at v4.10 43 kB view raw
1/* 2 * 3 * Copyright (c) 2011, Microsoft Corporation. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 * 14 * You should have received a copy of the GNU General Public License along with 15 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple 16 * Place - Suite 330, Boston, MA 02111-1307 USA. 17 * 18 * Authors: 19 * Haiyang Zhang <haiyangz@microsoft.com> 20 * Hank Janssen <hjanssen@microsoft.com> 21 * K. Y. Srinivasan <kys@microsoft.com> 22 * 23 */ 24 25#ifndef _HYPERV_H 26#define _HYPERV_H 27 28#include <uapi/linux/hyperv.h> 29#include <uapi/asm/hyperv.h> 30 31#include <linux/types.h> 32#include <linux/scatterlist.h> 33#include <linux/list.h> 34#include <linux/timer.h> 35#include <linux/workqueue.h> 36#include <linux/completion.h> 37#include <linux/device.h> 38#include <linux/mod_devicetable.h> 39 40 41#define MAX_PAGE_BUFFER_COUNT 32 42#define MAX_MULTIPAGE_BUFFER_COUNT 32 /* 128K */ 43 44#pragma pack(push, 1) 45 46/* Single-page buffer */ 47struct hv_page_buffer { 48 u32 len; 49 u32 offset; 50 u64 pfn; 51}; 52 53/* Multiple-page buffer */ 54struct hv_multipage_buffer { 55 /* Length and Offset determines the # of pfns in the array */ 56 u32 len; 57 u32 offset; 58 u64 pfn_array[MAX_MULTIPAGE_BUFFER_COUNT]; 59}; 60 61/* 62 * Multiple-page buffer array; the pfn array is variable size: 63 * The number of entries in the PFN array is determined by 64 * "len" and "offset". 65 */ 66struct hv_mpb_array { 67 /* Length and Offset determines the # of pfns in the array */ 68 u32 len; 69 u32 offset; 70 u64 pfn_array[]; 71}; 72 73/* 0x18 includes the proprietary packet header */ 74#define MAX_PAGE_BUFFER_PACKET (0x18 + \ 75 (sizeof(struct hv_page_buffer) * \ 76 MAX_PAGE_BUFFER_COUNT)) 77#define MAX_MULTIPAGE_BUFFER_PACKET (0x18 + \ 78 sizeof(struct hv_multipage_buffer)) 79 80 81#pragma pack(pop) 82 83struct hv_ring_buffer { 84 /* Offset in bytes from the start of ring data below */ 85 u32 write_index; 86 87 /* Offset in bytes from the start of ring data below */ 88 u32 read_index; 89 90 u32 interrupt_mask; 91 92 /* 93 * Win8 uses some of the reserved bits to implement 94 * interrupt driven flow management. On the send side 95 * we can request that the receiver interrupt the sender 96 * when the ring transitions from being full to being able 97 * to handle a message of size "pending_send_sz". 98 * 99 * Add necessary state for this enhancement. 100 */ 101 u32 pending_send_sz; 102 103 u32 reserved1[12]; 104 105 union { 106 struct { 107 u32 feat_pending_send_sz:1; 108 }; 109 u32 value; 110 } feature_bits; 111 112 /* Pad it to PAGE_SIZE so that data starts on page boundary */ 113 u8 reserved2[4028]; 114 115 /* 116 * Ring data starts here + RingDataStartOffset 117 * !!! DO NOT place any fields below this !!! 118 */ 119 u8 buffer[0]; 120} __packed; 121 122struct hv_ring_buffer_info { 123 struct hv_ring_buffer *ring_buffer; 124 u32 ring_size; /* Include the shared header */ 125 spinlock_t ring_lock; 126 127 u32 ring_datasize; /* < ring_size */ 128 u32 ring_data_startoffset; 129 u32 priv_write_index; 130 u32 priv_read_index; 131 u32 cached_read_index; 132}; 133 134/* 135 * 136 * hv_get_ringbuffer_availbytes() 137 * 138 * Get number of bytes available to read and to write to 139 * for the specified ring buffer 140 */ 141static inline void 142hv_get_ringbuffer_availbytes(struct hv_ring_buffer_info *rbi, 143 u32 *read, u32 *write) 144{ 145 u32 read_loc, write_loc, dsize; 146 147 /* Capture the read/write indices before they changed */ 148 read_loc = rbi->ring_buffer->read_index; 149 write_loc = rbi->ring_buffer->write_index; 150 dsize = rbi->ring_datasize; 151 152 *write = write_loc >= read_loc ? dsize - (write_loc - read_loc) : 153 read_loc - write_loc; 154 *read = dsize - *write; 155} 156 157static inline u32 hv_get_bytes_to_read(struct hv_ring_buffer_info *rbi) 158{ 159 u32 read_loc, write_loc, dsize, read; 160 161 dsize = rbi->ring_datasize; 162 read_loc = rbi->ring_buffer->read_index; 163 write_loc = READ_ONCE(rbi->ring_buffer->write_index); 164 165 read = write_loc >= read_loc ? (write_loc - read_loc) : 166 (dsize - read_loc) + write_loc; 167 168 return read; 169} 170 171static inline u32 hv_get_bytes_to_write(struct hv_ring_buffer_info *rbi) 172{ 173 u32 read_loc, write_loc, dsize, write; 174 175 dsize = rbi->ring_datasize; 176 read_loc = READ_ONCE(rbi->ring_buffer->read_index); 177 write_loc = rbi->ring_buffer->write_index; 178 179 write = write_loc >= read_loc ? dsize - (write_loc - read_loc) : 180 read_loc - write_loc; 181 return write; 182} 183 184static inline u32 hv_get_cached_bytes_to_write( 185 const struct hv_ring_buffer_info *rbi) 186{ 187 u32 read_loc, write_loc, dsize, write; 188 189 dsize = rbi->ring_datasize; 190 read_loc = rbi->cached_read_index; 191 write_loc = rbi->ring_buffer->write_index; 192 193 write = write_loc >= read_loc ? dsize - (write_loc - read_loc) : 194 read_loc - write_loc; 195 return write; 196} 197/* 198 * VMBUS version is 32 bit entity broken up into 199 * two 16 bit quantities: major_number. minor_number. 200 * 201 * 0 . 13 (Windows Server 2008) 202 * 1 . 1 (Windows 7) 203 * 2 . 4 (Windows 8) 204 * 3 . 0 (Windows 8 R2) 205 * 4 . 0 (Windows 10) 206 */ 207 208#define VERSION_WS2008 ((0 << 16) | (13)) 209#define VERSION_WIN7 ((1 << 16) | (1)) 210#define VERSION_WIN8 ((2 << 16) | (4)) 211#define VERSION_WIN8_1 ((3 << 16) | (0)) 212#define VERSION_WIN10 ((4 << 16) | (0)) 213 214#define VERSION_INVAL -1 215 216#define VERSION_CURRENT VERSION_WIN10 217 218/* Make maximum size of pipe payload of 16K */ 219#define MAX_PIPE_DATA_PAYLOAD (sizeof(u8) * 16384) 220 221/* Define PipeMode values. */ 222#define VMBUS_PIPE_TYPE_BYTE 0x00000000 223#define VMBUS_PIPE_TYPE_MESSAGE 0x00000004 224 225/* The size of the user defined data buffer for non-pipe offers. */ 226#define MAX_USER_DEFINED_BYTES 120 227 228/* The size of the user defined data buffer for pipe offers. */ 229#define MAX_PIPE_USER_DEFINED_BYTES 116 230 231/* 232 * At the center of the Channel Management library is the Channel Offer. This 233 * struct contains the fundamental information about an offer. 234 */ 235struct vmbus_channel_offer { 236 uuid_le if_type; 237 uuid_le if_instance; 238 239 /* 240 * These two fields are not currently used. 241 */ 242 u64 reserved1; 243 u64 reserved2; 244 245 u16 chn_flags; 246 u16 mmio_megabytes; /* in bytes * 1024 * 1024 */ 247 248 union { 249 /* Non-pipes: The user has MAX_USER_DEFINED_BYTES bytes. */ 250 struct { 251 unsigned char user_def[MAX_USER_DEFINED_BYTES]; 252 } std; 253 254 /* 255 * Pipes: 256 * The following sructure is an integrated pipe protocol, which 257 * is implemented on top of standard user-defined data. Pipe 258 * clients have MAX_PIPE_USER_DEFINED_BYTES left for their own 259 * use. 260 */ 261 struct { 262 u32 pipe_mode; 263 unsigned char user_def[MAX_PIPE_USER_DEFINED_BYTES]; 264 } pipe; 265 } u; 266 /* 267 * The sub_channel_index is defined in win8. 268 */ 269 u16 sub_channel_index; 270 u16 reserved3; 271} __packed; 272 273/* Server Flags */ 274#define VMBUS_CHANNEL_ENUMERATE_DEVICE_INTERFACE 1 275#define VMBUS_CHANNEL_SERVER_SUPPORTS_TRANSFER_PAGES 2 276#define VMBUS_CHANNEL_SERVER_SUPPORTS_GPADLS 4 277#define VMBUS_CHANNEL_NAMED_PIPE_MODE 0x10 278#define VMBUS_CHANNEL_LOOPBACK_OFFER 0x100 279#define VMBUS_CHANNEL_PARENT_OFFER 0x200 280#define VMBUS_CHANNEL_REQUEST_MONITORED_NOTIFICATION 0x400 281#define VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER 0x2000 282 283struct vmpacket_descriptor { 284 u16 type; 285 u16 offset8; 286 u16 len8; 287 u16 flags; 288 u64 trans_id; 289} __packed; 290 291struct vmpacket_header { 292 u32 prev_pkt_start_offset; 293 struct vmpacket_descriptor descriptor; 294} __packed; 295 296struct vmtransfer_page_range { 297 u32 byte_count; 298 u32 byte_offset; 299} __packed; 300 301struct vmtransfer_page_packet_header { 302 struct vmpacket_descriptor d; 303 u16 xfer_pageset_id; 304 u8 sender_owns_set; 305 u8 reserved; 306 u32 range_cnt; 307 struct vmtransfer_page_range ranges[1]; 308} __packed; 309 310struct vmgpadl_packet_header { 311 struct vmpacket_descriptor d; 312 u32 gpadl; 313 u32 reserved; 314} __packed; 315 316struct vmadd_remove_transfer_page_set { 317 struct vmpacket_descriptor d; 318 u32 gpadl; 319 u16 xfer_pageset_id; 320 u16 reserved; 321} __packed; 322 323/* 324 * This structure defines a range in guest physical space that can be made to 325 * look virtually contiguous. 326 */ 327struct gpa_range { 328 u32 byte_count; 329 u32 byte_offset; 330 u64 pfn_array[0]; 331}; 332 333/* 334 * This is the format for an Establish Gpadl packet, which contains a handle by 335 * which this GPADL will be known and a set of GPA ranges associated with it. 336 * This can be converted to a MDL by the guest OS. If there are multiple GPA 337 * ranges, then the resulting MDL will be "chained," representing multiple VA 338 * ranges. 339 */ 340struct vmestablish_gpadl { 341 struct vmpacket_descriptor d; 342 u32 gpadl; 343 u32 range_cnt; 344 struct gpa_range range[1]; 345} __packed; 346 347/* 348 * This is the format for a Teardown Gpadl packet, which indicates that the 349 * GPADL handle in the Establish Gpadl packet will never be referenced again. 350 */ 351struct vmteardown_gpadl { 352 struct vmpacket_descriptor d; 353 u32 gpadl; 354 u32 reserved; /* for alignment to a 8-byte boundary */ 355} __packed; 356 357/* 358 * This is the format for a GPA-Direct packet, which contains a set of GPA 359 * ranges, in addition to commands and/or data. 360 */ 361struct vmdata_gpa_direct { 362 struct vmpacket_descriptor d; 363 u32 reserved; 364 u32 range_cnt; 365 struct gpa_range range[1]; 366} __packed; 367 368/* This is the format for a Additional Data Packet. */ 369struct vmadditional_data { 370 struct vmpacket_descriptor d; 371 u64 total_bytes; 372 u32 offset; 373 u32 byte_cnt; 374 unsigned char data[1]; 375} __packed; 376 377union vmpacket_largest_possible_header { 378 struct vmpacket_descriptor simple_hdr; 379 struct vmtransfer_page_packet_header xfer_page_hdr; 380 struct vmgpadl_packet_header gpadl_hdr; 381 struct vmadd_remove_transfer_page_set add_rm_xfer_page_hdr; 382 struct vmestablish_gpadl establish_gpadl_hdr; 383 struct vmteardown_gpadl teardown_gpadl_hdr; 384 struct vmdata_gpa_direct data_gpa_direct_hdr; 385}; 386 387#define VMPACKET_DATA_START_ADDRESS(__packet) \ 388 (void *)(((unsigned char *)__packet) + \ 389 ((struct vmpacket_descriptor)__packet)->offset8 * 8) 390 391#define VMPACKET_DATA_LENGTH(__packet) \ 392 ((((struct vmpacket_descriptor)__packet)->len8 - \ 393 ((struct vmpacket_descriptor)__packet)->offset8) * 8) 394 395#define VMPACKET_TRANSFER_MODE(__packet) \ 396 (((struct IMPACT)__packet)->type) 397 398enum vmbus_packet_type { 399 VM_PKT_INVALID = 0x0, 400 VM_PKT_SYNCH = 0x1, 401 VM_PKT_ADD_XFER_PAGESET = 0x2, 402 VM_PKT_RM_XFER_PAGESET = 0x3, 403 VM_PKT_ESTABLISH_GPADL = 0x4, 404 VM_PKT_TEARDOWN_GPADL = 0x5, 405 VM_PKT_DATA_INBAND = 0x6, 406 VM_PKT_DATA_USING_XFER_PAGES = 0x7, 407 VM_PKT_DATA_USING_GPADL = 0x8, 408 VM_PKT_DATA_USING_GPA_DIRECT = 0x9, 409 VM_PKT_CANCEL_REQUEST = 0xa, 410 VM_PKT_COMP = 0xb, 411 VM_PKT_DATA_USING_ADDITIONAL_PKT = 0xc, 412 VM_PKT_ADDITIONAL_DATA = 0xd 413}; 414 415#define VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED 1 416 417 418/* Version 1 messages */ 419enum vmbus_channel_message_type { 420 CHANNELMSG_INVALID = 0, 421 CHANNELMSG_OFFERCHANNEL = 1, 422 CHANNELMSG_RESCIND_CHANNELOFFER = 2, 423 CHANNELMSG_REQUESTOFFERS = 3, 424 CHANNELMSG_ALLOFFERS_DELIVERED = 4, 425 CHANNELMSG_OPENCHANNEL = 5, 426 CHANNELMSG_OPENCHANNEL_RESULT = 6, 427 CHANNELMSG_CLOSECHANNEL = 7, 428 CHANNELMSG_GPADL_HEADER = 8, 429 CHANNELMSG_GPADL_BODY = 9, 430 CHANNELMSG_GPADL_CREATED = 10, 431 CHANNELMSG_GPADL_TEARDOWN = 11, 432 CHANNELMSG_GPADL_TORNDOWN = 12, 433 CHANNELMSG_RELID_RELEASED = 13, 434 CHANNELMSG_INITIATE_CONTACT = 14, 435 CHANNELMSG_VERSION_RESPONSE = 15, 436 CHANNELMSG_UNLOAD = 16, 437 CHANNELMSG_UNLOAD_RESPONSE = 17, 438 CHANNELMSG_18 = 18, 439 CHANNELMSG_19 = 19, 440 CHANNELMSG_20 = 20, 441 CHANNELMSG_TL_CONNECT_REQUEST = 21, 442 CHANNELMSG_COUNT 443}; 444 445struct vmbus_channel_message_header { 446 enum vmbus_channel_message_type msgtype; 447 u32 padding; 448} __packed; 449 450/* Query VMBus Version parameters */ 451struct vmbus_channel_query_vmbus_version { 452 struct vmbus_channel_message_header header; 453 u32 version; 454} __packed; 455 456/* VMBus Version Supported parameters */ 457struct vmbus_channel_version_supported { 458 struct vmbus_channel_message_header header; 459 u8 version_supported; 460} __packed; 461 462/* Offer Channel parameters */ 463struct vmbus_channel_offer_channel { 464 struct vmbus_channel_message_header header; 465 struct vmbus_channel_offer offer; 466 u32 child_relid; 467 u8 monitorid; 468 /* 469 * win7 and beyond splits this field into a bit field. 470 */ 471 u8 monitor_allocated:1; 472 u8 reserved:7; 473 /* 474 * These are new fields added in win7 and later. 475 * Do not access these fields without checking the 476 * negotiated protocol. 477 * 478 * If "is_dedicated_interrupt" is set, we must not set the 479 * associated bit in the channel bitmap while sending the 480 * interrupt to the host. 481 * 482 * connection_id is to be used in signaling the host. 483 */ 484 u16 is_dedicated_interrupt:1; 485 u16 reserved1:15; 486 u32 connection_id; 487} __packed; 488 489/* Rescind Offer parameters */ 490struct vmbus_channel_rescind_offer { 491 struct vmbus_channel_message_header header; 492 u32 child_relid; 493} __packed; 494 495/* 496 * Request Offer -- no parameters, SynIC message contains the partition ID 497 * Set Snoop -- no parameters, SynIC message contains the partition ID 498 * Clear Snoop -- no parameters, SynIC message contains the partition ID 499 * All Offers Delivered -- no parameters, SynIC message contains the partition 500 * ID 501 * Flush Client -- no parameters, SynIC message contains the partition ID 502 */ 503 504/* Open Channel parameters */ 505struct vmbus_channel_open_channel { 506 struct vmbus_channel_message_header header; 507 508 /* Identifies the specific VMBus channel that is being opened. */ 509 u32 child_relid; 510 511 /* ID making a particular open request at a channel offer unique. */ 512 u32 openid; 513 514 /* GPADL for the channel's ring buffer. */ 515 u32 ringbuffer_gpadlhandle; 516 517 /* 518 * Starting with win8, this field will be used to specify 519 * the target virtual processor on which to deliver the interrupt for 520 * the host to guest communication. 521 * Prior to win8, incoming channel interrupts would only 522 * be delivered on cpu 0. Setting this value to 0 would 523 * preserve the earlier behavior. 524 */ 525 u32 target_vp; 526 527 /* 528 * The upstream ring buffer begins at offset zero in the memory 529 * described by RingBufferGpadlHandle. The downstream ring buffer 530 * follows it at this offset (in pages). 531 */ 532 u32 downstream_ringbuffer_pageoffset; 533 534 /* User-specific data to be passed along to the server endpoint. */ 535 unsigned char userdata[MAX_USER_DEFINED_BYTES]; 536} __packed; 537 538/* Open Channel Result parameters */ 539struct vmbus_channel_open_result { 540 struct vmbus_channel_message_header header; 541 u32 child_relid; 542 u32 openid; 543 u32 status; 544} __packed; 545 546/* Close channel parameters; */ 547struct vmbus_channel_close_channel { 548 struct vmbus_channel_message_header header; 549 u32 child_relid; 550} __packed; 551 552/* Channel Message GPADL */ 553#define GPADL_TYPE_RING_BUFFER 1 554#define GPADL_TYPE_SERVER_SAVE_AREA 2 555#define GPADL_TYPE_TRANSACTION 8 556 557/* 558 * The number of PFNs in a GPADL message is defined by the number of 559 * pages that would be spanned by ByteCount and ByteOffset. If the 560 * implied number of PFNs won't fit in this packet, there will be a 561 * follow-up packet that contains more. 562 */ 563struct vmbus_channel_gpadl_header { 564 struct vmbus_channel_message_header header; 565 u32 child_relid; 566 u32 gpadl; 567 u16 range_buflen; 568 u16 rangecount; 569 struct gpa_range range[0]; 570} __packed; 571 572/* This is the followup packet that contains more PFNs. */ 573struct vmbus_channel_gpadl_body { 574 struct vmbus_channel_message_header header; 575 u32 msgnumber; 576 u32 gpadl; 577 u64 pfn[0]; 578} __packed; 579 580struct vmbus_channel_gpadl_created { 581 struct vmbus_channel_message_header header; 582 u32 child_relid; 583 u32 gpadl; 584 u32 creation_status; 585} __packed; 586 587struct vmbus_channel_gpadl_teardown { 588 struct vmbus_channel_message_header header; 589 u32 child_relid; 590 u32 gpadl; 591} __packed; 592 593struct vmbus_channel_gpadl_torndown { 594 struct vmbus_channel_message_header header; 595 u32 gpadl; 596} __packed; 597 598struct vmbus_channel_relid_released { 599 struct vmbus_channel_message_header header; 600 u32 child_relid; 601} __packed; 602 603struct vmbus_channel_initiate_contact { 604 struct vmbus_channel_message_header header; 605 u32 vmbus_version_requested; 606 u32 target_vcpu; /* The VCPU the host should respond to */ 607 u64 interrupt_page; 608 u64 monitor_page1; 609 u64 monitor_page2; 610} __packed; 611 612/* Hyper-V socket: guest's connect()-ing to host */ 613struct vmbus_channel_tl_connect_request { 614 struct vmbus_channel_message_header header; 615 uuid_le guest_endpoint_id; 616 uuid_le host_service_id; 617} __packed; 618 619struct vmbus_channel_version_response { 620 struct vmbus_channel_message_header header; 621 u8 version_supported; 622} __packed; 623 624enum vmbus_channel_state { 625 CHANNEL_OFFER_STATE, 626 CHANNEL_OPENING_STATE, 627 CHANNEL_OPEN_STATE, 628 CHANNEL_OPENED_STATE, 629}; 630 631/* 632 * Represents each channel msg on the vmbus connection This is a 633 * variable-size data structure depending on the msg type itself 634 */ 635struct vmbus_channel_msginfo { 636 /* Bookkeeping stuff */ 637 struct list_head msglistentry; 638 639 /* So far, this is only used to handle gpadl body message */ 640 struct list_head submsglist; 641 642 /* Synchronize the request/response if needed */ 643 struct completion waitevent; 644 union { 645 struct vmbus_channel_version_supported version_supported; 646 struct vmbus_channel_open_result open_result; 647 struct vmbus_channel_gpadl_torndown gpadl_torndown; 648 struct vmbus_channel_gpadl_created gpadl_created; 649 struct vmbus_channel_version_response version_response; 650 } response; 651 652 u32 msgsize; 653 /* 654 * The channel message that goes out on the "wire". 655 * It will contain at minimum the VMBUS_CHANNEL_MESSAGE_HEADER header 656 */ 657 unsigned char msg[0]; 658}; 659 660struct vmbus_close_msg { 661 struct vmbus_channel_msginfo info; 662 struct vmbus_channel_close_channel msg; 663}; 664 665/* Define connection identifier type. */ 666union hv_connection_id { 667 u32 asu32; 668 struct { 669 u32 id:24; 670 u32 reserved:8; 671 } u; 672}; 673 674/* Definition of the hv_signal_event hypercall input structure. */ 675struct hv_input_signal_event { 676 union hv_connection_id connectionid; 677 u16 flag_number; 678 u16 rsvdz; 679}; 680 681struct hv_input_signal_event_buffer { 682 u64 align8; 683 struct hv_input_signal_event event; 684}; 685 686enum hv_signal_policy { 687 HV_SIGNAL_POLICY_DEFAULT = 0, 688 HV_SIGNAL_POLICY_EXPLICIT, 689}; 690 691enum hv_numa_policy { 692 HV_BALANCED = 0, 693 HV_LOCALIZED, 694}; 695 696enum vmbus_device_type { 697 HV_IDE = 0, 698 HV_SCSI, 699 HV_FC, 700 HV_NIC, 701 HV_ND, 702 HV_PCIE, 703 HV_FB, 704 HV_KBD, 705 HV_MOUSE, 706 HV_KVP, 707 HV_TS, 708 HV_HB, 709 HV_SHUTDOWN, 710 HV_FCOPY, 711 HV_BACKUP, 712 HV_DM, 713 HV_UNKNOWN, 714}; 715 716struct vmbus_device { 717 u16 dev_type; 718 uuid_le guid; 719 bool perf_device; 720}; 721 722struct vmbus_channel { 723 struct list_head listentry; 724 725 struct hv_device *device_obj; 726 727 enum vmbus_channel_state state; 728 729 struct vmbus_channel_offer_channel offermsg; 730 /* 731 * These are based on the OfferMsg.MonitorId. 732 * Save it here for easy access. 733 */ 734 u8 monitor_grp; 735 u8 monitor_bit; 736 737 bool rescind; /* got rescind msg */ 738 739 u32 ringbuffer_gpadlhandle; 740 741 /* Allocated memory for ring buffer */ 742 void *ringbuffer_pages; 743 u32 ringbuffer_pagecount; 744 struct hv_ring_buffer_info outbound; /* send to parent */ 745 struct hv_ring_buffer_info inbound; /* receive from parent */ 746 spinlock_t inbound_lock; 747 748 struct vmbus_close_msg close_msg; 749 750 /* Channel callback are invoked in this workqueue context */ 751 /* HANDLE dataWorkQueue; */ 752 753 void (*onchannel_callback)(void *context); 754 void *channel_callback_context; 755 756 /* 757 * A channel can be marked for efficient (batched) 758 * reading: 759 * If batched_reading is set to "true", we read until the 760 * channel is empty and hold off interrupts from the host 761 * during the entire read process. 762 * If batched_reading is set to "false", the client is not 763 * going to perform batched reading. 764 * 765 * By default we will enable batched reading; specific 766 * drivers that don't want this behavior can turn it off. 767 */ 768 769 bool batched_reading; 770 771 bool is_dedicated_interrupt; 772 struct hv_input_signal_event_buffer sig_buf; 773 struct hv_input_signal_event *sig_event; 774 775 /* 776 * Starting with win8, this field will be used to specify 777 * the target virtual processor on which to deliver the interrupt for 778 * the host to guest communication. 779 * Prior to win8, incoming channel interrupts would only 780 * be delivered on cpu 0. Setting this value to 0 would 781 * preserve the earlier behavior. 782 */ 783 u32 target_vp; 784 /* The corresponding CPUID in the guest */ 785 u32 target_cpu; 786 /* 787 * State to manage the CPU affiliation of channels. 788 */ 789 struct cpumask alloced_cpus_in_node; 790 int numa_node; 791 /* 792 * Support for sub-channels. For high performance devices, 793 * it will be useful to have multiple sub-channels to support 794 * a scalable communication infrastructure with the host. 795 * The support for sub-channels is implemented as an extention 796 * to the current infrastructure. 797 * The initial offer is considered the primary channel and this 798 * offer message will indicate if the host supports sub-channels. 799 * The guest is free to ask for sub-channels to be offerred and can 800 * open these sub-channels as a normal "primary" channel. However, 801 * all sub-channels will have the same type and instance guids as the 802 * primary channel. Requests sent on a given channel will result in a 803 * response on the same channel. 804 */ 805 806 /* 807 * Sub-channel creation callback. This callback will be called in 808 * process context when a sub-channel offer is received from the host. 809 * The guest can open the sub-channel in the context of this callback. 810 */ 811 void (*sc_creation_callback)(struct vmbus_channel *new_sc); 812 813 /* 814 * Channel rescind callback. Some channels (the hvsock ones), need to 815 * register a callback which is invoked in vmbus_onoffer_rescind(). 816 */ 817 void (*chn_rescind_callback)(struct vmbus_channel *channel); 818 819 /* 820 * The spinlock to protect the structure. It is being used to protect 821 * test-and-set access to various attributes of the structure as well 822 * as all sc_list operations. 823 */ 824 spinlock_t lock; 825 /* 826 * All Sub-channels of a primary channel are linked here. 827 */ 828 struct list_head sc_list; 829 /* 830 * Current number of sub-channels. 831 */ 832 int num_sc; 833 /* 834 * Number of a sub-channel (position within sc_list) which is supposed 835 * to be used as the next outgoing channel. 836 */ 837 int next_oc; 838 /* 839 * The primary channel this sub-channel belongs to. 840 * This will be NULL for the primary channel. 841 */ 842 struct vmbus_channel *primary_channel; 843 /* 844 * Support per-channel state for use by vmbus drivers. 845 */ 846 void *per_channel_state; 847 /* 848 * To support per-cpu lookup mapping of relid to channel, 849 * link up channels based on their CPU affinity. 850 */ 851 struct list_head percpu_list; 852 /* 853 * Host signaling policy: The default policy will be 854 * based on the ring buffer state. We will also support 855 * a policy where the client driver can have explicit 856 * signaling control. 857 */ 858 enum hv_signal_policy signal_policy; 859 /* 860 * On the channel send side, many of the VMBUS 861 * device drivers explicity serialize access to the 862 * outgoing ring buffer. Give more control to the 863 * VMBUS device drivers in terms how to serialize 864 * accesss to the outgoing ring buffer. 865 * The default behavior will be to aquire the 866 * ring lock to preserve the current behavior. 867 */ 868 bool acquire_ring_lock; 869 /* 870 * For performance critical channels (storage, networking 871 * etc,), Hyper-V has a mechanism to enhance the throughput 872 * at the expense of latency: 873 * When the host is to be signaled, we just set a bit in a shared page 874 * and this bit will be inspected by the hypervisor within a certain 875 * window and if the bit is set, the host will be signaled. The window 876 * of time is the monitor latency - currently around 100 usecs. This 877 * mechanism improves throughput by: 878 * 879 * A) Making the host more efficient - each time it wakes up, 880 * potentially it will process morev number of packets. The 881 * monitor latency allows a batch to build up. 882 * B) By deferring the hypercall to signal, we will also minimize 883 * the interrupts. 884 * 885 * Clearly, these optimizations improve throughput at the expense of 886 * latency. Furthermore, since the channel is shared for both 887 * control and data messages, control messages currently suffer 888 * unnecessary latency adversley impacting performance and boot 889 * time. To fix this issue, permit tagging the channel as being 890 * in "low latency" mode. In this mode, we will bypass the monitor 891 * mechanism. 892 */ 893 bool low_latency; 894 895 /* 896 * NUMA distribution policy: 897 * We support teo policies: 898 * 1) Balanced: Here all performance critical channels are 899 * distributed evenly amongst all the NUMA nodes. 900 * This policy will be the default policy. 901 * 2) Localized: All channels of a given instance of a 902 * performance critical service will be assigned CPUs 903 * within a selected NUMA node. 904 */ 905 enum hv_numa_policy affinity_policy; 906 907}; 908 909static inline void set_channel_lock_state(struct vmbus_channel *c, bool state) 910{ 911 c->acquire_ring_lock = state; 912} 913 914static inline bool is_hvsock_channel(const struct vmbus_channel *c) 915{ 916 return !!(c->offermsg.offer.chn_flags & 917 VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER); 918} 919 920static inline void set_channel_signal_state(struct vmbus_channel *c, 921 enum hv_signal_policy policy) 922{ 923 c->signal_policy = policy; 924} 925 926static inline void set_channel_affinity_state(struct vmbus_channel *c, 927 enum hv_numa_policy policy) 928{ 929 c->affinity_policy = policy; 930} 931 932static inline void set_channel_read_state(struct vmbus_channel *c, bool state) 933{ 934 c->batched_reading = state; 935} 936 937static inline void set_per_channel_state(struct vmbus_channel *c, void *s) 938{ 939 c->per_channel_state = s; 940} 941 942static inline void *get_per_channel_state(struct vmbus_channel *c) 943{ 944 return c->per_channel_state; 945} 946 947static inline void set_channel_pending_send_size(struct vmbus_channel *c, 948 u32 size) 949{ 950 c->outbound.ring_buffer->pending_send_sz = size; 951} 952 953static inline void set_low_latency_mode(struct vmbus_channel *c) 954{ 955 c->low_latency = true; 956} 957 958static inline void clear_low_latency_mode(struct vmbus_channel *c) 959{ 960 c->low_latency = false; 961} 962 963void vmbus_onmessage(void *context); 964 965int vmbus_request_offers(void); 966 967/* 968 * APIs for managing sub-channels. 969 */ 970 971void vmbus_set_sc_create_callback(struct vmbus_channel *primary_channel, 972 void (*sc_cr_cb)(struct vmbus_channel *new_sc)); 973 974void vmbus_set_chn_rescind_callback(struct vmbus_channel *channel, 975 void (*chn_rescind_cb)(struct vmbus_channel *)); 976 977/* 978 * Retrieve the (sub) channel on which to send an outgoing request. 979 * When a primary channel has multiple sub-channels, we choose a 980 * channel whose VCPU binding is closest to the VCPU on which 981 * this call is being made. 982 */ 983struct vmbus_channel *vmbus_get_outgoing_channel(struct vmbus_channel *primary); 984 985/* 986 * Check if sub-channels have already been offerred. This API will be useful 987 * when the driver is unloaded after establishing sub-channels. In this case, 988 * when the driver is re-loaded, the driver would have to check if the 989 * subchannels have already been established before attempting to request 990 * the creation of sub-channels. 991 * This function returns TRUE to indicate that subchannels have already been 992 * created. 993 * This function should be invoked after setting the callback function for 994 * sub-channel creation. 995 */ 996bool vmbus_are_subchannels_present(struct vmbus_channel *primary); 997 998/* The format must be the same as struct vmdata_gpa_direct */ 999struct vmbus_channel_packet_page_buffer { 1000 u16 type; 1001 u16 dataoffset8; 1002 u16 length8; 1003 u16 flags; 1004 u64 transactionid; 1005 u32 reserved; 1006 u32 rangecount; 1007 struct hv_page_buffer range[MAX_PAGE_BUFFER_COUNT]; 1008} __packed; 1009 1010/* The format must be the same as struct vmdata_gpa_direct */ 1011struct vmbus_channel_packet_multipage_buffer { 1012 u16 type; 1013 u16 dataoffset8; 1014 u16 length8; 1015 u16 flags; 1016 u64 transactionid; 1017 u32 reserved; 1018 u32 rangecount; /* Always 1 in this case */ 1019 struct hv_multipage_buffer range; 1020} __packed; 1021 1022/* The format must be the same as struct vmdata_gpa_direct */ 1023struct vmbus_packet_mpb_array { 1024 u16 type; 1025 u16 dataoffset8; 1026 u16 length8; 1027 u16 flags; 1028 u64 transactionid; 1029 u32 reserved; 1030 u32 rangecount; /* Always 1 in this case */ 1031 struct hv_mpb_array range; 1032} __packed; 1033 1034 1035extern int vmbus_open(struct vmbus_channel *channel, 1036 u32 send_ringbuffersize, 1037 u32 recv_ringbuffersize, 1038 void *userdata, 1039 u32 userdatalen, 1040 void(*onchannel_callback)(void *context), 1041 void *context); 1042 1043extern void vmbus_close(struct vmbus_channel *channel); 1044 1045extern int vmbus_sendpacket(struct vmbus_channel *channel, 1046 void *buffer, 1047 u32 bufferLen, 1048 u64 requestid, 1049 enum vmbus_packet_type type, 1050 u32 flags); 1051 1052extern int vmbus_sendpacket_ctl(struct vmbus_channel *channel, 1053 void *buffer, 1054 u32 bufferLen, 1055 u64 requestid, 1056 enum vmbus_packet_type type, 1057 u32 flags, 1058 bool kick_q); 1059 1060extern int vmbus_sendpacket_pagebuffer(struct vmbus_channel *channel, 1061 struct hv_page_buffer pagebuffers[], 1062 u32 pagecount, 1063 void *buffer, 1064 u32 bufferlen, 1065 u64 requestid); 1066 1067extern int vmbus_sendpacket_pagebuffer_ctl(struct vmbus_channel *channel, 1068 struct hv_page_buffer pagebuffers[], 1069 u32 pagecount, 1070 void *buffer, 1071 u32 bufferlen, 1072 u64 requestid, 1073 u32 flags, 1074 bool kick_q); 1075 1076extern int vmbus_sendpacket_multipagebuffer(struct vmbus_channel *channel, 1077 struct hv_multipage_buffer *mpb, 1078 void *buffer, 1079 u32 bufferlen, 1080 u64 requestid); 1081 1082extern int vmbus_sendpacket_mpb_desc(struct vmbus_channel *channel, 1083 struct vmbus_packet_mpb_array *mpb, 1084 u32 desc_size, 1085 void *buffer, 1086 u32 bufferlen, 1087 u64 requestid); 1088 1089extern int vmbus_establish_gpadl(struct vmbus_channel *channel, 1090 void *kbuffer, 1091 u32 size, 1092 u32 *gpadl_handle); 1093 1094extern int vmbus_teardown_gpadl(struct vmbus_channel *channel, 1095 u32 gpadl_handle); 1096 1097extern int vmbus_recvpacket(struct vmbus_channel *channel, 1098 void *buffer, 1099 u32 bufferlen, 1100 u32 *buffer_actual_len, 1101 u64 *requestid); 1102 1103extern int vmbus_recvpacket_raw(struct vmbus_channel *channel, 1104 void *buffer, 1105 u32 bufferlen, 1106 u32 *buffer_actual_len, 1107 u64 *requestid); 1108 1109 1110extern void vmbus_ontimer(unsigned long data); 1111 1112/* Base driver object */ 1113struct hv_driver { 1114 const char *name; 1115 1116 /* 1117 * A hvsock offer, which has a VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER 1118 * channel flag, actually doesn't mean a synthetic device because the 1119 * offer's if_type/if_instance can change for every new hvsock 1120 * connection. 1121 * 1122 * However, to facilitate the notification of new-offer/rescind-offer 1123 * from vmbus driver to hvsock driver, we can handle hvsock offer as 1124 * a special vmbus device, and hence we need the below flag to 1125 * indicate if the driver is the hvsock driver or not: we need to 1126 * specially treat the hvosck offer & driver in vmbus_match(). 1127 */ 1128 bool hvsock; 1129 1130 /* the device type supported by this driver */ 1131 uuid_le dev_type; 1132 const struct hv_vmbus_device_id *id_table; 1133 1134 struct device_driver driver; 1135 1136 /* dynamic device GUID's */ 1137 struct { 1138 spinlock_t lock; 1139 struct list_head list; 1140 } dynids; 1141 1142 int (*probe)(struct hv_device *, const struct hv_vmbus_device_id *); 1143 int (*remove)(struct hv_device *); 1144 void (*shutdown)(struct hv_device *); 1145 1146}; 1147 1148/* Base device object */ 1149struct hv_device { 1150 /* the device type id of this device */ 1151 uuid_le dev_type; 1152 1153 /* the device instance id of this device */ 1154 uuid_le dev_instance; 1155 u16 vendor_id; 1156 u16 device_id; 1157 1158 struct device device; 1159 1160 struct vmbus_channel *channel; 1161}; 1162 1163 1164static inline struct hv_device *device_to_hv_device(struct device *d) 1165{ 1166 return container_of(d, struct hv_device, device); 1167} 1168 1169static inline struct hv_driver *drv_to_hv_drv(struct device_driver *d) 1170{ 1171 return container_of(d, struct hv_driver, driver); 1172} 1173 1174static inline void hv_set_drvdata(struct hv_device *dev, void *data) 1175{ 1176 dev_set_drvdata(&dev->device, data); 1177} 1178 1179static inline void *hv_get_drvdata(struct hv_device *dev) 1180{ 1181 return dev_get_drvdata(&dev->device); 1182} 1183 1184/* Vmbus interface */ 1185#define vmbus_driver_register(driver) \ 1186 __vmbus_driver_register(driver, THIS_MODULE, KBUILD_MODNAME) 1187int __must_check __vmbus_driver_register(struct hv_driver *hv_driver, 1188 struct module *owner, 1189 const char *mod_name); 1190void vmbus_driver_unregister(struct hv_driver *hv_driver); 1191 1192void vmbus_hvsock_device_unregister(struct vmbus_channel *channel); 1193 1194int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj, 1195 resource_size_t min, resource_size_t max, 1196 resource_size_t size, resource_size_t align, 1197 bool fb_overlap_ok); 1198void vmbus_free_mmio(resource_size_t start, resource_size_t size); 1199int vmbus_cpu_number_to_vp_number(int cpu_number); 1200u64 hv_do_hypercall(u64 control, void *input, void *output); 1201 1202/* 1203 * GUID definitions of various offer types - services offered to the guest. 1204 */ 1205 1206/* 1207 * Network GUID 1208 * {f8615163-df3e-46c5-913f-f2d2f965ed0e} 1209 */ 1210#define HV_NIC_GUID \ 1211 .guid = UUID_LE(0xf8615163, 0xdf3e, 0x46c5, 0x91, 0x3f, \ 1212 0xf2, 0xd2, 0xf9, 0x65, 0xed, 0x0e) 1213 1214/* 1215 * IDE GUID 1216 * {32412632-86cb-44a2-9b5c-50d1417354f5} 1217 */ 1218#define HV_IDE_GUID \ 1219 .guid = UUID_LE(0x32412632, 0x86cb, 0x44a2, 0x9b, 0x5c, \ 1220 0x50, 0xd1, 0x41, 0x73, 0x54, 0xf5) 1221 1222/* 1223 * SCSI GUID 1224 * {ba6163d9-04a1-4d29-b605-72e2ffb1dc7f} 1225 */ 1226#define HV_SCSI_GUID \ 1227 .guid = UUID_LE(0xba6163d9, 0x04a1, 0x4d29, 0xb6, 0x05, \ 1228 0x72, 0xe2, 0xff, 0xb1, 0xdc, 0x7f) 1229 1230/* 1231 * Shutdown GUID 1232 * {0e0b6031-5213-4934-818b-38d90ced39db} 1233 */ 1234#define HV_SHUTDOWN_GUID \ 1235 .guid = UUID_LE(0x0e0b6031, 0x5213, 0x4934, 0x81, 0x8b, \ 1236 0x38, 0xd9, 0x0c, 0xed, 0x39, 0xdb) 1237 1238/* 1239 * Time Synch GUID 1240 * {9527E630-D0AE-497b-ADCE-E80AB0175CAF} 1241 */ 1242#define HV_TS_GUID \ 1243 .guid = UUID_LE(0x9527e630, 0xd0ae, 0x497b, 0xad, 0xce, \ 1244 0xe8, 0x0a, 0xb0, 0x17, 0x5c, 0xaf) 1245 1246/* 1247 * Heartbeat GUID 1248 * {57164f39-9115-4e78-ab55-382f3bd5422d} 1249 */ 1250#define HV_HEART_BEAT_GUID \ 1251 .guid = UUID_LE(0x57164f39, 0x9115, 0x4e78, 0xab, 0x55, \ 1252 0x38, 0x2f, 0x3b, 0xd5, 0x42, 0x2d) 1253 1254/* 1255 * KVP GUID 1256 * {a9a0f4e7-5a45-4d96-b827-8a841e8c03e6} 1257 */ 1258#define HV_KVP_GUID \ 1259 .guid = UUID_LE(0xa9a0f4e7, 0x5a45, 0x4d96, 0xb8, 0x27, \ 1260 0x8a, 0x84, 0x1e, 0x8c, 0x03, 0xe6) 1261 1262/* 1263 * Dynamic memory GUID 1264 * {525074dc-8985-46e2-8057-a307dc18a502} 1265 */ 1266#define HV_DM_GUID \ 1267 .guid = UUID_LE(0x525074dc, 0x8985, 0x46e2, 0x80, 0x57, \ 1268 0xa3, 0x07, 0xdc, 0x18, 0xa5, 0x02) 1269 1270/* 1271 * Mouse GUID 1272 * {cfa8b69e-5b4a-4cc0-b98b-8ba1a1f3f95a} 1273 */ 1274#define HV_MOUSE_GUID \ 1275 .guid = UUID_LE(0xcfa8b69e, 0x5b4a, 0x4cc0, 0xb9, 0x8b, \ 1276 0x8b, 0xa1, 0xa1, 0xf3, 0xf9, 0x5a) 1277 1278/* 1279 * Keyboard GUID 1280 * {f912ad6d-2b17-48ea-bd65-f927a61c7684} 1281 */ 1282#define HV_KBD_GUID \ 1283 .guid = UUID_LE(0xf912ad6d, 0x2b17, 0x48ea, 0xbd, 0x65, \ 1284 0xf9, 0x27, 0xa6, 0x1c, 0x76, 0x84) 1285 1286/* 1287 * VSS (Backup/Restore) GUID 1288 */ 1289#define HV_VSS_GUID \ 1290 .guid = UUID_LE(0x35fa2e29, 0xea23, 0x4236, 0x96, 0xae, \ 1291 0x3a, 0x6e, 0xba, 0xcb, 0xa4, 0x40) 1292/* 1293 * Synthetic Video GUID 1294 * {DA0A7802-E377-4aac-8E77-0558EB1073F8} 1295 */ 1296#define HV_SYNTHVID_GUID \ 1297 .guid = UUID_LE(0xda0a7802, 0xe377, 0x4aac, 0x8e, 0x77, \ 1298 0x05, 0x58, 0xeb, 0x10, 0x73, 0xf8) 1299 1300/* 1301 * Synthetic FC GUID 1302 * {2f9bcc4a-0069-4af3-b76b-6fd0be528cda} 1303 */ 1304#define HV_SYNTHFC_GUID \ 1305 .guid = UUID_LE(0x2f9bcc4a, 0x0069, 0x4af3, 0xb7, 0x6b, \ 1306 0x6f, 0xd0, 0xbe, 0x52, 0x8c, 0xda) 1307 1308/* 1309 * Guest File Copy Service 1310 * {34D14BE3-DEE4-41c8-9AE7-6B174977C192} 1311 */ 1312 1313#define HV_FCOPY_GUID \ 1314 .guid = UUID_LE(0x34d14be3, 0xdee4, 0x41c8, 0x9a, 0xe7, \ 1315 0x6b, 0x17, 0x49, 0x77, 0xc1, 0x92) 1316 1317/* 1318 * NetworkDirect. This is the guest RDMA service. 1319 * {8c2eaf3d-32a7-4b09-ab99-bd1f1c86b501} 1320 */ 1321#define HV_ND_GUID \ 1322 .guid = UUID_LE(0x8c2eaf3d, 0x32a7, 0x4b09, 0xab, 0x99, \ 1323 0xbd, 0x1f, 0x1c, 0x86, 0xb5, 0x01) 1324 1325/* 1326 * PCI Express Pass Through 1327 * {44C4F61D-4444-4400-9D52-802E27EDE19F} 1328 */ 1329 1330#define HV_PCIE_GUID \ 1331 .guid = UUID_LE(0x44c4f61d, 0x4444, 0x4400, 0x9d, 0x52, \ 1332 0x80, 0x2e, 0x27, 0xed, 0xe1, 0x9f) 1333 1334/* 1335 * Linux doesn't support the 3 devices: the first two are for 1336 * Automatic Virtual Machine Activation, and the third is for 1337 * Remote Desktop Virtualization. 1338 * {f8e65716-3cb3-4a06-9a60-1889c5cccab5} 1339 * {3375baf4-9e15-4b30-b765-67acb10d607b} 1340 * {276aacf4-ac15-426c-98dd-7521ad3f01fe} 1341 */ 1342 1343#define HV_AVMA1_GUID \ 1344 .guid = UUID_LE(0xf8e65716, 0x3cb3, 0x4a06, 0x9a, 0x60, \ 1345 0x18, 0x89, 0xc5, 0xcc, 0xca, 0xb5) 1346 1347#define HV_AVMA2_GUID \ 1348 .guid = UUID_LE(0x3375baf4, 0x9e15, 0x4b30, 0xb7, 0x65, \ 1349 0x67, 0xac, 0xb1, 0x0d, 0x60, 0x7b) 1350 1351#define HV_RDV_GUID \ 1352 .guid = UUID_LE(0x276aacf4, 0xac15, 0x426c, 0x98, 0xdd, \ 1353 0x75, 0x21, 0xad, 0x3f, 0x01, 0xfe) 1354 1355/* 1356 * Common header for Hyper-V ICs 1357 */ 1358 1359#define ICMSGTYPE_NEGOTIATE 0 1360#define ICMSGTYPE_HEARTBEAT 1 1361#define ICMSGTYPE_KVPEXCHANGE 2 1362#define ICMSGTYPE_SHUTDOWN 3 1363#define ICMSGTYPE_TIMESYNC 4 1364#define ICMSGTYPE_VSS 5 1365 1366#define ICMSGHDRFLAG_TRANSACTION 1 1367#define ICMSGHDRFLAG_REQUEST 2 1368#define ICMSGHDRFLAG_RESPONSE 4 1369 1370 1371/* 1372 * While we want to handle util services as regular devices, 1373 * there is only one instance of each of these services; so 1374 * we statically allocate the service specific state. 1375 */ 1376 1377struct hv_util_service { 1378 u8 *recv_buffer; 1379 void *channel; 1380 void (*util_cb)(void *); 1381 int (*util_init)(struct hv_util_service *); 1382 void (*util_deinit)(void); 1383}; 1384 1385struct vmbuspipe_hdr { 1386 u32 flags; 1387 u32 msgsize; 1388} __packed; 1389 1390struct ic_version { 1391 u16 major; 1392 u16 minor; 1393} __packed; 1394 1395struct icmsg_hdr { 1396 struct ic_version icverframe; 1397 u16 icmsgtype; 1398 struct ic_version icvermsg; 1399 u16 icmsgsize; 1400 u32 status; 1401 u8 ictransaction_id; 1402 u8 icflags; 1403 u8 reserved[2]; 1404} __packed; 1405 1406struct icmsg_negotiate { 1407 u16 icframe_vercnt; 1408 u16 icmsg_vercnt; 1409 u32 reserved; 1410 struct ic_version icversion_data[1]; /* any size array */ 1411} __packed; 1412 1413struct shutdown_msg_data { 1414 u32 reason_code; 1415 u32 timeout_seconds; 1416 u32 flags; 1417 u8 display_message[2048]; 1418} __packed; 1419 1420struct heartbeat_msg_data { 1421 u64 seq_num; 1422 u32 reserved[8]; 1423} __packed; 1424 1425/* Time Sync IC defs */ 1426#define ICTIMESYNCFLAG_PROBE 0 1427#define ICTIMESYNCFLAG_SYNC 1 1428#define ICTIMESYNCFLAG_SAMPLE 2 1429 1430#ifdef __x86_64__ 1431#define WLTIMEDELTA 116444736000000000L /* in 100ns unit */ 1432#else 1433#define WLTIMEDELTA 116444736000000000LL 1434#endif 1435 1436struct ictimesync_data { 1437 u64 parenttime; 1438 u64 childtime; 1439 u64 roundtriptime; 1440 u8 flags; 1441} __packed; 1442 1443struct ictimesync_ref_data { 1444 u64 parenttime; 1445 u64 vmreferencetime; 1446 u8 flags; 1447 char leapflags; 1448 char stratum; 1449 u8 reserved[3]; 1450} __packed; 1451 1452struct hyperv_service_callback { 1453 u8 msg_type; 1454 char *log_msg; 1455 uuid_le data; 1456 struct vmbus_channel *channel; 1457 void (*callback) (void *context); 1458}; 1459 1460#define MAX_SRV_VER 0x7ffffff 1461extern bool vmbus_prep_negotiate_resp(struct icmsg_hdr *, 1462 struct icmsg_negotiate *, u8 *, int, 1463 int); 1464 1465void hv_event_tasklet_disable(struct vmbus_channel *channel); 1466void hv_event_tasklet_enable(struct vmbus_channel *channel); 1467 1468void hv_process_channel_removal(struct vmbus_channel *channel, u32 relid); 1469 1470void vmbus_setevent(struct vmbus_channel *channel); 1471/* 1472 * Negotiated version with the Host. 1473 */ 1474 1475extern __u32 vmbus_proto_version; 1476 1477int vmbus_send_tl_connect_request(const uuid_le *shv_guest_servie_id, 1478 const uuid_le *shv_host_servie_id); 1479void vmbus_set_event(struct vmbus_channel *channel); 1480 1481/* Get the start of the ring buffer. */ 1482static inline void * 1483hv_get_ring_buffer(struct hv_ring_buffer_info *ring_info) 1484{ 1485 return (void *)ring_info->ring_buffer->buffer; 1486} 1487 1488/* 1489 * To optimize the flow management on the send-side, 1490 * when the sender is blocked because of lack of 1491 * sufficient space in the ring buffer, potential the 1492 * consumer of the ring buffer can signal the producer. 1493 * This is controlled by the following parameters: 1494 * 1495 * 1. pending_send_sz: This is the size in bytes that the 1496 * producer is trying to send. 1497 * 2. The feature bit feat_pending_send_sz set to indicate if 1498 * the consumer of the ring will signal when the ring 1499 * state transitions from being full to a state where 1500 * there is room for the producer to send the pending packet. 1501 */ 1502 1503static inline void hv_signal_on_read(struct vmbus_channel *channel) 1504{ 1505 u32 cur_write_sz, cached_write_sz; 1506 u32 pending_sz; 1507 struct hv_ring_buffer_info *rbi = &channel->inbound; 1508 1509 /* 1510 * Issue a full memory barrier before making the signaling decision. 1511 * Here is the reason for having this barrier: 1512 * If the reading of the pend_sz (in this function) 1513 * were to be reordered and read before we commit the new read 1514 * index (in the calling function) we could 1515 * have a problem. If the host were to set the pending_sz after we 1516 * have sampled pending_sz and go to sleep before we commit the 1517 * read index, we could miss sending the interrupt. Issue a full 1518 * memory barrier to address this. 1519 */ 1520 virt_mb(); 1521 1522 pending_sz = READ_ONCE(rbi->ring_buffer->pending_send_sz); 1523 /* If the other end is not blocked on write don't bother. */ 1524 if (pending_sz == 0) 1525 return; 1526 1527 cur_write_sz = hv_get_bytes_to_write(rbi); 1528 1529 if (cur_write_sz < pending_sz) 1530 return; 1531 1532 cached_write_sz = hv_get_cached_bytes_to_write(rbi); 1533 if (cached_write_sz < pending_sz) 1534 vmbus_setevent(channel); 1535 1536 return; 1537} 1538 1539static inline void 1540init_cached_read_index(struct vmbus_channel *channel) 1541{ 1542 struct hv_ring_buffer_info *rbi = &channel->inbound; 1543 1544 rbi->cached_read_index = rbi->ring_buffer->read_index; 1545} 1546 1547/* 1548 * An API to support in-place processing of incoming VMBUS packets. 1549 */ 1550#define VMBUS_PKT_TRAILER 8 1551 1552static inline struct vmpacket_descriptor * 1553get_next_pkt_raw(struct vmbus_channel *channel) 1554{ 1555 struct hv_ring_buffer_info *ring_info = &channel->inbound; 1556 u32 priv_read_loc = ring_info->priv_read_index; 1557 void *ring_buffer = hv_get_ring_buffer(ring_info); 1558 u32 dsize = ring_info->ring_datasize; 1559 /* 1560 * delta is the difference between what is available to read and 1561 * what was already consumed in place. We commit read index after 1562 * the whole batch is processed. 1563 */ 1564 u32 delta = priv_read_loc >= ring_info->ring_buffer->read_index ? 1565 priv_read_loc - ring_info->ring_buffer->read_index : 1566 (dsize - ring_info->ring_buffer->read_index) + priv_read_loc; 1567 u32 bytes_avail_toread = (hv_get_bytes_to_read(ring_info) - delta); 1568 1569 if (bytes_avail_toread < sizeof(struct vmpacket_descriptor)) 1570 return NULL; 1571 1572 return ring_buffer + priv_read_loc; 1573} 1574 1575/* 1576 * A helper function to step through packets "in-place" 1577 * This API is to be called after each successful call 1578 * get_next_pkt_raw(). 1579 */ 1580static inline void put_pkt_raw(struct vmbus_channel *channel, 1581 struct vmpacket_descriptor *desc) 1582{ 1583 struct hv_ring_buffer_info *ring_info = &channel->inbound; 1584 u32 packetlen = desc->len8 << 3; 1585 u32 dsize = ring_info->ring_datasize; 1586 1587 /* 1588 * Include the packet trailer. 1589 */ 1590 ring_info->priv_read_index += packetlen + VMBUS_PKT_TRAILER; 1591 ring_info->priv_read_index %= dsize; 1592} 1593 1594/* 1595 * This call commits the read index and potentially signals the host. 1596 * Here is the pattern for using the "in-place" consumption APIs: 1597 * 1598 * init_cached_read_index(); 1599 * 1600 * while (get_next_pkt_raw() { 1601 * process the packet "in-place"; 1602 * put_pkt_raw(); 1603 * } 1604 * if (packets processed in place) 1605 * commit_rd_index(); 1606 */ 1607static inline void commit_rd_index(struct vmbus_channel *channel) 1608{ 1609 struct hv_ring_buffer_info *ring_info = &channel->inbound; 1610 /* 1611 * Make sure all reads are done before we update the read index since 1612 * the writer may start writing to the read area once the read index 1613 * is updated. 1614 */ 1615 virt_rmb(); 1616 ring_info->ring_buffer->read_index = ring_info->priv_read_index; 1617 1618 hv_signal_on_read(channel); 1619} 1620 1621 1622#endif /* _HYPERV_H */