at v4.10 107 kB view raw
1#ifndef _LINUX_SCHED_H 2#define _LINUX_SCHED_H 3 4#include <uapi/linux/sched.h> 5 6#include <linux/sched/prio.h> 7 8 9struct sched_param { 10 int sched_priority; 11}; 12 13#include <asm/param.h> /* for HZ */ 14 15#include <linux/capability.h> 16#include <linux/threads.h> 17#include <linux/kernel.h> 18#include <linux/types.h> 19#include <linux/timex.h> 20#include <linux/jiffies.h> 21#include <linux/plist.h> 22#include <linux/rbtree.h> 23#include <linux/thread_info.h> 24#include <linux/cpumask.h> 25#include <linux/errno.h> 26#include <linux/nodemask.h> 27#include <linux/mm_types.h> 28#include <linux/preempt.h> 29 30#include <asm/page.h> 31#include <asm/ptrace.h> 32#include <linux/cputime.h> 33 34#include <linux/smp.h> 35#include <linux/sem.h> 36#include <linux/shm.h> 37#include <linux/signal.h> 38#include <linux/compiler.h> 39#include <linux/completion.h> 40#include <linux/pid.h> 41#include <linux/percpu.h> 42#include <linux/topology.h> 43#include <linux/seccomp.h> 44#include <linux/rcupdate.h> 45#include <linux/rculist.h> 46#include <linux/rtmutex.h> 47 48#include <linux/time.h> 49#include <linux/param.h> 50#include <linux/resource.h> 51#include <linux/timer.h> 52#include <linux/hrtimer.h> 53#include <linux/kcov.h> 54#include <linux/task_io_accounting.h> 55#include <linux/latencytop.h> 56#include <linux/cred.h> 57#include <linux/llist.h> 58#include <linux/uidgid.h> 59#include <linux/gfp.h> 60#include <linux/magic.h> 61#include <linux/cgroup-defs.h> 62 63#include <asm/processor.h> 64 65#define SCHED_ATTR_SIZE_VER0 48 /* sizeof first published struct */ 66 67/* 68 * Extended scheduling parameters data structure. 69 * 70 * This is needed because the original struct sched_param can not be 71 * altered without introducing ABI issues with legacy applications 72 * (e.g., in sched_getparam()). 73 * 74 * However, the possibility of specifying more than just a priority for 75 * the tasks may be useful for a wide variety of application fields, e.g., 76 * multimedia, streaming, automation and control, and many others. 77 * 78 * This variant (sched_attr) is meant at describing a so-called 79 * sporadic time-constrained task. In such model a task is specified by: 80 * - the activation period or minimum instance inter-arrival time; 81 * - the maximum (or average, depending on the actual scheduling 82 * discipline) computation time of all instances, a.k.a. runtime; 83 * - the deadline (relative to the actual activation time) of each 84 * instance. 85 * Very briefly, a periodic (sporadic) task asks for the execution of 86 * some specific computation --which is typically called an instance-- 87 * (at most) every period. Moreover, each instance typically lasts no more 88 * than the runtime and must be completed by time instant t equal to 89 * the instance activation time + the deadline. 90 * 91 * This is reflected by the actual fields of the sched_attr structure: 92 * 93 * @size size of the structure, for fwd/bwd compat. 94 * 95 * @sched_policy task's scheduling policy 96 * @sched_flags for customizing the scheduler behaviour 97 * @sched_nice task's nice value (SCHED_NORMAL/BATCH) 98 * @sched_priority task's static priority (SCHED_FIFO/RR) 99 * @sched_deadline representative of the task's deadline 100 * @sched_runtime representative of the task's runtime 101 * @sched_period representative of the task's period 102 * 103 * Given this task model, there are a multiplicity of scheduling algorithms 104 * and policies, that can be used to ensure all the tasks will make their 105 * timing constraints. 106 * 107 * As of now, the SCHED_DEADLINE policy (sched_dl scheduling class) is the 108 * only user of this new interface. More information about the algorithm 109 * available in the scheduling class file or in Documentation/. 110 */ 111struct sched_attr { 112 u32 size; 113 114 u32 sched_policy; 115 u64 sched_flags; 116 117 /* SCHED_NORMAL, SCHED_BATCH */ 118 s32 sched_nice; 119 120 /* SCHED_FIFO, SCHED_RR */ 121 u32 sched_priority; 122 123 /* SCHED_DEADLINE */ 124 u64 sched_runtime; 125 u64 sched_deadline; 126 u64 sched_period; 127}; 128 129struct futex_pi_state; 130struct robust_list_head; 131struct bio_list; 132struct fs_struct; 133struct perf_event_context; 134struct blk_plug; 135struct filename; 136struct nameidata; 137 138#define VMACACHE_BITS 2 139#define VMACACHE_SIZE (1U << VMACACHE_BITS) 140#define VMACACHE_MASK (VMACACHE_SIZE - 1) 141 142/* 143 * These are the constant used to fake the fixed-point load-average 144 * counting. Some notes: 145 * - 11 bit fractions expand to 22 bits by the multiplies: this gives 146 * a load-average precision of 10 bits integer + 11 bits fractional 147 * - if you want to count load-averages more often, you need more 148 * precision, or rounding will get you. With 2-second counting freq, 149 * the EXP_n values would be 1981, 2034 and 2043 if still using only 150 * 11 bit fractions. 151 */ 152extern unsigned long avenrun[]; /* Load averages */ 153extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift); 154 155#define FSHIFT 11 /* nr of bits of precision */ 156#define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */ 157#define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */ 158#define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */ 159#define EXP_5 2014 /* 1/exp(5sec/5min) */ 160#define EXP_15 2037 /* 1/exp(5sec/15min) */ 161 162#define CALC_LOAD(load,exp,n) \ 163 load *= exp; \ 164 load += n*(FIXED_1-exp); \ 165 load >>= FSHIFT; 166 167extern unsigned long total_forks; 168extern int nr_threads; 169DECLARE_PER_CPU(unsigned long, process_counts); 170extern int nr_processes(void); 171extern unsigned long nr_running(void); 172extern bool single_task_running(void); 173extern unsigned long nr_iowait(void); 174extern unsigned long nr_iowait_cpu(int cpu); 175extern void get_iowait_load(unsigned long *nr_waiters, unsigned long *load); 176 177extern void calc_global_load(unsigned long ticks); 178 179#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) 180extern void cpu_load_update_nohz_start(void); 181extern void cpu_load_update_nohz_stop(void); 182#else 183static inline void cpu_load_update_nohz_start(void) { } 184static inline void cpu_load_update_nohz_stop(void) { } 185#endif 186 187extern void dump_cpu_task(int cpu); 188 189struct seq_file; 190struct cfs_rq; 191struct task_group; 192#ifdef CONFIG_SCHED_DEBUG 193extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m); 194extern void proc_sched_set_task(struct task_struct *p); 195#endif 196 197/* 198 * Task state bitmask. NOTE! These bits are also 199 * encoded in fs/proc/array.c: get_task_state(). 200 * 201 * We have two separate sets of flags: task->state 202 * is about runnability, while task->exit_state are 203 * about the task exiting. Confusing, but this way 204 * modifying one set can't modify the other one by 205 * mistake. 206 */ 207#define TASK_RUNNING 0 208#define TASK_INTERRUPTIBLE 1 209#define TASK_UNINTERRUPTIBLE 2 210#define __TASK_STOPPED 4 211#define __TASK_TRACED 8 212/* in tsk->exit_state */ 213#define EXIT_DEAD 16 214#define EXIT_ZOMBIE 32 215#define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD) 216/* in tsk->state again */ 217#define TASK_DEAD 64 218#define TASK_WAKEKILL 128 219#define TASK_WAKING 256 220#define TASK_PARKED 512 221#define TASK_NOLOAD 1024 222#define TASK_NEW 2048 223#define TASK_STATE_MAX 4096 224 225#define TASK_STATE_TO_CHAR_STR "RSDTtXZxKWPNn" 226 227extern char ___assert_task_state[1 - 2*!!( 228 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)]; 229 230/* Convenience macros for the sake of set_task_state */ 231#define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE) 232#define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED) 233#define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED) 234 235#define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD) 236 237/* Convenience macros for the sake of wake_up */ 238#define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE) 239#define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED) 240 241/* get_task_state() */ 242#define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \ 243 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \ 244 __TASK_TRACED | EXIT_ZOMBIE | EXIT_DEAD) 245 246#define task_is_traced(task) ((task->state & __TASK_TRACED) != 0) 247#define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0) 248#define task_is_stopped_or_traced(task) \ 249 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0) 250#define task_contributes_to_load(task) \ 251 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \ 252 (task->flags & PF_FROZEN) == 0 && \ 253 (task->state & TASK_NOLOAD) == 0) 254 255#ifdef CONFIG_DEBUG_ATOMIC_SLEEP 256 257#define __set_task_state(tsk, state_value) \ 258 do { \ 259 (tsk)->task_state_change = _THIS_IP_; \ 260 (tsk)->state = (state_value); \ 261 } while (0) 262#define set_task_state(tsk, state_value) \ 263 do { \ 264 (tsk)->task_state_change = _THIS_IP_; \ 265 smp_store_mb((tsk)->state, (state_value)); \ 266 } while (0) 267 268#define __set_current_state(state_value) \ 269 do { \ 270 current->task_state_change = _THIS_IP_; \ 271 current->state = (state_value); \ 272 } while (0) 273#define set_current_state(state_value) \ 274 do { \ 275 current->task_state_change = _THIS_IP_; \ 276 smp_store_mb(current->state, (state_value)); \ 277 } while (0) 278 279#else 280 281/* 282 * @tsk had better be current, or you get to keep the pieces. 283 * 284 * The only reason is that computing current can be more expensive than 285 * using a pointer that's already available. 286 * 287 * Therefore, see set_current_state(). 288 */ 289#define __set_task_state(tsk, state_value) \ 290 do { (tsk)->state = (state_value); } while (0) 291#define set_task_state(tsk, state_value) \ 292 smp_store_mb((tsk)->state, (state_value)) 293 294/* 295 * set_current_state() includes a barrier so that the write of current->state 296 * is correctly serialised wrt the caller's subsequent test of whether to 297 * actually sleep: 298 * 299 * for (;;) { 300 * set_current_state(TASK_UNINTERRUPTIBLE); 301 * if (!need_sleep) 302 * break; 303 * 304 * schedule(); 305 * } 306 * __set_current_state(TASK_RUNNING); 307 * 308 * If the caller does not need such serialisation (because, for instance, the 309 * condition test and condition change and wakeup are under the same lock) then 310 * use __set_current_state(). 311 * 312 * The above is typically ordered against the wakeup, which does: 313 * 314 * need_sleep = false; 315 * wake_up_state(p, TASK_UNINTERRUPTIBLE); 316 * 317 * Where wake_up_state() (and all other wakeup primitives) imply enough 318 * barriers to order the store of the variable against wakeup. 319 * 320 * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is, 321 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a 322 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING). 323 * 324 * This is obviously fine, since they both store the exact same value. 325 * 326 * Also see the comments of try_to_wake_up(). 327 */ 328#define __set_current_state(state_value) \ 329 do { current->state = (state_value); } while (0) 330#define set_current_state(state_value) \ 331 smp_store_mb(current->state, (state_value)) 332 333#endif 334 335/* Task command name length */ 336#define TASK_COMM_LEN 16 337 338#include <linux/spinlock.h> 339 340/* 341 * This serializes "schedule()" and also protects 342 * the run-queue from deletions/modifications (but 343 * _adding_ to the beginning of the run-queue has 344 * a separate lock). 345 */ 346extern rwlock_t tasklist_lock; 347extern spinlock_t mmlist_lock; 348 349struct task_struct; 350 351#ifdef CONFIG_PROVE_RCU 352extern int lockdep_tasklist_lock_is_held(void); 353#endif /* #ifdef CONFIG_PROVE_RCU */ 354 355extern void sched_init(void); 356extern void sched_init_smp(void); 357extern asmlinkage void schedule_tail(struct task_struct *prev); 358extern void init_idle(struct task_struct *idle, int cpu); 359extern void init_idle_bootup_task(struct task_struct *idle); 360 361extern cpumask_var_t cpu_isolated_map; 362 363extern int runqueue_is_locked(int cpu); 364 365#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) 366extern void nohz_balance_enter_idle(int cpu); 367extern void set_cpu_sd_state_idle(void); 368extern int get_nohz_timer_target(void); 369#else 370static inline void nohz_balance_enter_idle(int cpu) { } 371static inline void set_cpu_sd_state_idle(void) { } 372#endif 373 374/* 375 * Only dump TASK_* tasks. (0 for all tasks) 376 */ 377extern void show_state_filter(unsigned long state_filter); 378 379static inline void show_state(void) 380{ 381 show_state_filter(0); 382} 383 384extern void show_regs(struct pt_regs *); 385 386/* 387 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current 388 * task), SP is the stack pointer of the first frame that should be shown in the back 389 * trace (or NULL if the entire call-chain of the task should be shown). 390 */ 391extern void show_stack(struct task_struct *task, unsigned long *sp); 392 393extern void cpu_init (void); 394extern void trap_init(void); 395extern void update_process_times(int user); 396extern void scheduler_tick(void); 397extern int sched_cpu_starting(unsigned int cpu); 398extern int sched_cpu_activate(unsigned int cpu); 399extern int sched_cpu_deactivate(unsigned int cpu); 400 401#ifdef CONFIG_HOTPLUG_CPU 402extern int sched_cpu_dying(unsigned int cpu); 403#else 404# define sched_cpu_dying NULL 405#endif 406 407extern void sched_show_task(struct task_struct *p); 408 409#ifdef CONFIG_LOCKUP_DETECTOR 410extern void touch_softlockup_watchdog_sched(void); 411extern void touch_softlockup_watchdog(void); 412extern void touch_softlockup_watchdog_sync(void); 413extern void touch_all_softlockup_watchdogs(void); 414extern int proc_dowatchdog_thresh(struct ctl_table *table, int write, 415 void __user *buffer, 416 size_t *lenp, loff_t *ppos); 417extern unsigned int softlockup_panic; 418extern unsigned int hardlockup_panic; 419void lockup_detector_init(void); 420#else 421static inline void touch_softlockup_watchdog_sched(void) 422{ 423} 424static inline void touch_softlockup_watchdog(void) 425{ 426} 427static inline void touch_softlockup_watchdog_sync(void) 428{ 429} 430static inline void touch_all_softlockup_watchdogs(void) 431{ 432} 433static inline void lockup_detector_init(void) 434{ 435} 436#endif 437 438#ifdef CONFIG_DETECT_HUNG_TASK 439void reset_hung_task_detector(void); 440#else 441static inline void reset_hung_task_detector(void) 442{ 443} 444#endif 445 446/* Attach to any functions which should be ignored in wchan output. */ 447#define __sched __attribute__((__section__(".sched.text"))) 448 449/* Linker adds these: start and end of __sched functions */ 450extern char __sched_text_start[], __sched_text_end[]; 451 452/* Is this address in the __sched functions? */ 453extern int in_sched_functions(unsigned long addr); 454 455#define MAX_SCHEDULE_TIMEOUT LONG_MAX 456extern signed long schedule_timeout(signed long timeout); 457extern signed long schedule_timeout_interruptible(signed long timeout); 458extern signed long schedule_timeout_killable(signed long timeout); 459extern signed long schedule_timeout_uninterruptible(signed long timeout); 460extern signed long schedule_timeout_idle(signed long timeout); 461asmlinkage void schedule(void); 462extern void schedule_preempt_disabled(void); 463 464extern long io_schedule_timeout(long timeout); 465 466static inline void io_schedule(void) 467{ 468 io_schedule_timeout(MAX_SCHEDULE_TIMEOUT); 469} 470 471void __noreturn do_task_dead(void); 472 473struct nsproxy; 474struct user_namespace; 475 476#ifdef CONFIG_MMU 477extern void arch_pick_mmap_layout(struct mm_struct *mm); 478extern unsigned long 479arch_get_unmapped_area(struct file *, unsigned long, unsigned long, 480 unsigned long, unsigned long); 481extern unsigned long 482arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 483 unsigned long len, unsigned long pgoff, 484 unsigned long flags); 485#else 486static inline void arch_pick_mmap_layout(struct mm_struct *mm) {} 487#endif 488 489#define SUID_DUMP_DISABLE 0 /* No setuid dumping */ 490#define SUID_DUMP_USER 1 /* Dump as user of process */ 491#define SUID_DUMP_ROOT 2 /* Dump as root */ 492 493/* mm flags */ 494 495/* for SUID_DUMP_* above */ 496#define MMF_DUMPABLE_BITS 2 497#define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1) 498 499extern void set_dumpable(struct mm_struct *mm, int value); 500/* 501 * This returns the actual value of the suid_dumpable flag. For things 502 * that are using this for checking for privilege transitions, it must 503 * test against SUID_DUMP_USER rather than treating it as a boolean 504 * value. 505 */ 506static inline int __get_dumpable(unsigned long mm_flags) 507{ 508 return mm_flags & MMF_DUMPABLE_MASK; 509} 510 511static inline int get_dumpable(struct mm_struct *mm) 512{ 513 return __get_dumpable(mm->flags); 514} 515 516/* coredump filter bits */ 517#define MMF_DUMP_ANON_PRIVATE 2 518#define MMF_DUMP_ANON_SHARED 3 519#define MMF_DUMP_MAPPED_PRIVATE 4 520#define MMF_DUMP_MAPPED_SHARED 5 521#define MMF_DUMP_ELF_HEADERS 6 522#define MMF_DUMP_HUGETLB_PRIVATE 7 523#define MMF_DUMP_HUGETLB_SHARED 8 524#define MMF_DUMP_DAX_PRIVATE 9 525#define MMF_DUMP_DAX_SHARED 10 526 527#define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS 528#define MMF_DUMP_FILTER_BITS 9 529#define MMF_DUMP_FILTER_MASK \ 530 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT) 531#define MMF_DUMP_FILTER_DEFAULT \ 532 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\ 533 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF) 534 535#ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS 536# define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS) 537#else 538# define MMF_DUMP_MASK_DEFAULT_ELF 0 539#endif 540 /* leave room for more dump flags */ 541#define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */ 542#define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */ 543/* 544 * This one-shot flag is dropped due to necessity of changing exe once again 545 * on NFS restore 546 */ 547//#define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */ 548 549#define MMF_HAS_UPROBES 19 /* has uprobes */ 550#define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */ 551#define MMF_OOM_SKIP 21 /* mm is of no interest for the OOM killer */ 552#define MMF_UNSTABLE 22 /* mm is unstable for copy_from_user */ 553#define MMF_HUGE_ZERO_PAGE 23 /* mm has ever used the global huge zero page */ 554 555#define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK) 556 557struct sighand_struct { 558 atomic_t count; 559 struct k_sigaction action[_NSIG]; 560 spinlock_t siglock; 561 wait_queue_head_t signalfd_wqh; 562}; 563 564struct pacct_struct { 565 int ac_flag; 566 long ac_exitcode; 567 unsigned long ac_mem; 568 cputime_t ac_utime, ac_stime; 569 unsigned long ac_minflt, ac_majflt; 570}; 571 572struct cpu_itimer { 573 cputime_t expires; 574 cputime_t incr; 575 u32 error; 576 u32 incr_error; 577}; 578 579/** 580 * struct prev_cputime - snaphsot of system and user cputime 581 * @utime: time spent in user mode 582 * @stime: time spent in system mode 583 * @lock: protects the above two fields 584 * 585 * Stores previous user/system time values such that we can guarantee 586 * monotonicity. 587 */ 588struct prev_cputime { 589#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 590 cputime_t utime; 591 cputime_t stime; 592 raw_spinlock_t lock; 593#endif 594}; 595 596static inline void prev_cputime_init(struct prev_cputime *prev) 597{ 598#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 599 prev->utime = prev->stime = 0; 600 raw_spin_lock_init(&prev->lock); 601#endif 602} 603 604/** 605 * struct task_cputime - collected CPU time counts 606 * @utime: time spent in user mode, in &cputime_t units 607 * @stime: time spent in kernel mode, in &cputime_t units 608 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds 609 * 610 * This structure groups together three kinds of CPU time that are tracked for 611 * threads and thread groups. Most things considering CPU time want to group 612 * these counts together and treat all three of them in parallel. 613 */ 614struct task_cputime { 615 cputime_t utime; 616 cputime_t stime; 617 unsigned long long sum_exec_runtime; 618}; 619 620/* Alternate field names when used to cache expirations. */ 621#define virt_exp utime 622#define prof_exp stime 623#define sched_exp sum_exec_runtime 624 625#define INIT_CPUTIME \ 626 (struct task_cputime) { \ 627 .utime = 0, \ 628 .stime = 0, \ 629 .sum_exec_runtime = 0, \ 630 } 631 632/* 633 * This is the atomic variant of task_cputime, which can be used for 634 * storing and updating task_cputime statistics without locking. 635 */ 636struct task_cputime_atomic { 637 atomic64_t utime; 638 atomic64_t stime; 639 atomic64_t sum_exec_runtime; 640}; 641 642#define INIT_CPUTIME_ATOMIC \ 643 (struct task_cputime_atomic) { \ 644 .utime = ATOMIC64_INIT(0), \ 645 .stime = ATOMIC64_INIT(0), \ 646 .sum_exec_runtime = ATOMIC64_INIT(0), \ 647 } 648 649#define PREEMPT_DISABLED (PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED) 650 651/* 652 * Disable preemption until the scheduler is running -- use an unconditional 653 * value so that it also works on !PREEMPT_COUNT kernels. 654 * 655 * Reset by start_kernel()->sched_init()->init_idle()->init_idle_preempt_count(). 656 */ 657#define INIT_PREEMPT_COUNT PREEMPT_OFFSET 658 659/* 660 * Initial preempt_count value; reflects the preempt_count schedule invariant 661 * which states that during context switches: 662 * 663 * preempt_count() == 2*PREEMPT_DISABLE_OFFSET 664 * 665 * Note: PREEMPT_DISABLE_OFFSET is 0 for !PREEMPT_COUNT kernels. 666 * Note: See finish_task_switch(). 667 */ 668#define FORK_PREEMPT_COUNT (2*PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED) 669 670/** 671 * struct thread_group_cputimer - thread group interval timer counts 672 * @cputime_atomic: atomic thread group interval timers. 673 * @running: true when there are timers running and 674 * @cputime_atomic receives updates. 675 * @checking_timer: true when a thread in the group is in the 676 * process of checking for thread group timers. 677 * 678 * This structure contains the version of task_cputime, above, that is 679 * used for thread group CPU timer calculations. 680 */ 681struct thread_group_cputimer { 682 struct task_cputime_atomic cputime_atomic; 683 bool running; 684 bool checking_timer; 685}; 686 687#include <linux/rwsem.h> 688struct autogroup; 689 690/* 691 * NOTE! "signal_struct" does not have its own 692 * locking, because a shared signal_struct always 693 * implies a shared sighand_struct, so locking 694 * sighand_struct is always a proper superset of 695 * the locking of signal_struct. 696 */ 697struct signal_struct { 698 atomic_t sigcnt; 699 atomic_t live; 700 int nr_threads; 701 struct list_head thread_head; 702 703 wait_queue_head_t wait_chldexit; /* for wait4() */ 704 705 /* current thread group signal load-balancing target: */ 706 struct task_struct *curr_target; 707 708 /* shared signal handling: */ 709 struct sigpending shared_pending; 710 711 /* thread group exit support */ 712 int group_exit_code; 713 /* overloaded: 714 * - notify group_exit_task when ->count is equal to notify_count 715 * - everyone except group_exit_task is stopped during signal delivery 716 * of fatal signals, group_exit_task processes the signal. 717 */ 718 int notify_count; 719 struct task_struct *group_exit_task; 720 721 /* thread group stop support, overloads group_exit_code too */ 722 int group_stop_count; 723 unsigned int flags; /* see SIGNAL_* flags below */ 724 725 /* 726 * PR_SET_CHILD_SUBREAPER marks a process, like a service 727 * manager, to re-parent orphan (double-forking) child processes 728 * to this process instead of 'init'. The service manager is 729 * able to receive SIGCHLD signals and is able to investigate 730 * the process until it calls wait(). All children of this 731 * process will inherit a flag if they should look for a 732 * child_subreaper process at exit. 733 */ 734 unsigned int is_child_subreaper:1; 735 unsigned int has_child_subreaper:1; 736 737 /* POSIX.1b Interval Timers */ 738 int posix_timer_id; 739 struct list_head posix_timers; 740 741 /* ITIMER_REAL timer for the process */ 742 struct hrtimer real_timer; 743 struct pid *leader_pid; 744 ktime_t it_real_incr; 745 746 /* 747 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use 748 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these 749 * values are defined to 0 and 1 respectively 750 */ 751 struct cpu_itimer it[2]; 752 753 /* 754 * Thread group totals for process CPU timers. 755 * See thread_group_cputimer(), et al, for details. 756 */ 757 struct thread_group_cputimer cputimer; 758 759 /* Earliest-expiration cache. */ 760 struct task_cputime cputime_expires; 761 762#ifdef CONFIG_NO_HZ_FULL 763 atomic_t tick_dep_mask; 764#endif 765 766 struct list_head cpu_timers[3]; 767 768 struct pid *tty_old_pgrp; 769 770 /* boolean value for session group leader */ 771 int leader; 772 773 struct tty_struct *tty; /* NULL if no tty */ 774 775#ifdef CONFIG_SCHED_AUTOGROUP 776 struct autogroup *autogroup; 777#endif 778 /* 779 * Cumulative resource counters for dead threads in the group, 780 * and for reaped dead child processes forked by this group. 781 * Live threads maintain their own counters and add to these 782 * in __exit_signal, except for the group leader. 783 */ 784 seqlock_t stats_lock; 785 cputime_t utime, stime, cutime, cstime; 786 cputime_t gtime; 787 cputime_t cgtime; 788 struct prev_cputime prev_cputime; 789 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw; 790 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt; 791 unsigned long inblock, oublock, cinblock, coublock; 792 unsigned long maxrss, cmaxrss; 793 struct task_io_accounting ioac; 794 795 /* 796 * Cumulative ns of schedule CPU time fo dead threads in the 797 * group, not including a zombie group leader, (This only differs 798 * from jiffies_to_ns(utime + stime) if sched_clock uses something 799 * other than jiffies.) 800 */ 801 unsigned long long sum_sched_runtime; 802 803 /* 804 * We don't bother to synchronize most readers of this at all, 805 * because there is no reader checking a limit that actually needs 806 * to get both rlim_cur and rlim_max atomically, and either one 807 * alone is a single word that can safely be read normally. 808 * getrlimit/setrlimit use task_lock(current->group_leader) to 809 * protect this instead of the siglock, because they really 810 * have no need to disable irqs. 811 */ 812 struct rlimit rlim[RLIM_NLIMITS]; 813 814#ifdef CONFIG_BSD_PROCESS_ACCT 815 struct pacct_struct pacct; /* per-process accounting information */ 816#endif 817#ifdef CONFIG_TASKSTATS 818 struct taskstats *stats; 819#endif 820#ifdef CONFIG_AUDIT 821 unsigned audit_tty; 822 struct tty_audit_buf *tty_audit_buf; 823#endif 824 825 /* 826 * Thread is the potential origin of an oom condition; kill first on 827 * oom 828 */ 829 bool oom_flag_origin; 830 short oom_score_adj; /* OOM kill score adjustment */ 831 short oom_score_adj_min; /* OOM kill score adjustment min value. 832 * Only settable by CAP_SYS_RESOURCE. */ 833 struct mm_struct *oom_mm; /* recorded mm when the thread group got 834 * killed by the oom killer */ 835 836 struct mutex cred_guard_mutex; /* guard against foreign influences on 837 * credential calculations 838 * (notably. ptrace) */ 839}; 840 841/* 842 * Bits in flags field of signal_struct. 843 */ 844#define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */ 845#define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */ 846#define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */ 847#define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */ 848/* 849 * Pending notifications to parent. 850 */ 851#define SIGNAL_CLD_STOPPED 0x00000010 852#define SIGNAL_CLD_CONTINUED 0x00000020 853#define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED) 854 855#define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */ 856 857#define SIGNAL_STOP_MASK (SIGNAL_CLD_MASK | SIGNAL_STOP_STOPPED | \ 858 SIGNAL_STOP_CONTINUED) 859 860static inline void signal_set_stop_flags(struct signal_struct *sig, 861 unsigned int flags) 862{ 863 WARN_ON(sig->flags & (SIGNAL_GROUP_EXIT|SIGNAL_GROUP_COREDUMP)); 864 sig->flags = (sig->flags & ~SIGNAL_STOP_MASK) | flags; 865} 866 867/* If true, all threads except ->group_exit_task have pending SIGKILL */ 868static inline int signal_group_exit(const struct signal_struct *sig) 869{ 870 return (sig->flags & SIGNAL_GROUP_EXIT) || 871 (sig->group_exit_task != NULL); 872} 873 874/* 875 * Some day this will be a full-fledged user tracking system.. 876 */ 877struct user_struct { 878 atomic_t __count; /* reference count */ 879 atomic_t processes; /* How many processes does this user have? */ 880 atomic_t sigpending; /* How many pending signals does this user have? */ 881#ifdef CONFIG_INOTIFY_USER 882 atomic_t inotify_watches; /* How many inotify watches does this user have? */ 883 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */ 884#endif 885#ifdef CONFIG_FANOTIFY 886 atomic_t fanotify_listeners; 887#endif 888#ifdef CONFIG_EPOLL 889 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */ 890#endif 891#ifdef CONFIG_POSIX_MQUEUE 892 /* protected by mq_lock */ 893 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */ 894#endif 895 unsigned long locked_shm; /* How many pages of mlocked shm ? */ 896 unsigned long unix_inflight; /* How many files in flight in unix sockets */ 897 atomic_long_t pipe_bufs; /* how many pages are allocated in pipe buffers */ 898 899#ifdef CONFIG_KEYS 900 struct key *uid_keyring; /* UID specific keyring */ 901 struct key *session_keyring; /* UID's default session keyring */ 902#endif 903 904 /* Hash table maintenance information */ 905 struct hlist_node uidhash_node; 906 kuid_t uid; 907 908#if defined(CONFIG_PERF_EVENTS) || defined(CONFIG_BPF_SYSCALL) 909 atomic_long_t locked_vm; 910#endif 911}; 912 913extern int uids_sysfs_init(void); 914 915extern struct user_struct *find_user(kuid_t); 916 917extern struct user_struct root_user; 918#define INIT_USER (&root_user) 919 920 921struct backing_dev_info; 922struct reclaim_state; 923 924#ifdef CONFIG_SCHED_INFO 925struct sched_info { 926 /* cumulative counters */ 927 unsigned long pcount; /* # of times run on this cpu */ 928 unsigned long long run_delay; /* time spent waiting on a runqueue */ 929 930 /* timestamps */ 931 unsigned long long last_arrival,/* when we last ran on a cpu */ 932 last_queued; /* when we were last queued to run */ 933}; 934#endif /* CONFIG_SCHED_INFO */ 935 936#ifdef CONFIG_TASK_DELAY_ACCT 937struct task_delay_info { 938 spinlock_t lock; 939 unsigned int flags; /* Private per-task flags */ 940 941 /* For each stat XXX, add following, aligned appropriately 942 * 943 * struct timespec XXX_start, XXX_end; 944 * u64 XXX_delay; 945 * u32 XXX_count; 946 * 947 * Atomicity of updates to XXX_delay, XXX_count protected by 948 * single lock above (split into XXX_lock if contention is an issue). 949 */ 950 951 /* 952 * XXX_count is incremented on every XXX operation, the delay 953 * associated with the operation is added to XXX_delay. 954 * XXX_delay contains the accumulated delay time in nanoseconds. 955 */ 956 u64 blkio_start; /* Shared by blkio, swapin */ 957 u64 blkio_delay; /* wait for sync block io completion */ 958 u64 swapin_delay; /* wait for swapin block io completion */ 959 u32 blkio_count; /* total count of the number of sync block */ 960 /* io operations performed */ 961 u32 swapin_count; /* total count of the number of swapin block */ 962 /* io operations performed */ 963 964 u64 freepages_start; 965 u64 freepages_delay; /* wait for memory reclaim */ 966 u32 freepages_count; /* total count of memory reclaim */ 967}; 968#endif /* CONFIG_TASK_DELAY_ACCT */ 969 970static inline int sched_info_on(void) 971{ 972#ifdef CONFIG_SCHEDSTATS 973 return 1; 974#elif defined(CONFIG_TASK_DELAY_ACCT) 975 extern int delayacct_on; 976 return delayacct_on; 977#else 978 return 0; 979#endif 980} 981 982#ifdef CONFIG_SCHEDSTATS 983void force_schedstat_enabled(void); 984#endif 985 986enum cpu_idle_type { 987 CPU_IDLE, 988 CPU_NOT_IDLE, 989 CPU_NEWLY_IDLE, 990 CPU_MAX_IDLE_TYPES 991}; 992 993/* 994 * Integer metrics need fixed point arithmetic, e.g., sched/fair 995 * has a few: load, load_avg, util_avg, freq, and capacity. 996 * 997 * We define a basic fixed point arithmetic range, and then formalize 998 * all these metrics based on that basic range. 999 */ 1000# define SCHED_FIXEDPOINT_SHIFT 10 1001# define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT) 1002 1003/* 1004 * Increase resolution of cpu_capacity calculations 1005 */ 1006#define SCHED_CAPACITY_SHIFT SCHED_FIXEDPOINT_SHIFT 1007#define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT) 1008 1009/* 1010 * Wake-queues are lists of tasks with a pending wakeup, whose 1011 * callers have already marked the task as woken internally, 1012 * and can thus carry on. A common use case is being able to 1013 * do the wakeups once the corresponding user lock as been 1014 * released. 1015 * 1016 * We hold reference to each task in the list across the wakeup, 1017 * thus guaranteeing that the memory is still valid by the time 1018 * the actual wakeups are performed in wake_up_q(). 1019 * 1020 * One per task suffices, because there's never a need for a task to be 1021 * in two wake queues simultaneously; it is forbidden to abandon a task 1022 * in a wake queue (a call to wake_up_q() _must_ follow), so if a task is 1023 * already in a wake queue, the wakeup will happen soon and the second 1024 * waker can just skip it. 1025 * 1026 * The DEFINE_WAKE_Q macro declares and initializes the list head. 1027 * wake_up_q() does NOT reinitialize the list; it's expected to be 1028 * called near the end of a function, where the fact that the queue is 1029 * not used again will be easy to see by inspection. 1030 * 1031 * Note that this can cause spurious wakeups. schedule() callers 1032 * must ensure the call is done inside a loop, confirming that the 1033 * wakeup condition has in fact occurred. 1034 */ 1035struct wake_q_node { 1036 struct wake_q_node *next; 1037}; 1038 1039struct wake_q_head { 1040 struct wake_q_node *first; 1041 struct wake_q_node **lastp; 1042}; 1043 1044#define WAKE_Q_TAIL ((struct wake_q_node *) 0x01) 1045 1046#define DEFINE_WAKE_Q(name) \ 1047 struct wake_q_head name = { WAKE_Q_TAIL, &name.first } 1048 1049extern void wake_q_add(struct wake_q_head *head, 1050 struct task_struct *task); 1051extern void wake_up_q(struct wake_q_head *head); 1052 1053/* 1054 * sched-domains (multiprocessor balancing) declarations: 1055 */ 1056#ifdef CONFIG_SMP 1057#define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */ 1058#define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */ 1059#define SD_BALANCE_EXEC 0x0004 /* Balance on exec */ 1060#define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */ 1061#define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */ 1062#define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */ 1063#define SD_ASYM_CPUCAPACITY 0x0040 /* Groups have different max cpu capacities */ 1064#define SD_SHARE_CPUCAPACITY 0x0080 /* Domain members share cpu capacity */ 1065#define SD_SHARE_POWERDOMAIN 0x0100 /* Domain members share power domain */ 1066#define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */ 1067#define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */ 1068#define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */ 1069#define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */ 1070#define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */ 1071#define SD_NUMA 0x4000 /* cross-node balancing */ 1072 1073#ifdef CONFIG_SCHED_SMT 1074static inline int cpu_smt_flags(void) 1075{ 1076 return SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES; 1077} 1078#endif 1079 1080#ifdef CONFIG_SCHED_MC 1081static inline int cpu_core_flags(void) 1082{ 1083 return SD_SHARE_PKG_RESOURCES; 1084} 1085#endif 1086 1087#ifdef CONFIG_NUMA 1088static inline int cpu_numa_flags(void) 1089{ 1090 return SD_NUMA; 1091} 1092#endif 1093 1094extern int arch_asym_cpu_priority(int cpu); 1095 1096struct sched_domain_attr { 1097 int relax_domain_level; 1098}; 1099 1100#define SD_ATTR_INIT (struct sched_domain_attr) { \ 1101 .relax_domain_level = -1, \ 1102} 1103 1104extern int sched_domain_level_max; 1105 1106struct sched_group; 1107 1108struct sched_domain_shared { 1109 atomic_t ref; 1110 atomic_t nr_busy_cpus; 1111 int has_idle_cores; 1112}; 1113 1114struct sched_domain { 1115 /* These fields must be setup */ 1116 struct sched_domain *parent; /* top domain must be null terminated */ 1117 struct sched_domain *child; /* bottom domain must be null terminated */ 1118 struct sched_group *groups; /* the balancing groups of the domain */ 1119 unsigned long min_interval; /* Minimum balance interval ms */ 1120 unsigned long max_interval; /* Maximum balance interval ms */ 1121 unsigned int busy_factor; /* less balancing by factor if busy */ 1122 unsigned int imbalance_pct; /* No balance until over watermark */ 1123 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */ 1124 unsigned int busy_idx; 1125 unsigned int idle_idx; 1126 unsigned int newidle_idx; 1127 unsigned int wake_idx; 1128 unsigned int forkexec_idx; 1129 unsigned int smt_gain; 1130 1131 int nohz_idle; /* NOHZ IDLE status */ 1132 int flags; /* See SD_* */ 1133 int level; 1134 1135 /* Runtime fields. */ 1136 unsigned long last_balance; /* init to jiffies. units in jiffies */ 1137 unsigned int balance_interval; /* initialise to 1. units in ms. */ 1138 unsigned int nr_balance_failed; /* initialise to 0 */ 1139 1140 /* idle_balance() stats */ 1141 u64 max_newidle_lb_cost; 1142 unsigned long next_decay_max_lb_cost; 1143 1144 u64 avg_scan_cost; /* select_idle_sibling */ 1145 1146#ifdef CONFIG_SCHEDSTATS 1147 /* load_balance() stats */ 1148 unsigned int lb_count[CPU_MAX_IDLE_TYPES]; 1149 unsigned int lb_failed[CPU_MAX_IDLE_TYPES]; 1150 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES]; 1151 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES]; 1152 unsigned int lb_gained[CPU_MAX_IDLE_TYPES]; 1153 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES]; 1154 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES]; 1155 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES]; 1156 1157 /* Active load balancing */ 1158 unsigned int alb_count; 1159 unsigned int alb_failed; 1160 unsigned int alb_pushed; 1161 1162 /* SD_BALANCE_EXEC stats */ 1163 unsigned int sbe_count; 1164 unsigned int sbe_balanced; 1165 unsigned int sbe_pushed; 1166 1167 /* SD_BALANCE_FORK stats */ 1168 unsigned int sbf_count; 1169 unsigned int sbf_balanced; 1170 unsigned int sbf_pushed; 1171 1172 /* try_to_wake_up() stats */ 1173 unsigned int ttwu_wake_remote; 1174 unsigned int ttwu_move_affine; 1175 unsigned int ttwu_move_balance; 1176#endif 1177#ifdef CONFIG_SCHED_DEBUG 1178 char *name; 1179#endif 1180 union { 1181 void *private; /* used during construction */ 1182 struct rcu_head rcu; /* used during destruction */ 1183 }; 1184 struct sched_domain_shared *shared; 1185 1186 unsigned int span_weight; 1187 /* 1188 * Span of all CPUs in this domain. 1189 * 1190 * NOTE: this field is variable length. (Allocated dynamically 1191 * by attaching extra space to the end of the structure, 1192 * depending on how many CPUs the kernel has booted up with) 1193 */ 1194 unsigned long span[0]; 1195}; 1196 1197static inline struct cpumask *sched_domain_span(struct sched_domain *sd) 1198{ 1199 return to_cpumask(sd->span); 1200} 1201 1202extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 1203 struct sched_domain_attr *dattr_new); 1204 1205/* Allocate an array of sched domains, for partition_sched_domains(). */ 1206cpumask_var_t *alloc_sched_domains(unsigned int ndoms); 1207void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms); 1208 1209bool cpus_share_cache(int this_cpu, int that_cpu); 1210 1211typedef const struct cpumask *(*sched_domain_mask_f)(int cpu); 1212typedef int (*sched_domain_flags_f)(void); 1213 1214#define SDTL_OVERLAP 0x01 1215 1216struct sd_data { 1217 struct sched_domain **__percpu sd; 1218 struct sched_domain_shared **__percpu sds; 1219 struct sched_group **__percpu sg; 1220 struct sched_group_capacity **__percpu sgc; 1221}; 1222 1223struct sched_domain_topology_level { 1224 sched_domain_mask_f mask; 1225 sched_domain_flags_f sd_flags; 1226 int flags; 1227 int numa_level; 1228 struct sd_data data; 1229#ifdef CONFIG_SCHED_DEBUG 1230 char *name; 1231#endif 1232}; 1233 1234extern void set_sched_topology(struct sched_domain_topology_level *tl); 1235extern void wake_up_if_idle(int cpu); 1236 1237#ifdef CONFIG_SCHED_DEBUG 1238# define SD_INIT_NAME(type) .name = #type 1239#else 1240# define SD_INIT_NAME(type) 1241#endif 1242 1243#else /* CONFIG_SMP */ 1244 1245struct sched_domain_attr; 1246 1247static inline void 1248partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 1249 struct sched_domain_attr *dattr_new) 1250{ 1251} 1252 1253static inline bool cpus_share_cache(int this_cpu, int that_cpu) 1254{ 1255 return true; 1256} 1257 1258#endif /* !CONFIG_SMP */ 1259 1260 1261struct io_context; /* See blkdev.h */ 1262 1263 1264#ifdef ARCH_HAS_PREFETCH_SWITCH_STACK 1265extern void prefetch_stack(struct task_struct *t); 1266#else 1267static inline void prefetch_stack(struct task_struct *t) { } 1268#endif 1269 1270struct audit_context; /* See audit.c */ 1271struct mempolicy; 1272struct pipe_inode_info; 1273struct uts_namespace; 1274 1275struct load_weight { 1276 unsigned long weight; 1277 u32 inv_weight; 1278}; 1279 1280/* 1281 * The load_avg/util_avg accumulates an infinite geometric series 1282 * (see __update_load_avg() in kernel/sched/fair.c). 1283 * 1284 * [load_avg definition] 1285 * 1286 * load_avg = runnable% * scale_load_down(load) 1287 * 1288 * where runnable% is the time ratio that a sched_entity is runnable. 1289 * For cfs_rq, it is the aggregated load_avg of all runnable and 1290 * blocked sched_entities. 1291 * 1292 * load_avg may also take frequency scaling into account: 1293 * 1294 * load_avg = runnable% * scale_load_down(load) * freq% 1295 * 1296 * where freq% is the CPU frequency normalized to the highest frequency. 1297 * 1298 * [util_avg definition] 1299 * 1300 * util_avg = running% * SCHED_CAPACITY_SCALE 1301 * 1302 * where running% is the time ratio that a sched_entity is running on 1303 * a CPU. For cfs_rq, it is the aggregated util_avg of all runnable 1304 * and blocked sched_entities. 1305 * 1306 * util_avg may also factor frequency scaling and CPU capacity scaling: 1307 * 1308 * util_avg = running% * SCHED_CAPACITY_SCALE * freq% * capacity% 1309 * 1310 * where freq% is the same as above, and capacity% is the CPU capacity 1311 * normalized to the greatest capacity (due to uarch differences, etc). 1312 * 1313 * N.B., the above ratios (runnable%, running%, freq%, and capacity%) 1314 * themselves are in the range of [0, 1]. To do fixed point arithmetics, 1315 * we therefore scale them to as large a range as necessary. This is for 1316 * example reflected by util_avg's SCHED_CAPACITY_SCALE. 1317 * 1318 * [Overflow issue] 1319 * 1320 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities 1321 * with the highest load (=88761), always runnable on a single cfs_rq, 1322 * and should not overflow as the number already hits PID_MAX_LIMIT. 1323 * 1324 * For all other cases (including 32-bit kernels), struct load_weight's 1325 * weight will overflow first before we do, because: 1326 * 1327 * Max(load_avg) <= Max(load.weight) 1328 * 1329 * Then it is the load_weight's responsibility to consider overflow 1330 * issues. 1331 */ 1332struct sched_avg { 1333 u64 last_update_time, load_sum; 1334 u32 util_sum, period_contrib; 1335 unsigned long load_avg, util_avg; 1336}; 1337 1338#ifdef CONFIG_SCHEDSTATS 1339struct sched_statistics { 1340 u64 wait_start; 1341 u64 wait_max; 1342 u64 wait_count; 1343 u64 wait_sum; 1344 u64 iowait_count; 1345 u64 iowait_sum; 1346 1347 u64 sleep_start; 1348 u64 sleep_max; 1349 s64 sum_sleep_runtime; 1350 1351 u64 block_start; 1352 u64 block_max; 1353 u64 exec_max; 1354 u64 slice_max; 1355 1356 u64 nr_migrations_cold; 1357 u64 nr_failed_migrations_affine; 1358 u64 nr_failed_migrations_running; 1359 u64 nr_failed_migrations_hot; 1360 u64 nr_forced_migrations; 1361 1362 u64 nr_wakeups; 1363 u64 nr_wakeups_sync; 1364 u64 nr_wakeups_migrate; 1365 u64 nr_wakeups_local; 1366 u64 nr_wakeups_remote; 1367 u64 nr_wakeups_affine; 1368 u64 nr_wakeups_affine_attempts; 1369 u64 nr_wakeups_passive; 1370 u64 nr_wakeups_idle; 1371}; 1372#endif 1373 1374struct sched_entity { 1375 struct load_weight load; /* for load-balancing */ 1376 struct rb_node run_node; 1377 struct list_head group_node; 1378 unsigned int on_rq; 1379 1380 u64 exec_start; 1381 u64 sum_exec_runtime; 1382 u64 vruntime; 1383 u64 prev_sum_exec_runtime; 1384 1385 u64 nr_migrations; 1386 1387#ifdef CONFIG_SCHEDSTATS 1388 struct sched_statistics statistics; 1389#endif 1390 1391#ifdef CONFIG_FAIR_GROUP_SCHED 1392 int depth; 1393 struct sched_entity *parent; 1394 /* rq on which this entity is (to be) queued: */ 1395 struct cfs_rq *cfs_rq; 1396 /* rq "owned" by this entity/group: */ 1397 struct cfs_rq *my_q; 1398#endif 1399 1400#ifdef CONFIG_SMP 1401 /* 1402 * Per entity load average tracking. 1403 * 1404 * Put into separate cache line so it does not 1405 * collide with read-mostly values above. 1406 */ 1407 struct sched_avg avg ____cacheline_aligned_in_smp; 1408#endif 1409}; 1410 1411struct sched_rt_entity { 1412 struct list_head run_list; 1413 unsigned long timeout; 1414 unsigned long watchdog_stamp; 1415 unsigned int time_slice; 1416 unsigned short on_rq; 1417 unsigned short on_list; 1418 1419 struct sched_rt_entity *back; 1420#ifdef CONFIG_RT_GROUP_SCHED 1421 struct sched_rt_entity *parent; 1422 /* rq on which this entity is (to be) queued: */ 1423 struct rt_rq *rt_rq; 1424 /* rq "owned" by this entity/group: */ 1425 struct rt_rq *my_q; 1426#endif 1427}; 1428 1429struct sched_dl_entity { 1430 struct rb_node rb_node; 1431 1432 /* 1433 * Original scheduling parameters. Copied here from sched_attr 1434 * during sched_setattr(), they will remain the same until 1435 * the next sched_setattr(). 1436 */ 1437 u64 dl_runtime; /* maximum runtime for each instance */ 1438 u64 dl_deadline; /* relative deadline of each instance */ 1439 u64 dl_period; /* separation of two instances (period) */ 1440 u64 dl_bw; /* dl_runtime / dl_deadline */ 1441 1442 /* 1443 * Actual scheduling parameters. Initialized with the values above, 1444 * they are continously updated during task execution. Note that 1445 * the remaining runtime could be < 0 in case we are in overrun. 1446 */ 1447 s64 runtime; /* remaining runtime for this instance */ 1448 u64 deadline; /* absolute deadline for this instance */ 1449 unsigned int flags; /* specifying the scheduler behaviour */ 1450 1451 /* 1452 * Some bool flags: 1453 * 1454 * @dl_throttled tells if we exhausted the runtime. If so, the 1455 * task has to wait for a replenishment to be performed at the 1456 * next firing of dl_timer. 1457 * 1458 * @dl_boosted tells if we are boosted due to DI. If so we are 1459 * outside bandwidth enforcement mechanism (but only until we 1460 * exit the critical section); 1461 * 1462 * @dl_yielded tells if task gave up the cpu before consuming 1463 * all its available runtime during the last job. 1464 */ 1465 int dl_throttled, dl_boosted, dl_yielded; 1466 1467 /* 1468 * Bandwidth enforcement timer. Each -deadline task has its 1469 * own bandwidth to be enforced, thus we need one timer per task. 1470 */ 1471 struct hrtimer dl_timer; 1472}; 1473 1474union rcu_special { 1475 struct { 1476 u8 blocked; 1477 u8 need_qs; 1478 u8 exp_need_qs; 1479 u8 pad; /* Otherwise the compiler can store garbage here. */ 1480 } b; /* Bits. */ 1481 u32 s; /* Set of bits. */ 1482}; 1483struct rcu_node; 1484 1485enum perf_event_task_context { 1486 perf_invalid_context = -1, 1487 perf_hw_context = 0, 1488 perf_sw_context, 1489 perf_nr_task_contexts, 1490}; 1491 1492/* Track pages that require TLB flushes */ 1493struct tlbflush_unmap_batch { 1494 /* 1495 * Each bit set is a CPU that potentially has a TLB entry for one of 1496 * the PFNs being flushed. See set_tlb_ubc_flush_pending(). 1497 */ 1498 struct cpumask cpumask; 1499 1500 /* True if any bit in cpumask is set */ 1501 bool flush_required; 1502 1503 /* 1504 * If true then the PTE was dirty when unmapped. The entry must be 1505 * flushed before IO is initiated or a stale TLB entry potentially 1506 * allows an update without redirtying the page. 1507 */ 1508 bool writable; 1509}; 1510 1511struct task_struct { 1512#ifdef CONFIG_THREAD_INFO_IN_TASK 1513 /* 1514 * For reasons of header soup (see current_thread_info()), this 1515 * must be the first element of task_struct. 1516 */ 1517 struct thread_info thread_info; 1518#endif 1519 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */ 1520 void *stack; 1521 atomic_t usage; 1522 unsigned int flags; /* per process flags, defined below */ 1523 unsigned int ptrace; 1524 1525#ifdef CONFIG_SMP 1526 struct llist_node wake_entry; 1527 int on_cpu; 1528#ifdef CONFIG_THREAD_INFO_IN_TASK 1529 unsigned int cpu; /* current CPU */ 1530#endif 1531 unsigned int wakee_flips; 1532 unsigned long wakee_flip_decay_ts; 1533 struct task_struct *last_wakee; 1534 1535 int wake_cpu; 1536#endif 1537 int on_rq; 1538 1539 int prio, static_prio, normal_prio; 1540 unsigned int rt_priority; 1541 const struct sched_class *sched_class; 1542 struct sched_entity se; 1543 struct sched_rt_entity rt; 1544#ifdef CONFIG_CGROUP_SCHED 1545 struct task_group *sched_task_group; 1546#endif 1547 struct sched_dl_entity dl; 1548 1549#ifdef CONFIG_PREEMPT_NOTIFIERS 1550 /* list of struct preempt_notifier: */ 1551 struct hlist_head preempt_notifiers; 1552#endif 1553 1554#ifdef CONFIG_BLK_DEV_IO_TRACE 1555 unsigned int btrace_seq; 1556#endif 1557 1558 unsigned int policy; 1559 int nr_cpus_allowed; 1560 cpumask_t cpus_allowed; 1561 1562#ifdef CONFIG_PREEMPT_RCU 1563 int rcu_read_lock_nesting; 1564 union rcu_special rcu_read_unlock_special; 1565 struct list_head rcu_node_entry; 1566 struct rcu_node *rcu_blocked_node; 1567#endif /* #ifdef CONFIG_PREEMPT_RCU */ 1568#ifdef CONFIG_TASKS_RCU 1569 unsigned long rcu_tasks_nvcsw; 1570 bool rcu_tasks_holdout; 1571 struct list_head rcu_tasks_holdout_list; 1572 int rcu_tasks_idle_cpu; 1573#endif /* #ifdef CONFIG_TASKS_RCU */ 1574 1575#ifdef CONFIG_SCHED_INFO 1576 struct sched_info sched_info; 1577#endif 1578 1579 struct list_head tasks; 1580#ifdef CONFIG_SMP 1581 struct plist_node pushable_tasks; 1582 struct rb_node pushable_dl_tasks; 1583#endif 1584 1585 struct mm_struct *mm, *active_mm; 1586 /* per-thread vma caching */ 1587 u32 vmacache_seqnum; 1588 struct vm_area_struct *vmacache[VMACACHE_SIZE]; 1589#if defined(SPLIT_RSS_COUNTING) 1590 struct task_rss_stat rss_stat; 1591#endif 1592/* task state */ 1593 int exit_state; 1594 int exit_code, exit_signal; 1595 int pdeath_signal; /* The signal sent when the parent dies */ 1596 unsigned long jobctl; /* JOBCTL_*, siglock protected */ 1597 1598 /* Used for emulating ABI behavior of previous Linux versions */ 1599 unsigned int personality; 1600 1601 /* scheduler bits, serialized by scheduler locks */ 1602 unsigned sched_reset_on_fork:1; 1603 unsigned sched_contributes_to_load:1; 1604 unsigned sched_migrated:1; 1605 unsigned sched_remote_wakeup:1; 1606 unsigned :0; /* force alignment to the next boundary */ 1607 1608 /* unserialized, strictly 'current' */ 1609 unsigned in_execve:1; /* bit to tell LSMs we're in execve */ 1610 unsigned in_iowait:1; 1611#if !defined(TIF_RESTORE_SIGMASK) 1612 unsigned restore_sigmask:1; 1613#endif 1614#ifdef CONFIG_MEMCG 1615 unsigned memcg_may_oom:1; 1616#ifndef CONFIG_SLOB 1617 unsigned memcg_kmem_skip_account:1; 1618#endif 1619#endif 1620#ifdef CONFIG_COMPAT_BRK 1621 unsigned brk_randomized:1; 1622#endif 1623 1624 unsigned long atomic_flags; /* Flags needing atomic access. */ 1625 1626 struct restart_block restart_block; 1627 1628 pid_t pid; 1629 pid_t tgid; 1630 1631#ifdef CONFIG_CC_STACKPROTECTOR 1632 /* Canary value for the -fstack-protector gcc feature */ 1633 unsigned long stack_canary; 1634#endif 1635 /* 1636 * pointers to (original) parent process, youngest child, younger sibling, 1637 * older sibling, respectively. (p->father can be replaced with 1638 * p->real_parent->pid) 1639 */ 1640 struct task_struct __rcu *real_parent; /* real parent process */ 1641 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */ 1642 /* 1643 * children/sibling forms the list of my natural children 1644 */ 1645 struct list_head children; /* list of my children */ 1646 struct list_head sibling; /* linkage in my parent's children list */ 1647 struct task_struct *group_leader; /* threadgroup leader */ 1648 1649 /* 1650 * ptraced is the list of tasks this task is using ptrace on. 1651 * This includes both natural children and PTRACE_ATTACH targets. 1652 * p->ptrace_entry is p's link on the p->parent->ptraced list. 1653 */ 1654 struct list_head ptraced; 1655 struct list_head ptrace_entry; 1656 1657 /* PID/PID hash table linkage. */ 1658 struct pid_link pids[PIDTYPE_MAX]; 1659 struct list_head thread_group; 1660 struct list_head thread_node; 1661 1662 struct completion *vfork_done; /* for vfork() */ 1663 int __user *set_child_tid; /* CLONE_CHILD_SETTID */ 1664 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */ 1665 1666 cputime_t utime, stime; 1667#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 1668 cputime_t utimescaled, stimescaled; 1669#endif 1670 cputime_t gtime; 1671 struct prev_cputime prev_cputime; 1672#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 1673 seqcount_t vtime_seqcount; 1674 unsigned long long vtime_snap; 1675 enum { 1676 /* Task is sleeping or running in a CPU with VTIME inactive */ 1677 VTIME_INACTIVE = 0, 1678 /* Task runs in userspace in a CPU with VTIME active */ 1679 VTIME_USER, 1680 /* Task runs in kernelspace in a CPU with VTIME active */ 1681 VTIME_SYS, 1682 } vtime_snap_whence; 1683#endif 1684 1685#ifdef CONFIG_NO_HZ_FULL 1686 atomic_t tick_dep_mask; 1687#endif 1688 unsigned long nvcsw, nivcsw; /* context switch counts */ 1689 u64 start_time; /* monotonic time in nsec */ 1690 u64 real_start_time; /* boot based time in nsec */ 1691/* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */ 1692 unsigned long min_flt, maj_flt; 1693 1694 struct task_cputime cputime_expires; 1695 struct list_head cpu_timers[3]; 1696 1697/* process credentials */ 1698 const struct cred __rcu *ptracer_cred; /* Tracer's credentials at attach */ 1699 const struct cred __rcu *real_cred; /* objective and real subjective task 1700 * credentials (COW) */ 1701 const struct cred __rcu *cred; /* effective (overridable) subjective task 1702 * credentials (COW) */ 1703 char comm[TASK_COMM_LEN]; /* executable name excluding path 1704 - access with [gs]et_task_comm (which lock 1705 it with task_lock()) 1706 - initialized normally by setup_new_exec */ 1707/* file system info */ 1708 struct nameidata *nameidata; 1709#ifdef CONFIG_SYSVIPC 1710/* ipc stuff */ 1711 struct sysv_sem sysvsem; 1712 struct sysv_shm sysvshm; 1713#endif 1714#ifdef CONFIG_DETECT_HUNG_TASK 1715/* hung task detection */ 1716 unsigned long last_switch_count; 1717#endif 1718/* filesystem information */ 1719 struct fs_struct *fs; 1720/* open file information */ 1721 struct files_struct *files; 1722/* namespaces */ 1723 struct nsproxy *nsproxy; 1724/* signal handlers */ 1725 struct signal_struct *signal; 1726 struct sighand_struct *sighand; 1727 1728 sigset_t blocked, real_blocked; 1729 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */ 1730 struct sigpending pending; 1731 1732 unsigned long sas_ss_sp; 1733 size_t sas_ss_size; 1734 unsigned sas_ss_flags; 1735 1736 struct callback_head *task_works; 1737 1738 struct audit_context *audit_context; 1739#ifdef CONFIG_AUDITSYSCALL 1740 kuid_t loginuid; 1741 unsigned int sessionid; 1742#endif 1743 struct seccomp seccomp; 1744 1745/* Thread group tracking */ 1746 u32 parent_exec_id; 1747 u32 self_exec_id; 1748/* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, 1749 * mempolicy */ 1750 spinlock_t alloc_lock; 1751 1752 /* Protection of the PI data structures: */ 1753 raw_spinlock_t pi_lock; 1754 1755 struct wake_q_node wake_q; 1756 1757#ifdef CONFIG_RT_MUTEXES 1758 /* PI waiters blocked on a rt_mutex held by this task */ 1759 struct rb_root pi_waiters; 1760 struct rb_node *pi_waiters_leftmost; 1761 /* Deadlock detection and priority inheritance handling */ 1762 struct rt_mutex_waiter *pi_blocked_on; 1763#endif 1764 1765#ifdef CONFIG_DEBUG_MUTEXES 1766 /* mutex deadlock detection */ 1767 struct mutex_waiter *blocked_on; 1768#endif 1769#ifdef CONFIG_TRACE_IRQFLAGS 1770 unsigned int irq_events; 1771 unsigned long hardirq_enable_ip; 1772 unsigned long hardirq_disable_ip; 1773 unsigned int hardirq_enable_event; 1774 unsigned int hardirq_disable_event; 1775 int hardirqs_enabled; 1776 int hardirq_context; 1777 unsigned long softirq_disable_ip; 1778 unsigned long softirq_enable_ip; 1779 unsigned int softirq_disable_event; 1780 unsigned int softirq_enable_event; 1781 int softirqs_enabled; 1782 int softirq_context; 1783#endif 1784#ifdef CONFIG_LOCKDEP 1785# define MAX_LOCK_DEPTH 48UL 1786 u64 curr_chain_key; 1787 int lockdep_depth; 1788 unsigned int lockdep_recursion; 1789 struct held_lock held_locks[MAX_LOCK_DEPTH]; 1790 gfp_t lockdep_reclaim_gfp; 1791#endif 1792#ifdef CONFIG_UBSAN 1793 unsigned int in_ubsan; 1794#endif 1795 1796/* journalling filesystem info */ 1797 void *journal_info; 1798 1799/* stacked block device info */ 1800 struct bio_list *bio_list; 1801 1802#ifdef CONFIG_BLOCK 1803/* stack plugging */ 1804 struct blk_plug *plug; 1805#endif 1806 1807/* VM state */ 1808 struct reclaim_state *reclaim_state; 1809 1810 struct backing_dev_info *backing_dev_info; 1811 1812 struct io_context *io_context; 1813 1814 unsigned long ptrace_message; 1815 siginfo_t *last_siginfo; /* For ptrace use. */ 1816 struct task_io_accounting ioac; 1817#if defined(CONFIG_TASK_XACCT) 1818 u64 acct_rss_mem1; /* accumulated rss usage */ 1819 u64 acct_vm_mem1; /* accumulated virtual memory usage */ 1820 cputime_t acct_timexpd; /* stime + utime since last update */ 1821#endif 1822#ifdef CONFIG_CPUSETS 1823 nodemask_t mems_allowed; /* Protected by alloc_lock */ 1824 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */ 1825 int cpuset_mem_spread_rotor; 1826 int cpuset_slab_spread_rotor; 1827#endif 1828#ifdef CONFIG_CGROUPS 1829 /* Control Group info protected by css_set_lock */ 1830 struct css_set __rcu *cgroups; 1831 /* cg_list protected by css_set_lock and tsk->alloc_lock */ 1832 struct list_head cg_list; 1833#endif 1834#ifdef CONFIG_INTEL_RDT_A 1835 int closid; 1836#endif 1837#ifdef CONFIG_FUTEX 1838 struct robust_list_head __user *robust_list; 1839#ifdef CONFIG_COMPAT 1840 struct compat_robust_list_head __user *compat_robust_list; 1841#endif 1842 struct list_head pi_state_list; 1843 struct futex_pi_state *pi_state_cache; 1844#endif 1845#ifdef CONFIG_PERF_EVENTS 1846 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts]; 1847 struct mutex perf_event_mutex; 1848 struct list_head perf_event_list; 1849#endif 1850#ifdef CONFIG_DEBUG_PREEMPT 1851 unsigned long preempt_disable_ip; 1852#endif 1853#ifdef CONFIG_NUMA 1854 struct mempolicy *mempolicy; /* Protected by alloc_lock */ 1855 short il_next; 1856 short pref_node_fork; 1857#endif 1858#ifdef CONFIG_NUMA_BALANCING 1859 int numa_scan_seq; 1860 unsigned int numa_scan_period; 1861 unsigned int numa_scan_period_max; 1862 int numa_preferred_nid; 1863 unsigned long numa_migrate_retry; 1864 u64 node_stamp; /* migration stamp */ 1865 u64 last_task_numa_placement; 1866 u64 last_sum_exec_runtime; 1867 struct callback_head numa_work; 1868 1869 struct list_head numa_entry; 1870 struct numa_group *numa_group; 1871 1872 /* 1873 * numa_faults is an array split into four regions: 1874 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer 1875 * in this precise order. 1876 * 1877 * faults_memory: Exponential decaying average of faults on a per-node 1878 * basis. Scheduling placement decisions are made based on these 1879 * counts. The values remain static for the duration of a PTE scan. 1880 * faults_cpu: Track the nodes the process was running on when a NUMA 1881 * hinting fault was incurred. 1882 * faults_memory_buffer and faults_cpu_buffer: Record faults per node 1883 * during the current scan window. When the scan completes, the counts 1884 * in faults_memory and faults_cpu decay and these values are copied. 1885 */ 1886 unsigned long *numa_faults; 1887 unsigned long total_numa_faults; 1888 1889 /* 1890 * numa_faults_locality tracks if faults recorded during the last 1891 * scan window were remote/local or failed to migrate. The task scan 1892 * period is adapted based on the locality of the faults with different 1893 * weights depending on whether they were shared or private faults 1894 */ 1895 unsigned long numa_faults_locality[3]; 1896 1897 unsigned long numa_pages_migrated; 1898#endif /* CONFIG_NUMA_BALANCING */ 1899 1900#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH 1901 struct tlbflush_unmap_batch tlb_ubc; 1902#endif 1903 1904 struct rcu_head rcu; 1905 1906 /* 1907 * cache last used pipe for splice 1908 */ 1909 struct pipe_inode_info *splice_pipe; 1910 1911 struct page_frag task_frag; 1912 1913#ifdef CONFIG_TASK_DELAY_ACCT 1914 struct task_delay_info *delays; 1915#endif 1916#ifdef CONFIG_FAULT_INJECTION 1917 int make_it_fail; 1918#endif 1919 /* 1920 * when (nr_dirtied >= nr_dirtied_pause), it's time to call 1921 * balance_dirty_pages() for some dirty throttling pause 1922 */ 1923 int nr_dirtied; 1924 int nr_dirtied_pause; 1925 unsigned long dirty_paused_when; /* start of a write-and-pause period */ 1926 1927#ifdef CONFIG_LATENCYTOP 1928 int latency_record_count; 1929 struct latency_record latency_record[LT_SAVECOUNT]; 1930#endif 1931 /* 1932 * time slack values; these are used to round up poll() and 1933 * select() etc timeout values. These are in nanoseconds. 1934 */ 1935 u64 timer_slack_ns; 1936 u64 default_timer_slack_ns; 1937 1938#ifdef CONFIG_KASAN 1939 unsigned int kasan_depth; 1940#endif 1941#ifdef CONFIG_FUNCTION_GRAPH_TRACER 1942 /* Index of current stored address in ret_stack */ 1943 int curr_ret_stack; 1944 /* Stack of return addresses for return function tracing */ 1945 struct ftrace_ret_stack *ret_stack; 1946 /* time stamp for last schedule */ 1947 unsigned long long ftrace_timestamp; 1948 /* 1949 * Number of functions that haven't been traced 1950 * because of depth overrun. 1951 */ 1952 atomic_t trace_overrun; 1953 /* Pause for the tracing */ 1954 atomic_t tracing_graph_pause; 1955#endif 1956#ifdef CONFIG_TRACING 1957 /* state flags for use by tracers */ 1958 unsigned long trace; 1959 /* bitmask and counter of trace recursion */ 1960 unsigned long trace_recursion; 1961#endif /* CONFIG_TRACING */ 1962#ifdef CONFIG_KCOV 1963 /* Coverage collection mode enabled for this task (0 if disabled). */ 1964 enum kcov_mode kcov_mode; 1965 /* Size of the kcov_area. */ 1966 unsigned kcov_size; 1967 /* Buffer for coverage collection. */ 1968 void *kcov_area; 1969 /* kcov desciptor wired with this task or NULL. */ 1970 struct kcov *kcov; 1971#endif 1972#ifdef CONFIG_MEMCG 1973 struct mem_cgroup *memcg_in_oom; 1974 gfp_t memcg_oom_gfp_mask; 1975 int memcg_oom_order; 1976 1977 /* number of pages to reclaim on returning to userland */ 1978 unsigned int memcg_nr_pages_over_high; 1979#endif 1980#ifdef CONFIG_UPROBES 1981 struct uprobe_task *utask; 1982#endif 1983#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE) 1984 unsigned int sequential_io; 1985 unsigned int sequential_io_avg; 1986#endif 1987#ifdef CONFIG_DEBUG_ATOMIC_SLEEP 1988 unsigned long task_state_change; 1989#endif 1990 int pagefault_disabled; 1991#ifdef CONFIG_MMU 1992 struct task_struct *oom_reaper_list; 1993#endif 1994#ifdef CONFIG_VMAP_STACK 1995 struct vm_struct *stack_vm_area; 1996#endif 1997#ifdef CONFIG_THREAD_INFO_IN_TASK 1998 /* A live task holds one reference. */ 1999 atomic_t stack_refcount; 2000#endif 2001/* CPU-specific state of this task */ 2002 struct thread_struct thread; 2003/* 2004 * WARNING: on x86, 'thread_struct' contains a variable-sized 2005 * structure. It *MUST* be at the end of 'task_struct'. 2006 * 2007 * Do not put anything below here! 2008 */ 2009}; 2010 2011#ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT 2012extern int arch_task_struct_size __read_mostly; 2013#else 2014# define arch_task_struct_size (sizeof(struct task_struct)) 2015#endif 2016 2017#ifdef CONFIG_VMAP_STACK 2018static inline struct vm_struct *task_stack_vm_area(const struct task_struct *t) 2019{ 2020 return t->stack_vm_area; 2021} 2022#else 2023static inline struct vm_struct *task_stack_vm_area(const struct task_struct *t) 2024{ 2025 return NULL; 2026} 2027#endif 2028 2029/* Future-safe accessor for struct task_struct's cpus_allowed. */ 2030#define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed) 2031 2032static inline int tsk_nr_cpus_allowed(struct task_struct *p) 2033{ 2034 return p->nr_cpus_allowed; 2035} 2036 2037#define TNF_MIGRATED 0x01 2038#define TNF_NO_GROUP 0x02 2039#define TNF_SHARED 0x04 2040#define TNF_FAULT_LOCAL 0x08 2041#define TNF_MIGRATE_FAIL 0x10 2042 2043static inline bool in_vfork(struct task_struct *tsk) 2044{ 2045 bool ret; 2046 2047 /* 2048 * need RCU to access ->real_parent if CLONE_VM was used along with 2049 * CLONE_PARENT. 2050 * 2051 * We check real_parent->mm == tsk->mm because CLONE_VFORK does not 2052 * imply CLONE_VM 2053 * 2054 * CLONE_VFORK can be used with CLONE_PARENT/CLONE_THREAD and thus 2055 * ->real_parent is not necessarily the task doing vfork(), so in 2056 * theory we can't rely on task_lock() if we want to dereference it. 2057 * 2058 * And in this case we can't trust the real_parent->mm == tsk->mm 2059 * check, it can be false negative. But we do not care, if init or 2060 * another oom-unkillable task does this it should blame itself. 2061 */ 2062 rcu_read_lock(); 2063 ret = tsk->vfork_done && tsk->real_parent->mm == tsk->mm; 2064 rcu_read_unlock(); 2065 2066 return ret; 2067} 2068 2069#ifdef CONFIG_NUMA_BALANCING 2070extern void task_numa_fault(int last_node, int node, int pages, int flags); 2071extern pid_t task_numa_group_id(struct task_struct *p); 2072extern void set_numabalancing_state(bool enabled); 2073extern void task_numa_free(struct task_struct *p); 2074extern bool should_numa_migrate_memory(struct task_struct *p, struct page *page, 2075 int src_nid, int dst_cpu); 2076#else 2077static inline void task_numa_fault(int last_node, int node, int pages, 2078 int flags) 2079{ 2080} 2081static inline pid_t task_numa_group_id(struct task_struct *p) 2082{ 2083 return 0; 2084} 2085static inline void set_numabalancing_state(bool enabled) 2086{ 2087} 2088static inline void task_numa_free(struct task_struct *p) 2089{ 2090} 2091static inline bool should_numa_migrate_memory(struct task_struct *p, 2092 struct page *page, int src_nid, int dst_cpu) 2093{ 2094 return true; 2095} 2096#endif 2097 2098static inline struct pid *task_pid(struct task_struct *task) 2099{ 2100 return task->pids[PIDTYPE_PID].pid; 2101} 2102 2103static inline struct pid *task_tgid(struct task_struct *task) 2104{ 2105 return task->group_leader->pids[PIDTYPE_PID].pid; 2106} 2107 2108/* 2109 * Without tasklist or rcu lock it is not safe to dereference 2110 * the result of task_pgrp/task_session even if task == current, 2111 * we can race with another thread doing sys_setsid/sys_setpgid. 2112 */ 2113static inline struct pid *task_pgrp(struct task_struct *task) 2114{ 2115 return task->group_leader->pids[PIDTYPE_PGID].pid; 2116} 2117 2118static inline struct pid *task_session(struct task_struct *task) 2119{ 2120 return task->group_leader->pids[PIDTYPE_SID].pid; 2121} 2122 2123struct pid_namespace; 2124 2125/* 2126 * the helpers to get the task's different pids as they are seen 2127 * from various namespaces 2128 * 2129 * task_xid_nr() : global id, i.e. the id seen from the init namespace; 2130 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of 2131 * current. 2132 * task_xid_nr_ns() : id seen from the ns specified; 2133 * 2134 * set_task_vxid() : assigns a virtual id to a task; 2135 * 2136 * see also pid_nr() etc in include/linux/pid.h 2137 */ 2138pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, 2139 struct pid_namespace *ns); 2140 2141static inline pid_t task_pid_nr(struct task_struct *tsk) 2142{ 2143 return tsk->pid; 2144} 2145 2146static inline pid_t task_pid_nr_ns(struct task_struct *tsk, 2147 struct pid_namespace *ns) 2148{ 2149 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns); 2150} 2151 2152static inline pid_t task_pid_vnr(struct task_struct *tsk) 2153{ 2154 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL); 2155} 2156 2157 2158static inline pid_t task_tgid_nr(struct task_struct *tsk) 2159{ 2160 return tsk->tgid; 2161} 2162 2163pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns); 2164 2165static inline pid_t task_tgid_vnr(struct task_struct *tsk) 2166{ 2167 return pid_vnr(task_tgid(tsk)); 2168} 2169 2170 2171static inline int pid_alive(const struct task_struct *p); 2172static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns) 2173{ 2174 pid_t pid = 0; 2175 2176 rcu_read_lock(); 2177 if (pid_alive(tsk)) 2178 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns); 2179 rcu_read_unlock(); 2180 2181 return pid; 2182} 2183 2184static inline pid_t task_ppid_nr(const struct task_struct *tsk) 2185{ 2186 return task_ppid_nr_ns(tsk, &init_pid_ns); 2187} 2188 2189static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, 2190 struct pid_namespace *ns) 2191{ 2192 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns); 2193} 2194 2195static inline pid_t task_pgrp_vnr(struct task_struct *tsk) 2196{ 2197 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL); 2198} 2199 2200 2201static inline pid_t task_session_nr_ns(struct task_struct *tsk, 2202 struct pid_namespace *ns) 2203{ 2204 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns); 2205} 2206 2207static inline pid_t task_session_vnr(struct task_struct *tsk) 2208{ 2209 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL); 2210} 2211 2212/* obsolete, do not use */ 2213static inline pid_t task_pgrp_nr(struct task_struct *tsk) 2214{ 2215 return task_pgrp_nr_ns(tsk, &init_pid_ns); 2216} 2217 2218/** 2219 * pid_alive - check that a task structure is not stale 2220 * @p: Task structure to be checked. 2221 * 2222 * Test if a process is not yet dead (at most zombie state) 2223 * If pid_alive fails, then pointers within the task structure 2224 * can be stale and must not be dereferenced. 2225 * 2226 * Return: 1 if the process is alive. 0 otherwise. 2227 */ 2228static inline int pid_alive(const struct task_struct *p) 2229{ 2230 return p->pids[PIDTYPE_PID].pid != NULL; 2231} 2232 2233/** 2234 * is_global_init - check if a task structure is init. Since init 2235 * is free to have sub-threads we need to check tgid. 2236 * @tsk: Task structure to be checked. 2237 * 2238 * Check if a task structure is the first user space task the kernel created. 2239 * 2240 * Return: 1 if the task structure is init. 0 otherwise. 2241 */ 2242static inline int is_global_init(struct task_struct *tsk) 2243{ 2244 return task_tgid_nr(tsk) == 1; 2245} 2246 2247extern struct pid *cad_pid; 2248 2249extern void free_task(struct task_struct *tsk); 2250#define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0) 2251 2252extern void __put_task_struct(struct task_struct *t); 2253 2254static inline void put_task_struct(struct task_struct *t) 2255{ 2256 if (atomic_dec_and_test(&t->usage)) 2257 __put_task_struct(t); 2258} 2259 2260struct task_struct *task_rcu_dereference(struct task_struct **ptask); 2261struct task_struct *try_get_task_struct(struct task_struct **ptask); 2262 2263#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 2264extern void task_cputime(struct task_struct *t, 2265 cputime_t *utime, cputime_t *stime); 2266extern cputime_t task_gtime(struct task_struct *t); 2267#else 2268static inline void task_cputime(struct task_struct *t, 2269 cputime_t *utime, cputime_t *stime) 2270{ 2271 *utime = t->utime; 2272 *stime = t->stime; 2273} 2274 2275static inline cputime_t task_gtime(struct task_struct *t) 2276{ 2277 return t->gtime; 2278} 2279#endif 2280 2281#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 2282static inline void task_cputime_scaled(struct task_struct *t, 2283 cputime_t *utimescaled, 2284 cputime_t *stimescaled) 2285{ 2286 *utimescaled = t->utimescaled; 2287 *stimescaled = t->stimescaled; 2288} 2289#else 2290static inline void task_cputime_scaled(struct task_struct *t, 2291 cputime_t *utimescaled, 2292 cputime_t *stimescaled) 2293{ 2294 task_cputime(t, utimescaled, stimescaled); 2295} 2296#endif 2297 2298extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st); 2299extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st); 2300 2301/* 2302 * Per process flags 2303 */ 2304#define PF_IDLE 0x00000002 /* I am an IDLE thread */ 2305#define PF_EXITING 0x00000004 /* getting shut down */ 2306#define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */ 2307#define PF_VCPU 0x00000010 /* I'm a virtual CPU */ 2308#define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */ 2309#define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */ 2310#define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */ 2311#define PF_SUPERPRIV 0x00000100 /* used super-user privileges */ 2312#define PF_DUMPCORE 0x00000200 /* dumped core */ 2313#define PF_SIGNALED 0x00000400 /* killed by a signal */ 2314#define PF_MEMALLOC 0x00000800 /* Allocating memory */ 2315#define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */ 2316#define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */ 2317#define PF_USED_ASYNC 0x00004000 /* used async_schedule*(), used by module init */ 2318#define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */ 2319#define PF_FROZEN 0x00010000 /* frozen for system suspend */ 2320#define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */ 2321#define PF_KSWAPD 0x00040000 /* I am kswapd */ 2322#define PF_MEMALLOC_NOIO 0x00080000 /* Allocating memory without IO involved */ 2323#define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */ 2324#define PF_KTHREAD 0x00200000 /* I am a kernel thread */ 2325#define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */ 2326#define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */ 2327#define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */ 2328#define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */ 2329#define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */ 2330#define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */ 2331#define PF_SUSPEND_TASK 0x80000000 /* this thread called freeze_processes and should not be frozen */ 2332 2333/* 2334 * Only the _current_ task can read/write to tsk->flags, but other 2335 * tasks can access tsk->flags in readonly mode for example 2336 * with tsk_used_math (like during threaded core dumping). 2337 * There is however an exception to this rule during ptrace 2338 * or during fork: the ptracer task is allowed to write to the 2339 * child->flags of its traced child (same goes for fork, the parent 2340 * can write to the child->flags), because we're guaranteed the 2341 * child is not running and in turn not changing child->flags 2342 * at the same time the parent does it. 2343 */ 2344#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0) 2345#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0) 2346#define clear_used_math() clear_stopped_child_used_math(current) 2347#define set_used_math() set_stopped_child_used_math(current) 2348#define conditional_stopped_child_used_math(condition, child) \ 2349 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0) 2350#define conditional_used_math(condition) \ 2351 conditional_stopped_child_used_math(condition, current) 2352#define copy_to_stopped_child_used_math(child) \ 2353 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0) 2354/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */ 2355#define tsk_used_math(p) ((p)->flags & PF_USED_MATH) 2356#define used_math() tsk_used_math(current) 2357 2358/* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags 2359 * __GFP_FS is also cleared as it implies __GFP_IO. 2360 */ 2361static inline gfp_t memalloc_noio_flags(gfp_t flags) 2362{ 2363 if (unlikely(current->flags & PF_MEMALLOC_NOIO)) 2364 flags &= ~(__GFP_IO | __GFP_FS); 2365 return flags; 2366} 2367 2368static inline unsigned int memalloc_noio_save(void) 2369{ 2370 unsigned int flags = current->flags & PF_MEMALLOC_NOIO; 2371 current->flags |= PF_MEMALLOC_NOIO; 2372 return flags; 2373} 2374 2375static inline void memalloc_noio_restore(unsigned int flags) 2376{ 2377 current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags; 2378} 2379 2380/* Per-process atomic flags. */ 2381#define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */ 2382#define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */ 2383#define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */ 2384#define PFA_LMK_WAITING 3 /* Lowmemorykiller is waiting */ 2385 2386 2387#define TASK_PFA_TEST(name, func) \ 2388 static inline bool task_##func(struct task_struct *p) \ 2389 { return test_bit(PFA_##name, &p->atomic_flags); } 2390#define TASK_PFA_SET(name, func) \ 2391 static inline void task_set_##func(struct task_struct *p) \ 2392 { set_bit(PFA_##name, &p->atomic_flags); } 2393#define TASK_PFA_CLEAR(name, func) \ 2394 static inline void task_clear_##func(struct task_struct *p) \ 2395 { clear_bit(PFA_##name, &p->atomic_flags); } 2396 2397TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs) 2398TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs) 2399 2400TASK_PFA_TEST(SPREAD_PAGE, spread_page) 2401TASK_PFA_SET(SPREAD_PAGE, spread_page) 2402TASK_PFA_CLEAR(SPREAD_PAGE, spread_page) 2403 2404TASK_PFA_TEST(SPREAD_SLAB, spread_slab) 2405TASK_PFA_SET(SPREAD_SLAB, spread_slab) 2406TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab) 2407 2408TASK_PFA_TEST(LMK_WAITING, lmk_waiting) 2409TASK_PFA_SET(LMK_WAITING, lmk_waiting) 2410 2411/* 2412 * task->jobctl flags 2413 */ 2414#define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */ 2415 2416#define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */ 2417#define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */ 2418#define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */ 2419#define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */ 2420#define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */ 2421#define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */ 2422#define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */ 2423 2424#define JOBCTL_STOP_DEQUEUED (1UL << JOBCTL_STOP_DEQUEUED_BIT) 2425#define JOBCTL_STOP_PENDING (1UL << JOBCTL_STOP_PENDING_BIT) 2426#define JOBCTL_STOP_CONSUME (1UL << JOBCTL_STOP_CONSUME_BIT) 2427#define JOBCTL_TRAP_STOP (1UL << JOBCTL_TRAP_STOP_BIT) 2428#define JOBCTL_TRAP_NOTIFY (1UL << JOBCTL_TRAP_NOTIFY_BIT) 2429#define JOBCTL_TRAPPING (1UL << JOBCTL_TRAPPING_BIT) 2430#define JOBCTL_LISTENING (1UL << JOBCTL_LISTENING_BIT) 2431 2432#define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY) 2433#define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK) 2434 2435extern bool task_set_jobctl_pending(struct task_struct *task, 2436 unsigned long mask); 2437extern void task_clear_jobctl_trapping(struct task_struct *task); 2438extern void task_clear_jobctl_pending(struct task_struct *task, 2439 unsigned long mask); 2440 2441static inline void rcu_copy_process(struct task_struct *p) 2442{ 2443#ifdef CONFIG_PREEMPT_RCU 2444 p->rcu_read_lock_nesting = 0; 2445 p->rcu_read_unlock_special.s = 0; 2446 p->rcu_blocked_node = NULL; 2447 INIT_LIST_HEAD(&p->rcu_node_entry); 2448#endif /* #ifdef CONFIG_PREEMPT_RCU */ 2449#ifdef CONFIG_TASKS_RCU 2450 p->rcu_tasks_holdout = false; 2451 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list); 2452 p->rcu_tasks_idle_cpu = -1; 2453#endif /* #ifdef CONFIG_TASKS_RCU */ 2454} 2455 2456static inline void tsk_restore_flags(struct task_struct *task, 2457 unsigned long orig_flags, unsigned long flags) 2458{ 2459 task->flags &= ~flags; 2460 task->flags |= orig_flags & flags; 2461} 2462 2463extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, 2464 const struct cpumask *trial); 2465extern int task_can_attach(struct task_struct *p, 2466 const struct cpumask *cs_cpus_allowed); 2467#ifdef CONFIG_SMP 2468extern void do_set_cpus_allowed(struct task_struct *p, 2469 const struct cpumask *new_mask); 2470 2471extern int set_cpus_allowed_ptr(struct task_struct *p, 2472 const struct cpumask *new_mask); 2473#else 2474static inline void do_set_cpus_allowed(struct task_struct *p, 2475 const struct cpumask *new_mask) 2476{ 2477} 2478static inline int set_cpus_allowed_ptr(struct task_struct *p, 2479 const struct cpumask *new_mask) 2480{ 2481 if (!cpumask_test_cpu(0, new_mask)) 2482 return -EINVAL; 2483 return 0; 2484} 2485#endif 2486 2487#ifdef CONFIG_NO_HZ_COMMON 2488void calc_load_enter_idle(void); 2489void calc_load_exit_idle(void); 2490#else 2491static inline void calc_load_enter_idle(void) { } 2492static inline void calc_load_exit_idle(void) { } 2493#endif /* CONFIG_NO_HZ_COMMON */ 2494 2495#ifndef cpu_relax_yield 2496#define cpu_relax_yield() cpu_relax() 2497#endif 2498 2499/* 2500 * Do not use outside of architecture code which knows its limitations. 2501 * 2502 * sched_clock() has no promise of monotonicity or bounded drift between 2503 * CPUs, use (which you should not) requires disabling IRQs. 2504 * 2505 * Please use one of the three interfaces below. 2506 */ 2507extern unsigned long long notrace sched_clock(void); 2508/* 2509 * See the comment in kernel/sched/clock.c 2510 */ 2511extern u64 running_clock(void); 2512extern u64 sched_clock_cpu(int cpu); 2513 2514 2515extern void sched_clock_init(void); 2516 2517#ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 2518static inline void sched_clock_tick(void) 2519{ 2520} 2521 2522static inline void sched_clock_idle_sleep_event(void) 2523{ 2524} 2525 2526static inline void sched_clock_idle_wakeup_event(u64 delta_ns) 2527{ 2528} 2529 2530static inline u64 cpu_clock(int cpu) 2531{ 2532 return sched_clock(); 2533} 2534 2535static inline u64 local_clock(void) 2536{ 2537 return sched_clock(); 2538} 2539#else 2540/* 2541 * Architectures can set this to 1 if they have specified 2542 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig, 2543 * but then during bootup it turns out that sched_clock() 2544 * is reliable after all: 2545 */ 2546extern int sched_clock_stable(void); 2547extern void set_sched_clock_stable(void); 2548extern void clear_sched_clock_stable(void); 2549 2550extern void sched_clock_tick(void); 2551extern void sched_clock_idle_sleep_event(void); 2552extern void sched_clock_idle_wakeup_event(u64 delta_ns); 2553 2554/* 2555 * As outlined in clock.c, provides a fast, high resolution, nanosecond 2556 * time source that is monotonic per cpu argument and has bounded drift 2557 * between cpus. 2558 * 2559 * ######################### BIG FAT WARNING ########################## 2560 * # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can # 2561 * # go backwards !! # 2562 * #################################################################### 2563 */ 2564static inline u64 cpu_clock(int cpu) 2565{ 2566 return sched_clock_cpu(cpu); 2567} 2568 2569static inline u64 local_clock(void) 2570{ 2571 return sched_clock_cpu(raw_smp_processor_id()); 2572} 2573#endif 2574 2575#ifdef CONFIG_IRQ_TIME_ACCOUNTING 2576/* 2577 * An i/f to runtime opt-in for irq time accounting based off of sched_clock. 2578 * The reason for this explicit opt-in is not to have perf penalty with 2579 * slow sched_clocks. 2580 */ 2581extern void enable_sched_clock_irqtime(void); 2582extern void disable_sched_clock_irqtime(void); 2583#else 2584static inline void enable_sched_clock_irqtime(void) {} 2585static inline void disable_sched_clock_irqtime(void) {} 2586#endif 2587 2588extern unsigned long long 2589task_sched_runtime(struct task_struct *task); 2590 2591/* sched_exec is called by processes performing an exec */ 2592#ifdef CONFIG_SMP 2593extern void sched_exec(void); 2594#else 2595#define sched_exec() {} 2596#endif 2597 2598extern void sched_clock_idle_sleep_event(void); 2599extern void sched_clock_idle_wakeup_event(u64 delta_ns); 2600 2601#ifdef CONFIG_HOTPLUG_CPU 2602extern void idle_task_exit(void); 2603#else 2604static inline void idle_task_exit(void) {} 2605#endif 2606 2607#if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP) 2608extern void wake_up_nohz_cpu(int cpu); 2609#else 2610static inline void wake_up_nohz_cpu(int cpu) { } 2611#endif 2612 2613#ifdef CONFIG_NO_HZ_FULL 2614extern u64 scheduler_tick_max_deferment(void); 2615#endif 2616 2617#ifdef CONFIG_SCHED_AUTOGROUP 2618extern void sched_autogroup_create_attach(struct task_struct *p); 2619extern void sched_autogroup_detach(struct task_struct *p); 2620extern void sched_autogroup_fork(struct signal_struct *sig); 2621extern void sched_autogroup_exit(struct signal_struct *sig); 2622extern void sched_autogroup_exit_task(struct task_struct *p); 2623#ifdef CONFIG_PROC_FS 2624extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m); 2625extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice); 2626#endif 2627#else 2628static inline void sched_autogroup_create_attach(struct task_struct *p) { } 2629static inline void sched_autogroup_detach(struct task_struct *p) { } 2630static inline void sched_autogroup_fork(struct signal_struct *sig) { } 2631static inline void sched_autogroup_exit(struct signal_struct *sig) { } 2632static inline void sched_autogroup_exit_task(struct task_struct *p) { } 2633#endif 2634 2635extern int yield_to(struct task_struct *p, bool preempt); 2636extern void set_user_nice(struct task_struct *p, long nice); 2637extern int task_prio(const struct task_struct *p); 2638/** 2639 * task_nice - return the nice value of a given task. 2640 * @p: the task in question. 2641 * 2642 * Return: The nice value [ -20 ... 0 ... 19 ]. 2643 */ 2644static inline int task_nice(const struct task_struct *p) 2645{ 2646 return PRIO_TO_NICE((p)->static_prio); 2647} 2648extern int can_nice(const struct task_struct *p, const int nice); 2649extern int task_curr(const struct task_struct *p); 2650extern int idle_cpu(int cpu); 2651extern int sched_setscheduler(struct task_struct *, int, 2652 const struct sched_param *); 2653extern int sched_setscheduler_nocheck(struct task_struct *, int, 2654 const struct sched_param *); 2655extern int sched_setattr(struct task_struct *, 2656 const struct sched_attr *); 2657extern struct task_struct *idle_task(int cpu); 2658/** 2659 * is_idle_task - is the specified task an idle task? 2660 * @p: the task in question. 2661 * 2662 * Return: 1 if @p is an idle task. 0 otherwise. 2663 */ 2664static inline bool is_idle_task(const struct task_struct *p) 2665{ 2666 return !!(p->flags & PF_IDLE); 2667} 2668extern struct task_struct *curr_task(int cpu); 2669extern void ia64_set_curr_task(int cpu, struct task_struct *p); 2670 2671void yield(void); 2672 2673union thread_union { 2674#ifndef CONFIG_THREAD_INFO_IN_TASK 2675 struct thread_info thread_info; 2676#endif 2677 unsigned long stack[THREAD_SIZE/sizeof(long)]; 2678}; 2679 2680#ifndef __HAVE_ARCH_KSTACK_END 2681static inline int kstack_end(void *addr) 2682{ 2683 /* Reliable end of stack detection: 2684 * Some APM bios versions misalign the stack 2685 */ 2686 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*))); 2687} 2688#endif 2689 2690extern union thread_union init_thread_union; 2691extern struct task_struct init_task; 2692 2693extern struct mm_struct init_mm; 2694 2695extern struct pid_namespace init_pid_ns; 2696 2697/* 2698 * find a task by one of its numerical ids 2699 * 2700 * find_task_by_pid_ns(): 2701 * finds a task by its pid in the specified namespace 2702 * find_task_by_vpid(): 2703 * finds a task by its virtual pid 2704 * 2705 * see also find_vpid() etc in include/linux/pid.h 2706 */ 2707 2708extern struct task_struct *find_task_by_vpid(pid_t nr); 2709extern struct task_struct *find_task_by_pid_ns(pid_t nr, 2710 struct pid_namespace *ns); 2711 2712/* per-UID process charging. */ 2713extern struct user_struct * alloc_uid(kuid_t); 2714static inline struct user_struct *get_uid(struct user_struct *u) 2715{ 2716 atomic_inc(&u->__count); 2717 return u; 2718} 2719extern void free_uid(struct user_struct *); 2720 2721#include <asm/current.h> 2722 2723extern void xtime_update(unsigned long ticks); 2724 2725extern int wake_up_state(struct task_struct *tsk, unsigned int state); 2726extern int wake_up_process(struct task_struct *tsk); 2727extern void wake_up_new_task(struct task_struct *tsk); 2728#ifdef CONFIG_SMP 2729 extern void kick_process(struct task_struct *tsk); 2730#else 2731 static inline void kick_process(struct task_struct *tsk) { } 2732#endif 2733extern int sched_fork(unsigned long clone_flags, struct task_struct *p); 2734extern void sched_dead(struct task_struct *p); 2735 2736extern void proc_caches_init(void); 2737extern void flush_signals(struct task_struct *); 2738extern void ignore_signals(struct task_struct *); 2739extern void flush_signal_handlers(struct task_struct *, int force_default); 2740extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info); 2741 2742static inline int kernel_dequeue_signal(siginfo_t *info) 2743{ 2744 struct task_struct *tsk = current; 2745 siginfo_t __info; 2746 int ret; 2747 2748 spin_lock_irq(&tsk->sighand->siglock); 2749 ret = dequeue_signal(tsk, &tsk->blocked, info ?: &__info); 2750 spin_unlock_irq(&tsk->sighand->siglock); 2751 2752 return ret; 2753} 2754 2755static inline void kernel_signal_stop(void) 2756{ 2757 spin_lock_irq(&current->sighand->siglock); 2758 if (current->jobctl & JOBCTL_STOP_DEQUEUED) 2759 __set_current_state(TASK_STOPPED); 2760 spin_unlock_irq(&current->sighand->siglock); 2761 2762 schedule(); 2763} 2764 2765extern void release_task(struct task_struct * p); 2766extern int send_sig_info(int, struct siginfo *, struct task_struct *); 2767extern int force_sigsegv(int, struct task_struct *); 2768extern int force_sig_info(int, struct siginfo *, struct task_struct *); 2769extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp); 2770extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid); 2771extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *, 2772 const struct cred *, u32); 2773extern int kill_pgrp(struct pid *pid, int sig, int priv); 2774extern int kill_pid(struct pid *pid, int sig, int priv); 2775extern int kill_proc_info(int, struct siginfo *, pid_t); 2776extern __must_check bool do_notify_parent(struct task_struct *, int); 2777extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent); 2778extern void force_sig(int, struct task_struct *); 2779extern int send_sig(int, struct task_struct *, int); 2780extern int zap_other_threads(struct task_struct *p); 2781extern struct sigqueue *sigqueue_alloc(void); 2782extern void sigqueue_free(struct sigqueue *); 2783extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group); 2784extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *); 2785 2786#ifdef TIF_RESTORE_SIGMASK 2787/* 2788 * Legacy restore_sigmask accessors. These are inefficient on 2789 * SMP architectures because they require atomic operations. 2790 */ 2791 2792/** 2793 * set_restore_sigmask() - make sure saved_sigmask processing gets done 2794 * 2795 * This sets TIF_RESTORE_SIGMASK and ensures that the arch signal code 2796 * will run before returning to user mode, to process the flag. For 2797 * all callers, TIF_SIGPENDING is already set or it's no harm to set 2798 * it. TIF_RESTORE_SIGMASK need not be in the set of bits that the 2799 * arch code will notice on return to user mode, in case those bits 2800 * are scarce. We set TIF_SIGPENDING here to ensure that the arch 2801 * signal code always gets run when TIF_RESTORE_SIGMASK is set. 2802 */ 2803static inline void set_restore_sigmask(void) 2804{ 2805 set_thread_flag(TIF_RESTORE_SIGMASK); 2806 WARN_ON(!test_thread_flag(TIF_SIGPENDING)); 2807} 2808static inline void clear_restore_sigmask(void) 2809{ 2810 clear_thread_flag(TIF_RESTORE_SIGMASK); 2811} 2812static inline bool test_restore_sigmask(void) 2813{ 2814 return test_thread_flag(TIF_RESTORE_SIGMASK); 2815} 2816static inline bool test_and_clear_restore_sigmask(void) 2817{ 2818 return test_and_clear_thread_flag(TIF_RESTORE_SIGMASK); 2819} 2820 2821#else /* TIF_RESTORE_SIGMASK */ 2822 2823/* Higher-quality implementation, used if TIF_RESTORE_SIGMASK doesn't exist. */ 2824static inline void set_restore_sigmask(void) 2825{ 2826 current->restore_sigmask = true; 2827 WARN_ON(!test_thread_flag(TIF_SIGPENDING)); 2828} 2829static inline void clear_restore_sigmask(void) 2830{ 2831 current->restore_sigmask = false; 2832} 2833static inline bool test_restore_sigmask(void) 2834{ 2835 return current->restore_sigmask; 2836} 2837static inline bool test_and_clear_restore_sigmask(void) 2838{ 2839 if (!current->restore_sigmask) 2840 return false; 2841 current->restore_sigmask = false; 2842 return true; 2843} 2844#endif 2845 2846static inline void restore_saved_sigmask(void) 2847{ 2848 if (test_and_clear_restore_sigmask()) 2849 __set_current_blocked(&current->saved_sigmask); 2850} 2851 2852static inline sigset_t *sigmask_to_save(void) 2853{ 2854 sigset_t *res = &current->blocked; 2855 if (unlikely(test_restore_sigmask())) 2856 res = &current->saved_sigmask; 2857 return res; 2858} 2859 2860static inline int kill_cad_pid(int sig, int priv) 2861{ 2862 return kill_pid(cad_pid, sig, priv); 2863} 2864 2865/* These can be the second arg to send_sig_info/send_group_sig_info. */ 2866#define SEND_SIG_NOINFO ((struct siginfo *) 0) 2867#define SEND_SIG_PRIV ((struct siginfo *) 1) 2868#define SEND_SIG_FORCED ((struct siginfo *) 2) 2869 2870/* 2871 * True if we are on the alternate signal stack. 2872 */ 2873static inline int on_sig_stack(unsigned long sp) 2874{ 2875 /* 2876 * If the signal stack is SS_AUTODISARM then, by construction, we 2877 * can't be on the signal stack unless user code deliberately set 2878 * SS_AUTODISARM when we were already on it. 2879 * 2880 * This improves reliability: if user state gets corrupted such that 2881 * the stack pointer points very close to the end of the signal stack, 2882 * then this check will enable the signal to be handled anyway. 2883 */ 2884 if (current->sas_ss_flags & SS_AUTODISARM) 2885 return 0; 2886 2887#ifdef CONFIG_STACK_GROWSUP 2888 return sp >= current->sas_ss_sp && 2889 sp - current->sas_ss_sp < current->sas_ss_size; 2890#else 2891 return sp > current->sas_ss_sp && 2892 sp - current->sas_ss_sp <= current->sas_ss_size; 2893#endif 2894} 2895 2896static inline int sas_ss_flags(unsigned long sp) 2897{ 2898 if (!current->sas_ss_size) 2899 return SS_DISABLE; 2900 2901 return on_sig_stack(sp) ? SS_ONSTACK : 0; 2902} 2903 2904static inline void sas_ss_reset(struct task_struct *p) 2905{ 2906 p->sas_ss_sp = 0; 2907 p->sas_ss_size = 0; 2908 p->sas_ss_flags = SS_DISABLE; 2909} 2910 2911static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig) 2912{ 2913 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp)) 2914#ifdef CONFIG_STACK_GROWSUP 2915 return current->sas_ss_sp; 2916#else 2917 return current->sas_ss_sp + current->sas_ss_size; 2918#endif 2919 return sp; 2920} 2921 2922/* 2923 * Routines for handling mm_structs 2924 */ 2925extern struct mm_struct * mm_alloc(void); 2926 2927/* mmdrop drops the mm and the page tables */ 2928extern void __mmdrop(struct mm_struct *); 2929static inline void mmdrop(struct mm_struct *mm) 2930{ 2931 if (unlikely(atomic_dec_and_test(&mm->mm_count))) 2932 __mmdrop(mm); 2933} 2934 2935static inline void mmdrop_async_fn(struct work_struct *work) 2936{ 2937 struct mm_struct *mm = container_of(work, struct mm_struct, async_put_work); 2938 __mmdrop(mm); 2939} 2940 2941static inline void mmdrop_async(struct mm_struct *mm) 2942{ 2943 if (unlikely(atomic_dec_and_test(&mm->mm_count))) { 2944 INIT_WORK(&mm->async_put_work, mmdrop_async_fn); 2945 schedule_work(&mm->async_put_work); 2946 } 2947} 2948 2949static inline bool mmget_not_zero(struct mm_struct *mm) 2950{ 2951 return atomic_inc_not_zero(&mm->mm_users); 2952} 2953 2954/* mmput gets rid of the mappings and all user-space */ 2955extern void mmput(struct mm_struct *); 2956#ifdef CONFIG_MMU 2957/* same as above but performs the slow path from the async context. Can 2958 * be called from the atomic context as well 2959 */ 2960extern void mmput_async(struct mm_struct *); 2961#endif 2962 2963/* Grab a reference to a task's mm, if it is not already going away */ 2964extern struct mm_struct *get_task_mm(struct task_struct *task); 2965/* 2966 * Grab a reference to a task's mm, if it is not already going away 2967 * and ptrace_may_access with the mode parameter passed to it 2968 * succeeds. 2969 */ 2970extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode); 2971/* Remove the current tasks stale references to the old mm_struct */ 2972extern void mm_release(struct task_struct *, struct mm_struct *); 2973 2974#ifdef CONFIG_HAVE_COPY_THREAD_TLS 2975extern int copy_thread_tls(unsigned long, unsigned long, unsigned long, 2976 struct task_struct *, unsigned long); 2977#else 2978extern int copy_thread(unsigned long, unsigned long, unsigned long, 2979 struct task_struct *); 2980 2981/* Architectures that haven't opted into copy_thread_tls get the tls argument 2982 * via pt_regs, so ignore the tls argument passed via C. */ 2983static inline int copy_thread_tls( 2984 unsigned long clone_flags, unsigned long sp, unsigned long arg, 2985 struct task_struct *p, unsigned long tls) 2986{ 2987 return copy_thread(clone_flags, sp, arg, p); 2988} 2989#endif 2990extern void flush_thread(void); 2991 2992#ifdef CONFIG_HAVE_EXIT_THREAD 2993extern void exit_thread(struct task_struct *tsk); 2994#else 2995static inline void exit_thread(struct task_struct *tsk) 2996{ 2997} 2998#endif 2999 3000extern void exit_files(struct task_struct *); 3001extern void __cleanup_sighand(struct sighand_struct *); 3002 3003extern void exit_itimers(struct signal_struct *); 3004extern void flush_itimer_signals(void); 3005 3006extern void do_group_exit(int); 3007 3008extern int do_execve(struct filename *, 3009 const char __user * const __user *, 3010 const char __user * const __user *); 3011extern int do_execveat(int, struct filename *, 3012 const char __user * const __user *, 3013 const char __user * const __user *, 3014 int); 3015extern long _do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *, unsigned long); 3016extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *); 3017struct task_struct *fork_idle(int); 3018extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags); 3019 3020extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec); 3021static inline void set_task_comm(struct task_struct *tsk, const char *from) 3022{ 3023 __set_task_comm(tsk, from, false); 3024} 3025extern char *get_task_comm(char *to, struct task_struct *tsk); 3026 3027#ifdef CONFIG_SMP 3028void scheduler_ipi(void); 3029extern unsigned long wait_task_inactive(struct task_struct *, long match_state); 3030#else 3031static inline void scheduler_ipi(void) { } 3032static inline unsigned long wait_task_inactive(struct task_struct *p, 3033 long match_state) 3034{ 3035 return 1; 3036} 3037#endif 3038 3039#define tasklist_empty() \ 3040 list_empty(&init_task.tasks) 3041 3042#define next_task(p) \ 3043 list_entry_rcu((p)->tasks.next, struct task_struct, tasks) 3044 3045#define for_each_process(p) \ 3046 for (p = &init_task ; (p = next_task(p)) != &init_task ; ) 3047 3048extern bool current_is_single_threaded(void); 3049 3050/* 3051 * Careful: do_each_thread/while_each_thread is a double loop so 3052 * 'break' will not work as expected - use goto instead. 3053 */ 3054#define do_each_thread(g, t) \ 3055 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do 3056 3057#define while_each_thread(g, t) \ 3058 while ((t = next_thread(t)) != g) 3059 3060#define __for_each_thread(signal, t) \ 3061 list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node) 3062 3063#define for_each_thread(p, t) \ 3064 __for_each_thread((p)->signal, t) 3065 3066/* Careful: this is a double loop, 'break' won't work as expected. */ 3067#define for_each_process_thread(p, t) \ 3068 for_each_process(p) for_each_thread(p, t) 3069 3070static inline int get_nr_threads(struct task_struct *tsk) 3071{ 3072 return tsk->signal->nr_threads; 3073} 3074 3075static inline bool thread_group_leader(struct task_struct *p) 3076{ 3077 return p->exit_signal >= 0; 3078} 3079 3080/* Do to the insanities of de_thread it is possible for a process 3081 * to have the pid of the thread group leader without actually being 3082 * the thread group leader. For iteration through the pids in proc 3083 * all we care about is that we have a task with the appropriate 3084 * pid, we don't actually care if we have the right task. 3085 */ 3086static inline bool has_group_leader_pid(struct task_struct *p) 3087{ 3088 return task_pid(p) == p->signal->leader_pid; 3089} 3090 3091static inline 3092bool same_thread_group(struct task_struct *p1, struct task_struct *p2) 3093{ 3094 return p1->signal == p2->signal; 3095} 3096 3097static inline struct task_struct *next_thread(const struct task_struct *p) 3098{ 3099 return list_entry_rcu(p->thread_group.next, 3100 struct task_struct, thread_group); 3101} 3102 3103static inline int thread_group_empty(struct task_struct *p) 3104{ 3105 return list_empty(&p->thread_group); 3106} 3107 3108#define delay_group_leader(p) \ 3109 (thread_group_leader(p) && !thread_group_empty(p)) 3110 3111/* 3112 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring 3113 * subscriptions and synchronises with wait4(). Also used in procfs. Also 3114 * pins the final release of task.io_context. Also protects ->cpuset and 3115 * ->cgroup.subsys[]. And ->vfork_done. 3116 * 3117 * Nests both inside and outside of read_lock(&tasklist_lock). 3118 * It must not be nested with write_lock_irq(&tasklist_lock), 3119 * neither inside nor outside. 3120 */ 3121static inline void task_lock(struct task_struct *p) 3122{ 3123 spin_lock(&p->alloc_lock); 3124} 3125 3126static inline void task_unlock(struct task_struct *p) 3127{ 3128 spin_unlock(&p->alloc_lock); 3129} 3130 3131extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk, 3132 unsigned long *flags); 3133 3134static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk, 3135 unsigned long *flags) 3136{ 3137 struct sighand_struct *ret; 3138 3139 ret = __lock_task_sighand(tsk, flags); 3140 (void)__cond_lock(&tsk->sighand->siglock, ret); 3141 return ret; 3142} 3143 3144static inline void unlock_task_sighand(struct task_struct *tsk, 3145 unsigned long *flags) 3146{ 3147 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags); 3148} 3149 3150/** 3151 * threadgroup_change_begin - mark the beginning of changes to a threadgroup 3152 * @tsk: task causing the changes 3153 * 3154 * All operations which modify a threadgroup - a new thread joining the 3155 * group, death of a member thread (the assertion of PF_EXITING) and 3156 * exec(2) dethreading the process and replacing the leader - are wrapped 3157 * by threadgroup_change_{begin|end}(). This is to provide a place which 3158 * subsystems needing threadgroup stability can hook into for 3159 * synchronization. 3160 */ 3161static inline void threadgroup_change_begin(struct task_struct *tsk) 3162{ 3163 might_sleep(); 3164 cgroup_threadgroup_change_begin(tsk); 3165} 3166 3167/** 3168 * threadgroup_change_end - mark the end of changes to a threadgroup 3169 * @tsk: task causing the changes 3170 * 3171 * See threadgroup_change_begin(). 3172 */ 3173static inline void threadgroup_change_end(struct task_struct *tsk) 3174{ 3175 cgroup_threadgroup_change_end(tsk); 3176} 3177 3178#ifdef CONFIG_THREAD_INFO_IN_TASK 3179 3180static inline struct thread_info *task_thread_info(struct task_struct *task) 3181{ 3182 return &task->thread_info; 3183} 3184 3185/* 3186 * When accessing the stack of a non-current task that might exit, use 3187 * try_get_task_stack() instead. task_stack_page will return a pointer 3188 * that could get freed out from under you. 3189 */ 3190static inline void *task_stack_page(const struct task_struct *task) 3191{ 3192 return task->stack; 3193} 3194 3195#define setup_thread_stack(new,old) do { } while(0) 3196 3197static inline unsigned long *end_of_stack(const struct task_struct *task) 3198{ 3199 return task->stack; 3200} 3201 3202#elif !defined(__HAVE_THREAD_FUNCTIONS) 3203 3204#define task_thread_info(task) ((struct thread_info *)(task)->stack) 3205#define task_stack_page(task) ((void *)(task)->stack) 3206 3207static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org) 3208{ 3209 *task_thread_info(p) = *task_thread_info(org); 3210 task_thread_info(p)->task = p; 3211} 3212 3213/* 3214 * Return the address of the last usable long on the stack. 3215 * 3216 * When the stack grows down, this is just above the thread 3217 * info struct. Going any lower will corrupt the threadinfo. 3218 * 3219 * When the stack grows up, this is the highest address. 3220 * Beyond that position, we corrupt data on the next page. 3221 */ 3222static inline unsigned long *end_of_stack(struct task_struct *p) 3223{ 3224#ifdef CONFIG_STACK_GROWSUP 3225 return (unsigned long *)((unsigned long)task_thread_info(p) + THREAD_SIZE) - 1; 3226#else 3227 return (unsigned long *)(task_thread_info(p) + 1); 3228#endif 3229} 3230 3231#endif 3232 3233#ifdef CONFIG_THREAD_INFO_IN_TASK 3234static inline void *try_get_task_stack(struct task_struct *tsk) 3235{ 3236 return atomic_inc_not_zero(&tsk->stack_refcount) ? 3237 task_stack_page(tsk) : NULL; 3238} 3239 3240extern void put_task_stack(struct task_struct *tsk); 3241#else 3242static inline void *try_get_task_stack(struct task_struct *tsk) 3243{ 3244 return task_stack_page(tsk); 3245} 3246 3247static inline void put_task_stack(struct task_struct *tsk) {} 3248#endif 3249 3250#define task_stack_end_corrupted(task) \ 3251 (*(end_of_stack(task)) != STACK_END_MAGIC) 3252 3253static inline int object_is_on_stack(void *obj) 3254{ 3255 void *stack = task_stack_page(current); 3256 3257 return (obj >= stack) && (obj < (stack + THREAD_SIZE)); 3258} 3259 3260extern void thread_stack_cache_init(void); 3261 3262#ifdef CONFIG_DEBUG_STACK_USAGE 3263static inline unsigned long stack_not_used(struct task_struct *p) 3264{ 3265 unsigned long *n = end_of_stack(p); 3266 3267 do { /* Skip over canary */ 3268# ifdef CONFIG_STACK_GROWSUP 3269 n--; 3270# else 3271 n++; 3272# endif 3273 } while (!*n); 3274 3275# ifdef CONFIG_STACK_GROWSUP 3276 return (unsigned long)end_of_stack(p) - (unsigned long)n; 3277# else 3278 return (unsigned long)n - (unsigned long)end_of_stack(p); 3279# endif 3280} 3281#endif 3282extern void set_task_stack_end_magic(struct task_struct *tsk); 3283 3284/* set thread flags in other task's structures 3285 * - see asm/thread_info.h for TIF_xxxx flags available 3286 */ 3287static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag) 3288{ 3289 set_ti_thread_flag(task_thread_info(tsk), flag); 3290} 3291 3292static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag) 3293{ 3294 clear_ti_thread_flag(task_thread_info(tsk), flag); 3295} 3296 3297static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag) 3298{ 3299 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag); 3300} 3301 3302static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag) 3303{ 3304 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag); 3305} 3306 3307static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag) 3308{ 3309 return test_ti_thread_flag(task_thread_info(tsk), flag); 3310} 3311 3312static inline void set_tsk_need_resched(struct task_struct *tsk) 3313{ 3314 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 3315} 3316 3317static inline void clear_tsk_need_resched(struct task_struct *tsk) 3318{ 3319 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 3320} 3321 3322static inline int test_tsk_need_resched(struct task_struct *tsk) 3323{ 3324 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED)); 3325} 3326 3327static inline int restart_syscall(void) 3328{ 3329 set_tsk_thread_flag(current, TIF_SIGPENDING); 3330 return -ERESTARTNOINTR; 3331} 3332 3333static inline int signal_pending(struct task_struct *p) 3334{ 3335 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING)); 3336} 3337 3338static inline int __fatal_signal_pending(struct task_struct *p) 3339{ 3340 return unlikely(sigismember(&p->pending.signal, SIGKILL)); 3341} 3342 3343static inline int fatal_signal_pending(struct task_struct *p) 3344{ 3345 return signal_pending(p) && __fatal_signal_pending(p); 3346} 3347 3348static inline int signal_pending_state(long state, struct task_struct *p) 3349{ 3350 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL))) 3351 return 0; 3352 if (!signal_pending(p)) 3353 return 0; 3354 3355 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p); 3356} 3357 3358/* 3359 * cond_resched() and cond_resched_lock(): latency reduction via 3360 * explicit rescheduling in places that are safe. The return 3361 * value indicates whether a reschedule was done in fact. 3362 * cond_resched_lock() will drop the spinlock before scheduling, 3363 * cond_resched_softirq() will enable bhs before scheduling. 3364 */ 3365#ifndef CONFIG_PREEMPT 3366extern int _cond_resched(void); 3367#else 3368static inline int _cond_resched(void) { return 0; } 3369#endif 3370 3371#define cond_resched() ({ \ 3372 ___might_sleep(__FILE__, __LINE__, 0); \ 3373 _cond_resched(); \ 3374}) 3375 3376extern int __cond_resched_lock(spinlock_t *lock); 3377 3378#define cond_resched_lock(lock) ({ \ 3379 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\ 3380 __cond_resched_lock(lock); \ 3381}) 3382 3383extern int __cond_resched_softirq(void); 3384 3385#define cond_resched_softirq() ({ \ 3386 ___might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \ 3387 __cond_resched_softirq(); \ 3388}) 3389 3390static inline void cond_resched_rcu(void) 3391{ 3392#if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU) 3393 rcu_read_unlock(); 3394 cond_resched(); 3395 rcu_read_lock(); 3396#endif 3397} 3398 3399static inline unsigned long get_preempt_disable_ip(struct task_struct *p) 3400{ 3401#ifdef CONFIG_DEBUG_PREEMPT 3402 return p->preempt_disable_ip; 3403#else 3404 return 0; 3405#endif 3406} 3407 3408/* 3409 * Does a critical section need to be broken due to another 3410 * task waiting?: (technically does not depend on CONFIG_PREEMPT, 3411 * but a general need for low latency) 3412 */ 3413static inline int spin_needbreak(spinlock_t *lock) 3414{ 3415#ifdef CONFIG_PREEMPT 3416 return spin_is_contended(lock); 3417#else 3418 return 0; 3419#endif 3420} 3421 3422/* 3423 * Idle thread specific functions to determine the need_resched 3424 * polling state. 3425 */ 3426#ifdef TIF_POLLING_NRFLAG 3427static inline int tsk_is_polling(struct task_struct *p) 3428{ 3429 return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG); 3430} 3431 3432static inline void __current_set_polling(void) 3433{ 3434 set_thread_flag(TIF_POLLING_NRFLAG); 3435} 3436 3437static inline bool __must_check current_set_polling_and_test(void) 3438{ 3439 __current_set_polling(); 3440 3441 /* 3442 * Polling state must be visible before we test NEED_RESCHED, 3443 * paired by resched_curr() 3444 */ 3445 smp_mb__after_atomic(); 3446 3447 return unlikely(tif_need_resched()); 3448} 3449 3450static inline void __current_clr_polling(void) 3451{ 3452 clear_thread_flag(TIF_POLLING_NRFLAG); 3453} 3454 3455static inline bool __must_check current_clr_polling_and_test(void) 3456{ 3457 __current_clr_polling(); 3458 3459 /* 3460 * Polling state must be visible before we test NEED_RESCHED, 3461 * paired by resched_curr() 3462 */ 3463 smp_mb__after_atomic(); 3464 3465 return unlikely(tif_need_resched()); 3466} 3467 3468#else 3469static inline int tsk_is_polling(struct task_struct *p) { return 0; } 3470static inline void __current_set_polling(void) { } 3471static inline void __current_clr_polling(void) { } 3472 3473static inline bool __must_check current_set_polling_and_test(void) 3474{ 3475 return unlikely(tif_need_resched()); 3476} 3477static inline bool __must_check current_clr_polling_and_test(void) 3478{ 3479 return unlikely(tif_need_resched()); 3480} 3481#endif 3482 3483static inline void current_clr_polling(void) 3484{ 3485 __current_clr_polling(); 3486 3487 /* 3488 * Ensure we check TIF_NEED_RESCHED after we clear the polling bit. 3489 * Once the bit is cleared, we'll get IPIs with every new 3490 * TIF_NEED_RESCHED and the IPI handler, scheduler_ipi(), will also 3491 * fold. 3492 */ 3493 smp_mb(); /* paired with resched_curr() */ 3494 3495 preempt_fold_need_resched(); 3496} 3497 3498static __always_inline bool need_resched(void) 3499{ 3500 return unlikely(tif_need_resched()); 3501} 3502 3503/* 3504 * Thread group CPU time accounting. 3505 */ 3506void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times); 3507void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times); 3508 3509/* 3510 * Reevaluate whether the task has signals pending delivery. 3511 * Wake the task if so. 3512 * This is required every time the blocked sigset_t changes. 3513 * callers must hold sighand->siglock. 3514 */ 3515extern void recalc_sigpending_and_wake(struct task_struct *t); 3516extern void recalc_sigpending(void); 3517 3518extern void signal_wake_up_state(struct task_struct *t, unsigned int state); 3519 3520static inline void signal_wake_up(struct task_struct *t, bool resume) 3521{ 3522 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0); 3523} 3524static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume) 3525{ 3526 signal_wake_up_state(t, resume ? __TASK_TRACED : 0); 3527} 3528 3529/* 3530 * Wrappers for p->thread_info->cpu access. No-op on UP. 3531 */ 3532#ifdef CONFIG_SMP 3533 3534static inline unsigned int task_cpu(const struct task_struct *p) 3535{ 3536#ifdef CONFIG_THREAD_INFO_IN_TASK 3537 return p->cpu; 3538#else 3539 return task_thread_info(p)->cpu; 3540#endif 3541} 3542 3543static inline int task_node(const struct task_struct *p) 3544{ 3545 return cpu_to_node(task_cpu(p)); 3546} 3547 3548extern void set_task_cpu(struct task_struct *p, unsigned int cpu); 3549 3550#else 3551 3552static inline unsigned int task_cpu(const struct task_struct *p) 3553{ 3554 return 0; 3555} 3556 3557static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) 3558{ 3559} 3560 3561#endif /* CONFIG_SMP */ 3562 3563/* 3564 * In order to reduce various lock holder preemption latencies provide an 3565 * interface to see if a vCPU is currently running or not. 3566 * 3567 * This allows us to terminate optimistic spin loops and block, analogous to 3568 * the native optimistic spin heuristic of testing if the lock owner task is 3569 * running or not. 3570 */ 3571#ifndef vcpu_is_preempted 3572# define vcpu_is_preempted(cpu) false 3573#endif 3574 3575extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask); 3576extern long sched_getaffinity(pid_t pid, struct cpumask *mask); 3577 3578#ifdef CONFIG_CGROUP_SCHED 3579extern struct task_group root_task_group; 3580#endif /* CONFIG_CGROUP_SCHED */ 3581 3582extern int task_can_switch_user(struct user_struct *up, 3583 struct task_struct *tsk); 3584 3585#ifdef CONFIG_TASK_XACCT 3586static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 3587{ 3588 tsk->ioac.rchar += amt; 3589} 3590 3591static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 3592{ 3593 tsk->ioac.wchar += amt; 3594} 3595 3596static inline void inc_syscr(struct task_struct *tsk) 3597{ 3598 tsk->ioac.syscr++; 3599} 3600 3601static inline void inc_syscw(struct task_struct *tsk) 3602{ 3603 tsk->ioac.syscw++; 3604} 3605#else 3606static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 3607{ 3608} 3609 3610static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 3611{ 3612} 3613 3614static inline void inc_syscr(struct task_struct *tsk) 3615{ 3616} 3617 3618static inline void inc_syscw(struct task_struct *tsk) 3619{ 3620} 3621#endif 3622 3623#ifndef TASK_SIZE_OF 3624#define TASK_SIZE_OF(tsk) TASK_SIZE 3625#endif 3626 3627#ifdef CONFIG_MEMCG 3628extern void mm_update_next_owner(struct mm_struct *mm); 3629#else 3630static inline void mm_update_next_owner(struct mm_struct *mm) 3631{ 3632} 3633#endif /* CONFIG_MEMCG */ 3634 3635static inline unsigned long task_rlimit(const struct task_struct *tsk, 3636 unsigned int limit) 3637{ 3638 return READ_ONCE(tsk->signal->rlim[limit].rlim_cur); 3639} 3640 3641static inline unsigned long task_rlimit_max(const struct task_struct *tsk, 3642 unsigned int limit) 3643{ 3644 return READ_ONCE(tsk->signal->rlim[limit].rlim_max); 3645} 3646 3647static inline unsigned long rlimit(unsigned int limit) 3648{ 3649 return task_rlimit(current, limit); 3650} 3651 3652static inline unsigned long rlimit_max(unsigned int limit) 3653{ 3654 return task_rlimit_max(current, limit); 3655} 3656 3657#define SCHED_CPUFREQ_RT (1U << 0) 3658#define SCHED_CPUFREQ_DL (1U << 1) 3659#define SCHED_CPUFREQ_IOWAIT (1U << 2) 3660 3661#define SCHED_CPUFREQ_RT_DL (SCHED_CPUFREQ_RT | SCHED_CPUFREQ_DL) 3662 3663#ifdef CONFIG_CPU_FREQ 3664struct update_util_data { 3665 void (*func)(struct update_util_data *data, u64 time, unsigned int flags); 3666}; 3667 3668void cpufreq_add_update_util_hook(int cpu, struct update_util_data *data, 3669 void (*func)(struct update_util_data *data, u64 time, 3670 unsigned int flags)); 3671void cpufreq_remove_update_util_hook(int cpu); 3672#endif /* CONFIG_CPU_FREQ */ 3673 3674#endif