at v4.10-rc7 138 kB view raw
1/* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Definitions for the Interfaces handler. 7 * 8 * Version: @(#)dev.h 1.0.10 08/12/93 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov> 14 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 15 * Bjorn Ekwall. <bj0rn@blox.se> 16 * Pekka Riikonen <priikone@poseidon.pspt.fi> 17 * 18 * This program is free software; you can redistribute it and/or 19 * modify it under the terms of the GNU General Public License 20 * as published by the Free Software Foundation; either version 21 * 2 of the License, or (at your option) any later version. 22 * 23 * Moved to /usr/include/linux for NET3 24 */ 25#ifndef _LINUX_NETDEVICE_H 26#define _LINUX_NETDEVICE_H 27 28#include <linux/timer.h> 29#include <linux/bug.h> 30#include <linux/delay.h> 31#include <linux/atomic.h> 32#include <linux/prefetch.h> 33#include <asm/cache.h> 34#include <asm/byteorder.h> 35 36#include <linux/percpu.h> 37#include <linux/rculist.h> 38#include <linux/dmaengine.h> 39#include <linux/workqueue.h> 40#include <linux/dynamic_queue_limits.h> 41 42#include <linux/ethtool.h> 43#include <net/net_namespace.h> 44#include <net/dsa.h> 45#ifdef CONFIG_DCB 46#include <net/dcbnl.h> 47#endif 48#include <net/netprio_cgroup.h> 49 50#include <linux/netdev_features.h> 51#include <linux/neighbour.h> 52#include <uapi/linux/netdevice.h> 53#include <uapi/linux/if_bonding.h> 54#include <uapi/linux/pkt_cls.h> 55#include <linux/hashtable.h> 56 57struct netpoll_info; 58struct device; 59struct phy_device; 60/* 802.11 specific */ 61struct wireless_dev; 62/* 802.15.4 specific */ 63struct wpan_dev; 64struct mpls_dev; 65/* UDP Tunnel offloads */ 66struct udp_tunnel_info; 67struct bpf_prog; 68 69void netdev_set_default_ethtool_ops(struct net_device *dev, 70 const struct ethtool_ops *ops); 71 72/* Backlog congestion levels */ 73#define NET_RX_SUCCESS 0 /* keep 'em coming, baby */ 74#define NET_RX_DROP 1 /* packet dropped */ 75 76/* 77 * Transmit return codes: transmit return codes originate from three different 78 * namespaces: 79 * 80 * - qdisc return codes 81 * - driver transmit return codes 82 * - errno values 83 * 84 * Drivers are allowed to return any one of those in their hard_start_xmit() 85 * function. Real network devices commonly used with qdiscs should only return 86 * the driver transmit return codes though - when qdiscs are used, the actual 87 * transmission happens asynchronously, so the value is not propagated to 88 * higher layers. Virtual network devices transmit synchronously; in this case 89 * the driver transmit return codes are consumed by dev_queue_xmit(), and all 90 * others are propagated to higher layers. 91 */ 92 93/* qdisc ->enqueue() return codes. */ 94#define NET_XMIT_SUCCESS 0x00 95#define NET_XMIT_DROP 0x01 /* skb dropped */ 96#define NET_XMIT_CN 0x02 /* congestion notification */ 97#define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */ 98 99/* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It 100 * indicates that the device will soon be dropping packets, or already drops 101 * some packets of the same priority; prompting us to send less aggressively. */ 102#define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e)) 103#define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0) 104 105/* Driver transmit return codes */ 106#define NETDEV_TX_MASK 0xf0 107 108enum netdev_tx { 109 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */ 110 NETDEV_TX_OK = 0x00, /* driver took care of packet */ 111 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/ 112}; 113typedef enum netdev_tx netdev_tx_t; 114 115/* 116 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant; 117 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed. 118 */ 119static inline bool dev_xmit_complete(int rc) 120{ 121 /* 122 * Positive cases with an skb consumed by a driver: 123 * - successful transmission (rc == NETDEV_TX_OK) 124 * - error while transmitting (rc < 0) 125 * - error while queueing to a different device (rc & NET_XMIT_MASK) 126 */ 127 if (likely(rc < NET_XMIT_MASK)) 128 return true; 129 130 return false; 131} 132 133/* 134 * Compute the worst-case header length according to the protocols 135 * used. 136 */ 137 138#if defined(CONFIG_HYPERV_NET) 139# define LL_MAX_HEADER 128 140#elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25) 141# if defined(CONFIG_MAC80211_MESH) 142# define LL_MAX_HEADER 128 143# else 144# define LL_MAX_HEADER 96 145# endif 146#else 147# define LL_MAX_HEADER 32 148#endif 149 150#if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \ 151 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL) 152#define MAX_HEADER LL_MAX_HEADER 153#else 154#define MAX_HEADER (LL_MAX_HEADER + 48) 155#endif 156 157/* 158 * Old network device statistics. Fields are native words 159 * (unsigned long) so they can be read and written atomically. 160 */ 161 162struct net_device_stats { 163 unsigned long rx_packets; 164 unsigned long tx_packets; 165 unsigned long rx_bytes; 166 unsigned long tx_bytes; 167 unsigned long rx_errors; 168 unsigned long tx_errors; 169 unsigned long rx_dropped; 170 unsigned long tx_dropped; 171 unsigned long multicast; 172 unsigned long collisions; 173 unsigned long rx_length_errors; 174 unsigned long rx_over_errors; 175 unsigned long rx_crc_errors; 176 unsigned long rx_frame_errors; 177 unsigned long rx_fifo_errors; 178 unsigned long rx_missed_errors; 179 unsigned long tx_aborted_errors; 180 unsigned long tx_carrier_errors; 181 unsigned long tx_fifo_errors; 182 unsigned long tx_heartbeat_errors; 183 unsigned long tx_window_errors; 184 unsigned long rx_compressed; 185 unsigned long tx_compressed; 186}; 187 188 189#include <linux/cache.h> 190#include <linux/skbuff.h> 191 192#ifdef CONFIG_RPS 193#include <linux/static_key.h> 194extern struct static_key rps_needed; 195extern struct static_key rfs_needed; 196#endif 197 198struct neighbour; 199struct neigh_parms; 200struct sk_buff; 201 202struct netdev_hw_addr { 203 struct list_head list; 204 unsigned char addr[MAX_ADDR_LEN]; 205 unsigned char type; 206#define NETDEV_HW_ADDR_T_LAN 1 207#define NETDEV_HW_ADDR_T_SAN 2 208#define NETDEV_HW_ADDR_T_SLAVE 3 209#define NETDEV_HW_ADDR_T_UNICAST 4 210#define NETDEV_HW_ADDR_T_MULTICAST 5 211 bool global_use; 212 int sync_cnt; 213 int refcount; 214 int synced; 215 struct rcu_head rcu_head; 216}; 217 218struct netdev_hw_addr_list { 219 struct list_head list; 220 int count; 221}; 222 223#define netdev_hw_addr_list_count(l) ((l)->count) 224#define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0) 225#define netdev_hw_addr_list_for_each(ha, l) \ 226 list_for_each_entry(ha, &(l)->list, list) 227 228#define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc) 229#define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc) 230#define netdev_for_each_uc_addr(ha, dev) \ 231 netdev_hw_addr_list_for_each(ha, &(dev)->uc) 232 233#define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc) 234#define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc) 235#define netdev_for_each_mc_addr(ha, dev) \ 236 netdev_hw_addr_list_for_each(ha, &(dev)->mc) 237 238struct hh_cache { 239 u16 hh_len; 240 u16 __pad; 241 seqlock_t hh_lock; 242 243 /* cached hardware header; allow for machine alignment needs. */ 244#define HH_DATA_MOD 16 245#define HH_DATA_OFF(__len) \ 246 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1)) 247#define HH_DATA_ALIGN(__len) \ 248 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1)) 249 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)]; 250}; 251 252/* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much. 253 * Alternative is: 254 * dev->hard_header_len ? (dev->hard_header_len + 255 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0 256 * 257 * We could use other alignment values, but we must maintain the 258 * relationship HH alignment <= LL alignment. 259 */ 260#define LL_RESERVED_SPACE(dev) \ 261 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 262#define LL_RESERVED_SPACE_EXTRA(dev,extra) \ 263 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 264 265struct header_ops { 266 int (*create) (struct sk_buff *skb, struct net_device *dev, 267 unsigned short type, const void *daddr, 268 const void *saddr, unsigned int len); 269 int (*parse)(const struct sk_buff *skb, unsigned char *haddr); 270 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type); 271 void (*cache_update)(struct hh_cache *hh, 272 const struct net_device *dev, 273 const unsigned char *haddr); 274 bool (*validate)(const char *ll_header, unsigned int len); 275}; 276 277/* These flag bits are private to the generic network queueing 278 * layer; they may not be explicitly referenced by any other 279 * code. 280 */ 281 282enum netdev_state_t { 283 __LINK_STATE_START, 284 __LINK_STATE_PRESENT, 285 __LINK_STATE_NOCARRIER, 286 __LINK_STATE_LINKWATCH_PENDING, 287 __LINK_STATE_DORMANT, 288}; 289 290 291/* 292 * This structure holds boot-time configured netdevice settings. They 293 * are then used in the device probing. 294 */ 295struct netdev_boot_setup { 296 char name[IFNAMSIZ]; 297 struct ifmap map; 298}; 299#define NETDEV_BOOT_SETUP_MAX 8 300 301int __init netdev_boot_setup(char *str); 302 303/* 304 * Structure for NAPI scheduling similar to tasklet but with weighting 305 */ 306struct napi_struct { 307 /* The poll_list must only be managed by the entity which 308 * changes the state of the NAPI_STATE_SCHED bit. This means 309 * whoever atomically sets that bit can add this napi_struct 310 * to the per-CPU poll_list, and whoever clears that bit 311 * can remove from the list right before clearing the bit. 312 */ 313 struct list_head poll_list; 314 315 unsigned long state; 316 int weight; 317 unsigned int gro_count; 318 int (*poll)(struct napi_struct *, int); 319#ifdef CONFIG_NETPOLL 320 int poll_owner; 321#endif 322 struct net_device *dev; 323 struct sk_buff *gro_list; 324 struct sk_buff *skb; 325 struct hrtimer timer; 326 struct list_head dev_list; 327 struct hlist_node napi_hash_node; 328 unsigned int napi_id; 329}; 330 331enum { 332 NAPI_STATE_SCHED, /* Poll is scheduled */ 333 NAPI_STATE_DISABLE, /* Disable pending */ 334 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */ 335 NAPI_STATE_HASHED, /* In NAPI hash (busy polling possible) */ 336 NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */ 337 NAPI_STATE_IN_BUSY_POLL,/* sk_busy_loop() owns this NAPI */ 338}; 339 340enum { 341 NAPIF_STATE_SCHED = (1UL << NAPI_STATE_SCHED), 342 NAPIF_STATE_DISABLE = (1UL << NAPI_STATE_DISABLE), 343 NAPIF_STATE_NPSVC = (1UL << NAPI_STATE_NPSVC), 344 NAPIF_STATE_HASHED = (1UL << NAPI_STATE_HASHED), 345 NAPIF_STATE_NO_BUSY_POLL = (1UL << NAPI_STATE_NO_BUSY_POLL), 346 NAPIF_STATE_IN_BUSY_POLL = (1UL << NAPI_STATE_IN_BUSY_POLL), 347}; 348 349enum gro_result { 350 GRO_MERGED, 351 GRO_MERGED_FREE, 352 GRO_HELD, 353 GRO_NORMAL, 354 GRO_DROP, 355}; 356typedef enum gro_result gro_result_t; 357 358/* 359 * enum rx_handler_result - Possible return values for rx_handlers. 360 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it 361 * further. 362 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in 363 * case skb->dev was changed by rx_handler. 364 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard. 365 * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called. 366 * 367 * rx_handlers are functions called from inside __netif_receive_skb(), to do 368 * special processing of the skb, prior to delivery to protocol handlers. 369 * 370 * Currently, a net_device can only have a single rx_handler registered. Trying 371 * to register a second rx_handler will return -EBUSY. 372 * 373 * To register a rx_handler on a net_device, use netdev_rx_handler_register(). 374 * To unregister a rx_handler on a net_device, use 375 * netdev_rx_handler_unregister(). 376 * 377 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to 378 * do with the skb. 379 * 380 * If the rx_handler consumed the skb in some way, it should return 381 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for 382 * the skb to be delivered in some other way. 383 * 384 * If the rx_handler changed skb->dev, to divert the skb to another 385 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the 386 * new device will be called if it exists. 387 * 388 * If the rx_handler decides the skb should be ignored, it should return 389 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that 390 * are registered on exact device (ptype->dev == skb->dev). 391 * 392 * If the rx_handler didn't change skb->dev, but wants the skb to be normally 393 * delivered, it should return RX_HANDLER_PASS. 394 * 395 * A device without a registered rx_handler will behave as if rx_handler 396 * returned RX_HANDLER_PASS. 397 */ 398 399enum rx_handler_result { 400 RX_HANDLER_CONSUMED, 401 RX_HANDLER_ANOTHER, 402 RX_HANDLER_EXACT, 403 RX_HANDLER_PASS, 404}; 405typedef enum rx_handler_result rx_handler_result_t; 406typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb); 407 408void __napi_schedule(struct napi_struct *n); 409void __napi_schedule_irqoff(struct napi_struct *n); 410 411static inline bool napi_disable_pending(struct napi_struct *n) 412{ 413 return test_bit(NAPI_STATE_DISABLE, &n->state); 414} 415 416/** 417 * napi_schedule_prep - check if NAPI can be scheduled 418 * @n: NAPI context 419 * 420 * Test if NAPI routine is already running, and if not mark 421 * it as running. This is used as a condition variable to 422 * insure only one NAPI poll instance runs. We also make 423 * sure there is no pending NAPI disable. 424 */ 425static inline bool napi_schedule_prep(struct napi_struct *n) 426{ 427 return !napi_disable_pending(n) && 428 !test_and_set_bit(NAPI_STATE_SCHED, &n->state); 429} 430 431/** 432 * napi_schedule - schedule NAPI poll 433 * @n: NAPI context 434 * 435 * Schedule NAPI poll routine to be called if it is not already 436 * running. 437 */ 438static inline void napi_schedule(struct napi_struct *n) 439{ 440 if (napi_schedule_prep(n)) 441 __napi_schedule(n); 442} 443 444/** 445 * napi_schedule_irqoff - schedule NAPI poll 446 * @n: NAPI context 447 * 448 * Variant of napi_schedule(), assuming hard irqs are masked. 449 */ 450static inline void napi_schedule_irqoff(struct napi_struct *n) 451{ 452 if (napi_schedule_prep(n)) 453 __napi_schedule_irqoff(n); 454} 455 456/* Try to reschedule poll. Called by dev->poll() after napi_complete(). */ 457static inline bool napi_reschedule(struct napi_struct *napi) 458{ 459 if (napi_schedule_prep(napi)) { 460 __napi_schedule(napi); 461 return true; 462 } 463 return false; 464} 465 466bool __napi_complete(struct napi_struct *n); 467bool napi_complete_done(struct napi_struct *n, int work_done); 468/** 469 * napi_complete - NAPI processing complete 470 * @n: NAPI context 471 * 472 * Mark NAPI processing as complete. 473 * Consider using napi_complete_done() instead. 474 * Return false if device should avoid rearming interrupts. 475 */ 476static inline bool napi_complete(struct napi_struct *n) 477{ 478 return napi_complete_done(n, 0); 479} 480 481/** 482 * napi_hash_del - remove a NAPI from global table 483 * @napi: NAPI context 484 * 485 * Warning: caller must observe RCU grace period 486 * before freeing memory containing @napi, if 487 * this function returns true. 488 * Note: core networking stack automatically calls it 489 * from netif_napi_del(). 490 * Drivers might want to call this helper to combine all 491 * the needed RCU grace periods into a single one. 492 */ 493bool napi_hash_del(struct napi_struct *napi); 494 495/** 496 * napi_disable - prevent NAPI from scheduling 497 * @n: NAPI context 498 * 499 * Stop NAPI from being scheduled on this context. 500 * Waits till any outstanding processing completes. 501 */ 502void napi_disable(struct napi_struct *n); 503 504/** 505 * napi_enable - enable NAPI scheduling 506 * @n: NAPI context 507 * 508 * Resume NAPI from being scheduled on this context. 509 * Must be paired with napi_disable. 510 */ 511static inline void napi_enable(struct napi_struct *n) 512{ 513 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 514 smp_mb__before_atomic(); 515 clear_bit(NAPI_STATE_SCHED, &n->state); 516 clear_bit(NAPI_STATE_NPSVC, &n->state); 517} 518 519/** 520 * napi_synchronize - wait until NAPI is not running 521 * @n: NAPI context 522 * 523 * Wait until NAPI is done being scheduled on this context. 524 * Waits till any outstanding processing completes but 525 * does not disable future activations. 526 */ 527static inline void napi_synchronize(const struct napi_struct *n) 528{ 529 if (IS_ENABLED(CONFIG_SMP)) 530 while (test_bit(NAPI_STATE_SCHED, &n->state)) 531 msleep(1); 532 else 533 barrier(); 534} 535 536enum netdev_queue_state_t { 537 __QUEUE_STATE_DRV_XOFF, 538 __QUEUE_STATE_STACK_XOFF, 539 __QUEUE_STATE_FROZEN, 540}; 541 542#define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF) 543#define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF) 544#define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN) 545 546#define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF) 547#define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \ 548 QUEUE_STATE_FROZEN) 549#define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \ 550 QUEUE_STATE_FROZEN) 551 552/* 553 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The 554 * netif_tx_* functions below are used to manipulate this flag. The 555 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit 556 * queue independently. The netif_xmit_*stopped functions below are called 557 * to check if the queue has been stopped by the driver or stack (either 558 * of the XOFF bits are set in the state). Drivers should not need to call 559 * netif_xmit*stopped functions, they should only be using netif_tx_*. 560 */ 561 562struct netdev_queue { 563/* 564 * read-mostly part 565 */ 566 struct net_device *dev; 567 struct Qdisc __rcu *qdisc; 568 struct Qdisc *qdisc_sleeping; 569#ifdef CONFIG_SYSFS 570 struct kobject kobj; 571#endif 572#if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 573 int numa_node; 574#endif 575 unsigned long tx_maxrate; 576 /* 577 * Number of TX timeouts for this queue 578 * (/sys/class/net/DEV/Q/trans_timeout) 579 */ 580 unsigned long trans_timeout; 581/* 582 * write-mostly part 583 */ 584 spinlock_t _xmit_lock ____cacheline_aligned_in_smp; 585 int xmit_lock_owner; 586 /* 587 * Time (in jiffies) of last Tx 588 */ 589 unsigned long trans_start; 590 591 unsigned long state; 592 593#ifdef CONFIG_BQL 594 struct dql dql; 595#endif 596} ____cacheline_aligned_in_smp; 597 598static inline int netdev_queue_numa_node_read(const struct netdev_queue *q) 599{ 600#if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 601 return q->numa_node; 602#else 603 return NUMA_NO_NODE; 604#endif 605} 606 607static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node) 608{ 609#if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 610 q->numa_node = node; 611#endif 612} 613 614#ifdef CONFIG_RPS 615/* 616 * This structure holds an RPS map which can be of variable length. The 617 * map is an array of CPUs. 618 */ 619struct rps_map { 620 unsigned int len; 621 struct rcu_head rcu; 622 u16 cpus[0]; 623}; 624#define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16))) 625 626/* 627 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the 628 * tail pointer for that CPU's input queue at the time of last enqueue, and 629 * a hardware filter index. 630 */ 631struct rps_dev_flow { 632 u16 cpu; 633 u16 filter; 634 unsigned int last_qtail; 635}; 636#define RPS_NO_FILTER 0xffff 637 638/* 639 * The rps_dev_flow_table structure contains a table of flow mappings. 640 */ 641struct rps_dev_flow_table { 642 unsigned int mask; 643 struct rcu_head rcu; 644 struct rps_dev_flow flows[0]; 645}; 646#define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \ 647 ((_num) * sizeof(struct rps_dev_flow))) 648 649/* 650 * The rps_sock_flow_table contains mappings of flows to the last CPU 651 * on which they were processed by the application (set in recvmsg). 652 * Each entry is a 32bit value. Upper part is the high-order bits 653 * of flow hash, lower part is CPU number. 654 * rps_cpu_mask is used to partition the space, depending on number of 655 * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1 656 * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f, 657 * meaning we use 32-6=26 bits for the hash. 658 */ 659struct rps_sock_flow_table { 660 u32 mask; 661 662 u32 ents[0] ____cacheline_aligned_in_smp; 663}; 664#define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num])) 665 666#define RPS_NO_CPU 0xffff 667 668extern u32 rps_cpu_mask; 669extern struct rps_sock_flow_table __rcu *rps_sock_flow_table; 670 671static inline void rps_record_sock_flow(struct rps_sock_flow_table *table, 672 u32 hash) 673{ 674 if (table && hash) { 675 unsigned int index = hash & table->mask; 676 u32 val = hash & ~rps_cpu_mask; 677 678 /* We only give a hint, preemption can change CPU under us */ 679 val |= raw_smp_processor_id(); 680 681 if (table->ents[index] != val) 682 table->ents[index] = val; 683 } 684} 685 686#ifdef CONFIG_RFS_ACCEL 687bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id, 688 u16 filter_id); 689#endif 690#endif /* CONFIG_RPS */ 691 692/* This structure contains an instance of an RX queue. */ 693struct netdev_rx_queue { 694#ifdef CONFIG_RPS 695 struct rps_map __rcu *rps_map; 696 struct rps_dev_flow_table __rcu *rps_flow_table; 697#endif 698 struct kobject kobj; 699 struct net_device *dev; 700} ____cacheline_aligned_in_smp; 701 702/* 703 * RX queue sysfs structures and functions. 704 */ 705struct rx_queue_attribute { 706 struct attribute attr; 707 ssize_t (*show)(struct netdev_rx_queue *queue, 708 struct rx_queue_attribute *attr, char *buf); 709 ssize_t (*store)(struct netdev_rx_queue *queue, 710 struct rx_queue_attribute *attr, const char *buf, size_t len); 711}; 712 713#ifdef CONFIG_XPS 714/* 715 * This structure holds an XPS map which can be of variable length. The 716 * map is an array of queues. 717 */ 718struct xps_map { 719 unsigned int len; 720 unsigned int alloc_len; 721 struct rcu_head rcu; 722 u16 queues[0]; 723}; 724#define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16))) 725#define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \ 726 - sizeof(struct xps_map)) / sizeof(u16)) 727 728/* 729 * This structure holds all XPS maps for device. Maps are indexed by CPU. 730 */ 731struct xps_dev_maps { 732 struct rcu_head rcu; 733 struct xps_map __rcu *cpu_map[0]; 734}; 735#define XPS_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) + \ 736 (nr_cpu_ids * (_tcs) * sizeof(struct xps_map *))) 737#endif /* CONFIG_XPS */ 738 739#define TC_MAX_QUEUE 16 740#define TC_BITMASK 15 741/* HW offloaded queuing disciplines txq count and offset maps */ 742struct netdev_tc_txq { 743 u16 count; 744 u16 offset; 745}; 746 747#if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE) 748/* 749 * This structure is to hold information about the device 750 * configured to run FCoE protocol stack. 751 */ 752struct netdev_fcoe_hbainfo { 753 char manufacturer[64]; 754 char serial_number[64]; 755 char hardware_version[64]; 756 char driver_version[64]; 757 char optionrom_version[64]; 758 char firmware_version[64]; 759 char model[256]; 760 char model_description[256]; 761}; 762#endif 763 764#define MAX_PHYS_ITEM_ID_LEN 32 765 766/* This structure holds a unique identifier to identify some 767 * physical item (port for example) used by a netdevice. 768 */ 769struct netdev_phys_item_id { 770 unsigned char id[MAX_PHYS_ITEM_ID_LEN]; 771 unsigned char id_len; 772}; 773 774static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a, 775 struct netdev_phys_item_id *b) 776{ 777 return a->id_len == b->id_len && 778 memcmp(a->id, b->id, a->id_len) == 0; 779} 780 781typedef u16 (*select_queue_fallback_t)(struct net_device *dev, 782 struct sk_buff *skb); 783 784/* These structures hold the attributes of qdisc and classifiers 785 * that are being passed to the netdevice through the setup_tc op. 786 */ 787enum { 788 TC_SETUP_MQPRIO, 789 TC_SETUP_CLSU32, 790 TC_SETUP_CLSFLOWER, 791 TC_SETUP_MATCHALL, 792 TC_SETUP_CLSBPF, 793}; 794 795struct tc_cls_u32_offload; 796 797struct tc_to_netdev { 798 unsigned int type; 799 union { 800 u8 tc; 801 struct tc_cls_u32_offload *cls_u32; 802 struct tc_cls_flower_offload *cls_flower; 803 struct tc_cls_matchall_offload *cls_mall; 804 struct tc_cls_bpf_offload *cls_bpf; 805 }; 806 bool egress_dev; 807}; 808 809/* These structures hold the attributes of xdp state that are being passed 810 * to the netdevice through the xdp op. 811 */ 812enum xdp_netdev_command { 813 /* Set or clear a bpf program used in the earliest stages of packet 814 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee 815 * is responsible for calling bpf_prog_put on any old progs that are 816 * stored. In case of error, the callee need not release the new prog 817 * reference, but on success it takes ownership and must bpf_prog_put 818 * when it is no longer used. 819 */ 820 XDP_SETUP_PROG, 821 /* Check if a bpf program is set on the device. The callee should 822 * return true if a program is currently attached and running. 823 */ 824 XDP_QUERY_PROG, 825}; 826 827struct netdev_xdp { 828 enum xdp_netdev_command command; 829 union { 830 /* XDP_SETUP_PROG */ 831 struct bpf_prog *prog; 832 /* XDP_QUERY_PROG */ 833 bool prog_attached; 834 }; 835}; 836 837/* 838 * This structure defines the management hooks for network devices. 839 * The following hooks can be defined; unless noted otherwise, they are 840 * optional and can be filled with a null pointer. 841 * 842 * int (*ndo_init)(struct net_device *dev); 843 * This function is called once when a network device is registered. 844 * The network device can use this for any late stage initialization 845 * or semantic validation. It can fail with an error code which will 846 * be propagated back to register_netdev. 847 * 848 * void (*ndo_uninit)(struct net_device *dev); 849 * This function is called when device is unregistered or when registration 850 * fails. It is not called if init fails. 851 * 852 * int (*ndo_open)(struct net_device *dev); 853 * This function is called when a network device transitions to the up 854 * state. 855 * 856 * int (*ndo_stop)(struct net_device *dev); 857 * This function is called when a network device transitions to the down 858 * state. 859 * 860 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 861 * struct net_device *dev); 862 * Called when a packet needs to be transmitted. 863 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop 864 * the queue before that can happen; it's for obsolete devices and weird 865 * corner cases, but the stack really does a non-trivial amount 866 * of useless work if you return NETDEV_TX_BUSY. 867 * Required; cannot be NULL. 868 * 869 * netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 870 * struct net_device *dev 871 * netdev_features_t features); 872 * Called by core transmit path to determine if device is capable of 873 * performing offload operations on a given packet. This is to give 874 * the device an opportunity to implement any restrictions that cannot 875 * be otherwise expressed by feature flags. The check is called with 876 * the set of features that the stack has calculated and it returns 877 * those the driver believes to be appropriate. 878 * 879 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb, 880 * void *accel_priv, select_queue_fallback_t fallback); 881 * Called to decide which queue to use when device supports multiple 882 * transmit queues. 883 * 884 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags); 885 * This function is called to allow device receiver to make 886 * changes to configuration when multicast or promiscuous is enabled. 887 * 888 * void (*ndo_set_rx_mode)(struct net_device *dev); 889 * This function is called device changes address list filtering. 890 * If driver handles unicast address filtering, it should set 891 * IFF_UNICAST_FLT in its priv_flags. 892 * 893 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr); 894 * This function is called when the Media Access Control address 895 * needs to be changed. If this interface is not defined, the 896 * MAC address can not be changed. 897 * 898 * int (*ndo_validate_addr)(struct net_device *dev); 899 * Test if Media Access Control address is valid for the device. 900 * 901 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 902 * Called when a user requests an ioctl which can't be handled by 903 * the generic interface code. If not defined ioctls return 904 * not supported error code. 905 * 906 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map); 907 * Used to set network devices bus interface parameters. This interface 908 * is retained for legacy reasons; new devices should use the bus 909 * interface (PCI) for low level management. 910 * 911 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu); 912 * Called when a user wants to change the Maximum Transfer Unit 913 * of a device. If not defined, any request to change MTU will 914 * will return an error. 915 * 916 * void (*ndo_tx_timeout)(struct net_device *dev); 917 * Callback used when the transmitter has not made any progress 918 * for dev->watchdog ticks. 919 * 920 * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev, 921 * struct rtnl_link_stats64 *storage); 922 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 923 * Called when a user wants to get the network device usage 924 * statistics. Drivers must do one of the following: 925 * 1. Define @ndo_get_stats64 to fill in a zero-initialised 926 * rtnl_link_stats64 structure passed by the caller. 927 * 2. Define @ndo_get_stats to update a net_device_stats structure 928 * (which should normally be dev->stats) and return a pointer to 929 * it. The structure may be changed asynchronously only if each 930 * field is written atomically. 931 * 3. Update dev->stats asynchronously and atomically, and define 932 * neither operation. 933 * 934 * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id) 935 * Return true if this device supports offload stats of this attr_id. 936 * 937 * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev, 938 * void *attr_data) 939 * Get statistics for offload operations by attr_id. Write it into the 940 * attr_data pointer. 941 * 942 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid); 943 * If device supports VLAN filtering this function is called when a 944 * VLAN id is registered. 945 * 946 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid); 947 * If device supports VLAN filtering this function is called when a 948 * VLAN id is unregistered. 949 * 950 * void (*ndo_poll_controller)(struct net_device *dev); 951 * 952 * SR-IOV management functions. 953 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac); 954 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, 955 * u8 qos, __be16 proto); 956 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate, 957 * int max_tx_rate); 958 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting); 959 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting); 960 * int (*ndo_get_vf_config)(struct net_device *dev, 961 * int vf, struct ifla_vf_info *ivf); 962 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state); 963 * int (*ndo_set_vf_port)(struct net_device *dev, int vf, 964 * struct nlattr *port[]); 965 * 966 * Enable or disable the VF ability to query its RSS Redirection Table and 967 * Hash Key. This is needed since on some devices VF share this information 968 * with PF and querying it may introduce a theoretical security risk. 969 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting); 970 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb); 971 * int (*ndo_setup_tc)(struct net_device *dev, u8 tc) 972 * Called to setup 'tc' number of traffic classes in the net device. This 973 * is always called from the stack with the rtnl lock held and netif tx 974 * queues stopped. This allows the netdevice to perform queue management 975 * safely. 976 * 977 * Fiber Channel over Ethernet (FCoE) offload functions. 978 * int (*ndo_fcoe_enable)(struct net_device *dev); 979 * Called when the FCoE protocol stack wants to start using LLD for FCoE 980 * so the underlying device can perform whatever needed configuration or 981 * initialization to support acceleration of FCoE traffic. 982 * 983 * int (*ndo_fcoe_disable)(struct net_device *dev); 984 * Called when the FCoE protocol stack wants to stop using LLD for FCoE 985 * so the underlying device can perform whatever needed clean-ups to 986 * stop supporting acceleration of FCoE traffic. 987 * 988 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid, 989 * struct scatterlist *sgl, unsigned int sgc); 990 * Called when the FCoE Initiator wants to initialize an I/O that 991 * is a possible candidate for Direct Data Placement (DDP). The LLD can 992 * perform necessary setup and returns 1 to indicate the device is set up 993 * successfully to perform DDP on this I/O, otherwise this returns 0. 994 * 995 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid); 996 * Called when the FCoE Initiator/Target is done with the DDPed I/O as 997 * indicated by the FC exchange id 'xid', so the underlying device can 998 * clean up and reuse resources for later DDP requests. 999 * 1000 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid, 1001 * struct scatterlist *sgl, unsigned int sgc); 1002 * Called when the FCoE Target wants to initialize an I/O that 1003 * is a possible candidate for Direct Data Placement (DDP). The LLD can 1004 * perform necessary setup and returns 1 to indicate the device is set up 1005 * successfully to perform DDP on this I/O, otherwise this returns 0. 1006 * 1007 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1008 * struct netdev_fcoe_hbainfo *hbainfo); 1009 * Called when the FCoE Protocol stack wants information on the underlying 1010 * device. This information is utilized by the FCoE protocol stack to 1011 * register attributes with Fiber Channel management service as per the 1012 * FC-GS Fabric Device Management Information(FDMI) specification. 1013 * 1014 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type); 1015 * Called when the underlying device wants to override default World Wide 1016 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own 1017 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE 1018 * protocol stack to use. 1019 * 1020 * RFS acceleration. 1021 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb, 1022 * u16 rxq_index, u32 flow_id); 1023 * Set hardware filter for RFS. rxq_index is the target queue index; 1024 * flow_id is a flow ID to be passed to rps_may_expire_flow() later. 1025 * Return the filter ID on success, or a negative error code. 1026 * 1027 * Slave management functions (for bridge, bonding, etc). 1028 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev); 1029 * Called to make another netdev an underling. 1030 * 1031 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev); 1032 * Called to release previously enslaved netdev. 1033 * 1034 * Feature/offload setting functions. 1035 * netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1036 * netdev_features_t features); 1037 * Adjusts the requested feature flags according to device-specific 1038 * constraints, and returns the resulting flags. Must not modify 1039 * the device state. 1040 * 1041 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features); 1042 * Called to update device configuration to new features. Passed 1043 * feature set might be less than what was returned by ndo_fix_features()). 1044 * Must return >0 or -errno if it changed dev->features itself. 1045 * 1046 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[], 1047 * struct net_device *dev, 1048 * const unsigned char *addr, u16 vid, u16 flags) 1049 * Adds an FDB entry to dev for addr. 1050 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[], 1051 * struct net_device *dev, 1052 * const unsigned char *addr, u16 vid) 1053 * Deletes the FDB entry from dev coresponding to addr. 1054 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb, 1055 * struct net_device *dev, struct net_device *filter_dev, 1056 * int *idx) 1057 * Used to add FDB entries to dump requests. Implementers should add 1058 * entries to skb and update idx with the number of entries. 1059 * 1060 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh, 1061 * u16 flags) 1062 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq, 1063 * struct net_device *dev, u32 filter_mask, 1064 * int nlflags) 1065 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh, 1066 * u16 flags); 1067 * 1068 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier); 1069 * Called to change device carrier. Soft-devices (like dummy, team, etc) 1070 * which do not represent real hardware may define this to allow their 1071 * userspace components to manage their virtual carrier state. Devices 1072 * that determine carrier state from physical hardware properties (eg 1073 * network cables) or protocol-dependent mechanisms (eg 1074 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function. 1075 * 1076 * int (*ndo_get_phys_port_id)(struct net_device *dev, 1077 * struct netdev_phys_item_id *ppid); 1078 * Called to get ID of physical port of this device. If driver does 1079 * not implement this, it is assumed that the hw is not able to have 1080 * multiple net devices on single physical port. 1081 * 1082 * void (*ndo_udp_tunnel_add)(struct net_device *dev, 1083 * struct udp_tunnel_info *ti); 1084 * Called by UDP tunnel to notify a driver about the UDP port and socket 1085 * address family that a UDP tunnel is listnening to. It is called only 1086 * when a new port starts listening. The operation is protected by the 1087 * RTNL. 1088 * 1089 * void (*ndo_udp_tunnel_del)(struct net_device *dev, 1090 * struct udp_tunnel_info *ti); 1091 * Called by UDP tunnel to notify the driver about a UDP port and socket 1092 * address family that the UDP tunnel is not listening to anymore. The 1093 * operation is protected by the RTNL. 1094 * 1095 * void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1096 * struct net_device *dev) 1097 * Called by upper layer devices to accelerate switching or other 1098 * station functionality into hardware. 'pdev is the lowerdev 1099 * to use for the offload and 'dev' is the net device that will 1100 * back the offload. Returns a pointer to the private structure 1101 * the upper layer will maintain. 1102 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv) 1103 * Called by upper layer device to delete the station created 1104 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing 1105 * the station and priv is the structure returned by the add 1106 * operation. 1107 * netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff *skb, 1108 * struct net_device *dev, 1109 * void *priv); 1110 * Callback to use for xmit over the accelerated station. This 1111 * is used in place of ndo_start_xmit on accelerated net 1112 * devices. 1113 * int (*ndo_set_tx_maxrate)(struct net_device *dev, 1114 * int queue_index, u32 maxrate); 1115 * Called when a user wants to set a max-rate limitation of specific 1116 * TX queue. 1117 * int (*ndo_get_iflink)(const struct net_device *dev); 1118 * Called to get the iflink value of this device. 1119 * void (*ndo_change_proto_down)(struct net_device *dev, 1120 * bool proto_down); 1121 * This function is used to pass protocol port error state information 1122 * to the switch driver. The switch driver can react to the proto_down 1123 * by doing a phys down on the associated switch port. 1124 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb); 1125 * This function is used to get egress tunnel information for given skb. 1126 * This is useful for retrieving outer tunnel header parameters while 1127 * sampling packet. 1128 * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom); 1129 * This function is used to specify the headroom that the skb must 1130 * consider when allocation skb during packet reception. Setting 1131 * appropriate rx headroom value allows avoiding skb head copy on 1132 * forward. Setting a negative value resets the rx headroom to the 1133 * default value. 1134 * int (*ndo_xdp)(struct net_device *dev, struct netdev_xdp *xdp); 1135 * This function is used to set or query state related to XDP on the 1136 * netdevice. See definition of enum xdp_netdev_command for details. 1137 * 1138 */ 1139struct net_device_ops { 1140 int (*ndo_init)(struct net_device *dev); 1141 void (*ndo_uninit)(struct net_device *dev); 1142 int (*ndo_open)(struct net_device *dev); 1143 int (*ndo_stop)(struct net_device *dev); 1144 netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 1145 struct net_device *dev); 1146 netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 1147 struct net_device *dev, 1148 netdev_features_t features); 1149 u16 (*ndo_select_queue)(struct net_device *dev, 1150 struct sk_buff *skb, 1151 void *accel_priv, 1152 select_queue_fallback_t fallback); 1153 void (*ndo_change_rx_flags)(struct net_device *dev, 1154 int flags); 1155 void (*ndo_set_rx_mode)(struct net_device *dev); 1156 int (*ndo_set_mac_address)(struct net_device *dev, 1157 void *addr); 1158 int (*ndo_validate_addr)(struct net_device *dev); 1159 int (*ndo_do_ioctl)(struct net_device *dev, 1160 struct ifreq *ifr, int cmd); 1161 int (*ndo_set_config)(struct net_device *dev, 1162 struct ifmap *map); 1163 int (*ndo_change_mtu)(struct net_device *dev, 1164 int new_mtu); 1165 int (*ndo_neigh_setup)(struct net_device *dev, 1166 struct neigh_parms *); 1167 void (*ndo_tx_timeout) (struct net_device *dev); 1168 1169 struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev, 1170 struct rtnl_link_stats64 *storage); 1171 bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id); 1172 int (*ndo_get_offload_stats)(int attr_id, 1173 const struct net_device *dev, 1174 void *attr_data); 1175 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1176 1177 int (*ndo_vlan_rx_add_vid)(struct net_device *dev, 1178 __be16 proto, u16 vid); 1179 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, 1180 __be16 proto, u16 vid); 1181#ifdef CONFIG_NET_POLL_CONTROLLER 1182 void (*ndo_poll_controller)(struct net_device *dev); 1183 int (*ndo_netpoll_setup)(struct net_device *dev, 1184 struct netpoll_info *info); 1185 void (*ndo_netpoll_cleanup)(struct net_device *dev); 1186#endif 1187#ifdef CONFIG_NET_RX_BUSY_POLL 1188 int (*ndo_busy_poll)(struct napi_struct *dev); 1189#endif 1190 int (*ndo_set_vf_mac)(struct net_device *dev, 1191 int queue, u8 *mac); 1192 int (*ndo_set_vf_vlan)(struct net_device *dev, 1193 int queue, u16 vlan, 1194 u8 qos, __be16 proto); 1195 int (*ndo_set_vf_rate)(struct net_device *dev, 1196 int vf, int min_tx_rate, 1197 int max_tx_rate); 1198 int (*ndo_set_vf_spoofchk)(struct net_device *dev, 1199 int vf, bool setting); 1200 int (*ndo_set_vf_trust)(struct net_device *dev, 1201 int vf, bool setting); 1202 int (*ndo_get_vf_config)(struct net_device *dev, 1203 int vf, 1204 struct ifla_vf_info *ivf); 1205 int (*ndo_set_vf_link_state)(struct net_device *dev, 1206 int vf, int link_state); 1207 int (*ndo_get_vf_stats)(struct net_device *dev, 1208 int vf, 1209 struct ifla_vf_stats 1210 *vf_stats); 1211 int (*ndo_set_vf_port)(struct net_device *dev, 1212 int vf, 1213 struct nlattr *port[]); 1214 int (*ndo_get_vf_port)(struct net_device *dev, 1215 int vf, struct sk_buff *skb); 1216 int (*ndo_set_vf_guid)(struct net_device *dev, 1217 int vf, u64 guid, 1218 int guid_type); 1219 int (*ndo_set_vf_rss_query_en)( 1220 struct net_device *dev, 1221 int vf, bool setting); 1222 int (*ndo_setup_tc)(struct net_device *dev, 1223 u32 handle, 1224 __be16 protocol, 1225 struct tc_to_netdev *tc); 1226#if IS_ENABLED(CONFIG_FCOE) 1227 int (*ndo_fcoe_enable)(struct net_device *dev); 1228 int (*ndo_fcoe_disable)(struct net_device *dev); 1229 int (*ndo_fcoe_ddp_setup)(struct net_device *dev, 1230 u16 xid, 1231 struct scatterlist *sgl, 1232 unsigned int sgc); 1233 int (*ndo_fcoe_ddp_done)(struct net_device *dev, 1234 u16 xid); 1235 int (*ndo_fcoe_ddp_target)(struct net_device *dev, 1236 u16 xid, 1237 struct scatterlist *sgl, 1238 unsigned int sgc); 1239 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1240 struct netdev_fcoe_hbainfo *hbainfo); 1241#endif 1242 1243#if IS_ENABLED(CONFIG_LIBFCOE) 1244#define NETDEV_FCOE_WWNN 0 1245#define NETDEV_FCOE_WWPN 1 1246 int (*ndo_fcoe_get_wwn)(struct net_device *dev, 1247 u64 *wwn, int type); 1248#endif 1249 1250#ifdef CONFIG_RFS_ACCEL 1251 int (*ndo_rx_flow_steer)(struct net_device *dev, 1252 const struct sk_buff *skb, 1253 u16 rxq_index, 1254 u32 flow_id); 1255#endif 1256 int (*ndo_add_slave)(struct net_device *dev, 1257 struct net_device *slave_dev); 1258 int (*ndo_del_slave)(struct net_device *dev, 1259 struct net_device *slave_dev); 1260 netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1261 netdev_features_t features); 1262 int (*ndo_set_features)(struct net_device *dev, 1263 netdev_features_t features); 1264 int (*ndo_neigh_construct)(struct net_device *dev, 1265 struct neighbour *n); 1266 void (*ndo_neigh_destroy)(struct net_device *dev, 1267 struct neighbour *n); 1268 1269 int (*ndo_fdb_add)(struct ndmsg *ndm, 1270 struct nlattr *tb[], 1271 struct net_device *dev, 1272 const unsigned char *addr, 1273 u16 vid, 1274 u16 flags); 1275 int (*ndo_fdb_del)(struct ndmsg *ndm, 1276 struct nlattr *tb[], 1277 struct net_device *dev, 1278 const unsigned char *addr, 1279 u16 vid); 1280 int (*ndo_fdb_dump)(struct sk_buff *skb, 1281 struct netlink_callback *cb, 1282 struct net_device *dev, 1283 struct net_device *filter_dev, 1284 int *idx); 1285 1286 int (*ndo_bridge_setlink)(struct net_device *dev, 1287 struct nlmsghdr *nlh, 1288 u16 flags); 1289 int (*ndo_bridge_getlink)(struct sk_buff *skb, 1290 u32 pid, u32 seq, 1291 struct net_device *dev, 1292 u32 filter_mask, 1293 int nlflags); 1294 int (*ndo_bridge_dellink)(struct net_device *dev, 1295 struct nlmsghdr *nlh, 1296 u16 flags); 1297 int (*ndo_change_carrier)(struct net_device *dev, 1298 bool new_carrier); 1299 int (*ndo_get_phys_port_id)(struct net_device *dev, 1300 struct netdev_phys_item_id *ppid); 1301 int (*ndo_get_phys_port_name)(struct net_device *dev, 1302 char *name, size_t len); 1303 void (*ndo_udp_tunnel_add)(struct net_device *dev, 1304 struct udp_tunnel_info *ti); 1305 void (*ndo_udp_tunnel_del)(struct net_device *dev, 1306 struct udp_tunnel_info *ti); 1307 void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1308 struct net_device *dev); 1309 void (*ndo_dfwd_del_station)(struct net_device *pdev, 1310 void *priv); 1311 1312 netdev_tx_t (*ndo_dfwd_start_xmit) (struct sk_buff *skb, 1313 struct net_device *dev, 1314 void *priv); 1315 int (*ndo_get_lock_subclass)(struct net_device *dev); 1316 int (*ndo_set_tx_maxrate)(struct net_device *dev, 1317 int queue_index, 1318 u32 maxrate); 1319 int (*ndo_get_iflink)(const struct net_device *dev); 1320 int (*ndo_change_proto_down)(struct net_device *dev, 1321 bool proto_down); 1322 int (*ndo_fill_metadata_dst)(struct net_device *dev, 1323 struct sk_buff *skb); 1324 void (*ndo_set_rx_headroom)(struct net_device *dev, 1325 int needed_headroom); 1326 int (*ndo_xdp)(struct net_device *dev, 1327 struct netdev_xdp *xdp); 1328}; 1329 1330/** 1331 * enum net_device_priv_flags - &struct net_device priv_flags 1332 * 1333 * These are the &struct net_device, they are only set internally 1334 * by drivers and used in the kernel. These flags are invisible to 1335 * userspace; this means that the order of these flags can change 1336 * during any kernel release. 1337 * 1338 * You should have a pretty good reason to be extending these flags. 1339 * 1340 * @IFF_802_1Q_VLAN: 802.1Q VLAN device 1341 * @IFF_EBRIDGE: Ethernet bridging device 1342 * @IFF_BONDING: bonding master or slave 1343 * @IFF_ISATAP: ISATAP interface (RFC4214) 1344 * @IFF_WAN_HDLC: WAN HDLC device 1345 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to 1346 * release skb->dst 1347 * @IFF_DONT_BRIDGE: disallow bridging this ether dev 1348 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time 1349 * @IFF_MACVLAN_PORT: device used as macvlan port 1350 * @IFF_BRIDGE_PORT: device used as bridge port 1351 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port 1352 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit 1353 * @IFF_UNICAST_FLT: Supports unicast filtering 1354 * @IFF_TEAM_PORT: device used as team port 1355 * @IFF_SUPP_NOFCS: device supports sending custom FCS 1356 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address 1357 * change when it's running 1358 * @IFF_MACVLAN: Macvlan device 1359 * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account 1360 * underlying stacked devices 1361 * @IFF_IPVLAN_MASTER: IPvlan master device 1362 * @IFF_IPVLAN_SLAVE: IPvlan slave device 1363 * @IFF_L3MDEV_MASTER: device is an L3 master device 1364 * @IFF_NO_QUEUE: device can run without qdisc attached 1365 * @IFF_OPENVSWITCH: device is a Open vSwitch master 1366 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device 1367 * @IFF_TEAM: device is a team device 1368 * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured 1369 * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external 1370 * entity (i.e. the master device for bridged veth) 1371 * @IFF_MACSEC: device is a MACsec device 1372 */ 1373enum netdev_priv_flags { 1374 IFF_802_1Q_VLAN = 1<<0, 1375 IFF_EBRIDGE = 1<<1, 1376 IFF_BONDING = 1<<2, 1377 IFF_ISATAP = 1<<3, 1378 IFF_WAN_HDLC = 1<<4, 1379 IFF_XMIT_DST_RELEASE = 1<<5, 1380 IFF_DONT_BRIDGE = 1<<6, 1381 IFF_DISABLE_NETPOLL = 1<<7, 1382 IFF_MACVLAN_PORT = 1<<8, 1383 IFF_BRIDGE_PORT = 1<<9, 1384 IFF_OVS_DATAPATH = 1<<10, 1385 IFF_TX_SKB_SHARING = 1<<11, 1386 IFF_UNICAST_FLT = 1<<12, 1387 IFF_TEAM_PORT = 1<<13, 1388 IFF_SUPP_NOFCS = 1<<14, 1389 IFF_LIVE_ADDR_CHANGE = 1<<15, 1390 IFF_MACVLAN = 1<<16, 1391 IFF_XMIT_DST_RELEASE_PERM = 1<<17, 1392 IFF_IPVLAN_MASTER = 1<<18, 1393 IFF_IPVLAN_SLAVE = 1<<19, 1394 IFF_L3MDEV_MASTER = 1<<20, 1395 IFF_NO_QUEUE = 1<<21, 1396 IFF_OPENVSWITCH = 1<<22, 1397 IFF_L3MDEV_SLAVE = 1<<23, 1398 IFF_TEAM = 1<<24, 1399 IFF_RXFH_CONFIGURED = 1<<25, 1400 IFF_PHONY_HEADROOM = 1<<26, 1401 IFF_MACSEC = 1<<27, 1402}; 1403 1404#define IFF_802_1Q_VLAN IFF_802_1Q_VLAN 1405#define IFF_EBRIDGE IFF_EBRIDGE 1406#define IFF_BONDING IFF_BONDING 1407#define IFF_ISATAP IFF_ISATAP 1408#define IFF_WAN_HDLC IFF_WAN_HDLC 1409#define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE 1410#define IFF_DONT_BRIDGE IFF_DONT_BRIDGE 1411#define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL 1412#define IFF_MACVLAN_PORT IFF_MACVLAN_PORT 1413#define IFF_BRIDGE_PORT IFF_BRIDGE_PORT 1414#define IFF_OVS_DATAPATH IFF_OVS_DATAPATH 1415#define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING 1416#define IFF_UNICAST_FLT IFF_UNICAST_FLT 1417#define IFF_TEAM_PORT IFF_TEAM_PORT 1418#define IFF_SUPP_NOFCS IFF_SUPP_NOFCS 1419#define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE 1420#define IFF_MACVLAN IFF_MACVLAN 1421#define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM 1422#define IFF_IPVLAN_MASTER IFF_IPVLAN_MASTER 1423#define IFF_IPVLAN_SLAVE IFF_IPVLAN_SLAVE 1424#define IFF_L3MDEV_MASTER IFF_L3MDEV_MASTER 1425#define IFF_NO_QUEUE IFF_NO_QUEUE 1426#define IFF_OPENVSWITCH IFF_OPENVSWITCH 1427#define IFF_L3MDEV_SLAVE IFF_L3MDEV_SLAVE 1428#define IFF_TEAM IFF_TEAM 1429#define IFF_RXFH_CONFIGURED IFF_RXFH_CONFIGURED 1430#define IFF_MACSEC IFF_MACSEC 1431 1432/** 1433 * struct net_device - The DEVICE structure. 1434 * Actually, this whole structure is a big mistake. It mixes I/O 1435 * data with strictly "high-level" data, and it has to know about 1436 * almost every data structure used in the INET module. 1437 * 1438 * @name: This is the first field of the "visible" part of this structure 1439 * (i.e. as seen by users in the "Space.c" file). It is the name 1440 * of the interface. 1441 * 1442 * @name_hlist: Device name hash chain, please keep it close to name[] 1443 * @ifalias: SNMP alias 1444 * @mem_end: Shared memory end 1445 * @mem_start: Shared memory start 1446 * @base_addr: Device I/O address 1447 * @irq: Device IRQ number 1448 * 1449 * @carrier_changes: Stats to monitor carrier on<->off transitions 1450 * 1451 * @state: Generic network queuing layer state, see netdev_state_t 1452 * @dev_list: The global list of network devices 1453 * @napi_list: List entry used for polling NAPI devices 1454 * @unreg_list: List entry when we are unregistering the 1455 * device; see the function unregister_netdev 1456 * @close_list: List entry used when we are closing the device 1457 * @ptype_all: Device-specific packet handlers for all protocols 1458 * @ptype_specific: Device-specific, protocol-specific packet handlers 1459 * 1460 * @adj_list: Directly linked devices, like slaves for bonding 1461 * @features: Currently active device features 1462 * @hw_features: User-changeable features 1463 * 1464 * @wanted_features: User-requested features 1465 * @vlan_features: Mask of features inheritable by VLAN devices 1466 * 1467 * @hw_enc_features: Mask of features inherited by encapsulating devices 1468 * This field indicates what encapsulation 1469 * offloads the hardware is capable of doing, 1470 * and drivers will need to set them appropriately. 1471 * 1472 * @mpls_features: Mask of features inheritable by MPLS 1473 * 1474 * @ifindex: interface index 1475 * @group: The group the device belongs to 1476 * 1477 * @stats: Statistics struct, which was left as a legacy, use 1478 * rtnl_link_stats64 instead 1479 * 1480 * @rx_dropped: Dropped packets by core network, 1481 * do not use this in drivers 1482 * @tx_dropped: Dropped packets by core network, 1483 * do not use this in drivers 1484 * @rx_nohandler: nohandler dropped packets by core network on 1485 * inactive devices, do not use this in drivers 1486 * 1487 * @wireless_handlers: List of functions to handle Wireless Extensions, 1488 * instead of ioctl, 1489 * see <net/iw_handler.h> for details. 1490 * @wireless_data: Instance data managed by the core of wireless extensions 1491 * 1492 * @netdev_ops: Includes several pointers to callbacks, 1493 * if one wants to override the ndo_*() functions 1494 * @ethtool_ops: Management operations 1495 * @ndisc_ops: Includes callbacks for different IPv6 neighbour 1496 * discovery handling. Necessary for e.g. 6LoWPAN. 1497 * @header_ops: Includes callbacks for creating,parsing,caching,etc 1498 * of Layer 2 headers. 1499 * 1500 * @flags: Interface flags (a la BSD) 1501 * @priv_flags: Like 'flags' but invisible to userspace, 1502 * see if.h for the definitions 1503 * @gflags: Global flags ( kept as legacy ) 1504 * @padded: How much padding added by alloc_netdev() 1505 * @operstate: RFC2863 operstate 1506 * @link_mode: Mapping policy to operstate 1507 * @if_port: Selectable AUI, TP, ... 1508 * @dma: DMA channel 1509 * @mtu: Interface MTU value 1510 * @min_mtu: Interface Minimum MTU value 1511 * @max_mtu: Interface Maximum MTU value 1512 * @type: Interface hardware type 1513 * @hard_header_len: Maximum hardware header length. 1514 * 1515 * @needed_headroom: Extra headroom the hardware may need, but not in all 1516 * cases can this be guaranteed 1517 * @needed_tailroom: Extra tailroom the hardware may need, but not in all 1518 * cases can this be guaranteed. Some cases also use 1519 * LL_MAX_HEADER instead to allocate the skb 1520 * 1521 * interface address info: 1522 * 1523 * @perm_addr: Permanent hw address 1524 * @addr_assign_type: Hw address assignment type 1525 * @addr_len: Hardware address length 1526 * @neigh_priv_len: Used in neigh_alloc() 1527 * @dev_id: Used to differentiate devices that share 1528 * the same link layer address 1529 * @dev_port: Used to differentiate devices that share 1530 * the same function 1531 * @addr_list_lock: XXX: need comments on this one 1532 * @uc_promisc: Counter that indicates promiscuous mode 1533 * has been enabled due to the need to listen to 1534 * additional unicast addresses in a device that 1535 * does not implement ndo_set_rx_mode() 1536 * @uc: unicast mac addresses 1537 * @mc: multicast mac addresses 1538 * @dev_addrs: list of device hw addresses 1539 * @queues_kset: Group of all Kobjects in the Tx and RX queues 1540 * @promiscuity: Number of times the NIC is told to work in 1541 * promiscuous mode; if it becomes 0 the NIC will 1542 * exit promiscuous mode 1543 * @allmulti: Counter, enables or disables allmulticast mode 1544 * 1545 * @vlan_info: VLAN info 1546 * @dsa_ptr: dsa specific data 1547 * @tipc_ptr: TIPC specific data 1548 * @atalk_ptr: AppleTalk link 1549 * @ip_ptr: IPv4 specific data 1550 * @dn_ptr: DECnet specific data 1551 * @ip6_ptr: IPv6 specific data 1552 * @ax25_ptr: AX.25 specific data 1553 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering 1554 * 1555 * @last_rx: Time of last Rx 1556 * @dev_addr: Hw address (before bcast, 1557 * because most packets are unicast) 1558 * 1559 * @_rx: Array of RX queues 1560 * @num_rx_queues: Number of RX queues 1561 * allocated at register_netdev() time 1562 * @real_num_rx_queues: Number of RX queues currently active in device 1563 * 1564 * @rx_handler: handler for received packets 1565 * @rx_handler_data: XXX: need comments on this one 1566 * @ingress_queue: XXX: need comments on this one 1567 * @broadcast: hw bcast address 1568 * 1569 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts, 1570 * indexed by RX queue number. Assigned by driver. 1571 * This must only be set if the ndo_rx_flow_steer 1572 * operation is defined 1573 * @index_hlist: Device index hash chain 1574 * 1575 * @_tx: Array of TX queues 1576 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time 1577 * @real_num_tx_queues: Number of TX queues currently active in device 1578 * @qdisc: Root qdisc from userspace point of view 1579 * @tx_queue_len: Max frames per queue allowed 1580 * @tx_global_lock: XXX: need comments on this one 1581 * 1582 * @xps_maps: XXX: need comments on this one 1583 * 1584 * @watchdog_timeo: Represents the timeout that is used by 1585 * the watchdog (see dev_watchdog()) 1586 * @watchdog_timer: List of timers 1587 * 1588 * @pcpu_refcnt: Number of references to this device 1589 * @todo_list: Delayed register/unregister 1590 * @link_watch_list: XXX: need comments on this one 1591 * 1592 * @reg_state: Register/unregister state machine 1593 * @dismantle: Device is going to be freed 1594 * @rtnl_link_state: This enum represents the phases of creating 1595 * a new link 1596 * 1597 * @destructor: Called from unregister, 1598 * can be used to call free_netdev 1599 * @npinfo: XXX: need comments on this one 1600 * @nd_net: Network namespace this network device is inside 1601 * 1602 * @ml_priv: Mid-layer private 1603 * @lstats: Loopback statistics 1604 * @tstats: Tunnel statistics 1605 * @dstats: Dummy statistics 1606 * @vstats: Virtual ethernet statistics 1607 * 1608 * @garp_port: GARP 1609 * @mrp_port: MRP 1610 * 1611 * @dev: Class/net/name entry 1612 * @sysfs_groups: Space for optional device, statistics and wireless 1613 * sysfs groups 1614 * 1615 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes 1616 * @rtnl_link_ops: Rtnl_link_ops 1617 * 1618 * @gso_max_size: Maximum size of generic segmentation offload 1619 * @gso_max_segs: Maximum number of segments that can be passed to the 1620 * NIC for GSO 1621 * 1622 * @dcbnl_ops: Data Center Bridging netlink ops 1623 * @num_tc: Number of traffic classes in the net device 1624 * @tc_to_txq: XXX: need comments on this one 1625 * @prio_tc_map: XXX: need comments on this one 1626 * 1627 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp 1628 * 1629 * @priomap: XXX: need comments on this one 1630 * @phydev: Physical device may attach itself 1631 * for hardware timestamping 1632 * 1633 * @qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock 1634 * @qdisc_running_key: lockdep class annotating Qdisc->running seqcount 1635 * 1636 * @proto_down: protocol port state information can be sent to the 1637 * switch driver and used to set the phys state of the 1638 * switch port. 1639 * 1640 * FIXME: cleanup struct net_device such that network protocol info 1641 * moves out. 1642 */ 1643 1644struct net_device { 1645 char name[IFNAMSIZ]; 1646 struct hlist_node name_hlist; 1647 char *ifalias; 1648 /* 1649 * I/O specific fields 1650 * FIXME: Merge these and struct ifmap into one 1651 */ 1652 unsigned long mem_end; 1653 unsigned long mem_start; 1654 unsigned long base_addr; 1655 int irq; 1656 1657 atomic_t carrier_changes; 1658 1659 /* 1660 * Some hardware also needs these fields (state,dev_list, 1661 * napi_list,unreg_list,close_list) but they are not 1662 * part of the usual set specified in Space.c. 1663 */ 1664 1665 unsigned long state; 1666 1667 struct list_head dev_list; 1668 struct list_head napi_list; 1669 struct list_head unreg_list; 1670 struct list_head close_list; 1671 struct list_head ptype_all; 1672 struct list_head ptype_specific; 1673 1674 struct { 1675 struct list_head upper; 1676 struct list_head lower; 1677 } adj_list; 1678 1679 netdev_features_t features; 1680 netdev_features_t hw_features; 1681 netdev_features_t wanted_features; 1682 netdev_features_t vlan_features; 1683 netdev_features_t hw_enc_features; 1684 netdev_features_t mpls_features; 1685 netdev_features_t gso_partial_features; 1686 1687 int ifindex; 1688 int group; 1689 1690 struct net_device_stats stats; 1691 1692 atomic_long_t rx_dropped; 1693 atomic_long_t tx_dropped; 1694 atomic_long_t rx_nohandler; 1695 1696#ifdef CONFIG_WIRELESS_EXT 1697 const struct iw_handler_def *wireless_handlers; 1698 struct iw_public_data *wireless_data; 1699#endif 1700 const struct net_device_ops *netdev_ops; 1701 const struct ethtool_ops *ethtool_ops; 1702#ifdef CONFIG_NET_SWITCHDEV 1703 const struct switchdev_ops *switchdev_ops; 1704#endif 1705#ifdef CONFIG_NET_L3_MASTER_DEV 1706 const struct l3mdev_ops *l3mdev_ops; 1707#endif 1708#if IS_ENABLED(CONFIG_IPV6) 1709 const struct ndisc_ops *ndisc_ops; 1710#endif 1711 1712 const struct header_ops *header_ops; 1713 1714 unsigned int flags; 1715 unsigned int priv_flags; 1716 1717 unsigned short gflags; 1718 unsigned short padded; 1719 1720 unsigned char operstate; 1721 unsigned char link_mode; 1722 1723 unsigned char if_port; 1724 unsigned char dma; 1725 1726 unsigned int mtu; 1727 unsigned int min_mtu; 1728 unsigned int max_mtu; 1729 unsigned short type; 1730 unsigned short hard_header_len; 1731 1732 unsigned short needed_headroom; 1733 unsigned short needed_tailroom; 1734 1735 /* Interface address info. */ 1736 unsigned char perm_addr[MAX_ADDR_LEN]; 1737 unsigned char addr_assign_type; 1738 unsigned char addr_len; 1739 unsigned short neigh_priv_len; 1740 unsigned short dev_id; 1741 unsigned short dev_port; 1742 spinlock_t addr_list_lock; 1743 unsigned char name_assign_type; 1744 bool uc_promisc; 1745 struct netdev_hw_addr_list uc; 1746 struct netdev_hw_addr_list mc; 1747 struct netdev_hw_addr_list dev_addrs; 1748 1749#ifdef CONFIG_SYSFS 1750 struct kset *queues_kset; 1751#endif 1752 unsigned int promiscuity; 1753 unsigned int allmulti; 1754 1755 1756 /* Protocol-specific pointers */ 1757 1758#if IS_ENABLED(CONFIG_VLAN_8021Q) 1759 struct vlan_info __rcu *vlan_info; 1760#endif 1761#if IS_ENABLED(CONFIG_NET_DSA) 1762 struct dsa_switch_tree *dsa_ptr; 1763#endif 1764#if IS_ENABLED(CONFIG_TIPC) 1765 struct tipc_bearer __rcu *tipc_ptr; 1766#endif 1767 void *atalk_ptr; 1768 struct in_device __rcu *ip_ptr; 1769 struct dn_dev __rcu *dn_ptr; 1770 struct inet6_dev __rcu *ip6_ptr; 1771 void *ax25_ptr; 1772 struct wireless_dev *ieee80211_ptr; 1773 struct wpan_dev *ieee802154_ptr; 1774#if IS_ENABLED(CONFIG_MPLS_ROUTING) 1775 struct mpls_dev __rcu *mpls_ptr; 1776#endif 1777 1778/* 1779 * Cache lines mostly used on receive path (including eth_type_trans()) 1780 */ 1781 unsigned long last_rx; 1782 1783 /* Interface address info used in eth_type_trans() */ 1784 unsigned char *dev_addr; 1785 1786#ifdef CONFIG_SYSFS 1787 struct netdev_rx_queue *_rx; 1788 1789 unsigned int num_rx_queues; 1790 unsigned int real_num_rx_queues; 1791#endif 1792 1793 unsigned long gro_flush_timeout; 1794 rx_handler_func_t __rcu *rx_handler; 1795 void __rcu *rx_handler_data; 1796 1797#ifdef CONFIG_NET_CLS_ACT 1798 struct tcf_proto __rcu *ingress_cl_list; 1799#endif 1800 struct netdev_queue __rcu *ingress_queue; 1801#ifdef CONFIG_NETFILTER_INGRESS 1802 struct nf_hook_entry __rcu *nf_hooks_ingress; 1803#endif 1804 1805 unsigned char broadcast[MAX_ADDR_LEN]; 1806#ifdef CONFIG_RFS_ACCEL 1807 struct cpu_rmap *rx_cpu_rmap; 1808#endif 1809 struct hlist_node index_hlist; 1810 1811/* 1812 * Cache lines mostly used on transmit path 1813 */ 1814 struct netdev_queue *_tx ____cacheline_aligned_in_smp; 1815 unsigned int num_tx_queues; 1816 unsigned int real_num_tx_queues; 1817 struct Qdisc *qdisc; 1818#ifdef CONFIG_NET_SCHED 1819 DECLARE_HASHTABLE (qdisc_hash, 4); 1820#endif 1821 unsigned long tx_queue_len; 1822 spinlock_t tx_global_lock; 1823 int watchdog_timeo; 1824 1825#ifdef CONFIG_XPS 1826 struct xps_dev_maps __rcu *xps_maps; 1827#endif 1828#ifdef CONFIG_NET_CLS_ACT 1829 struct tcf_proto __rcu *egress_cl_list; 1830#endif 1831 1832 /* These may be needed for future network-power-down code. */ 1833 struct timer_list watchdog_timer; 1834 1835 int __percpu *pcpu_refcnt; 1836 struct list_head todo_list; 1837 1838 struct list_head link_watch_list; 1839 1840 enum { NETREG_UNINITIALIZED=0, 1841 NETREG_REGISTERED, /* completed register_netdevice */ 1842 NETREG_UNREGISTERING, /* called unregister_netdevice */ 1843 NETREG_UNREGISTERED, /* completed unregister todo */ 1844 NETREG_RELEASED, /* called free_netdev */ 1845 NETREG_DUMMY, /* dummy device for NAPI poll */ 1846 } reg_state:8; 1847 1848 bool dismantle; 1849 1850 enum { 1851 RTNL_LINK_INITIALIZED, 1852 RTNL_LINK_INITIALIZING, 1853 } rtnl_link_state:16; 1854 1855 void (*destructor)(struct net_device *dev); 1856 1857#ifdef CONFIG_NETPOLL 1858 struct netpoll_info __rcu *npinfo; 1859#endif 1860 1861 possible_net_t nd_net; 1862 1863 /* mid-layer private */ 1864 union { 1865 void *ml_priv; 1866 struct pcpu_lstats __percpu *lstats; 1867 struct pcpu_sw_netstats __percpu *tstats; 1868 struct pcpu_dstats __percpu *dstats; 1869 struct pcpu_vstats __percpu *vstats; 1870 }; 1871 1872 struct garp_port __rcu *garp_port; 1873 struct mrp_port __rcu *mrp_port; 1874 1875 struct device dev; 1876 const struct attribute_group *sysfs_groups[4]; 1877 const struct attribute_group *sysfs_rx_queue_group; 1878 1879 const struct rtnl_link_ops *rtnl_link_ops; 1880 1881 /* for setting kernel sock attribute on TCP connection setup */ 1882#define GSO_MAX_SIZE 65536 1883 unsigned int gso_max_size; 1884#define GSO_MAX_SEGS 65535 1885 u16 gso_max_segs; 1886 1887#ifdef CONFIG_DCB 1888 const struct dcbnl_rtnl_ops *dcbnl_ops; 1889#endif 1890 u8 num_tc; 1891 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE]; 1892 u8 prio_tc_map[TC_BITMASK + 1]; 1893 1894#if IS_ENABLED(CONFIG_FCOE) 1895 unsigned int fcoe_ddp_xid; 1896#endif 1897#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 1898 struct netprio_map __rcu *priomap; 1899#endif 1900 struct phy_device *phydev; 1901 struct lock_class_key *qdisc_tx_busylock; 1902 struct lock_class_key *qdisc_running_key; 1903 bool proto_down; 1904}; 1905#define to_net_dev(d) container_of(d, struct net_device, dev) 1906 1907#define NETDEV_ALIGN 32 1908 1909static inline 1910int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio) 1911{ 1912 return dev->prio_tc_map[prio & TC_BITMASK]; 1913} 1914 1915static inline 1916int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc) 1917{ 1918 if (tc >= dev->num_tc) 1919 return -EINVAL; 1920 1921 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK; 1922 return 0; 1923} 1924 1925int netdev_txq_to_tc(struct net_device *dev, unsigned int txq); 1926void netdev_reset_tc(struct net_device *dev); 1927int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset); 1928int netdev_set_num_tc(struct net_device *dev, u8 num_tc); 1929 1930static inline 1931int netdev_get_num_tc(struct net_device *dev) 1932{ 1933 return dev->num_tc; 1934} 1935 1936static inline 1937struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev, 1938 unsigned int index) 1939{ 1940 return &dev->_tx[index]; 1941} 1942 1943static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev, 1944 const struct sk_buff *skb) 1945{ 1946 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb)); 1947} 1948 1949static inline void netdev_for_each_tx_queue(struct net_device *dev, 1950 void (*f)(struct net_device *, 1951 struct netdev_queue *, 1952 void *), 1953 void *arg) 1954{ 1955 unsigned int i; 1956 1957 for (i = 0; i < dev->num_tx_queues; i++) 1958 f(dev, &dev->_tx[i], arg); 1959} 1960 1961#define netdev_lockdep_set_classes(dev) \ 1962{ \ 1963 static struct lock_class_key qdisc_tx_busylock_key; \ 1964 static struct lock_class_key qdisc_running_key; \ 1965 static struct lock_class_key qdisc_xmit_lock_key; \ 1966 static struct lock_class_key dev_addr_list_lock_key; \ 1967 unsigned int i; \ 1968 \ 1969 (dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key; \ 1970 (dev)->qdisc_running_key = &qdisc_running_key; \ 1971 lockdep_set_class(&(dev)->addr_list_lock, \ 1972 &dev_addr_list_lock_key); \ 1973 for (i = 0; i < (dev)->num_tx_queues; i++) \ 1974 lockdep_set_class(&(dev)->_tx[i]._xmit_lock, \ 1975 &qdisc_xmit_lock_key); \ 1976} 1977 1978struct netdev_queue *netdev_pick_tx(struct net_device *dev, 1979 struct sk_buff *skb, 1980 void *accel_priv); 1981 1982/* returns the headroom that the master device needs to take in account 1983 * when forwarding to this dev 1984 */ 1985static inline unsigned netdev_get_fwd_headroom(struct net_device *dev) 1986{ 1987 return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom; 1988} 1989 1990static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr) 1991{ 1992 if (dev->netdev_ops->ndo_set_rx_headroom) 1993 dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr); 1994} 1995 1996/* set the device rx headroom to the dev's default */ 1997static inline void netdev_reset_rx_headroom(struct net_device *dev) 1998{ 1999 netdev_set_rx_headroom(dev, -1); 2000} 2001 2002/* 2003 * Net namespace inlines 2004 */ 2005static inline 2006struct net *dev_net(const struct net_device *dev) 2007{ 2008 return read_pnet(&dev->nd_net); 2009} 2010 2011static inline 2012void dev_net_set(struct net_device *dev, struct net *net) 2013{ 2014 write_pnet(&dev->nd_net, net); 2015} 2016 2017static inline bool netdev_uses_dsa(struct net_device *dev) 2018{ 2019#if IS_ENABLED(CONFIG_NET_DSA) 2020 if (dev->dsa_ptr != NULL) 2021 return dsa_uses_tagged_protocol(dev->dsa_ptr); 2022#endif 2023 return false; 2024} 2025 2026/** 2027 * netdev_priv - access network device private data 2028 * @dev: network device 2029 * 2030 * Get network device private data 2031 */ 2032static inline void *netdev_priv(const struct net_device *dev) 2033{ 2034 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN); 2035} 2036 2037/* Set the sysfs physical device reference for the network logical device 2038 * if set prior to registration will cause a symlink during initialization. 2039 */ 2040#define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev)) 2041 2042/* Set the sysfs device type for the network logical device to allow 2043 * fine-grained identification of different network device types. For 2044 * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc. 2045 */ 2046#define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype)) 2047 2048/* Default NAPI poll() weight 2049 * Device drivers are strongly advised to not use bigger value 2050 */ 2051#define NAPI_POLL_WEIGHT 64 2052 2053/** 2054 * netif_napi_add - initialize a NAPI context 2055 * @dev: network device 2056 * @napi: NAPI context 2057 * @poll: polling function 2058 * @weight: default weight 2059 * 2060 * netif_napi_add() must be used to initialize a NAPI context prior to calling 2061 * *any* of the other NAPI-related functions. 2062 */ 2063void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 2064 int (*poll)(struct napi_struct *, int), int weight); 2065 2066/** 2067 * netif_tx_napi_add - initialize a NAPI context 2068 * @dev: network device 2069 * @napi: NAPI context 2070 * @poll: polling function 2071 * @weight: default weight 2072 * 2073 * This variant of netif_napi_add() should be used from drivers using NAPI 2074 * to exclusively poll a TX queue. 2075 * This will avoid we add it into napi_hash[], thus polluting this hash table. 2076 */ 2077static inline void netif_tx_napi_add(struct net_device *dev, 2078 struct napi_struct *napi, 2079 int (*poll)(struct napi_struct *, int), 2080 int weight) 2081{ 2082 set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state); 2083 netif_napi_add(dev, napi, poll, weight); 2084} 2085 2086/** 2087 * netif_napi_del - remove a NAPI context 2088 * @napi: NAPI context 2089 * 2090 * netif_napi_del() removes a NAPI context from the network device NAPI list 2091 */ 2092void netif_napi_del(struct napi_struct *napi); 2093 2094struct napi_gro_cb { 2095 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */ 2096 void *frag0; 2097 2098 /* Length of frag0. */ 2099 unsigned int frag0_len; 2100 2101 /* This indicates where we are processing relative to skb->data. */ 2102 int data_offset; 2103 2104 /* This is non-zero if the packet cannot be merged with the new skb. */ 2105 u16 flush; 2106 2107 /* Save the IP ID here and check when we get to the transport layer */ 2108 u16 flush_id; 2109 2110 /* Number of segments aggregated. */ 2111 u16 count; 2112 2113 /* Start offset for remote checksum offload */ 2114 u16 gro_remcsum_start; 2115 2116 /* jiffies when first packet was created/queued */ 2117 unsigned long age; 2118 2119 /* Used in ipv6_gro_receive() and foo-over-udp */ 2120 u16 proto; 2121 2122 /* This is non-zero if the packet may be of the same flow. */ 2123 u8 same_flow:1; 2124 2125 /* Used in tunnel GRO receive */ 2126 u8 encap_mark:1; 2127 2128 /* GRO checksum is valid */ 2129 u8 csum_valid:1; 2130 2131 /* Number of checksums via CHECKSUM_UNNECESSARY */ 2132 u8 csum_cnt:3; 2133 2134 /* Free the skb? */ 2135 u8 free:2; 2136#define NAPI_GRO_FREE 1 2137#define NAPI_GRO_FREE_STOLEN_HEAD 2 2138 2139 /* Used in foo-over-udp, set in udp[46]_gro_receive */ 2140 u8 is_ipv6:1; 2141 2142 /* Used in GRE, set in fou/gue_gro_receive */ 2143 u8 is_fou:1; 2144 2145 /* Used to determine if flush_id can be ignored */ 2146 u8 is_atomic:1; 2147 2148 /* Number of gro_receive callbacks this packet already went through */ 2149 u8 recursion_counter:4; 2150 2151 /* 1 bit hole */ 2152 2153 /* used to support CHECKSUM_COMPLETE for tunneling protocols */ 2154 __wsum csum; 2155 2156 /* used in skb_gro_receive() slow path */ 2157 struct sk_buff *last; 2158}; 2159 2160#define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb) 2161 2162#define GRO_RECURSION_LIMIT 15 2163static inline int gro_recursion_inc_test(struct sk_buff *skb) 2164{ 2165 return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT; 2166} 2167 2168typedef struct sk_buff **(*gro_receive_t)(struct sk_buff **, struct sk_buff *); 2169static inline struct sk_buff **call_gro_receive(gro_receive_t cb, 2170 struct sk_buff **head, 2171 struct sk_buff *skb) 2172{ 2173 if (unlikely(gro_recursion_inc_test(skb))) { 2174 NAPI_GRO_CB(skb)->flush |= 1; 2175 return NULL; 2176 } 2177 2178 return cb(head, skb); 2179} 2180 2181typedef struct sk_buff **(*gro_receive_sk_t)(struct sock *, struct sk_buff **, 2182 struct sk_buff *); 2183static inline struct sk_buff **call_gro_receive_sk(gro_receive_sk_t cb, 2184 struct sock *sk, 2185 struct sk_buff **head, 2186 struct sk_buff *skb) 2187{ 2188 if (unlikely(gro_recursion_inc_test(skb))) { 2189 NAPI_GRO_CB(skb)->flush |= 1; 2190 return NULL; 2191 } 2192 2193 return cb(sk, head, skb); 2194} 2195 2196struct packet_type { 2197 __be16 type; /* This is really htons(ether_type). */ 2198 struct net_device *dev; /* NULL is wildcarded here */ 2199 int (*func) (struct sk_buff *, 2200 struct net_device *, 2201 struct packet_type *, 2202 struct net_device *); 2203 bool (*id_match)(struct packet_type *ptype, 2204 struct sock *sk); 2205 void *af_packet_priv; 2206 struct list_head list; 2207}; 2208 2209struct offload_callbacks { 2210 struct sk_buff *(*gso_segment)(struct sk_buff *skb, 2211 netdev_features_t features); 2212 struct sk_buff **(*gro_receive)(struct sk_buff **head, 2213 struct sk_buff *skb); 2214 int (*gro_complete)(struct sk_buff *skb, int nhoff); 2215}; 2216 2217struct packet_offload { 2218 __be16 type; /* This is really htons(ether_type). */ 2219 u16 priority; 2220 struct offload_callbacks callbacks; 2221 struct list_head list; 2222}; 2223 2224/* often modified stats are per-CPU, other are shared (netdev->stats) */ 2225struct pcpu_sw_netstats { 2226 u64 rx_packets; 2227 u64 rx_bytes; 2228 u64 tx_packets; 2229 u64 tx_bytes; 2230 struct u64_stats_sync syncp; 2231}; 2232 2233#define __netdev_alloc_pcpu_stats(type, gfp) \ 2234({ \ 2235 typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\ 2236 if (pcpu_stats) { \ 2237 int __cpu; \ 2238 for_each_possible_cpu(__cpu) { \ 2239 typeof(type) *stat; \ 2240 stat = per_cpu_ptr(pcpu_stats, __cpu); \ 2241 u64_stats_init(&stat->syncp); \ 2242 } \ 2243 } \ 2244 pcpu_stats; \ 2245}) 2246 2247#define netdev_alloc_pcpu_stats(type) \ 2248 __netdev_alloc_pcpu_stats(type, GFP_KERNEL) 2249 2250enum netdev_lag_tx_type { 2251 NETDEV_LAG_TX_TYPE_UNKNOWN, 2252 NETDEV_LAG_TX_TYPE_RANDOM, 2253 NETDEV_LAG_TX_TYPE_BROADCAST, 2254 NETDEV_LAG_TX_TYPE_ROUNDROBIN, 2255 NETDEV_LAG_TX_TYPE_ACTIVEBACKUP, 2256 NETDEV_LAG_TX_TYPE_HASH, 2257}; 2258 2259struct netdev_lag_upper_info { 2260 enum netdev_lag_tx_type tx_type; 2261}; 2262 2263struct netdev_lag_lower_state_info { 2264 u8 link_up : 1, 2265 tx_enabled : 1; 2266}; 2267 2268#include <linux/notifier.h> 2269 2270/* netdevice notifier chain. Please remember to update the rtnetlink 2271 * notification exclusion list in rtnetlink_event() when adding new 2272 * types. 2273 */ 2274#define NETDEV_UP 0x0001 /* For now you can't veto a device up/down */ 2275#define NETDEV_DOWN 0x0002 2276#define NETDEV_REBOOT 0x0003 /* Tell a protocol stack a network interface 2277 detected a hardware crash and restarted 2278 - we can use this eg to kick tcp sessions 2279 once done */ 2280#define NETDEV_CHANGE 0x0004 /* Notify device state change */ 2281#define NETDEV_REGISTER 0x0005 2282#define NETDEV_UNREGISTER 0x0006 2283#define NETDEV_CHANGEMTU 0x0007 /* notify after mtu change happened */ 2284#define NETDEV_CHANGEADDR 0x0008 2285#define NETDEV_GOING_DOWN 0x0009 2286#define NETDEV_CHANGENAME 0x000A 2287#define NETDEV_FEAT_CHANGE 0x000B 2288#define NETDEV_BONDING_FAILOVER 0x000C 2289#define NETDEV_PRE_UP 0x000D 2290#define NETDEV_PRE_TYPE_CHANGE 0x000E 2291#define NETDEV_POST_TYPE_CHANGE 0x000F 2292#define NETDEV_POST_INIT 0x0010 2293#define NETDEV_UNREGISTER_FINAL 0x0011 2294#define NETDEV_RELEASE 0x0012 2295#define NETDEV_NOTIFY_PEERS 0x0013 2296#define NETDEV_JOIN 0x0014 2297#define NETDEV_CHANGEUPPER 0x0015 2298#define NETDEV_RESEND_IGMP 0x0016 2299#define NETDEV_PRECHANGEMTU 0x0017 /* notify before mtu change happened */ 2300#define NETDEV_CHANGEINFODATA 0x0018 2301#define NETDEV_BONDING_INFO 0x0019 2302#define NETDEV_PRECHANGEUPPER 0x001A 2303#define NETDEV_CHANGELOWERSTATE 0x001B 2304#define NETDEV_UDP_TUNNEL_PUSH_INFO 0x001C 2305#define NETDEV_CHANGE_TX_QUEUE_LEN 0x001E 2306 2307int register_netdevice_notifier(struct notifier_block *nb); 2308int unregister_netdevice_notifier(struct notifier_block *nb); 2309 2310struct netdev_notifier_info { 2311 struct net_device *dev; 2312}; 2313 2314struct netdev_notifier_change_info { 2315 struct netdev_notifier_info info; /* must be first */ 2316 unsigned int flags_changed; 2317}; 2318 2319struct netdev_notifier_changeupper_info { 2320 struct netdev_notifier_info info; /* must be first */ 2321 struct net_device *upper_dev; /* new upper dev */ 2322 bool master; /* is upper dev master */ 2323 bool linking; /* is the notification for link or unlink */ 2324 void *upper_info; /* upper dev info */ 2325}; 2326 2327struct netdev_notifier_changelowerstate_info { 2328 struct netdev_notifier_info info; /* must be first */ 2329 void *lower_state_info; /* is lower dev state */ 2330}; 2331 2332static inline void netdev_notifier_info_init(struct netdev_notifier_info *info, 2333 struct net_device *dev) 2334{ 2335 info->dev = dev; 2336} 2337 2338static inline struct net_device * 2339netdev_notifier_info_to_dev(const struct netdev_notifier_info *info) 2340{ 2341 return info->dev; 2342} 2343 2344int call_netdevice_notifiers(unsigned long val, struct net_device *dev); 2345 2346 2347extern rwlock_t dev_base_lock; /* Device list lock */ 2348 2349#define for_each_netdev(net, d) \ 2350 list_for_each_entry(d, &(net)->dev_base_head, dev_list) 2351#define for_each_netdev_reverse(net, d) \ 2352 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list) 2353#define for_each_netdev_rcu(net, d) \ 2354 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list) 2355#define for_each_netdev_safe(net, d, n) \ 2356 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list) 2357#define for_each_netdev_continue(net, d) \ 2358 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list) 2359#define for_each_netdev_continue_rcu(net, d) \ 2360 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list) 2361#define for_each_netdev_in_bond_rcu(bond, slave) \ 2362 for_each_netdev_rcu(&init_net, slave) \ 2363 if (netdev_master_upper_dev_get_rcu(slave) == (bond)) 2364#define net_device_entry(lh) list_entry(lh, struct net_device, dev_list) 2365 2366static inline struct net_device *next_net_device(struct net_device *dev) 2367{ 2368 struct list_head *lh; 2369 struct net *net; 2370 2371 net = dev_net(dev); 2372 lh = dev->dev_list.next; 2373 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2374} 2375 2376static inline struct net_device *next_net_device_rcu(struct net_device *dev) 2377{ 2378 struct list_head *lh; 2379 struct net *net; 2380 2381 net = dev_net(dev); 2382 lh = rcu_dereference(list_next_rcu(&dev->dev_list)); 2383 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2384} 2385 2386static inline struct net_device *first_net_device(struct net *net) 2387{ 2388 return list_empty(&net->dev_base_head) ? NULL : 2389 net_device_entry(net->dev_base_head.next); 2390} 2391 2392static inline struct net_device *first_net_device_rcu(struct net *net) 2393{ 2394 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head)); 2395 2396 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2397} 2398 2399int netdev_boot_setup_check(struct net_device *dev); 2400unsigned long netdev_boot_base(const char *prefix, int unit); 2401struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 2402 const char *hwaddr); 2403struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type); 2404struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type); 2405void dev_add_pack(struct packet_type *pt); 2406void dev_remove_pack(struct packet_type *pt); 2407void __dev_remove_pack(struct packet_type *pt); 2408void dev_add_offload(struct packet_offload *po); 2409void dev_remove_offload(struct packet_offload *po); 2410 2411int dev_get_iflink(const struct net_device *dev); 2412int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb); 2413struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags, 2414 unsigned short mask); 2415struct net_device *dev_get_by_name(struct net *net, const char *name); 2416struct net_device *dev_get_by_name_rcu(struct net *net, const char *name); 2417struct net_device *__dev_get_by_name(struct net *net, const char *name); 2418int dev_alloc_name(struct net_device *dev, const char *name); 2419int dev_open(struct net_device *dev); 2420int dev_close(struct net_device *dev); 2421int dev_close_many(struct list_head *head, bool unlink); 2422void dev_disable_lro(struct net_device *dev); 2423int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb); 2424int dev_queue_xmit(struct sk_buff *skb); 2425int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv); 2426int register_netdevice(struct net_device *dev); 2427void unregister_netdevice_queue(struct net_device *dev, struct list_head *head); 2428void unregister_netdevice_many(struct list_head *head); 2429static inline void unregister_netdevice(struct net_device *dev) 2430{ 2431 unregister_netdevice_queue(dev, NULL); 2432} 2433 2434int netdev_refcnt_read(const struct net_device *dev); 2435void free_netdev(struct net_device *dev); 2436void netdev_freemem(struct net_device *dev); 2437void synchronize_net(void); 2438int init_dummy_netdev(struct net_device *dev); 2439 2440DECLARE_PER_CPU(int, xmit_recursion); 2441#define XMIT_RECURSION_LIMIT 10 2442 2443static inline int dev_recursion_level(void) 2444{ 2445 return this_cpu_read(xmit_recursion); 2446} 2447 2448struct net_device *dev_get_by_index(struct net *net, int ifindex); 2449struct net_device *__dev_get_by_index(struct net *net, int ifindex); 2450struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex); 2451int netdev_get_name(struct net *net, char *name, int ifindex); 2452int dev_restart(struct net_device *dev); 2453int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb); 2454 2455static inline unsigned int skb_gro_offset(const struct sk_buff *skb) 2456{ 2457 return NAPI_GRO_CB(skb)->data_offset; 2458} 2459 2460static inline unsigned int skb_gro_len(const struct sk_buff *skb) 2461{ 2462 return skb->len - NAPI_GRO_CB(skb)->data_offset; 2463} 2464 2465static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len) 2466{ 2467 NAPI_GRO_CB(skb)->data_offset += len; 2468} 2469 2470static inline void *skb_gro_header_fast(struct sk_buff *skb, 2471 unsigned int offset) 2472{ 2473 return NAPI_GRO_CB(skb)->frag0 + offset; 2474} 2475 2476static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen) 2477{ 2478 return NAPI_GRO_CB(skb)->frag0_len < hlen; 2479} 2480 2481static inline void skb_gro_frag0_invalidate(struct sk_buff *skb) 2482{ 2483 NAPI_GRO_CB(skb)->frag0 = NULL; 2484 NAPI_GRO_CB(skb)->frag0_len = 0; 2485} 2486 2487static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen, 2488 unsigned int offset) 2489{ 2490 if (!pskb_may_pull(skb, hlen)) 2491 return NULL; 2492 2493 skb_gro_frag0_invalidate(skb); 2494 return skb->data + offset; 2495} 2496 2497static inline void *skb_gro_network_header(struct sk_buff *skb) 2498{ 2499 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) + 2500 skb_network_offset(skb); 2501} 2502 2503static inline void skb_gro_postpull_rcsum(struct sk_buff *skb, 2504 const void *start, unsigned int len) 2505{ 2506 if (NAPI_GRO_CB(skb)->csum_valid) 2507 NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum, 2508 csum_partial(start, len, 0)); 2509} 2510 2511/* GRO checksum functions. These are logical equivalents of the normal 2512 * checksum functions (in skbuff.h) except that they operate on the GRO 2513 * offsets and fields in sk_buff. 2514 */ 2515 2516__sum16 __skb_gro_checksum_complete(struct sk_buff *skb); 2517 2518static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb) 2519{ 2520 return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb)); 2521} 2522 2523static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb, 2524 bool zero_okay, 2525 __sum16 check) 2526{ 2527 return ((skb->ip_summed != CHECKSUM_PARTIAL || 2528 skb_checksum_start_offset(skb) < 2529 skb_gro_offset(skb)) && 2530 !skb_at_gro_remcsum_start(skb) && 2531 NAPI_GRO_CB(skb)->csum_cnt == 0 && 2532 (!zero_okay || check)); 2533} 2534 2535static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb, 2536 __wsum psum) 2537{ 2538 if (NAPI_GRO_CB(skb)->csum_valid && 2539 !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum))) 2540 return 0; 2541 2542 NAPI_GRO_CB(skb)->csum = psum; 2543 2544 return __skb_gro_checksum_complete(skb); 2545} 2546 2547static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb) 2548{ 2549 if (NAPI_GRO_CB(skb)->csum_cnt > 0) { 2550 /* Consume a checksum from CHECKSUM_UNNECESSARY */ 2551 NAPI_GRO_CB(skb)->csum_cnt--; 2552 } else { 2553 /* Update skb for CHECKSUM_UNNECESSARY and csum_level when we 2554 * verified a new top level checksum or an encapsulated one 2555 * during GRO. This saves work if we fallback to normal path. 2556 */ 2557 __skb_incr_checksum_unnecessary(skb); 2558 } 2559} 2560 2561#define __skb_gro_checksum_validate(skb, proto, zero_okay, check, \ 2562 compute_pseudo) \ 2563({ \ 2564 __sum16 __ret = 0; \ 2565 if (__skb_gro_checksum_validate_needed(skb, zero_okay, check)) \ 2566 __ret = __skb_gro_checksum_validate_complete(skb, \ 2567 compute_pseudo(skb, proto)); \ 2568 if (__ret) \ 2569 __skb_mark_checksum_bad(skb); \ 2570 else \ 2571 skb_gro_incr_csum_unnecessary(skb); \ 2572 __ret; \ 2573}) 2574 2575#define skb_gro_checksum_validate(skb, proto, compute_pseudo) \ 2576 __skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo) 2577 2578#define skb_gro_checksum_validate_zero_check(skb, proto, check, \ 2579 compute_pseudo) \ 2580 __skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo) 2581 2582#define skb_gro_checksum_simple_validate(skb) \ 2583 __skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo) 2584 2585static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb) 2586{ 2587 return (NAPI_GRO_CB(skb)->csum_cnt == 0 && 2588 !NAPI_GRO_CB(skb)->csum_valid); 2589} 2590 2591static inline void __skb_gro_checksum_convert(struct sk_buff *skb, 2592 __sum16 check, __wsum pseudo) 2593{ 2594 NAPI_GRO_CB(skb)->csum = ~pseudo; 2595 NAPI_GRO_CB(skb)->csum_valid = 1; 2596} 2597 2598#define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo) \ 2599do { \ 2600 if (__skb_gro_checksum_convert_check(skb)) \ 2601 __skb_gro_checksum_convert(skb, check, \ 2602 compute_pseudo(skb, proto)); \ 2603} while (0) 2604 2605struct gro_remcsum { 2606 int offset; 2607 __wsum delta; 2608}; 2609 2610static inline void skb_gro_remcsum_init(struct gro_remcsum *grc) 2611{ 2612 grc->offset = 0; 2613 grc->delta = 0; 2614} 2615 2616static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr, 2617 unsigned int off, size_t hdrlen, 2618 int start, int offset, 2619 struct gro_remcsum *grc, 2620 bool nopartial) 2621{ 2622 __wsum delta; 2623 size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start); 2624 2625 BUG_ON(!NAPI_GRO_CB(skb)->csum_valid); 2626 2627 if (!nopartial) { 2628 NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start; 2629 return ptr; 2630 } 2631 2632 ptr = skb_gro_header_fast(skb, off); 2633 if (skb_gro_header_hard(skb, off + plen)) { 2634 ptr = skb_gro_header_slow(skb, off + plen, off); 2635 if (!ptr) 2636 return NULL; 2637 } 2638 2639 delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum, 2640 start, offset); 2641 2642 /* Adjust skb->csum since we changed the packet */ 2643 NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta); 2644 2645 grc->offset = off + hdrlen + offset; 2646 grc->delta = delta; 2647 2648 return ptr; 2649} 2650 2651static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb, 2652 struct gro_remcsum *grc) 2653{ 2654 void *ptr; 2655 size_t plen = grc->offset + sizeof(u16); 2656 2657 if (!grc->delta) 2658 return; 2659 2660 ptr = skb_gro_header_fast(skb, grc->offset); 2661 if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) { 2662 ptr = skb_gro_header_slow(skb, plen, grc->offset); 2663 if (!ptr) 2664 return; 2665 } 2666 2667 remcsum_unadjust((__sum16 *)ptr, grc->delta); 2668} 2669 2670static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev, 2671 unsigned short type, 2672 const void *daddr, const void *saddr, 2673 unsigned int len) 2674{ 2675 if (!dev->header_ops || !dev->header_ops->create) 2676 return 0; 2677 2678 return dev->header_ops->create(skb, dev, type, daddr, saddr, len); 2679} 2680 2681static inline int dev_parse_header(const struct sk_buff *skb, 2682 unsigned char *haddr) 2683{ 2684 const struct net_device *dev = skb->dev; 2685 2686 if (!dev->header_ops || !dev->header_ops->parse) 2687 return 0; 2688 return dev->header_ops->parse(skb, haddr); 2689} 2690 2691/* ll_header must have at least hard_header_len allocated */ 2692static inline bool dev_validate_header(const struct net_device *dev, 2693 char *ll_header, int len) 2694{ 2695 if (likely(len >= dev->hard_header_len)) 2696 return true; 2697 2698 if (capable(CAP_SYS_RAWIO)) { 2699 memset(ll_header + len, 0, dev->hard_header_len - len); 2700 return true; 2701 } 2702 2703 if (dev->header_ops && dev->header_ops->validate) 2704 return dev->header_ops->validate(ll_header, len); 2705 2706 return false; 2707} 2708 2709typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len); 2710int register_gifconf(unsigned int family, gifconf_func_t *gifconf); 2711static inline int unregister_gifconf(unsigned int family) 2712{ 2713 return register_gifconf(family, NULL); 2714} 2715 2716#ifdef CONFIG_NET_FLOW_LIMIT 2717#define FLOW_LIMIT_HISTORY (1 << 7) /* must be ^2 and !overflow buckets */ 2718struct sd_flow_limit { 2719 u64 count; 2720 unsigned int num_buckets; 2721 unsigned int history_head; 2722 u16 history[FLOW_LIMIT_HISTORY]; 2723 u8 buckets[]; 2724}; 2725 2726extern int netdev_flow_limit_table_len; 2727#endif /* CONFIG_NET_FLOW_LIMIT */ 2728 2729/* 2730 * Incoming packets are placed on per-CPU queues 2731 */ 2732struct softnet_data { 2733 struct list_head poll_list; 2734 struct sk_buff_head process_queue; 2735 2736 /* stats */ 2737 unsigned int processed; 2738 unsigned int time_squeeze; 2739 unsigned int received_rps; 2740#ifdef CONFIG_RPS 2741 struct softnet_data *rps_ipi_list; 2742#endif 2743#ifdef CONFIG_NET_FLOW_LIMIT 2744 struct sd_flow_limit __rcu *flow_limit; 2745#endif 2746 struct Qdisc *output_queue; 2747 struct Qdisc **output_queue_tailp; 2748 struct sk_buff *completion_queue; 2749 2750#ifdef CONFIG_RPS 2751 /* input_queue_head should be written by cpu owning this struct, 2752 * and only read by other cpus. Worth using a cache line. 2753 */ 2754 unsigned int input_queue_head ____cacheline_aligned_in_smp; 2755 2756 /* Elements below can be accessed between CPUs for RPS/RFS */ 2757 struct call_single_data csd ____cacheline_aligned_in_smp; 2758 struct softnet_data *rps_ipi_next; 2759 unsigned int cpu; 2760 unsigned int input_queue_tail; 2761#endif 2762 unsigned int dropped; 2763 struct sk_buff_head input_pkt_queue; 2764 struct napi_struct backlog; 2765 2766}; 2767 2768static inline void input_queue_head_incr(struct softnet_data *sd) 2769{ 2770#ifdef CONFIG_RPS 2771 sd->input_queue_head++; 2772#endif 2773} 2774 2775static inline void input_queue_tail_incr_save(struct softnet_data *sd, 2776 unsigned int *qtail) 2777{ 2778#ifdef CONFIG_RPS 2779 *qtail = ++sd->input_queue_tail; 2780#endif 2781} 2782 2783DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 2784 2785void __netif_schedule(struct Qdisc *q); 2786void netif_schedule_queue(struct netdev_queue *txq); 2787 2788static inline void netif_tx_schedule_all(struct net_device *dev) 2789{ 2790 unsigned int i; 2791 2792 for (i = 0; i < dev->num_tx_queues; i++) 2793 netif_schedule_queue(netdev_get_tx_queue(dev, i)); 2794} 2795 2796static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue) 2797{ 2798 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 2799} 2800 2801/** 2802 * netif_start_queue - allow transmit 2803 * @dev: network device 2804 * 2805 * Allow upper layers to call the device hard_start_xmit routine. 2806 */ 2807static inline void netif_start_queue(struct net_device *dev) 2808{ 2809 netif_tx_start_queue(netdev_get_tx_queue(dev, 0)); 2810} 2811 2812static inline void netif_tx_start_all_queues(struct net_device *dev) 2813{ 2814 unsigned int i; 2815 2816 for (i = 0; i < dev->num_tx_queues; i++) { 2817 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2818 netif_tx_start_queue(txq); 2819 } 2820} 2821 2822void netif_tx_wake_queue(struct netdev_queue *dev_queue); 2823 2824/** 2825 * netif_wake_queue - restart transmit 2826 * @dev: network device 2827 * 2828 * Allow upper layers to call the device hard_start_xmit routine. 2829 * Used for flow control when transmit resources are available. 2830 */ 2831static inline void netif_wake_queue(struct net_device *dev) 2832{ 2833 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0)); 2834} 2835 2836static inline void netif_tx_wake_all_queues(struct net_device *dev) 2837{ 2838 unsigned int i; 2839 2840 for (i = 0; i < dev->num_tx_queues; i++) { 2841 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2842 netif_tx_wake_queue(txq); 2843 } 2844} 2845 2846static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue) 2847{ 2848 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 2849} 2850 2851/** 2852 * netif_stop_queue - stop transmitted packets 2853 * @dev: network device 2854 * 2855 * Stop upper layers calling the device hard_start_xmit routine. 2856 * Used for flow control when transmit resources are unavailable. 2857 */ 2858static inline void netif_stop_queue(struct net_device *dev) 2859{ 2860 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0)); 2861} 2862 2863void netif_tx_stop_all_queues(struct net_device *dev); 2864 2865static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue) 2866{ 2867 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 2868} 2869 2870/** 2871 * netif_queue_stopped - test if transmit queue is flowblocked 2872 * @dev: network device 2873 * 2874 * Test if transmit queue on device is currently unable to send. 2875 */ 2876static inline bool netif_queue_stopped(const struct net_device *dev) 2877{ 2878 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0)); 2879} 2880 2881static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue) 2882{ 2883 return dev_queue->state & QUEUE_STATE_ANY_XOFF; 2884} 2885 2886static inline bool 2887netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue) 2888{ 2889 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN; 2890} 2891 2892static inline bool 2893netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue) 2894{ 2895 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN; 2896} 2897 2898/** 2899 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write 2900 * @dev_queue: pointer to transmit queue 2901 * 2902 * BQL enabled drivers might use this helper in their ndo_start_xmit(), 2903 * to give appropriate hint to the CPU. 2904 */ 2905static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue) 2906{ 2907#ifdef CONFIG_BQL 2908 prefetchw(&dev_queue->dql.num_queued); 2909#endif 2910} 2911 2912/** 2913 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write 2914 * @dev_queue: pointer to transmit queue 2915 * 2916 * BQL enabled drivers might use this helper in their TX completion path, 2917 * to give appropriate hint to the CPU. 2918 */ 2919static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue) 2920{ 2921#ifdef CONFIG_BQL 2922 prefetchw(&dev_queue->dql.limit); 2923#endif 2924} 2925 2926static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue, 2927 unsigned int bytes) 2928{ 2929#ifdef CONFIG_BQL 2930 dql_queued(&dev_queue->dql, bytes); 2931 2932 if (likely(dql_avail(&dev_queue->dql) >= 0)) 2933 return; 2934 2935 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 2936 2937 /* 2938 * The XOFF flag must be set before checking the dql_avail below, 2939 * because in netdev_tx_completed_queue we update the dql_completed 2940 * before checking the XOFF flag. 2941 */ 2942 smp_mb(); 2943 2944 /* check again in case another CPU has just made room avail */ 2945 if (unlikely(dql_avail(&dev_queue->dql) >= 0)) 2946 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 2947#endif 2948} 2949 2950/** 2951 * netdev_sent_queue - report the number of bytes queued to hardware 2952 * @dev: network device 2953 * @bytes: number of bytes queued to the hardware device queue 2954 * 2955 * Report the number of bytes queued for sending/completion to the network 2956 * device hardware queue. @bytes should be a good approximation and should 2957 * exactly match netdev_completed_queue() @bytes 2958 */ 2959static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes) 2960{ 2961 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes); 2962} 2963 2964static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue, 2965 unsigned int pkts, unsigned int bytes) 2966{ 2967#ifdef CONFIG_BQL 2968 if (unlikely(!bytes)) 2969 return; 2970 2971 dql_completed(&dev_queue->dql, bytes); 2972 2973 /* 2974 * Without the memory barrier there is a small possiblity that 2975 * netdev_tx_sent_queue will miss the update and cause the queue to 2976 * be stopped forever 2977 */ 2978 smp_mb(); 2979 2980 if (dql_avail(&dev_queue->dql) < 0) 2981 return; 2982 2983 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state)) 2984 netif_schedule_queue(dev_queue); 2985#endif 2986} 2987 2988/** 2989 * netdev_completed_queue - report bytes and packets completed by device 2990 * @dev: network device 2991 * @pkts: actual number of packets sent over the medium 2992 * @bytes: actual number of bytes sent over the medium 2993 * 2994 * Report the number of bytes and packets transmitted by the network device 2995 * hardware queue over the physical medium, @bytes must exactly match the 2996 * @bytes amount passed to netdev_sent_queue() 2997 */ 2998static inline void netdev_completed_queue(struct net_device *dev, 2999 unsigned int pkts, unsigned int bytes) 3000{ 3001 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes); 3002} 3003 3004static inline void netdev_tx_reset_queue(struct netdev_queue *q) 3005{ 3006#ifdef CONFIG_BQL 3007 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state); 3008 dql_reset(&q->dql); 3009#endif 3010} 3011 3012/** 3013 * netdev_reset_queue - reset the packets and bytes count of a network device 3014 * @dev_queue: network device 3015 * 3016 * Reset the bytes and packet count of a network device and clear the 3017 * software flow control OFF bit for this network device 3018 */ 3019static inline void netdev_reset_queue(struct net_device *dev_queue) 3020{ 3021 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0)); 3022} 3023 3024/** 3025 * netdev_cap_txqueue - check if selected tx queue exceeds device queues 3026 * @dev: network device 3027 * @queue_index: given tx queue index 3028 * 3029 * Returns 0 if given tx queue index >= number of device tx queues, 3030 * otherwise returns the originally passed tx queue index. 3031 */ 3032static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index) 3033{ 3034 if (unlikely(queue_index >= dev->real_num_tx_queues)) { 3035 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n", 3036 dev->name, queue_index, 3037 dev->real_num_tx_queues); 3038 return 0; 3039 } 3040 3041 return queue_index; 3042} 3043 3044/** 3045 * netif_running - test if up 3046 * @dev: network device 3047 * 3048 * Test if the device has been brought up. 3049 */ 3050static inline bool netif_running(const struct net_device *dev) 3051{ 3052 return test_bit(__LINK_STATE_START, &dev->state); 3053} 3054 3055/* 3056 * Routines to manage the subqueues on a device. We only need start, 3057 * stop, and a check if it's stopped. All other device management is 3058 * done at the overall netdevice level. 3059 * Also test the device if we're multiqueue. 3060 */ 3061 3062/** 3063 * netif_start_subqueue - allow sending packets on subqueue 3064 * @dev: network device 3065 * @queue_index: sub queue index 3066 * 3067 * Start individual transmit queue of a device with multiple transmit queues. 3068 */ 3069static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index) 3070{ 3071 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3072 3073 netif_tx_start_queue(txq); 3074} 3075 3076/** 3077 * netif_stop_subqueue - stop sending packets on subqueue 3078 * @dev: network device 3079 * @queue_index: sub queue index 3080 * 3081 * Stop individual transmit queue of a device with multiple transmit queues. 3082 */ 3083static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index) 3084{ 3085 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3086 netif_tx_stop_queue(txq); 3087} 3088 3089/** 3090 * netif_subqueue_stopped - test status of subqueue 3091 * @dev: network device 3092 * @queue_index: sub queue index 3093 * 3094 * Check individual transmit queue of a device with multiple transmit queues. 3095 */ 3096static inline bool __netif_subqueue_stopped(const struct net_device *dev, 3097 u16 queue_index) 3098{ 3099 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3100 3101 return netif_tx_queue_stopped(txq); 3102} 3103 3104static inline bool netif_subqueue_stopped(const struct net_device *dev, 3105 struct sk_buff *skb) 3106{ 3107 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb)); 3108} 3109 3110void netif_wake_subqueue(struct net_device *dev, u16 queue_index); 3111 3112#ifdef CONFIG_XPS 3113int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 3114 u16 index); 3115#else 3116static inline int netif_set_xps_queue(struct net_device *dev, 3117 const struct cpumask *mask, 3118 u16 index) 3119{ 3120 return 0; 3121} 3122#endif 3123 3124u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb, 3125 unsigned int num_tx_queues); 3126 3127/* 3128 * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used 3129 * as a distribution range limit for the returned value. 3130 */ 3131static inline u16 skb_tx_hash(const struct net_device *dev, 3132 struct sk_buff *skb) 3133{ 3134 return __skb_tx_hash(dev, skb, dev->real_num_tx_queues); 3135} 3136 3137/** 3138 * netif_is_multiqueue - test if device has multiple transmit queues 3139 * @dev: network device 3140 * 3141 * Check if device has multiple transmit queues 3142 */ 3143static inline bool netif_is_multiqueue(const struct net_device *dev) 3144{ 3145 return dev->num_tx_queues > 1; 3146} 3147 3148int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq); 3149 3150#ifdef CONFIG_SYSFS 3151int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq); 3152#else 3153static inline int netif_set_real_num_rx_queues(struct net_device *dev, 3154 unsigned int rxq) 3155{ 3156 return 0; 3157} 3158#endif 3159 3160#ifdef CONFIG_SYSFS 3161static inline unsigned int get_netdev_rx_queue_index( 3162 struct netdev_rx_queue *queue) 3163{ 3164 struct net_device *dev = queue->dev; 3165 int index = queue - dev->_rx; 3166 3167 BUG_ON(index >= dev->num_rx_queues); 3168 return index; 3169} 3170#endif 3171 3172#define DEFAULT_MAX_NUM_RSS_QUEUES (8) 3173int netif_get_num_default_rss_queues(void); 3174 3175enum skb_free_reason { 3176 SKB_REASON_CONSUMED, 3177 SKB_REASON_DROPPED, 3178}; 3179 3180void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason); 3181void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason); 3182 3183/* 3184 * It is not allowed to call kfree_skb() or consume_skb() from hardware 3185 * interrupt context or with hardware interrupts being disabled. 3186 * (in_irq() || irqs_disabled()) 3187 * 3188 * We provide four helpers that can be used in following contexts : 3189 * 3190 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context, 3191 * replacing kfree_skb(skb) 3192 * 3193 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context. 3194 * Typically used in place of consume_skb(skb) in TX completion path 3195 * 3196 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context, 3197 * replacing kfree_skb(skb) 3198 * 3199 * dev_consume_skb_any(skb) when caller doesn't know its current irq context, 3200 * and consumed a packet. Used in place of consume_skb(skb) 3201 */ 3202static inline void dev_kfree_skb_irq(struct sk_buff *skb) 3203{ 3204 __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED); 3205} 3206 3207static inline void dev_consume_skb_irq(struct sk_buff *skb) 3208{ 3209 __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED); 3210} 3211 3212static inline void dev_kfree_skb_any(struct sk_buff *skb) 3213{ 3214 __dev_kfree_skb_any(skb, SKB_REASON_DROPPED); 3215} 3216 3217static inline void dev_consume_skb_any(struct sk_buff *skb) 3218{ 3219 __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED); 3220} 3221 3222int netif_rx(struct sk_buff *skb); 3223int netif_rx_ni(struct sk_buff *skb); 3224int netif_receive_skb(struct sk_buff *skb); 3225gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb); 3226void napi_gro_flush(struct napi_struct *napi, bool flush_old); 3227struct sk_buff *napi_get_frags(struct napi_struct *napi); 3228gro_result_t napi_gro_frags(struct napi_struct *napi); 3229struct packet_offload *gro_find_receive_by_type(__be16 type); 3230struct packet_offload *gro_find_complete_by_type(__be16 type); 3231 3232static inline void napi_free_frags(struct napi_struct *napi) 3233{ 3234 kfree_skb(napi->skb); 3235 napi->skb = NULL; 3236} 3237 3238bool netdev_is_rx_handler_busy(struct net_device *dev); 3239int netdev_rx_handler_register(struct net_device *dev, 3240 rx_handler_func_t *rx_handler, 3241 void *rx_handler_data); 3242void netdev_rx_handler_unregister(struct net_device *dev); 3243 3244bool dev_valid_name(const char *name); 3245int dev_ioctl(struct net *net, unsigned int cmd, void __user *); 3246int dev_ethtool(struct net *net, struct ifreq *); 3247unsigned int dev_get_flags(const struct net_device *); 3248int __dev_change_flags(struct net_device *, unsigned int flags); 3249int dev_change_flags(struct net_device *, unsigned int); 3250void __dev_notify_flags(struct net_device *, unsigned int old_flags, 3251 unsigned int gchanges); 3252int dev_change_name(struct net_device *, const char *); 3253int dev_set_alias(struct net_device *, const char *, size_t); 3254int dev_change_net_namespace(struct net_device *, struct net *, const char *); 3255int dev_set_mtu(struct net_device *, int); 3256void dev_set_group(struct net_device *, int); 3257int dev_set_mac_address(struct net_device *, struct sockaddr *); 3258int dev_change_carrier(struct net_device *, bool new_carrier); 3259int dev_get_phys_port_id(struct net_device *dev, 3260 struct netdev_phys_item_id *ppid); 3261int dev_get_phys_port_name(struct net_device *dev, 3262 char *name, size_t len); 3263int dev_change_proto_down(struct net_device *dev, bool proto_down); 3264int dev_change_xdp_fd(struct net_device *dev, int fd, u32 flags); 3265struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev); 3266struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 3267 struct netdev_queue *txq, int *ret); 3268int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3269int dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3270bool is_skb_forwardable(const struct net_device *dev, 3271 const struct sk_buff *skb); 3272 3273static __always_inline int ____dev_forward_skb(struct net_device *dev, 3274 struct sk_buff *skb) 3275{ 3276 if (skb_orphan_frags(skb, GFP_ATOMIC) || 3277 unlikely(!is_skb_forwardable(dev, skb))) { 3278 atomic_long_inc(&dev->rx_dropped); 3279 kfree_skb(skb); 3280 return NET_RX_DROP; 3281 } 3282 3283 skb_scrub_packet(skb, true); 3284 skb->priority = 0; 3285 return 0; 3286} 3287 3288void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev); 3289 3290extern int netdev_budget; 3291 3292/* Called by rtnetlink.c:rtnl_unlock() */ 3293void netdev_run_todo(void); 3294 3295/** 3296 * dev_put - release reference to device 3297 * @dev: network device 3298 * 3299 * Release reference to device to allow it to be freed. 3300 */ 3301static inline void dev_put(struct net_device *dev) 3302{ 3303 this_cpu_dec(*dev->pcpu_refcnt); 3304} 3305 3306/** 3307 * dev_hold - get reference to device 3308 * @dev: network device 3309 * 3310 * Hold reference to device to keep it from being freed. 3311 */ 3312static inline void dev_hold(struct net_device *dev) 3313{ 3314 this_cpu_inc(*dev->pcpu_refcnt); 3315} 3316 3317/* Carrier loss detection, dial on demand. The functions netif_carrier_on 3318 * and _off may be called from IRQ context, but it is caller 3319 * who is responsible for serialization of these calls. 3320 * 3321 * The name carrier is inappropriate, these functions should really be 3322 * called netif_lowerlayer_*() because they represent the state of any 3323 * kind of lower layer not just hardware media. 3324 */ 3325 3326void linkwatch_init_dev(struct net_device *dev); 3327void linkwatch_fire_event(struct net_device *dev); 3328void linkwatch_forget_dev(struct net_device *dev); 3329 3330/** 3331 * netif_carrier_ok - test if carrier present 3332 * @dev: network device 3333 * 3334 * Check if carrier is present on device 3335 */ 3336static inline bool netif_carrier_ok(const struct net_device *dev) 3337{ 3338 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state); 3339} 3340 3341unsigned long dev_trans_start(struct net_device *dev); 3342 3343void __netdev_watchdog_up(struct net_device *dev); 3344 3345void netif_carrier_on(struct net_device *dev); 3346 3347void netif_carrier_off(struct net_device *dev); 3348 3349/** 3350 * netif_dormant_on - mark device as dormant. 3351 * @dev: network device 3352 * 3353 * Mark device as dormant (as per RFC2863). 3354 * 3355 * The dormant state indicates that the relevant interface is not 3356 * actually in a condition to pass packets (i.e., it is not 'up') but is 3357 * in a "pending" state, waiting for some external event. For "on- 3358 * demand" interfaces, this new state identifies the situation where the 3359 * interface is waiting for events to place it in the up state. 3360 */ 3361static inline void netif_dormant_on(struct net_device *dev) 3362{ 3363 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state)) 3364 linkwatch_fire_event(dev); 3365} 3366 3367/** 3368 * netif_dormant_off - set device as not dormant. 3369 * @dev: network device 3370 * 3371 * Device is not in dormant state. 3372 */ 3373static inline void netif_dormant_off(struct net_device *dev) 3374{ 3375 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state)) 3376 linkwatch_fire_event(dev); 3377} 3378 3379/** 3380 * netif_dormant - test if carrier present 3381 * @dev: network device 3382 * 3383 * Check if carrier is present on device 3384 */ 3385static inline bool netif_dormant(const struct net_device *dev) 3386{ 3387 return test_bit(__LINK_STATE_DORMANT, &dev->state); 3388} 3389 3390 3391/** 3392 * netif_oper_up - test if device is operational 3393 * @dev: network device 3394 * 3395 * Check if carrier is operational 3396 */ 3397static inline bool netif_oper_up(const struct net_device *dev) 3398{ 3399 return (dev->operstate == IF_OPER_UP || 3400 dev->operstate == IF_OPER_UNKNOWN /* backward compat */); 3401} 3402 3403/** 3404 * netif_device_present - is device available or removed 3405 * @dev: network device 3406 * 3407 * Check if device has not been removed from system. 3408 */ 3409static inline bool netif_device_present(struct net_device *dev) 3410{ 3411 return test_bit(__LINK_STATE_PRESENT, &dev->state); 3412} 3413 3414void netif_device_detach(struct net_device *dev); 3415 3416void netif_device_attach(struct net_device *dev); 3417 3418/* 3419 * Network interface message level settings 3420 */ 3421 3422enum { 3423 NETIF_MSG_DRV = 0x0001, 3424 NETIF_MSG_PROBE = 0x0002, 3425 NETIF_MSG_LINK = 0x0004, 3426 NETIF_MSG_TIMER = 0x0008, 3427 NETIF_MSG_IFDOWN = 0x0010, 3428 NETIF_MSG_IFUP = 0x0020, 3429 NETIF_MSG_RX_ERR = 0x0040, 3430 NETIF_MSG_TX_ERR = 0x0080, 3431 NETIF_MSG_TX_QUEUED = 0x0100, 3432 NETIF_MSG_INTR = 0x0200, 3433 NETIF_MSG_TX_DONE = 0x0400, 3434 NETIF_MSG_RX_STATUS = 0x0800, 3435 NETIF_MSG_PKTDATA = 0x1000, 3436 NETIF_MSG_HW = 0x2000, 3437 NETIF_MSG_WOL = 0x4000, 3438}; 3439 3440#define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV) 3441#define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE) 3442#define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK) 3443#define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER) 3444#define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN) 3445#define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP) 3446#define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR) 3447#define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR) 3448#define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED) 3449#define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR) 3450#define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE) 3451#define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS) 3452#define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA) 3453#define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW) 3454#define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL) 3455 3456static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits) 3457{ 3458 /* use default */ 3459 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8)) 3460 return default_msg_enable_bits; 3461 if (debug_value == 0) /* no output */ 3462 return 0; 3463 /* set low N bits */ 3464 return (1 << debug_value) - 1; 3465} 3466 3467static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu) 3468{ 3469 spin_lock(&txq->_xmit_lock); 3470 txq->xmit_lock_owner = cpu; 3471} 3472 3473static inline bool __netif_tx_acquire(struct netdev_queue *txq) 3474{ 3475 __acquire(&txq->_xmit_lock); 3476 return true; 3477} 3478 3479static inline void __netif_tx_release(struct netdev_queue *txq) 3480{ 3481 __release(&txq->_xmit_lock); 3482} 3483 3484static inline void __netif_tx_lock_bh(struct netdev_queue *txq) 3485{ 3486 spin_lock_bh(&txq->_xmit_lock); 3487 txq->xmit_lock_owner = smp_processor_id(); 3488} 3489 3490static inline bool __netif_tx_trylock(struct netdev_queue *txq) 3491{ 3492 bool ok = spin_trylock(&txq->_xmit_lock); 3493 if (likely(ok)) 3494 txq->xmit_lock_owner = smp_processor_id(); 3495 return ok; 3496} 3497 3498static inline void __netif_tx_unlock(struct netdev_queue *txq) 3499{ 3500 txq->xmit_lock_owner = -1; 3501 spin_unlock(&txq->_xmit_lock); 3502} 3503 3504static inline void __netif_tx_unlock_bh(struct netdev_queue *txq) 3505{ 3506 txq->xmit_lock_owner = -1; 3507 spin_unlock_bh(&txq->_xmit_lock); 3508} 3509 3510static inline void txq_trans_update(struct netdev_queue *txq) 3511{ 3512 if (txq->xmit_lock_owner != -1) 3513 txq->trans_start = jiffies; 3514} 3515 3516/* legacy drivers only, netdev_start_xmit() sets txq->trans_start */ 3517static inline void netif_trans_update(struct net_device *dev) 3518{ 3519 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0); 3520 3521 if (txq->trans_start != jiffies) 3522 txq->trans_start = jiffies; 3523} 3524 3525/** 3526 * netif_tx_lock - grab network device transmit lock 3527 * @dev: network device 3528 * 3529 * Get network device transmit lock 3530 */ 3531static inline void netif_tx_lock(struct net_device *dev) 3532{ 3533 unsigned int i; 3534 int cpu; 3535 3536 spin_lock(&dev->tx_global_lock); 3537 cpu = smp_processor_id(); 3538 for (i = 0; i < dev->num_tx_queues; i++) { 3539 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3540 3541 /* We are the only thread of execution doing a 3542 * freeze, but we have to grab the _xmit_lock in 3543 * order to synchronize with threads which are in 3544 * the ->hard_start_xmit() handler and already 3545 * checked the frozen bit. 3546 */ 3547 __netif_tx_lock(txq, cpu); 3548 set_bit(__QUEUE_STATE_FROZEN, &txq->state); 3549 __netif_tx_unlock(txq); 3550 } 3551} 3552 3553static inline void netif_tx_lock_bh(struct net_device *dev) 3554{ 3555 local_bh_disable(); 3556 netif_tx_lock(dev); 3557} 3558 3559static inline void netif_tx_unlock(struct net_device *dev) 3560{ 3561 unsigned int i; 3562 3563 for (i = 0; i < dev->num_tx_queues; i++) { 3564 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3565 3566 /* No need to grab the _xmit_lock here. If the 3567 * queue is not stopped for another reason, we 3568 * force a schedule. 3569 */ 3570 clear_bit(__QUEUE_STATE_FROZEN, &txq->state); 3571 netif_schedule_queue(txq); 3572 } 3573 spin_unlock(&dev->tx_global_lock); 3574} 3575 3576static inline void netif_tx_unlock_bh(struct net_device *dev) 3577{ 3578 netif_tx_unlock(dev); 3579 local_bh_enable(); 3580} 3581 3582#define HARD_TX_LOCK(dev, txq, cpu) { \ 3583 if ((dev->features & NETIF_F_LLTX) == 0) { \ 3584 __netif_tx_lock(txq, cpu); \ 3585 } else { \ 3586 __netif_tx_acquire(txq); \ 3587 } \ 3588} 3589 3590#define HARD_TX_TRYLOCK(dev, txq) \ 3591 (((dev->features & NETIF_F_LLTX) == 0) ? \ 3592 __netif_tx_trylock(txq) : \ 3593 __netif_tx_acquire(txq)) 3594 3595#define HARD_TX_UNLOCK(dev, txq) { \ 3596 if ((dev->features & NETIF_F_LLTX) == 0) { \ 3597 __netif_tx_unlock(txq); \ 3598 } else { \ 3599 __netif_tx_release(txq); \ 3600 } \ 3601} 3602 3603static inline void netif_tx_disable(struct net_device *dev) 3604{ 3605 unsigned int i; 3606 int cpu; 3607 3608 local_bh_disable(); 3609 cpu = smp_processor_id(); 3610 for (i = 0; i < dev->num_tx_queues; i++) { 3611 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3612 3613 __netif_tx_lock(txq, cpu); 3614 netif_tx_stop_queue(txq); 3615 __netif_tx_unlock(txq); 3616 } 3617 local_bh_enable(); 3618} 3619 3620static inline void netif_addr_lock(struct net_device *dev) 3621{ 3622 spin_lock(&dev->addr_list_lock); 3623} 3624 3625static inline void netif_addr_lock_nested(struct net_device *dev) 3626{ 3627 int subclass = SINGLE_DEPTH_NESTING; 3628 3629 if (dev->netdev_ops->ndo_get_lock_subclass) 3630 subclass = dev->netdev_ops->ndo_get_lock_subclass(dev); 3631 3632 spin_lock_nested(&dev->addr_list_lock, subclass); 3633} 3634 3635static inline void netif_addr_lock_bh(struct net_device *dev) 3636{ 3637 spin_lock_bh(&dev->addr_list_lock); 3638} 3639 3640static inline void netif_addr_unlock(struct net_device *dev) 3641{ 3642 spin_unlock(&dev->addr_list_lock); 3643} 3644 3645static inline void netif_addr_unlock_bh(struct net_device *dev) 3646{ 3647 spin_unlock_bh(&dev->addr_list_lock); 3648} 3649 3650/* 3651 * dev_addrs walker. Should be used only for read access. Call with 3652 * rcu_read_lock held. 3653 */ 3654#define for_each_dev_addr(dev, ha) \ 3655 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list) 3656 3657/* These functions live elsewhere (drivers/net/net_init.c, but related) */ 3658 3659void ether_setup(struct net_device *dev); 3660 3661/* Support for loadable net-drivers */ 3662struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 3663 unsigned char name_assign_type, 3664 void (*setup)(struct net_device *), 3665 unsigned int txqs, unsigned int rxqs); 3666#define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \ 3667 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1) 3668 3669#define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \ 3670 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \ 3671 count) 3672 3673int register_netdev(struct net_device *dev); 3674void unregister_netdev(struct net_device *dev); 3675 3676/* General hardware address lists handling functions */ 3677int __hw_addr_sync(struct netdev_hw_addr_list *to_list, 3678 struct netdev_hw_addr_list *from_list, int addr_len); 3679void __hw_addr_unsync(struct netdev_hw_addr_list *to_list, 3680 struct netdev_hw_addr_list *from_list, int addr_len); 3681int __hw_addr_sync_dev(struct netdev_hw_addr_list *list, 3682 struct net_device *dev, 3683 int (*sync)(struct net_device *, const unsigned char *), 3684 int (*unsync)(struct net_device *, 3685 const unsigned char *)); 3686void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list, 3687 struct net_device *dev, 3688 int (*unsync)(struct net_device *, 3689 const unsigned char *)); 3690void __hw_addr_init(struct netdev_hw_addr_list *list); 3691 3692/* Functions used for device addresses handling */ 3693int dev_addr_add(struct net_device *dev, const unsigned char *addr, 3694 unsigned char addr_type); 3695int dev_addr_del(struct net_device *dev, const unsigned char *addr, 3696 unsigned char addr_type); 3697void dev_addr_flush(struct net_device *dev); 3698int dev_addr_init(struct net_device *dev); 3699 3700/* Functions used for unicast addresses handling */ 3701int dev_uc_add(struct net_device *dev, const unsigned char *addr); 3702int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr); 3703int dev_uc_del(struct net_device *dev, const unsigned char *addr); 3704int dev_uc_sync(struct net_device *to, struct net_device *from); 3705int dev_uc_sync_multiple(struct net_device *to, struct net_device *from); 3706void dev_uc_unsync(struct net_device *to, struct net_device *from); 3707void dev_uc_flush(struct net_device *dev); 3708void dev_uc_init(struct net_device *dev); 3709 3710/** 3711 * __dev_uc_sync - Synchonize device's unicast list 3712 * @dev: device to sync 3713 * @sync: function to call if address should be added 3714 * @unsync: function to call if address should be removed 3715 * 3716 * Add newly added addresses to the interface, and release 3717 * addresses that have been deleted. 3718 */ 3719static inline int __dev_uc_sync(struct net_device *dev, 3720 int (*sync)(struct net_device *, 3721 const unsigned char *), 3722 int (*unsync)(struct net_device *, 3723 const unsigned char *)) 3724{ 3725 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync); 3726} 3727 3728/** 3729 * __dev_uc_unsync - Remove synchronized addresses from device 3730 * @dev: device to sync 3731 * @unsync: function to call if address should be removed 3732 * 3733 * Remove all addresses that were added to the device by dev_uc_sync(). 3734 */ 3735static inline void __dev_uc_unsync(struct net_device *dev, 3736 int (*unsync)(struct net_device *, 3737 const unsigned char *)) 3738{ 3739 __hw_addr_unsync_dev(&dev->uc, dev, unsync); 3740} 3741 3742/* Functions used for multicast addresses handling */ 3743int dev_mc_add(struct net_device *dev, const unsigned char *addr); 3744int dev_mc_add_global(struct net_device *dev, const unsigned char *addr); 3745int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr); 3746int dev_mc_del(struct net_device *dev, const unsigned char *addr); 3747int dev_mc_del_global(struct net_device *dev, const unsigned char *addr); 3748int dev_mc_sync(struct net_device *to, struct net_device *from); 3749int dev_mc_sync_multiple(struct net_device *to, struct net_device *from); 3750void dev_mc_unsync(struct net_device *to, struct net_device *from); 3751void dev_mc_flush(struct net_device *dev); 3752void dev_mc_init(struct net_device *dev); 3753 3754/** 3755 * __dev_mc_sync - Synchonize device's multicast list 3756 * @dev: device to sync 3757 * @sync: function to call if address should be added 3758 * @unsync: function to call if address should be removed 3759 * 3760 * Add newly added addresses to the interface, and release 3761 * addresses that have been deleted. 3762 */ 3763static inline int __dev_mc_sync(struct net_device *dev, 3764 int (*sync)(struct net_device *, 3765 const unsigned char *), 3766 int (*unsync)(struct net_device *, 3767 const unsigned char *)) 3768{ 3769 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync); 3770} 3771 3772/** 3773 * __dev_mc_unsync - Remove synchronized addresses from device 3774 * @dev: device to sync 3775 * @unsync: function to call if address should be removed 3776 * 3777 * Remove all addresses that were added to the device by dev_mc_sync(). 3778 */ 3779static inline void __dev_mc_unsync(struct net_device *dev, 3780 int (*unsync)(struct net_device *, 3781 const unsigned char *)) 3782{ 3783 __hw_addr_unsync_dev(&dev->mc, dev, unsync); 3784} 3785 3786/* Functions used for secondary unicast and multicast support */ 3787void dev_set_rx_mode(struct net_device *dev); 3788void __dev_set_rx_mode(struct net_device *dev); 3789int dev_set_promiscuity(struct net_device *dev, int inc); 3790int dev_set_allmulti(struct net_device *dev, int inc); 3791void netdev_state_change(struct net_device *dev); 3792void netdev_notify_peers(struct net_device *dev); 3793void netdev_features_change(struct net_device *dev); 3794/* Load a device via the kmod */ 3795void dev_load(struct net *net, const char *name); 3796struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 3797 struct rtnl_link_stats64 *storage); 3798void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 3799 const struct net_device_stats *netdev_stats); 3800 3801extern int netdev_max_backlog; 3802extern int netdev_tstamp_prequeue; 3803extern int weight_p; 3804 3805bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev); 3806struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 3807 struct list_head **iter); 3808struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev, 3809 struct list_head **iter); 3810 3811/* iterate through upper list, must be called under RCU read lock */ 3812#define netdev_for_each_upper_dev_rcu(dev, updev, iter) \ 3813 for (iter = &(dev)->adj_list.upper, \ 3814 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \ 3815 updev; \ 3816 updev = netdev_upper_get_next_dev_rcu(dev, &(iter))) 3817 3818int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 3819 int (*fn)(struct net_device *upper_dev, 3820 void *data), 3821 void *data); 3822 3823bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 3824 struct net_device *upper_dev); 3825 3826void *netdev_lower_get_next_private(struct net_device *dev, 3827 struct list_head **iter); 3828void *netdev_lower_get_next_private_rcu(struct net_device *dev, 3829 struct list_head **iter); 3830 3831#define netdev_for_each_lower_private(dev, priv, iter) \ 3832 for (iter = (dev)->adj_list.lower.next, \ 3833 priv = netdev_lower_get_next_private(dev, &(iter)); \ 3834 priv; \ 3835 priv = netdev_lower_get_next_private(dev, &(iter))) 3836 3837#define netdev_for_each_lower_private_rcu(dev, priv, iter) \ 3838 for (iter = &(dev)->adj_list.lower, \ 3839 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \ 3840 priv; \ 3841 priv = netdev_lower_get_next_private_rcu(dev, &(iter))) 3842 3843void *netdev_lower_get_next(struct net_device *dev, 3844 struct list_head **iter); 3845 3846#define netdev_for_each_lower_dev(dev, ldev, iter) \ 3847 for (iter = (dev)->adj_list.lower.next, \ 3848 ldev = netdev_lower_get_next(dev, &(iter)); \ 3849 ldev; \ 3850 ldev = netdev_lower_get_next(dev, &(iter))) 3851 3852struct net_device *netdev_all_lower_get_next(struct net_device *dev, 3853 struct list_head **iter); 3854struct net_device *netdev_all_lower_get_next_rcu(struct net_device *dev, 3855 struct list_head **iter); 3856 3857int netdev_walk_all_lower_dev(struct net_device *dev, 3858 int (*fn)(struct net_device *lower_dev, 3859 void *data), 3860 void *data); 3861int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 3862 int (*fn)(struct net_device *lower_dev, 3863 void *data), 3864 void *data); 3865 3866void *netdev_adjacent_get_private(struct list_head *adj_list); 3867void *netdev_lower_get_first_private_rcu(struct net_device *dev); 3868struct net_device *netdev_master_upper_dev_get(struct net_device *dev); 3869struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev); 3870int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev); 3871int netdev_master_upper_dev_link(struct net_device *dev, 3872 struct net_device *upper_dev, 3873 void *upper_priv, void *upper_info); 3874void netdev_upper_dev_unlink(struct net_device *dev, 3875 struct net_device *upper_dev); 3876void netdev_adjacent_rename_links(struct net_device *dev, char *oldname); 3877void *netdev_lower_dev_get_private(struct net_device *dev, 3878 struct net_device *lower_dev); 3879void netdev_lower_state_changed(struct net_device *lower_dev, 3880 void *lower_state_info); 3881int netdev_default_l2upper_neigh_construct(struct net_device *dev, 3882 struct neighbour *n); 3883void netdev_default_l2upper_neigh_destroy(struct net_device *dev, 3884 struct neighbour *n); 3885 3886/* RSS keys are 40 or 52 bytes long */ 3887#define NETDEV_RSS_KEY_LEN 52 3888extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly; 3889void netdev_rss_key_fill(void *buffer, size_t len); 3890 3891int dev_get_nest_level(struct net_device *dev); 3892int skb_checksum_help(struct sk_buff *skb); 3893struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 3894 netdev_features_t features, bool tx_path); 3895struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 3896 netdev_features_t features); 3897 3898struct netdev_bonding_info { 3899 ifslave slave; 3900 ifbond master; 3901}; 3902 3903struct netdev_notifier_bonding_info { 3904 struct netdev_notifier_info info; /* must be first */ 3905 struct netdev_bonding_info bonding_info; 3906}; 3907 3908void netdev_bonding_info_change(struct net_device *dev, 3909 struct netdev_bonding_info *bonding_info); 3910 3911static inline 3912struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features) 3913{ 3914 return __skb_gso_segment(skb, features, true); 3915} 3916__be16 skb_network_protocol(struct sk_buff *skb, int *depth); 3917 3918static inline bool can_checksum_protocol(netdev_features_t features, 3919 __be16 protocol) 3920{ 3921 if (protocol == htons(ETH_P_FCOE)) 3922 return !!(features & NETIF_F_FCOE_CRC); 3923 3924 /* Assume this is an IP checksum (not SCTP CRC) */ 3925 3926 if (features & NETIF_F_HW_CSUM) { 3927 /* Can checksum everything */ 3928 return true; 3929 } 3930 3931 switch (protocol) { 3932 case htons(ETH_P_IP): 3933 return !!(features & NETIF_F_IP_CSUM); 3934 case htons(ETH_P_IPV6): 3935 return !!(features & NETIF_F_IPV6_CSUM); 3936 default: 3937 return false; 3938 } 3939} 3940 3941#ifdef CONFIG_BUG 3942void netdev_rx_csum_fault(struct net_device *dev); 3943#else 3944static inline void netdev_rx_csum_fault(struct net_device *dev) 3945{ 3946} 3947#endif 3948/* rx skb timestamps */ 3949void net_enable_timestamp(void); 3950void net_disable_timestamp(void); 3951 3952#ifdef CONFIG_PROC_FS 3953int __init dev_proc_init(void); 3954#else 3955#define dev_proc_init() 0 3956#endif 3957 3958static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops, 3959 struct sk_buff *skb, struct net_device *dev, 3960 bool more) 3961{ 3962 skb->xmit_more = more ? 1 : 0; 3963 return ops->ndo_start_xmit(skb, dev); 3964} 3965 3966static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev, 3967 struct netdev_queue *txq, bool more) 3968{ 3969 const struct net_device_ops *ops = dev->netdev_ops; 3970 int rc; 3971 3972 rc = __netdev_start_xmit(ops, skb, dev, more); 3973 if (rc == NETDEV_TX_OK) 3974 txq_trans_update(txq); 3975 3976 return rc; 3977} 3978 3979int netdev_class_create_file_ns(struct class_attribute *class_attr, 3980 const void *ns); 3981void netdev_class_remove_file_ns(struct class_attribute *class_attr, 3982 const void *ns); 3983 3984static inline int netdev_class_create_file(struct class_attribute *class_attr) 3985{ 3986 return netdev_class_create_file_ns(class_attr, NULL); 3987} 3988 3989static inline void netdev_class_remove_file(struct class_attribute *class_attr) 3990{ 3991 netdev_class_remove_file_ns(class_attr, NULL); 3992} 3993 3994extern struct kobj_ns_type_operations net_ns_type_operations; 3995 3996const char *netdev_drivername(const struct net_device *dev); 3997 3998void linkwatch_run_queue(void); 3999 4000static inline netdev_features_t netdev_intersect_features(netdev_features_t f1, 4001 netdev_features_t f2) 4002{ 4003 if ((f1 ^ f2) & NETIF_F_HW_CSUM) { 4004 if (f1 & NETIF_F_HW_CSUM) 4005 f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4006 else 4007 f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4008 } 4009 4010 return f1 & f2; 4011} 4012 4013static inline netdev_features_t netdev_get_wanted_features( 4014 struct net_device *dev) 4015{ 4016 return (dev->features & ~dev->hw_features) | dev->wanted_features; 4017} 4018netdev_features_t netdev_increment_features(netdev_features_t all, 4019 netdev_features_t one, netdev_features_t mask); 4020 4021/* Allow TSO being used on stacked device : 4022 * Performing the GSO segmentation before last device 4023 * is a performance improvement. 4024 */ 4025static inline netdev_features_t netdev_add_tso_features(netdev_features_t features, 4026 netdev_features_t mask) 4027{ 4028 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask); 4029} 4030 4031int __netdev_update_features(struct net_device *dev); 4032void netdev_update_features(struct net_device *dev); 4033void netdev_change_features(struct net_device *dev); 4034 4035void netif_stacked_transfer_operstate(const struct net_device *rootdev, 4036 struct net_device *dev); 4037 4038netdev_features_t passthru_features_check(struct sk_buff *skb, 4039 struct net_device *dev, 4040 netdev_features_t features); 4041netdev_features_t netif_skb_features(struct sk_buff *skb); 4042 4043static inline bool net_gso_ok(netdev_features_t features, int gso_type) 4044{ 4045 netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT; 4046 4047 /* check flags correspondence */ 4048 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT)); 4049 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT)); 4050 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT)); 4051 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT)); 4052 BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT)); 4053 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT)); 4054 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT)); 4055 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT)); 4056 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT)); 4057 BUILD_BUG_ON(SKB_GSO_IPXIP4 != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT)); 4058 BUILD_BUG_ON(SKB_GSO_IPXIP6 != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT)); 4059 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT)); 4060 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT)); 4061 BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT)); 4062 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT)); 4063 BUILD_BUG_ON(SKB_GSO_SCTP != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT)); 4064 4065 return (features & feature) == feature; 4066} 4067 4068static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features) 4069{ 4070 return net_gso_ok(features, skb_shinfo(skb)->gso_type) && 4071 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST)); 4072} 4073 4074static inline bool netif_needs_gso(struct sk_buff *skb, 4075 netdev_features_t features) 4076{ 4077 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) || 4078 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) && 4079 (skb->ip_summed != CHECKSUM_UNNECESSARY))); 4080} 4081 4082static inline void netif_set_gso_max_size(struct net_device *dev, 4083 unsigned int size) 4084{ 4085 dev->gso_max_size = size; 4086} 4087 4088static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol, 4089 int pulled_hlen, u16 mac_offset, 4090 int mac_len) 4091{ 4092 skb->protocol = protocol; 4093 skb->encapsulation = 1; 4094 skb_push(skb, pulled_hlen); 4095 skb_reset_transport_header(skb); 4096 skb->mac_header = mac_offset; 4097 skb->network_header = skb->mac_header + mac_len; 4098 skb->mac_len = mac_len; 4099} 4100 4101static inline bool netif_is_macsec(const struct net_device *dev) 4102{ 4103 return dev->priv_flags & IFF_MACSEC; 4104} 4105 4106static inline bool netif_is_macvlan(const struct net_device *dev) 4107{ 4108 return dev->priv_flags & IFF_MACVLAN; 4109} 4110 4111static inline bool netif_is_macvlan_port(const struct net_device *dev) 4112{ 4113 return dev->priv_flags & IFF_MACVLAN_PORT; 4114} 4115 4116static inline bool netif_is_ipvlan(const struct net_device *dev) 4117{ 4118 return dev->priv_flags & IFF_IPVLAN_SLAVE; 4119} 4120 4121static inline bool netif_is_ipvlan_port(const struct net_device *dev) 4122{ 4123 return dev->priv_flags & IFF_IPVLAN_MASTER; 4124} 4125 4126static inline bool netif_is_bond_master(const struct net_device *dev) 4127{ 4128 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING; 4129} 4130 4131static inline bool netif_is_bond_slave(const struct net_device *dev) 4132{ 4133 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING; 4134} 4135 4136static inline bool netif_supports_nofcs(struct net_device *dev) 4137{ 4138 return dev->priv_flags & IFF_SUPP_NOFCS; 4139} 4140 4141static inline bool netif_is_l3_master(const struct net_device *dev) 4142{ 4143 return dev->priv_flags & IFF_L3MDEV_MASTER; 4144} 4145 4146static inline bool netif_is_l3_slave(const struct net_device *dev) 4147{ 4148 return dev->priv_flags & IFF_L3MDEV_SLAVE; 4149} 4150 4151static inline bool netif_is_bridge_master(const struct net_device *dev) 4152{ 4153 return dev->priv_flags & IFF_EBRIDGE; 4154} 4155 4156static inline bool netif_is_bridge_port(const struct net_device *dev) 4157{ 4158 return dev->priv_flags & IFF_BRIDGE_PORT; 4159} 4160 4161static inline bool netif_is_ovs_master(const struct net_device *dev) 4162{ 4163 return dev->priv_flags & IFF_OPENVSWITCH; 4164} 4165 4166static inline bool netif_is_team_master(const struct net_device *dev) 4167{ 4168 return dev->priv_flags & IFF_TEAM; 4169} 4170 4171static inline bool netif_is_team_port(const struct net_device *dev) 4172{ 4173 return dev->priv_flags & IFF_TEAM_PORT; 4174} 4175 4176static inline bool netif_is_lag_master(const struct net_device *dev) 4177{ 4178 return netif_is_bond_master(dev) || netif_is_team_master(dev); 4179} 4180 4181static inline bool netif_is_lag_port(const struct net_device *dev) 4182{ 4183 return netif_is_bond_slave(dev) || netif_is_team_port(dev); 4184} 4185 4186static inline bool netif_is_rxfh_configured(const struct net_device *dev) 4187{ 4188 return dev->priv_flags & IFF_RXFH_CONFIGURED; 4189} 4190 4191/* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */ 4192static inline void netif_keep_dst(struct net_device *dev) 4193{ 4194 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM); 4195} 4196 4197/* return true if dev can't cope with mtu frames that need vlan tag insertion */ 4198static inline bool netif_reduces_vlan_mtu(struct net_device *dev) 4199{ 4200 /* TODO: reserve and use an additional IFF bit, if we get more users */ 4201 return dev->priv_flags & IFF_MACSEC; 4202} 4203 4204extern struct pernet_operations __net_initdata loopback_net_ops; 4205 4206/* Logging, debugging and troubleshooting/diagnostic helpers. */ 4207 4208/* netdev_printk helpers, similar to dev_printk */ 4209 4210static inline const char *netdev_name(const struct net_device *dev) 4211{ 4212 if (!dev->name[0] || strchr(dev->name, '%')) 4213 return "(unnamed net_device)"; 4214 return dev->name; 4215} 4216 4217static inline const char *netdev_reg_state(const struct net_device *dev) 4218{ 4219 switch (dev->reg_state) { 4220 case NETREG_UNINITIALIZED: return " (uninitialized)"; 4221 case NETREG_REGISTERED: return ""; 4222 case NETREG_UNREGISTERING: return " (unregistering)"; 4223 case NETREG_UNREGISTERED: return " (unregistered)"; 4224 case NETREG_RELEASED: return " (released)"; 4225 case NETREG_DUMMY: return " (dummy)"; 4226 } 4227 4228 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state); 4229 return " (unknown)"; 4230} 4231 4232__printf(3, 4) 4233void netdev_printk(const char *level, const struct net_device *dev, 4234 const char *format, ...); 4235__printf(2, 3) 4236void netdev_emerg(const struct net_device *dev, const char *format, ...); 4237__printf(2, 3) 4238void netdev_alert(const struct net_device *dev, const char *format, ...); 4239__printf(2, 3) 4240void netdev_crit(const struct net_device *dev, const char *format, ...); 4241__printf(2, 3) 4242void netdev_err(const struct net_device *dev, const char *format, ...); 4243__printf(2, 3) 4244void netdev_warn(const struct net_device *dev, const char *format, ...); 4245__printf(2, 3) 4246void netdev_notice(const struct net_device *dev, const char *format, ...); 4247__printf(2, 3) 4248void netdev_info(const struct net_device *dev, const char *format, ...); 4249 4250#define MODULE_ALIAS_NETDEV(device) \ 4251 MODULE_ALIAS("netdev-" device) 4252 4253#if defined(CONFIG_DYNAMIC_DEBUG) 4254#define netdev_dbg(__dev, format, args...) \ 4255do { \ 4256 dynamic_netdev_dbg(__dev, format, ##args); \ 4257} while (0) 4258#elif defined(DEBUG) 4259#define netdev_dbg(__dev, format, args...) \ 4260 netdev_printk(KERN_DEBUG, __dev, format, ##args) 4261#else 4262#define netdev_dbg(__dev, format, args...) \ 4263({ \ 4264 if (0) \ 4265 netdev_printk(KERN_DEBUG, __dev, format, ##args); \ 4266}) 4267#endif 4268 4269#if defined(VERBOSE_DEBUG) 4270#define netdev_vdbg netdev_dbg 4271#else 4272 4273#define netdev_vdbg(dev, format, args...) \ 4274({ \ 4275 if (0) \ 4276 netdev_printk(KERN_DEBUG, dev, format, ##args); \ 4277 0; \ 4278}) 4279#endif 4280 4281/* 4282 * netdev_WARN() acts like dev_printk(), but with the key difference 4283 * of using a WARN/WARN_ON to get the message out, including the 4284 * file/line information and a backtrace. 4285 */ 4286#define netdev_WARN(dev, format, args...) \ 4287 WARN(1, "netdevice: %s%s\n" format, netdev_name(dev), \ 4288 netdev_reg_state(dev), ##args) 4289 4290/* netif printk helpers, similar to netdev_printk */ 4291 4292#define netif_printk(priv, type, level, dev, fmt, args...) \ 4293do { \ 4294 if (netif_msg_##type(priv)) \ 4295 netdev_printk(level, (dev), fmt, ##args); \ 4296} while (0) 4297 4298#define netif_level(level, priv, type, dev, fmt, args...) \ 4299do { \ 4300 if (netif_msg_##type(priv)) \ 4301 netdev_##level(dev, fmt, ##args); \ 4302} while (0) 4303 4304#define netif_emerg(priv, type, dev, fmt, args...) \ 4305 netif_level(emerg, priv, type, dev, fmt, ##args) 4306#define netif_alert(priv, type, dev, fmt, args...) \ 4307 netif_level(alert, priv, type, dev, fmt, ##args) 4308#define netif_crit(priv, type, dev, fmt, args...) \ 4309 netif_level(crit, priv, type, dev, fmt, ##args) 4310#define netif_err(priv, type, dev, fmt, args...) \ 4311 netif_level(err, priv, type, dev, fmt, ##args) 4312#define netif_warn(priv, type, dev, fmt, args...) \ 4313 netif_level(warn, priv, type, dev, fmt, ##args) 4314#define netif_notice(priv, type, dev, fmt, args...) \ 4315 netif_level(notice, priv, type, dev, fmt, ##args) 4316#define netif_info(priv, type, dev, fmt, args...) \ 4317 netif_level(info, priv, type, dev, fmt, ##args) 4318 4319#if defined(CONFIG_DYNAMIC_DEBUG) 4320#define netif_dbg(priv, type, netdev, format, args...) \ 4321do { \ 4322 if (netif_msg_##type(priv)) \ 4323 dynamic_netdev_dbg(netdev, format, ##args); \ 4324} while (0) 4325#elif defined(DEBUG) 4326#define netif_dbg(priv, type, dev, format, args...) \ 4327 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args) 4328#else 4329#define netif_dbg(priv, type, dev, format, args...) \ 4330({ \ 4331 if (0) \ 4332 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 4333 0; \ 4334}) 4335#endif 4336 4337#if defined(VERBOSE_DEBUG) 4338#define netif_vdbg netif_dbg 4339#else 4340#define netif_vdbg(priv, type, dev, format, args...) \ 4341({ \ 4342 if (0) \ 4343 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 4344 0; \ 4345}) 4346#endif 4347 4348/* 4349 * The list of packet types we will receive (as opposed to discard) 4350 * and the routines to invoke. 4351 * 4352 * Why 16. Because with 16 the only overlap we get on a hash of the 4353 * low nibble of the protocol value is RARP/SNAP/X.25. 4354 * 4355 * NOTE: That is no longer true with the addition of VLAN tags. Not 4356 * sure which should go first, but I bet it won't make much 4357 * difference if we are running VLANs. The good news is that 4358 * this protocol won't be in the list unless compiled in, so 4359 * the average user (w/out VLANs) will not be adversely affected. 4360 * --BLG 4361 * 4362 * 0800 IP 4363 * 8100 802.1Q VLAN 4364 * 0001 802.3 4365 * 0002 AX.25 4366 * 0004 802.2 4367 * 8035 RARP 4368 * 0005 SNAP 4369 * 0805 X.25 4370 * 0806 ARP 4371 * 8137 IPX 4372 * 0009 Localtalk 4373 * 86DD IPv6 4374 */ 4375#define PTYPE_HASH_SIZE (16) 4376#define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 4377 4378#endif /* _LINUX_NETDEVICE_H */