at v4.10 78 kB view raw
1#ifndef _LINUX_MM_H 2#define _LINUX_MM_H 3 4#include <linux/errno.h> 5 6#ifdef __KERNEL__ 7 8#include <linux/mmdebug.h> 9#include <linux/gfp.h> 10#include <linux/bug.h> 11#include <linux/list.h> 12#include <linux/mmzone.h> 13#include <linux/rbtree.h> 14#include <linux/atomic.h> 15#include <linux/debug_locks.h> 16#include <linux/mm_types.h> 17#include <linux/range.h> 18#include <linux/pfn.h> 19#include <linux/percpu-refcount.h> 20#include <linux/bit_spinlock.h> 21#include <linux/shrinker.h> 22#include <linux/resource.h> 23#include <linux/page_ext.h> 24#include <linux/err.h> 25#include <linux/page_ref.h> 26 27struct mempolicy; 28struct anon_vma; 29struct anon_vma_chain; 30struct file_ra_state; 31struct user_struct; 32struct writeback_control; 33struct bdi_writeback; 34 35#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */ 36extern unsigned long max_mapnr; 37 38static inline void set_max_mapnr(unsigned long limit) 39{ 40 max_mapnr = limit; 41} 42#else 43static inline void set_max_mapnr(unsigned long limit) { } 44#endif 45 46extern unsigned long totalram_pages; 47extern void * high_memory; 48extern int page_cluster; 49 50#ifdef CONFIG_SYSCTL 51extern int sysctl_legacy_va_layout; 52#else 53#define sysctl_legacy_va_layout 0 54#endif 55 56#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 57extern const int mmap_rnd_bits_min; 58extern const int mmap_rnd_bits_max; 59extern int mmap_rnd_bits __read_mostly; 60#endif 61#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 62extern const int mmap_rnd_compat_bits_min; 63extern const int mmap_rnd_compat_bits_max; 64extern int mmap_rnd_compat_bits __read_mostly; 65#endif 66 67#include <asm/page.h> 68#include <asm/pgtable.h> 69#include <asm/processor.h> 70 71#ifndef __pa_symbol 72#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 73#endif 74 75#ifndef page_to_virt 76#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x))) 77#endif 78 79/* 80 * To prevent common memory management code establishing 81 * a zero page mapping on a read fault. 82 * This macro should be defined within <asm/pgtable.h>. 83 * s390 does this to prevent multiplexing of hardware bits 84 * related to the physical page in case of virtualization. 85 */ 86#ifndef mm_forbids_zeropage 87#define mm_forbids_zeropage(X) (0) 88#endif 89 90/* 91 * Default maximum number of active map areas, this limits the number of vmas 92 * per mm struct. Users can overwrite this number by sysctl but there is a 93 * problem. 94 * 95 * When a program's coredump is generated as ELF format, a section is created 96 * per a vma. In ELF, the number of sections is represented in unsigned short. 97 * This means the number of sections should be smaller than 65535 at coredump. 98 * Because the kernel adds some informative sections to a image of program at 99 * generating coredump, we need some margin. The number of extra sections is 100 * 1-3 now and depends on arch. We use "5" as safe margin, here. 101 * 102 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is 103 * not a hard limit any more. Although some userspace tools can be surprised by 104 * that. 105 */ 106#define MAPCOUNT_ELF_CORE_MARGIN (5) 107#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 108 109extern int sysctl_max_map_count; 110 111extern unsigned long sysctl_user_reserve_kbytes; 112extern unsigned long sysctl_admin_reserve_kbytes; 113 114extern int sysctl_overcommit_memory; 115extern int sysctl_overcommit_ratio; 116extern unsigned long sysctl_overcommit_kbytes; 117 118extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *, 119 size_t *, loff_t *); 120extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *, 121 size_t *, loff_t *); 122 123#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 124 125/* to align the pointer to the (next) page boundary */ 126#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 127 128/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 129#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE) 130 131/* 132 * Linux kernel virtual memory manager primitives. 133 * The idea being to have a "virtual" mm in the same way 134 * we have a virtual fs - giving a cleaner interface to the 135 * mm details, and allowing different kinds of memory mappings 136 * (from shared memory to executable loading to arbitrary 137 * mmap() functions). 138 */ 139 140extern struct kmem_cache *vm_area_cachep; 141 142#ifndef CONFIG_MMU 143extern struct rb_root nommu_region_tree; 144extern struct rw_semaphore nommu_region_sem; 145 146extern unsigned int kobjsize(const void *objp); 147#endif 148 149/* 150 * vm_flags in vm_area_struct, see mm_types.h. 151 * When changing, update also include/trace/events/mmflags.h 152 */ 153#define VM_NONE 0x00000000 154 155#define VM_READ 0x00000001 /* currently active flags */ 156#define VM_WRITE 0x00000002 157#define VM_EXEC 0x00000004 158#define VM_SHARED 0x00000008 159 160/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 161#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 162#define VM_MAYWRITE 0x00000020 163#define VM_MAYEXEC 0x00000040 164#define VM_MAYSHARE 0x00000080 165 166#define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 167#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */ 168#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 169#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 170#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */ 171 172#define VM_LOCKED 0x00002000 173#define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 174 175 /* Used by sys_madvise() */ 176#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 177#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 178 179#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 180#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 181#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */ 182#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 183#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 184#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 185#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 186#define VM_ARCH_2 0x02000000 187#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 188 189#ifdef CONFIG_MEM_SOFT_DIRTY 190# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 191#else 192# define VM_SOFTDIRTY 0 193#endif 194 195#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 196#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 197#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 198#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 199 200#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS 201#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */ 202#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */ 203#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */ 204#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */ 205#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0) 206#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1) 207#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2) 208#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3) 209#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */ 210 211#if defined(CONFIG_X86) 212# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 213#if defined (CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS) 214# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0 215# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */ 216# define VM_PKEY_BIT1 VM_HIGH_ARCH_1 217# define VM_PKEY_BIT2 VM_HIGH_ARCH_2 218# define VM_PKEY_BIT3 VM_HIGH_ARCH_3 219#endif 220#elif defined(CONFIG_PPC) 221# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 222#elif defined(CONFIG_PARISC) 223# define VM_GROWSUP VM_ARCH_1 224#elif defined(CONFIG_METAG) 225# define VM_GROWSUP VM_ARCH_1 226#elif defined(CONFIG_IA64) 227# define VM_GROWSUP VM_ARCH_1 228#elif !defined(CONFIG_MMU) 229# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 230#endif 231 232#if defined(CONFIG_X86) 233/* MPX specific bounds table or bounds directory */ 234# define VM_MPX VM_ARCH_2 235#endif 236 237#ifndef VM_GROWSUP 238# define VM_GROWSUP VM_NONE 239#endif 240 241/* Bits set in the VMA until the stack is in its final location */ 242#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) 243 244#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 245#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 246#endif 247 248#ifdef CONFIG_STACK_GROWSUP 249#define VM_STACK VM_GROWSUP 250#else 251#define VM_STACK VM_GROWSDOWN 252#endif 253 254#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 255 256/* 257 * Special vmas that are non-mergable, non-mlock()able. 258 * Note: mm/huge_memory.c VM_NO_THP depends on this definition. 259 */ 260#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 261 262/* This mask defines which mm->def_flags a process can inherit its parent */ 263#define VM_INIT_DEF_MASK VM_NOHUGEPAGE 264 265/* This mask is used to clear all the VMA flags used by mlock */ 266#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT)) 267 268/* 269 * mapping from the currently active vm_flags protection bits (the 270 * low four bits) to a page protection mask.. 271 */ 272extern pgprot_t protection_map[16]; 273 274#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */ 275#define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */ 276#define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */ 277#define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */ 278#define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */ 279#define FAULT_FLAG_TRIED 0x20 /* Second try */ 280#define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */ 281#define FAULT_FLAG_REMOTE 0x80 /* faulting for non current tsk/mm */ 282#define FAULT_FLAG_INSTRUCTION 0x100 /* The fault was during an instruction fetch */ 283 284/* 285 * vm_fault is filled by the the pagefault handler and passed to the vma's 286 * ->fault function. The vma's ->fault is responsible for returning a bitmask 287 * of VM_FAULT_xxx flags that give details about how the fault was handled. 288 * 289 * MM layer fills up gfp_mask for page allocations but fault handler might 290 * alter it if its implementation requires a different allocation context. 291 * 292 * pgoff should be used in favour of virtual_address, if possible. 293 */ 294struct vm_fault { 295 struct vm_area_struct *vma; /* Target VMA */ 296 unsigned int flags; /* FAULT_FLAG_xxx flags */ 297 gfp_t gfp_mask; /* gfp mask to be used for allocations */ 298 pgoff_t pgoff; /* Logical page offset based on vma */ 299 unsigned long address; /* Faulting virtual address */ 300 pmd_t *pmd; /* Pointer to pmd entry matching 301 * the 'address' */ 302 pte_t orig_pte; /* Value of PTE at the time of fault */ 303 304 struct page *cow_page; /* Page handler may use for COW fault */ 305 struct mem_cgroup *memcg; /* Cgroup cow_page belongs to */ 306 struct page *page; /* ->fault handlers should return a 307 * page here, unless VM_FAULT_NOPAGE 308 * is set (which is also implied by 309 * VM_FAULT_ERROR). 310 */ 311 /* These three entries are valid only while holding ptl lock */ 312 pte_t *pte; /* Pointer to pte entry matching 313 * the 'address'. NULL if the page 314 * table hasn't been allocated. 315 */ 316 spinlock_t *ptl; /* Page table lock. 317 * Protects pte page table if 'pte' 318 * is not NULL, otherwise pmd. 319 */ 320 pgtable_t prealloc_pte; /* Pre-allocated pte page table. 321 * vm_ops->map_pages() calls 322 * alloc_set_pte() from atomic context. 323 * do_fault_around() pre-allocates 324 * page table to avoid allocation from 325 * atomic context. 326 */ 327}; 328 329/* 330 * These are the virtual MM functions - opening of an area, closing and 331 * unmapping it (needed to keep files on disk up-to-date etc), pointer 332 * to the functions called when a no-page or a wp-page exception occurs. 333 */ 334struct vm_operations_struct { 335 void (*open)(struct vm_area_struct * area); 336 void (*close)(struct vm_area_struct * area); 337 int (*mremap)(struct vm_area_struct * area); 338 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf); 339 int (*pmd_fault)(struct vm_area_struct *, unsigned long address, 340 pmd_t *, unsigned int flags); 341 void (*map_pages)(struct vm_fault *vmf, 342 pgoff_t start_pgoff, pgoff_t end_pgoff); 343 344 /* notification that a previously read-only page is about to become 345 * writable, if an error is returned it will cause a SIGBUS */ 346 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf); 347 348 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ 349 int (*pfn_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf); 350 351 /* called by access_process_vm when get_user_pages() fails, typically 352 * for use by special VMAs that can switch between memory and hardware 353 */ 354 int (*access)(struct vm_area_struct *vma, unsigned long addr, 355 void *buf, int len, int write); 356 357 /* Called by the /proc/PID/maps code to ask the vma whether it 358 * has a special name. Returning non-NULL will also cause this 359 * vma to be dumped unconditionally. */ 360 const char *(*name)(struct vm_area_struct *vma); 361 362#ifdef CONFIG_NUMA 363 /* 364 * set_policy() op must add a reference to any non-NULL @new mempolicy 365 * to hold the policy upon return. Caller should pass NULL @new to 366 * remove a policy and fall back to surrounding context--i.e. do not 367 * install a MPOL_DEFAULT policy, nor the task or system default 368 * mempolicy. 369 */ 370 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 371 372 /* 373 * get_policy() op must add reference [mpol_get()] to any policy at 374 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 375 * in mm/mempolicy.c will do this automatically. 376 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 377 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem. 378 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 379 * must return NULL--i.e., do not "fallback" to task or system default 380 * policy. 381 */ 382 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 383 unsigned long addr); 384#endif 385 /* 386 * Called by vm_normal_page() for special PTEs to find the 387 * page for @addr. This is useful if the default behavior 388 * (using pte_page()) would not find the correct page. 389 */ 390 struct page *(*find_special_page)(struct vm_area_struct *vma, 391 unsigned long addr); 392}; 393 394struct mmu_gather; 395struct inode; 396 397#define page_private(page) ((page)->private) 398#define set_page_private(page, v) ((page)->private = (v)) 399 400#if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE) 401static inline int pmd_devmap(pmd_t pmd) 402{ 403 return 0; 404} 405#endif 406 407/* 408 * FIXME: take this include out, include page-flags.h in 409 * files which need it (119 of them) 410 */ 411#include <linux/page-flags.h> 412#include <linux/huge_mm.h> 413 414/* 415 * Methods to modify the page usage count. 416 * 417 * What counts for a page usage: 418 * - cache mapping (page->mapping) 419 * - private data (page->private) 420 * - page mapped in a task's page tables, each mapping 421 * is counted separately 422 * 423 * Also, many kernel routines increase the page count before a critical 424 * routine so they can be sure the page doesn't go away from under them. 425 */ 426 427/* 428 * Drop a ref, return true if the refcount fell to zero (the page has no users) 429 */ 430static inline int put_page_testzero(struct page *page) 431{ 432 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 433 return page_ref_dec_and_test(page); 434} 435 436/* 437 * Try to grab a ref unless the page has a refcount of zero, return false if 438 * that is the case. 439 * This can be called when MMU is off so it must not access 440 * any of the virtual mappings. 441 */ 442static inline int get_page_unless_zero(struct page *page) 443{ 444 return page_ref_add_unless(page, 1, 0); 445} 446 447extern int page_is_ram(unsigned long pfn); 448 449enum { 450 REGION_INTERSECTS, 451 REGION_DISJOINT, 452 REGION_MIXED, 453}; 454 455int region_intersects(resource_size_t offset, size_t size, unsigned long flags, 456 unsigned long desc); 457 458/* Support for virtually mapped pages */ 459struct page *vmalloc_to_page(const void *addr); 460unsigned long vmalloc_to_pfn(const void *addr); 461 462/* 463 * Determine if an address is within the vmalloc range 464 * 465 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 466 * is no special casing required. 467 */ 468static inline bool is_vmalloc_addr(const void *x) 469{ 470#ifdef CONFIG_MMU 471 unsigned long addr = (unsigned long)x; 472 473 return addr >= VMALLOC_START && addr < VMALLOC_END; 474#else 475 return false; 476#endif 477} 478#ifdef CONFIG_MMU 479extern int is_vmalloc_or_module_addr(const void *x); 480#else 481static inline int is_vmalloc_or_module_addr(const void *x) 482{ 483 return 0; 484} 485#endif 486 487extern void kvfree(const void *addr); 488 489static inline atomic_t *compound_mapcount_ptr(struct page *page) 490{ 491 return &page[1].compound_mapcount; 492} 493 494static inline int compound_mapcount(struct page *page) 495{ 496 VM_BUG_ON_PAGE(!PageCompound(page), page); 497 page = compound_head(page); 498 return atomic_read(compound_mapcount_ptr(page)) + 1; 499} 500 501/* 502 * The atomic page->_mapcount, starts from -1: so that transitions 503 * both from it and to it can be tracked, using atomic_inc_and_test 504 * and atomic_add_negative(-1). 505 */ 506static inline void page_mapcount_reset(struct page *page) 507{ 508 atomic_set(&(page)->_mapcount, -1); 509} 510 511int __page_mapcount(struct page *page); 512 513static inline int page_mapcount(struct page *page) 514{ 515 VM_BUG_ON_PAGE(PageSlab(page), page); 516 517 if (unlikely(PageCompound(page))) 518 return __page_mapcount(page); 519 return atomic_read(&page->_mapcount) + 1; 520} 521 522#ifdef CONFIG_TRANSPARENT_HUGEPAGE 523int total_mapcount(struct page *page); 524int page_trans_huge_mapcount(struct page *page, int *total_mapcount); 525#else 526static inline int total_mapcount(struct page *page) 527{ 528 return page_mapcount(page); 529} 530static inline int page_trans_huge_mapcount(struct page *page, 531 int *total_mapcount) 532{ 533 int mapcount = page_mapcount(page); 534 if (total_mapcount) 535 *total_mapcount = mapcount; 536 return mapcount; 537} 538#endif 539 540static inline struct page *virt_to_head_page(const void *x) 541{ 542 struct page *page = virt_to_page(x); 543 544 return compound_head(page); 545} 546 547void __put_page(struct page *page); 548 549void put_pages_list(struct list_head *pages); 550 551void split_page(struct page *page, unsigned int order); 552 553/* 554 * Compound pages have a destructor function. Provide a 555 * prototype for that function and accessor functions. 556 * These are _only_ valid on the head of a compound page. 557 */ 558typedef void compound_page_dtor(struct page *); 559 560/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */ 561enum compound_dtor_id { 562 NULL_COMPOUND_DTOR, 563 COMPOUND_PAGE_DTOR, 564#ifdef CONFIG_HUGETLB_PAGE 565 HUGETLB_PAGE_DTOR, 566#endif 567#ifdef CONFIG_TRANSPARENT_HUGEPAGE 568 TRANSHUGE_PAGE_DTOR, 569#endif 570 NR_COMPOUND_DTORS, 571}; 572extern compound_page_dtor * const compound_page_dtors[]; 573 574static inline void set_compound_page_dtor(struct page *page, 575 enum compound_dtor_id compound_dtor) 576{ 577 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page); 578 page[1].compound_dtor = compound_dtor; 579} 580 581static inline compound_page_dtor *get_compound_page_dtor(struct page *page) 582{ 583 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page); 584 return compound_page_dtors[page[1].compound_dtor]; 585} 586 587static inline unsigned int compound_order(struct page *page) 588{ 589 if (!PageHead(page)) 590 return 0; 591 return page[1].compound_order; 592} 593 594static inline void set_compound_order(struct page *page, unsigned int order) 595{ 596 page[1].compound_order = order; 597} 598 599void free_compound_page(struct page *page); 600 601#ifdef CONFIG_MMU 602/* 603 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 604 * servicing faults for write access. In the normal case, do always want 605 * pte_mkwrite. But get_user_pages can cause write faults for mappings 606 * that do not have writing enabled, when used by access_process_vm. 607 */ 608static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 609{ 610 if (likely(vma->vm_flags & VM_WRITE)) 611 pte = pte_mkwrite(pte); 612 return pte; 613} 614 615int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg, 616 struct page *page); 617int finish_fault(struct vm_fault *vmf); 618int finish_mkwrite_fault(struct vm_fault *vmf); 619#endif 620 621/* 622 * Multiple processes may "see" the same page. E.g. for untouched 623 * mappings of /dev/null, all processes see the same page full of 624 * zeroes, and text pages of executables and shared libraries have 625 * only one copy in memory, at most, normally. 626 * 627 * For the non-reserved pages, page_count(page) denotes a reference count. 628 * page_count() == 0 means the page is free. page->lru is then used for 629 * freelist management in the buddy allocator. 630 * page_count() > 0 means the page has been allocated. 631 * 632 * Pages are allocated by the slab allocator in order to provide memory 633 * to kmalloc and kmem_cache_alloc. In this case, the management of the 634 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 635 * unless a particular usage is carefully commented. (the responsibility of 636 * freeing the kmalloc memory is the caller's, of course). 637 * 638 * A page may be used by anyone else who does a __get_free_page(). 639 * In this case, page_count still tracks the references, and should only 640 * be used through the normal accessor functions. The top bits of page->flags 641 * and page->virtual store page management information, but all other fields 642 * are unused and could be used privately, carefully. The management of this 643 * page is the responsibility of the one who allocated it, and those who have 644 * subsequently been given references to it. 645 * 646 * The other pages (we may call them "pagecache pages") are completely 647 * managed by the Linux memory manager: I/O, buffers, swapping etc. 648 * The following discussion applies only to them. 649 * 650 * A pagecache page contains an opaque `private' member, which belongs to the 651 * page's address_space. Usually, this is the address of a circular list of 652 * the page's disk buffers. PG_private must be set to tell the VM to call 653 * into the filesystem to release these pages. 654 * 655 * A page may belong to an inode's memory mapping. In this case, page->mapping 656 * is the pointer to the inode, and page->index is the file offset of the page, 657 * in units of PAGE_SIZE. 658 * 659 * If pagecache pages are not associated with an inode, they are said to be 660 * anonymous pages. These may become associated with the swapcache, and in that 661 * case PG_swapcache is set, and page->private is an offset into the swapcache. 662 * 663 * In either case (swapcache or inode backed), the pagecache itself holds one 664 * reference to the page. Setting PG_private should also increment the 665 * refcount. The each user mapping also has a reference to the page. 666 * 667 * The pagecache pages are stored in a per-mapping radix tree, which is 668 * rooted at mapping->page_tree, and indexed by offset. 669 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 670 * lists, we instead now tag pages as dirty/writeback in the radix tree. 671 * 672 * All pagecache pages may be subject to I/O: 673 * - inode pages may need to be read from disk, 674 * - inode pages which have been modified and are MAP_SHARED may need 675 * to be written back to the inode on disk, 676 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 677 * modified may need to be swapped out to swap space and (later) to be read 678 * back into memory. 679 */ 680 681/* 682 * The zone field is never updated after free_area_init_core() 683 * sets it, so none of the operations on it need to be atomic. 684 */ 685 686/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */ 687#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 688#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 689#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 690#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH) 691 692/* 693 * Define the bit shifts to access each section. For non-existent 694 * sections we define the shift as 0; that plus a 0 mask ensures 695 * the compiler will optimise away reference to them. 696 */ 697#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 698#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 699#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 700#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0)) 701 702/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 703#ifdef NODE_NOT_IN_PAGE_FLAGS 704#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 705#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ 706 SECTIONS_PGOFF : ZONES_PGOFF) 707#else 708#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 709#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ 710 NODES_PGOFF : ZONES_PGOFF) 711#endif 712 713#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 714 715#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 716#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 717#endif 718 719#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 720#define NODES_MASK ((1UL << NODES_WIDTH) - 1) 721#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 722#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1) 723#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 724 725static inline enum zone_type page_zonenum(const struct page *page) 726{ 727 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 728} 729 730#ifdef CONFIG_ZONE_DEVICE 731void get_zone_device_page(struct page *page); 732void put_zone_device_page(struct page *page); 733static inline bool is_zone_device_page(const struct page *page) 734{ 735 return page_zonenum(page) == ZONE_DEVICE; 736} 737#else 738static inline void get_zone_device_page(struct page *page) 739{ 740} 741static inline void put_zone_device_page(struct page *page) 742{ 743} 744static inline bool is_zone_device_page(const struct page *page) 745{ 746 return false; 747} 748#endif 749 750static inline void get_page(struct page *page) 751{ 752 page = compound_head(page); 753 /* 754 * Getting a normal page or the head of a compound page 755 * requires to already have an elevated page->_refcount. 756 */ 757 VM_BUG_ON_PAGE(page_ref_count(page) <= 0, page); 758 page_ref_inc(page); 759 760 if (unlikely(is_zone_device_page(page))) 761 get_zone_device_page(page); 762} 763 764static inline void put_page(struct page *page) 765{ 766 page = compound_head(page); 767 768 if (put_page_testzero(page)) 769 __put_page(page); 770 771 if (unlikely(is_zone_device_page(page))) 772 put_zone_device_page(page); 773} 774 775#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 776#define SECTION_IN_PAGE_FLAGS 777#endif 778 779/* 780 * The identification function is mainly used by the buddy allocator for 781 * determining if two pages could be buddies. We are not really identifying 782 * the zone since we could be using the section number id if we do not have 783 * node id available in page flags. 784 * We only guarantee that it will return the same value for two combinable 785 * pages in a zone. 786 */ 787static inline int page_zone_id(struct page *page) 788{ 789 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 790} 791 792static inline int zone_to_nid(struct zone *zone) 793{ 794#ifdef CONFIG_NUMA 795 return zone->node; 796#else 797 return 0; 798#endif 799} 800 801#ifdef NODE_NOT_IN_PAGE_FLAGS 802extern int page_to_nid(const struct page *page); 803#else 804static inline int page_to_nid(const struct page *page) 805{ 806 return (page->flags >> NODES_PGSHIFT) & NODES_MASK; 807} 808#endif 809 810#ifdef CONFIG_NUMA_BALANCING 811static inline int cpu_pid_to_cpupid(int cpu, int pid) 812{ 813 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 814} 815 816static inline int cpupid_to_pid(int cpupid) 817{ 818 return cpupid & LAST__PID_MASK; 819} 820 821static inline int cpupid_to_cpu(int cpupid) 822{ 823 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 824} 825 826static inline int cpupid_to_nid(int cpupid) 827{ 828 return cpu_to_node(cpupid_to_cpu(cpupid)); 829} 830 831static inline bool cpupid_pid_unset(int cpupid) 832{ 833 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 834} 835 836static inline bool cpupid_cpu_unset(int cpupid) 837{ 838 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 839} 840 841static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 842{ 843 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 844} 845 846#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 847#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 848static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 849{ 850 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK); 851} 852 853static inline int page_cpupid_last(struct page *page) 854{ 855 return page->_last_cpupid; 856} 857static inline void page_cpupid_reset_last(struct page *page) 858{ 859 page->_last_cpupid = -1 & LAST_CPUPID_MASK; 860} 861#else 862static inline int page_cpupid_last(struct page *page) 863{ 864 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 865} 866 867extern int page_cpupid_xchg_last(struct page *page, int cpupid); 868 869static inline void page_cpupid_reset_last(struct page *page) 870{ 871 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT; 872} 873#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 874#else /* !CONFIG_NUMA_BALANCING */ 875static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 876{ 877 return page_to_nid(page); /* XXX */ 878} 879 880static inline int page_cpupid_last(struct page *page) 881{ 882 return page_to_nid(page); /* XXX */ 883} 884 885static inline int cpupid_to_nid(int cpupid) 886{ 887 return -1; 888} 889 890static inline int cpupid_to_pid(int cpupid) 891{ 892 return -1; 893} 894 895static inline int cpupid_to_cpu(int cpupid) 896{ 897 return -1; 898} 899 900static inline int cpu_pid_to_cpupid(int nid, int pid) 901{ 902 return -1; 903} 904 905static inline bool cpupid_pid_unset(int cpupid) 906{ 907 return 1; 908} 909 910static inline void page_cpupid_reset_last(struct page *page) 911{ 912} 913 914static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 915{ 916 return false; 917} 918#endif /* CONFIG_NUMA_BALANCING */ 919 920static inline struct zone *page_zone(const struct page *page) 921{ 922 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 923} 924 925static inline pg_data_t *page_pgdat(const struct page *page) 926{ 927 return NODE_DATA(page_to_nid(page)); 928} 929 930#ifdef SECTION_IN_PAGE_FLAGS 931static inline void set_page_section(struct page *page, unsigned long section) 932{ 933 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 934 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 935} 936 937static inline unsigned long page_to_section(const struct page *page) 938{ 939 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 940} 941#endif 942 943static inline void set_page_zone(struct page *page, enum zone_type zone) 944{ 945 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 946 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 947} 948 949static inline void set_page_node(struct page *page, unsigned long node) 950{ 951 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 952 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 953} 954 955static inline void set_page_links(struct page *page, enum zone_type zone, 956 unsigned long node, unsigned long pfn) 957{ 958 set_page_zone(page, zone); 959 set_page_node(page, node); 960#ifdef SECTION_IN_PAGE_FLAGS 961 set_page_section(page, pfn_to_section_nr(pfn)); 962#endif 963} 964 965#ifdef CONFIG_MEMCG 966static inline struct mem_cgroup *page_memcg(struct page *page) 967{ 968 return page->mem_cgroup; 969} 970static inline struct mem_cgroup *page_memcg_rcu(struct page *page) 971{ 972 WARN_ON_ONCE(!rcu_read_lock_held()); 973 return READ_ONCE(page->mem_cgroup); 974} 975#else 976static inline struct mem_cgroup *page_memcg(struct page *page) 977{ 978 return NULL; 979} 980static inline struct mem_cgroup *page_memcg_rcu(struct page *page) 981{ 982 WARN_ON_ONCE(!rcu_read_lock_held()); 983 return NULL; 984} 985#endif 986 987/* 988 * Some inline functions in vmstat.h depend on page_zone() 989 */ 990#include <linux/vmstat.h> 991 992static __always_inline void *lowmem_page_address(const struct page *page) 993{ 994 return page_to_virt(page); 995} 996 997#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 998#define HASHED_PAGE_VIRTUAL 999#endif 1000 1001#if defined(WANT_PAGE_VIRTUAL) 1002static inline void *page_address(const struct page *page) 1003{ 1004 return page->virtual; 1005} 1006static inline void set_page_address(struct page *page, void *address) 1007{ 1008 page->virtual = address; 1009} 1010#define page_address_init() do { } while(0) 1011#endif 1012 1013#if defined(HASHED_PAGE_VIRTUAL) 1014void *page_address(const struct page *page); 1015void set_page_address(struct page *page, void *virtual); 1016void page_address_init(void); 1017#endif 1018 1019#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 1020#define page_address(page) lowmem_page_address(page) 1021#define set_page_address(page, address) do { } while(0) 1022#define page_address_init() do { } while(0) 1023#endif 1024 1025extern void *page_rmapping(struct page *page); 1026extern struct anon_vma *page_anon_vma(struct page *page); 1027extern struct address_space *page_mapping(struct page *page); 1028 1029extern struct address_space *__page_file_mapping(struct page *); 1030 1031static inline 1032struct address_space *page_file_mapping(struct page *page) 1033{ 1034 if (unlikely(PageSwapCache(page))) 1035 return __page_file_mapping(page); 1036 1037 return page->mapping; 1038} 1039 1040extern pgoff_t __page_file_index(struct page *page); 1041 1042/* 1043 * Return the pagecache index of the passed page. Regular pagecache pages 1044 * use ->index whereas swapcache pages use swp_offset(->private) 1045 */ 1046static inline pgoff_t page_index(struct page *page) 1047{ 1048 if (unlikely(PageSwapCache(page))) 1049 return __page_file_index(page); 1050 return page->index; 1051} 1052 1053bool page_mapped(struct page *page); 1054struct address_space *page_mapping(struct page *page); 1055 1056/* 1057 * Return true only if the page has been allocated with 1058 * ALLOC_NO_WATERMARKS and the low watermark was not 1059 * met implying that the system is under some pressure. 1060 */ 1061static inline bool page_is_pfmemalloc(struct page *page) 1062{ 1063 /* 1064 * Page index cannot be this large so this must be 1065 * a pfmemalloc page. 1066 */ 1067 return page->index == -1UL; 1068} 1069 1070/* 1071 * Only to be called by the page allocator on a freshly allocated 1072 * page. 1073 */ 1074static inline void set_page_pfmemalloc(struct page *page) 1075{ 1076 page->index = -1UL; 1077} 1078 1079static inline void clear_page_pfmemalloc(struct page *page) 1080{ 1081 page->index = 0; 1082} 1083 1084/* 1085 * Different kinds of faults, as returned by handle_mm_fault(). 1086 * Used to decide whether a process gets delivered SIGBUS or 1087 * just gets major/minor fault counters bumped up. 1088 */ 1089 1090#define VM_FAULT_OOM 0x0001 1091#define VM_FAULT_SIGBUS 0x0002 1092#define VM_FAULT_MAJOR 0x0004 1093#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */ 1094#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */ 1095#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */ 1096#define VM_FAULT_SIGSEGV 0x0040 1097 1098#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */ 1099#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */ 1100#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */ 1101#define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */ 1102#define VM_FAULT_DONE_COW 0x1000 /* ->fault has fully handled COW */ 1103 1104#define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */ 1105 1106#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \ 1107 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \ 1108 VM_FAULT_FALLBACK) 1109 1110/* Encode hstate index for a hwpoisoned large page */ 1111#define VM_FAULT_SET_HINDEX(x) ((x) << 12) 1112#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf) 1113 1114/* 1115 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 1116 */ 1117extern void pagefault_out_of_memory(void); 1118 1119#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 1120 1121/* 1122 * Flags passed to show_mem() and show_free_areas() to suppress output in 1123 * various contexts. 1124 */ 1125#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */ 1126 1127extern void show_free_areas(unsigned int flags); 1128extern bool skip_free_areas_node(unsigned int flags, int nid); 1129 1130int shmem_zero_setup(struct vm_area_struct *); 1131#ifdef CONFIG_SHMEM 1132bool shmem_mapping(struct address_space *mapping); 1133#else 1134static inline bool shmem_mapping(struct address_space *mapping) 1135{ 1136 return false; 1137} 1138#endif 1139 1140extern bool can_do_mlock(void); 1141extern int user_shm_lock(size_t, struct user_struct *); 1142extern void user_shm_unlock(size_t, struct user_struct *); 1143 1144/* 1145 * Parameter block passed down to zap_pte_range in exceptional cases. 1146 */ 1147struct zap_details { 1148 struct address_space *check_mapping; /* Check page->mapping if set */ 1149 pgoff_t first_index; /* Lowest page->index to unmap */ 1150 pgoff_t last_index; /* Highest page->index to unmap */ 1151 bool ignore_dirty; /* Ignore dirty pages */ 1152 bool check_swap_entries; /* Check also swap entries */ 1153}; 1154 1155struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 1156 pte_t pte); 1157struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 1158 pmd_t pmd); 1159 1160int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1161 unsigned long size); 1162void zap_page_range(struct vm_area_struct *vma, unsigned long address, 1163 unsigned long size, struct zap_details *); 1164void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma, 1165 unsigned long start, unsigned long end); 1166 1167/** 1168 * mm_walk - callbacks for walk_page_range 1169 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry 1170 * this handler is required to be able to handle 1171 * pmd_trans_huge() pmds. They may simply choose to 1172 * split_huge_page() instead of handling it explicitly. 1173 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry 1174 * @pte_hole: if set, called for each hole at all levels 1175 * @hugetlb_entry: if set, called for each hugetlb entry 1176 * @test_walk: caller specific callback function to determine whether 1177 * we walk over the current vma or not. Returning 0 1178 * value means "do page table walk over the current vma," 1179 * and a negative one means "abort current page table walk 1180 * right now." 1 means "skip the current vma." 1181 * @mm: mm_struct representing the target process of page table walk 1182 * @vma: vma currently walked (NULL if walking outside vmas) 1183 * @private: private data for callbacks' usage 1184 * 1185 * (see the comment on walk_page_range() for more details) 1186 */ 1187struct mm_walk { 1188 int (*pmd_entry)(pmd_t *pmd, unsigned long addr, 1189 unsigned long next, struct mm_walk *walk); 1190 int (*pte_entry)(pte_t *pte, unsigned long addr, 1191 unsigned long next, struct mm_walk *walk); 1192 int (*pte_hole)(unsigned long addr, unsigned long next, 1193 struct mm_walk *walk); 1194 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask, 1195 unsigned long addr, unsigned long next, 1196 struct mm_walk *walk); 1197 int (*test_walk)(unsigned long addr, unsigned long next, 1198 struct mm_walk *walk); 1199 struct mm_struct *mm; 1200 struct vm_area_struct *vma; 1201 void *private; 1202}; 1203 1204int walk_page_range(unsigned long addr, unsigned long end, 1205 struct mm_walk *walk); 1206int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk); 1207void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 1208 unsigned long end, unsigned long floor, unsigned long ceiling); 1209int copy_page_range(struct mm_struct *dst, struct mm_struct *src, 1210 struct vm_area_struct *vma); 1211void unmap_mapping_range(struct address_space *mapping, 1212 loff_t const holebegin, loff_t const holelen, int even_cows); 1213int follow_pte_pmd(struct mm_struct *mm, unsigned long address, 1214 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp); 1215int follow_pfn(struct vm_area_struct *vma, unsigned long address, 1216 unsigned long *pfn); 1217int follow_phys(struct vm_area_struct *vma, unsigned long address, 1218 unsigned int flags, unsigned long *prot, resource_size_t *phys); 1219int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 1220 void *buf, int len, int write); 1221 1222static inline void unmap_shared_mapping_range(struct address_space *mapping, 1223 loff_t const holebegin, loff_t const holelen) 1224{ 1225 unmap_mapping_range(mapping, holebegin, holelen, 0); 1226} 1227 1228extern void truncate_pagecache(struct inode *inode, loff_t new); 1229extern void truncate_setsize(struct inode *inode, loff_t newsize); 1230void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); 1231void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 1232int truncate_inode_page(struct address_space *mapping, struct page *page); 1233int generic_error_remove_page(struct address_space *mapping, struct page *page); 1234int invalidate_inode_page(struct page *page); 1235 1236#ifdef CONFIG_MMU 1237extern int handle_mm_fault(struct vm_area_struct *vma, unsigned long address, 1238 unsigned int flags); 1239extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, 1240 unsigned long address, unsigned int fault_flags, 1241 bool *unlocked); 1242#else 1243static inline int handle_mm_fault(struct vm_area_struct *vma, 1244 unsigned long address, unsigned int flags) 1245{ 1246 /* should never happen if there's no MMU */ 1247 BUG(); 1248 return VM_FAULT_SIGBUS; 1249} 1250static inline int fixup_user_fault(struct task_struct *tsk, 1251 struct mm_struct *mm, unsigned long address, 1252 unsigned int fault_flags, bool *unlocked) 1253{ 1254 /* should never happen if there's no MMU */ 1255 BUG(); 1256 return -EFAULT; 1257} 1258#endif 1259 1260extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, 1261 unsigned int gup_flags); 1262extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1263 void *buf, int len, unsigned int gup_flags); 1264extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 1265 unsigned long addr, void *buf, int len, unsigned int gup_flags); 1266 1267long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm, 1268 unsigned long start, unsigned long nr_pages, 1269 unsigned int gup_flags, struct page **pages, 1270 struct vm_area_struct **vmas, int *locked); 1271long get_user_pages(unsigned long start, unsigned long nr_pages, 1272 unsigned int gup_flags, struct page **pages, 1273 struct vm_area_struct **vmas); 1274long get_user_pages_locked(unsigned long start, unsigned long nr_pages, 1275 unsigned int gup_flags, struct page **pages, int *locked); 1276long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 1277 struct page **pages, unsigned int gup_flags); 1278int get_user_pages_fast(unsigned long start, int nr_pages, int write, 1279 struct page **pages); 1280 1281/* Container for pinned pfns / pages */ 1282struct frame_vector { 1283 unsigned int nr_allocated; /* Number of frames we have space for */ 1284 unsigned int nr_frames; /* Number of frames stored in ptrs array */ 1285 bool got_ref; /* Did we pin pages by getting page ref? */ 1286 bool is_pfns; /* Does array contain pages or pfns? */ 1287 void *ptrs[0]; /* Array of pinned pfns / pages. Use 1288 * pfns_vector_pages() or pfns_vector_pfns() 1289 * for access */ 1290}; 1291 1292struct frame_vector *frame_vector_create(unsigned int nr_frames); 1293void frame_vector_destroy(struct frame_vector *vec); 1294int get_vaddr_frames(unsigned long start, unsigned int nr_pfns, 1295 unsigned int gup_flags, struct frame_vector *vec); 1296void put_vaddr_frames(struct frame_vector *vec); 1297int frame_vector_to_pages(struct frame_vector *vec); 1298void frame_vector_to_pfns(struct frame_vector *vec); 1299 1300static inline unsigned int frame_vector_count(struct frame_vector *vec) 1301{ 1302 return vec->nr_frames; 1303} 1304 1305static inline struct page **frame_vector_pages(struct frame_vector *vec) 1306{ 1307 if (vec->is_pfns) { 1308 int err = frame_vector_to_pages(vec); 1309 1310 if (err) 1311 return ERR_PTR(err); 1312 } 1313 return (struct page **)(vec->ptrs); 1314} 1315 1316static inline unsigned long *frame_vector_pfns(struct frame_vector *vec) 1317{ 1318 if (!vec->is_pfns) 1319 frame_vector_to_pfns(vec); 1320 return (unsigned long *)(vec->ptrs); 1321} 1322 1323struct kvec; 1324int get_kernel_pages(const struct kvec *iov, int nr_pages, int write, 1325 struct page **pages); 1326int get_kernel_page(unsigned long start, int write, struct page **pages); 1327struct page *get_dump_page(unsigned long addr); 1328 1329extern int try_to_release_page(struct page * page, gfp_t gfp_mask); 1330extern void do_invalidatepage(struct page *page, unsigned int offset, 1331 unsigned int length); 1332 1333int __set_page_dirty_nobuffers(struct page *page); 1334int __set_page_dirty_no_writeback(struct page *page); 1335int redirty_page_for_writepage(struct writeback_control *wbc, 1336 struct page *page); 1337void account_page_dirtied(struct page *page, struct address_space *mapping); 1338void account_page_cleaned(struct page *page, struct address_space *mapping, 1339 struct bdi_writeback *wb); 1340int set_page_dirty(struct page *page); 1341int set_page_dirty_lock(struct page *page); 1342void cancel_dirty_page(struct page *page); 1343int clear_page_dirty_for_io(struct page *page); 1344 1345int get_cmdline(struct task_struct *task, char *buffer, int buflen); 1346 1347/* Is the vma a continuation of the stack vma above it? */ 1348static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr) 1349{ 1350 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN); 1351} 1352 1353static inline bool vma_is_anonymous(struct vm_area_struct *vma) 1354{ 1355 return !vma->vm_ops; 1356} 1357 1358static inline int stack_guard_page_start(struct vm_area_struct *vma, 1359 unsigned long addr) 1360{ 1361 return (vma->vm_flags & VM_GROWSDOWN) && 1362 (vma->vm_start == addr) && 1363 !vma_growsdown(vma->vm_prev, addr); 1364} 1365 1366/* Is the vma a continuation of the stack vma below it? */ 1367static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr) 1368{ 1369 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP); 1370} 1371 1372static inline int stack_guard_page_end(struct vm_area_struct *vma, 1373 unsigned long addr) 1374{ 1375 return (vma->vm_flags & VM_GROWSUP) && 1376 (vma->vm_end == addr) && 1377 !vma_growsup(vma->vm_next, addr); 1378} 1379 1380int vma_is_stack_for_current(struct vm_area_struct *vma); 1381 1382extern unsigned long move_page_tables(struct vm_area_struct *vma, 1383 unsigned long old_addr, struct vm_area_struct *new_vma, 1384 unsigned long new_addr, unsigned long len, 1385 bool need_rmap_locks); 1386extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start, 1387 unsigned long end, pgprot_t newprot, 1388 int dirty_accountable, int prot_numa); 1389extern int mprotect_fixup(struct vm_area_struct *vma, 1390 struct vm_area_struct **pprev, unsigned long start, 1391 unsigned long end, unsigned long newflags); 1392 1393/* 1394 * doesn't attempt to fault and will return short. 1395 */ 1396int __get_user_pages_fast(unsigned long start, int nr_pages, int write, 1397 struct page **pages); 1398/* 1399 * per-process(per-mm_struct) statistics. 1400 */ 1401static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 1402{ 1403 long val = atomic_long_read(&mm->rss_stat.count[member]); 1404 1405#ifdef SPLIT_RSS_COUNTING 1406 /* 1407 * counter is updated in asynchronous manner and may go to minus. 1408 * But it's never be expected number for users. 1409 */ 1410 if (val < 0) 1411 val = 0; 1412#endif 1413 return (unsigned long)val; 1414} 1415 1416static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 1417{ 1418 atomic_long_add(value, &mm->rss_stat.count[member]); 1419} 1420 1421static inline void inc_mm_counter(struct mm_struct *mm, int member) 1422{ 1423 atomic_long_inc(&mm->rss_stat.count[member]); 1424} 1425 1426static inline void dec_mm_counter(struct mm_struct *mm, int member) 1427{ 1428 atomic_long_dec(&mm->rss_stat.count[member]); 1429} 1430 1431/* Optimized variant when page is already known not to be PageAnon */ 1432static inline int mm_counter_file(struct page *page) 1433{ 1434 if (PageSwapBacked(page)) 1435 return MM_SHMEMPAGES; 1436 return MM_FILEPAGES; 1437} 1438 1439static inline int mm_counter(struct page *page) 1440{ 1441 if (PageAnon(page)) 1442 return MM_ANONPAGES; 1443 return mm_counter_file(page); 1444} 1445 1446static inline unsigned long get_mm_rss(struct mm_struct *mm) 1447{ 1448 return get_mm_counter(mm, MM_FILEPAGES) + 1449 get_mm_counter(mm, MM_ANONPAGES) + 1450 get_mm_counter(mm, MM_SHMEMPAGES); 1451} 1452 1453static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 1454{ 1455 return max(mm->hiwater_rss, get_mm_rss(mm)); 1456} 1457 1458static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 1459{ 1460 return max(mm->hiwater_vm, mm->total_vm); 1461} 1462 1463static inline void update_hiwater_rss(struct mm_struct *mm) 1464{ 1465 unsigned long _rss = get_mm_rss(mm); 1466 1467 if ((mm)->hiwater_rss < _rss) 1468 (mm)->hiwater_rss = _rss; 1469} 1470 1471static inline void update_hiwater_vm(struct mm_struct *mm) 1472{ 1473 if (mm->hiwater_vm < mm->total_vm) 1474 mm->hiwater_vm = mm->total_vm; 1475} 1476 1477static inline void reset_mm_hiwater_rss(struct mm_struct *mm) 1478{ 1479 mm->hiwater_rss = get_mm_rss(mm); 1480} 1481 1482static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 1483 struct mm_struct *mm) 1484{ 1485 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 1486 1487 if (*maxrss < hiwater_rss) 1488 *maxrss = hiwater_rss; 1489} 1490 1491#if defined(SPLIT_RSS_COUNTING) 1492void sync_mm_rss(struct mm_struct *mm); 1493#else 1494static inline void sync_mm_rss(struct mm_struct *mm) 1495{ 1496} 1497#endif 1498 1499#ifndef __HAVE_ARCH_PTE_DEVMAP 1500static inline int pte_devmap(pte_t pte) 1501{ 1502 return 0; 1503} 1504#endif 1505 1506int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot); 1507 1508extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1509 spinlock_t **ptl); 1510static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 1511 spinlock_t **ptl) 1512{ 1513 pte_t *ptep; 1514 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 1515 return ptep; 1516} 1517 1518#ifdef __PAGETABLE_PUD_FOLDED 1519static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, 1520 unsigned long address) 1521{ 1522 return 0; 1523} 1524#else 1525int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 1526#endif 1527 1528#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) 1529static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 1530 unsigned long address) 1531{ 1532 return 0; 1533} 1534 1535static inline void mm_nr_pmds_init(struct mm_struct *mm) {} 1536 1537static inline unsigned long mm_nr_pmds(struct mm_struct *mm) 1538{ 1539 return 0; 1540} 1541 1542static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} 1543static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} 1544 1545#else 1546int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 1547 1548static inline void mm_nr_pmds_init(struct mm_struct *mm) 1549{ 1550 atomic_long_set(&mm->nr_pmds, 0); 1551} 1552 1553static inline unsigned long mm_nr_pmds(struct mm_struct *mm) 1554{ 1555 return atomic_long_read(&mm->nr_pmds); 1556} 1557 1558static inline void mm_inc_nr_pmds(struct mm_struct *mm) 1559{ 1560 atomic_long_inc(&mm->nr_pmds); 1561} 1562 1563static inline void mm_dec_nr_pmds(struct mm_struct *mm) 1564{ 1565 atomic_long_dec(&mm->nr_pmds); 1566} 1567#endif 1568 1569int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address); 1570int __pte_alloc_kernel(pmd_t *pmd, unsigned long address); 1571 1572/* 1573 * The following ifdef needed to get the 4level-fixup.h header to work. 1574 * Remove it when 4level-fixup.h has been removed. 1575 */ 1576#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK) 1577static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 1578{ 1579 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))? 1580 NULL: pud_offset(pgd, address); 1581} 1582 1583static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 1584{ 1585 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 1586 NULL: pmd_offset(pud, address); 1587} 1588#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */ 1589 1590#if USE_SPLIT_PTE_PTLOCKS 1591#if ALLOC_SPLIT_PTLOCKS 1592void __init ptlock_cache_init(void); 1593extern bool ptlock_alloc(struct page *page); 1594extern void ptlock_free(struct page *page); 1595 1596static inline spinlock_t *ptlock_ptr(struct page *page) 1597{ 1598 return page->ptl; 1599} 1600#else /* ALLOC_SPLIT_PTLOCKS */ 1601static inline void ptlock_cache_init(void) 1602{ 1603} 1604 1605static inline bool ptlock_alloc(struct page *page) 1606{ 1607 return true; 1608} 1609 1610static inline void ptlock_free(struct page *page) 1611{ 1612} 1613 1614static inline spinlock_t *ptlock_ptr(struct page *page) 1615{ 1616 return &page->ptl; 1617} 1618#endif /* ALLOC_SPLIT_PTLOCKS */ 1619 1620static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 1621{ 1622 return ptlock_ptr(pmd_page(*pmd)); 1623} 1624 1625static inline bool ptlock_init(struct page *page) 1626{ 1627 /* 1628 * prep_new_page() initialize page->private (and therefore page->ptl) 1629 * with 0. Make sure nobody took it in use in between. 1630 * 1631 * It can happen if arch try to use slab for page table allocation: 1632 * slab code uses page->slab_cache, which share storage with page->ptl. 1633 */ 1634 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page); 1635 if (!ptlock_alloc(page)) 1636 return false; 1637 spin_lock_init(ptlock_ptr(page)); 1638 return true; 1639} 1640 1641/* Reset page->mapping so free_pages_check won't complain. */ 1642static inline void pte_lock_deinit(struct page *page) 1643{ 1644 page->mapping = NULL; 1645 ptlock_free(page); 1646} 1647 1648#else /* !USE_SPLIT_PTE_PTLOCKS */ 1649/* 1650 * We use mm->page_table_lock to guard all pagetable pages of the mm. 1651 */ 1652static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 1653{ 1654 return &mm->page_table_lock; 1655} 1656static inline void ptlock_cache_init(void) {} 1657static inline bool ptlock_init(struct page *page) { return true; } 1658static inline void pte_lock_deinit(struct page *page) {} 1659#endif /* USE_SPLIT_PTE_PTLOCKS */ 1660 1661static inline void pgtable_init(void) 1662{ 1663 ptlock_cache_init(); 1664 pgtable_cache_init(); 1665} 1666 1667static inline bool pgtable_page_ctor(struct page *page) 1668{ 1669 if (!ptlock_init(page)) 1670 return false; 1671 inc_zone_page_state(page, NR_PAGETABLE); 1672 return true; 1673} 1674 1675static inline void pgtable_page_dtor(struct page *page) 1676{ 1677 pte_lock_deinit(page); 1678 dec_zone_page_state(page, NR_PAGETABLE); 1679} 1680 1681#define pte_offset_map_lock(mm, pmd, address, ptlp) \ 1682({ \ 1683 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 1684 pte_t *__pte = pte_offset_map(pmd, address); \ 1685 *(ptlp) = __ptl; \ 1686 spin_lock(__ptl); \ 1687 __pte; \ 1688}) 1689 1690#define pte_unmap_unlock(pte, ptl) do { \ 1691 spin_unlock(ptl); \ 1692 pte_unmap(pte); \ 1693} while (0) 1694 1695#define pte_alloc(mm, pmd, address) \ 1696 (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd, address)) 1697 1698#define pte_alloc_map(mm, pmd, address) \ 1699 (pte_alloc(mm, pmd, address) ? NULL : pte_offset_map(pmd, address)) 1700 1701#define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 1702 (pte_alloc(mm, pmd, address) ? \ 1703 NULL : pte_offset_map_lock(mm, pmd, address, ptlp)) 1704 1705#define pte_alloc_kernel(pmd, address) \ 1706 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \ 1707 NULL: pte_offset_kernel(pmd, address)) 1708 1709#if USE_SPLIT_PMD_PTLOCKS 1710 1711static struct page *pmd_to_page(pmd_t *pmd) 1712{ 1713 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 1714 return virt_to_page((void *)((unsigned long) pmd & mask)); 1715} 1716 1717static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 1718{ 1719 return ptlock_ptr(pmd_to_page(pmd)); 1720} 1721 1722static inline bool pgtable_pmd_page_ctor(struct page *page) 1723{ 1724#ifdef CONFIG_TRANSPARENT_HUGEPAGE 1725 page->pmd_huge_pte = NULL; 1726#endif 1727 return ptlock_init(page); 1728} 1729 1730static inline void pgtable_pmd_page_dtor(struct page *page) 1731{ 1732#ifdef CONFIG_TRANSPARENT_HUGEPAGE 1733 VM_BUG_ON_PAGE(page->pmd_huge_pte, page); 1734#endif 1735 ptlock_free(page); 1736} 1737 1738#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte) 1739 1740#else 1741 1742static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 1743{ 1744 return &mm->page_table_lock; 1745} 1746 1747static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; } 1748static inline void pgtable_pmd_page_dtor(struct page *page) {} 1749 1750#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 1751 1752#endif 1753 1754static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 1755{ 1756 spinlock_t *ptl = pmd_lockptr(mm, pmd); 1757 spin_lock(ptl); 1758 return ptl; 1759} 1760 1761extern void __init pagecache_init(void); 1762 1763extern void free_area_init(unsigned long * zones_size); 1764extern void free_area_init_node(int nid, unsigned long * zones_size, 1765 unsigned long zone_start_pfn, unsigned long *zholes_size); 1766extern void free_initmem(void); 1767 1768/* 1769 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 1770 * into the buddy system. The freed pages will be poisoned with pattern 1771 * "poison" if it's within range [0, UCHAR_MAX]. 1772 * Return pages freed into the buddy system. 1773 */ 1774extern unsigned long free_reserved_area(void *start, void *end, 1775 int poison, char *s); 1776 1777#ifdef CONFIG_HIGHMEM 1778/* 1779 * Free a highmem page into the buddy system, adjusting totalhigh_pages 1780 * and totalram_pages. 1781 */ 1782extern void free_highmem_page(struct page *page); 1783#endif 1784 1785extern void adjust_managed_page_count(struct page *page, long count); 1786extern void mem_init_print_info(const char *str); 1787 1788extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end); 1789 1790/* Free the reserved page into the buddy system, so it gets managed. */ 1791static inline void __free_reserved_page(struct page *page) 1792{ 1793 ClearPageReserved(page); 1794 init_page_count(page); 1795 __free_page(page); 1796} 1797 1798static inline void free_reserved_page(struct page *page) 1799{ 1800 __free_reserved_page(page); 1801 adjust_managed_page_count(page, 1); 1802} 1803 1804static inline void mark_page_reserved(struct page *page) 1805{ 1806 SetPageReserved(page); 1807 adjust_managed_page_count(page, -1); 1808} 1809 1810/* 1811 * Default method to free all the __init memory into the buddy system. 1812 * The freed pages will be poisoned with pattern "poison" if it's within 1813 * range [0, UCHAR_MAX]. 1814 * Return pages freed into the buddy system. 1815 */ 1816static inline unsigned long free_initmem_default(int poison) 1817{ 1818 extern char __init_begin[], __init_end[]; 1819 1820 return free_reserved_area(&__init_begin, &__init_end, 1821 poison, "unused kernel"); 1822} 1823 1824static inline unsigned long get_num_physpages(void) 1825{ 1826 int nid; 1827 unsigned long phys_pages = 0; 1828 1829 for_each_online_node(nid) 1830 phys_pages += node_present_pages(nid); 1831 1832 return phys_pages; 1833} 1834 1835#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 1836/* 1837 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its 1838 * zones, allocate the backing mem_map and account for memory holes in a more 1839 * architecture independent manner. This is a substitute for creating the 1840 * zone_sizes[] and zholes_size[] arrays and passing them to 1841 * free_area_init_node() 1842 * 1843 * An architecture is expected to register range of page frames backed by 1844 * physical memory with memblock_add[_node]() before calling 1845 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic 1846 * usage, an architecture is expected to do something like 1847 * 1848 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 1849 * max_highmem_pfn}; 1850 * for_each_valid_physical_page_range() 1851 * memblock_add_node(base, size, nid) 1852 * free_area_init_nodes(max_zone_pfns); 1853 * 1854 * free_bootmem_with_active_regions() calls free_bootmem_node() for each 1855 * registered physical page range. Similarly 1856 * sparse_memory_present_with_active_regions() calls memory_present() for 1857 * each range when SPARSEMEM is enabled. 1858 * 1859 * See mm/page_alloc.c for more information on each function exposed by 1860 * CONFIG_HAVE_MEMBLOCK_NODE_MAP. 1861 */ 1862extern void free_area_init_nodes(unsigned long *max_zone_pfn); 1863unsigned long node_map_pfn_alignment(void); 1864unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, 1865 unsigned long end_pfn); 1866extern unsigned long absent_pages_in_range(unsigned long start_pfn, 1867 unsigned long end_pfn); 1868extern void get_pfn_range_for_nid(unsigned int nid, 1869 unsigned long *start_pfn, unsigned long *end_pfn); 1870extern unsigned long find_min_pfn_with_active_regions(void); 1871extern void free_bootmem_with_active_regions(int nid, 1872 unsigned long max_low_pfn); 1873extern void sparse_memory_present_with_active_regions(int nid); 1874 1875#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 1876 1877#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \ 1878 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) 1879static inline int __early_pfn_to_nid(unsigned long pfn, 1880 struct mminit_pfnnid_cache *state) 1881{ 1882 return 0; 1883} 1884#else 1885/* please see mm/page_alloc.c */ 1886extern int __meminit early_pfn_to_nid(unsigned long pfn); 1887/* there is a per-arch backend function. */ 1888extern int __meminit __early_pfn_to_nid(unsigned long pfn, 1889 struct mminit_pfnnid_cache *state); 1890#endif 1891 1892extern void set_dma_reserve(unsigned long new_dma_reserve); 1893extern void memmap_init_zone(unsigned long, int, unsigned long, 1894 unsigned long, enum memmap_context); 1895extern void setup_per_zone_wmarks(void); 1896extern int __meminit init_per_zone_wmark_min(void); 1897extern void mem_init(void); 1898extern void __init mmap_init(void); 1899extern void show_mem(unsigned int flags); 1900extern long si_mem_available(void); 1901extern void si_meminfo(struct sysinfo * val); 1902extern void si_meminfo_node(struct sysinfo *val, int nid); 1903#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES 1904extern unsigned long arch_reserved_kernel_pages(void); 1905#endif 1906 1907extern __printf(2, 3) 1908void warn_alloc(gfp_t gfp_mask, const char *fmt, ...); 1909 1910extern void setup_per_cpu_pageset(void); 1911 1912extern void zone_pcp_update(struct zone *zone); 1913extern void zone_pcp_reset(struct zone *zone); 1914 1915/* page_alloc.c */ 1916extern int min_free_kbytes; 1917extern int watermark_scale_factor; 1918 1919/* nommu.c */ 1920extern atomic_long_t mmap_pages_allocated; 1921extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 1922 1923/* interval_tree.c */ 1924void vma_interval_tree_insert(struct vm_area_struct *node, 1925 struct rb_root *root); 1926void vma_interval_tree_insert_after(struct vm_area_struct *node, 1927 struct vm_area_struct *prev, 1928 struct rb_root *root); 1929void vma_interval_tree_remove(struct vm_area_struct *node, 1930 struct rb_root *root); 1931struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root, 1932 unsigned long start, unsigned long last); 1933struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 1934 unsigned long start, unsigned long last); 1935 1936#define vma_interval_tree_foreach(vma, root, start, last) \ 1937 for (vma = vma_interval_tree_iter_first(root, start, last); \ 1938 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 1939 1940void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 1941 struct rb_root *root); 1942void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 1943 struct rb_root *root); 1944struct anon_vma_chain *anon_vma_interval_tree_iter_first( 1945 struct rb_root *root, unsigned long start, unsigned long last); 1946struct anon_vma_chain *anon_vma_interval_tree_iter_next( 1947 struct anon_vma_chain *node, unsigned long start, unsigned long last); 1948#ifdef CONFIG_DEBUG_VM_RB 1949void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 1950#endif 1951 1952#define anon_vma_interval_tree_foreach(avc, root, start, last) \ 1953 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 1954 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 1955 1956/* mmap.c */ 1957extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 1958extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start, 1959 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert, 1960 struct vm_area_struct *expand); 1961static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start, 1962 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert) 1963{ 1964 return __vma_adjust(vma, start, end, pgoff, insert, NULL); 1965} 1966extern struct vm_area_struct *vma_merge(struct mm_struct *, 1967 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 1968 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 1969 struct mempolicy *, struct vm_userfaultfd_ctx); 1970extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 1971extern int split_vma(struct mm_struct *, 1972 struct vm_area_struct *, unsigned long addr, int new_below); 1973extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 1974extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 1975 struct rb_node **, struct rb_node *); 1976extern void unlink_file_vma(struct vm_area_struct *); 1977extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 1978 unsigned long addr, unsigned long len, pgoff_t pgoff, 1979 bool *need_rmap_locks); 1980extern void exit_mmap(struct mm_struct *); 1981 1982static inline int check_data_rlimit(unsigned long rlim, 1983 unsigned long new, 1984 unsigned long start, 1985 unsigned long end_data, 1986 unsigned long start_data) 1987{ 1988 if (rlim < RLIM_INFINITY) { 1989 if (((new - start) + (end_data - start_data)) > rlim) 1990 return -ENOSPC; 1991 } 1992 1993 return 0; 1994} 1995 1996extern int mm_take_all_locks(struct mm_struct *mm); 1997extern void mm_drop_all_locks(struct mm_struct *mm); 1998 1999extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 2000extern struct file *get_mm_exe_file(struct mm_struct *mm); 2001extern struct file *get_task_exe_file(struct task_struct *task); 2002 2003extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages); 2004extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages); 2005 2006extern bool vma_is_special_mapping(const struct vm_area_struct *vma, 2007 const struct vm_special_mapping *sm); 2008extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, 2009 unsigned long addr, unsigned long len, 2010 unsigned long flags, 2011 const struct vm_special_mapping *spec); 2012/* This is an obsolete alternative to _install_special_mapping. */ 2013extern int install_special_mapping(struct mm_struct *mm, 2014 unsigned long addr, unsigned long len, 2015 unsigned long flags, struct page **pages); 2016 2017extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 2018 2019extern unsigned long mmap_region(struct file *file, unsigned long addr, 2020 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff); 2021extern unsigned long do_mmap(struct file *file, unsigned long addr, 2022 unsigned long len, unsigned long prot, unsigned long flags, 2023 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate); 2024extern int do_munmap(struct mm_struct *, unsigned long, size_t); 2025 2026static inline unsigned long 2027do_mmap_pgoff(struct file *file, unsigned long addr, 2028 unsigned long len, unsigned long prot, unsigned long flags, 2029 unsigned long pgoff, unsigned long *populate) 2030{ 2031 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate); 2032} 2033 2034#ifdef CONFIG_MMU 2035extern int __mm_populate(unsigned long addr, unsigned long len, 2036 int ignore_errors); 2037static inline void mm_populate(unsigned long addr, unsigned long len) 2038{ 2039 /* Ignore errors */ 2040 (void) __mm_populate(addr, len, 1); 2041} 2042#else 2043static inline void mm_populate(unsigned long addr, unsigned long len) {} 2044#endif 2045 2046/* These take the mm semaphore themselves */ 2047extern int __must_check vm_brk(unsigned long, unsigned long); 2048extern int vm_munmap(unsigned long, size_t); 2049extern unsigned long __must_check vm_mmap(struct file *, unsigned long, 2050 unsigned long, unsigned long, 2051 unsigned long, unsigned long); 2052 2053struct vm_unmapped_area_info { 2054#define VM_UNMAPPED_AREA_TOPDOWN 1 2055 unsigned long flags; 2056 unsigned long length; 2057 unsigned long low_limit; 2058 unsigned long high_limit; 2059 unsigned long align_mask; 2060 unsigned long align_offset; 2061}; 2062 2063extern unsigned long unmapped_area(struct vm_unmapped_area_info *info); 2064extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info); 2065 2066/* 2067 * Search for an unmapped address range. 2068 * 2069 * We are looking for a range that: 2070 * - does not intersect with any VMA; 2071 * - is contained within the [low_limit, high_limit) interval; 2072 * - is at least the desired size. 2073 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask) 2074 */ 2075static inline unsigned long 2076vm_unmapped_area(struct vm_unmapped_area_info *info) 2077{ 2078 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN) 2079 return unmapped_area_topdown(info); 2080 else 2081 return unmapped_area(info); 2082} 2083 2084/* truncate.c */ 2085extern void truncate_inode_pages(struct address_space *, loff_t); 2086extern void truncate_inode_pages_range(struct address_space *, 2087 loff_t lstart, loff_t lend); 2088extern void truncate_inode_pages_final(struct address_space *); 2089 2090/* generic vm_area_ops exported for stackable file systems */ 2091extern int filemap_fault(struct vm_area_struct *, struct vm_fault *); 2092extern void filemap_map_pages(struct vm_fault *vmf, 2093 pgoff_t start_pgoff, pgoff_t end_pgoff); 2094extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf); 2095 2096/* mm/page-writeback.c */ 2097int write_one_page(struct page *page, int wait); 2098void task_dirty_inc(struct task_struct *tsk); 2099 2100/* readahead.c */ 2101#define VM_MAX_READAHEAD 128 /* kbytes */ 2102#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */ 2103 2104int force_page_cache_readahead(struct address_space *mapping, struct file *filp, 2105 pgoff_t offset, unsigned long nr_to_read); 2106 2107void page_cache_sync_readahead(struct address_space *mapping, 2108 struct file_ra_state *ra, 2109 struct file *filp, 2110 pgoff_t offset, 2111 unsigned long size); 2112 2113void page_cache_async_readahead(struct address_space *mapping, 2114 struct file_ra_state *ra, 2115 struct file *filp, 2116 struct page *pg, 2117 pgoff_t offset, 2118 unsigned long size); 2119 2120/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 2121extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 2122 2123/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */ 2124extern int expand_downwards(struct vm_area_struct *vma, 2125 unsigned long address); 2126#if VM_GROWSUP 2127extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 2128#else 2129 #define expand_upwards(vma, address) (0) 2130#endif 2131 2132/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 2133extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 2134extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 2135 struct vm_area_struct **pprev); 2136 2137/* Look up the first VMA which intersects the interval start_addr..end_addr-1, 2138 NULL if none. Assume start_addr < end_addr. */ 2139static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) 2140{ 2141 struct vm_area_struct * vma = find_vma(mm,start_addr); 2142 2143 if (vma && end_addr <= vma->vm_start) 2144 vma = NULL; 2145 return vma; 2146} 2147 2148static inline unsigned long vma_pages(struct vm_area_struct *vma) 2149{ 2150 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 2151} 2152 2153/* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 2154static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 2155 unsigned long vm_start, unsigned long vm_end) 2156{ 2157 struct vm_area_struct *vma = find_vma(mm, vm_start); 2158 2159 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 2160 vma = NULL; 2161 2162 return vma; 2163} 2164 2165#ifdef CONFIG_MMU 2166pgprot_t vm_get_page_prot(unsigned long vm_flags); 2167void vma_set_page_prot(struct vm_area_struct *vma); 2168#else 2169static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 2170{ 2171 return __pgprot(0); 2172} 2173static inline void vma_set_page_prot(struct vm_area_struct *vma) 2174{ 2175 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 2176} 2177#endif 2178 2179#ifdef CONFIG_NUMA_BALANCING 2180unsigned long change_prot_numa(struct vm_area_struct *vma, 2181 unsigned long start, unsigned long end); 2182#endif 2183 2184struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 2185int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 2186 unsigned long pfn, unsigned long size, pgprot_t); 2187int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 2188int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2189 unsigned long pfn); 2190int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 2191 unsigned long pfn, pgprot_t pgprot); 2192int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2193 pfn_t pfn); 2194int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 2195 2196 2197struct page *follow_page_mask(struct vm_area_struct *vma, 2198 unsigned long address, unsigned int foll_flags, 2199 unsigned int *page_mask); 2200 2201static inline struct page *follow_page(struct vm_area_struct *vma, 2202 unsigned long address, unsigned int foll_flags) 2203{ 2204 unsigned int unused_page_mask; 2205 return follow_page_mask(vma, address, foll_flags, &unused_page_mask); 2206} 2207 2208#define FOLL_WRITE 0x01 /* check pte is writable */ 2209#define FOLL_TOUCH 0x02 /* mark page accessed */ 2210#define FOLL_GET 0x04 /* do get_page on page */ 2211#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */ 2212#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */ 2213#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO 2214 * and return without waiting upon it */ 2215#define FOLL_POPULATE 0x40 /* fault in page */ 2216#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */ 2217#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */ 2218#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */ 2219#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */ 2220#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */ 2221#define FOLL_MLOCK 0x1000 /* lock present pages */ 2222#define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */ 2223#define FOLL_COW 0x4000 /* internal GUP flag */ 2224 2225typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr, 2226 void *data); 2227extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 2228 unsigned long size, pte_fn_t fn, void *data); 2229 2230 2231#ifdef CONFIG_PAGE_POISONING 2232extern bool page_poisoning_enabled(void); 2233extern void kernel_poison_pages(struct page *page, int numpages, int enable); 2234extern bool page_is_poisoned(struct page *page); 2235#else 2236static inline bool page_poisoning_enabled(void) { return false; } 2237static inline void kernel_poison_pages(struct page *page, int numpages, 2238 int enable) { } 2239static inline bool page_is_poisoned(struct page *page) { return false; } 2240#endif 2241 2242#ifdef CONFIG_DEBUG_PAGEALLOC 2243extern bool _debug_pagealloc_enabled; 2244extern void __kernel_map_pages(struct page *page, int numpages, int enable); 2245 2246static inline bool debug_pagealloc_enabled(void) 2247{ 2248 return _debug_pagealloc_enabled; 2249} 2250 2251static inline void 2252kernel_map_pages(struct page *page, int numpages, int enable) 2253{ 2254 if (!debug_pagealloc_enabled()) 2255 return; 2256 2257 __kernel_map_pages(page, numpages, enable); 2258} 2259#ifdef CONFIG_HIBERNATION 2260extern bool kernel_page_present(struct page *page); 2261#endif /* CONFIG_HIBERNATION */ 2262#else /* CONFIG_DEBUG_PAGEALLOC */ 2263static inline void 2264kernel_map_pages(struct page *page, int numpages, int enable) {} 2265#ifdef CONFIG_HIBERNATION 2266static inline bool kernel_page_present(struct page *page) { return true; } 2267#endif /* CONFIG_HIBERNATION */ 2268static inline bool debug_pagealloc_enabled(void) 2269{ 2270 return false; 2271} 2272#endif /* CONFIG_DEBUG_PAGEALLOC */ 2273 2274#ifdef __HAVE_ARCH_GATE_AREA 2275extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 2276extern int in_gate_area_no_mm(unsigned long addr); 2277extern int in_gate_area(struct mm_struct *mm, unsigned long addr); 2278#else 2279static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 2280{ 2281 return NULL; 2282} 2283static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } 2284static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) 2285{ 2286 return 0; 2287} 2288#endif /* __HAVE_ARCH_GATE_AREA */ 2289 2290extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm); 2291 2292#ifdef CONFIG_SYSCTL 2293extern int sysctl_drop_caches; 2294int drop_caches_sysctl_handler(struct ctl_table *, int, 2295 void __user *, size_t *, loff_t *); 2296#endif 2297 2298void drop_slab(void); 2299void drop_slab_node(int nid); 2300 2301#ifndef CONFIG_MMU 2302#define randomize_va_space 0 2303#else 2304extern int randomize_va_space; 2305#endif 2306 2307const char * arch_vma_name(struct vm_area_struct *vma); 2308void print_vma_addr(char *prefix, unsigned long rip); 2309 2310void sparse_mem_maps_populate_node(struct page **map_map, 2311 unsigned long pnum_begin, 2312 unsigned long pnum_end, 2313 unsigned long map_count, 2314 int nodeid); 2315 2316struct page *sparse_mem_map_populate(unsigned long pnum, int nid); 2317pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 2318pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node); 2319pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 2320pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node); 2321void *vmemmap_alloc_block(unsigned long size, int node); 2322struct vmem_altmap; 2323void *__vmemmap_alloc_block_buf(unsigned long size, int node, 2324 struct vmem_altmap *altmap); 2325static inline void *vmemmap_alloc_block_buf(unsigned long size, int node) 2326{ 2327 return __vmemmap_alloc_block_buf(size, node, NULL); 2328} 2329 2330void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 2331int vmemmap_populate_basepages(unsigned long start, unsigned long end, 2332 int node); 2333int vmemmap_populate(unsigned long start, unsigned long end, int node); 2334void vmemmap_populate_print_last(void); 2335#ifdef CONFIG_MEMORY_HOTPLUG 2336void vmemmap_free(unsigned long start, unsigned long end); 2337#endif 2338void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, 2339 unsigned long size); 2340 2341enum mf_flags { 2342 MF_COUNT_INCREASED = 1 << 0, 2343 MF_ACTION_REQUIRED = 1 << 1, 2344 MF_MUST_KILL = 1 << 2, 2345 MF_SOFT_OFFLINE = 1 << 3, 2346}; 2347extern int memory_failure(unsigned long pfn, int trapno, int flags); 2348extern void memory_failure_queue(unsigned long pfn, int trapno, int flags); 2349extern int unpoison_memory(unsigned long pfn); 2350extern int get_hwpoison_page(struct page *page); 2351#define put_hwpoison_page(page) put_page(page) 2352extern int sysctl_memory_failure_early_kill; 2353extern int sysctl_memory_failure_recovery; 2354extern void shake_page(struct page *p, int access); 2355extern atomic_long_t num_poisoned_pages; 2356extern int soft_offline_page(struct page *page, int flags); 2357 2358 2359/* 2360 * Error handlers for various types of pages. 2361 */ 2362enum mf_result { 2363 MF_IGNORED, /* Error: cannot be handled */ 2364 MF_FAILED, /* Error: handling failed */ 2365 MF_DELAYED, /* Will be handled later */ 2366 MF_RECOVERED, /* Successfully recovered */ 2367}; 2368 2369enum mf_action_page_type { 2370 MF_MSG_KERNEL, 2371 MF_MSG_KERNEL_HIGH_ORDER, 2372 MF_MSG_SLAB, 2373 MF_MSG_DIFFERENT_COMPOUND, 2374 MF_MSG_POISONED_HUGE, 2375 MF_MSG_HUGE, 2376 MF_MSG_FREE_HUGE, 2377 MF_MSG_UNMAP_FAILED, 2378 MF_MSG_DIRTY_SWAPCACHE, 2379 MF_MSG_CLEAN_SWAPCACHE, 2380 MF_MSG_DIRTY_MLOCKED_LRU, 2381 MF_MSG_CLEAN_MLOCKED_LRU, 2382 MF_MSG_DIRTY_UNEVICTABLE_LRU, 2383 MF_MSG_CLEAN_UNEVICTABLE_LRU, 2384 MF_MSG_DIRTY_LRU, 2385 MF_MSG_CLEAN_LRU, 2386 MF_MSG_TRUNCATED_LRU, 2387 MF_MSG_BUDDY, 2388 MF_MSG_BUDDY_2ND, 2389 MF_MSG_UNKNOWN, 2390}; 2391 2392#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 2393extern void clear_huge_page(struct page *page, 2394 unsigned long addr, 2395 unsigned int pages_per_huge_page); 2396extern void copy_user_huge_page(struct page *dst, struct page *src, 2397 unsigned long addr, struct vm_area_struct *vma, 2398 unsigned int pages_per_huge_page); 2399#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 2400 2401extern struct page_ext_operations debug_guardpage_ops; 2402extern struct page_ext_operations page_poisoning_ops; 2403 2404#ifdef CONFIG_DEBUG_PAGEALLOC 2405extern unsigned int _debug_guardpage_minorder; 2406extern bool _debug_guardpage_enabled; 2407 2408static inline unsigned int debug_guardpage_minorder(void) 2409{ 2410 return _debug_guardpage_minorder; 2411} 2412 2413static inline bool debug_guardpage_enabled(void) 2414{ 2415 return _debug_guardpage_enabled; 2416} 2417 2418static inline bool page_is_guard(struct page *page) 2419{ 2420 struct page_ext *page_ext; 2421 2422 if (!debug_guardpage_enabled()) 2423 return false; 2424 2425 page_ext = lookup_page_ext(page); 2426 if (unlikely(!page_ext)) 2427 return false; 2428 2429 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); 2430} 2431#else 2432static inline unsigned int debug_guardpage_minorder(void) { return 0; } 2433static inline bool debug_guardpage_enabled(void) { return false; } 2434static inline bool page_is_guard(struct page *page) { return false; } 2435#endif /* CONFIG_DEBUG_PAGEALLOC */ 2436 2437#if MAX_NUMNODES > 1 2438void __init setup_nr_node_ids(void); 2439#else 2440static inline void setup_nr_node_ids(void) {} 2441#endif 2442 2443#endif /* __KERNEL__ */ 2444#endif /* _LINUX_MM_H */