at v4.10 21 kB view raw
1#ifndef __LINUX_GFP_H 2#define __LINUX_GFP_H 3 4#include <linux/mmdebug.h> 5#include <linux/mmzone.h> 6#include <linux/stddef.h> 7#include <linux/linkage.h> 8#include <linux/topology.h> 9 10struct vm_area_struct; 11 12/* 13 * In case of changes, please don't forget to update 14 * include/trace/events/mmflags.h and tools/perf/builtin-kmem.c 15 */ 16 17/* Plain integer GFP bitmasks. Do not use this directly. */ 18#define ___GFP_DMA 0x01u 19#define ___GFP_HIGHMEM 0x02u 20#define ___GFP_DMA32 0x04u 21#define ___GFP_MOVABLE 0x08u 22#define ___GFP_RECLAIMABLE 0x10u 23#define ___GFP_HIGH 0x20u 24#define ___GFP_IO 0x40u 25#define ___GFP_FS 0x80u 26#define ___GFP_COLD 0x100u 27#define ___GFP_NOWARN 0x200u 28#define ___GFP_REPEAT 0x400u 29#define ___GFP_NOFAIL 0x800u 30#define ___GFP_NORETRY 0x1000u 31#define ___GFP_MEMALLOC 0x2000u 32#define ___GFP_COMP 0x4000u 33#define ___GFP_ZERO 0x8000u 34#define ___GFP_NOMEMALLOC 0x10000u 35#define ___GFP_HARDWALL 0x20000u 36#define ___GFP_THISNODE 0x40000u 37#define ___GFP_ATOMIC 0x80000u 38#define ___GFP_ACCOUNT 0x100000u 39#define ___GFP_NOTRACK 0x200000u 40#define ___GFP_DIRECT_RECLAIM 0x400000u 41#define ___GFP_WRITE 0x800000u 42#define ___GFP_KSWAPD_RECLAIM 0x1000000u 43/* If the above are modified, __GFP_BITS_SHIFT may need updating */ 44 45/* 46 * Physical address zone modifiers (see linux/mmzone.h - low four bits) 47 * 48 * Do not put any conditional on these. If necessary modify the definitions 49 * without the underscores and use them consistently. The definitions here may 50 * be used in bit comparisons. 51 */ 52#define __GFP_DMA ((__force gfp_t)___GFP_DMA) 53#define __GFP_HIGHMEM ((__force gfp_t)___GFP_HIGHMEM) 54#define __GFP_DMA32 ((__force gfp_t)___GFP_DMA32) 55#define __GFP_MOVABLE ((__force gfp_t)___GFP_MOVABLE) /* ZONE_MOVABLE allowed */ 56#define GFP_ZONEMASK (__GFP_DMA|__GFP_HIGHMEM|__GFP_DMA32|__GFP_MOVABLE) 57 58/* 59 * Page mobility and placement hints 60 * 61 * These flags provide hints about how mobile the page is. Pages with similar 62 * mobility are placed within the same pageblocks to minimise problems due 63 * to external fragmentation. 64 * 65 * __GFP_MOVABLE (also a zone modifier) indicates that the page can be 66 * moved by page migration during memory compaction or can be reclaimed. 67 * 68 * __GFP_RECLAIMABLE is used for slab allocations that specify 69 * SLAB_RECLAIM_ACCOUNT and whose pages can be freed via shrinkers. 70 * 71 * __GFP_WRITE indicates the caller intends to dirty the page. Where possible, 72 * these pages will be spread between local zones to avoid all the dirty 73 * pages being in one zone (fair zone allocation policy). 74 * 75 * __GFP_HARDWALL enforces the cpuset memory allocation policy. 76 * 77 * __GFP_THISNODE forces the allocation to be satisified from the requested 78 * node with no fallbacks or placement policy enforcements. 79 * 80 * __GFP_ACCOUNT causes the allocation to be accounted to kmemcg. 81 */ 82#define __GFP_RECLAIMABLE ((__force gfp_t)___GFP_RECLAIMABLE) 83#define __GFP_WRITE ((__force gfp_t)___GFP_WRITE) 84#define __GFP_HARDWALL ((__force gfp_t)___GFP_HARDWALL) 85#define __GFP_THISNODE ((__force gfp_t)___GFP_THISNODE) 86#define __GFP_ACCOUNT ((__force gfp_t)___GFP_ACCOUNT) 87 88/* 89 * Watermark modifiers -- controls access to emergency reserves 90 * 91 * __GFP_HIGH indicates that the caller is high-priority and that granting 92 * the request is necessary before the system can make forward progress. 93 * For example, creating an IO context to clean pages. 94 * 95 * __GFP_ATOMIC indicates that the caller cannot reclaim or sleep and is 96 * high priority. Users are typically interrupt handlers. This may be 97 * used in conjunction with __GFP_HIGH 98 * 99 * __GFP_MEMALLOC allows access to all memory. This should only be used when 100 * the caller guarantees the allocation will allow more memory to be freed 101 * very shortly e.g. process exiting or swapping. Users either should 102 * be the MM or co-ordinating closely with the VM (e.g. swap over NFS). 103 * 104 * __GFP_NOMEMALLOC is used to explicitly forbid access to emergency reserves. 105 * This takes precedence over the __GFP_MEMALLOC flag if both are set. 106 */ 107#define __GFP_ATOMIC ((__force gfp_t)___GFP_ATOMIC) 108#define __GFP_HIGH ((__force gfp_t)___GFP_HIGH) 109#define __GFP_MEMALLOC ((__force gfp_t)___GFP_MEMALLOC) 110#define __GFP_NOMEMALLOC ((__force gfp_t)___GFP_NOMEMALLOC) 111 112/* 113 * Reclaim modifiers 114 * 115 * __GFP_IO can start physical IO. 116 * 117 * __GFP_FS can call down to the low-level FS. Clearing the flag avoids the 118 * allocator recursing into the filesystem which might already be holding 119 * locks. 120 * 121 * __GFP_DIRECT_RECLAIM indicates that the caller may enter direct reclaim. 122 * This flag can be cleared to avoid unnecessary delays when a fallback 123 * option is available. 124 * 125 * __GFP_KSWAPD_RECLAIM indicates that the caller wants to wake kswapd when 126 * the low watermark is reached and have it reclaim pages until the high 127 * watermark is reached. A caller may wish to clear this flag when fallback 128 * options are available and the reclaim is likely to disrupt the system. The 129 * canonical example is THP allocation where a fallback is cheap but 130 * reclaim/compaction may cause indirect stalls. 131 * 132 * __GFP_RECLAIM is shorthand to allow/forbid both direct and kswapd reclaim. 133 * 134 * __GFP_REPEAT: Try hard to allocate the memory, but the allocation attempt 135 * _might_ fail. This depends upon the particular VM implementation. 136 * 137 * __GFP_NOFAIL: The VM implementation _must_ retry infinitely: the caller 138 * cannot handle allocation failures. New users should be evaluated carefully 139 * (and the flag should be used only when there is no reasonable failure 140 * policy) but it is definitely preferable to use the flag rather than 141 * opencode endless loop around allocator. 142 * 143 * __GFP_NORETRY: The VM implementation must not retry indefinitely and will 144 * return NULL when direct reclaim and memory compaction have failed to allow 145 * the allocation to succeed. The OOM killer is not called with the current 146 * implementation. 147 */ 148#define __GFP_IO ((__force gfp_t)___GFP_IO) 149#define __GFP_FS ((__force gfp_t)___GFP_FS) 150#define __GFP_DIRECT_RECLAIM ((__force gfp_t)___GFP_DIRECT_RECLAIM) /* Caller can reclaim */ 151#define __GFP_KSWAPD_RECLAIM ((__force gfp_t)___GFP_KSWAPD_RECLAIM) /* kswapd can wake */ 152#define __GFP_RECLAIM ((__force gfp_t)(___GFP_DIRECT_RECLAIM|___GFP_KSWAPD_RECLAIM)) 153#define __GFP_REPEAT ((__force gfp_t)___GFP_REPEAT) 154#define __GFP_NOFAIL ((__force gfp_t)___GFP_NOFAIL) 155#define __GFP_NORETRY ((__force gfp_t)___GFP_NORETRY) 156 157/* 158 * Action modifiers 159 * 160 * __GFP_COLD indicates that the caller does not expect to be used in the near 161 * future. Where possible, a cache-cold page will be returned. 162 * 163 * __GFP_NOWARN suppresses allocation failure reports. 164 * 165 * __GFP_COMP address compound page metadata. 166 * 167 * __GFP_ZERO returns a zeroed page on success. 168 * 169 * __GFP_NOTRACK avoids tracking with kmemcheck. 170 * 171 * __GFP_NOTRACK_FALSE_POSITIVE is an alias of __GFP_NOTRACK. It's a means of 172 * distinguishing in the source between false positives and allocations that 173 * cannot be supported (e.g. page tables). 174 */ 175#define __GFP_COLD ((__force gfp_t)___GFP_COLD) 176#define __GFP_NOWARN ((__force gfp_t)___GFP_NOWARN) 177#define __GFP_COMP ((__force gfp_t)___GFP_COMP) 178#define __GFP_ZERO ((__force gfp_t)___GFP_ZERO) 179#define __GFP_NOTRACK ((__force gfp_t)___GFP_NOTRACK) 180#define __GFP_NOTRACK_FALSE_POSITIVE (__GFP_NOTRACK) 181 182/* Room for N __GFP_FOO bits */ 183#define __GFP_BITS_SHIFT 25 184#define __GFP_BITS_MASK ((__force gfp_t)((1 << __GFP_BITS_SHIFT) - 1)) 185 186/* 187 * Useful GFP flag combinations that are commonly used. It is recommended 188 * that subsystems start with one of these combinations and then set/clear 189 * __GFP_FOO flags as necessary. 190 * 191 * GFP_ATOMIC users can not sleep and need the allocation to succeed. A lower 192 * watermark is applied to allow access to "atomic reserves" 193 * 194 * GFP_KERNEL is typical for kernel-internal allocations. The caller requires 195 * ZONE_NORMAL or a lower zone for direct access but can direct reclaim. 196 * 197 * GFP_KERNEL_ACCOUNT is the same as GFP_KERNEL, except the allocation is 198 * accounted to kmemcg. 199 * 200 * GFP_NOWAIT is for kernel allocations that should not stall for direct 201 * reclaim, start physical IO or use any filesystem callback. 202 * 203 * GFP_NOIO will use direct reclaim to discard clean pages or slab pages 204 * that do not require the starting of any physical IO. 205 * 206 * GFP_NOFS will use direct reclaim but will not use any filesystem interfaces. 207 * 208 * GFP_USER is for userspace allocations that also need to be directly 209 * accessibly by the kernel or hardware. It is typically used by hardware 210 * for buffers that are mapped to userspace (e.g. graphics) that hardware 211 * still must DMA to. cpuset limits are enforced for these allocations. 212 * 213 * GFP_DMA exists for historical reasons and should be avoided where possible. 214 * The flags indicates that the caller requires that the lowest zone be 215 * used (ZONE_DMA or 16M on x86-64). Ideally, this would be removed but 216 * it would require careful auditing as some users really require it and 217 * others use the flag to avoid lowmem reserves in ZONE_DMA and treat the 218 * lowest zone as a type of emergency reserve. 219 * 220 * GFP_DMA32 is similar to GFP_DMA except that the caller requires a 32-bit 221 * address. 222 * 223 * GFP_HIGHUSER is for userspace allocations that may be mapped to userspace, 224 * do not need to be directly accessible by the kernel but that cannot 225 * move once in use. An example may be a hardware allocation that maps 226 * data directly into userspace but has no addressing limitations. 227 * 228 * GFP_HIGHUSER_MOVABLE is for userspace allocations that the kernel does not 229 * need direct access to but can use kmap() when access is required. They 230 * are expected to be movable via page reclaim or page migration. Typically, 231 * pages on the LRU would also be allocated with GFP_HIGHUSER_MOVABLE. 232 * 233 * GFP_TRANSHUGE and GFP_TRANSHUGE_LIGHT are used for THP allocations. They are 234 * compound allocations that will generally fail quickly if memory is not 235 * available and will not wake kswapd/kcompactd on failure. The _LIGHT 236 * version does not attempt reclaim/compaction at all and is by default used 237 * in page fault path, while the non-light is used by khugepaged. 238 */ 239#define GFP_ATOMIC (__GFP_HIGH|__GFP_ATOMIC|__GFP_KSWAPD_RECLAIM) 240#define GFP_KERNEL (__GFP_RECLAIM | __GFP_IO | __GFP_FS) 241#define GFP_KERNEL_ACCOUNT (GFP_KERNEL | __GFP_ACCOUNT) 242#define GFP_NOWAIT (__GFP_KSWAPD_RECLAIM) 243#define GFP_NOIO (__GFP_RECLAIM) 244#define GFP_NOFS (__GFP_RECLAIM | __GFP_IO) 245#define GFP_TEMPORARY (__GFP_RECLAIM | __GFP_IO | __GFP_FS | \ 246 __GFP_RECLAIMABLE) 247#define GFP_USER (__GFP_RECLAIM | __GFP_IO | __GFP_FS | __GFP_HARDWALL) 248#define GFP_DMA __GFP_DMA 249#define GFP_DMA32 __GFP_DMA32 250#define GFP_HIGHUSER (GFP_USER | __GFP_HIGHMEM) 251#define GFP_HIGHUSER_MOVABLE (GFP_HIGHUSER | __GFP_MOVABLE) 252#define GFP_TRANSHUGE_LIGHT ((GFP_HIGHUSER_MOVABLE | __GFP_COMP | \ 253 __GFP_NOMEMALLOC | __GFP_NOWARN) & ~__GFP_RECLAIM) 254#define GFP_TRANSHUGE (GFP_TRANSHUGE_LIGHT | __GFP_DIRECT_RECLAIM) 255 256/* Convert GFP flags to their corresponding migrate type */ 257#define GFP_MOVABLE_MASK (__GFP_RECLAIMABLE|__GFP_MOVABLE) 258#define GFP_MOVABLE_SHIFT 3 259 260static inline int gfpflags_to_migratetype(const gfp_t gfp_flags) 261{ 262 VM_WARN_ON((gfp_flags & GFP_MOVABLE_MASK) == GFP_MOVABLE_MASK); 263 BUILD_BUG_ON((1UL << GFP_MOVABLE_SHIFT) != ___GFP_MOVABLE); 264 BUILD_BUG_ON((___GFP_MOVABLE >> GFP_MOVABLE_SHIFT) != MIGRATE_MOVABLE); 265 266 if (unlikely(page_group_by_mobility_disabled)) 267 return MIGRATE_UNMOVABLE; 268 269 /* Group based on mobility */ 270 return (gfp_flags & GFP_MOVABLE_MASK) >> GFP_MOVABLE_SHIFT; 271} 272#undef GFP_MOVABLE_MASK 273#undef GFP_MOVABLE_SHIFT 274 275static inline bool gfpflags_allow_blocking(const gfp_t gfp_flags) 276{ 277 return !!(gfp_flags & __GFP_DIRECT_RECLAIM); 278} 279 280#ifdef CONFIG_HIGHMEM 281#define OPT_ZONE_HIGHMEM ZONE_HIGHMEM 282#else 283#define OPT_ZONE_HIGHMEM ZONE_NORMAL 284#endif 285 286#ifdef CONFIG_ZONE_DMA 287#define OPT_ZONE_DMA ZONE_DMA 288#else 289#define OPT_ZONE_DMA ZONE_NORMAL 290#endif 291 292#ifdef CONFIG_ZONE_DMA32 293#define OPT_ZONE_DMA32 ZONE_DMA32 294#else 295#define OPT_ZONE_DMA32 ZONE_NORMAL 296#endif 297 298/* 299 * GFP_ZONE_TABLE is a word size bitstring that is used for looking up the 300 * zone to use given the lowest 4 bits of gfp_t. Entries are ZONE_SHIFT long 301 * and there are 16 of them to cover all possible combinations of 302 * __GFP_DMA, __GFP_DMA32, __GFP_MOVABLE and __GFP_HIGHMEM. 303 * 304 * The zone fallback order is MOVABLE=>HIGHMEM=>NORMAL=>DMA32=>DMA. 305 * But GFP_MOVABLE is not only a zone specifier but also an allocation 306 * policy. Therefore __GFP_MOVABLE plus another zone selector is valid. 307 * Only 1 bit of the lowest 3 bits (DMA,DMA32,HIGHMEM) can be set to "1". 308 * 309 * bit result 310 * ================= 311 * 0x0 => NORMAL 312 * 0x1 => DMA or NORMAL 313 * 0x2 => HIGHMEM or NORMAL 314 * 0x3 => BAD (DMA+HIGHMEM) 315 * 0x4 => DMA32 or DMA or NORMAL 316 * 0x5 => BAD (DMA+DMA32) 317 * 0x6 => BAD (HIGHMEM+DMA32) 318 * 0x7 => BAD (HIGHMEM+DMA32+DMA) 319 * 0x8 => NORMAL (MOVABLE+0) 320 * 0x9 => DMA or NORMAL (MOVABLE+DMA) 321 * 0xa => MOVABLE (Movable is valid only if HIGHMEM is set too) 322 * 0xb => BAD (MOVABLE+HIGHMEM+DMA) 323 * 0xc => DMA32 (MOVABLE+DMA32) 324 * 0xd => BAD (MOVABLE+DMA32+DMA) 325 * 0xe => BAD (MOVABLE+DMA32+HIGHMEM) 326 * 0xf => BAD (MOVABLE+DMA32+HIGHMEM+DMA) 327 * 328 * GFP_ZONES_SHIFT must be <= 2 on 32 bit platforms. 329 */ 330 331#if defined(CONFIG_ZONE_DEVICE) && (MAX_NR_ZONES-1) <= 4 332/* ZONE_DEVICE is not a valid GFP zone specifier */ 333#define GFP_ZONES_SHIFT 2 334#else 335#define GFP_ZONES_SHIFT ZONES_SHIFT 336#endif 337 338#if 16 * GFP_ZONES_SHIFT > BITS_PER_LONG 339#error GFP_ZONES_SHIFT too large to create GFP_ZONE_TABLE integer 340#endif 341 342#define GFP_ZONE_TABLE ( \ 343 (ZONE_NORMAL << 0 * GFP_ZONES_SHIFT) \ 344 | (OPT_ZONE_DMA << ___GFP_DMA * GFP_ZONES_SHIFT) \ 345 | (OPT_ZONE_HIGHMEM << ___GFP_HIGHMEM * GFP_ZONES_SHIFT) \ 346 | (OPT_ZONE_DMA32 << ___GFP_DMA32 * GFP_ZONES_SHIFT) \ 347 | (ZONE_NORMAL << ___GFP_MOVABLE * GFP_ZONES_SHIFT) \ 348 | (OPT_ZONE_DMA << (___GFP_MOVABLE | ___GFP_DMA) * GFP_ZONES_SHIFT) \ 349 | (ZONE_MOVABLE << (___GFP_MOVABLE | ___GFP_HIGHMEM) * GFP_ZONES_SHIFT)\ 350 | (OPT_ZONE_DMA32 << (___GFP_MOVABLE | ___GFP_DMA32) * GFP_ZONES_SHIFT)\ 351) 352 353/* 354 * GFP_ZONE_BAD is a bitmap for all combinations of __GFP_DMA, __GFP_DMA32 355 * __GFP_HIGHMEM and __GFP_MOVABLE that are not permitted. One flag per 356 * entry starting with bit 0. Bit is set if the combination is not 357 * allowed. 358 */ 359#define GFP_ZONE_BAD ( \ 360 1 << (___GFP_DMA | ___GFP_HIGHMEM) \ 361 | 1 << (___GFP_DMA | ___GFP_DMA32) \ 362 | 1 << (___GFP_DMA32 | ___GFP_HIGHMEM) \ 363 | 1 << (___GFP_DMA | ___GFP_DMA32 | ___GFP_HIGHMEM) \ 364 | 1 << (___GFP_MOVABLE | ___GFP_HIGHMEM | ___GFP_DMA) \ 365 | 1 << (___GFP_MOVABLE | ___GFP_DMA32 | ___GFP_DMA) \ 366 | 1 << (___GFP_MOVABLE | ___GFP_DMA32 | ___GFP_HIGHMEM) \ 367 | 1 << (___GFP_MOVABLE | ___GFP_DMA32 | ___GFP_DMA | ___GFP_HIGHMEM) \ 368) 369 370static inline enum zone_type gfp_zone(gfp_t flags) 371{ 372 enum zone_type z; 373 int bit = (__force int) (flags & GFP_ZONEMASK); 374 375 z = (GFP_ZONE_TABLE >> (bit * GFP_ZONES_SHIFT)) & 376 ((1 << GFP_ZONES_SHIFT) - 1); 377 VM_BUG_ON((GFP_ZONE_BAD >> bit) & 1); 378 return z; 379} 380 381/* 382 * There is only one page-allocator function, and two main namespaces to 383 * it. The alloc_page*() variants return 'struct page *' and as such 384 * can allocate highmem pages, the *get*page*() variants return 385 * virtual kernel addresses to the allocated page(s). 386 */ 387 388static inline int gfp_zonelist(gfp_t flags) 389{ 390#ifdef CONFIG_NUMA 391 if (unlikely(flags & __GFP_THISNODE)) 392 return ZONELIST_NOFALLBACK; 393#endif 394 return ZONELIST_FALLBACK; 395} 396 397/* 398 * We get the zone list from the current node and the gfp_mask. 399 * This zone list contains a maximum of MAXNODES*MAX_NR_ZONES zones. 400 * There are two zonelists per node, one for all zones with memory and 401 * one containing just zones from the node the zonelist belongs to. 402 * 403 * For the normal case of non-DISCONTIGMEM systems the NODE_DATA() gets 404 * optimized to &contig_page_data at compile-time. 405 */ 406static inline struct zonelist *node_zonelist(int nid, gfp_t flags) 407{ 408 return NODE_DATA(nid)->node_zonelists + gfp_zonelist(flags); 409} 410 411#ifndef HAVE_ARCH_FREE_PAGE 412static inline void arch_free_page(struct page *page, int order) { } 413#endif 414#ifndef HAVE_ARCH_ALLOC_PAGE 415static inline void arch_alloc_page(struct page *page, int order) { } 416#endif 417 418struct page * 419__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, 420 struct zonelist *zonelist, nodemask_t *nodemask); 421 422static inline struct page * 423__alloc_pages(gfp_t gfp_mask, unsigned int order, 424 struct zonelist *zonelist) 425{ 426 return __alloc_pages_nodemask(gfp_mask, order, zonelist, NULL); 427} 428 429/* 430 * Allocate pages, preferring the node given as nid. The node must be valid and 431 * online. For more general interface, see alloc_pages_node(). 432 */ 433static inline struct page * 434__alloc_pages_node(int nid, gfp_t gfp_mask, unsigned int order) 435{ 436 VM_BUG_ON(nid < 0 || nid >= MAX_NUMNODES); 437 VM_WARN_ON(!node_online(nid)); 438 439 return __alloc_pages(gfp_mask, order, node_zonelist(nid, gfp_mask)); 440} 441 442/* 443 * Allocate pages, preferring the node given as nid. When nid == NUMA_NO_NODE, 444 * prefer the current CPU's closest node. Otherwise node must be valid and 445 * online. 446 */ 447static inline struct page *alloc_pages_node(int nid, gfp_t gfp_mask, 448 unsigned int order) 449{ 450 if (nid == NUMA_NO_NODE) 451 nid = numa_mem_id(); 452 453 return __alloc_pages_node(nid, gfp_mask, order); 454} 455 456#ifdef CONFIG_NUMA 457extern struct page *alloc_pages_current(gfp_t gfp_mask, unsigned order); 458 459static inline struct page * 460alloc_pages(gfp_t gfp_mask, unsigned int order) 461{ 462 return alloc_pages_current(gfp_mask, order); 463} 464extern struct page *alloc_pages_vma(gfp_t gfp_mask, int order, 465 struct vm_area_struct *vma, unsigned long addr, 466 int node, bool hugepage); 467#define alloc_hugepage_vma(gfp_mask, vma, addr, order) \ 468 alloc_pages_vma(gfp_mask, order, vma, addr, numa_node_id(), true) 469#else 470#define alloc_pages(gfp_mask, order) \ 471 alloc_pages_node(numa_node_id(), gfp_mask, order) 472#define alloc_pages_vma(gfp_mask, order, vma, addr, node, false)\ 473 alloc_pages(gfp_mask, order) 474#define alloc_hugepage_vma(gfp_mask, vma, addr, order) \ 475 alloc_pages(gfp_mask, order) 476#endif 477#define alloc_page(gfp_mask) alloc_pages(gfp_mask, 0) 478#define alloc_page_vma(gfp_mask, vma, addr) \ 479 alloc_pages_vma(gfp_mask, 0, vma, addr, numa_node_id(), false) 480#define alloc_page_vma_node(gfp_mask, vma, addr, node) \ 481 alloc_pages_vma(gfp_mask, 0, vma, addr, node, false) 482 483extern unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order); 484extern unsigned long get_zeroed_page(gfp_t gfp_mask); 485 486void *alloc_pages_exact(size_t size, gfp_t gfp_mask); 487void free_pages_exact(void *virt, size_t size); 488void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask); 489 490#define __get_free_page(gfp_mask) \ 491 __get_free_pages((gfp_mask), 0) 492 493#define __get_dma_pages(gfp_mask, order) \ 494 __get_free_pages((gfp_mask) | GFP_DMA, (order)) 495 496extern void __free_pages(struct page *page, unsigned int order); 497extern void free_pages(unsigned long addr, unsigned int order); 498extern void free_hot_cold_page(struct page *page, bool cold); 499extern void free_hot_cold_page_list(struct list_head *list, bool cold); 500 501struct page_frag_cache; 502extern void __page_frag_cache_drain(struct page *page, unsigned int count); 503extern void *page_frag_alloc(struct page_frag_cache *nc, 504 unsigned int fragsz, gfp_t gfp_mask); 505extern void page_frag_free(void *addr); 506 507#define __free_page(page) __free_pages((page), 0) 508#define free_page(addr) free_pages((addr), 0) 509 510void page_alloc_init(void); 511void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp); 512void drain_all_pages(struct zone *zone); 513void drain_local_pages(struct zone *zone); 514 515void page_alloc_init_late(void); 516 517/* 518 * gfp_allowed_mask is set to GFP_BOOT_MASK during early boot to restrict what 519 * GFP flags are used before interrupts are enabled. Once interrupts are 520 * enabled, it is set to __GFP_BITS_MASK while the system is running. During 521 * hibernation, it is used by PM to avoid I/O during memory allocation while 522 * devices are suspended. 523 */ 524extern gfp_t gfp_allowed_mask; 525 526/* Returns true if the gfp_mask allows use of ALLOC_NO_WATERMARK */ 527bool gfp_pfmemalloc_allowed(gfp_t gfp_mask); 528 529extern void pm_restrict_gfp_mask(void); 530extern void pm_restore_gfp_mask(void); 531 532#ifdef CONFIG_PM_SLEEP 533extern bool pm_suspended_storage(void); 534#else 535static inline bool pm_suspended_storage(void) 536{ 537 return false; 538} 539#endif /* CONFIG_PM_SLEEP */ 540 541#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA) 542/* The below functions must be run on a range from a single zone. */ 543extern int alloc_contig_range(unsigned long start, unsigned long end, 544 unsigned migratetype); 545extern void free_contig_range(unsigned long pfn, unsigned nr_pages); 546#endif 547 548#ifdef CONFIG_CMA 549/* CMA stuff */ 550extern void init_cma_reserved_pageblock(struct page *page); 551#endif 552 553#endif /* __LINUX_GFP_H */