Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1#ifndef _ASM_X86_PROCESSOR_H
2#define _ASM_X86_PROCESSOR_H
3
4#include <asm/processor-flags.h>
5
6/* Forward declaration, a strange C thing */
7struct task_struct;
8struct mm_struct;
9struct vm86;
10
11#include <asm/math_emu.h>
12#include <asm/segment.h>
13#include <asm/types.h>
14#include <uapi/asm/sigcontext.h>
15#include <asm/current.h>
16#include <asm/cpufeatures.h>
17#include <asm/page.h>
18#include <asm/pgtable_types.h>
19#include <asm/percpu.h>
20#include <asm/msr.h>
21#include <asm/desc_defs.h>
22#include <asm/nops.h>
23#include <asm/special_insns.h>
24#include <asm/fpu/types.h>
25
26#include <linux/personality.h>
27#include <linux/cache.h>
28#include <linux/threads.h>
29#include <linux/math64.h>
30#include <linux/err.h>
31#include <linux/irqflags.h>
32
33/*
34 * We handle most unaligned accesses in hardware. On the other hand
35 * unaligned DMA can be quite expensive on some Nehalem processors.
36 *
37 * Based on this we disable the IP header alignment in network drivers.
38 */
39#define NET_IP_ALIGN 0
40
41#define HBP_NUM 4
42/*
43 * Default implementation of macro that returns current
44 * instruction pointer ("program counter").
45 */
46static inline void *current_text_addr(void)
47{
48 void *pc;
49
50 asm volatile("mov $1f, %0; 1:":"=r" (pc));
51
52 return pc;
53}
54
55/*
56 * These alignment constraints are for performance in the vSMP case,
57 * but in the task_struct case we must also meet hardware imposed
58 * alignment requirements of the FPU state:
59 */
60#ifdef CONFIG_X86_VSMP
61# define ARCH_MIN_TASKALIGN (1 << INTERNODE_CACHE_SHIFT)
62# define ARCH_MIN_MMSTRUCT_ALIGN (1 << INTERNODE_CACHE_SHIFT)
63#else
64# define ARCH_MIN_TASKALIGN __alignof__(union fpregs_state)
65# define ARCH_MIN_MMSTRUCT_ALIGN 0
66#endif
67
68enum tlb_infos {
69 ENTRIES,
70 NR_INFO
71};
72
73extern u16 __read_mostly tlb_lli_4k[NR_INFO];
74extern u16 __read_mostly tlb_lli_2m[NR_INFO];
75extern u16 __read_mostly tlb_lli_4m[NR_INFO];
76extern u16 __read_mostly tlb_lld_4k[NR_INFO];
77extern u16 __read_mostly tlb_lld_2m[NR_INFO];
78extern u16 __read_mostly tlb_lld_4m[NR_INFO];
79extern u16 __read_mostly tlb_lld_1g[NR_INFO];
80
81/*
82 * CPU type and hardware bug flags. Kept separately for each CPU.
83 * Members of this structure are referenced in head.S, so think twice
84 * before touching them. [mj]
85 */
86
87struct cpuinfo_x86 {
88 __u8 x86; /* CPU family */
89 __u8 x86_vendor; /* CPU vendor */
90 __u8 x86_model;
91 __u8 x86_mask;
92#ifdef CONFIG_X86_32
93 char wp_works_ok; /* It doesn't on 386's */
94
95 /* Problems on some 486Dx4's and old 386's: */
96 char rfu;
97 char pad0;
98 char pad1;
99#else
100 /* Number of 4K pages in DTLB/ITLB combined(in pages): */
101 int x86_tlbsize;
102#endif
103 __u8 x86_virt_bits;
104 __u8 x86_phys_bits;
105 /* CPUID returned core id bits: */
106 __u8 x86_coreid_bits;
107 __u8 cu_id;
108 /* Max extended CPUID function supported: */
109 __u32 extended_cpuid_level;
110 /* Maximum supported CPUID level, -1=no CPUID: */
111 int cpuid_level;
112 __u32 x86_capability[NCAPINTS + NBUGINTS];
113 char x86_vendor_id[16];
114 char x86_model_id[64];
115 /* in KB - valid for CPUS which support this call: */
116 int x86_cache_size;
117 int x86_cache_alignment; /* In bytes */
118 /* Cache QoS architectural values: */
119 int x86_cache_max_rmid; /* max index */
120 int x86_cache_occ_scale; /* scale to bytes */
121 int x86_power;
122 unsigned long loops_per_jiffy;
123 /* cpuid returned max cores value: */
124 u16 x86_max_cores;
125 u16 apicid;
126 u16 initial_apicid;
127 u16 x86_clflush_size;
128 /* number of cores as seen by the OS: */
129 u16 booted_cores;
130 /* Physical processor id: */
131 u16 phys_proc_id;
132 /* Logical processor id: */
133 u16 logical_proc_id;
134 /* Core id: */
135 u16 cpu_core_id;
136 /* Index into per_cpu list: */
137 u16 cpu_index;
138 u32 microcode;
139};
140
141struct cpuid_regs {
142 u32 eax, ebx, ecx, edx;
143};
144
145enum cpuid_regs_idx {
146 CPUID_EAX = 0,
147 CPUID_EBX,
148 CPUID_ECX,
149 CPUID_EDX,
150};
151
152#define X86_VENDOR_INTEL 0
153#define X86_VENDOR_CYRIX 1
154#define X86_VENDOR_AMD 2
155#define X86_VENDOR_UMC 3
156#define X86_VENDOR_CENTAUR 5
157#define X86_VENDOR_TRANSMETA 7
158#define X86_VENDOR_NSC 8
159#define X86_VENDOR_NUM 9
160
161#define X86_VENDOR_UNKNOWN 0xff
162
163/*
164 * capabilities of CPUs
165 */
166extern struct cpuinfo_x86 boot_cpu_data;
167extern struct cpuinfo_x86 new_cpu_data;
168
169extern struct tss_struct doublefault_tss;
170extern __u32 cpu_caps_cleared[NCAPINTS];
171extern __u32 cpu_caps_set[NCAPINTS];
172
173#ifdef CONFIG_SMP
174DECLARE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
175#define cpu_data(cpu) per_cpu(cpu_info, cpu)
176#else
177#define cpu_info boot_cpu_data
178#define cpu_data(cpu) boot_cpu_data
179#endif
180
181extern const struct seq_operations cpuinfo_op;
182
183#define cache_line_size() (boot_cpu_data.x86_cache_alignment)
184
185extern void cpu_detect(struct cpuinfo_x86 *c);
186
187extern void early_cpu_init(void);
188extern void identify_boot_cpu(void);
189extern void identify_secondary_cpu(struct cpuinfo_x86 *);
190extern void print_cpu_info(struct cpuinfo_x86 *);
191void print_cpu_msr(struct cpuinfo_x86 *);
192extern void init_scattered_cpuid_features(struct cpuinfo_x86 *c);
193extern u32 get_scattered_cpuid_leaf(unsigned int level,
194 unsigned int sub_leaf,
195 enum cpuid_regs_idx reg);
196extern unsigned int init_intel_cacheinfo(struct cpuinfo_x86 *c);
197extern void init_amd_cacheinfo(struct cpuinfo_x86 *c);
198
199extern void detect_extended_topology(struct cpuinfo_x86 *c);
200extern void detect_ht(struct cpuinfo_x86 *c);
201
202#ifdef CONFIG_X86_32
203extern int have_cpuid_p(void);
204#else
205static inline int have_cpuid_p(void)
206{
207 return 1;
208}
209#endif
210static inline void native_cpuid(unsigned int *eax, unsigned int *ebx,
211 unsigned int *ecx, unsigned int *edx)
212{
213 /* ecx is often an input as well as an output. */
214 asm volatile("cpuid"
215 : "=a" (*eax),
216 "=b" (*ebx),
217 "=c" (*ecx),
218 "=d" (*edx)
219 : "0" (*eax), "2" (*ecx)
220 : "memory");
221}
222
223#define native_cpuid_reg(reg) \
224static inline unsigned int native_cpuid_##reg(unsigned int op) \
225{ \
226 unsigned int eax = op, ebx, ecx = 0, edx; \
227 \
228 native_cpuid(&eax, &ebx, &ecx, &edx); \
229 \
230 return reg; \
231}
232
233/*
234 * Native CPUID functions returning a single datum.
235 */
236native_cpuid_reg(eax)
237native_cpuid_reg(ebx)
238native_cpuid_reg(ecx)
239native_cpuid_reg(edx)
240
241static inline void load_cr3(pgd_t *pgdir)
242{
243 write_cr3(__pa(pgdir));
244}
245
246#ifdef CONFIG_X86_32
247/* This is the TSS defined by the hardware. */
248struct x86_hw_tss {
249 unsigned short back_link, __blh;
250 unsigned long sp0;
251 unsigned short ss0, __ss0h;
252 unsigned long sp1;
253
254 /*
255 * We don't use ring 1, so ss1 is a convenient scratch space in
256 * the same cacheline as sp0. We use ss1 to cache the value in
257 * MSR_IA32_SYSENTER_CS. When we context switch
258 * MSR_IA32_SYSENTER_CS, we first check if the new value being
259 * written matches ss1, and, if it's not, then we wrmsr the new
260 * value and update ss1.
261 *
262 * The only reason we context switch MSR_IA32_SYSENTER_CS is
263 * that we set it to zero in vm86 tasks to avoid corrupting the
264 * stack if we were to go through the sysenter path from vm86
265 * mode.
266 */
267 unsigned short ss1; /* MSR_IA32_SYSENTER_CS */
268
269 unsigned short __ss1h;
270 unsigned long sp2;
271 unsigned short ss2, __ss2h;
272 unsigned long __cr3;
273 unsigned long ip;
274 unsigned long flags;
275 unsigned long ax;
276 unsigned long cx;
277 unsigned long dx;
278 unsigned long bx;
279 unsigned long sp;
280 unsigned long bp;
281 unsigned long si;
282 unsigned long di;
283 unsigned short es, __esh;
284 unsigned short cs, __csh;
285 unsigned short ss, __ssh;
286 unsigned short ds, __dsh;
287 unsigned short fs, __fsh;
288 unsigned short gs, __gsh;
289 unsigned short ldt, __ldth;
290 unsigned short trace;
291 unsigned short io_bitmap_base;
292
293} __attribute__((packed));
294#else
295struct x86_hw_tss {
296 u32 reserved1;
297 u64 sp0;
298 u64 sp1;
299 u64 sp2;
300 u64 reserved2;
301 u64 ist[7];
302 u32 reserved3;
303 u32 reserved4;
304 u16 reserved5;
305 u16 io_bitmap_base;
306
307} __attribute__((packed)) ____cacheline_aligned;
308#endif
309
310/*
311 * IO-bitmap sizes:
312 */
313#define IO_BITMAP_BITS 65536
314#define IO_BITMAP_BYTES (IO_BITMAP_BITS/8)
315#define IO_BITMAP_LONGS (IO_BITMAP_BYTES/sizeof(long))
316#define IO_BITMAP_OFFSET offsetof(struct tss_struct, io_bitmap)
317#define INVALID_IO_BITMAP_OFFSET 0x8000
318
319struct tss_struct {
320 /*
321 * The hardware state:
322 */
323 struct x86_hw_tss x86_tss;
324
325 /*
326 * The extra 1 is there because the CPU will access an
327 * additional byte beyond the end of the IO permission
328 * bitmap. The extra byte must be all 1 bits, and must
329 * be within the limit.
330 */
331 unsigned long io_bitmap[IO_BITMAP_LONGS + 1];
332
333#ifdef CONFIG_X86_32
334 /*
335 * Space for the temporary SYSENTER stack.
336 */
337 unsigned long SYSENTER_stack_canary;
338 unsigned long SYSENTER_stack[64];
339#endif
340
341} ____cacheline_aligned;
342
343DECLARE_PER_CPU_SHARED_ALIGNED(struct tss_struct, cpu_tss);
344
345#ifdef CONFIG_X86_32
346DECLARE_PER_CPU(unsigned long, cpu_current_top_of_stack);
347#endif
348
349/*
350 * Save the original ist values for checking stack pointers during debugging
351 */
352struct orig_ist {
353 unsigned long ist[7];
354};
355
356#ifdef CONFIG_X86_64
357DECLARE_PER_CPU(struct orig_ist, orig_ist);
358
359union irq_stack_union {
360 char irq_stack[IRQ_STACK_SIZE];
361 /*
362 * GCC hardcodes the stack canary as %gs:40. Since the
363 * irq_stack is the object at %gs:0, we reserve the bottom
364 * 48 bytes of the irq stack for the canary.
365 */
366 struct {
367 char gs_base[40];
368 unsigned long stack_canary;
369 };
370};
371
372DECLARE_PER_CPU_FIRST(union irq_stack_union, irq_stack_union) __visible;
373DECLARE_INIT_PER_CPU(irq_stack_union);
374
375DECLARE_PER_CPU(char *, irq_stack_ptr);
376DECLARE_PER_CPU(unsigned int, irq_count);
377extern asmlinkage void ignore_sysret(void);
378#else /* X86_64 */
379#ifdef CONFIG_CC_STACKPROTECTOR
380/*
381 * Make sure stack canary segment base is cached-aligned:
382 * "For Intel Atom processors, avoid non zero segment base address
383 * that is not aligned to cache line boundary at all cost."
384 * (Optim Ref Manual Assembly/Compiler Coding Rule 15.)
385 */
386struct stack_canary {
387 char __pad[20]; /* canary at %gs:20 */
388 unsigned long canary;
389};
390DECLARE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
391#endif
392/*
393 * per-CPU IRQ handling stacks
394 */
395struct irq_stack {
396 u32 stack[THREAD_SIZE/sizeof(u32)];
397} __aligned(THREAD_SIZE);
398
399DECLARE_PER_CPU(struct irq_stack *, hardirq_stack);
400DECLARE_PER_CPU(struct irq_stack *, softirq_stack);
401#endif /* X86_64 */
402
403extern unsigned int fpu_kernel_xstate_size;
404extern unsigned int fpu_user_xstate_size;
405
406struct perf_event;
407
408typedef struct {
409 unsigned long seg;
410} mm_segment_t;
411
412struct thread_struct {
413 /* Cached TLS descriptors: */
414 struct desc_struct tls_array[GDT_ENTRY_TLS_ENTRIES];
415 unsigned long sp0;
416 unsigned long sp;
417#ifdef CONFIG_X86_32
418 unsigned long sysenter_cs;
419#else
420 unsigned short es;
421 unsigned short ds;
422 unsigned short fsindex;
423 unsigned short gsindex;
424#endif
425
426 u32 status; /* thread synchronous flags */
427
428#ifdef CONFIG_X86_64
429 unsigned long fsbase;
430 unsigned long gsbase;
431#else
432 /*
433 * XXX: this could presumably be unsigned short. Alternatively,
434 * 32-bit kernels could be taught to use fsindex instead.
435 */
436 unsigned long fs;
437 unsigned long gs;
438#endif
439
440 /* Save middle states of ptrace breakpoints */
441 struct perf_event *ptrace_bps[HBP_NUM];
442 /* Debug status used for traps, single steps, etc... */
443 unsigned long debugreg6;
444 /* Keep track of the exact dr7 value set by the user */
445 unsigned long ptrace_dr7;
446 /* Fault info: */
447 unsigned long cr2;
448 unsigned long trap_nr;
449 unsigned long error_code;
450#ifdef CONFIG_VM86
451 /* Virtual 86 mode info */
452 struct vm86 *vm86;
453#endif
454 /* IO permissions: */
455 unsigned long *io_bitmap_ptr;
456 unsigned long iopl;
457 /* Max allowed port in the bitmap, in bytes: */
458 unsigned io_bitmap_max;
459
460 mm_segment_t addr_limit;
461
462 unsigned int sig_on_uaccess_err:1;
463 unsigned int uaccess_err:1; /* uaccess failed */
464
465 /* Floating point and extended processor state */
466 struct fpu fpu;
467 /*
468 * WARNING: 'fpu' is dynamically-sized. It *MUST* be at
469 * the end.
470 */
471};
472
473/*
474 * Thread-synchronous status.
475 *
476 * This is different from the flags in that nobody else
477 * ever touches our thread-synchronous status, so we don't
478 * have to worry about atomic accesses.
479 */
480#define TS_COMPAT 0x0002 /* 32bit syscall active (64BIT)*/
481
482/*
483 * Set IOPL bits in EFLAGS from given mask
484 */
485static inline void native_set_iopl_mask(unsigned mask)
486{
487#ifdef CONFIG_X86_32
488 unsigned int reg;
489
490 asm volatile ("pushfl;"
491 "popl %0;"
492 "andl %1, %0;"
493 "orl %2, %0;"
494 "pushl %0;"
495 "popfl"
496 : "=&r" (reg)
497 : "i" (~X86_EFLAGS_IOPL), "r" (mask));
498#endif
499}
500
501static inline void
502native_load_sp0(struct tss_struct *tss, struct thread_struct *thread)
503{
504 tss->x86_tss.sp0 = thread->sp0;
505#ifdef CONFIG_X86_32
506 /* Only happens when SEP is enabled, no need to test "SEP"arately: */
507 if (unlikely(tss->x86_tss.ss1 != thread->sysenter_cs)) {
508 tss->x86_tss.ss1 = thread->sysenter_cs;
509 wrmsr(MSR_IA32_SYSENTER_CS, thread->sysenter_cs, 0);
510 }
511#endif
512}
513
514static inline void native_swapgs(void)
515{
516#ifdef CONFIG_X86_64
517 asm volatile("swapgs" ::: "memory");
518#endif
519}
520
521static inline unsigned long current_top_of_stack(void)
522{
523#ifdef CONFIG_X86_64
524 return this_cpu_read_stable(cpu_tss.x86_tss.sp0);
525#else
526 /* sp0 on x86_32 is special in and around vm86 mode. */
527 return this_cpu_read_stable(cpu_current_top_of_stack);
528#endif
529}
530
531#ifdef CONFIG_PARAVIRT
532#include <asm/paravirt.h>
533#else
534#define __cpuid native_cpuid
535
536static inline void load_sp0(struct tss_struct *tss,
537 struct thread_struct *thread)
538{
539 native_load_sp0(tss, thread);
540}
541
542#define set_iopl_mask native_set_iopl_mask
543#endif /* CONFIG_PARAVIRT */
544
545/* Free all resources held by a thread. */
546extern void release_thread(struct task_struct *);
547
548unsigned long get_wchan(struct task_struct *p);
549
550/*
551 * Generic CPUID function
552 * clear %ecx since some cpus (Cyrix MII) do not set or clear %ecx
553 * resulting in stale register contents being returned.
554 */
555static inline void cpuid(unsigned int op,
556 unsigned int *eax, unsigned int *ebx,
557 unsigned int *ecx, unsigned int *edx)
558{
559 *eax = op;
560 *ecx = 0;
561 __cpuid(eax, ebx, ecx, edx);
562}
563
564/* Some CPUID calls want 'count' to be placed in ecx */
565static inline void cpuid_count(unsigned int op, int count,
566 unsigned int *eax, unsigned int *ebx,
567 unsigned int *ecx, unsigned int *edx)
568{
569 *eax = op;
570 *ecx = count;
571 __cpuid(eax, ebx, ecx, edx);
572}
573
574/*
575 * CPUID functions returning a single datum
576 */
577static inline unsigned int cpuid_eax(unsigned int op)
578{
579 unsigned int eax, ebx, ecx, edx;
580
581 cpuid(op, &eax, &ebx, &ecx, &edx);
582
583 return eax;
584}
585
586static inline unsigned int cpuid_ebx(unsigned int op)
587{
588 unsigned int eax, ebx, ecx, edx;
589
590 cpuid(op, &eax, &ebx, &ecx, &edx);
591
592 return ebx;
593}
594
595static inline unsigned int cpuid_ecx(unsigned int op)
596{
597 unsigned int eax, ebx, ecx, edx;
598
599 cpuid(op, &eax, &ebx, &ecx, &edx);
600
601 return ecx;
602}
603
604static inline unsigned int cpuid_edx(unsigned int op)
605{
606 unsigned int eax, ebx, ecx, edx;
607
608 cpuid(op, &eax, &ebx, &ecx, &edx);
609
610 return edx;
611}
612
613/* REP NOP (PAUSE) is a good thing to insert into busy-wait loops. */
614static __always_inline void rep_nop(void)
615{
616 asm volatile("rep; nop" ::: "memory");
617}
618
619static __always_inline void cpu_relax(void)
620{
621 rep_nop();
622}
623
624/*
625 * This function forces the icache and prefetched instruction stream to
626 * catch up with reality in two very specific cases:
627 *
628 * a) Text was modified using one virtual address and is about to be executed
629 * from the same physical page at a different virtual address.
630 *
631 * b) Text was modified on a different CPU, may subsequently be
632 * executed on this CPU, and you want to make sure the new version
633 * gets executed. This generally means you're calling this in a IPI.
634 *
635 * If you're calling this for a different reason, you're probably doing
636 * it wrong.
637 */
638static inline void sync_core(void)
639{
640 /*
641 * There are quite a few ways to do this. IRET-to-self is nice
642 * because it works on every CPU, at any CPL (so it's compatible
643 * with paravirtualization), and it never exits to a hypervisor.
644 * The only down sides are that it's a bit slow (it seems to be
645 * a bit more than 2x slower than the fastest options) and that
646 * it unmasks NMIs. The "push %cs" is needed because, in
647 * paravirtual environments, __KERNEL_CS may not be a valid CS
648 * value when we do IRET directly.
649 *
650 * In case NMI unmasking or performance ever becomes a problem,
651 * the next best option appears to be MOV-to-CR2 and an
652 * unconditional jump. That sequence also works on all CPUs,
653 * but it will fault at CPL3 (i.e. Xen PV and lguest).
654 *
655 * CPUID is the conventional way, but it's nasty: it doesn't
656 * exist on some 486-like CPUs, and it usually exits to a
657 * hypervisor.
658 *
659 * Like all of Linux's memory ordering operations, this is a
660 * compiler barrier as well.
661 */
662 register void *__sp asm(_ASM_SP);
663
664#ifdef CONFIG_X86_32
665 asm volatile (
666 "pushfl\n\t"
667 "pushl %%cs\n\t"
668 "pushl $1f\n\t"
669 "iret\n\t"
670 "1:"
671 : "+r" (__sp) : : "memory");
672#else
673 unsigned int tmp;
674
675 asm volatile (
676 "mov %%ss, %0\n\t"
677 "pushq %q0\n\t"
678 "pushq %%rsp\n\t"
679 "addq $8, (%%rsp)\n\t"
680 "pushfq\n\t"
681 "mov %%cs, %0\n\t"
682 "pushq %q0\n\t"
683 "pushq $1f\n\t"
684 "iretq\n\t"
685 "1:"
686 : "=&r" (tmp), "+r" (__sp) : : "cc", "memory");
687#endif
688}
689
690extern void select_idle_routine(const struct cpuinfo_x86 *c);
691extern void amd_e400_c1e_apic_setup(void);
692
693extern unsigned long boot_option_idle_override;
694
695enum idle_boot_override {IDLE_NO_OVERRIDE=0, IDLE_HALT, IDLE_NOMWAIT,
696 IDLE_POLL};
697
698extern void enable_sep_cpu(void);
699extern int sysenter_setup(void);
700
701extern void early_trap_init(void);
702void early_trap_pf_init(void);
703
704/* Defined in head.S */
705extern struct desc_ptr early_gdt_descr;
706
707extern void cpu_set_gdt(int);
708extern void switch_to_new_gdt(int);
709extern void load_percpu_segment(int);
710extern void cpu_init(void);
711
712static inline unsigned long get_debugctlmsr(void)
713{
714 unsigned long debugctlmsr = 0;
715
716#ifndef CONFIG_X86_DEBUGCTLMSR
717 if (boot_cpu_data.x86 < 6)
718 return 0;
719#endif
720 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr);
721
722 return debugctlmsr;
723}
724
725static inline void update_debugctlmsr(unsigned long debugctlmsr)
726{
727#ifndef CONFIG_X86_DEBUGCTLMSR
728 if (boot_cpu_data.x86 < 6)
729 return;
730#endif
731 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr);
732}
733
734extern void set_task_blockstep(struct task_struct *task, bool on);
735
736/* Boot loader type from the setup header: */
737extern int bootloader_type;
738extern int bootloader_version;
739
740extern char ignore_fpu_irq;
741
742#define HAVE_ARCH_PICK_MMAP_LAYOUT 1
743#define ARCH_HAS_PREFETCHW
744#define ARCH_HAS_SPINLOCK_PREFETCH
745
746#ifdef CONFIG_X86_32
747# define BASE_PREFETCH ""
748# define ARCH_HAS_PREFETCH
749#else
750# define BASE_PREFETCH "prefetcht0 %P1"
751#endif
752
753/*
754 * Prefetch instructions for Pentium III (+) and AMD Athlon (+)
755 *
756 * It's not worth to care about 3dnow prefetches for the K6
757 * because they are microcoded there and very slow.
758 */
759static inline void prefetch(const void *x)
760{
761 alternative_input(BASE_PREFETCH, "prefetchnta %P1",
762 X86_FEATURE_XMM,
763 "m" (*(const char *)x));
764}
765
766/*
767 * 3dnow prefetch to get an exclusive cache line.
768 * Useful for spinlocks to avoid one state transition in the
769 * cache coherency protocol:
770 */
771static inline void prefetchw(const void *x)
772{
773 alternative_input(BASE_PREFETCH, "prefetchw %P1",
774 X86_FEATURE_3DNOWPREFETCH,
775 "m" (*(const char *)x));
776}
777
778static inline void spin_lock_prefetch(const void *x)
779{
780 prefetchw(x);
781}
782
783#define TOP_OF_INIT_STACK ((unsigned long)&init_stack + sizeof(init_stack) - \
784 TOP_OF_KERNEL_STACK_PADDING)
785
786#ifdef CONFIG_X86_32
787/*
788 * User space process size: 3GB (default).
789 */
790#define TASK_SIZE PAGE_OFFSET
791#define TASK_SIZE_MAX TASK_SIZE
792#define STACK_TOP TASK_SIZE
793#define STACK_TOP_MAX STACK_TOP
794
795#define INIT_THREAD { \
796 .sp0 = TOP_OF_INIT_STACK, \
797 .sysenter_cs = __KERNEL_CS, \
798 .io_bitmap_ptr = NULL, \
799 .addr_limit = KERNEL_DS, \
800}
801
802/*
803 * TOP_OF_KERNEL_STACK_PADDING reserves 8 bytes on top of the ring0 stack.
804 * This is necessary to guarantee that the entire "struct pt_regs"
805 * is accessible even if the CPU haven't stored the SS/ESP registers
806 * on the stack (interrupt gate does not save these registers
807 * when switching to the same priv ring).
808 * Therefore beware: accessing the ss/esp fields of the
809 * "struct pt_regs" is possible, but they may contain the
810 * completely wrong values.
811 */
812#define task_pt_regs(task) \
813({ \
814 unsigned long __ptr = (unsigned long)task_stack_page(task); \
815 __ptr += THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING; \
816 ((struct pt_regs *)__ptr) - 1; \
817})
818
819#define KSTK_ESP(task) (task_pt_regs(task)->sp)
820
821#else
822/*
823 * User space process size. 47bits minus one guard page. The guard
824 * page is necessary on Intel CPUs: if a SYSCALL instruction is at
825 * the highest possible canonical userspace address, then that
826 * syscall will enter the kernel with a non-canonical return
827 * address, and SYSRET will explode dangerously. We avoid this
828 * particular problem by preventing anything from being mapped
829 * at the maximum canonical address.
830 */
831#define TASK_SIZE_MAX ((1UL << 47) - PAGE_SIZE)
832
833/* This decides where the kernel will search for a free chunk of vm
834 * space during mmap's.
835 */
836#define IA32_PAGE_OFFSET ((current->personality & ADDR_LIMIT_3GB) ? \
837 0xc0000000 : 0xFFFFe000)
838
839#define TASK_SIZE (test_thread_flag(TIF_ADDR32) ? \
840 IA32_PAGE_OFFSET : TASK_SIZE_MAX)
841#define TASK_SIZE_OF(child) ((test_tsk_thread_flag(child, TIF_ADDR32)) ? \
842 IA32_PAGE_OFFSET : TASK_SIZE_MAX)
843
844#define STACK_TOP TASK_SIZE
845#define STACK_TOP_MAX TASK_SIZE_MAX
846
847#define INIT_THREAD { \
848 .sp0 = TOP_OF_INIT_STACK, \
849 .addr_limit = KERNEL_DS, \
850}
851
852#define task_pt_regs(tsk) ((struct pt_regs *)(tsk)->thread.sp0 - 1)
853extern unsigned long KSTK_ESP(struct task_struct *task);
854
855#endif /* CONFIG_X86_64 */
856
857extern unsigned long thread_saved_pc(struct task_struct *tsk);
858
859extern void start_thread(struct pt_regs *regs, unsigned long new_ip,
860 unsigned long new_sp);
861
862/*
863 * This decides where the kernel will search for a free chunk of vm
864 * space during mmap's.
865 */
866#define TASK_UNMAPPED_BASE (PAGE_ALIGN(TASK_SIZE / 3))
867
868#define KSTK_EIP(task) (task_pt_regs(task)->ip)
869
870/* Get/set a process' ability to use the timestamp counter instruction */
871#define GET_TSC_CTL(adr) get_tsc_mode((adr))
872#define SET_TSC_CTL(val) set_tsc_mode((val))
873
874extern int get_tsc_mode(unsigned long adr);
875extern int set_tsc_mode(unsigned int val);
876
877/* Register/unregister a process' MPX related resource */
878#define MPX_ENABLE_MANAGEMENT() mpx_enable_management()
879#define MPX_DISABLE_MANAGEMENT() mpx_disable_management()
880
881#ifdef CONFIG_X86_INTEL_MPX
882extern int mpx_enable_management(void);
883extern int mpx_disable_management(void);
884#else
885static inline int mpx_enable_management(void)
886{
887 return -EINVAL;
888}
889static inline int mpx_disable_management(void)
890{
891 return -EINVAL;
892}
893#endif /* CONFIG_X86_INTEL_MPX */
894
895extern u16 amd_get_nb_id(int cpu);
896extern u32 amd_get_nodes_per_socket(void);
897
898static inline uint32_t hypervisor_cpuid_base(const char *sig, uint32_t leaves)
899{
900 uint32_t base, eax, signature[3];
901
902 for (base = 0x40000000; base < 0x40010000; base += 0x100) {
903 cpuid(base, &eax, &signature[0], &signature[1], &signature[2]);
904
905 if (!memcmp(sig, signature, 12) &&
906 (leaves == 0 || ((eax - base) >= leaves)))
907 return base;
908 }
909
910 return 0;
911}
912
913extern unsigned long arch_align_stack(unsigned long sp);
914extern void free_init_pages(char *what, unsigned long begin, unsigned long end);
915
916void default_idle(void);
917#ifdef CONFIG_XEN
918bool xen_set_default_idle(void);
919#else
920#define xen_set_default_idle 0
921#endif
922
923void stop_this_cpu(void *dummy);
924void df_debug(struct pt_regs *regs, long error_code);
925#endif /* _ASM_X86_PROCESSOR_H */