at v4.10-rc2 513 lines 13 kB view raw
1/* flow.c: Generic flow cache. 2 * 3 * Copyright (C) 2003 Alexey N. Kuznetsov (kuznet@ms2.inr.ac.ru) 4 * Copyright (C) 2003 David S. Miller (davem@redhat.com) 5 */ 6 7#include <linux/kernel.h> 8#include <linux/module.h> 9#include <linux/list.h> 10#include <linux/jhash.h> 11#include <linux/interrupt.h> 12#include <linux/mm.h> 13#include <linux/random.h> 14#include <linux/init.h> 15#include <linux/slab.h> 16#include <linux/smp.h> 17#include <linux/completion.h> 18#include <linux/percpu.h> 19#include <linux/bitops.h> 20#include <linux/notifier.h> 21#include <linux/cpu.h> 22#include <linux/cpumask.h> 23#include <linux/mutex.h> 24#include <net/flow.h> 25#include <linux/atomic.h> 26#include <linux/security.h> 27#include <net/net_namespace.h> 28 29struct flow_cache_entry { 30 union { 31 struct hlist_node hlist; 32 struct list_head gc_list; 33 } u; 34 struct net *net; 35 u16 family; 36 u8 dir; 37 u32 genid; 38 struct flowi key; 39 struct flow_cache_object *object; 40}; 41 42struct flow_flush_info { 43 struct flow_cache *cache; 44 atomic_t cpuleft; 45 struct completion completion; 46}; 47 48static struct kmem_cache *flow_cachep __read_mostly; 49 50#define flow_cache_hash_size(cache) (1 << (cache)->hash_shift) 51#define FLOW_HASH_RND_PERIOD (10 * 60 * HZ) 52 53static void flow_cache_new_hashrnd(unsigned long arg) 54{ 55 struct flow_cache *fc = (void *) arg; 56 int i; 57 58 for_each_possible_cpu(i) 59 per_cpu_ptr(fc->percpu, i)->hash_rnd_recalc = 1; 60 61 fc->rnd_timer.expires = jiffies + FLOW_HASH_RND_PERIOD; 62 add_timer(&fc->rnd_timer); 63} 64 65static int flow_entry_valid(struct flow_cache_entry *fle, 66 struct netns_xfrm *xfrm) 67{ 68 if (atomic_read(&xfrm->flow_cache_genid) != fle->genid) 69 return 0; 70 if (fle->object && !fle->object->ops->check(fle->object)) 71 return 0; 72 return 1; 73} 74 75static void flow_entry_kill(struct flow_cache_entry *fle, 76 struct netns_xfrm *xfrm) 77{ 78 if (fle->object) 79 fle->object->ops->delete(fle->object); 80 kmem_cache_free(flow_cachep, fle); 81} 82 83static void flow_cache_gc_task(struct work_struct *work) 84{ 85 struct list_head gc_list; 86 struct flow_cache_entry *fce, *n; 87 struct netns_xfrm *xfrm = container_of(work, struct netns_xfrm, 88 flow_cache_gc_work); 89 90 INIT_LIST_HEAD(&gc_list); 91 spin_lock_bh(&xfrm->flow_cache_gc_lock); 92 list_splice_tail_init(&xfrm->flow_cache_gc_list, &gc_list); 93 spin_unlock_bh(&xfrm->flow_cache_gc_lock); 94 95 list_for_each_entry_safe(fce, n, &gc_list, u.gc_list) { 96 flow_entry_kill(fce, xfrm); 97 atomic_dec(&xfrm->flow_cache_gc_count); 98 } 99} 100 101static void flow_cache_queue_garbage(struct flow_cache_percpu *fcp, 102 int deleted, struct list_head *gc_list, 103 struct netns_xfrm *xfrm) 104{ 105 if (deleted) { 106 atomic_add(deleted, &xfrm->flow_cache_gc_count); 107 fcp->hash_count -= deleted; 108 spin_lock_bh(&xfrm->flow_cache_gc_lock); 109 list_splice_tail(gc_list, &xfrm->flow_cache_gc_list); 110 spin_unlock_bh(&xfrm->flow_cache_gc_lock); 111 schedule_work(&xfrm->flow_cache_gc_work); 112 } 113} 114 115static void __flow_cache_shrink(struct flow_cache *fc, 116 struct flow_cache_percpu *fcp, 117 int shrink_to) 118{ 119 struct flow_cache_entry *fle; 120 struct hlist_node *tmp; 121 LIST_HEAD(gc_list); 122 int i, deleted = 0; 123 struct netns_xfrm *xfrm = container_of(fc, struct netns_xfrm, 124 flow_cache_global); 125 126 for (i = 0; i < flow_cache_hash_size(fc); i++) { 127 int saved = 0; 128 129 hlist_for_each_entry_safe(fle, tmp, 130 &fcp->hash_table[i], u.hlist) { 131 if (saved < shrink_to && 132 flow_entry_valid(fle, xfrm)) { 133 saved++; 134 } else { 135 deleted++; 136 hlist_del(&fle->u.hlist); 137 list_add_tail(&fle->u.gc_list, &gc_list); 138 } 139 } 140 } 141 142 flow_cache_queue_garbage(fcp, deleted, &gc_list, xfrm); 143} 144 145static void flow_cache_shrink(struct flow_cache *fc, 146 struct flow_cache_percpu *fcp) 147{ 148 int shrink_to = fc->low_watermark / flow_cache_hash_size(fc); 149 150 __flow_cache_shrink(fc, fcp, shrink_to); 151} 152 153static void flow_new_hash_rnd(struct flow_cache *fc, 154 struct flow_cache_percpu *fcp) 155{ 156 get_random_bytes(&fcp->hash_rnd, sizeof(u32)); 157 fcp->hash_rnd_recalc = 0; 158 __flow_cache_shrink(fc, fcp, 0); 159} 160 161static u32 flow_hash_code(struct flow_cache *fc, 162 struct flow_cache_percpu *fcp, 163 const struct flowi *key, 164 size_t keysize) 165{ 166 const u32 *k = (const u32 *) key; 167 const u32 length = keysize * sizeof(flow_compare_t) / sizeof(u32); 168 169 return jhash2(k, length, fcp->hash_rnd) 170 & (flow_cache_hash_size(fc) - 1); 171} 172 173/* I hear what you're saying, use memcmp. But memcmp cannot make 174 * important assumptions that we can here, such as alignment. 175 */ 176static int flow_key_compare(const struct flowi *key1, const struct flowi *key2, 177 size_t keysize) 178{ 179 const flow_compare_t *k1, *k1_lim, *k2; 180 181 k1 = (const flow_compare_t *) key1; 182 k1_lim = k1 + keysize; 183 184 k2 = (const flow_compare_t *) key2; 185 186 do { 187 if (*k1++ != *k2++) 188 return 1; 189 } while (k1 < k1_lim); 190 191 return 0; 192} 193 194struct flow_cache_object * 195flow_cache_lookup(struct net *net, const struct flowi *key, u16 family, u8 dir, 196 flow_resolve_t resolver, void *ctx) 197{ 198 struct flow_cache *fc = &net->xfrm.flow_cache_global; 199 struct flow_cache_percpu *fcp; 200 struct flow_cache_entry *fle, *tfle; 201 struct flow_cache_object *flo; 202 size_t keysize; 203 unsigned int hash; 204 205 local_bh_disable(); 206 fcp = this_cpu_ptr(fc->percpu); 207 208 fle = NULL; 209 flo = NULL; 210 211 keysize = flow_key_size(family); 212 if (!keysize) 213 goto nocache; 214 215 /* Packet really early in init? Making flow_cache_init a 216 * pre-smp initcall would solve this. --RR */ 217 if (!fcp->hash_table) 218 goto nocache; 219 220 if (fcp->hash_rnd_recalc) 221 flow_new_hash_rnd(fc, fcp); 222 223 hash = flow_hash_code(fc, fcp, key, keysize); 224 hlist_for_each_entry(tfle, &fcp->hash_table[hash], u.hlist) { 225 if (tfle->net == net && 226 tfle->family == family && 227 tfle->dir == dir && 228 flow_key_compare(key, &tfle->key, keysize) == 0) { 229 fle = tfle; 230 break; 231 } 232 } 233 234 if (unlikely(!fle)) { 235 if (fcp->hash_count > fc->high_watermark) 236 flow_cache_shrink(fc, fcp); 237 238 if (atomic_read(&net->xfrm.flow_cache_gc_count) > 239 2 * num_online_cpus() * fc->high_watermark) { 240 flo = ERR_PTR(-ENOBUFS); 241 goto ret_object; 242 } 243 244 fle = kmem_cache_alloc(flow_cachep, GFP_ATOMIC); 245 if (fle) { 246 fle->net = net; 247 fle->family = family; 248 fle->dir = dir; 249 memcpy(&fle->key, key, keysize * sizeof(flow_compare_t)); 250 fle->object = NULL; 251 hlist_add_head(&fle->u.hlist, &fcp->hash_table[hash]); 252 fcp->hash_count++; 253 } 254 } else if (likely(fle->genid == atomic_read(&net->xfrm.flow_cache_genid))) { 255 flo = fle->object; 256 if (!flo) 257 goto ret_object; 258 flo = flo->ops->get(flo); 259 if (flo) 260 goto ret_object; 261 } else if (fle->object) { 262 flo = fle->object; 263 flo->ops->delete(flo); 264 fle->object = NULL; 265 } 266 267nocache: 268 flo = NULL; 269 if (fle) { 270 flo = fle->object; 271 fle->object = NULL; 272 } 273 flo = resolver(net, key, family, dir, flo, ctx); 274 if (fle) { 275 fle->genid = atomic_read(&net->xfrm.flow_cache_genid); 276 if (!IS_ERR(flo)) 277 fle->object = flo; 278 else 279 fle->genid--; 280 } else { 281 if (!IS_ERR_OR_NULL(flo)) 282 flo->ops->delete(flo); 283 } 284ret_object: 285 local_bh_enable(); 286 return flo; 287} 288EXPORT_SYMBOL(flow_cache_lookup); 289 290static void flow_cache_flush_tasklet(unsigned long data) 291{ 292 struct flow_flush_info *info = (void *)data; 293 struct flow_cache *fc = info->cache; 294 struct flow_cache_percpu *fcp; 295 struct flow_cache_entry *fle; 296 struct hlist_node *tmp; 297 LIST_HEAD(gc_list); 298 int i, deleted = 0; 299 struct netns_xfrm *xfrm = container_of(fc, struct netns_xfrm, 300 flow_cache_global); 301 302 fcp = this_cpu_ptr(fc->percpu); 303 for (i = 0; i < flow_cache_hash_size(fc); i++) { 304 hlist_for_each_entry_safe(fle, tmp, 305 &fcp->hash_table[i], u.hlist) { 306 if (flow_entry_valid(fle, xfrm)) 307 continue; 308 309 deleted++; 310 hlist_del(&fle->u.hlist); 311 list_add_tail(&fle->u.gc_list, &gc_list); 312 } 313 } 314 315 flow_cache_queue_garbage(fcp, deleted, &gc_list, xfrm); 316 317 if (atomic_dec_and_test(&info->cpuleft)) 318 complete(&info->completion); 319} 320 321/* 322 * Return whether a cpu needs flushing. Conservatively, we assume 323 * the presence of any entries means the core may require flushing, 324 * since the flow_cache_ops.check() function may assume it's running 325 * on the same core as the per-cpu cache component. 326 */ 327static int flow_cache_percpu_empty(struct flow_cache *fc, int cpu) 328{ 329 struct flow_cache_percpu *fcp; 330 int i; 331 332 fcp = per_cpu_ptr(fc->percpu, cpu); 333 for (i = 0; i < flow_cache_hash_size(fc); i++) 334 if (!hlist_empty(&fcp->hash_table[i])) 335 return 0; 336 return 1; 337} 338 339static void flow_cache_flush_per_cpu(void *data) 340{ 341 struct flow_flush_info *info = data; 342 struct tasklet_struct *tasklet; 343 344 tasklet = &this_cpu_ptr(info->cache->percpu)->flush_tasklet; 345 tasklet->data = (unsigned long)info; 346 tasklet_schedule(tasklet); 347} 348 349void flow_cache_flush(struct net *net) 350{ 351 struct flow_flush_info info; 352 cpumask_var_t mask; 353 int i, self; 354 355 /* Track which cpus need flushing to avoid disturbing all cores. */ 356 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 357 return; 358 cpumask_clear(mask); 359 360 /* Don't want cpus going down or up during this. */ 361 get_online_cpus(); 362 mutex_lock(&net->xfrm.flow_flush_sem); 363 info.cache = &net->xfrm.flow_cache_global; 364 for_each_online_cpu(i) 365 if (!flow_cache_percpu_empty(info.cache, i)) 366 cpumask_set_cpu(i, mask); 367 atomic_set(&info.cpuleft, cpumask_weight(mask)); 368 if (atomic_read(&info.cpuleft) == 0) 369 goto done; 370 371 init_completion(&info.completion); 372 373 local_bh_disable(); 374 self = cpumask_test_and_clear_cpu(smp_processor_id(), mask); 375 on_each_cpu_mask(mask, flow_cache_flush_per_cpu, &info, 0); 376 if (self) 377 flow_cache_flush_tasklet((unsigned long)&info); 378 local_bh_enable(); 379 380 wait_for_completion(&info.completion); 381 382done: 383 mutex_unlock(&net->xfrm.flow_flush_sem); 384 put_online_cpus(); 385 free_cpumask_var(mask); 386} 387 388static void flow_cache_flush_task(struct work_struct *work) 389{ 390 struct netns_xfrm *xfrm = container_of(work, struct netns_xfrm, 391 flow_cache_flush_work); 392 struct net *net = container_of(xfrm, struct net, xfrm); 393 394 flow_cache_flush(net); 395} 396 397void flow_cache_flush_deferred(struct net *net) 398{ 399 schedule_work(&net->xfrm.flow_cache_flush_work); 400} 401 402static int flow_cache_cpu_prepare(struct flow_cache *fc, int cpu) 403{ 404 struct flow_cache_percpu *fcp = per_cpu_ptr(fc->percpu, cpu); 405 size_t sz = sizeof(struct hlist_head) * flow_cache_hash_size(fc); 406 407 if (!fcp->hash_table) { 408 fcp->hash_table = kzalloc_node(sz, GFP_KERNEL, cpu_to_node(cpu)); 409 if (!fcp->hash_table) { 410 pr_err("NET: failed to allocate flow cache sz %zu\n", sz); 411 return -ENOMEM; 412 } 413 fcp->hash_rnd_recalc = 1; 414 fcp->hash_count = 0; 415 tasklet_init(&fcp->flush_tasklet, flow_cache_flush_tasklet, 0); 416 } 417 return 0; 418} 419 420static int flow_cache_cpu_up_prep(unsigned int cpu, struct hlist_node *node) 421{ 422 struct flow_cache *fc = hlist_entry_safe(node, struct flow_cache, node); 423 424 return flow_cache_cpu_prepare(fc, cpu); 425} 426 427static int flow_cache_cpu_dead(unsigned int cpu, struct hlist_node *node) 428{ 429 struct flow_cache *fc = hlist_entry_safe(node, struct flow_cache, node); 430 struct flow_cache_percpu *fcp = per_cpu_ptr(fc->percpu, cpu); 431 432 __flow_cache_shrink(fc, fcp, 0); 433 return 0; 434} 435 436int flow_cache_init(struct net *net) 437{ 438 int i; 439 struct flow_cache *fc = &net->xfrm.flow_cache_global; 440 441 if (!flow_cachep) 442 flow_cachep = kmem_cache_create("flow_cache", 443 sizeof(struct flow_cache_entry), 444 0, SLAB_PANIC, NULL); 445 spin_lock_init(&net->xfrm.flow_cache_gc_lock); 446 INIT_LIST_HEAD(&net->xfrm.flow_cache_gc_list); 447 INIT_WORK(&net->xfrm.flow_cache_gc_work, flow_cache_gc_task); 448 INIT_WORK(&net->xfrm.flow_cache_flush_work, flow_cache_flush_task); 449 mutex_init(&net->xfrm.flow_flush_sem); 450 atomic_set(&net->xfrm.flow_cache_gc_count, 0); 451 452 fc->hash_shift = 10; 453 fc->low_watermark = 2 * flow_cache_hash_size(fc); 454 fc->high_watermark = 4 * flow_cache_hash_size(fc); 455 456 fc->percpu = alloc_percpu(struct flow_cache_percpu); 457 if (!fc->percpu) 458 return -ENOMEM; 459 460 if (cpuhp_state_add_instance(CPUHP_NET_FLOW_PREPARE, &fc->node)) 461 goto err; 462 463 setup_timer(&fc->rnd_timer, flow_cache_new_hashrnd, 464 (unsigned long) fc); 465 fc->rnd_timer.expires = jiffies + FLOW_HASH_RND_PERIOD; 466 add_timer(&fc->rnd_timer); 467 468 return 0; 469 470err: 471 for_each_possible_cpu(i) { 472 struct flow_cache_percpu *fcp = per_cpu_ptr(fc->percpu, i); 473 kfree(fcp->hash_table); 474 fcp->hash_table = NULL; 475 } 476 477 free_percpu(fc->percpu); 478 fc->percpu = NULL; 479 480 return -ENOMEM; 481} 482EXPORT_SYMBOL(flow_cache_init); 483 484void flow_cache_fini(struct net *net) 485{ 486 int i; 487 struct flow_cache *fc = &net->xfrm.flow_cache_global; 488 489 del_timer_sync(&fc->rnd_timer); 490 491 cpuhp_state_remove_instance_nocalls(CPUHP_NET_FLOW_PREPARE, &fc->node); 492 493 for_each_possible_cpu(i) { 494 struct flow_cache_percpu *fcp = per_cpu_ptr(fc->percpu, i); 495 kfree(fcp->hash_table); 496 fcp->hash_table = NULL; 497 } 498 499 free_percpu(fc->percpu); 500 fc->percpu = NULL; 501} 502EXPORT_SYMBOL(flow_cache_fini); 503 504void __init flow_cache_hp_init(void) 505{ 506 int ret; 507 508 ret = cpuhp_setup_state_multi(CPUHP_NET_FLOW_PREPARE, 509 "net/flow:prepare", 510 flow_cache_cpu_up_prep, 511 flow_cache_cpu_dead); 512 WARN_ON(ret < 0); 513}