at v4.10 57 kB view raw
1/* 2 * linux/fs/block_dev.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * Copyright (C) 2001 Andrea Arcangeli <andrea@suse.de> SuSE 6 */ 7 8#include <linux/init.h> 9#include <linux/mm.h> 10#include <linux/fcntl.h> 11#include <linux/slab.h> 12#include <linux/kmod.h> 13#include <linux/major.h> 14#include <linux/device_cgroup.h> 15#include <linux/highmem.h> 16#include <linux/blkdev.h> 17#include <linux/backing-dev.h> 18#include <linux/module.h> 19#include <linux/blkpg.h> 20#include <linux/magic.h> 21#include <linux/buffer_head.h> 22#include <linux/swap.h> 23#include <linux/pagevec.h> 24#include <linux/writeback.h> 25#include <linux/mpage.h> 26#include <linux/mount.h> 27#include <linux/uio.h> 28#include <linux/namei.h> 29#include <linux/log2.h> 30#include <linux/cleancache.h> 31#include <linux/dax.h> 32#include <linux/badblocks.h> 33#include <linux/task_io_accounting_ops.h> 34#include <linux/falloc.h> 35#include <linux/uaccess.h> 36#include "internal.h" 37 38struct bdev_inode { 39 struct block_device bdev; 40 struct inode vfs_inode; 41}; 42 43static const struct address_space_operations def_blk_aops; 44 45static inline struct bdev_inode *BDEV_I(struct inode *inode) 46{ 47 return container_of(inode, struct bdev_inode, vfs_inode); 48} 49 50struct block_device *I_BDEV(struct inode *inode) 51{ 52 return &BDEV_I(inode)->bdev; 53} 54EXPORT_SYMBOL(I_BDEV); 55 56void __vfs_msg(struct super_block *sb, const char *prefix, const char *fmt, ...) 57{ 58 struct va_format vaf; 59 va_list args; 60 61 va_start(args, fmt); 62 vaf.fmt = fmt; 63 vaf.va = &args; 64 printk_ratelimited("%sVFS (%s): %pV\n", prefix, sb->s_id, &vaf); 65 va_end(args); 66} 67 68static void bdev_write_inode(struct block_device *bdev) 69{ 70 struct inode *inode = bdev->bd_inode; 71 int ret; 72 73 spin_lock(&inode->i_lock); 74 while (inode->i_state & I_DIRTY) { 75 spin_unlock(&inode->i_lock); 76 ret = write_inode_now(inode, true); 77 if (ret) { 78 char name[BDEVNAME_SIZE]; 79 pr_warn_ratelimited("VFS: Dirty inode writeback failed " 80 "for block device %s (err=%d).\n", 81 bdevname(bdev, name), ret); 82 } 83 spin_lock(&inode->i_lock); 84 } 85 spin_unlock(&inode->i_lock); 86} 87 88/* Kill _all_ buffers and pagecache , dirty or not.. */ 89void kill_bdev(struct block_device *bdev) 90{ 91 struct address_space *mapping = bdev->bd_inode->i_mapping; 92 93 if (mapping->nrpages == 0 && mapping->nrexceptional == 0) 94 return; 95 96 invalidate_bh_lrus(); 97 truncate_inode_pages(mapping, 0); 98} 99EXPORT_SYMBOL(kill_bdev); 100 101/* Invalidate clean unused buffers and pagecache. */ 102void invalidate_bdev(struct block_device *bdev) 103{ 104 struct address_space *mapping = bdev->bd_inode->i_mapping; 105 106 if (mapping->nrpages == 0) 107 return; 108 109 invalidate_bh_lrus(); 110 lru_add_drain_all(); /* make sure all lru add caches are flushed */ 111 invalidate_mapping_pages(mapping, 0, -1); 112 /* 99% of the time, we don't need to flush the cleancache on the bdev. 113 * But, for the strange corners, lets be cautious 114 */ 115 cleancache_invalidate_inode(mapping); 116} 117EXPORT_SYMBOL(invalidate_bdev); 118 119int set_blocksize(struct block_device *bdev, int size) 120{ 121 /* Size must be a power of two, and between 512 and PAGE_SIZE */ 122 if (size > PAGE_SIZE || size < 512 || !is_power_of_2(size)) 123 return -EINVAL; 124 125 /* Size cannot be smaller than the size supported by the device */ 126 if (size < bdev_logical_block_size(bdev)) 127 return -EINVAL; 128 129 /* Don't change the size if it is same as current */ 130 if (bdev->bd_block_size != size) { 131 sync_blockdev(bdev); 132 bdev->bd_block_size = size; 133 bdev->bd_inode->i_blkbits = blksize_bits(size); 134 kill_bdev(bdev); 135 } 136 return 0; 137} 138 139EXPORT_SYMBOL(set_blocksize); 140 141int sb_set_blocksize(struct super_block *sb, int size) 142{ 143 if (set_blocksize(sb->s_bdev, size)) 144 return 0; 145 /* If we get here, we know size is power of two 146 * and it's value is between 512 and PAGE_SIZE */ 147 sb->s_blocksize = size; 148 sb->s_blocksize_bits = blksize_bits(size); 149 return sb->s_blocksize; 150} 151 152EXPORT_SYMBOL(sb_set_blocksize); 153 154int sb_min_blocksize(struct super_block *sb, int size) 155{ 156 int minsize = bdev_logical_block_size(sb->s_bdev); 157 if (size < minsize) 158 size = minsize; 159 return sb_set_blocksize(sb, size); 160} 161 162EXPORT_SYMBOL(sb_min_blocksize); 163 164static int 165blkdev_get_block(struct inode *inode, sector_t iblock, 166 struct buffer_head *bh, int create) 167{ 168 bh->b_bdev = I_BDEV(inode); 169 bh->b_blocknr = iblock; 170 set_buffer_mapped(bh); 171 return 0; 172} 173 174static struct inode *bdev_file_inode(struct file *file) 175{ 176 return file->f_mapping->host; 177} 178 179static unsigned int dio_bio_write_op(struct kiocb *iocb) 180{ 181 unsigned int op = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE; 182 183 /* avoid the need for a I/O completion work item */ 184 if (iocb->ki_flags & IOCB_DSYNC) 185 op |= REQ_FUA; 186 return op; 187} 188 189#define DIO_INLINE_BIO_VECS 4 190 191static void blkdev_bio_end_io_simple(struct bio *bio) 192{ 193 struct task_struct *waiter = bio->bi_private; 194 195 WRITE_ONCE(bio->bi_private, NULL); 196 wake_up_process(waiter); 197} 198 199static ssize_t 200__blkdev_direct_IO_simple(struct kiocb *iocb, struct iov_iter *iter, 201 int nr_pages) 202{ 203 struct file *file = iocb->ki_filp; 204 struct block_device *bdev = I_BDEV(bdev_file_inode(file)); 205 struct bio_vec inline_vecs[DIO_INLINE_BIO_VECS], *vecs, *bvec; 206 loff_t pos = iocb->ki_pos; 207 bool should_dirty = false; 208 struct bio bio; 209 ssize_t ret; 210 blk_qc_t qc; 211 int i; 212 213 if ((pos | iov_iter_alignment(iter)) & 214 (bdev_logical_block_size(bdev) - 1)) 215 return -EINVAL; 216 217 if (nr_pages <= DIO_INLINE_BIO_VECS) 218 vecs = inline_vecs; 219 else { 220 vecs = kmalloc(nr_pages * sizeof(struct bio_vec), GFP_KERNEL); 221 if (!vecs) 222 return -ENOMEM; 223 } 224 225 bio_init(&bio, vecs, nr_pages); 226 bio.bi_bdev = bdev; 227 bio.bi_iter.bi_sector = pos >> 9; 228 bio.bi_private = current; 229 bio.bi_end_io = blkdev_bio_end_io_simple; 230 231 ret = bio_iov_iter_get_pages(&bio, iter); 232 if (unlikely(ret)) 233 return ret; 234 ret = bio.bi_iter.bi_size; 235 236 if (iov_iter_rw(iter) == READ) { 237 bio.bi_opf = REQ_OP_READ; 238 if (iter_is_iovec(iter)) 239 should_dirty = true; 240 } else { 241 bio.bi_opf = dio_bio_write_op(iocb); 242 task_io_account_write(ret); 243 } 244 245 qc = submit_bio(&bio); 246 for (;;) { 247 set_current_state(TASK_UNINTERRUPTIBLE); 248 if (!READ_ONCE(bio.bi_private)) 249 break; 250 if (!(iocb->ki_flags & IOCB_HIPRI) || 251 !blk_mq_poll(bdev_get_queue(bdev), qc)) 252 io_schedule(); 253 } 254 __set_current_state(TASK_RUNNING); 255 256 bio_for_each_segment_all(bvec, &bio, i) { 257 if (should_dirty && !PageCompound(bvec->bv_page)) 258 set_page_dirty_lock(bvec->bv_page); 259 put_page(bvec->bv_page); 260 } 261 262 if (vecs != inline_vecs) 263 kfree(vecs); 264 265 if (unlikely(bio.bi_error)) 266 return bio.bi_error; 267 return ret; 268} 269 270struct blkdev_dio { 271 union { 272 struct kiocb *iocb; 273 struct task_struct *waiter; 274 }; 275 size_t size; 276 atomic_t ref; 277 bool multi_bio : 1; 278 bool should_dirty : 1; 279 bool is_sync : 1; 280 struct bio bio; 281}; 282 283static struct bio_set *blkdev_dio_pool __read_mostly; 284 285static void blkdev_bio_end_io(struct bio *bio) 286{ 287 struct blkdev_dio *dio = bio->bi_private; 288 bool should_dirty = dio->should_dirty; 289 290 if (dio->multi_bio && !atomic_dec_and_test(&dio->ref)) { 291 if (bio->bi_error && !dio->bio.bi_error) 292 dio->bio.bi_error = bio->bi_error; 293 } else { 294 if (!dio->is_sync) { 295 struct kiocb *iocb = dio->iocb; 296 ssize_t ret = dio->bio.bi_error; 297 298 if (likely(!ret)) { 299 ret = dio->size; 300 iocb->ki_pos += ret; 301 } 302 303 dio->iocb->ki_complete(iocb, ret, 0); 304 bio_put(&dio->bio); 305 } else { 306 struct task_struct *waiter = dio->waiter; 307 308 WRITE_ONCE(dio->waiter, NULL); 309 wake_up_process(waiter); 310 } 311 } 312 313 if (should_dirty) { 314 bio_check_pages_dirty(bio); 315 } else { 316 struct bio_vec *bvec; 317 int i; 318 319 bio_for_each_segment_all(bvec, bio, i) 320 put_page(bvec->bv_page); 321 bio_put(bio); 322 } 323} 324 325static ssize_t 326__blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter, int nr_pages) 327{ 328 struct file *file = iocb->ki_filp; 329 struct inode *inode = bdev_file_inode(file); 330 struct block_device *bdev = I_BDEV(inode); 331 struct blk_plug plug; 332 struct blkdev_dio *dio; 333 struct bio *bio; 334 bool is_read = (iov_iter_rw(iter) == READ), is_sync; 335 loff_t pos = iocb->ki_pos; 336 blk_qc_t qc = BLK_QC_T_NONE; 337 int ret; 338 339 if ((pos | iov_iter_alignment(iter)) & 340 (bdev_logical_block_size(bdev) - 1)) 341 return -EINVAL; 342 343 bio = bio_alloc_bioset(GFP_KERNEL, nr_pages, blkdev_dio_pool); 344 bio_get(bio); /* extra ref for the completion handler */ 345 346 dio = container_of(bio, struct blkdev_dio, bio); 347 dio->is_sync = is_sync = is_sync_kiocb(iocb); 348 if (dio->is_sync) 349 dio->waiter = current; 350 else 351 dio->iocb = iocb; 352 353 dio->size = 0; 354 dio->multi_bio = false; 355 dio->should_dirty = is_read && (iter->type == ITER_IOVEC); 356 357 blk_start_plug(&plug); 358 for (;;) { 359 bio->bi_bdev = bdev; 360 bio->bi_iter.bi_sector = pos >> 9; 361 bio->bi_private = dio; 362 bio->bi_end_io = blkdev_bio_end_io; 363 364 ret = bio_iov_iter_get_pages(bio, iter); 365 if (unlikely(ret)) { 366 bio->bi_error = ret; 367 bio_endio(bio); 368 break; 369 } 370 371 if (is_read) { 372 bio->bi_opf = REQ_OP_READ; 373 if (dio->should_dirty) 374 bio_set_pages_dirty(bio); 375 } else { 376 bio->bi_opf = dio_bio_write_op(iocb); 377 task_io_account_write(bio->bi_iter.bi_size); 378 } 379 380 dio->size += bio->bi_iter.bi_size; 381 pos += bio->bi_iter.bi_size; 382 383 nr_pages = iov_iter_npages(iter, BIO_MAX_PAGES); 384 if (!nr_pages) { 385 qc = submit_bio(bio); 386 break; 387 } 388 389 if (!dio->multi_bio) { 390 dio->multi_bio = true; 391 atomic_set(&dio->ref, 2); 392 } else { 393 atomic_inc(&dio->ref); 394 } 395 396 submit_bio(bio); 397 bio = bio_alloc(GFP_KERNEL, nr_pages); 398 } 399 blk_finish_plug(&plug); 400 401 if (!is_sync) 402 return -EIOCBQUEUED; 403 404 for (;;) { 405 set_current_state(TASK_UNINTERRUPTIBLE); 406 if (!READ_ONCE(dio->waiter)) 407 break; 408 409 if (!(iocb->ki_flags & IOCB_HIPRI) || 410 !blk_mq_poll(bdev_get_queue(bdev), qc)) 411 io_schedule(); 412 } 413 __set_current_state(TASK_RUNNING); 414 415 ret = dio->bio.bi_error; 416 if (likely(!ret)) 417 ret = dio->size; 418 419 bio_put(&dio->bio); 420 return ret; 421} 422 423static ssize_t 424blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 425{ 426 int nr_pages; 427 428 nr_pages = iov_iter_npages(iter, BIO_MAX_PAGES + 1); 429 if (!nr_pages) 430 return 0; 431 if (is_sync_kiocb(iocb) && nr_pages <= BIO_MAX_PAGES) 432 return __blkdev_direct_IO_simple(iocb, iter, nr_pages); 433 434 return __blkdev_direct_IO(iocb, iter, min(nr_pages, BIO_MAX_PAGES)); 435} 436 437static __init int blkdev_init(void) 438{ 439 blkdev_dio_pool = bioset_create(4, offsetof(struct blkdev_dio, bio)); 440 if (!blkdev_dio_pool) 441 return -ENOMEM; 442 return 0; 443} 444module_init(blkdev_init); 445 446int __sync_blockdev(struct block_device *bdev, int wait) 447{ 448 if (!bdev) 449 return 0; 450 if (!wait) 451 return filemap_flush(bdev->bd_inode->i_mapping); 452 return filemap_write_and_wait(bdev->bd_inode->i_mapping); 453} 454 455/* 456 * Write out and wait upon all the dirty data associated with a block 457 * device via its mapping. Does not take the superblock lock. 458 */ 459int sync_blockdev(struct block_device *bdev) 460{ 461 return __sync_blockdev(bdev, 1); 462} 463EXPORT_SYMBOL(sync_blockdev); 464 465/* 466 * Write out and wait upon all dirty data associated with this 467 * device. Filesystem data as well as the underlying block 468 * device. Takes the superblock lock. 469 */ 470int fsync_bdev(struct block_device *bdev) 471{ 472 struct super_block *sb = get_super(bdev); 473 if (sb) { 474 int res = sync_filesystem(sb); 475 drop_super(sb); 476 return res; 477 } 478 return sync_blockdev(bdev); 479} 480EXPORT_SYMBOL(fsync_bdev); 481 482/** 483 * freeze_bdev -- lock a filesystem and force it into a consistent state 484 * @bdev: blockdevice to lock 485 * 486 * If a superblock is found on this device, we take the s_umount semaphore 487 * on it to make sure nobody unmounts until the snapshot creation is done. 488 * The reference counter (bd_fsfreeze_count) guarantees that only the last 489 * unfreeze process can unfreeze the frozen filesystem actually when multiple 490 * freeze requests arrive simultaneously. It counts up in freeze_bdev() and 491 * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze 492 * actually. 493 */ 494struct super_block *freeze_bdev(struct block_device *bdev) 495{ 496 struct super_block *sb; 497 int error = 0; 498 499 mutex_lock(&bdev->bd_fsfreeze_mutex); 500 if (++bdev->bd_fsfreeze_count > 1) { 501 /* 502 * We don't even need to grab a reference - the first call 503 * to freeze_bdev grab an active reference and only the last 504 * thaw_bdev drops it. 505 */ 506 sb = get_super(bdev); 507 if (sb) 508 drop_super(sb); 509 mutex_unlock(&bdev->bd_fsfreeze_mutex); 510 return sb; 511 } 512 513 sb = get_active_super(bdev); 514 if (!sb) 515 goto out; 516 if (sb->s_op->freeze_super) 517 error = sb->s_op->freeze_super(sb); 518 else 519 error = freeze_super(sb); 520 if (error) { 521 deactivate_super(sb); 522 bdev->bd_fsfreeze_count--; 523 mutex_unlock(&bdev->bd_fsfreeze_mutex); 524 return ERR_PTR(error); 525 } 526 deactivate_super(sb); 527 out: 528 sync_blockdev(bdev); 529 mutex_unlock(&bdev->bd_fsfreeze_mutex); 530 return sb; /* thaw_bdev releases s->s_umount */ 531} 532EXPORT_SYMBOL(freeze_bdev); 533 534/** 535 * thaw_bdev -- unlock filesystem 536 * @bdev: blockdevice to unlock 537 * @sb: associated superblock 538 * 539 * Unlocks the filesystem and marks it writeable again after freeze_bdev(). 540 */ 541int thaw_bdev(struct block_device *bdev, struct super_block *sb) 542{ 543 int error = -EINVAL; 544 545 mutex_lock(&bdev->bd_fsfreeze_mutex); 546 if (!bdev->bd_fsfreeze_count) 547 goto out; 548 549 error = 0; 550 if (--bdev->bd_fsfreeze_count > 0) 551 goto out; 552 553 if (!sb) 554 goto out; 555 556 if (sb->s_op->thaw_super) 557 error = sb->s_op->thaw_super(sb); 558 else 559 error = thaw_super(sb); 560 if (error) 561 bdev->bd_fsfreeze_count++; 562out: 563 mutex_unlock(&bdev->bd_fsfreeze_mutex); 564 return error; 565} 566EXPORT_SYMBOL(thaw_bdev); 567 568static int blkdev_writepage(struct page *page, struct writeback_control *wbc) 569{ 570 return block_write_full_page(page, blkdev_get_block, wbc); 571} 572 573static int blkdev_readpage(struct file * file, struct page * page) 574{ 575 return block_read_full_page(page, blkdev_get_block); 576} 577 578static int blkdev_readpages(struct file *file, struct address_space *mapping, 579 struct list_head *pages, unsigned nr_pages) 580{ 581 return mpage_readpages(mapping, pages, nr_pages, blkdev_get_block); 582} 583 584static int blkdev_write_begin(struct file *file, struct address_space *mapping, 585 loff_t pos, unsigned len, unsigned flags, 586 struct page **pagep, void **fsdata) 587{ 588 return block_write_begin(mapping, pos, len, flags, pagep, 589 blkdev_get_block); 590} 591 592static int blkdev_write_end(struct file *file, struct address_space *mapping, 593 loff_t pos, unsigned len, unsigned copied, 594 struct page *page, void *fsdata) 595{ 596 int ret; 597 ret = block_write_end(file, mapping, pos, len, copied, page, fsdata); 598 599 unlock_page(page); 600 put_page(page); 601 602 return ret; 603} 604 605/* 606 * private llseek: 607 * for a block special file file_inode(file)->i_size is zero 608 * so we compute the size by hand (just as in block_read/write above) 609 */ 610static loff_t block_llseek(struct file *file, loff_t offset, int whence) 611{ 612 struct inode *bd_inode = bdev_file_inode(file); 613 loff_t retval; 614 615 inode_lock(bd_inode); 616 retval = fixed_size_llseek(file, offset, whence, i_size_read(bd_inode)); 617 inode_unlock(bd_inode); 618 return retval; 619} 620 621int blkdev_fsync(struct file *filp, loff_t start, loff_t end, int datasync) 622{ 623 struct inode *bd_inode = bdev_file_inode(filp); 624 struct block_device *bdev = I_BDEV(bd_inode); 625 int error; 626 627 error = filemap_write_and_wait_range(filp->f_mapping, start, end); 628 if (error) 629 return error; 630 631 /* 632 * There is no need to serialise calls to blkdev_issue_flush with 633 * i_mutex and doing so causes performance issues with concurrent 634 * O_SYNC writers to a block device. 635 */ 636 error = blkdev_issue_flush(bdev, GFP_KERNEL, NULL); 637 if (error == -EOPNOTSUPP) 638 error = 0; 639 640 return error; 641} 642EXPORT_SYMBOL(blkdev_fsync); 643 644/** 645 * bdev_read_page() - Start reading a page from a block device 646 * @bdev: The device to read the page from 647 * @sector: The offset on the device to read the page to (need not be aligned) 648 * @page: The page to read 649 * 650 * On entry, the page should be locked. It will be unlocked when the page 651 * has been read. If the block driver implements rw_page synchronously, 652 * that will be true on exit from this function, but it need not be. 653 * 654 * Errors returned by this function are usually "soft", eg out of memory, or 655 * queue full; callers should try a different route to read this page rather 656 * than propagate an error back up the stack. 657 * 658 * Return: negative errno if an error occurs, 0 if submission was successful. 659 */ 660int bdev_read_page(struct block_device *bdev, sector_t sector, 661 struct page *page) 662{ 663 const struct block_device_operations *ops = bdev->bd_disk->fops; 664 int result = -EOPNOTSUPP; 665 666 if (!ops->rw_page || bdev_get_integrity(bdev)) 667 return result; 668 669 result = blk_queue_enter(bdev->bd_queue, false); 670 if (result) 671 return result; 672 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, false); 673 blk_queue_exit(bdev->bd_queue); 674 return result; 675} 676EXPORT_SYMBOL_GPL(bdev_read_page); 677 678/** 679 * bdev_write_page() - Start writing a page to a block device 680 * @bdev: The device to write the page to 681 * @sector: The offset on the device to write the page to (need not be aligned) 682 * @page: The page to write 683 * @wbc: The writeback_control for the write 684 * 685 * On entry, the page should be locked and not currently under writeback. 686 * On exit, if the write started successfully, the page will be unlocked and 687 * under writeback. If the write failed already (eg the driver failed to 688 * queue the page to the device), the page will still be locked. If the 689 * caller is a ->writepage implementation, it will need to unlock the page. 690 * 691 * Errors returned by this function are usually "soft", eg out of memory, or 692 * queue full; callers should try a different route to write this page rather 693 * than propagate an error back up the stack. 694 * 695 * Return: negative errno if an error occurs, 0 if submission was successful. 696 */ 697int bdev_write_page(struct block_device *bdev, sector_t sector, 698 struct page *page, struct writeback_control *wbc) 699{ 700 int result; 701 const struct block_device_operations *ops = bdev->bd_disk->fops; 702 703 if (!ops->rw_page || bdev_get_integrity(bdev)) 704 return -EOPNOTSUPP; 705 result = blk_queue_enter(bdev->bd_queue, false); 706 if (result) 707 return result; 708 709 set_page_writeback(page); 710 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, true); 711 if (result) 712 end_page_writeback(page); 713 else 714 unlock_page(page); 715 blk_queue_exit(bdev->bd_queue); 716 return result; 717} 718EXPORT_SYMBOL_GPL(bdev_write_page); 719 720/** 721 * bdev_direct_access() - Get the address for directly-accessibly memory 722 * @bdev: The device containing the memory 723 * @dax: control and output parameters for ->direct_access 724 * 725 * If a block device is made up of directly addressable memory, this function 726 * will tell the caller the PFN and the address of the memory. The address 727 * may be directly dereferenced within the kernel without the need to call 728 * ioremap(), kmap() or similar. The PFN is suitable for inserting into 729 * page tables. 730 * 731 * Return: negative errno if an error occurs, otherwise the number of bytes 732 * accessible at this address. 733 */ 734long bdev_direct_access(struct block_device *bdev, struct blk_dax_ctl *dax) 735{ 736 sector_t sector = dax->sector; 737 long avail, size = dax->size; 738 const struct block_device_operations *ops = bdev->bd_disk->fops; 739 740 /* 741 * The device driver is allowed to sleep, in order to make the 742 * memory directly accessible. 743 */ 744 might_sleep(); 745 746 if (size < 0) 747 return size; 748 if (!blk_queue_dax(bdev_get_queue(bdev)) || !ops->direct_access) 749 return -EOPNOTSUPP; 750 if ((sector + DIV_ROUND_UP(size, 512)) > 751 part_nr_sects_read(bdev->bd_part)) 752 return -ERANGE; 753 sector += get_start_sect(bdev); 754 if (sector % (PAGE_SIZE / 512)) 755 return -EINVAL; 756 avail = ops->direct_access(bdev, sector, &dax->addr, &dax->pfn, size); 757 if (!avail) 758 return -ERANGE; 759 if (avail > 0 && avail & ~PAGE_MASK) 760 return -ENXIO; 761 return min(avail, size); 762} 763EXPORT_SYMBOL_GPL(bdev_direct_access); 764 765/** 766 * bdev_dax_supported() - Check if the device supports dax for filesystem 767 * @sb: The superblock of the device 768 * @blocksize: The block size of the device 769 * 770 * This is a library function for filesystems to check if the block device 771 * can be mounted with dax option. 772 * 773 * Return: negative errno if unsupported, 0 if supported. 774 */ 775int bdev_dax_supported(struct super_block *sb, int blocksize) 776{ 777 struct blk_dax_ctl dax = { 778 .sector = 0, 779 .size = PAGE_SIZE, 780 }; 781 int err; 782 783 if (blocksize != PAGE_SIZE) { 784 vfs_msg(sb, KERN_ERR, "error: unsupported blocksize for dax"); 785 return -EINVAL; 786 } 787 788 err = bdev_direct_access(sb->s_bdev, &dax); 789 if (err < 0) { 790 switch (err) { 791 case -EOPNOTSUPP: 792 vfs_msg(sb, KERN_ERR, 793 "error: device does not support dax"); 794 break; 795 case -EINVAL: 796 vfs_msg(sb, KERN_ERR, 797 "error: unaligned partition for dax"); 798 break; 799 default: 800 vfs_msg(sb, KERN_ERR, 801 "error: dax access failed (%d)", err); 802 } 803 return err; 804 } 805 806 return 0; 807} 808EXPORT_SYMBOL_GPL(bdev_dax_supported); 809 810/** 811 * bdev_dax_capable() - Return if the raw device is capable for dax 812 * @bdev: The device for raw block device access 813 */ 814bool bdev_dax_capable(struct block_device *bdev) 815{ 816 struct blk_dax_ctl dax = { 817 .size = PAGE_SIZE, 818 }; 819 820 if (!IS_ENABLED(CONFIG_FS_DAX)) 821 return false; 822 823 dax.sector = 0; 824 if (bdev_direct_access(bdev, &dax) < 0) 825 return false; 826 827 dax.sector = bdev->bd_part->nr_sects - (PAGE_SIZE / 512); 828 if (bdev_direct_access(bdev, &dax) < 0) 829 return false; 830 831 return true; 832} 833 834/* 835 * pseudo-fs 836 */ 837 838static __cacheline_aligned_in_smp DEFINE_SPINLOCK(bdev_lock); 839static struct kmem_cache * bdev_cachep __read_mostly; 840 841static struct inode *bdev_alloc_inode(struct super_block *sb) 842{ 843 struct bdev_inode *ei = kmem_cache_alloc(bdev_cachep, GFP_KERNEL); 844 if (!ei) 845 return NULL; 846 return &ei->vfs_inode; 847} 848 849static void bdev_i_callback(struct rcu_head *head) 850{ 851 struct inode *inode = container_of(head, struct inode, i_rcu); 852 struct bdev_inode *bdi = BDEV_I(inode); 853 854 kmem_cache_free(bdev_cachep, bdi); 855} 856 857static void bdev_destroy_inode(struct inode *inode) 858{ 859 call_rcu(&inode->i_rcu, bdev_i_callback); 860} 861 862static void init_once(void *foo) 863{ 864 struct bdev_inode *ei = (struct bdev_inode *) foo; 865 struct block_device *bdev = &ei->bdev; 866 867 memset(bdev, 0, sizeof(*bdev)); 868 mutex_init(&bdev->bd_mutex); 869 INIT_LIST_HEAD(&bdev->bd_list); 870#ifdef CONFIG_SYSFS 871 INIT_LIST_HEAD(&bdev->bd_holder_disks); 872#endif 873 inode_init_once(&ei->vfs_inode); 874 /* Initialize mutex for freeze. */ 875 mutex_init(&bdev->bd_fsfreeze_mutex); 876} 877 878static void bdev_evict_inode(struct inode *inode) 879{ 880 struct block_device *bdev = &BDEV_I(inode)->bdev; 881 truncate_inode_pages_final(&inode->i_data); 882 invalidate_inode_buffers(inode); /* is it needed here? */ 883 clear_inode(inode); 884 spin_lock(&bdev_lock); 885 list_del_init(&bdev->bd_list); 886 spin_unlock(&bdev_lock); 887} 888 889static const struct super_operations bdev_sops = { 890 .statfs = simple_statfs, 891 .alloc_inode = bdev_alloc_inode, 892 .destroy_inode = bdev_destroy_inode, 893 .drop_inode = generic_delete_inode, 894 .evict_inode = bdev_evict_inode, 895}; 896 897static struct dentry *bd_mount(struct file_system_type *fs_type, 898 int flags, const char *dev_name, void *data) 899{ 900 struct dentry *dent; 901 dent = mount_pseudo(fs_type, "bdev:", &bdev_sops, NULL, BDEVFS_MAGIC); 902 if (!IS_ERR(dent)) 903 dent->d_sb->s_iflags |= SB_I_CGROUPWB; 904 return dent; 905} 906 907static struct file_system_type bd_type = { 908 .name = "bdev", 909 .mount = bd_mount, 910 .kill_sb = kill_anon_super, 911}; 912 913struct super_block *blockdev_superblock __read_mostly; 914EXPORT_SYMBOL_GPL(blockdev_superblock); 915 916void __init bdev_cache_init(void) 917{ 918 int err; 919 static struct vfsmount *bd_mnt; 920 921 bdev_cachep = kmem_cache_create("bdev_cache", sizeof(struct bdev_inode), 922 0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT| 923 SLAB_MEM_SPREAD|SLAB_ACCOUNT|SLAB_PANIC), 924 init_once); 925 err = register_filesystem(&bd_type); 926 if (err) 927 panic("Cannot register bdev pseudo-fs"); 928 bd_mnt = kern_mount(&bd_type); 929 if (IS_ERR(bd_mnt)) 930 panic("Cannot create bdev pseudo-fs"); 931 blockdev_superblock = bd_mnt->mnt_sb; /* For writeback */ 932} 933 934/* 935 * Most likely _very_ bad one - but then it's hardly critical for small 936 * /dev and can be fixed when somebody will need really large one. 937 * Keep in mind that it will be fed through icache hash function too. 938 */ 939static inline unsigned long hash(dev_t dev) 940{ 941 return MAJOR(dev)+MINOR(dev); 942} 943 944static int bdev_test(struct inode *inode, void *data) 945{ 946 return BDEV_I(inode)->bdev.bd_dev == *(dev_t *)data; 947} 948 949static int bdev_set(struct inode *inode, void *data) 950{ 951 BDEV_I(inode)->bdev.bd_dev = *(dev_t *)data; 952 return 0; 953} 954 955static LIST_HEAD(all_bdevs); 956 957struct block_device *bdget(dev_t dev) 958{ 959 struct block_device *bdev; 960 struct inode *inode; 961 962 inode = iget5_locked(blockdev_superblock, hash(dev), 963 bdev_test, bdev_set, &dev); 964 965 if (!inode) 966 return NULL; 967 968 bdev = &BDEV_I(inode)->bdev; 969 970 if (inode->i_state & I_NEW) { 971 bdev->bd_contains = NULL; 972 bdev->bd_super = NULL; 973 bdev->bd_inode = inode; 974 bdev->bd_block_size = (1 << inode->i_blkbits); 975 bdev->bd_part_count = 0; 976 bdev->bd_invalidated = 0; 977 inode->i_mode = S_IFBLK; 978 inode->i_rdev = dev; 979 inode->i_bdev = bdev; 980 inode->i_data.a_ops = &def_blk_aops; 981 mapping_set_gfp_mask(&inode->i_data, GFP_USER); 982 spin_lock(&bdev_lock); 983 list_add(&bdev->bd_list, &all_bdevs); 984 spin_unlock(&bdev_lock); 985 unlock_new_inode(inode); 986 } 987 return bdev; 988} 989 990EXPORT_SYMBOL(bdget); 991 992/** 993 * bdgrab -- Grab a reference to an already referenced block device 994 * @bdev: Block device to grab a reference to. 995 */ 996struct block_device *bdgrab(struct block_device *bdev) 997{ 998 ihold(bdev->bd_inode); 999 return bdev; 1000} 1001EXPORT_SYMBOL(bdgrab); 1002 1003long nr_blockdev_pages(void) 1004{ 1005 struct block_device *bdev; 1006 long ret = 0; 1007 spin_lock(&bdev_lock); 1008 list_for_each_entry(bdev, &all_bdevs, bd_list) { 1009 ret += bdev->bd_inode->i_mapping->nrpages; 1010 } 1011 spin_unlock(&bdev_lock); 1012 return ret; 1013} 1014 1015void bdput(struct block_device *bdev) 1016{ 1017 iput(bdev->bd_inode); 1018} 1019 1020EXPORT_SYMBOL(bdput); 1021 1022static struct block_device *bd_acquire(struct inode *inode) 1023{ 1024 struct block_device *bdev; 1025 1026 spin_lock(&bdev_lock); 1027 bdev = inode->i_bdev; 1028 if (bdev) { 1029 bdgrab(bdev); 1030 spin_unlock(&bdev_lock); 1031 return bdev; 1032 } 1033 spin_unlock(&bdev_lock); 1034 1035 bdev = bdget(inode->i_rdev); 1036 if (bdev) { 1037 spin_lock(&bdev_lock); 1038 if (!inode->i_bdev) { 1039 /* 1040 * We take an additional reference to bd_inode, 1041 * and it's released in clear_inode() of inode. 1042 * So, we can access it via ->i_mapping always 1043 * without igrab(). 1044 */ 1045 bdgrab(bdev); 1046 inode->i_bdev = bdev; 1047 inode->i_mapping = bdev->bd_inode->i_mapping; 1048 } 1049 spin_unlock(&bdev_lock); 1050 } 1051 return bdev; 1052} 1053 1054/* Call when you free inode */ 1055 1056void bd_forget(struct inode *inode) 1057{ 1058 struct block_device *bdev = NULL; 1059 1060 spin_lock(&bdev_lock); 1061 if (!sb_is_blkdev_sb(inode->i_sb)) 1062 bdev = inode->i_bdev; 1063 inode->i_bdev = NULL; 1064 inode->i_mapping = &inode->i_data; 1065 spin_unlock(&bdev_lock); 1066 1067 if (bdev) 1068 bdput(bdev); 1069} 1070 1071/** 1072 * bd_may_claim - test whether a block device can be claimed 1073 * @bdev: block device of interest 1074 * @whole: whole block device containing @bdev, may equal @bdev 1075 * @holder: holder trying to claim @bdev 1076 * 1077 * Test whether @bdev can be claimed by @holder. 1078 * 1079 * CONTEXT: 1080 * spin_lock(&bdev_lock). 1081 * 1082 * RETURNS: 1083 * %true if @bdev can be claimed, %false otherwise. 1084 */ 1085static bool bd_may_claim(struct block_device *bdev, struct block_device *whole, 1086 void *holder) 1087{ 1088 if (bdev->bd_holder == holder) 1089 return true; /* already a holder */ 1090 else if (bdev->bd_holder != NULL) 1091 return false; /* held by someone else */ 1092 else if (whole == bdev) 1093 return true; /* is a whole device which isn't held */ 1094 1095 else if (whole->bd_holder == bd_may_claim) 1096 return true; /* is a partition of a device that is being partitioned */ 1097 else if (whole->bd_holder != NULL) 1098 return false; /* is a partition of a held device */ 1099 else 1100 return true; /* is a partition of an un-held device */ 1101} 1102 1103/** 1104 * bd_prepare_to_claim - prepare to claim a block device 1105 * @bdev: block device of interest 1106 * @whole: the whole device containing @bdev, may equal @bdev 1107 * @holder: holder trying to claim @bdev 1108 * 1109 * Prepare to claim @bdev. This function fails if @bdev is already 1110 * claimed by another holder and waits if another claiming is in 1111 * progress. This function doesn't actually claim. On successful 1112 * return, the caller has ownership of bd_claiming and bd_holder[s]. 1113 * 1114 * CONTEXT: 1115 * spin_lock(&bdev_lock). Might release bdev_lock, sleep and regrab 1116 * it multiple times. 1117 * 1118 * RETURNS: 1119 * 0 if @bdev can be claimed, -EBUSY otherwise. 1120 */ 1121static int bd_prepare_to_claim(struct block_device *bdev, 1122 struct block_device *whole, void *holder) 1123{ 1124retry: 1125 /* if someone else claimed, fail */ 1126 if (!bd_may_claim(bdev, whole, holder)) 1127 return -EBUSY; 1128 1129 /* if claiming is already in progress, wait for it to finish */ 1130 if (whole->bd_claiming) { 1131 wait_queue_head_t *wq = bit_waitqueue(&whole->bd_claiming, 0); 1132 DEFINE_WAIT(wait); 1133 1134 prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE); 1135 spin_unlock(&bdev_lock); 1136 schedule(); 1137 finish_wait(wq, &wait); 1138 spin_lock(&bdev_lock); 1139 goto retry; 1140 } 1141 1142 /* yay, all mine */ 1143 return 0; 1144} 1145 1146/** 1147 * bd_start_claiming - start claiming a block device 1148 * @bdev: block device of interest 1149 * @holder: holder trying to claim @bdev 1150 * 1151 * @bdev is about to be opened exclusively. Check @bdev can be opened 1152 * exclusively and mark that an exclusive open is in progress. Each 1153 * successful call to this function must be matched with a call to 1154 * either bd_finish_claiming() or bd_abort_claiming() (which do not 1155 * fail). 1156 * 1157 * This function is used to gain exclusive access to the block device 1158 * without actually causing other exclusive open attempts to fail. It 1159 * should be used when the open sequence itself requires exclusive 1160 * access but may subsequently fail. 1161 * 1162 * CONTEXT: 1163 * Might sleep. 1164 * 1165 * RETURNS: 1166 * Pointer to the block device containing @bdev on success, ERR_PTR() 1167 * value on failure. 1168 */ 1169static struct block_device *bd_start_claiming(struct block_device *bdev, 1170 void *holder) 1171{ 1172 struct gendisk *disk; 1173 struct block_device *whole; 1174 int partno, err; 1175 1176 might_sleep(); 1177 1178 /* 1179 * @bdev might not have been initialized properly yet, look up 1180 * and grab the outer block device the hard way. 1181 */ 1182 disk = get_gendisk(bdev->bd_dev, &partno); 1183 if (!disk) 1184 return ERR_PTR(-ENXIO); 1185 1186 /* 1187 * Normally, @bdev should equal what's returned from bdget_disk() 1188 * if partno is 0; however, some drivers (floppy) use multiple 1189 * bdev's for the same physical device and @bdev may be one of the 1190 * aliases. Keep @bdev if partno is 0. This means claimer 1191 * tracking is broken for those devices but it has always been that 1192 * way. 1193 */ 1194 if (partno) 1195 whole = bdget_disk(disk, 0); 1196 else 1197 whole = bdgrab(bdev); 1198 1199 module_put(disk->fops->owner); 1200 put_disk(disk); 1201 if (!whole) 1202 return ERR_PTR(-ENOMEM); 1203 1204 /* prepare to claim, if successful, mark claiming in progress */ 1205 spin_lock(&bdev_lock); 1206 1207 err = bd_prepare_to_claim(bdev, whole, holder); 1208 if (err == 0) { 1209 whole->bd_claiming = holder; 1210 spin_unlock(&bdev_lock); 1211 return whole; 1212 } else { 1213 spin_unlock(&bdev_lock); 1214 bdput(whole); 1215 return ERR_PTR(err); 1216 } 1217} 1218 1219#ifdef CONFIG_SYSFS 1220struct bd_holder_disk { 1221 struct list_head list; 1222 struct gendisk *disk; 1223 int refcnt; 1224}; 1225 1226static struct bd_holder_disk *bd_find_holder_disk(struct block_device *bdev, 1227 struct gendisk *disk) 1228{ 1229 struct bd_holder_disk *holder; 1230 1231 list_for_each_entry(holder, &bdev->bd_holder_disks, list) 1232 if (holder->disk == disk) 1233 return holder; 1234 return NULL; 1235} 1236 1237static int add_symlink(struct kobject *from, struct kobject *to) 1238{ 1239 return sysfs_create_link(from, to, kobject_name(to)); 1240} 1241 1242static void del_symlink(struct kobject *from, struct kobject *to) 1243{ 1244 sysfs_remove_link(from, kobject_name(to)); 1245} 1246 1247/** 1248 * bd_link_disk_holder - create symlinks between holding disk and slave bdev 1249 * @bdev: the claimed slave bdev 1250 * @disk: the holding disk 1251 * 1252 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT. 1253 * 1254 * This functions creates the following sysfs symlinks. 1255 * 1256 * - from "slaves" directory of the holder @disk to the claimed @bdev 1257 * - from "holders" directory of the @bdev to the holder @disk 1258 * 1259 * For example, if /dev/dm-0 maps to /dev/sda and disk for dm-0 is 1260 * passed to bd_link_disk_holder(), then: 1261 * 1262 * /sys/block/dm-0/slaves/sda --> /sys/block/sda 1263 * /sys/block/sda/holders/dm-0 --> /sys/block/dm-0 1264 * 1265 * The caller must have claimed @bdev before calling this function and 1266 * ensure that both @bdev and @disk are valid during the creation and 1267 * lifetime of these symlinks. 1268 * 1269 * CONTEXT: 1270 * Might sleep. 1271 * 1272 * RETURNS: 1273 * 0 on success, -errno on failure. 1274 */ 1275int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk) 1276{ 1277 struct bd_holder_disk *holder; 1278 int ret = 0; 1279 1280 mutex_lock(&bdev->bd_mutex); 1281 1282 WARN_ON_ONCE(!bdev->bd_holder); 1283 1284 /* FIXME: remove the following once add_disk() handles errors */ 1285 if (WARN_ON(!disk->slave_dir || !bdev->bd_part->holder_dir)) 1286 goto out_unlock; 1287 1288 holder = bd_find_holder_disk(bdev, disk); 1289 if (holder) { 1290 holder->refcnt++; 1291 goto out_unlock; 1292 } 1293 1294 holder = kzalloc(sizeof(*holder), GFP_KERNEL); 1295 if (!holder) { 1296 ret = -ENOMEM; 1297 goto out_unlock; 1298 } 1299 1300 INIT_LIST_HEAD(&holder->list); 1301 holder->disk = disk; 1302 holder->refcnt = 1; 1303 1304 ret = add_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj); 1305 if (ret) 1306 goto out_free; 1307 1308 ret = add_symlink(bdev->bd_part->holder_dir, &disk_to_dev(disk)->kobj); 1309 if (ret) 1310 goto out_del; 1311 /* 1312 * bdev could be deleted beneath us which would implicitly destroy 1313 * the holder directory. Hold on to it. 1314 */ 1315 kobject_get(bdev->bd_part->holder_dir); 1316 1317 list_add(&holder->list, &bdev->bd_holder_disks); 1318 goto out_unlock; 1319 1320out_del: 1321 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj); 1322out_free: 1323 kfree(holder); 1324out_unlock: 1325 mutex_unlock(&bdev->bd_mutex); 1326 return ret; 1327} 1328EXPORT_SYMBOL_GPL(bd_link_disk_holder); 1329 1330/** 1331 * bd_unlink_disk_holder - destroy symlinks created by bd_link_disk_holder() 1332 * @bdev: the calimed slave bdev 1333 * @disk: the holding disk 1334 * 1335 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT. 1336 * 1337 * CONTEXT: 1338 * Might sleep. 1339 */ 1340void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk) 1341{ 1342 struct bd_holder_disk *holder; 1343 1344 mutex_lock(&bdev->bd_mutex); 1345 1346 holder = bd_find_holder_disk(bdev, disk); 1347 1348 if (!WARN_ON_ONCE(holder == NULL) && !--holder->refcnt) { 1349 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj); 1350 del_symlink(bdev->bd_part->holder_dir, 1351 &disk_to_dev(disk)->kobj); 1352 kobject_put(bdev->bd_part->holder_dir); 1353 list_del_init(&holder->list); 1354 kfree(holder); 1355 } 1356 1357 mutex_unlock(&bdev->bd_mutex); 1358} 1359EXPORT_SYMBOL_GPL(bd_unlink_disk_holder); 1360#endif 1361 1362/** 1363 * flush_disk - invalidates all buffer-cache entries on a disk 1364 * 1365 * @bdev: struct block device to be flushed 1366 * @kill_dirty: flag to guide handling of dirty inodes 1367 * 1368 * Invalidates all buffer-cache entries on a disk. It should be called 1369 * when a disk has been changed -- either by a media change or online 1370 * resize. 1371 */ 1372static void flush_disk(struct block_device *bdev, bool kill_dirty) 1373{ 1374 if (__invalidate_device(bdev, kill_dirty)) { 1375 printk(KERN_WARNING "VFS: busy inodes on changed media or " 1376 "resized disk %s\n", 1377 bdev->bd_disk ? bdev->bd_disk->disk_name : ""); 1378 } 1379 1380 if (!bdev->bd_disk) 1381 return; 1382 if (disk_part_scan_enabled(bdev->bd_disk)) 1383 bdev->bd_invalidated = 1; 1384} 1385 1386/** 1387 * check_disk_size_change - checks for disk size change and adjusts bdev size. 1388 * @disk: struct gendisk to check 1389 * @bdev: struct bdev to adjust. 1390 * 1391 * This routine checks to see if the bdev size does not match the disk size 1392 * and adjusts it if it differs. 1393 */ 1394void check_disk_size_change(struct gendisk *disk, struct block_device *bdev) 1395{ 1396 loff_t disk_size, bdev_size; 1397 1398 disk_size = (loff_t)get_capacity(disk) << 9; 1399 bdev_size = i_size_read(bdev->bd_inode); 1400 if (disk_size != bdev_size) { 1401 printk(KERN_INFO 1402 "%s: detected capacity change from %lld to %lld\n", 1403 disk->disk_name, bdev_size, disk_size); 1404 i_size_write(bdev->bd_inode, disk_size); 1405 flush_disk(bdev, false); 1406 } 1407} 1408EXPORT_SYMBOL(check_disk_size_change); 1409 1410/** 1411 * revalidate_disk - wrapper for lower-level driver's revalidate_disk call-back 1412 * @disk: struct gendisk to be revalidated 1413 * 1414 * This routine is a wrapper for lower-level driver's revalidate_disk 1415 * call-backs. It is used to do common pre and post operations needed 1416 * for all revalidate_disk operations. 1417 */ 1418int revalidate_disk(struct gendisk *disk) 1419{ 1420 struct block_device *bdev; 1421 int ret = 0; 1422 1423 if (disk->fops->revalidate_disk) 1424 ret = disk->fops->revalidate_disk(disk); 1425 blk_integrity_revalidate(disk); 1426 bdev = bdget_disk(disk, 0); 1427 if (!bdev) 1428 return ret; 1429 1430 mutex_lock(&bdev->bd_mutex); 1431 check_disk_size_change(disk, bdev); 1432 bdev->bd_invalidated = 0; 1433 mutex_unlock(&bdev->bd_mutex); 1434 bdput(bdev); 1435 return ret; 1436} 1437EXPORT_SYMBOL(revalidate_disk); 1438 1439/* 1440 * This routine checks whether a removable media has been changed, 1441 * and invalidates all buffer-cache-entries in that case. This 1442 * is a relatively slow routine, so we have to try to minimize using 1443 * it. Thus it is called only upon a 'mount' or 'open'. This 1444 * is the best way of combining speed and utility, I think. 1445 * People changing diskettes in the middle of an operation deserve 1446 * to lose :-) 1447 */ 1448int check_disk_change(struct block_device *bdev) 1449{ 1450 struct gendisk *disk = bdev->bd_disk; 1451 const struct block_device_operations *bdops = disk->fops; 1452 unsigned int events; 1453 1454 events = disk_clear_events(disk, DISK_EVENT_MEDIA_CHANGE | 1455 DISK_EVENT_EJECT_REQUEST); 1456 if (!(events & DISK_EVENT_MEDIA_CHANGE)) 1457 return 0; 1458 1459 flush_disk(bdev, true); 1460 if (bdops->revalidate_disk) 1461 bdops->revalidate_disk(bdev->bd_disk); 1462 return 1; 1463} 1464 1465EXPORT_SYMBOL(check_disk_change); 1466 1467void bd_set_size(struct block_device *bdev, loff_t size) 1468{ 1469 unsigned bsize = bdev_logical_block_size(bdev); 1470 1471 inode_lock(bdev->bd_inode); 1472 i_size_write(bdev->bd_inode, size); 1473 inode_unlock(bdev->bd_inode); 1474 while (bsize < PAGE_SIZE) { 1475 if (size & bsize) 1476 break; 1477 bsize <<= 1; 1478 } 1479 bdev->bd_block_size = bsize; 1480 bdev->bd_inode->i_blkbits = blksize_bits(bsize); 1481} 1482EXPORT_SYMBOL(bd_set_size); 1483 1484static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part); 1485 1486/* 1487 * bd_mutex locking: 1488 * 1489 * mutex_lock(part->bd_mutex) 1490 * mutex_lock_nested(whole->bd_mutex, 1) 1491 */ 1492 1493static int __blkdev_get(struct block_device *bdev, fmode_t mode, int for_part) 1494{ 1495 struct gendisk *disk; 1496 struct module *owner; 1497 int ret; 1498 int partno; 1499 int perm = 0; 1500 1501 if (mode & FMODE_READ) 1502 perm |= MAY_READ; 1503 if (mode & FMODE_WRITE) 1504 perm |= MAY_WRITE; 1505 /* 1506 * hooks: /n/, see "layering violations". 1507 */ 1508 if (!for_part) { 1509 ret = devcgroup_inode_permission(bdev->bd_inode, perm); 1510 if (ret != 0) { 1511 bdput(bdev); 1512 return ret; 1513 } 1514 } 1515 1516 restart: 1517 1518 ret = -ENXIO; 1519 disk = get_gendisk(bdev->bd_dev, &partno); 1520 if (!disk) 1521 goto out; 1522 owner = disk->fops->owner; 1523 1524 disk_block_events(disk); 1525 mutex_lock_nested(&bdev->bd_mutex, for_part); 1526 if (!bdev->bd_openers) { 1527 bdev->bd_disk = disk; 1528 bdev->bd_queue = disk->queue; 1529 bdev->bd_contains = bdev; 1530 1531 if (!partno) { 1532 ret = -ENXIO; 1533 bdev->bd_part = disk_get_part(disk, partno); 1534 if (!bdev->bd_part) 1535 goto out_clear; 1536 1537 ret = 0; 1538 if (disk->fops->open) { 1539 ret = disk->fops->open(bdev, mode); 1540 if (ret == -ERESTARTSYS) { 1541 /* Lost a race with 'disk' being 1542 * deleted, try again. 1543 * See md.c 1544 */ 1545 disk_put_part(bdev->bd_part); 1546 bdev->bd_part = NULL; 1547 bdev->bd_disk = NULL; 1548 bdev->bd_queue = NULL; 1549 mutex_unlock(&bdev->bd_mutex); 1550 disk_unblock_events(disk); 1551 put_disk(disk); 1552 module_put(owner); 1553 goto restart; 1554 } 1555 } 1556 1557 if (!ret) 1558 bd_set_size(bdev,(loff_t)get_capacity(disk)<<9); 1559 1560 /* 1561 * If the device is invalidated, rescan partition 1562 * if open succeeded or failed with -ENOMEDIUM. 1563 * The latter is necessary to prevent ghost 1564 * partitions on a removed medium. 1565 */ 1566 if (bdev->bd_invalidated) { 1567 if (!ret) 1568 rescan_partitions(disk, bdev); 1569 else if (ret == -ENOMEDIUM) 1570 invalidate_partitions(disk, bdev); 1571 } 1572 1573 if (ret) 1574 goto out_clear; 1575 } else { 1576 struct block_device *whole; 1577 whole = bdget_disk(disk, 0); 1578 ret = -ENOMEM; 1579 if (!whole) 1580 goto out_clear; 1581 BUG_ON(for_part); 1582 ret = __blkdev_get(whole, mode, 1); 1583 if (ret) 1584 goto out_clear; 1585 bdev->bd_contains = whole; 1586 bdev->bd_part = disk_get_part(disk, partno); 1587 if (!(disk->flags & GENHD_FL_UP) || 1588 !bdev->bd_part || !bdev->bd_part->nr_sects) { 1589 ret = -ENXIO; 1590 goto out_clear; 1591 } 1592 bd_set_size(bdev, (loff_t)bdev->bd_part->nr_sects << 9); 1593 } 1594 } else { 1595 if (bdev->bd_contains == bdev) { 1596 ret = 0; 1597 if (bdev->bd_disk->fops->open) 1598 ret = bdev->bd_disk->fops->open(bdev, mode); 1599 /* the same as first opener case, read comment there */ 1600 if (bdev->bd_invalidated) { 1601 if (!ret) 1602 rescan_partitions(bdev->bd_disk, bdev); 1603 else if (ret == -ENOMEDIUM) 1604 invalidate_partitions(bdev->bd_disk, bdev); 1605 } 1606 if (ret) 1607 goto out_unlock_bdev; 1608 } 1609 /* only one opener holds refs to the module and disk */ 1610 put_disk(disk); 1611 module_put(owner); 1612 } 1613 bdev->bd_openers++; 1614 if (for_part) 1615 bdev->bd_part_count++; 1616 mutex_unlock(&bdev->bd_mutex); 1617 disk_unblock_events(disk); 1618 return 0; 1619 1620 out_clear: 1621 disk_put_part(bdev->bd_part); 1622 bdev->bd_disk = NULL; 1623 bdev->bd_part = NULL; 1624 bdev->bd_queue = NULL; 1625 if (bdev != bdev->bd_contains) 1626 __blkdev_put(bdev->bd_contains, mode, 1); 1627 bdev->bd_contains = NULL; 1628 out_unlock_bdev: 1629 mutex_unlock(&bdev->bd_mutex); 1630 disk_unblock_events(disk); 1631 put_disk(disk); 1632 module_put(owner); 1633 out: 1634 bdput(bdev); 1635 1636 return ret; 1637} 1638 1639/** 1640 * blkdev_get - open a block device 1641 * @bdev: block_device to open 1642 * @mode: FMODE_* mask 1643 * @holder: exclusive holder identifier 1644 * 1645 * Open @bdev with @mode. If @mode includes %FMODE_EXCL, @bdev is 1646 * open with exclusive access. Specifying %FMODE_EXCL with %NULL 1647 * @holder is invalid. Exclusive opens may nest for the same @holder. 1648 * 1649 * On success, the reference count of @bdev is unchanged. On failure, 1650 * @bdev is put. 1651 * 1652 * CONTEXT: 1653 * Might sleep. 1654 * 1655 * RETURNS: 1656 * 0 on success, -errno on failure. 1657 */ 1658int blkdev_get(struct block_device *bdev, fmode_t mode, void *holder) 1659{ 1660 struct block_device *whole = NULL; 1661 int res; 1662 1663 WARN_ON_ONCE((mode & FMODE_EXCL) && !holder); 1664 1665 if ((mode & FMODE_EXCL) && holder) { 1666 whole = bd_start_claiming(bdev, holder); 1667 if (IS_ERR(whole)) { 1668 bdput(bdev); 1669 return PTR_ERR(whole); 1670 } 1671 } 1672 1673 res = __blkdev_get(bdev, mode, 0); 1674 1675 if (whole) { 1676 struct gendisk *disk = whole->bd_disk; 1677 1678 /* finish claiming */ 1679 mutex_lock(&bdev->bd_mutex); 1680 spin_lock(&bdev_lock); 1681 1682 if (!res) { 1683 BUG_ON(!bd_may_claim(bdev, whole, holder)); 1684 /* 1685 * Note that for a whole device bd_holders 1686 * will be incremented twice, and bd_holder 1687 * will be set to bd_may_claim before being 1688 * set to holder 1689 */ 1690 whole->bd_holders++; 1691 whole->bd_holder = bd_may_claim; 1692 bdev->bd_holders++; 1693 bdev->bd_holder = holder; 1694 } 1695 1696 /* tell others that we're done */ 1697 BUG_ON(whole->bd_claiming != holder); 1698 whole->bd_claiming = NULL; 1699 wake_up_bit(&whole->bd_claiming, 0); 1700 1701 spin_unlock(&bdev_lock); 1702 1703 /* 1704 * Block event polling for write claims if requested. Any 1705 * write holder makes the write_holder state stick until 1706 * all are released. This is good enough and tracking 1707 * individual writeable reference is too fragile given the 1708 * way @mode is used in blkdev_get/put(). 1709 */ 1710 if (!res && (mode & FMODE_WRITE) && !bdev->bd_write_holder && 1711 (disk->flags & GENHD_FL_BLOCK_EVENTS_ON_EXCL_WRITE)) { 1712 bdev->bd_write_holder = true; 1713 disk_block_events(disk); 1714 } 1715 1716 mutex_unlock(&bdev->bd_mutex); 1717 bdput(whole); 1718 } 1719 1720 return res; 1721} 1722EXPORT_SYMBOL(blkdev_get); 1723 1724/** 1725 * blkdev_get_by_path - open a block device by name 1726 * @path: path to the block device to open 1727 * @mode: FMODE_* mask 1728 * @holder: exclusive holder identifier 1729 * 1730 * Open the blockdevice described by the device file at @path. @mode 1731 * and @holder are identical to blkdev_get(). 1732 * 1733 * On success, the returned block_device has reference count of one. 1734 * 1735 * CONTEXT: 1736 * Might sleep. 1737 * 1738 * RETURNS: 1739 * Pointer to block_device on success, ERR_PTR(-errno) on failure. 1740 */ 1741struct block_device *blkdev_get_by_path(const char *path, fmode_t mode, 1742 void *holder) 1743{ 1744 struct block_device *bdev; 1745 int err; 1746 1747 bdev = lookup_bdev(path); 1748 if (IS_ERR(bdev)) 1749 return bdev; 1750 1751 err = blkdev_get(bdev, mode, holder); 1752 if (err) 1753 return ERR_PTR(err); 1754 1755 if ((mode & FMODE_WRITE) && bdev_read_only(bdev)) { 1756 blkdev_put(bdev, mode); 1757 return ERR_PTR(-EACCES); 1758 } 1759 1760 return bdev; 1761} 1762EXPORT_SYMBOL(blkdev_get_by_path); 1763 1764/** 1765 * blkdev_get_by_dev - open a block device by device number 1766 * @dev: device number of block device to open 1767 * @mode: FMODE_* mask 1768 * @holder: exclusive holder identifier 1769 * 1770 * Open the blockdevice described by device number @dev. @mode and 1771 * @holder are identical to blkdev_get(). 1772 * 1773 * Use it ONLY if you really do not have anything better - i.e. when 1774 * you are behind a truly sucky interface and all you are given is a 1775 * device number. _Never_ to be used for internal purposes. If you 1776 * ever need it - reconsider your API. 1777 * 1778 * On success, the returned block_device has reference count of one. 1779 * 1780 * CONTEXT: 1781 * Might sleep. 1782 * 1783 * RETURNS: 1784 * Pointer to block_device on success, ERR_PTR(-errno) on failure. 1785 */ 1786struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder) 1787{ 1788 struct block_device *bdev; 1789 int err; 1790 1791 bdev = bdget(dev); 1792 if (!bdev) 1793 return ERR_PTR(-ENOMEM); 1794 1795 err = blkdev_get(bdev, mode, holder); 1796 if (err) 1797 return ERR_PTR(err); 1798 1799 return bdev; 1800} 1801EXPORT_SYMBOL(blkdev_get_by_dev); 1802 1803static int blkdev_open(struct inode * inode, struct file * filp) 1804{ 1805 struct block_device *bdev; 1806 1807 /* 1808 * Preserve backwards compatibility and allow large file access 1809 * even if userspace doesn't ask for it explicitly. Some mkfs 1810 * binary needs it. We might want to drop this workaround 1811 * during an unstable branch. 1812 */ 1813 filp->f_flags |= O_LARGEFILE; 1814 1815 if (filp->f_flags & O_NDELAY) 1816 filp->f_mode |= FMODE_NDELAY; 1817 if (filp->f_flags & O_EXCL) 1818 filp->f_mode |= FMODE_EXCL; 1819 if ((filp->f_flags & O_ACCMODE) == 3) 1820 filp->f_mode |= FMODE_WRITE_IOCTL; 1821 1822 bdev = bd_acquire(inode); 1823 if (bdev == NULL) 1824 return -ENOMEM; 1825 1826 filp->f_mapping = bdev->bd_inode->i_mapping; 1827 1828 return blkdev_get(bdev, filp->f_mode, filp); 1829} 1830 1831static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part) 1832{ 1833 struct gendisk *disk = bdev->bd_disk; 1834 struct block_device *victim = NULL; 1835 1836 mutex_lock_nested(&bdev->bd_mutex, for_part); 1837 if (for_part) 1838 bdev->bd_part_count--; 1839 1840 if (!--bdev->bd_openers) { 1841 WARN_ON_ONCE(bdev->bd_holders); 1842 sync_blockdev(bdev); 1843 kill_bdev(bdev); 1844 1845 bdev_write_inode(bdev); 1846 /* 1847 * Detaching bdev inode from its wb in __destroy_inode() 1848 * is too late: the queue which embeds its bdi (along with 1849 * root wb) can be gone as soon as we put_disk() below. 1850 */ 1851 inode_detach_wb(bdev->bd_inode); 1852 } 1853 if (bdev->bd_contains == bdev) { 1854 if (disk->fops->release) 1855 disk->fops->release(disk, mode); 1856 } 1857 if (!bdev->bd_openers) { 1858 struct module *owner = disk->fops->owner; 1859 1860 disk_put_part(bdev->bd_part); 1861 bdev->bd_part = NULL; 1862 bdev->bd_disk = NULL; 1863 if (bdev != bdev->bd_contains) 1864 victim = bdev->bd_contains; 1865 bdev->bd_contains = NULL; 1866 1867 put_disk(disk); 1868 module_put(owner); 1869 } 1870 mutex_unlock(&bdev->bd_mutex); 1871 bdput(bdev); 1872 if (victim) 1873 __blkdev_put(victim, mode, 1); 1874} 1875 1876void blkdev_put(struct block_device *bdev, fmode_t mode) 1877{ 1878 mutex_lock(&bdev->bd_mutex); 1879 1880 if (mode & FMODE_EXCL) { 1881 bool bdev_free; 1882 1883 /* 1884 * Release a claim on the device. The holder fields 1885 * are protected with bdev_lock. bd_mutex is to 1886 * synchronize disk_holder unlinking. 1887 */ 1888 spin_lock(&bdev_lock); 1889 1890 WARN_ON_ONCE(--bdev->bd_holders < 0); 1891 WARN_ON_ONCE(--bdev->bd_contains->bd_holders < 0); 1892 1893 /* bd_contains might point to self, check in a separate step */ 1894 if ((bdev_free = !bdev->bd_holders)) 1895 bdev->bd_holder = NULL; 1896 if (!bdev->bd_contains->bd_holders) 1897 bdev->bd_contains->bd_holder = NULL; 1898 1899 spin_unlock(&bdev_lock); 1900 1901 /* 1902 * If this was the last claim, remove holder link and 1903 * unblock evpoll if it was a write holder. 1904 */ 1905 if (bdev_free && bdev->bd_write_holder) { 1906 disk_unblock_events(bdev->bd_disk); 1907 bdev->bd_write_holder = false; 1908 } 1909 } 1910 1911 /* 1912 * Trigger event checking and tell drivers to flush MEDIA_CHANGE 1913 * event. This is to ensure detection of media removal commanded 1914 * from userland - e.g. eject(1). 1915 */ 1916 disk_flush_events(bdev->bd_disk, DISK_EVENT_MEDIA_CHANGE); 1917 1918 mutex_unlock(&bdev->bd_mutex); 1919 1920 __blkdev_put(bdev, mode, 0); 1921} 1922EXPORT_SYMBOL(blkdev_put); 1923 1924static int blkdev_close(struct inode * inode, struct file * filp) 1925{ 1926 struct block_device *bdev = I_BDEV(bdev_file_inode(filp)); 1927 blkdev_put(bdev, filp->f_mode); 1928 return 0; 1929} 1930 1931static long block_ioctl(struct file *file, unsigned cmd, unsigned long arg) 1932{ 1933 struct block_device *bdev = I_BDEV(bdev_file_inode(file)); 1934 fmode_t mode = file->f_mode; 1935 1936 /* 1937 * O_NDELAY can be altered using fcntl(.., F_SETFL, ..), so we have 1938 * to updated it before every ioctl. 1939 */ 1940 if (file->f_flags & O_NDELAY) 1941 mode |= FMODE_NDELAY; 1942 else 1943 mode &= ~FMODE_NDELAY; 1944 1945 return blkdev_ioctl(bdev, mode, cmd, arg); 1946} 1947 1948/* 1949 * Write data to the block device. Only intended for the block device itself 1950 * and the raw driver which basically is a fake block device. 1951 * 1952 * Does not take i_mutex for the write and thus is not for general purpose 1953 * use. 1954 */ 1955ssize_t blkdev_write_iter(struct kiocb *iocb, struct iov_iter *from) 1956{ 1957 struct file *file = iocb->ki_filp; 1958 struct inode *bd_inode = bdev_file_inode(file); 1959 loff_t size = i_size_read(bd_inode); 1960 struct blk_plug plug; 1961 ssize_t ret; 1962 1963 if (bdev_read_only(I_BDEV(bd_inode))) 1964 return -EPERM; 1965 1966 if (!iov_iter_count(from)) 1967 return 0; 1968 1969 if (iocb->ki_pos >= size) 1970 return -ENOSPC; 1971 1972 iov_iter_truncate(from, size - iocb->ki_pos); 1973 1974 blk_start_plug(&plug); 1975 ret = __generic_file_write_iter(iocb, from); 1976 if (ret > 0) 1977 ret = generic_write_sync(iocb, ret); 1978 blk_finish_plug(&plug); 1979 return ret; 1980} 1981EXPORT_SYMBOL_GPL(blkdev_write_iter); 1982 1983ssize_t blkdev_read_iter(struct kiocb *iocb, struct iov_iter *to) 1984{ 1985 struct file *file = iocb->ki_filp; 1986 struct inode *bd_inode = bdev_file_inode(file); 1987 loff_t size = i_size_read(bd_inode); 1988 loff_t pos = iocb->ki_pos; 1989 1990 if (pos >= size) 1991 return 0; 1992 1993 size -= pos; 1994 iov_iter_truncate(to, size); 1995 return generic_file_read_iter(iocb, to); 1996} 1997EXPORT_SYMBOL_GPL(blkdev_read_iter); 1998 1999/* 2000 * Try to release a page associated with block device when the system 2001 * is under memory pressure. 2002 */ 2003static int blkdev_releasepage(struct page *page, gfp_t wait) 2004{ 2005 struct super_block *super = BDEV_I(page->mapping->host)->bdev.bd_super; 2006 2007 if (super && super->s_op->bdev_try_to_free_page) 2008 return super->s_op->bdev_try_to_free_page(super, page, wait); 2009 2010 return try_to_free_buffers(page); 2011} 2012 2013static int blkdev_writepages(struct address_space *mapping, 2014 struct writeback_control *wbc) 2015{ 2016 if (dax_mapping(mapping)) { 2017 struct block_device *bdev = I_BDEV(mapping->host); 2018 2019 return dax_writeback_mapping_range(mapping, bdev, wbc); 2020 } 2021 return generic_writepages(mapping, wbc); 2022} 2023 2024static const struct address_space_operations def_blk_aops = { 2025 .readpage = blkdev_readpage, 2026 .readpages = blkdev_readpages, 2027 .writepage = blkdev_writepage, 2028 .write_begin = blkdev_write_begin, 2029 .write_end = blkdev_write_end, 2030 .writepages = blkdev_writepages, 2031 .releasepage = blkdev_releasepage, 2032 .direct_IO = blkdev_direct_IO, 2033 .is_dirty_writeback = buffer_check_dirty_writeback, 2034}; 2035 2036#define BLKDEV_FALLOC_FL_SUPPORTED \ 2037 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \ 2038 FALLOC_FL_ZERO_RANGE | FALLOC_FL_NO_HIDE_STALE) 2039 2040static long blkdev_fallocate(struct file *file, int mode, loff_t start, 2041 loff_t len) 2042{ 2043 struct block_device *bdev = I_BDEV(bdev_file_inode(file)); 2044 struct request_queue *q = bdev_get_queue(bdev); 2045 struct address_space *mapping; 2046 loff_t end = start + len - 1; 2047 loff_t isize; 2048 int error; 2049 2050 /* Fail if we don't recognize the flags. */ 2051 if (mode & ~BLKDEV_FALLOC_FL_SUPPORTED) 2052 return -EOPNOTSUPP; 2053 2054 /* Don't go off the end of the device. */ 2055 isize = i_size_read(bdev->bd_inode); 2056 if (start >= isize) 2057 return -EINVAL; 2058 if (end >= isize) { 2059 if (mode & FALLOC_FL_KEEP_SIZE) { 2060 len = isize - start; 2061 end = start + len - 1; 2062 } else 2063 return -EINVAL; 2064 } 2065 2066 /* 2067 * Don't allow IO that isn't aligned to logical block size. 2068 */ 2069 if ((start | len) & (bdev_logical_block_size(bdev) - 1)) 2070 return -EINVAL; 2071 2072 /* Invalidate the page cache, including dirty pages. */ 2073 mapping = bdev->bd_inode->i_mapping; 2074 truncate_inode_pages_range(mapping, start, end); 2075 2076 switch (mode) { 2077 case FALLOC_FL_ZERO_RANGE: 2078 case FALLOC_FL_ZERO_RANGE | FALLOC_FL_KEEP_SIZE: 2079 error = blkdev_issue_zeroout(bdev, start >> 9, len >> 9, 2080 GFP_KERNEL, false); 2081 break; 2082 case FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE: 2083 /* Only punch if the device can do zeroing discard. */ 2084 if (!blk_queue_discard(q) || !q->limits.discard_zeroes_data) 2085 return -EOPNOTSUPP; 2086 error = blkdev_issue_discard(bdev, start >> 9, len >> 9, 2087 GFP_KERNEL, 0); 2088 break; 2089 case FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE | FALLOC_FL_NO_HIDE_STALE: 2090 if (!blk_queue_discard(q)) 2091 return -EOPNOTSUPP; 2092 error = blkdev_issue_discard(bdev, start >> 9, len >> 9, 2093 GFP_KERNEL, 0); 2094 break; 2095 default: 2096 return -EOPNOTSUPP; 2097 } 2098 if (error) 2099 return error; 2100 2101 /* 2102 * Invalidate again; if someone wandered in and dirtied a page, 2103 * the caller will be given -EBUSY. The third argument is 2104 * inclusive, so the rounding here is safe. 2105 */ 2106 return invalidate_inode_pages2_range(mapping, 2107 start >> PAGE_SHIFT, 2108 end >> PAGE_SHIFT); 2109} 2110 2111const struct file_operations def_blk_fops = { 2112 .open = blkdev_open, 2113 .release = blkdev_close, 2114 .llseek = block_llseek, 2115 .read_iter = blkdev_read_iter, 2116 .write_iter = blkdev_write_iter, 2117 .mmap = generic_file_mmap, 2118 .fsync = blkdev_fsync, 2119 .unlocked_ioctl = block_ioctl, 2120#ifdef CONFIG_COMPAT 2121 .compat_ioctl = compat_blkdev_ioctl, 2122#endif 2123 .splice_read = generic_file_splice_read, 2124 .splice_write = iter_file_splice_write, 2125 .fallocate = blkdev_fallocate, 2126}; 2127 2128int ioctl_by_bdev(struct block_device *bdev, unsigned cmd, unsigned long arg) 2129{ 2130 int res; 2131 mm_segment_t old_fs = get_fs(); 2132 set_fs(KERNEL_DS); 2133 res = blkdev_ioctl(bdev, 0, cmd, arg); 2134 set_fs(old_fs); 2135 return res; 2136} 2137 2138EXPORT_SYMBOL(ioctl_by_bdev); 2139 2140/** 2141 * lookup_bdev - lookup a struct block_device by name 2142 * @pathname: special file representing the block device 2143 * 2144 * Get a reference to the blockdevice at @pathname in the current 2145 * namespace if possible and return it. Return ERR_PTR(error) 2146 * otherwise. 2147 */ 2148struct block_device *lookup_bdev(const char *pathname) 2149{ 2150 struct block_device *bdev; 2151 struct inode *inode; 2152 struct path path; 2153 int error; 2154 2155 if (!pathname || !*pathname) 2156 return ERR_PTR(-EINVAL); 2157 2158 error = kern_path(pathname, LOOKUP_FOLLOW, &path); 2159 if (error) 2160 return ERR_PTR(error); 2161 2162 inode = d_backing_inode(path.dentry); 2163 error = -ENOTBLK; 2164 if (!S_ISBLK(inode->i_mode)) 2165 goto fail; 2166 error = -EACCES; 2167 if (!may_open_dev(&path)) 2168 goto fail; 2169 error = -ENOMEM; 2170 bdev = bd_acquire(inode); 2171 if (!bdev) 2172 goto fail; 2173out: 2174 path_put(&path); 2175 return bdev; 2176fail: 2177 bdev = ERR_PTR(error); 2178 goto out; 2179} 2180EXPORT_SYMBOL(lookup_bdev); 2181 2182int __invalidate_device(struct block_device *bdev, bool kill_dirty) 2183{ 2184 struct super_block *sb = get_super(bdev); 2185 int res = 0; 2186 2187 if (sb) { 2188 /* 2189 * no need to lock the super, get_super holds the 2190 * read mutex so the filesystem cannot go away 2191 * under us (->put_super runs with the write lock 2192 * hold). 2193 */ 2194 shrink_dcache_sb(sb); 2195 res = invalidate_inodes(sb, kill_dirty); 2196 drop_super(sb); 2197 } 2198 invalidate_bdev(bdev); 2199 return res; 2200} 2201EXPORT_SYMBOL(__invalidate_device); 2202 2203void iterate_bdevs(void (*func)(struct block_device *, void *), void *arg) 2204{ 2205 struct inode *inode, *old_inode = NULL; 2206 2207 spin_lock(&blockdev_superblock->s_inode_list_lock); 2208 list_for_each_entry(inode, &blockdev_superblock->s_inodes, i_sb_list) { 2209 struct address_space *mapping = inode->i_mapping; 2210 struct block_device *bdev; 2211 2212 spin_lock(&inode->i_lock); 2213 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW) || 2214 mapping->nrpages == 0) { 2215 spin_unlock(&inode->i_lock); 2216 continue; 2217 } 2218 __iget(inode); 2219 spin_unlock(&inode->i_lock); 2220 spin_unlock(&blockdev_superblock->s_inode_list_lock); 2221 /* 2222 * We hold a reference to 'inode' so it couldn't have been 2223 * removed from s_inodes list while we dropped the 2224 * s_inode_list_lock We cannot iput the inode now as we can 2225 * be holding the last reference and we cannot iput it under 2226 * s_inode_list_lock. So we keep the reference and iput it 2227 * later. 2228 */ 2229 iput(old_inode); 2230 old_inode = inode; 2231 bdev = I_BDEV(inode); 2232 2233 mutex_lock(&bdev->bd_mutex); 2234 if (bdev->bd_openers) 2235 func(bdev, arg); 2236 mutex_unlock(&bdev->bd_mutex); 2237 2238 spin_lock(&blockdev_superblock->s_inode_list_lock); 2239 } 2240 spin_unlock(&blockdev_superblock->s_inode_list_lock); 2241 iput(old_inode); 2242}