info; 6146 6147 ASSERT_RTNL(); 6148 changelowerstate_info.lower_state_info = lower_state_info; 6149 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev, 6150 &changelowerstate_info.info); 6151} 6152EXPORT_SYMBOL(netdev_lower_state_changed); 6153 6154int netdev_default_l2upper_neigh_construct(struct net_device *dev, 6155 struct neighbour *n) 6156{ 6157 struct net_device *lower_dev, *stop_dev; 6158 struct list_head *iter; 6159 int err; 6160 6161 netdev_for_each_lower_dev(dev, lower_dev, iter) { 6162 if (!lower_dev->netdev_ops->ndo_neigh_construct) 6163 continue; 6164 err = lower_dev->netdev_ops->ndo_neigh_construct(lower_dev, n); 6165 if (err) { 6166 stop_dev = lower_dev; 6167 goto rollback; 6168 } 6169 } 6170 return 0; 6171 6172rollback: 6173 netdev_for_each_lower_dev(dev, lower_dev, iter) { 6174 if (lower_dev == stop_dev) 6175 break; 6176 if (!lower_dev->netdev_ops->ndo_neigh_destroy) 6177 continue; 6178 lower_dev->netdev_ops->ndo_neigh_destroy(lower_dev, n); 6179 } 6180 return err; 6181} 6182EXPORT_SYMBOL_GPL(netdev_default_l2upper_neigh_construct); 6183 6184void netdev_default_l2upper_neigh_destroy(struct net_device *dev, 6185 struct neighbour *n) 6186{ 6187 struct net_device *lower_dev; 6188 struct list_head *iter; 6189 6190 netdev_for_each_lower_dev(dev, lower_dev, iter) { 6191 if (!lower_dev->netdev_ops->ndo_neigh_destroy) 6192 continue; 6193 lower_dev->netdev_ops->ndo_neigh_destroy(lower_dev, n); 6194 } 6195} 6196EXPORT_SYMBOL_GPL(netdev_default_l2upper_neigh_destroy); 6197 6198static void dev_change_rx_flags(struct net_device *dev, int flags) 6199{ 6200 const struct net_device_ops *ops = dev->netdev_ops; 6201 6202 if (ops->ndo_change_rx_flags) 6203 ops->ndo_change_rx_flags(dev, flags); 6204} 6205 6206static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify) 6207{ 6208 unsigned int old_flags = dev->flags; 6209 kuid_t uid; 6210 kgid_t gid; 6211 6212 ASSERT_RTNL(); 6213 6214 dev->flags |= IFF_PROMISC; 6215 dev->promiscuity += inc; 6216 if (dev->promiscuity == 0) { 6217 /* 6218 * Avoid overflow. 6219 * If inc causes overflow, untouch promisc and return error. 6220 */ 6221 if (inc < 0) 6222 dev->flags &= ~IFF_PROMISC; 6223 else { 6224 dev->promiscuity -= inc; 6225 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n", 6226 dev->name); 6227 return -EOVERFLOW; 6228 } 6229 } 6230 if (dev->flags != old_flags) { 6231 pr_info("device %s %s promiscuous mode\n", 6232 dev->name, 6233 dev->flags & IFF_PROMISC ? "entered" : "left"); 6234 if (audit_enabled) { 6235 current_uid_gid(&uid, &gid); 6236 audit_log(current->audit_context, GFP_ATOMIC, 6237 AUDIT_ANOM_PROMISCUOUS, 6238 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 6239 dev->name, (dev->flags & IFF_PROMISC), 6240 (old_flags & IFF_PROMISC), 6241 from_kuid(&init_user_ns, audit_get_loginuid(current)), 6242 from_kuid(&init_user_ns, uid), 6243 from_kgid(&init_user_ns, gid), 6244 audit_get_sessionid(current)); 6245 } 6246 6247 dev_change_rx_flags(dev, IFF_PROMISC); 6248 } 6249 if (notify) 6250 __dev_notify_flags(dev, old_flags, IFF_PROMISC); 6251 return 0; 6252} 6253 6254/** 6255 * dev_set_promiscuity - update promiscuity count on a device 6256 * @dev: device 6257 * @inc: modifier 6258 * 6259 * Add or remove promiscuity from a device. While the count in the device 6260 * remains above zero the interface remains promiscuous. Once it hits zero 6261 * the device reverts back to normal filtering operation. A negative inc 6262 * value is used to drop promiscuity on the device. 6263 * Return 0 if successful or a negative errno code on error. 6264 */ 6265int dev_set_promiscuity(struct net_device *dev, int inc) 6266{ 6267 unsigned int old_flags = dev->flags; 6268 int err; 6269 6270 err = __dev_set_promiscuity(dev, inc, true); 6271 if (err < 0) 6272 return err; 6273 if (dev->flags != old_flags) 6274 dev_set_rx_mode(dev); 6275 return err; 6276} 6277EXPORT_SYMBOL(dev_set_promiscuity); 6278 6279static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify) 6280{ 6281 unsigned int old_flags = dev->flags, old_gflags = dev->gflags; 6282 6283 ASSERT_RTNL(); 6284 6285 dev->flags |= IFF_ALLMULTI; 6286 dev->allmulti += inc; 6287 if (dev->allmulti == 0) { 6288 /* 6289 * Avoid overflow. 6290 * If inc causes overflow, untouch allmulti and return error. 6291 */ 6292 if (inc < 0) 6293 dev->flags &= ~IFF_ALLMULTI; 6294 else { 6295 dev->allmulti -= inc; 6296 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n", 6297 dev->name); 6298 return -EOVERFLOW; 6299 } 6300 } 6301 if (dev->flags ^ old_flags) { 6302 dev_change_rx_flags(dev, IFF_ALLMULTI); 6303 dev_set_rx_mode(dev); 6304 if (notify) 6305 __dev_notify_flags(dev, old_flags, 6306 dev->gflags ^ old_gflags); 6307 } 6308 return 0; 6309} 6310 6311/** 6312 * dev_set_allmulti - update allmulti count on a device 6313 * @dev: device 6314 * @inc: modifier 6315 * 6316 * Add or remove reception of all multicast frames to a device. While the 6317 * count in the device remains above zero the interface remains listening 6318 * to all interfaces. Once it hits zero the device reverts back to normal 6319 * filtering operation. A negative @inc value is used to drop the counter 6320 * when releasing a resource needing all multicasts. 6321 * Return 0 if successful or a negative errno code on error. 6322 */ 6323 6324int dev_set_allmulti(struct net_device *dev, int inc) 6325{ 6326 return __dev_set_allmulti(dev, inc, true); 6327} 6328EXPORT_SYMBOL(dev_set_allmulti); 6329 6330/* 6331 * Upload unicast and multicast address lists to device and 6332 * configure RX filtering. When the device doesn't support unicast 6333 * filtering it is put in promiscuous mode while unicast addresses 6334 * are present. 6335 */ 6336void __dev_set_rx_mode(struct net_device *dev) 6337{ 6338 const struct net_device_ops *ops = dev->netdev_ops; 6339 6340 /* dev_open will call this function so the list will stay sane. */ 6341 if (!(dev->flags&IFF_UP)) 6342 return; 6343 6344 if (!netif_device_present(dev)) 6345 return; 6346 6347 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 6348 /* Unicast addresses changes may only happen under the rtnl, 6349 * therefore calling __dev_set_promiscuity here is safe. 6350 */ 6351 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 6352 __dev_set_promiscuity(dev, 1, false); 6353 dev->uc_promisc = true; 6354 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 6355 __dev_set_promiscuity(dev, -1, false); 6356 dev->uc_promisc = false; 6357 } 6358 } 6359 6360 if (ops->ndo_set_rx_mode) 6361 ops->ndo_set_rx_mode(dev); 6362} 6363 6364void dev_set_rx_mode(struct net_device *dev) 6365{ 6366 netif_addr_lock_bh(dev); 6367 __dev_set_rx_mode(dev); 6368 netif_addr_unlock_bh(dev); 6369} 6370 6371/** 6372 * dev_get_flags - get flags reported to userspace 6373 * @dev: device 6374 * 6375 * Get the combination of flag bits exported through APIs to userspace. 6376 */ 6377unsigned int dev_get_flags(const struct net_device *dev) 6378{ 6379 unsigned int flags; 6380 6381 flags = (dev->flags & ~(IFF_PROMISC | 6382 IFF_ALLMULTI | 6383 IFF_RUNNING | 6384 IFF_LOWER_UP | 6385 IFF_DORMANT)) | 6386 (dev->gflags & (IFF_PROMISC | 6387 IFF_ALLMULTI)); 6388 6389 if (netif_running(dev)) { 6390 if (netif_oper_up(dev)) 6391 flags |= IFF_RUNNING; 6392 if (netif_carrier_ok(dev)) 6393 flags |= IFF_LOWER_UP; 6394 if (netif_dormant(dev)) 6395 flags |= IFF_DORMANT; 6396 } 6397 6398 return flags; 6399} 6400EXPORT_SYMBOL(dev_get_flags); 6401 6402int __dev_change_flags(struct net_device *dev, unsigned int flags) 6403{ 6404 unsigned int old_flags = dev->flags; 6405 int ret; 6406 6407 ASSERT_RTNL(); 6408 6409 /* 6410 * Set the flags on our device. 6411 */ 6412 6413 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 6414 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 6415 IFF_AUTOMEDIA)) | 6416 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 6417 IFF_ALLMULTI)); 6418 6419 /* 6420 * Load in the correct multicast list now the flags have changed. 6421 */ 6422 6423 if ((old_flags ^ flags) & IFF_MULTICAST) 6424 dev_change_rx_flags(dev, IFF_MULTICAST); 6425 6426 dev_set_rx_mode(dev); 6427 6428 /* 6429 * Have we downed the interface. We handle IFF_UP ourselves 6430 * according to user attempts to set it, rather than blindly 6431 * setting it. 6432 */ 6433 6434 ret = 0; 6435 if ((old_flags ^ flags) & IFF_UP) 6436 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev); 6437 6438 if ((flags ^ dev->gflags) & IFF_PROMISC) { 6439 int inc = (flags & IFF_PROMISC) ? 1 : -1; 6440 unsigned int old_flags = dev->flags; 6441 6442 dev->gflags ^= IFF_PROMISC; 6443 6444 if (__dev_set_promiscuity(dev, inc, false) >= 0) 6445 if (dev->flags != old_flags) 6446 dev_set_rx_mode(dev); 6447 } 6448 6449 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 6450 is important. Some (broken) drivers set IFF_PROMISC, when 6451 IFF_ALLMULTI is requested not asking us and not reporting. 6452 */ 6453 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 6454 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 6455 6456 dev->gflags ^= IFF_ALLMULTI; 6457 __dev_set_allmulti(dev, inc, false); 6458 } 6459 6460 return ret; 6461} 6462 6463void __dev_notify_flags(struct net_device *dev, unsigned int old_flags, 6464 unsigned int gchanges) 6465{ 6466 unsigned int changes = dev->flags ^ old_flags; 6467 6468 if (gchanges) 6469 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC); 6470 6471 if (changes & IFF_UP) { 6472 if (dev->flags & IFF_UP) 6473 call_netdevice_notifiers(NETDEV_UP, dev); 6474 else 6475 call_netdevice_notifiers(NETDEV_DOWN, dev); 6476 } 6477 6478 if (dev->flags & IFF_UP && 6479 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { 6480 struct netdev_notifier_change_info change_info; 6481 6482 change_info.flags_changed = changes; 6483 call_netdevice_notifiers_info(NETDEV_CHANGE, dev, 6484 &change_info.info); 6485 } 6486} 6487 6488/** 6489 * dev_change_flags - change device settings 6490 * @dev: device 6491 * @flags: device state flags 6492 * 6493 * Change settings on device based state flags. The flags are 6494 * in the userspace exported format. 6495 */ 6496int dev_change_flags(struct net_device *dev, unsigned int flags) 6497{ 6498 int ret; 6499 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags; 6500 6501 ret = __dev_change_flags(dev, flags); 6502 if (ret < 0) 6503 return ret; 6504 6505 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags); 6506 __dev_notify_flags(dev, old_flags, changes); 6507 return ret; 6508} 6509EXPORT_SYMBOL(dev_change_flags); 6510 6511static int __dev_set_mtu(struct net_device *dev, int new_mtu) 6512{ 6513 const struct net_device_ops *ops = dev->netdev_ops; 6514 6515 if (ops->ndo_change_mtu) 6516 return ops->ndo_change_mtu(dev, new_mtu); 6517 6518 dev->mtu = new_mtu; 6519 return 0; 6520} 6521 6522/** 6523 * dev_set_mtu - Change maximum transfer unit 6524 * @dev: device 6525 * @new_mtu: new transfer unit 6526 * 6527 * Change the maximum transfer size of the network device. 6528 */ 6529int dev_set_mtu(struct net_device *dev, int new_mtu) 6530{ 6531 int err, orig_mtu; 6532 6533 if (new_mtu == dev->mtu) 6534 return 0; 6535 6536 /* MTU must be positive, and in range */ 6537 if (new_mtu < 0 || new_mtu < dev->min_mtu) { 6538 net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n", 6539 dev->name, new_mtu, dev->min_mtu); 6540 return -EINVAL; 6541 } 6542 6543 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) { 6544 net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n", 6545 dev->name, new_mtu, dev->max_mtu); 6546 return -EINVAL; 6547 } 6548 6549 if (!netif_device_present(dev)) 6550 return -ENODEV; 6551 6552 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev); 6553 err = notifier_to_errno(err); 6554 if (err) 6555 return err; 6556 6557 orig_mtu = dev->mtu; 6558 err = __dev_set_mtu(dev, new_mtu); 6559 6560 if (!err) { 6561 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 6562 err = notifier_to_errno(err); 6563 if (err) { 6564 /* setting mtu back and notifying everyone again, 6565 * so that they have a chance to revert changes. 6566 */ 6567 __dev_set_mtu(dev, orig_mtu); 6568 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 6569 } 6570 } 6571 return err; 6572} 6573EXPORT_SYMBOL(dev_set_mtu); 6574 6575/** 6576 * dev_set_group - Change group this device belongs to 6577 * @dev: device 6578 * @new_group: group this device should belong to 6579 */ 6580void dev_set_group(struct net_device *dev, int new_group) 6581{ 6582 dev->group = new_group; 6583} 6584EXPORT_SYMBOL(dev_set_group); 6585 6586/** 6587 * dev_set_mac_address - Change Media Access Control Address 6588 * @dev: device 6589 * @sa: new address 6590 * 6591 * Change the hardware (MAC) address of the device 6592 */ 6593int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 6594{ 6595 const struct net_device_ops *ops = dev->netdev_ops; 6596 int err; 6597 6598 if (!ops->ndo_set_mac_address) 6599 return -EOPNOTSUPP; 6600 if (sa->sa_family != dev->type) 6601 return -EINVAL; 6602 if (!netif_device_present(dev)) 6603 return -ENODEV; 6604 err = ops->ndo_set_mac_address(dev, sa); 6605 if (err) 6606 return err; 6607 dev->addr_assign_type = NET_ADDR_SET; 6608 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 6609 add_device_randomness(dev->dev_addr, dev->addr_len); 6610 return 0; 6611} 6612EXPORT_SYMBOL(dev_set_mac_address); 6613 6614/** 6615 * dev_change_carrier - Change device carrier 6616 * @dev: device 6617 * @new_carrier: new value 6618 * 6619 * Change device carrier 6620 */ 6621int dev_change_carrier(struct net_device *dev, bool new_carrier) 6622{ 6623 const struct net_device_ops *ops = dev->netdev_ops; 6624 6625 if (!ops->ndo_change_carrier) 6626 return -EOPNOTSUPP; 6627 if (!netif_device_present(dev)) 6628 return -ENODEV; 6629 return ops->ndo_change_carrier(dev, new_carrier); 6630} 6631EXPORT_SYMBOL(dev_change_carrier); 6632 6633/** 6634 * dev_get_phys_port_id - Get device physical port ID 6635 * @dev: device 6636 * @ppid: port ID 6637 * 6638 * Get device physical port ID 6639 */ 6640int dev_get_phys_port_id(struct net_device *dev, 6641 struct netdev_phys_item_id *ppid) 6642{ 6643 const struct net_device_ops *ops = dev->netdev_ops; 6644 6645 if (!ops->ndo_get_phys_port_id) 6646 return -EOPNOTSUPP; 6647 return ops->ndo_get_phys_port_id(dev, ppid); 6648} 6649EXPORT_SYMBOL(dev_get_phys_port_id); 6650 6651/** 6652 * dev_get_phys_port_name - Get device physical port name 6653 * @dev: device 6654 * @name: port name 6655 * @len: limit of bytes to copy to name 6656 * 6657 * Get device physical port name 6658 */ 6659int dev_get_phys_port_name(struct net_device *dev, 6660 char *name, size_t len) 6661{ 6662 const struct net_device_ops *ops = dev->netdev_ops; 6663 6664 if (!ops->ndo_get_phys_port_name) 6665 return -EOPNOTSUPP; 6666 return ops->ndo_get_phys_port_name(dev, name, len); 6667} 6668EXPORT_SYMBOL(dev_get_phys_port_name); 6669 6670/** 6671 * dev_change_proto_down - update protocol port state information 6672 * @dev: device 6673 * @proto_down: new value 6674 * 6675 * This info can be used by switch drivers to set the phys state of the 6676 * port. 6677 */ 6678int dev_change_proto_down(struct net_device *dev, bool proto_down) 6679{ 6680 const struct net_device_ops *ops = dev->netdev_ops; 6681 6682 if (!ops->ndo_change_proto_down) 6683 return -EOPNOTSUPP; 6684 if (!netif_device_present(dev)) 6685 return -ENODEV; 6686 return ops->ndo_change_proto_down(dev, proto_down); 6687} 6688EXPORT_SYMBOL(dev_change_proto_down); 6689 6690/** 6691 * dev_change_xdp_fd - set or clear a bpf program for a device rx path 6692 * @dev: device 6693 * @fd: new program fd or negative value to clear 6694 * @flags: xdp-related flags 6695 * 6696 * Set or clear a bpf program for a device 6697 */ 6698int dev_change_xdp_fd(struct net_device *dev, int fd, u32 flags) 6699{ 6700 const struct net_device_ops *ops = dev->netdev_ops; 6701 struct bpf_prog *prog = NULL; 6702 struct netdev_xdp xdp; 6703 int err; 6704 6705 ASSERT_RTNL(); 6706 6707 if (!ops->ndo_xdp) 6708 return -EOPNOTSUPP; 6709 if (fd >= 0) { 6710 if (flags & XDP_FLAGS_UPDATE_IF_NOEXIST) { 6711 memset(&xdp, 0, sizeof(xdp)); 6712 xdp.command = XDP_QUERY_PROG; 6713 6714 err = ops->ndo_xdp(dev, &xdp); 6715 if (err < 0) 6716 return err; 6717 if (xdp.prog_attached) 6718 return -EBUSY; 6719 } 6720 6721 prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP); 6722 if (IS_ERR(prog)) 6723 return PTR_ERR(prog); 6724 } 6725 6726 memset(&xdp, 0, sizeof(xdp)); 6727 xdp.command = XDP_SETUP_PROG; 6728 xdp.prog = prog; 6729 6730 err = ops->ndo_xdp(dev, &xdp); 6731 if (err < 0 && prog) 6732 bpf_prog_put(prog); 6733 6734 return err; 6735} 6736EXPORT_SYMBOL(dev_change_xdp_fd); 6737 6738/** 6739 * dev_new_index - allocate an ifindex 6740 * @net: the applicable net namespace 6741 * 6742 * Returns a suitable unique value for a new device interface 6743 * number. The caller must hold the rtnl semaphore or the 6744 * dev_base_lock to be sure it remains unique. 6745 */ 6746static int dev_new_index(struct net *net) 6747{ 6748 int ifindex = net->ifindex; 6749 for (;;) { 6750 if (++ifindex <= 0) 6751 ifindex = 1; 6752 if (!__dev_get_by_index(net, ifindex)) 6753 return net->ifindex = ifindex; 6754 } 6755} 6756 6757/* Delayed registration/unregisteration */ 6758static LIST_HEAD(net_todo_list); 6759DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); 6760 6761static void net_set_todo(struct net_device *dev) 6762{ 6763 list_add_tail(&dev->todo_list, &net_todo_list); 6764 dev_net(dev)->dev_unreg_count++; 6765} 6766 6767static void rollback_registered_many(struct list_head *head) 6768{ 6769 struct net_device *dev, *tmp; 6770 LIST_HEAD(close_head); 6771 6772 BUG_ON(dev_boot_phase); 6773 ASSERT_RTNL(); 6774 6775 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 6776 /* Some devices call without registering 6777 * for initialization unwind. Remove those 6778 * devices and proceed with the remaining. 6779 */ 6780 if (dev->reg_state == NETREG_UNINITIALIZED) { 6781 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 6782 dev->name, dev); 6783 6784 WARN_ON(1); 6785 list_del(&dev->unreg_list); 6786 continue; 6787 } 6788 dev->dismantle = true; 6789 BUG_ON(dev->reg_state != NETREG_REGISTERED); 6790 } 6791 6792 /* If device is running, close it first. */ 6793 list_for_each_entry(dev, head, unreg_list) 6794 list_add_tail(&dev->close_list, &close_head); 6795 dev_close_many(&close_head, true); 6796 6797 list_for_each_entry(dev, head, unreg_list) { 6798 /* And unlink it from device chain. */ 6799 unlist_netdevice(dev); 6800 6801 dev->reg_state = NETREG_UNREGISTERING; 6802 } 6803 flush_all_backlogs(); 6804 6805 synchronize_net(); 6806 6807 list_for_each_entry(dev, head, unreg_list) { 6808 struct sk_buff *skb = NULL; 6809 6810 /* Shutdown queueing discipline. */ 6811 dev_shutdown(dev); 6812 6813 6814 /* Notify protocols, that we are about to destroy 6815 this device. They should clean all the things. 6816 */ 6817 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 6818 6819 if (!dev->rtnl_link_ops || 6820 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 6821 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 6822 GFP_KERNEL); 6823 6824 /* 6825 * Flush the unicast and multicast chains 6826 */ 6827 dev_uc_flush(dev); 6828 dev_mc_flush(dev); 6829 6830 if (dev->netdev_ops->ndo_uninit) 6831 dev->netdev_ops->ndo_uninit(dev); 6832 6833 if (skb) 6834 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL); 6835 6836 /* Notifier chain MUST detach us all upper devices. */ 6837 WARN_ON(netdev_has_any_upper_dev(dev)); 6838 WARN_ON(netdev_has_any_lower_dev(dev)); 6839 6840 /* Remove entries from kobject tree */ 6841 netdev_unregister_kobject(dev); 6842#ifdef CONFIG_XPS 6843 /* Remove XPS queueing entries */ 6844 netif_reset_xps_queues_gt(dev, 0); 6845#endif 6846 } 6847 6848 synchronize_net(); 6849 6850 list_for_each_entry(dev, head, unreg_list) 6851 dev_put(dev); 6852} 6853 6854static void rollback_registered(struct net_device *dev) 6855{ 6856 LIST_HEAD(single); 6857 6858 list_add(&dev->unreg_list, &single); 6859 rollback_registered_many(&single); 6860 list_del(&single); 6861} 6862 6863static netdev_features_t netdev_sync_upper_features(struct net_device *lower, 6864 struct net_device *upper, netdev_features_t features) 6865{ 6866 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 6867 netdev_features_t feature; 6868 int feature_bit; 6869 6870 for_each_netdev_feature(&upper_disables, feature_bit) { 6871 feature = __NETIF_F_BIT(feature_bit); 6872 if (!(upper->wanted_features & feature) 6873 && (features & feature)) { 6874 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n", 6875 &feature, upper->name); 6876 features &= ~feature; 6877 } 6878 } 6879 6880 return features; 6881} 6882 6883static void netdev_sync_lower_features(struct net_device *upper, 6884 struct net_device *lower, netdev_features_t features) 6885{ 6886 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 6887 netdev_features_t feature; 6888 int feature_bit; 6889 6890 for_each_netdev_feature(&upper_disables, feature_bit) { 6891 feature = __NETIF_F_BIT(feature_bit); 6892 if (!(features & feature) && (lower->features & feature)) { 6893 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n", 6894 &feature, lower->name); 6895 lower->wanted_features &= ~feature; 6896 netdev_update_features(lower); 6897 6898 if (unlikely(lower->features & feature)) 6899 netdev_WARN(upper, "failed to disable %pNF on %s!\n", 6900 &feature, lower->name); 6901 } 6902 } 6903} 6904 6905static netdev_features_t netdev_fix_features(struct net_device *dev, 6906 netdev_features_t features) 6907{ 6908 /* Fix illegal checksum combinations */ 6909 if ((features & NETIF_F_HW_CSUM) && 6910 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 6911 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 6912 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 6913 } 6914 6915 /* TSO requires that SG is present as well. */ 6916 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 6917 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 6918 features &= ~NETIF_F_ALL_TSO; 6919 } 6920 6921 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 6922 !(features & NETIF_F_IP_CSUM)) { 6923 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 6924 features &= ~NETIF_F_TSO; 6925 features &= ~NETIF_F_TSO_ECN; 6926 } 6927 6928 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 6929 !(features & NETIF_F_IPV6_CSUM)) { 6930 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 6931 features &= ~NETIF_F_TSO6; 6932 } 6933 6934 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */ 6935 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO)) 6936 features &= ~NETIF_F_TSO_MANGLEID; 6937 6938 /* TSO ECN requires that TSO is present as well. */ 6939 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 6940 features &= ~NETIF_F_TSO_ECN; 6941 6942 /* Software GSO depends on SG. */ 6943 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 6944 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 6945 features &= ~NETIF_F_GSO; 6946 } 6947 6948 /* UFO needs SG and checksumming */ 6949 if (features & NETIF_F_UFO) { 6950 /* maybe split UFO into V4 and V6? */ 6951 if (!(features & NETIF_F_HW_CSUM) && 6952 ((features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) != 6953 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))) { 6954 netdev_dbg(dev, 6955 "Dropping NETIF_F_UFO since no checksum offload features.\n"); 6956 features &= ~NETIF_F_UFO; 6957 } 6958 6959 if (!(features & NETIF_F_SG)) { 6960 netdev_dbg(dev, 6961 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n"); 6962 features &= ~NETIF_F_UFO; 6963 } 6964 } 6965 6966 /* GSO partial features require GSO partial be set */ 6967 if ((features & dev->gso_partial_features) && 6968 !(features & NETIF_F_GSO_PARTIAL)) { 6969 netdev_dbg(dev, 6970 "Dropping partially supported GSO features since no GSO partial.\n"); 6971 features &= ~dev->gso_partial_features; 6972 } 6973 6974#ifdef CONFIG_NET_RX_BUSY_POLL 6975 if (dev->netdev_ops->ndo_busy_poll) 6976 features |= NETIF_F_BUSY_POLL; 6977 else 6978#endif 6979 features &= ~NETIF_F_BUSY_POLL; 6980 6981 return features; 6982} 6983 6984int __netdev_update_features(struct net_device *dev) 6985{ 6986 struct net_device *upper, *lower; 6987 netdev_features_t features; 6988 struct list_head *iter; 6989 int err = -1; 6990 6991 ASSERT_RTNL(); 6992 6993 features = netdev_get_wanted_features(dev); 6994 6995 if (dev->netdev_ops->ndo_fix_features) 6996 features = dev->netdev_ops->ndo_fix_features(dev, features); 6997 6998 /* driver might be less strict about feature dependencies */ 6999 features = netdev_fix_features(dev, features); 7000 7001 /* some features can't be enabled if they're off an an upper device */ 7002 netdev_for_each_upper_dev_rcu(dev, upper, iter) 7003 features = netdev_sync_upper_features(dev, upper, features); 7004 7005 if (dev->features == features) 7006 goto sync_lower; 7007 7008 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 7009 &dev->features, &features); 7010 7011 if (dev->netdev_ops->ndo_set_features) 7012 err = dev->netdev_ops->ndo_set_features(dev, features); 7013 else 7014 err = 0; 7015 7016 if (unlikely(err < 0)) { 7017 netdev_err(dev, 7018 "set_features() failed (%d); wanted %pNF, left %pNF\n", 7019 err, &features, &dev->features); 7020 /* return non-0 since some features might have changed and 7021 * it's better to fire a spurious notification than miss it 7022 */ 7023 return -1; 7024 } 7025 7026sync_lower: 7027 /* some features must be disabled on lower devices when disabled 7028 * on an upper device (think: bonding master or bridge) 7029 */ 7030 netdev_for_each_lower_dev(dev, lower, iter) 7031 netdev_sync_lower_features(dev, lower, features); 7032 7033 if (!err) 7034 dev->features = features; 7035 7036 return err < 0 ? 0 : 1; 7037} 7038 7039/** 7040 * netdev_update_features - recalculate device features 7041 * @dev: the device to check 7042 * 7043 * Recalculate dev->features set and send notifications if it 7044 * has changed. Should be called after driver or hardware dependent 7045 * conditions might have changed that influence the features. 7046 */ 7047void netdev_update_features(struct net_device *dev) 7048{ 7049 if (__netdev_update_features(dev)) 7050 netdev_features_change(dev); 7051} 7052EXPORT_SYMBOL(netdev_update_features); 7053 7054/** 7055 * netdev_change_features - recalculate device features 7056 * @dev: the device to check 7057 * 7058 * Recalculate dev->features set and send notifications even 7059 * if they have not changed. Should be called instead of 7060 * netdev_update_features() if also dev->vlan_features might 7061 * have changed to allow the changes to be propagated to stacked 7062 * VLAN devices. 7063 */ 7064void netdev_change_features(struct net_device *dev) 7065{ 7066 __netdev_update_features(dev); 7067 netdev_features_change(dev); 7068} 7069EXPORT_SYMBOL(netdev_change_features); 7070 7071/** 7072 * netif_stacked_transfer_operstate - transfer operstate 7073 * @rootdev: the root or lower level device to transfer state from 7074 * @dev: the device to transfer operstate to 7075 * 7076 * Transfer operational state from root to device. This is normally 7077 * called when a stacking relationship exists between the root 7078 * device and the device(a leaf device). 7079 */ 7080void netif_stacked_transfer_operstate(const struct net_device *rootdev, 7081 struct net_device *dev) 7082{ 7083 if (rootdev->operstate == IF_OPER_DORMANT) 7084 netif_dormant_on(dev); 7085 else 7086 netif_dormant_off(dev); 7087 7088 if (netif_carrier_ok(rootdev)) { 7089 if (!netif_carrier_ok(dev)) 7090 netif_carrier_on(dev); 7091 } else { 7092 if (netif_carrier_ok(dev)) 7093 netif_carrier_off(dev); 7094 } 7095} 7096EXPORT_SYMBOL(netif_stacked_transfer_operstate); 7097 7098#ifdef CONFIG_SYSFS 7099static int netif_alloc_rx_queues(struct net_device *dev) 7100{ 7101 unsigned int i, count = dev->num_rx_queues; 7102 struct netdev_rx_queue *rx; 7103 size_t sz = count * sizeof(*rx); 7104 7105 BUG_ON(count < 1); 7106 7107 rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT); 7108 if (!rx) { 7109 rx = vzalloc(sz); 7110 if (!rx) 7111 return -ENOMEM; 7112 } 7113 dev->_rx = rx; 7114 7115 for (i = 0; i < count; i++) 7116 rx[i].dev = dev; 7117 return 0; 7118} 7119#endif 7120 7121static void netdev_init_one_queue(struct net_device *dev, 7122 struct netdev_queue *queue, void *_unused) 7123{ 7124 /* Initialize queue lock */ 7125 spin_lock_init(&queue->_xmit_lock); 7126 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 7127 queue->xmit_lock_owner = -1; 7128 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 7129 queue->dev = dev; 7130#ifdef CONFIG_BQL 7131 dql_init(&queue->dql, HZ); 7132#endif 7133} 7134 7135static void netif_free_tx_queues(struct net_device *dev) 7136{ 7137 kvfree(dev->_tx); 7138} 7139 7140static int netif_alloc_netdev_queues(struct net_device *dev) 7141{ 7142 unsigned int count = dev->num_tx_queues; 7143 struct netdev_queue *tx; 7144 size_t sz = count * sizeof(*tx); 7145 7146 if (count < 1 || count > 0xffff) 7147 return -EINVAL; 7148 7149 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT); 7150 if (!tx) { 7151 tx = vzalloc(sz); 7152 if (!tx) 7153 return -ENOMEM; 7154 } 7155 dev->_tx = tx; 7156 7157 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 7158 spin_lock_init(&dev->tx_global_lock); 7159 7160 return 0; 7161} 7162 7163void netif_tx_stop_all_queues(struct net_device *dev) 7164{ 7165 unsigned int i; 7166 7167 for (i = 0; i < dev->num_tx_queues; i++) { 7168 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 7169 netif_tx_stop_queue(txq); 7170 } 7171} 7172EXPORT_SYMBOL(netif_tx_stop_all_queues); 7173 7174/** 7175 * register_netdevice - register a network device 7176 * @dev: device to register 7177 * 7178 * Take a completed network device structure and add it to the kernel 7179 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 7180 * chain. 0 is returned on success. A negative errno code is returned 7181 * on a failure to set up the device, or if the name is a duplicate. 7182 * 7183 * Callers must hold the rtnl semaphore. You may want 7184 * register_netdev() instead of this. 7185 * 7186 * BUGS: 7187 * The locking appears insufficient to guarantee two parallel registers 7188 * will not get the same name. 7189 */ 7190 7191int register_netdevice(struct net_device *dev) 7192{ 7193 int ret; 7194 struct net *net = dev_net(dev); 7195 7196 BUG_ON(dev_boot_phase); 7197 ASSERT_RTNL(); 7198 7199 might_sleep(); 7200 7201 /* When net_device's are persistent, this will be fatal. */ 7202 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 7203 BUG_ON(!net); 7204 7205 spin_lock_init(&dev->addr_list_lock); 7206 netdev_set_addr_lockdep_class(dev); 7207 7208 ret = dev_get_valid_name(net, dev, dev->name); 7209 if (ret < 0) 7210 goto out; 7211 7212 /* Init, if this function is available */ 7213 if (dev->netdev_ops->ndo_init) { 7214 ret = dev->netdev_ops->ndo_init(dev); 7215 if (ret) { 7216 if (ret > 0) 7217 ret = -EIO; 7218 goto out; 7219 } 7220 } 7221 7222 if (((dev->hw_features | dev->features) & 7223 NETIF_F_HW_VLAN_CTAG_FILTER) && 7224 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 7225 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 7226 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 7227 ret = -EINVAL; 7228 goto err_uninit; 7229 } 7230 7231 ret = -EBUSY; 7232 if (!dev->ifindex) 7233 dev->ifindex = dev_new_index(net); 7234 else if (__dev_get_by_index(net, dev->ifindex)) 7235 goto err_uninit; 7236 7237 /* Transfer changeable features to wanted_features and enable 7238 * software offloads (GSO and GRO). 7239 */ 7240 dev->hw_features |= NETIF_F_SOFT_FEATURES; 7241 dev->features |= NETIF_F_SOFT_FEATURES; 7242 dev->wanted_features = dev->features & dev->hw_features; 7243 7244 if (!(dev->flags & IFF_LOOPBACK)) 7245 dev->hw_features |= NETIF_F_NOCACHE_COPY; 7246 7247 /* If IPv4 TCP segmentation offload is supported we should also 7248 * allow the device to enable segmenting the frame with the option 7249 * of ignoring a static IP ID value. This doesn't enable the 7250 * feature itself but allows the user to enable it later. 7251 */ 7252 if (dev->hw_features & NETIF_F_TSO) 7253 dev->hw_features |= NETIF_F_TSO_MANGLEID; 7254 if (dev->vlan_features & NETIF_F_TSO) 7255 dev->vlan_features |= NETIF_F_TSO_MANGLEID; 7256 if (dev->mpls_features & NETIF_F_TSO) 7257 dev->mpls_features |= NETIF_F_TSO_MANGLEID; 7258 if (dev->hw_enc_features & NETIF_F_TSO) 7259 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 7260 7261 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 7262 */ 7263 dev->vlan_features |= NETIF_F_HIGHDMA; 7264 7265 /* Make NETIF_F_SG inheritable to tunnel devices. 7266 */ 7267 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL; 7268 7269 /* Make NETIF_F_SG inheritable to MPLS. 7270 */ 7271 dev->mpls_features |= NETIF_F_SG; 7272 7273 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 7274 ret = notifier_to_errno(ret); 7275 if (ret) 7276 goto err_uninit; 7277 7278 ret = netdev_register_kobject(dev); 7279 if (ret) 7280 goto err_uninit; 7281 dev->reg_state = NETREG_REGISTERED; 7282 7283 __netdev_update_features(dev); 7284 7285 /* 7286 * Default initial state at registry is that the 7287 * device is present. 7288 */ 7289 7290 set_bit(__LINK_STATE_PRESENT, &dev->state); 7291 7292 linkwatch_init_dev(dev); 7293 7294 dev_init_scheduler(dev); 7295 dev_hold(dev); 7296 list_netdevice(dev); 7297 add_device_randomness(dev->dev_addr, dev->addr_len); 7298 7299 /* If the device has permanent device address, driver should 7300 * set dev_addr and also addr_assign_type should be set to 7301 * NET_ADDR_PERM (default value). 7302 */ 7303 if (dev->addr_assign_type == NET_ADDR_PERM) 7304 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 7305 7306 /* Notify protocols, that a new device appeared. */ 7307 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 7308 ret = notifier_to_errno(ret); 7309 if (ret) { 7310 rollback_registered(dev); 7311 dev->reg_state = NETREG_UNREGISTERED; 7312 } 7313 /* 7314 * Prevent userspace races by waiting until the network 7315 * device is fully setup before sending notifications. 7316 */ 7317 if (!dev->rtnl_link_ops || 7318 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 7319 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 7320 7321out: 7322 return ret; 7323 7324err_uninit: 7325 if (dev->netdev_ops->ndo_uninit) 7326 dev->netdev_ops->ndo_uninit(dev); 7327 goto out; 7328} 7329EXPORT_SYMBOL(register_netdevice); 7330 7331/** 7332 * init_dummy_netdev - init a dummy network device for NAPI 7333 * @dev: device to init 7334 * 7335 * This takes a network device structure and initialize the minimum 7336 * amount of fields so it can be used to schedule NAPI polls without 7337 * registering a full blown interface. This is to be used by drivers 7338 * that need to tie several hardware interfaces to a single NAPI 7339 * poll scheduler due to HW limitations. 7340 */ 7341int init_dummy_netdev(struct net_device *dev) 7342{ 7343 /* Clear everything. Note we don't initialize spinlocks 7344 * are they aren't supposed to be taken by any of the 7345 * NAPI code and this dummy netdev is supposed to be 7346 * only ever used for NAPI polls 7347 */ 7348 memset(dev, 0, sizeof(struct net_device)); 7349 7350 /* make sure we BUG if trying to hit standard 7351 * register/unregister code path 7352 */ 7353 dev->reg_state = NETREG_DUMMY; 7354 7355 /* NAPI wants this */ 7356 INIT_LIST_HEAD(&dev->napi_list); 7357 7358 /* a dummy interface is started by default */ 7359 set_bit(__LINK_STATE_PRESENT, &dev->state); 7360 set_bit(__LINK_STATE_START, &dev->state); 7361 7362 /* Note : We dont allocate pcpu_refcnt for dummy devices, 7363 * because users of this 'device' dont need to change 7364 * its refcount. 7365 */ 7366 7367 return 0; 7368} 7369EXPORT_SYMBOL_GPL(init_dummy_netdev); 7370 7371 7372/** 7373 * register_netdev - register a network device 7374 * @dev: device to register 7375 * 7376 * Take a completed network device structure and add it to the kernel 7377 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 7378 * chain. 0 is returned on success. A negative errno code is returned 7379 * on a failure to set up the device, or if the name is a duplicate. 7380 * 7381 * This is a wrapper around register_netdevice that takes the rtnl semaphore 7382 * and expands the device name if you passed a format string to 7383 * alloc_netdev. 7384 */ 7385int register_netdev(struct net_device *dev) 7386{ 7387 int err; 7388 7389 rtnl_lock(); 7390 err = register_netdevice(dev); 7391 rtnl_unlock(); 7392 return err; 7393} 7394EXPORT_SYMBOL(register_netdev); 7395 7396int netdev_refcnt_read(const struct net_device *dev) 7397{ 7398 int i, refcnt = 0; 7399 7400 for_each_possible_cpu(i) 7401 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 7402 return refcnt; 7403} 7404EXPORT_SYMBOL(netdev_refcnt_read); 7405 7406/** 7407 * netdev_wait_allrefs - wait until all references are gone. 7408 * @dev: target net_device 7409 * 7410 * This is called when unregistering network devices. 7411 * 7412 * Any protocol or device that holds a reference should register 7413 * for netdevice notification, and cleanup and put back the 7414 * reference if they receive an UNREGISTER event. 7415 * We can get stuck here if buggy protocols don't correctly 7416 * call dev_put. 7417 */ 7418static void netdev_wait_allrefs(struct net_device *dev) 7419{ 7420 unsigned long rebroadcast_time, warning_time; 7421 int refcnt; 7422 7423 linkwatch_forget_dev(dev); 7424 7425 rebroadcast_time = warning_time = jiffies; 7426 refcnt = netdev_refcnt_read(dev); 7427 7428 while (refcnt != 0) { 7429 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 7430 rtnl_lock(); 7431 7432 /* Rebroadcast unregister notification */ 7433 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 7434 7435 __rtnl_unlock(); 7436 rcu_barrier(); 7437 rtnl_lock(); 7438 7439 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 7440 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 7441 &dev->state)) { 7442 /* We must not have linkwatch events 7443 * pending on unregister. If this 7444 * happens, we simply run the queue 7445 * unscheduled, resulting in a noop 7446 * for this device. 7447 */ 7448 linkwatch_run_queue(); 7449 } 7450 7451 __rtnl_unlock(); 7452 7453 rebroadcast_time = jiffies; 7454 } 7455 7456 msleep(250); 7457 7458 refcnt = netdev_refcnt_read(dev); 7459 7460 if (time_after(jiffies, warning_time + 10 * HZ)) { 7461 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 7462 dev->name, refcnt); 7463 warning_time = jiffies; 7464 } 7465 } 7466} 7467 7468/* The sequence is: 7469 * 7470 * rtnl_lock(); 7471 * ... 7472 * register_netdevice(x1); 7473 * register_netdevice(x2); 7474 * ... 7475 * unregister_netdevice(y1); 7476 * unregister_netdevice(y2); 7477 * ... 7478 * rtnl_unlock(); 7479 * free_netdev(y1); 7480 * free_netdev(y2); 7481 * 7482 * We are invoked by rtnl_unlock(). 7483 * This allows us to deal with problems: 7484 * 1) We can delete sysfs objects which invoke hotplug 7485 * without deadlocking with linkwatch via keventd. 7486 * 2) Since we run with the RTNL semaphore not held, we can sleep 7487 * safely in order to wait for the netdev refcnt to drop to zero. 7488 * 7489 * We must not return until all unregister events added during 7490 * the interval the lock was held have been completed. 7491 */ 7492void netdev_run_todo(void) 7493{ 7494 struct list_head list; 7495 7496 /* Snapshot list, allow later requests */ 7497 list_replace_init(&net_todo_list, &list); 7498 7499 __rtnl_unlock(); 7500 7501 7502 /* Wait for rcu callbacks to finish before next phase */ 7503 if (!list_empty(&list)) 7504 rcu_barrier(); 7505 7506 while (!list_empty(&list)) { 7507 struct net_device *dev 7508 = list_first_entry(&list, struct net_device, todo_list); 7509 list_del(&dev->todo_list); 7510 7511 rtnl_lock(); 7512 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 7513 __rtnl_unlock(); 7514 7515 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 7516 pr_err("network todo '%s' but state %d\n", 7517 dev->name, dev->reg_state); 7518 dump_stack(); 7519 continue; 7520 } 7521 7522 dev->reg_state = NETREG_UNREGISTERED; 7523 7524 netdev_wait_allrefs(dev); 7525 7526 /* paranoia */ 7527 BUG_ON(netdev_refcnt_read(dev)); 7528 BUG_ON(!list_empty(&dev->ptype_all)); 7529 BUG_ON(!list_empty(&dev->ptype_specific)); 7530 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 7531 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 7532 WARN_ON(dev->dn_ptr); 7533 7534 if (dev->destructor) 7535 dev->destructor(dev); 7536 7537 /* Report a network device has been unregistered */ 7538 rtnl_lock(); 7539 dev_net(dev)->dev_unreg_count--; 7540 __rtnl_unlock(); 7541 wake_up(&netdev_unregistering_wq); 7542 7543 /* Free network device */ 7544 kobject_put(&dev->dev.kobj); 7545 } 7546} 7547 7548/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has 7549 * all the same fields in the same order as net_device_stats, with only 7550 * the type differing, but rtnl_link_stats64 may have additional fields 7551 * at the end for newer counters. 7552 */ 7553void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 7554 const struct net_device_stats *netdev_stats) 7555{ 7556#if BITS_PER_LONG == 64 7557 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats)); 7558 memcpy(stats64, netdev_stats, sizeof(*stats64)); 7559 /* zero out counters that only exist in rtnl_link_stats64 */ 7560 memset((char *)stats64 + sizeof(*netdev_stats), 0, 7561 sizeof(*stats64) - sizeof(*netdev_stats)); 7562#else 7563 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long); 7564 const unsigned long *src = (const unsigned long *)netdev_stats; 7565 u64 *dst = (u64 *)stats64; 7566 7567 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64)); 7568 for (i = 0; i < n; i++) 7569 dst[i] = src[i]; 7570 /* zero out counters that only exist in rtnl_link_stats64 */ 7571 memset((char *)stats64 + n * sizeof(u64), 0, 7572 sizeof(*stats64) - n * sizeof(u64)); 7573#endif 7574} 7575EXPORT_SYMBOL(netdev_stats_to_stats64); 7576 7577/** 7578 * dev_get_stats - get network device statistics 7579 * @dev: device to get statistics from 7580 * @storage: place to store stats 7581 * 7582 * Get network statistics from device. Return @storage. 7583 * The device driver may provide its own method by setting 7584 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 7585 * otherwise the internal statistics structure is used. 7586 */ 7587struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 7588 struct rtnl_link_stats64 *storage) 7589{ 7590 const struct net_device_ops *ops = dev->netdev_ops; 7591 7592 if (ops->ndo_get_stats64) { 7593 memset(storage, 0, sizeof(*storage)); 7594 ops->ndo_get_stats64(dev, storage); 7595 } else if (ops->ndo_get_stats) { 7596 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 7597 } else { 7598 netdev_stats_to_stats64(storage, &dev->stats); 7599 } 7600 storage->rx_dropped += atomic_long_read(&dev->rx_dropped); 7601 storage->tx_dropped += atomic_long_read(&dev->tx_dropped); 7602 storage->rx_nohandler += atomic_long_read(&dev->rx_nohandler); 7603 return storage; 7604} 7605EXPORT_SYMBOL(dev_get_stats); 7606 7607struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 7608{ 7609 struct netdev_queue *queue = dev_ingress_queue(dev); 7610 7611#ifdef CONFIG_NET_CLS_ACT 7612 if (queue) 7613 return queue; 7614 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 7615 if (!queue) 7616 return NULL; 7617 netdev_init_one_queue(dev, queue, NULL); 7618 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc); 7619 queue->qdisc_sleeping = &noop_qdisc; 7620 rcu_assign_pointer(dev->ingress_queue, queue); 7621#endif 7622 return queue; 7623} 7624 7625static const struct ethtool_ops default_ethtool_ops; 7626 7627void netdev_set_default_ethtool_ops(struct net_device *dev, 7628 const struct ethtool_ops *ops) 7629{ 7630 if (dev->ethtool_ops == &default_ethtool_ops) 7631 dev->ethtool_ops = ops; 7632} 7633EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 7634 7635void netdev_freemem(struct net_device *dev) 7636{ 7637 char *addr = (char *)dev - dev->padded; 7638 7639 kvfree(addr); 7640} 7641 7642/** 7643 * alloc_netdev_mqs - allocate network device 7644 * @sizeof_priv: size of private data to allocate space for 7645 * @name: device name format string 7646 * @name_assign_type: origin of device name 7647 * @setup: callback to initialize device 7648 * @txqs: the number of TX subqueues to allocate 7649 * @rxqs: the number of RX subqueues to allocate 7650 * 7651 * Allocates a struct net_device with private data area for driver use 7652 * and performs basic initialization. Also allocates subqueue structs 7653 * for each queue on the device. 7654 */ 7655struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 7656 unsigned char name_assign_type, 7657 void (*setup)(struct net_device *), 7658 unsigned int txqs, unsigned int rxqs) 7659{ 7660 struct net_device *dev; 7661 size_t alloc_size; 7662 struct net_device *p; 7663 7664 BUG_ON(strlen(name) >= sizeof(dev->name)); 7665 7666 if (txqs < 1) { 7667 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 7668 return NULL; 7669 } 7670 7671#ifdef CONFIG_SYSFS 7672 if (rxqs < 1) { 7673 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 7674 return NULL; 7675 } 7676#endif 7677 7678 alloc_size = sizeof(struct net_device); 7679 if (sizeof_priv) { 7680 /* ensure 32-byte alignment of private area */ 7681 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 7682 alloc_size += sizeof_priv; 7683 } 7684 /* ensure 32-byte alignment of whole construct */ 7685 alloc_size += NETDEV_ALIGN - 1; 7686 7687 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT); 7688 if (!p) 7689 p = vzalloc(alloc_size); 7690 if (!p) 7691 return NULL; 7692 7693 dev = PTR_ALIGN(p, NETDEV_ALIGN); 7694 dev->padded = (char *)dev - (char *)p; 7695 7696 dev->pcpu_refcnt = alloc_percpu(int); 7697 if (!dev->pcpu_refcnt) 7698 goto free_dev; 7699 7700 if (dev_addr_init(dev)) 7701 goto free_pcpu; 7702 7703 dev_mc_init(dev); 7704 dev_uc_init(dev); 7705 7706 dev_net_set(dev, &init_net); 7707 7708 dev->gso_max_size = GSO_MAX_SIZE; 7709 dev->gso_max_segs = GSO_MAX_SEGS; 7710 7711 INIT_LIST_HEAD(&dev->napi_list); 7712 INIT_LIST_HEAD(&dev->unreg_list); 7713 INIT_LIST_HEAD(&dev->close_list); 7714 INIT_LIST_HEAD(&dev->link_watch_list); 7715 INIT_LIST_HEAD(&dev->adj_list.upper); 7716 INIT_LIST_HEAD(&dev->adj_list.lower); 7717 INIT_LIST_HEAD(&dev->ptype_all); 7718 INIT_LIST_HEAD(&dev->ptype_specific); 7719#ifdef CONFIG_NET_SCHED 7720 hash_init(dev->qdisc_hash); 7721#endif 7722 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM; 7723 setup(dev); 7724 7725 if (!dev->tx_queue_len) { 7726 dev->priv_flags |= IFF_NO_QUEUE; 7727 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN; 7728 } 7729 7730 dev->num_tx_queues = txqs; 7731 dev->real_num_tx_queues = txqs; 7732 if (netif_alloc_netdev_queues(dev)) 7733 goto free_all; 7734 7735#ifdef CONFIG_SYSFS 7736 dev->num_rx_queues = rxqs; 7737 dev->real_num_rx_queues = rxqs; 7738 if (netif_alloc_rx_queues(dev)) 7739 goto free_all; 7740#endif 7741 7742 strcpy(dev->name, name); 7743 dev->name_assign_type = name_assign_type; 7744 dev->group = INIT_NETDEV_GROUP; 7745 if (!dev->ethtool_ops) 7746 dev->ethtool_ops = &default_ethtool_ops; 7747 7748 nf_hook_ingress_init(dev); 7749 7750 return dev; 7751 7752free_all: 7753 free_netdev(dev); 7754 return NULL; 7755 7756free_pcpu: 7757 free_percpu(dev->pcpu_refcnt); 7758free_dev: 7759 netdev_freemem(dev); 7760 return NULL; 7761} 7762EXPORT_SYMBOL(alloc_netdev_mqs); 7763 7764/** 7765 * free_netdev - free network device 7766 * @dev: device 7767 * 7768 * This function does the last stage of destroying an allocated device 7769 * interface. The reference to the device object is released. 7770 * If this is the last reference then it will be freed. 7771 * Must be called in process context. 7772 */ 7773void free_netdev(struct net_device *dev) 7774{ 7775 struct napi_struct *p, *n; 7776 7777 might_sleep(); 7778 netif_free_tx_queues(dev); 7779#ifdef CONFIG_SYSFS 7780 kvfree(dev->_rx); 7781#endif 7782 7783 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 7784 7785 /* Flush device addresses */ 7786 dev_addr_flush(dev); 7787 7788 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 7789 netif_napi_del(p); 7790 7791 free_percpu(dev->pcpu_refcnt); 7792 dev->pcpu_refcnt = NULL; 7793 7794 /* Compatibility with error handling in drivers */ 7795 if (dev->reg_state == NETREG_UNINITIALIZED) { 7796 netdev_freemem(dev); 7797 return; 7798 } 7799 7800 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 7801 dev->reg_state = NETREG_RELEASED; 7802 7803 /* will free via device release */ 7804 put_device(&dev->dev); 7805} 7806EXPORT_SYMBOL(free_netdev); 7807 7808/** 7809 * synchronize_net - Synchronize with packet receive processing 7810 * 7811 * Wait for packets currently being received to be done. 7812 * Does not block later packets from starting. 7813 */ 7814void synchronize_net(void) 7815{ 7816 might_sleep(); 7817 if (rtnl_is_locked()) 7818 synchronize_rcu_expedited(); 7819 else 7820 synchronize_rcu(); 7821} 7822EXPORT_SYMBOL(synchronize_net); 7823 7824/** 7825 * unregister_netdevice_queue - remove device from the kernel 7826 * @dev: device 7827 * @head: list 7828 * 7829 * This function shuts down a device interface and removes it 7830 * from the kernel tables. 7831 * If head not NULL, device is queued to be unregistered later. 7832 * 7833 * Callers must hold the rtnl semaphore. You may want 7834 * unregister_netdev() instead of this. 7835 */ 7836 7837void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 7838{ 7839 ASSERT_RTNL(); 7840 7841 if (head) { 7842 list_move_tail(&dev->unreg_list, head); 7843 } else { 7844 rollback_registered(dev); 7845 /* Finish processing unregister after unlock */ 7846 net_set_todo(dev); 7847 } 7848} 7849EXPORT_SYMBOL(unregister_netdevice_queue); 7850 7851/** 7852 * unregister_netdevice_many - unregister many devices 7853 * @head: list of devices 7854 * 7855 * Note: As most callers use a stack allocated list_head, 7856 * we force a list_del() to make sure stack wont be corrupted later. 7857 */ 7858void unregister_netdevice_many(struct list_head *head) 7859{ 7860 struct net_device *dev; 7861 7862 if (!list_empty(head)) { 7863 rollback_registered_many(head); 7864 list_for_each_entry(dev, head, unreg_list) 7865 net_set_todo(dev); 7866 list_del(head); 7867 } 7868} 7869EXPORT_SYMBOL(unregister_netdevice_many); 7870 7871/** 7872 * unregister_netdev - remove device from the kernel 7873 * @dev: device 7874 * 7875 * This function shuts down a device interface and removes it 7876 * from the kernel tables. 7877 * 7878 * This is just a wrapper for unregister_netdevice that takes 7879 * the rtnl semaphore. In general you want to use this and not 7880 * unregister_netdevice. 7881 */ 7882void unregister_netdev(struct net_device *dev) 7883{ 7884 rtnl_lock(); 7885 unregister_netdevice(dev); 7886 rtnl_unlock(); 7887} 7888EXPORT_SYMBOL(unregister_netdev); 7889 7890/** 7891 * dev_change_net_namespace - move device to different nethost namespace 7892 * @dev: device 7893 * @net: network namespace 7894 * @pat: If not NULL name pattern to try if the current device name 7895 * is already taken in the destination network namespace. 7896 * 7897 * This function shuts down a device interface and moves it 7898 * to a new network namespace. On success 0 is returned, on 7899 * a failure a netagive errno code is returned. 7900 * 7901 * Callers must hold the rtnl semaphore. 7902 */ 7903 7904int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 7905{ 7906 int err; 7907 7908 ASSERT_RTNL(); 7909 7910 /* Don't allow namespace local devices to be moved. */ 7911 err = -EINVAL; 7912 if (dev->features & NETIF_F_NETNS_LOCAL) 7913 goto out; 7914 7915 /* Ensure the device has been registrered */ 7916 if (dev->reg_state != NETREG_REGISTERED) 7917 goto out; 7918 7919 /* Get out if there is nothing todo */ 7920 err = 0; 7921 if (net_eq(dev_net(dev), net)) 7922 goto out; 7923 7924 /* Pick the destination device name, and ensure 7925 * we can use it in the destination network namespace. 7926 */ 7927 err = -EEXIST; 7928 if (__dev_get_by_name(net, dev->name)) { 7929 /* We get here if we can't use the current device name */ 7930 if (!pat) 7931 goto out; 7932 if (dev_get_valid_name(net, dev, pat) < 0) 7933 goto out; 7934 } 7935 7936 /* 7937 * And now a mini version of register_netdevice unregister_netdevice. 7938 */ 7939 7940 /* If device is running close it first. */ 7941 dev_close(dev); 7942 7943 /* And unlink it from device chain */ 7944 err = -ENODEV; 7945 unlist_netdevice(dev); 7946 7947 synchronize_net(); 7948 7949 /* Shutdown queueing discipline. */ 7950 dev_shutdown(dev); 7951 7952 /* Notify protocols, that we are about to destroy 7953 this device. They should clean all the things. 7954 7955 Note that dev->reg_state stays at NETREG_REGISTERED. 7956 This is wanted because this way 8021q and macvlan know 7957 the device is just moving and can keep their slaves up. 7958 */ 7959 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 7960 rcu_barrier(); 7961 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 7962 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL); 7963 7964 /* 7965 * Flush the unicast and multicast chains 7966 */ 7967 dev_uc_flush(dev); 7968 dev_mc_flush(dev); 7969 7970 /* Send a netdev-removed uevent to the old namespace */ 7971 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 7972 netdev_adjacent_del_links(dev); 7973 7974 /* Actually switch the network namespace */ 7975 dev_net_set(dev, net); 7976 7977 /* If there is an ifindex conflict assign a new one */ 7978 if (__dev_get_by_index(net, dev->ifindex)) 7979 dev->ifindex = dev_new_index(net); 7980 7981 /* Send a netdev-add uevent to the new namespace */ 7982 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 7983 netdev_adjacent_add_links(dev); 7984 7985 /* Fixup kobjects */ 7986 err = device_rename(&dev->dev, dev->name); 7987 WARN_ON(err); 7988 7989 /* Add the device back in the hashes */ 7990 list_netdevice(dev); 7991 7992 /* Notify protocols, that a new device appeared. */ 7993 call_netdevice_notifiers(NETDEV_REGISTER, dev); 7994 7995 /* 7996 * Prevent userspace races by waiting until the network 7997 * device is fully setup before sending notifications. 7998 */ 7999 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 8000 8001 synchronize_net(); 8002 err = 0; 8003out: 8004 return err; 8005} 8006EXPORT_SYMBOL_GPL(dev_change_net_namespace); 8007 8008static int dev_cpu_dead(unsigned int oldcpu) 8009{ 8010 struct sk_buff **list_skb; 8011 struct sk_buff *skb; 8012 unsigned int cpu; 8013 struct softnet_data *sd, *oldsd; 8014 8015 local_irq_disable(); 8016 cpu = smp_processor_id(); 8017 sd = &per_cpu(softnet_data, cpu); 8018 oldsd = &per_cpu(softnet_data, oldcpu); 8019 8020 /* Find end of our completion_queue. */ 8021 list_skb = &sd->completion_queue; 8022 while (*list_skb) 8023 list_skb = &(*list_skb)->next; 8024 /* Append completion queue from offline CPU. */ 8025 *list_skb = oldsd->completion_queue; 8026 oldsd->completion_queue = NULL; 8027 8028 /* Append output queue from offline CPU. */ 8029 if (oldsd->output_queue) { 8030 *sd->output_queue_tailp = oldsd->output_queue; 8031 sd->output_queue_tailp = oldsd->output_queue_tailp; 8032 oldsd->output_queue = NULL; 8033 oldsd->output_queue_tailp = &oldsd->output_queue; 8034 } 8035 /* Append NAPI poll list from offline CPU, with one exception : 8036 * process_backlog() must be called by cpu owning percpu backlog. 8037 * We properly handle process_queue & input_pkt_queue later. 8038 */ 8039 while (!list_empty(&oldsd->poll_list)) { 8040 struct napi_struct *napi = list_first_entry(&oldsd->poll_list, 8041 struct napi_struct, 8042 poll_list); 8043 8044 list_del_init(&napi->poll_list); 8045 if (napi->poll == process_backlog) 8046 napi->state = 0; 8047 else 8048 ____napi_schedule(sd, napi); 8049 } 8050 8051 raise_softirq_irqoff(NET_TX_SOFTIRQ); 8052 local_irq_enable(); 8053 8054 /* Process offline CPU's input_pkt_queue */ 8055 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 8056 netif_rx_ni(skb); 8057 input_queue_head_incr(oldsd); 8058 } 8059 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) { 8060 netif_rx_ni(skb); 8061 input_queue_head_incr(oldsd); 8062 } 8063 8064 return 0; 8065} 8066 8067/** 8068 * netdev_increment_features - increment feature set by one 8069 * @all: current feature set 8070 * @one: new feature set 8071 * @mask: mask feature set 8072 * 8073 * Computes a new feature set after adding a device with feature set 8074 * @one to the master device with current feature set @all. Will not 8075 * enable anything that is off in @mask. Returns the new feature set. 8076 */ 8077netdev_features_t netdev_increment_features(netdev_features_t all, 8078 netdev_features_t one, netdev_features_t mask) 8079{ 8080 if (mask & NETIF_F_HW_CSUM) 8081 mask |= NETIF_F_CSUM_MASK; 8082 mask |= NETIF_F_VLAN_CHALLENGED; 8083 8084 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask; 8085 all &= one | ~NETIF_F_ALL_FOR_ALL; 8086 8087 /* If one device supports hw checksumming, set for all. */ 8088 if (all & NETIF_F_HW_CSUM) 8089 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM); 8090 8091 return all; 8092} 8093EXPORT_SYMBOL(netdev_increment_features); 8094 8095static struct hlist_head * __net_init netdev_create_hash(void) 8096{ 8097 int i; 8098 struct hlist_head *hash; 8099 8100 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL); 8101 if (hash != NULL) 8102 for (i = 0; i < NETDEV_HASHENTRIES; i++) 8103 INIT_HLIST_HEAD(&hash[i]); 8104 8105 return hash; 8106} 8107 8108/* Initialize per network namespace state */ 8109static int __net_init netdev_init(struct net *net) 8110{ 8111 if (net != &init_net) 8112 INIT_LIST_HEAD(&net->dev_base_head); 8113 8114 net->dev_name_head = netdev_create_hash(); 8115 if (net->dev_name_head == NULL) 8116 goto err_name; 8117 8118 net->dev_index_head = netdev_create_hash(); 8119 if (net->dev_index_head == NULL) 8120 goto err_idx; 8121 8122 return 0; 8123 8124err_idx: 8125 kfree(net->dev_name_head); 8126err_name: 8127 return -ENOMEM; 8128} 8129 8130/** 8131 * netdev_drivername - network driver for the device 8132 * @dev: network device 8133 * 8134 * Determine network driver for device. 8135 */ 8136const char *netdev_drivername(const struct net_device *dev) 8137{ 8138 const struct device_driver *driver; 8139 const struct device *parent; 8140 const char *empty = ""; 8141 8142 parent = dev->dev.parent; 8143 if (!parent) 8144 return empty; 8145 8146 driver = parent->driver; 8147 if (driver && driver->name) 8148 return driver->name; 8149 return empty; 8150} 8151 8152static void __netdev_printk(const char *level, const struct net_device *dev, 8153 struct va_format *vaf) 8154{ 8155 if (dev && dev->dev.parent) { 8156 dev_printk_emit(level[1] - '0', 8157 dev->dev.parent, 8158 "%s %s %s%s: %pV", 8159 dev_driver_string(dev->dev.parent), 8160 dev_name(dev->dev.parent), 8161 netdev_name(dev), netdev_reg_state(dev), 8162 vaf); 8163 } else if (dev) { 8164 printk("%s%s%s: %pV", 8165 level, netdev_name(dev), netdev_reg_state(dev), vaf); 8166 } else { 8167 printk("%s(NULL net_device): %pV", level, vaf); 8168 } 8169} 8170 8171void netdev_printk(const char *level, const struct net_device *dev, 8172 const char *format, ...) 8173{ 8174 struct va_format vaf; 8175 va_list args; 8176 8177 va_start(args, format); 8178 8179 vaf.fmt = format; 8180 vaf.va = &args; 8181 8182 __netdev_printk(level, dev, &vaf); 8183 8184 va_end(args); 8185} 8186EXPORT_SYMBOL(netdev_printk); 8187 8188#define define_netdev_printk_level(func, level) \ 8189void func(const struct net_device *dev, const char *fmt, ...) \ 8190{ \ 8191 struct va_format vaf; \ 8192 va_list args; \ 8193 \ 8194 va_start(args, fmt); \ 8195 \ 8196 vaf.fmt = fmt; \ 8197 vaf.va = &args; \ 8198 \ 8199 __netdev_printk(level, dev, &vaf); \ 8200 \ 8201 va_end(args); \ 8202} \ 8203EXPORT_SYMBOL(func); 8204 8205define_netdev_printk_level(netdev_emerg, KERN_EMERG); 8206define_netdev_printk_level(netdev_alert, KERN_ALERT); 8207define_netdev_printk_level(netdev_crit, KERN_CRIT); 8208define_netdev_printk_level(netdev_err, KERN_ERR); 8209define_netdev_printk_level(netdev_warn, KERN_WARNING); 8210define_netdev_printk_level(netdev_notice, KERN_NOTICE); 8211define_netdev_printk_level(netdev_info, KERN_INFO); 8212 8213static void __net_exit netdev_exit(struct net *net) 8214{ 8215 kfree(net->dev_name_head); 8216 kfree(net->dev_index_head); 8217} 8218 8219static struct pernet_operations __net_initdata netdev_net_ops = { 8220 .init = netdev_init, 8221 .exit = netdev_exit, 8222}; 8223 8224static void __net_exit default_device_exit(struct net *net) 8225{ 8226 struct net_device *dev, *aux; 8227 /* 8228 * Push all migratable network devices back to the 8229 * initial network namespace 8230 */ 8231 rtnl_lock(); 8232 for_each_netdev_safe(net, dev, aux) { 8233 int err; 8234 char fb_name[IFNAMSIZ]; 8235 8236 /* Ignore unmoveable devices (i.e. loopback) */ 8237 if (dev->features & NETIF_F_NETNS_LOCAL) 8238 continue; 8239 8240 /* Leave virtual devices for the generic cleanup */ 8241 if (dev->rtnl_link_ops) 8242 continue; 8243 8244 /* Push remaining network devices to init_net */ 8245 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 8246 err = dev_change_net_namespace(dev, &init_net, fb_name); 8247 if (err) { 8248 pr_emerg("%s: failed to move %s to init_net: %d\n", 8249 __func__, dev->name, err); 8250 BUG(); 8251 } 8252 } 8253 rtnl_unlock(); 8254} 8255 8256static void __net_exit rtnl_lock_unregistering(struct list_head *net_list) 8257{ 8258 /* Return with the rtnl_lock held when there are no network 8259 * devices unregistering in any network namespace in net_list. 8260 */ 8261 struct net *net; 8262 bool unregistering; 8263 DEFINE_WAIT_FUNC(wait, woken_wake_function); 8264 8265 add_wait_queue(&netdev_unregistering_wq, &wait); 8266 for (;;) { 8267 unregistering = false; 8268 rtnl_lock(); 8269 list_for_each_entry(net, net_list, exit_list) { 8270 if (net->dev_unreg_count > 0) { 8271 unregistering = true; 8272 break; 8273 } 8274 } 8275 if (!unregistering) 8276 break; 8277 __rtnl_unlock(); 8278 8279 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); 8280 } 8281 remove_wait_queue(&netdev_unregistering_wq, &wait); 8282} 8283 8284static void __net_exit default_device_exit_batch(struct list_head *net_list) 8285{ 8286 /* At exit all network devices most be removed from a network 8287 * namespace. Do this in the reverse order of registration. 8288 * Do this across as many network namespaces as possible to 8289 * improve batching efficiency. 8290 */ 8291 struct net_device *dev; 8292 struct net *net; 8293 LIST_HEAD(dev_kill_list); 8294 8295 /* To prevent network device cleanup code from dereferencing 8296 * loopback devices or network devices that have been freed 8297 * wait here for all pending unregistrations to complete, 8298 * before unregistring the loopback device and allowing the 8299 * network namespace be freed. 8300 * 8301 * The netdev todo list containing all network devices 8302 * unregistrations that happen in default_device_exit_batch 8303 * will run in the rtnl_unlock() at the end of 8304 * default_device_exit_batch. 8305 */ 8306 rtnl_lock_unregistering(net_list); 8307 list_for_each_entry(net, net_list, exit_list) { 8308 for_each_netdev_reverse(net, dev) { 8309 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) 8310 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 8311 else 8312 unregister_netdevice_queue(dev, &dev_kill_list); 8313 } 8314 } 8315 unregister_netdevice_many(&dev_kill_list); 8316 rtnl_unlock(); 8317} 8318 8319static struct pernet_operations __net_initdata default_device_ops = { 8320 .exit = default_device_exit, 8321 .exit_batch = default_device_exit_batch, 8322}; 8323 8324/* 8325 * Initialize the DEV module. At boot time this walks the device list and 8326 * unhooks any devices that fail to initialise (normally hardware not 8327 * present) and leaves us with a valid list of present and active devices. 8328 * 8329 */ 8330 8331/* 8332 * This is called single threaded during boot, so no need 8333 * to take the rtnl semaphore. 8334 */ 8335static int __init net_dev_init(void) 8336{ 8337 int i, rc = -ENOMEM; 8338 8339 BUG_ON(!dev_boot_phase); 8340 8341 if (dev_proc_init()) 8342 goto out; 8343 8344 if (netdev_kobject_init()) 8345 goto out; 8346 8347 INIT_LIST_HEAD(&ptype_all); 8348 for (i = 0; i < PTYPE_HASH_SIZE; i++) 8349 INIT_LIST_HEAD(&ptype_base[i]); 8350 8351 INIT_LIST_HEAD(&offload_base); 8352 8353 if (register_pernet_subsys(&netdev_net_ops)) 8354 goto out; 8355 8356 /* 8357 * Initialise the packet receive queues. 8358 */ 8359 8360 for_each_possible_cpu(i) { 8361 struct work_struct *flush = per_cpu_ptr(&flush_works, i); 8362 struct softnet_data *sd = &per_cpu(softnet_data, i); 8363 8364 INIT_WORK(flush, flush_backlog); 8365 8366 skb_queue_head_init(&sd->input_pkt_queue); 8367 skb_queue_head_init(&sd->process_queue); 8368 INIT_LIST_HEAD(&sd->poll_list); 8369 sd->output_queue_tailp = &sd->output_queue; 8370#ifdef CONFIG_RPS 8371 sd->csd.func = rps_trigger_softirq; 8372 sd->csd.info = sd; 8373 sd->cpu = i; 8374#endif 8375 8376 sd->backlog.poll = process_backlog; 8377 sd->backlog.weight = weight_p; 8378 } 8379 8380 dev_boot_phase = 0; 8381 8382 /* The loopback device is special if any other network devices 8383 * is present in a network namespace the loopback device must 8384 * be present. Since we now dynamically allocate and free the 8385 * loopback device ensure this invariant is maintained by 8386 * keeping the loopback device as the first device on the 8387 * list of network devices. Ensuring the loopback devices 8388 * is the first device that appears and the last network device 8389 * that disappears. 8390 */ 8391 if (register_pernet_device(&loopback_net_ops)) 8392 goto out; 8393 8394 if (register_pernet_device(&default_device_ops)) 8395 goto out; 8396 8397 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 8398 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 8399 8400 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead", 8401 NULL, dev_cpu_dead); 8402 WARN_ON(rc < 0); 8403 dst_subsys_init(); 8404 rc = 0; 8405out: 8406 return rc; 8407} 8408 8409subsys_initcall(net_dev_init);