at v4.10-rc2 138 kB view raw
1/* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Definitions for the Interfaces handler. 7 * 8 * Version: @(#)dev.h 1.0.10 08/12/93 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov> 14 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 15 * Bjorn Ekwall. <bj0rn@blox.se> 16 * Pekka Riikonen <priikone@poseidon.pspt.fi> 17 * 18 * This program is free software; you can redistribute it and/or 19 * modify it under the terms of the GNU General Public License 20 * as published by the Free Software Foundation; either version 21 * 2 of the License, or (at your option) any later version. 22 * 23 * Moved to /usr/include/linux for NET3 24 */ 25#ifndef _LINUX_NETDEVICE_H 26#define _LINUX_NETDEVICE_H 27 28#include <linux/timer.h> 29#include <linux/bug.h> 30#include <linux/delay.h> 31#include <linux/atomic.h> 32#include <linux/prefetch.h> 33#include <asm/cache.h> 34#include <asm/byteorder.h> 35 36#include <linux/percpu.h> 37#include <linux/rculist.h> 38#include <linux/dmaengine.h> 39#include <linux/workqueue.h> 40#include <linux/dynamic_queue_limits.h> 41 42#include <linux/ethtool.h> 43#include <net/net_namespace.h> 44#include <net/dsa.h> 45#ifdef CONFIG_DCB 46#include <net/dcbnl.h> 47#endif 48#include <net/netprio_cgroup.h> 49 50#include <linux/netdev_features.h> 51#include <linux/neighbour.h> 52#include <uapi/linux/netdevice.h> 53#include <uapi/linux/if_bonding.h> 54#include <uapi/linux/pkt_cls.h> 55#include <linux/hashtable.h> 56 57struct netpoll_info; 58struct device; 59struct phy_device; 60/* 802.11 specific */ 61struct wireless_dev; 62/* 802.15.4 specific */ 63struct wpan_dev; 64struct mpls_dev; 65/* UDP Tunnel offloads */ 66struct udp_tunnel_info; 67struct bpf_prog; 68 69void netdev_set_default_ethtool_ops(struct net_device *dev, 70 const struct ethtool_ops *ops); 71 72/* Backlog congestion levels */ 73#define NET_RX_SUCCESS 0 /* keep 'em coming, baby */ 74#define NET_RX_DROP 1 /* packet dropped */ 75 76/* 77 * Transmit return codes: transmit return codes originate from three different 78 * namespaces: 79 * 80 * - qdisc return codes 81 * - driver transmit return codes 82 * - errno values 83 * 84 * Drivers are allowed to return any one of those in their hard_start_xmit() 85 * function. Real network devices commonly used with qdiscs should only return 86 * the driver transmit return codes though - when qdiscs are used, the actual 87 * transmission happens asynchronously, so the value is not propagated to 88 * higher layers. Virtual network devices transmit synchronously; in this case 89 * the driver transmit return codes are consumed by dev_queue_xmit(), and all 90 * others are propagated to higher layers. 91 */ 92 93/* qdisc ->enqueue() return codes. */ 94#define NET_XMIT_SUCCESS 0x00 95#define NET_XMIT_DROP 0x01 /* skb dropped */ 96#define NET_XMIT_CN 0x02 /* congestion notification */ 97#define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */ 98 99/* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It 100 * indicates that the device will soon be dropping packets, or already drops 101 * some packets of the same priority; prompting us to send less aggressively. */ 102#define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e)) 103#define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0) 104 105/* Driver transmit return codes */ 106#define NETDEV_TX_MASK 0xf0 107 108enum netdev_tx { 109 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */ 110 NETDEV_TX_OK = 0x00, /* driver took care of packet */ 111 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/ 112}; 113typedef enum netdev_tx netdev_tx_t; 114 115/* 116 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant; 117 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed. 118 */ 119static inline bool dev_xmit_complete(int rc) 120{ 121 /* 122 * Positive cases with an skb consumed by a driver: 123 * - successful transmission (rc == NETDEV_TX_OK) 124 * - error while transmitting (rc < 0) 125 * - error while queueing to a different device (rc & NET_XMIT_MASK) 126 */ 127 if (likely(rc < NET_XMIT_MASK)) 128 return true; 129 130 return false; 131} 132 133/* 134 * Compute the worst-case header length according to the protocols 135 * used. 136 */ 137 138#if defined(CONFIG_HYPERV_NET) 139# define LL_MAX_HEADER 128 140#elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25) 141# if defined(CONFIG_MAC80211_MESH) 142# define LL_MAX_HEADER 128 143# else 144# define LL_MAX_HEADER 96 145# endif 146#else 147# define LL_MAX_HEADER 32 148#endif 149 150#if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \ 151 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL) 152#define MAX_HEADER LL_MAX_HEADER 153#else 154#define MAX_HEADER (LL_MAX_HEADER + 48) 155#endif 156 157/* 158 * Old network device statistics. Fields are native words 159 * (unsigned long) so they can be read and written atomically. 160 */ 161 162struct net_device_stats { 163 unsigned long rx_packets; 164 unsigned long tx_packets; 165 unsigned long rx_bytes; 166 unsigned long tx_bytes; 167 unsigned long rx_errors; 168 unsigned long tx_errors; 169 unsigned long rx_dropped; 170 unsigned long tx_dropped; 171 unsigned long multicast; 172 unsigned long collisions; 173 unsigned long rx_length_errors; 174 unsigned long rx_over_errors; 175 unsigned long rx_crc_errors; 176 unsigned long rx_frame_errors; 177 unsigned long rx_fifo_errors; 178 unsigned long rx_missed_errors; 179 unsigned long tx_aborted_errors; 180 unsigned long tx_carrier_errors; 181 unsigned long tx_fifo_errors; 182 unsigned long tx_heartbeat_errors; 183 unsigned long tx_window_errors; 184 unsigned long rx_compressed; 185 unsigned long tx_compressed; 186}; 187 188 189#include <linux/cache.h> 190#include <linux/skbuff.h> 191 192#ifdef CONFIG_RPS 193#include <linux/static_key.h> 194extern struct static_key rps_needed; 195extern struct static_key rfs_needed; 196#endif 197 198struct neighbour; 199struct neigh_parms; 200struct sk_buff; 201 202struct netdev_hw_addr { 203 struct list_head list; 204 unsigned char addr[MAX_ADDR_LEN]; 205 unsigned char type; 206#define NETDEV_HW_ADDR_T_LAN 1 207#define NETDEV_HW_ADDR_T_SAN 2 208#define NETDEV_HW_ADDR_T_SLAVE 3 209#define NETDEV_HW_ADDR_T_UNICAST 4 210#define NETDEV_HW_ADDR_T_MULTICAST 5 211 bool global_use; 212 int sync_cnt; 213 int refcount; 214 int synced; 215 struct rcu_head rcu_head; 216}; 217 218struct netdev_hw_addr_list { 219 struct list_head list; 220 int count; 221}; 222 223#define netdev_hw_addr_list_count(l) ((l)->count) 224#define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0) 225#define netdev_hw_addr_list_for_each(ha, l) \ 226 list_for_each_entry(ha, &(l)->list, list) 227 228#define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc) 229#define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc) 230#define netdev_for_each_uc_addr(ha, dev) \ 231 netdev_hw_addr_list_for_each(ha, &(dev)->uc) 232 233#define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc) 234#define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc) 235#define netdev_for_each_mc_addr(ha, dev) \ 236 netdev_hw_addr_list_for_each(ha, &(dev)->mc) 237 238struct hh_cache { 239 u16 hh_len; 240 u16 __pad; 241 seqlock_t hh_lock; 242 243 /* cached hardware header; allow for machine alignment needs. */ 244#define HH_DATA_MOD 16 245#define HH_DATA_OFF(__len) \ 246 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1)) 247#define HH_DATA_ALIGN(__len) \ 248 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1)) 249 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)]; 250}; 251 252/* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much. 253 * Alternative is: 254 * dev->hard_header_len ? (dev->hard_header_len + 255 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0 256 * 257 * We could use other alignment values, but we must maintain the 258 * relationship HH alignment <= LL alignment. 259 */ 260#define LL_RESERVED_SPACE(dev) \ 261 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 262#define LL_RESERVED_SPACE_EXTRA(dev,extra) \ 263 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 264 265struct header_ops { 266 int (*create) (struct sk_buff *skb, struct net_device *dev, 267 unsigned short type, const void *daddr, 268 const void *saddr, unsigned int len); 269 int (*parse)(const struct sk_buff *skb, unsigned char *haddr); 270 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type); 271 void (*cache_update)(struct hh_cache *hh, 272 const struct net_device *dev, 273 const unsigned char *haddr); 274 bool (*validate)(const char *ll_header, unsigned int len); 275}; 276 277/* These flag bits are private to the generic network queueing 278 * layer; they may not be explicitly referenced by any other 279 * code. 280 */ 281 282enum netdev_state_t { 283 __LINK_STATE_START, 284 __LINK_STATE_PRESENT, 285 __LINK_STATE_NOCARRIER, 286 __LINK_STATE_LINKWATCH_PENDING, 287 __LINK_STATE_DORMANT, 288}; 289 290 291/* 292 * This structure holds boot-time configured netdevice settings. They 293 * are then used in the device probing. 294 */ 295struct netdev_boot_setup { 296 char name[IFNAMSIZ]; 297 struct ifmap map; 298}; 299#define NETDEV_BOOT_SETUP_MAX 8 300 301int __init netdev_boot_setup(char *str); 302 303/* 304 * Structure for NAPI scheduling similar to tasklet but with weighting 305 */ 306struct napi_struct { 307 /* The poll_list must only be managed by the entity which 308 * changes the state of the NAPI_STATE_SCHED bit. This means 309 * whoever atomically sets that bit can add this napi_struct 310 * to the per-CPU poll_list, and whoever clears that bit 311 * can remove from the list right before clearing the bit. 312 */ 313 struct list_head poll_list; 314 315 unsigned long state; 316 int weight; 317 unsigned int gro_count; 318 int (*poll)(struct napi_struct *, int); 319#ifdef CONFIG_NETPOLL 320 int poll_owner; 321#endif 322 struct net_device *dev; 323 struct sk_buff *gro_list; 324 struct sk_buff *skb; 325 struct hrtimer timer; 326 struct list_head dev_list; 327 struct hlist_node napi_hash_node; 328 unsigned int napi_id; 329}; 330 331enum { 332 NAPI_STATE_SCHED, /* Poll is scheduled */ 333 NAPI_STATE_DISABLE, /* Disable pending */ 334 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */ 335 NAPI_STATE_HASHED, /* In NAPI hash (busy polling possible) */ 336 NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */ 337 NAPI_STATE_IN_BUSY_POLL,/* sk_busy_loop() owns this NAPI */ 338}; 339 340enum { 341 NAPIF_STATE_SCHED = (1UL << NAPI_STATE_SCHED), 342 NAPIF_STATE_DISABLE = (1UL << NAPI_STATE_DISABLE), 343 NAPIF_STATE_NPSVC = (1UL << NAPI_STATE_NPSVC), 344 NAPIF_STATE_HASHED = (1UL << NAPI_STATE_HASHED), 345 NAPIF_STATE_NO_BUSY_POLL = (1UL << NAPI_STATE_NO_BUSY_POLL), 346 NAPIF_STATE_IN_BUSY_POLL = (1UL << NAPI_STATE_IN_BUSY_POLL), 347}; 348 349enum gro_result { 350 GRO_MERGED, 351 GRO_MERGED_FREE, 352 GRO_HELD, 353 GRO_NORMAL, 354 GRO_DROP, 355}; 356typedef enum gro_result gro_result_t; 357 358/* 359 * enum rx_handler_result - Possible return values for rx_handlers. 360 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it 361 * further. 362 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in 363 * case skb->dev was changed by rx_handler. 364 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard. 365 * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called. 366 * 367 * rx_handlers are functions called from inside __netif_receive_skb(), to do 368 * special processing of the skb, prior to delivery to protocol handlers. 369 * 370 * Currently, a net_device can only have a single rx_handler registered. Trying 371 * to register a second rx_handler will return -EBUSY. 372 * 373 * To register a rx_handler on a net_device, use netdev_rx_handler_register(). 374 * To unregister a rx_handler on a net_device, use 375 * netdev_rx_handler_unregister(). 376 * 377 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to 378 * do with the skb. 379 * 380 * If the rx_handler consumed the skb in some way, it should return 381 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for 382 * the skb to be delivered in some other way. 383 * 384 * If the rx_handler changed skb->dev, to divert the skb to another 385 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the 386 * new device will be called if it exists. 387 * 388 * If the rx_handler decides the skb should be ignored, it should return 389 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that 390 * are registered on exact device (ptype->dev == skb->dev). 391 * 392 * If the rx_handler didn't change skb->dev, but wants the skb to be normally 393 * delivered, it should return RX_HANDLER_PASS. 394 * 395 * A device without a registered rx_handler will behave as if rx_handler 396 * returned RX_HANDLER_PASS. 397 */ 398 399enum rx_handler_result { 400 RX_HANDLER_CONSUMED, 401 RX_HANDLER_ANOTHER, 402 RX_HANDLER_EXACT, 403 RX_HANDLER_PASS, 404}; 405typedef enum rx_handler_result rx_handler_result_t; 406typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb); 407 408void __napi_schedule(struct napi_struct *n); 409void __napi_schedule_irqoff(struct napi_struct *n); 410 411static inline bool napi_disable_pending(struct napi_struct *n) 412{ 413 return test_bit(NAPI_STATE_DISABLE, &n->state); 414} 415 416/** 417 * napi_schedule_prep - check if NAPI can be scheduled 418 * @n: NAPI context 419 * 420 * Test if NAPI routine is already running, and if not mark 421 * it as running. This is used as a condition variable to 422 * insure only one NAPI poll instance runs. We also make 423 * sure there is no pending NAPI disable. 424 */ 425static inline bool napi_schedule_prep(struct napi_struct *n) 426{ 427 return !napi_disable_pending(n) && 428 !test_and_set_bit(NAPI_STATE_SCHED, &n->state); 429} 430 431/** 432 * napi_schedule - schedule NAPI poll 433 * @n: NAPI context 434 * 435 * Schedule NAPI poll routine to be called if it is not already 436 * running. 437 */ 438static inline void napi_schedule(struct napi_struct *n) 439{ 440 if (napi_schedule_prep(n)) 441 __napi_schedule(n); 442} 443 444/** 445 * napi_schedule_irqoff - schedule NAPI poll 446 * @n: NAPI context 447 * 448 * Variant of napi_schedule(), assuming hard irqs are masked. 449 */ 450static inline void napi_schedule_irqoff(struct napi_struct *n) 451{ 452 if (napi_schedule_prep(n)) 453 __napi_schedule_irqoff(n); 454} 455 456/* Try to reschedule poll. Called by dev->poll() after napi_complete(). */ 457static inline bool napi_reschedule(struct napi_struct *napi) 458{ 459 if (napi_schedule_prep(napi)) { 460 __napi_schedule(napi); 461 return true; 462 } 463 return false; 464} 465 466bool __napi_complete(struct napi_struct *n); 467bool napi_complete_done(struct napi_struct *n, int work_done); 468/** 469 * napi_complete - NAPI processing complete 470 * @n: NAPI context 471 * 472 * Mark NAPI processing as complete. 473 * Consider using napi_complete_done() instead. 474 * Return false if device should avoid rearming interrupts. 475 */ 476static inline bool napi_complete(struct napi_struct *n) 477{ 478 return napi_complete_done(n, 0); 479} 480 481/** 482 * napi_hash_del - remove a NAPI from global table 483 * @napi: NAPI context 484 * 485 * Warning: caller must observe RCU grace period 486 * before freeing memory containing @napi, if 487 * this function returns true. 488 * Note: core networking stack automatically calls it 489 * from netif_napi_del(). 490 * Drivers might want to call this helper to combine all 491 * the needed RCU grace periods into a single one. 492 */ 493bool napi_hash_del(struct napi_struct *napi); 494 495/** 496 * napi_disable - prevent NAPI from scheduling 497 * @n: NAPI context 498 * 499 * Stop NAPI from being scheduled on this context. 500 * Waits till any outstanding processing completes. 501 */ 502void napi_disable(struct napi_struct *n); 503 504/** 505 * napi_enable - enable NAPI scheduling 506 * @n: NAPI context 507 * 508 * Resume NAPI from being scheduled on this context. 509 * Must be paired with napi_disable. 510 */ 511static inline void napi_enable(struct napi_struct *n) 512{ 513 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 514 smp_mb__before_atomic(); 515 clear_bit(NAPI_STATE_SCHED, &n->state); 516 clear_bit(NAPI_STATE_NPSVC, &n->state); 517} 518 519/** 520 * napi_synchronize - wait until NAPI is not running 521 * @n: NAPI context 522 * 523 * Wait until NAPI is done being scheduled on this context. 524 * Waits till any outstanding processing completes but 525 * does not disable future activations. 526 */ 527static inline void napi_synchronize(const struct napi_struct *n) 528{ 529 if (IS_ENABLED(CONFIG_SMP)) 530 while (test_bit(NAPI_STATE_SCHED, &n->state)) 531 msleep(1); 532 else 533 barrier(); 534} 535 536enum netdev_queue_state_t { 537 __QUEUE_STATE_DRV_XOFF, 538 __QUEUE_STATE_STACK_XOFF, 539 __QUEUE_STATE_FROZEN, 540}; 541 542#define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF) 543#define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF) 544#define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN) 545 546#define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF) 547#define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \ 548 QUEUE_STATE_FROZEN) 549#define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \ 550 QUEUE_STATE_FROZEN) 551 552/* 553 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The 554 * netif_tx_* functions below are used to manipulate this flag. The 555 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit 556 * queue independently. The netif_xmit_*stopped functions below are called 557 * to check if the queue has been stopped by the driver or stack (either 558 * of the XOFF bits are set in the state). Drivers should not need to call 559 * netif_xmit*stopped functions, they should only be using netif_tx_*. 560 */ 561 562struct netdev_queue { 563/* 564 * read-mostly part 565 */ 566 struct net_device *dev; 567 struct Qdisc __rcu *qdisc; 568 struct Qdisc *qdisc_sleeping; 569#ifdef CONFIG_SYSFS 570 struct kobject kobj; 571#endif 572#if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 573 int numa_node; 574#endif 575 unsigned long tx_maxrate; 576 /* 577 * Number of TX timeouts for this queue 578 * (/sys/class/net/DEV/Q/trans_timeout) 579 */ 580 unsigned long trans_timeout; 581/* 582 * write-mostly part 583 */ 584 spinlock_t _xmit_lock ____cacheline_aligned_in_smp; 585 int xmit_lock_owner; 586 /* 587 * Time (in jiffies) of last Tx 588 */ 589 unsigned long trans_start; 590 591 unsigned long state; 592 593#ifdef CONFIG_BQL 594 struct dql dql; 595#endif 596} ____cacheline_aligned_in_smp; 597 598static inline int netdev_queue_numa_node_read(const struct netdev_queue *q) 599{ 600#if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 601 return q->numa_node; 602#else 603 return NUMA_NO_NODE; 604#endif 605} 606 607static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node) 608{ 609#if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 610 q->numa_node = node; 611#endif 612} 613 614#ifdef CONFIG_RPS 615/* 616 * This structure holds an RPS map which can be of variable length. The 617 * map is an array of CPUs. 618 */ 619struct rps_map { 620 unsigned int len; 621 struct rcu_head rcu; 622 u16 cpus[0]; 623}; 624#define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16))) 625 626/* 627 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the 628 * tail pointer for that CPU's input queue at the time of last enqueue, and 629 * a hardware filter index. 630 */ 631struct rps_dev_flow { 632 u16 cpu; 633 u16 filter; 634 unsigned int last_qtail; 635}; 636#define RPS_NO_FILTER 0xffff 637 638/* 639 * The rps_dev_flow_table structure contains a table of flow mappings. 640 */ 641struct rps_dev_flow_table { 642 unsigned int mask; 643 struct rcu_head rcu; 644 struct rps_dev_flow flows[0]; 645}; 646#define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \ 647 ((_num) * sizeof(struct rps_dev_flow))) 648 649/* 650 * The rps_sock_flow_table contains mappings of flows to the last CPU 651 * on which they were processed by the application (set in recvmsg). 652 * Each entry is a 32bit value. Upper part is the high-order bits 653 * of flow hash, lower part is CPU number. 654 * rps_cpu_mask is used to partition the space, depending on number of 655 * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1 656 * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f, 657 * meaning we use 32-6=26 bits for the hash. 658 */ 659struct rps_sock_flow_table { 660 u32 mask; 661 662 u32 ents[0] ____cacheline_aligned_in_smp; 663}; 664#define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num])) 665 666#define RPS_NO_CPU 0xffff 667 668extern u32 rps_cpu_mask; 669extern struct rps_sock_flow_table __rcu *rps_sock_flow_table; 670 671static inline void rps_record_sock_flow(struct rps_sock_flow_table *table, 672 u32 hash) 673{ 674 if (table && hash) { 675 unsigned int index = hash & table->mask; 676 u32 val = hash & ~rps_cpu_mask; 677 678 /* We only give a hint, preemption can change CPU under us */ 679 val |= raw_smp_processor_id(); 680 681 if (table->ents[index] != val) 682 table->ents[index] = val; 683 } 684} 685 686#ifdef CONFIG_RFS_ACCEL 687bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id, 688 u16 filter_id); 689#endif 690#endif /* CONFIG_RPS */ 691 692/* This structure contains an instance of an RX queue. */ 693struct netdev_rx_queue { 694#ifdef CONFIG_RPS 695 struct rps_map __rcu *rps_map; 696 struct rps_dev_flow_table __rcu *rps_flow_table; 697#endif 698 struct kobject kobj; 699 struct net_device *dev; 700} ____cacheline_aligned_in_smp; 701 702/* 703 * RX queue sysfs structures and functions. 704 */ 705struct rx_queue_attribute { 706 struct attribute attr; 707 ssize_t (*show)(struct netdev_rx_queue *queue, 708 struct rx_queue_attribute *attr, char *buf); 709 ssize_t (*store)(struct netdev_rx_queue *queue, 710 struct rx_queue_attribute *attr, const char *buf, size_t len); 711}; 712 713#ifdef CONFIG_XPS 714/* 715 * This structure holds an XPS map which can be of variable length. The 716 * map is an array of queues. 717 */ 718struct xps_map { 719 unsigned int len; 720 unsigned int alloc_len; 721 struct rcu_head rcu; 722 u16 queues[0]; 723}; 724#define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16))) 725#define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \ 726 - sizeof(struct xps_map)) / sizeof(u16)) 727 728/* 729 * This structure holds all XPS maps for device. Maps are indexed by CPU. 730 */ 731struct xps_dev_maps { 732 struct rcu_head rcu; 733 struct xps_map __rcu *cpu_map[0]; 734}; 735#define XPS_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) + \ 736 (nr_cpu_ids * (_tcs) * sizeof(struct xps_map *))) 737#endif /* CONFIG_XPS */ 738 739#define TC_MAX_QUEUE 16 740#define TC_BITMASK 15 741/* HW offloaded queuing disciplines txq count and offset maps */ 742struct netdev_tc_txq { 743 u16 count; 744 u16 offset; 745}; 746 747#if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE) 748/* 749 * This structure is to hold information about the device 750 * configured to run FCoE protocol stack. 751 */ 752struct netdev_fcoe_hbainfo { 753 char manufacturer[64]; 754 char serial_number[64]; 755 char hardware_version[64]; 756 char driver_version[64]; 757 char optionrom_version[64]; 758 char firmware_version[64]; 759 char model[256]; 760 char model_description[256]; 761}; 762#endif 763 764#define MAX_PHYS_ITEM_ID_LEN 32 765 766/* This structure holds a unique identifier to identify some 767 * physical item (port for example) used by a netdevice. 768 */ 769struct netdev_phys_item_id { 770 unsigned char id[MAX_PHYS_ITEM_ID_LEN]; 771 unsigned char id_len; 772}; 773 774static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a, 775 struct netdev_phys_item_id *b) 776{ 777 return a->id_len == b->id_len && 778 memcmp(a->id, b->id, a->id_len) == 0; 779} 780 781typedef u16 (*select_queue_fallback_t)(struct net_device *dev, 782 struct sk_buff *skb); 783 784/* These structures hold the attributes of qdisc and classifiers 785 * that are being passed to the netdevice through the setup_tc op. 786 */ 787enum { 788 TC_SETUP_MQPRIO, 789 TC_SETUP_CLSU32, 790 TC_SETUP_CLSFLOWER, 791 TC_SETUP_MATCHALL, 792 TC_SETUP_CLSBPF, 793}; 794 795struct tc_cls_u32_offload; 796 797struct tc_to_netdev { 798 unsigned int type; 799 union { 800 u8 tc; 801 struct tc_cls_u32_offload *cls_u32; 802 struct tc_cls_flower_offload *cls_flower; 803 struct tc_cls_matchall_offload *cls_mall; 804 struct tc_cls_bpf_offload *cls_bpf; 805 }; 806 bool egress_dev; 807}; 808 809/* These structures hold the attributes of xdp state that are being passed 810 * to the netdevice through the xdp op. 811 */ 812enum xdp_netdev_command { 813 /* Set or clear a bpf program used in the earliest stages of packet 814 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee 815 * is responsible for calling bpf_prog_put on any old progs that are 816 * stored. In case of error, the callee need not release the new prog 817 * reference, but on success it takes ownership and must bpf_prog_put 818 * when it is no longer used. 819 */ 820 XDP_SETUP_PROG, 821 /* Check if a bpf program is set on the device. The callee should 822 * return true if a program is currently attached and running. 823 */ 824 XDP_QUERY_PROG, 825}; 826 827struct netdev_xdp { 828 enum xdp_netdev_command command; 829 union { 830 /* XDP_SETUP_PROG */ 831 struct bpf_prog *prog; 832 /* XDP_QUERY_PROG */ 833 bool prog_attached; 834 }; 835}; 836 837/* 838 * This structure defines the management hooks for network devices. 839 * The following hooks can be defined; unless noted otherwise, they are 840 * optional and can be filled with a null pointer. 841 * 842 * int (*ndo_init)(struct net_device *dev); 843 * This function is called once when a network device is registered. 844 * The network device can use this for any late stage initialization 845 * or semantic validation. It can fail with an error code which will 846 * be propagated back to register_netdev. 847 * 848 * void (*ndo_uninit)(struct net_device *dev); 849 * This function is called when device is unregistered or when registration 850 * fails. It is not called if init fails. 851 * 852 * int (*ndo_open)(struct net_device *dev); 853 * This function is called when a network device transitions to the up 854 * state. 855 * 856 * int (*ndo_stop)(struct net_device *dev); 857 * This function is called when a network device transitions to the down 858 * state. 859 * 860 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 861 * struct net_device *dev); 862 * Called when a packet needs to be transmitted. 863 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop 864 * the queue before that can happen; it's for obsolete devices and weird 865 * corner cases, but the stack really does a non-trivial amount 866 * of useless work if you return NETDEV_TX_BUSY. 867 * Required; cannot be NULL. 868 * 869 * netdev_features_t (*ndo_fix_features)(struct net_device *dev, 870 * netdev_features_t features); 871 * Adjusts the requested feature flags according to device-specific 872 * constraints, and returns the resulting flags. Must not modify 873 * the device state. 874 * 875 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb, 876 * void *accel_priv, select_queue_fallback_t fallback); 877 * Called to decide which queue to use when device supports multiple 878 * transmit queues. 879 * 880 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags); 881 * This function is called to allow device receiver to make 882 * changes to configuration when multicast or promiscuous is enabled. 883 * 884 * void (*ndo_set_rx_mode)(struct net_device *dev); 885 * This function is called device changes address list filtering. 886 * If driver handles unicast address filtering, it should set 887 * IFF_UNICAST_FLT in its priv_flags. 888 * 889 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr); 890 * This function is called when the Media Access Control address 891 * needs to be changed. If this interface is not defined, the 892 * MAC address can not be changed. 893 * 894 * int (*ndo_validate_addr)(struct net_device *dev); 895 * Test if Media Access Control address is valid for the device. 896 * 897 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 898 * Called when a user requests an ioctl which can't be handled by 899 * the generic interface code. If not defined ioctls return 900 * not supported error code. 901 * 902 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map); 903 * Used to set network devices bus interface parameters. This interface 904 * is retained for legacy reasons; new devices should use the bus 905 * interface (PCI) for low level management. 906 * 907 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu); 908 * Called when a user wants to change the Maximum Transfer Unit 909 * of a device. If not defined, any request to change MTU will 910 * will return an error. 911 * 912 * void (*ndo_tx_timeout)(struct net_device *dev); 913 * Callback used when the transmitter has not made any progress 914 * for dev->watchdog ticks. 915 * 916 * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev, 917 * struct rtnl_link_stats64 *storage); 918 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 919 * Called when a user wants to get the network device usage 920 * statistics. Drivers must do one of the following: 921 * 1. Define @ndo_get_stats64 to fill in a zero-initialised 922 * rtnl_link_stats64 structure passed by the caller. 923 * 2. Define @ndo_get_stats to update a net_device_stats structure 924 * (which should normally be dev->stats) and return a pointer to 925 * it. The structure may be changed asynchronously only if each 926 * field is written atomically. 927 * 3. Update dev->stats asynchronously and atomically, and define 928 * neither operation. 929 * 930 * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id) 931 * Return true if this device supports offload stats of this attr_id. 932 * 933 * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev, 934 * void *attr_data) 935 * Get statistics for offload operations by attr_id. Write it into the 936 * attr_data pointer. 937 * 938 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid); 939 * If device supports VLAN filtering this function is called when a 940 * VLAN id is registered. 941 * 942 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid); 943 * If device supports VLAN filtering this function is called when a 944 * VLAN id is unregistered. 945 * 946 * void (*ndo_poll_controller)(struct net_device *dev); 947 * 948 * SR-IOV management functions. 949 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac); 950 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, 951 * u8 qos, __be16 proto); 952 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate, 953 * int max_tx_rate); 954 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting); 955 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting); 956 * int (*ndo_get_vf_config)(struct net_device *dev, 957 * int vf, struct ifla_vf_info *ivf); 958 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state); 959 * int (*ndo_set_vf_port)(struct net_device *dev, int vf, 960 * struct nlattr *port[]); 961 * 962 * Enable or disable the VF ability to query its RSS Redirection Table and 963 * Hash Key. This is needed since on some devices VF share this information 964 * with PF and querying it may introduce a theoretical security risk. 965 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting); 966 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb); 967 * int (*ndo_setup_tc)(struct net_device *dev, u8 tc) 968 * Called to setup 'tc' number of traffic classes in the net device. This 969 * is always called from the stack with the rtnl lock held and netif tx 970 * queues stopped. This allows the netdevice to perform queue management 971 * safely. 972 * 973 * Fiber Channel over Ethernet (FCoE) offload functions. 974 * int (*ndo_fcoe_enable)(struct net_device *dev); 975 * Called when the FCoE protocol stack wants to start using LLD for FCoE 976 * so the underlying device can perform whatever needed configuration or 977 * initialization to support acceleration of FCoE traffic. 978 * 979 * int (*ndo_fcoe_disable)(struct net_device *dev); 980 * Called when the FCoE protocol stack wants to stop using LLD for FCoE 981 * so the underlying device can perform whatever needed clean-ups to 982 * stop supporting acceleration of FCoE traffic. 983 * 984 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid, 985 * struct scatterlist *sgl, unsigned int sgc); 986 * Called when the FCoE Initiator wants to initialize an I/O that 987 * is a possible candidate for Direct Data Placement (DDP). The LLD can 988 * perform necessary setup and returns 1 to indicate the device is set up 989 * successfully to perform DDP on this I/O, otherwise this returns 0. 990 * 991 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid); 992 * Called when the FCoE Initiator/Target is done with the DDPed I/O as 993 * indicated by the FC exchange id 'xid', so the underlying device can 994 * clean up and reuse resources for later DDP requests. 995 * 996 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid, 997 * struct scatterlist *sgl, unsigned int sgc); 998 * Called when the FCoE Target wants to initialize an I/O that 999 * is a possible candidate for Direct Data Placement (DDP). The LLD can 1000 * perform necessary setup and returns 1 to indicate the device is set up 1001 * successfully to perform DDP on this I/O, otherwise this returns 0. 1002 * 1003 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1004 * struct netdev_fcoe_hbainfo *hbainfo); 1005 * Called when the FCoE Protocol stack wants information on the underlying 1006 * device. This information is utilized by the FCoE protocol stack to 1007 * register attributes with Fiber Channel management service as per the 1008 * FC-GS Fabric Device Management Information(FDMI) specification. 1009 * 1010 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type); 1011 * Called when the underlying device wants to override default World Wide 1012 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own 1013 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE 1014 * protocol stack to use. 1015 * 1016 * RFS acceleration. 1017 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb, 1018 * u16 rxq_index, u32 flow_id); 1019 * Set hardware filter for RFS. rxq_index is the target queue index; 1020 * flow_id is a flow ID to be passed to rps_may_expire_flow() later. 1021 * Return the filter ID on success, or a negative error code. 1022 * 1023 * Slave management functions (for bridge, bonding, etc). 1024 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev); 1025 * Called to make another netdev an underling. 1026 * 1027 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev); 1028 * Called to release previously enslaved netdev. 1029 * 1030 * Feature/offload setting functions. 1031 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features); 1032 * Called to update device configuration to new features. Passed 1033 * feature set might be less than what was returned by ndo_fix_features()). 1034 * Must return >0 or -errno if it changed dev->features itself. 1035 * 1036 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[], 1037 * struct net_device *dev, 1038 * const unsigned char *addr, u16 vid, u16 flags) 1039 * Adds an FDB entry to dev for addr. 1040 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[], 1041 * struct net_device *dev, 1042 * const unsigned char *addr, u16 vid) 1043 * Deletes the FDB entry from dev coresponding to addr. 1044 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb, 1045 * struct net_device *dev, struct net_device *filter_dev, 1046 * int *idx) 1047 * Used to add FDB entries to dump requests. Implementers should add 1048 * entries to skb and update idx with the number of entries. 1049 * 1050 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh, 1051 * u16 flags) 1052 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq, 1053 * struct net_device *dev, u32 filter_mask, 1054 * int nlflags) 1055 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh, 1056 * u16 flags); 1057 * 1058 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier); 1059 * Called to change device carrier. Soft-devices (like dummy, team, etc) 1060 * which do not represent real hardware may define this to allow their 1061 * userspace components to manage their virtual carrier state. Devices 1062 * that determine carrier state from physical hardware properties (eg 1063 * network cables) or protocol-dependent mechanisms (eg 1064 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function. 1065 * 1066 * int (*ndo_get_phys_port_id)(struct net_device *dev, 1067 * struct netdev_phys_item_id *ppid); 1068 * Called to get ID of physical port of this device. If driver does 1069 * not implement this, it is assumed that the hw is not able to have 1070 * multiple net devices on single physical port. 1071 * 1072 * void (*ndo_udp_tunnel_add)(struct net_device *dev, 1073 * struct udp_tunnel_info *ti); 1074 * Called by UDP tunnel to notify a driver about the UDP port and socket 1075 * address family that a UDP tunnel is listnening to. It is called only 1076 * when a new port starts listening. The operation is protected by the 1077 * RTNL. 1078 * 1079 * void (*ndo_udp_tunnel_del)(struct net_device *dev, 1080 * struct udp_tunnel_info *ti); 1081 * Called by UDP tunnel to notify the driver about a UDP port and socket 1082 * address family that the UDP tunnel is not listening to anymore. The 1083 * operation is protected by the RTNL. 1084 * 1085 * void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1086 * struct net_device *dev) 1087 * Called by upper layer devices to accelerate switching or other 1088 * station functionality into hardware. 'pdev is the lowerdev 1089 * to use for the offload and 'dev' is the net device that will 1090 * back the offload. Returns a pointer to the private structure 1091 * the upper layer will maintain. 1092 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv) 1093 * Called by upper layer device to delete the station created 1094 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing 1095 * the station and priv is the structure returned by the add 1096 * operation. 1097 * netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff *skb, 1098 * struct net_device *dev, 1099 * void *priv); 1100 * Callback to use for xmit over the accelerated station. This 1101 * is used in place of ndo_start_xmit on accelerated net 1102 * devices. 1103 * netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 1104 * struct net_device *dev 1105 * netdev_features_t features); 1106 * Called by core transmit path to determine if device is capable of 1107 * performing offload operations on a given packet. This is to give 1108 * the device an opportunity to implement any restrictions that cannot 1109 * be otherwise expressed by feature flags. The check is called with 1110 * the set of features that the stack has calculated and it returns 1111 * those the driver believes to be appropriate. 1112 * int (*ndo_set_tx_maxrate)(struct net_device *dev, 1113 * int queue_index, u32 maxrate); 1114 * Called when a user wants to set a max-rate limitation of specific 1115 * TX queue. 1116 * int (*ndo_get_iflink)(const struct net_device *dev); 1117 * Called to get the iflink value of this device. 1118 * void (*ndo_change_proto_down)(struct net_device *dev, 1119 * bool proto_down); 1120 * This function is used to pass protocol port error state information 1121 * to the switch driver. The switch driver can react to the proto_down 1122 * by doing a phys down on the associated switch port. 1123 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb); 1124 * This function is used to get egress tunnel information for given skb. 1125 * This is useful for retrieving outer tunnel header parameters while 1126 * sampling packet. 1127 * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom); 1128 * This function is used to specify the headroom that the skb must 1129 * consider when allocation skb during packet reception. Setting 1130 * appropriate rx headroom value allows avoiding skb head copy on 1131 * forward. Setting a negative value resets the rx headroom to the 1132 * default value. 1133 * int (*ndo_xdp)(struct net_device *dev, struct netdev_xdp *xdp); 1134 * This function is used to set or query state related to XDP on the 1135 * netdevice. See definition of enum xdp_netdev_command for details. 1136 * 1137 */ 1138struct net_device_ops { 1139 int (*ndo_init)(struct net_device *dev); 1140 void (*ndo_uninit)(struct net_device *dev); 1141 int (*ndo_open)(struct net_device *dev); 1142 int (*ndo_stop)(struct net_device *dev); 1143 netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 1144 struct net_device *dev); 1145 netdev_features_t (*ndo_features_check)(struct sk_buff *skb, 1146 struct net_device *dev, 1147 netdev_features_t features); 1148 u16 (*ndo_select_queue)(struct net_device *dev, 1149 struct sk_buff *skb, 1150 void *accel_priv, 1151 select_queue_fallback_t fallback); 1152 void (*ndo_change_rx_flags)(struct net_device *dev, 1153 int flags); 1154 void (*ndo_set_rx_mode)(struct net_device *dev); 1155 int (*ndo_set_mac_address)(struct net_device *dev, 1156 void *addr); 1157 int (*ndo_validate_addr)(struct net_device *dev); 1158 int (*ndo_do_ioctl)(struct net_device *dev, 1159 struct ifreq *ifr, int cmd); 1160 int (*ndo_set_config)(struct net_device *dev, 1161 struct ifmap *map); 1162 int (*ndo_change_mtu)(struct net_device *dev, 1163 int new_mtu); 1164 int (*ndo_neigh_setup)(struct net_device *dev, 1165 struct neigh_parms *); 1166 void (*ndo_tx_timeout) (struct net_device *dev); 1167 1168 struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev, 1169 struct rtnl_link_stats64 *storage); 1170 bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id); 1171 int (*ndo_get_offload_stats)(int attr_id, 1172 const struct net_device *dev, 1173 void *attr_data); 1174 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1175 1176 int (*ndo_vlan_rx_add_vid)(struct net_device *dev, 1177 __be16 proto, u16 vid); 1178 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, 1179 __be16 proto, u16 vid); 1180#ifdef CONFIG_NET_POLL_CONTROLLER 1181 void (*ndo_poll_controller)(struct net_device *dev); 1182 int (*ndo_netpoll_setup)(struct net_device *dev, 1183 struct netpoll_info *info); 1184 void (*ndo_netpoll_cleanup)(struct net_device *dev); 1185#endif 1186#ifdef CONFIG_NET_RX_BUSY_POLL 1187 int (*ndo_busy_poll)(struct napi_struct *dev); 1188#endif 1189 int (*ndo_set_vf_mac)(struct net_device *dev, 1190 int queue, u8 *mac); 1191 int (*ndo_set_vf_vlan)(struct net_device *dev, 1192 int queue, u16 vlan, 1193 u8 qos, __be16 proto); 1194 int (*ndo_set_vf_rate)(struct net_device *dev, 1195 int vf, int min_tx_rate, 1196 int max_tx_rate); 1197 int (*ndo_set_vf_spoofchk)(struct net_device *dev, 1198 int vf, bool setting); 1199 int (*ndo_set_vf_trust)(struct net_device *dev, 1200 int vf, bool setting); 1201 int (*ndo_get_vf_config)(struct net_device *dev, 1202 int vf, 1203 struct ifla_vf_info *ivf); 1204 int (*ndo_set_vf_link_state)(struct net_device *dev, 1205 int vf, int link_state); 1206 int (*ndo_get_vf_stats)(struct net_device *dev, 1207 int vf, 1208 struct ifla_vf_stats 1209 *vf_stats); 1210 int (*ndo_set_vf_port)(struct net_device *dev, 1211 int vf, 1212 struct nlattr *port[]); 1213 int (*ndo_get_vf_port)(struct net_device *dev, 1214 int vf, struct sk_buff *skb); 1215 int (*ndo_set_vf_guid)(struct net_device *dev, 1216 int vf, u64 guid, 1217 int guid_type); 1218 int (*ndo_set_vf_rss_query_en)( 1219 struct net_device *dev, 1220 int vf, bool setting); 1221 int (*ndo_setup_tc)(struct net_device *dev, 1222 u32 handle, 1223 __be16 protocol, 1224 struct tc_to_netdev *tc); 1225#if IS_ENABLED(CONFIG_FCOE) 1226 int (*ndo_fcoe_enable)(struct net_device *dev); 1227 int (*ndo_fcoe_disable)(struct net_device *dev); 1228 int (*ndo_fcoe_ddp_setup)(struct net_device *dev, 1229 u16 xid, 1230 struct scatterlist *sgl, 1231 unsigned int sgc); 1232 int (*ndo_fcoe_ddp_done)(struct net_device *dev, 1233 u16 xid); 1234 int (*ndo_fcoe_ddp_target)(struct net_device *dev, 1235 u16 xid, 1236 struct scatterlist *sgl, 1237 unsigned int sgc); 1238 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1239 struct netdev_fcoe_hbainfo *hbainfo); 1240#endif 1241 1242#if IS_ENABLED(CONFIG_LIBFCOE) 1243#define NETDEV_FCOE_WWNN 0 1244#define NETDEV_FCOE_WWPN 1 1245 int (*ndo_fcoe_get_wwn)(struct net_device *dev, 1246 u64 *wwn, int type); 1247#endif 1248 1249#ifdef CONFIG_RFS_ACCEL 1250 int (*ndo_rx_flow_steer)(struct net_device *dev, 1251 const struct sk_buff *skb, 1252 u16 rxq_index, 1253 u32 flow_id); 1254#endif 1255 int (*ndo_add_slave)(struct net_device *dev, 1256 struct net_device *slave_dev); 1257 int (*ndo_del_slave)(struct net_device *dev, 1258 struct net_device *slave_dev); 1259 netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1260 netdev_features_t features); 1261 int (*ndo_set_features)(struct net_device *dev, 1262 netdev_features_t features); 1263 int (*ndo_neigh_construct)(struct net_device *dev, 1264 struct neighbour *n); 1265 void (*ndo_neigh_destroy)(struct net_device *dev, 1266 struct neighbour *n); 1267 1268 int (*ndo_fdb_add)(struct ndmsg *ndm, 1269 struct nlattr *tb[], 1270 struct net_device *dev, 1271 const unsigned char *addr, 1272 u16 vid, 1273 u16 flags); 1274 int (*ndo_fdb_del)(struct ndmsg *ndm, 1275 struct nlattr *tb[], 1276 struct net_device *dev, 1277 const unsigned char *addr, 1278 u16 vid); 1279 int (*ndo_fdb_dump)(struct sk_buff *skb, 1280 struct netlink_callback *cb, 1281 struct net_device *dev, 1282 struct net_device *filter_dev, 1283 int *idx); 1284 1285 int (*ndo_bridge_setlink)(struct net_device *dev, 1286 struct nlmsghdr *nlh, 1287 u16 flags); 1288 int (*ndo_bridge_getlink)(struct sk_buff *skb, 1289 u32 pid, u32 seq, 1290 struct net_device *dev, 1291 u32 filter_mask, 1292 int nlflags); 1293 int (*ndo_bridge_dellink)(struct net_device *dev, 1294 struct nlmsghdr *nlh, 1295 u16 flags); 1296 int (*ndo_change_carrier)(struct net_device *dev, 1297 bool new_carrier); 1298 int (*ndo_get_phys_port_id)(struct net_device *dev, 1299 struct netdev_phys_item_id *ppid); 1300 int (*ndo_get_phys_port_name)(struct net_device *dev, 1301 char *name, size_t len); 1302 void (*ndo_udp_tunnel_add)(struct net_device *dev, 1303 struct udp_tunnel_info *ti); 1304 void (*ndo_udp_tunnel_del)(struct net_device *dev, 1305 struct udp_tunnel_info *ti); 1306 void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1307 struct net_device *dev); 1308 void (*ndo_dfwd_del_station)(struct net_device *pdev, 1309 void *priv); 1310 1311 netdev_tx_t (*ndo_dfwd_start_xmit) (struct sk_buff *skb, 1312 struct net_device *dev, 1313 void *priv); 1314 int (*ndo_get_lock_subclass)(struct net_device *dev); 1315 int (*ndo_set_tx_maxrate)(struct net_device *dev, 1316 int queue_index, 1317 u32 maxrate); 1318 int (*ndo_get_iflink)(const struct net_device *dev); 1319 int (*ndo_change_proto_down)(struct net_device *dev, 1320 bool proto_down); 1321 int (*ndo_fill_metadata_dst)(struct net_device *dev, 1322 struct sk_buff *skb); 1323 void (*ndo_set_rx_headroom)(struct net_device *dev, 1324 int needed_headroom); 1325 int (*ndo_xdp)(struct net_device *dev, 1326 struct netdev_xdp *xdp); 1327}; 1328 1329/** 1330 * enum net_device_priv_flags - &struct net_device priv_flags 1331 * 1332 * These are the &struct net_device, they are only set internally 1333 * by drivers and used in the kernel. These flags are invisible to 1334 * userspace; this means that the order of these flags can change 1335 * during any kernel release. 1336 * 1337 * You should have a pretty good reason to be extending these flags. 1338 * 1339 * @IFF_802_1Q_VLAN: 802.1Q VLAN device 1340 * @IFF_EBRIDGE: Ethernet bridging device 1341 * @IFF_BONDING: bonding master or slave 1342 * @IFF_ISATAP: ISATAP interface (RFC4214) 1343 * @IFF_WAN_HDLC: WAN HDLC device 1344 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to 1345 * release skb->dst 1346 * @IFF_DONT_BRIDGE: disallow bridging this ether dev 1347 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time 1348 * @IFF_MACVLAN_PORT: device used as macvlan port 1349 * @IFF_BRIDGE_PORT: device used as bridge port 1350 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port 1351 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit 1352 * @IFF_UNICAST_FLT: Supports unicast filtering 1353 * @IFF_TEAM_PORT: device used as team port 1354 * @IFF_SUPP_NOFCS: device supports sending custom FCS 1355 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address 1356 * change when it's running 1357 * @IFF_MACVLAN: Macvlan device 1358 * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account 1359 * underlying stacked devices 1360 * @IFF_IPVLAN_MASTER: IPvlan master device 1361 * @IFF_IPVLAN_SLAVE: IPvlan slave device 1362 * @IFF_L3MDEV_MASTER: device is an L3 master device 1363 * @IFF_NO_QUEUE: device can run without qdisc attached 1364 * @IFF_OPENVSWITCH: device is a Open vSwitch master 1365 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device 1366 * @IFF_TEAM: device is a team device 1367 * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured 1368 * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external 1369 * entity (i.e. the master device for bridged veth) 1370 * @IFF_MACSEC: device is a MACsec device 1371 */ 1372enum netdev_priv_flags { 1373 IFF_802_1Q_VLAN = 1<<0, 1374 IFF_EBRIDGE = 1<<1, 1375 IFF_BONDING = 1<<2, 1376 IFF_ISATAP = 1<<3, 1377 IFF_WAN_HDLC = 1<<4, 1378 IFF_XMIT_DST_RELEASE = 1<<5, 1379 IFF_DONT_BRIDGE = 1<<6, 1380 IFF_DISABLE_NETPOLL = 1<<7, 1381 IFF_MACVLAN_PORT = 1<<8, 1382 IFF_BRIDGE_PORT = 1<<9, 1383 IFF_OVS_DATAPATH = 1<<10, 1384 IFF_TX_SKB_SHARING = 1<<11, 1385 IFF_UNICAST_FLT = 1<<12, 1386 IFF_TEAM_PORT = 1<<13, 1387 IFF_SUPP_NOFCS = 1<<14, 1388 IFF_LIVE_ADDR_CHANGE = 1<<15, 1389 IFF_MACVLAN = 1<<16, 1390 IFF_XMIT_DST_RELEASE_PERM = 1<<17, 1391 IFF_IPVLAN_MASTER = 1<<18, 1392 IFF_IPVLAN_SLAVE = 1<<19, 1393 IFF_L3MDEV_MASTER = 1<<20, 1394 IFF_NO_QUEUE = 1<<21, 1395 IFF_OPENVSWITCH = 1<<22, 1396 IFF_L3MDEV_SLAVE = 1<<23, 1397 IFF_TEAM = 1<<24, 1398 IFF_RXFH_CONFIGURED = 1<<25, 1399 IFF_PHONY_HEADROOM = 1<<26, 1400 IFF_MACSEC = 1<<27, 1401}; 1402 1403#define IFF_802_1Q_VLAN IFF_802_1Q_VLAN 1404#define IFF_EBRIDGE IFF_EBRIDGE 1405#define IFF_BONDING IFF_BONDING 1406#define IFF_ISATAP IFF_ISATAP 1407#define IFF_WAN_HDLC IFF_WAN_HDLC 1408#define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE 1409#define IFF_DONT_BRIDGE IFF_DONT_BRIDGE 1410#define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL 1411#define IFF_MACVLAN_PORT IFF_MACVLAN_PORT 1412#define IFF_BRIDGE_PORT IFF_BRIDGE_PORT 1413#define IFF_OVS_DATAPATH IFF_OVS_DATAPATH 1414#define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING 1415#define IFF_UNICAST_FLT IFF_UNICAST_FLT 1416#define IFF_TEAM_PORT IFF_TEAM_PORT 1417#define IFF_SUPP_NOFCS IFF_SUPP_NOFCS 1418#define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE 1419#define IFF_MACVLAN IFF_MACVLAN 1420#define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM 1421#define IFF_IPVLAN_MASTER IFF_IPVLAN_MASTER 1422#define IFF_IPVLAN_SLAVE IFF_IPVLAN_SLAVE 1423#define IFF_L3MDEV_MASTER IFF_L3MDEV_MASTER 1424#define IFF_NO_QUEUE IFF_NO_QUEUE 1425#define IFF_OPENVSWITCH IFF_OPENVSWITCH 1426#define IFF_L3MDEV_SLAVE IFF_L3MDEV_SLAVE 1427#define IFF_TEAM IFF_TEAM 1428#define IFF_RXFH_CONFIGURED IFF_RXFH_CONFIGURED 1429#define IFF_MACSEC IFF_MACSEC 1430 1431/** 1432 * struct net_device - The DEVICE structure. 1433 * Actually, this whole structure is a big mistake. It mixes I/O 1434 * data with strictly "high-level" data, and it has to know about 1435 * almost every data structure used in the INET module. 1436 * 1437 * @name: This is the first field of the "visible" part of this structure 1438 * (i.e. as seen by users in the "Space.c" file). It is the name 1439 * of the interface. 1440 * 1441 * @name_hlist: Device name hash chain, please keep it close to name[] 1442 * @ifalias: SNMP alias 1443 * @mem_end: Shared memory end 1444 * @mem_start: Shared memory start 1445 * @base_addr: Device I/O address 1446 * @irq: Device IRQ number 1447 * 1448 * @carrier_changes: Stats to monitor carrier on<->off transitions 1449 * 1450 * @state: Generic network queuing layer state, see netdev_state_t 1451 * @dev_list: The global list of network devices 1452 * @napi_list: List entry used for polling NAPI devices 1453 * @unreg_list: List entry when we are unregistering the 1454 * device; see the function unregister_netdev 1455 * @close_list: List entry used when we are closing the device 1456 * @ptype_all: Device-specific packet handlers for all protocols 1457 * @ptype_specific: Device-specific, protocol-specific packet handlers 1458 * 1459 * @adj_list: Directly linked devices, like slaves for bonding 1460 * @features: Currently active device features 1461 * @hw_features: User-changeable features 1462 * 1463 * @wanted_features: User-requested features 1464 * @vlan_features: Mask of features inheritable by VLAN devices 1465 * 1466 * @hw_enc_features: Mask of features inherited by encapsulating devices 1467 * This field indicates what encapsulation 1468 * offloads the hardware is capable of doing, 1469 * and drivers will need to set them appropriately. 1470 * 1471 * @mpls_features: Mask of features inheritable by MPLS 1472 * 1473 * @ifindex: interface index 1474 * @group: The group the device belongs to 1475 * 1476 * @stats: Statistics struct, which was left as a legacy, use 1477 * rtnl_link_stats64 instead 1478 * 1479 * @rx_dropped: Dropped packets by core network, 1480 * do not use this in drivers 1481 * @tx_dropped: Dropped packets by core network, 1482 * do not use this in drivers 1483 * @rx_nohandler: nohandler dropped packets by core network on 1484 * inactive devices, do not use this in drivers 1485 * 1486 * @wireless_handlers: List of functions to handle Wireless Extensions, 1487 * instead of ioctl, 1488 * see <net/iw_handler.h> for details. 1489 * @wireless_data: Instance data managed by the core of wireless extensions 1490 * 1491 * @netdev_ops: Includes several pointers to callbacks, 1492 * if one wants to override the ndo_*() functions 1493 * @ethtool_ops: Management operations 1494 * @ndisc_ops: Includes callbacks for different IPv6 neighbour 1495 * discovery handling. Necessary for e.g. 6LoWPAN. 1496 * @header_ops: Includes callbacks for creating,parsing,caching,etc 1497 * of Layer 2 headers. 1498 * 1499 * @flags: Interface flags (a la BSD) 1500 * @priv_flags: Like 'flags' but invisible to userspace, 1501 * see if.h for the definitions 1502 * @gflags: Global flags ( kept as legacy ) 1503 * @padded: How much padding added by alloc_netdev() 1504 * @operstate: RFC2863 operstate 1505 * @link_mode: Mapping policy to operstate 1506 * @if_port: Selectable AUI, TP, ... 1507 * @dma: DMA channel 1508 * @mtu: Interface MTU value 1509 * @min_mtu: Interface Minimum MTU value 1510 * @max_mtu: Interface Maximum MTU value 1511 * @type: Interface hardware type 1512 * @hard_header_len: Maximum hardware header length. 1513 * 1514 * @needed_headroom: Extra headroom the hardware may need, but not in all 1515 * cases can this be guaranteed 1516 * @needed_tailroom: Extra tailroom the hardware may need, but not in all 1517 * cases can this be guaranteed. Some cases also use 1518 * LL_MAX_HEADER instead to allocate the skb 1519 * 1520 * interface address info: 1521 * 1522 * @perm_addr: Permanent hw address 1523 * @addr_assign_type: Hw address assignment type 1524 * @addr_len: Hardware address length 1525 * @neigh_priv_len: Used in neigh_alloc() 1526 * @dev_id: Used to differentiate devices that share 1527 * the same link layer address 1528 * @dev_port: Used to differentiate devices that share 1529 * the same function 1530 * @addr_list_lock: XXX: need comments on this one 1531 * @uc_promisc: Counter that indicates promiscuous mode 1532 * has been enabled due to the need to listen to 1533 * additional unicast addresses in a device that 1534 * does not implement ndo_set_rx_mode() 1535 * @uc: unicast mac addresses 1536 * @mc: multicast mac addresses 1537 * @dev_addrs: list of device hw addresses 1538 * @queues_kset: Group of all Kobjects in the Tx and RX queues 1539 * @promiscuity: Number of times the NIC is told to work in 1540 * promiscuous mode; if it becomes 0 the NIC will 1541 * exit promiscuous mode 1542 * @allmulti: Counter, enables or disables allmulticast mode 1543 * 1544 * @vlan_info: VLAN info 1545 * @dsa_ptr: dsa specific data 1546 * @tipc_ptr: TIPC specific data 1547 * @atalk_ptr: AppleTalk link 1548 * @ip_ptr: IPv4 specific data 1549 * @dn_ptr: DECnet specific data 1550 * @ip6_ptr: IPv6 specific data 1551 * @ax25_ptr: AX.25 specific data 1552 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering 1553 * 1554 * @last_rx: Time of last Rx 1555 * @dev_addr: Hw address (before bcast, 1556 * because most packets are unicast) 1557 * 1558 * @_rx: Array of RX queues 1559 * @num_rx_queues: Number of RX queues 1560 * allocated at register_netdev() time 1561 * @real_num_rx_queues: Number of RX queues currently active in device 1562 * 1563 * @rx_handler: handler for received packets 1564 * @rx_handler_data: XXX: need comments on this one 1565 * @ingress_queue: XXX: need comments on this one 1566 * @broadcast: hw bcast address 1567 * 1568 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts, 1569 * indexed by RX queue number. Assigned by driver. 1570 * This must only be set if the ndo_rx_flow_steer 1571 * operation is defined 1572 * @index_hlist: Device index hash chain 1573 * 1574 * @_tx: Array of TX queues 1575 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time 1576 * @real_num_tx_queues: Number of TX queues currently active in device 1577 * @qdisc: Root qdisc from userspace point of view 1578 * @tx_queue_len: Max frames per queue allowed 1579 * @tx_global_lock: XXX: need comments on this one 1580 * 1581 * @xps_maps: XXX: need comments on this one 1582 * 1583 * @watchdog_timeo: Represents the timeout that is used by 1584 * the watchdog (see dev_watchdog()) 1585 * @watchdog_timer: List of timers 1586 * 1587 * @pcpu_refcnt: Number of references to this device 1588 * @todo_list: Delayed register/unregister 1589 * @link_watch_list: XXX: need comments on this one 1590 * 1591 * @reg_state: Register/unregister state machine 1592 * @dismantle: Device is going to be freed 1593 * @rtnl_link_state: This enum represents the phases of creating 1594 * a new link 1595 * 1596 * @destructor: Called from unregister, 1597 * can be used to call free_netdev 1598 * @npinfo: XXX: need comments on this one 1599 * @nd_net: Network namespace this network device is inside 1600 * 1601 * @ml_priv: Mid-layer private 1602 * @lstats: Loopback statistics 1603 * @tstats: Tunnel statistics 1604 * @dstats: Dummy statistics 1605 * @vstats: Virtual ethernet statistics 1606 * 1607 * @garp_port: GARP 1608 * @mrp_port: MRP 1609 * 1610 * @dev: Class/net/name entry 1611 * @sysfs_groups: Space for optional device, statistics and wireless 1612 * sysfs groups 1613 * 1614 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes 1615 * @rtnl_link_ops: Rtnl_link_ops 1616 * 1617 * @gso_max_size: Maximum size of generic segmentation offload 1618 * @gso_max_segs: Maximum number of segments that can be passed to the 1619 * NIC for GSO 1620 * 1621 * @dcbnl_ops: Data Center Bridging netlink ops 1622 * @num_tc: Number of traffic classes in the net device 1623 * @tc_to_txq: XXX: need comments on this one 1624 * @prio_tc_map: XXX: need comments on this one 1625 * 1626 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp 1627 * 1628 * @priomap: XXX: need comments on this one 1629 * @phydev: Physical device may attach itself 1630 * for hardware timestamping 1631 * 1632 * @qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock 1633 * @qdisc_running_key: lockdep class annotating Qdisc->running seqcount 1634 * 1635 * @proto_down: protocol port state information can be sent to the 1636 * switch driver and used to set the phys state of the 1637 * switch port. 1638 * 1639 * FIXME: cleanup struct net_device such that network protocol info 1640 * moves out. 1641 */ 1642 1643struct net_device { 1644 char name[IFNAMSIZ]; 1645 struct hlist_node name_hlist; 1646 char *ifalias; 1647 /* 1648 * I/O specific fields 1649 * FIXME: Merge these and struct ifmap into one 1650 */ 1651 unsigned long mem_end; 1652 unsigned long mem_start; 1653 unsigned long base_addr; 1654 int irq; 1655 1656 atomic_t carrier_changes; 1657 1658 /* 1659 * Some hardware also needs these fields (state,dev_list, 1660 * napi_list,unreg_list,close_list) but they are not 1661 * part of the usual set specified in Space.c. 1662 */ 1663 1664 unsigned long state; 1665 1666 struct list_head dev_list; 1667 struct list_head napi_list; 1668 struct list_head unreg_list; 1669 struct list_head close_list; 1670 struct list_head ptype_all; 1671 struct list_head ptype_specific; 1672 1673 struct { 1674 struct list_head upper; 1675 struct list_head lower; 1676 } adj_list; 1677 1678 netdev_features_t features; 1679 netdev_features_t hw_features; 1680 netdev_features_t wanted_features; 1681 netdev_features_t vlan_features; 1682 netdev_features_t hw_enc_features; 1683 netdev_features_t mpls_features; 1684 netdev_features_t gso_partial_features; 1685 1686 int ifindex; 1687 int group; 1688 1689 struct net_device_stats stats; 1690 1691 atomic_long_t rx_dropped; 1692 atomic_long_t tx_dropped; 1693 atomic_long_t rx_nohandler; 1694 1695#ifdef CONFIG_WIRELESS_EXT 1696 const struct iw_handler_def *wireless_handlers; 1697 struct iw_public_data *wireless_data; 1698#endif 1699 const struct net_device_ops *netdev_ops; 1700 const struct ethtool_ops *ethtool_ops; 1701#ifdef CONFIG_NET_SWITCHDEV 1702 const struct switchdev_ops *switchdev_ops; 1703#endif 1704#ifdef CONFIG_NET_L3_MASTER_DEV 1705 const struct l3mdev_ops *l3mdev_ops; 1706#endif 1707#if IS_ENABLED(CONFIG_IPV6) 1708 const struct ndisc_ops *ndisc_ops; 1709#endif 1710 1711 const struct header_ops *header_ops; 1712 1713 unsigned int flags; 1714 unsigned int priv_flags; 1715 1716 unsigned short gflags; 1717 unsigned short padded; 1718 1719 unsigned char operstate; 1720 unsigned char link_mode; 1721 1722 unsigned char if_port; 1723 unsigned char dma; 1724 1725 unsigned int mtu; 1726 unsigned int min_mtu; 1727 unsigned int max_mtu; 1728 unsigned short type; 1729 unsigned short hard_header_len; 1730 1731 unsigned short needed_headroom; 1732 unsigned short needed_tailroom; 1733 1734 /* Interface address info. */ 1735 unsigned char perm_addr[MAX_ADDR_LEN]; 1736 unsigned char addr_assign_type; 1737 unsigned char addr_len; 1738 unsigned short neigh_priv_len; 1739 unsigned short dev_id; 1740 unsigned short dev_port; 1741 spinlock_t addr_list_lock; 1742 unsigned char name_assign_type; 1743 bool uc_promisc; 1744 struct netdev_hw_addr_list uc; 1745 struct netdev_hw_addr_list mc; 1746 struct netdev_hw_addr_list dev_addrs; 1747 1748#ifdef CONFIG_SYSFS 1749 struct kset *queues_kset; 1750#endif 1751 unsigned int promiscuity; 1752 unsigned int allmulti; 1753 1754 1755 /* Protocol-specific pointers */ 1756 1757#if IS_ENABLED(CONFIG_VLAN_8021Q) 1758 struct vlan_info __rcu *vlan_info; 1759#endif 1760#if IS_ENABLED(CONFIG_NET_DSA) 1761 struct dsa_switch_tree *dsa_ptr; 1762#endif 1763#if IS_ENABLED(CONFIG_TIPC) 1764 struct tipc_bearer __rcu *tipc_ptr; 1765#endif 1766 void *atalk_ptr; 1767 struct in_device __rcu *ip_ptr; 1768 struct dn_dev __rcu *dn_ptr; 1769 struct inet6_dev __rcu *ip6_ptr; 1770 void *ax25_ptr; 1771 struct wireless_dev *ieee80211_ptr; 1772 struct wpan_dev *ieee802154_ptr; 1773#if IS_ENABLED(CONFIG_MPLS_ROUTING) 1774 struct mpls_dev __rcu *mpls_ptr; 1775#endif 1776 1777/* 1778 * Cache lines mostly used on receive path (including eth_type_trans()) 1779 */ 1780 unsigned long last_rx; 1781 1782 /* Interface address info used in eth_type_trans() */ 1783 unsigned char *dev_addr; 1784 1785#ifdef CONFIG_SYSFS 1786 struct netdev_rx_queue *_rx; 1787 1788 unsigned int num_rx_queues; 1789 unsigned int real_num_rx_queues; 1790#endif 1791 1792 unsigned long gro_flush_timeout; 1793 rx_handler_func_t __rcu *rx_handler; 1794 void __rcu *rx_handler_data; 1795 1796#ifdef CONFIG_NET_CLS_ACT 1797 struct tcf_proto __rcu *ingress_cl_list; 1798#endif 1799 struct netdev_queue __rcu *ingress_queue; 1800#ifdef CONFIG_NETFILTER_INGRESS 1801 struct nf_hook_entry __rcu *nf_hooks_ingress; 1802#endif 1803 1804 unsigned char broadcast[MAX_ADDR_LEN]; 1805#ifdef CONFIG_RFS_ACCEL 1806 struct cpu_rmap *rx_cpu_rmap; 1807#endif 1808 struct hlist_node index_hlist; 1809 1810/* 1811 * Cache lines mostly used on transmit path 1812 */ 1813 struct netdev_queue *_tx ____cacheline_aligned_in_smp; 1814 unsigned int num_tx_queues; 1815 unsigned int real_num_tx_queues; 1816 struct Qdisc *qdisc; 1817#ifdef CONFIG_NET_SCHED 1818 DECLARE_HASHTABLE (qdisc_hash, 4); 1819#endif 1820 unsigned long tx_queue_len; 1821 spinlock_t tx_global_lock; 1822 int watchdog_timeo; 1823 1824#ifdef CONFIG_XPS 1825 struct xps_dev_maps __rcu *xps_maps; 1826#endif 1827#ifdef CONFIG_NET_CLS_ACT 1828 struct tcf_proto __rcu *egress_cl_list; 1829#endif 1830 1831 /* These may be needed for future network-power-down code. */ 1832 struct timer_list watchdog_timer; 1833 1834 int __percpu *pcpu_refcnt; 1835 struct list_head todo_list; 1836 1837 struct list_head link_watch_list; 1838 1839 enum { NETREG_UNINITIALIZED=0, 1840 NETREG_REGISTERED, /* completed register_netdevice */ 1841 NETREG_UNREGISTERING, /* called unregister_netdevice */ 1842 NETREG_UNREGISTERED, /* completed unregister todo */ 1843 NETREG_RELEASED, /* called free_netdev */ 1844 NETREG_DUMMY, /* dummy device for NAPI poll */ 1845 } reg_state:8; 1846 1847 bool dismantle; 1848 1849 enum { 1850 RTNL_LINK_INITIALIZED, 1851 RTNL_LINK_INITIALIZING, 1852 } rtnl_link_state:16; 1853 1854 void (*destructor)(struct net_device *dev); 1855 1856#ifdef CONFIG_NETPOLL 1857 struct netpoll_info __rcu *npinfo; 1858#endif 1859 1860 possible_net_t nd_net; 1861 1862 /* mid-layer private */ 1863 union { 1864 void *ml_priv; 1865 struct pcpu_lstats __percpu *lstats; 1866 struct pcpu_sw_netstats __percpu *tstats; 1867 struct pcpu_dstats __percpu *dstats; 1868 struct pcpu_vstats __percpu *vstats; 1869 }; 1870 1871 struct garp_port __rcu *garp_port; 1872 struct mrp_port __rcu *mrp_port; 1873 1874 struct device dev; 1875 const struct attribute_group *sysfs_groups[4]; 1876 const struct attribute_group *sysfs_rx_queue_group; 1877 1878 const struct rtnl_link_ops *rtnl_link_ops; 1879 1880 /* for setting kernel sock attribute on TCP connection setup */ 1881#define GSO_MAX_SIZE 65536 1882 unsigned int gso_max_size; 1883#define GSO_MAX_SEGS 65535 1884 u16 gso_max_segs; 1885 1886#ifdef CONFIG_DCB 1887 const struct dcbnl_rtnl_ops *dcbnl_ops; 1888#endif 1889 u8 num_tc; 1890 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE]; 1891 u8 prio_tc_map[TC_BITMASK + 1]; 1892 1893#if IS_ENABLED(CONFIG_FCOE) 1894 unsigned int fcoe_ddp_xid; 1895#endif 1896#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 1897 struct netprio_map __rcu *priomap; 1898#endif 1899 struct phy_device *phydev; 1900 struct lock_class_key *qdisc_tx_busylock; 1901 struct lock_class_key *qdisc_running_key; 1902 bool proto_down; 1903}; 1904#define to_net_dev(d) container_of(d, struct net_device, dev) 1905 1906#define NETDEV_ALIGN 32 1907 1908static inline 1909int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio) 1910{ 1911 return dev->prio_tc_map[prio & TC_BITMASK]; 1912} 1913 1914static inline 1915int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc) 1916{ 1917 if (tc >= dev->num_tc) 1918 return -EINVAL; 1919 1920 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK; 1921 return 0; 1922} 1923 1924int netdev_txq_to_tc(struct net_device *dev, unsigned int txq); 1925void netdev_reset_tc(struct net_device *dev); 1926int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset); 1927int netdev_set_num_tc(struct net_device *dev, u8 num_tc); 1928 1929static inline 1930int netdev_get_num_tc(struct net_device *dev) 1931{ 1932 return dev->num_tc; 1933} 1934 1935static inline 1936struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev, 1937 unsigned int index) 1938{ 1939 return &dev->_tx[index]; 1940} 1941 1942static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev, 1943 const struct sk_buff *skb) 1944{ 1945 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb)); 1946} 1947 1948static inline void netdev_for_each_tx_queue(struct net_device *dev, 1949 void (*f)(struct net_device *, 1950 struct netdev_queue *, 1951 void *), 1952 void *arg) 1953{ 1954 unsigned int i; 1955 1956 for (i = 0; i < dev->num_tx_queues; i++) 1957 f(dev, &dev->_tx[i], arg); 1958} 1959 1960#define netdev_lockdep_set_classes(dev) \ 1961{ \ 1962 static struct lock_class_key qdisc_tx_busylock_key; \ 1963 static struct lock_class_key qdisc_running_key; \ 1964 static struct lock_class_key qdisc_xmit_lock_key; \ 1965 static struct lock_class_key dev_addr_list_lock_key; \ 1966 unsigned int i; \ 1967 \ 1968 (dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key; \ 1969 (dev)->qdisc_running_key = &qdisc_running_key; \ 1970 lockdep_set_class(&(dev)->addr_list_lock, \ 1971 &dev_addr_list_lock_key); \ 1972 for (i = 0; i < (dev)->num_tx_queues; i++) \ 1973 lockdep_set_class(&(dev)->_tx[i]._xmit_lock, \ 1974 &qdisc_xmit_lock_key); \ 1975} 1976 1977struct netdev_queue *netdev_pick_tx(struct net_device *dev, 1978 struct sk_buff *skb, 1979 void *accel_priv); 1980 1981/* returns the headroom that the master device needs to take in account 1982 * when forwarding to this dev 1983 */ 1984static inline unsigned netdev_get_fwd_headroom(struct net_device *dev) 1985{ 1986 return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom; 1987} 1988 1989static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr) 1990{ 1991 if (dev->netdev_ops->ndo_set_rx_headroom) 1992 dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr); 1993} 1994 1995/* set the device rx headroom to the dev's default */ 1996static inline void netdev_reset_rx_headroom(struct net_device *dev) 1997{ 1998 netdev_set_rx_headroom(dev, -1); 1999} 2000 2001/* 2002 * Net namespace inlines 2003 */ 2004static inline 2005struct net *dev_net(const struct net_device *dev) 2006{ 2007 return read_pnet(&dev->nd_net); 2008} 2009 2010static inline 2011void dev_net_set(struct net_device *dev, struct net *net) 2012{ 2013 write_pnet(&dev->nd_net, net); 2014} 2015 2016static inline bool netdev_uses_dsa(struct net_device *dev) 2017{ 2018#if IS_ENABLED(CONFIG_NET_DSA) 2019 if (dev->dsa_ptr != NULL) 2020 return dsa_uses_tagged_protocol(dev->dsa_ptr); 2021#endif 2022 return false; 2023} 2024 2025/** 2026 * netdev_priv - access network device private data 2027 * @dev: network device 2028 * 2029 * Get network device private data 2030 */ 2031static inline void *netdev_priv(const struct net_device *dev) 2032{ 2033 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN); 2034} 2035 2036/* Set the sysfs physical device reference for the network logical device 2037 * if set prior to registration will cause a symlink during initialization. 2038 */ 2039#define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev)) 2040 2041/* Set the sysfs device type for the network logical device to allow 2042 * fine-grained identification of different network device types. For 2043 * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc. 2044 */ 2045#define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype)) 2046 2047/* Default NAPI poll() weight 2048 * Device drivers are strongly advised to not use bigger value 2049 */ 2050#define NAPI_POLL_WEIGHT 64 2051 2052/** 2053 * netif_napi_add - initialize a NAPI context 2054 * @dev: network device 2055 * @napi: NAPI context 2056 * @poll: polling function 2057 * @weight: default weight 2058 * 2059 * netif_napi_add() must be used to initialize a NAPI context prior to calling 2060 * *any* of the other NAPI-related functions. 2061 */ 2062void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 2063 int (*poll)(struct napi_struct *, int), int weight); 2064 2065/** 2066 * netif_tx_napi_add - initialize a NAPI context 2067 * @dev: network device 2068 * @napi: NAPI context 2069 * @poll: polling function 2070 * @weight: default weight 2071 * 2072 * This variant of netif_napi_add() should be used from drivers using NAPI 2073 * to exclusively poll a TX queue. 2074 * This will avoid we add it into napi_hash[], thus polluting this hash table. 2075 */ 2076static inline void netif_tx_napi_add(struct net_device *dev, 2077 struct napi_struct *napi, 2078 int (*poll)(struct napi_struct *, int), 2079 int weight) 2080{ 2081 set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state); 2082 netif_napi_add(dev, napi, poll, weight); 2083} 2084 2085/** 2086 * netif_napi_del - remove a NAPI context 2087 * @napi: NAPI context 2088 * 2089 * netif_napi_del() removes a NAPI context from the network device NAPI list 2090 */ 2091void netif_napi_del(struct napi_struct *napi); 2092 2093struct napi_gro_cb { 2094 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */ 2095 void *frag0; 2096 2097 /* Length of frag0. */ 2098 unsigned int frag0_len; 2099 2100 /* This indicates where we are processing relative to skb->data. */ 2101 int data_offset; 2102 2103 /* This is non-zero if the packet cannot be merged with the new skb. */ 2104 u16 flush; 2105 2106 /* Save the IP ID here and check when we get to the transport layer */ 2107 u16 flush_id; 2108 2109 /* Number of segments aggregated. */ 2110 u16 count; 2111 2112 /* Start offset for remote checksum offload */ 2113 u16 gro_remcsum_start; 2114 2115 /* jiffies when first packet was created/queued */ 2116 unsigned long age; 2117 2118 /* Used in ipv6_gro_receive() and foo-over-udp */ 2119 u16 proto; 2120 2121 /* This is non-zero if the packet may be of the same flow. */ 2122 u8 same_flow:1; 2123 2124 /* Used in tunnel GRO receive */ 2125 u8 encap_mark:1; 2126 2127 /* GRO checksum is valid */ 2128 u8 csum_valid:1; 2129 2130 /* Number of checksums via CHECKSUM_UNNECESSARY */ 2131 u8 csum_cnt:3; 2132 2133 /* Free the skb? */ 2134 u8 free:2; 2135#define NAPI_GRO_FREE 1 2136#define NAPI_GRO_FREE_STOLEN_HEAD 2 2137 2138 /* Used in foo-over-udp, set in udp[46]_gro_receive */ 2139 u8 is_ipv6:1; 2140 2141 /* Used in GRE, set in fou/gue_gro_receive */ 2142 u8 is_fou:1; 2143 2144 /* Used to determine if flush_id can be ignored */ 2145 u8 is_atomic:1; 2146 2147 /* Number of gro_receive callbacks this packet already went through */ 2148 u8 recursion_counter:4; 2149 2150 /* 1 bit hole */ 2151 2152 /* used to support CHECKSUM_COMPLETE for tunneling protocols */ 2153 __wsum csum; 2154 2155 /* used in skb_gro_receive() slow path */ 2156 struct sk_buff *last; 2157}; 2158 2159#define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb) 2160 2161#define GRO_RECURSION_LIMIT 15 2162static inline int gro_recursion_inc_test(struct sk_buff *skb) 2163{ 2164 return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT; 2165} 2166 2167typedef struct sk_buff **(*gro_receive_t)(struct sk_buff **, struct sk_buff *); 2168static inline struct sk_buff **call_gro_receive(gro_receive_t cb, 2169 struct sk_buff **head, 2170 struct sk_buff *skb) 2171{ 2172 if (unlikely(gro_recursion_inc_test(skb))) { 2173 NAPI_GRO_CB(skb)->flush |= 1; 2174 return NULL; 2175 } 2176 2177 return cb(head, skb); 2178} 2179 2180typedef struct sk_buff **(*gro_receive_sk_t)(struct sock *, struct sk_buff **, 2181 struct sk_buff *); 2182static inline struct sk_buff **call_gro_receive_sk(gro_receive_sk_t cb, 2183 struct sock *sk, 2184 struct sk_buff **head, 2185 struct sk_buff *skb) 2186{ 2187 if (unlikely(gro_recursion_inc_test(skb))) { 2188 NAPI_GRO_CB(skb)->flush |= 1; 2189 return NULL; 2190 } 2191 2192 return cb(sk, head, skb); 2193} 2194 2195struct packet_type { 2196 __be16 type; /* This is really htons(ether_type). */ 2197 struct net_device *dev; /* NULL is wildcarded here */ 2198 int (*func) (struct sk_buff *, 2199 struct net_device *, 2200 struct packet_type *, 2201 struct net_device *); 2202 bool (*id_match)(struct packet_type *ptype, 2203 struct sock *sk); 2204 void *af_packet_priv; 2205 struct list_head list; 2206}; 2207 2208struct offload_callbacks { 2209 struct sk_buff *(*gso_segment)(struct sk_buff *skb, 2210 netdev_features_t features); 2211 struct sk_buff **(*gro_receive)(struct sk_buff **head, 2212 struct sk_buff *skb); 2213 int (*gro_complete)(struct sk_buff *skb, int nhoff); 2214}; 2215 2216struct packet_offload { 2217 __be16 type; /* This is really htons(ether_type). */ 2218 u16 priority; 2219 struct offload_callbacks callbacks; 2220 struct list_head list; 2221}; 2222 2223/* often modified stats are per-CPU, other are shared (netdev->stats) */ 2224struct pcpu_sw_netstats { 2225 u64 rx_packets; 2226 u64 rx_bytes; 2227 u64 tx_packets; 2228 u64 tx_bytes; 2229 struct u64_stats_sync syncp; 2230}; 2231 2232#define __netdev_alloc_pcpu_stats(type, gfp) \ 2233({ \ 2234 typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\ 2235 if (pcpu_stats) { \ 2236 int __cpu; \ 2237 for_each_possible_cpu(__cpu) { \ 2238 typeof(type) *stat; \ 2239 stat = per_cpu_ptr(pcpu_stats, __cpu); \ 2240 u64_stats_init(&stat->syncp); \ 2241 } \ 2242 } \ 2243 pcpu_stats; \ 2244}) 2245 2246#define netdev_alloc_pcpu_stats(type) \ 2247 __netdev_alloc_pcpu_stats(type, GFP_KERNEL) 2248 2249enum netdev_lag_tx_type { 2250 NETDEV_LAG_TX_TYPE_UNKNOWN, 2251 NETDEV_LAG_TX_TYPE_RANDOM, 2252 NETDEV_LAG_TX_TYPE_BROADCAST, 2253 NETDEV_LAG_TX_TYPE_ROUNDROBIN, 2254 NETDEV_LAG_TX_TYPE_ACTIVEBACKUP, 2255 NETDEV_LAG_TX_TYPE_HASH, 2256}; 2257 2258struct netdev_lag_upper_info { 2259 enum netdev_lag_tx_type tx_type; 2260}; 2261 2262struct netdev_lag_lower_state_info { 2263 u8 link_up : 1, 2264 tx_enabled : 1; 2265}; 2266 2267#include <linux/notifier.h> 2268 2269/* netdevice notifier chain. Please remember to update the rtnetlink 2270 * notification exclusion list in rtnetlink_event() when adding new 2271 * types. 2272 */ 2273#define NETDEV_UP 0x0001 /* For now you can't veto a device up/down */ 2274#define NETDEV_DOWN 0x0002 2275#define NETDEV_REBOOT 0x0003 /* Tell a protocol stack a network interface 2276 detected a hardware crash and restarted 2277 - we can use this eg to kick tcp sessions 2278 once done */ 2279#define NETDEV_CHANGE 0x0004 /* Notify device state change */ 2280#define NETDEV_REGISTER 0x0005 2281#define NETDEV_UNREGISTER 0x0006 2282#define NETDEV_CHANGEMTU 0x0007 /* notify after mtu change happened */ 2283#define NETDEV_CHANGEADDR 0x0008 2284#define NETDEV_GOING_DOWN 0x0009 2285#define NETDEV_CHANGENAME 0x000A 2286#define NETDEV_FEAT_CHANGE 0x000B 2287#define NETDEV_BONDING_FAILOVER 0x000C 2288#define NETDEV_PRE_UP 0x000D 2289#define NETDEV_PRE_TYPE_CHANGE 0x000E 2290#define NETDEV_POST_TYPE_CHANGE 0x000F 2291#define NETDEV_POST_INIT 0x0010 2292#define NETDEV_UNREGISTER_FINAL 0x0011 2293#define NETDEV_RELEASE 0x0012 2294#define NETDEV_NOTIFY_PEERS 0x0013 2295#define NETDEV_JOIN 0x0014 2296#define NETDEV_CHANGEUPPER 0x0015 2297#define NETDEV_RESEND_IGMP 0x0016 2298#define NETDEV_PRECHANGEMTU 0x0017 /* notify before mtu change happened */ 2299#define NETDEV_CHANGEINFODATA 0x0018 2300#define NETDEV_BONDING_INFO 0x0019 2301#define NETDEV_PRECHANGEUPPER 0x001A 2302#define NETDEV_CHANGELOWERSTATE 0x001B 2303#define NETDEV_UDP_TUNNEL_PUSH_INFO 0x001C 2304#define NETDEV_CHANGE_TX_QUEUE_LEN 0x001E 2305 2306int register_netdevice_notifier(struct notifier_block *nb); 2307int unregister_netdevice_notifier(struct notifier_block *nb); 2308 2309struct netdev_notifier_info { 2310 struct net_device *dev; 2311}; 2312 2313struct netdev_notifier_change_info { 2314 struct netdev_notifier_info info; /* must be first */ 2315 unsigned int flags_changed; 2316}; 2317 2318struct netdev_notifier_changeupper_info { 2319 struct netdev_notifier_info info; /* must be first */ 2320 struct net_device *upper_dev; /* new upper dev */ 2321 bool master; /* is upper dev master */ 2322 bool linking; /* is the notification for link or unlink */ 2323 void *upper_info; /* upper dev info */ 2324}; 2325 2326struct netdev_notifier_changelowerstate_info { 2327 struct netdev_notifier_info info; /* must be first */ 2328 void *lower_state_info; /* is lower dev state */ 2329}; 2330 2331static inline void netdev_notifier_info_init(struct netdev_notifier_info *info, 2332 struct net_device *dev) 2333{ 2334 info->dev = dev; 2335} 2336 2337static inline struct net_device * 2338netdev_notifier_info_to_dev(const struct netdev_notifier_info *info) 2339{ 2340 return info->dev; 2341} 2342 2343int call_netdevice_notifiers(unsigned long val, struct net_device *dev); 2344 2345 2346extern rwlock_t dev_base_lock; /* Device list lock */ 2347 2348#define for_each_netdev(net, d) \ 2349 list_for_each_entry(d, &(net)->dev_base_head, dev_list) 2350#define for_each_netdev_reverse(net, d) \ 2351 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list) 2352#define for_each_netdev_rcu(net, d) \ 2353 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list) 2354#define for_each_netdev_safe(net, d, n) \ 2355 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list) 2356#define for_each_netdev_continue(net, d) \ 2357 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list) 2358#define for_each_netdev_continue_rcu(net, d) \ 2359 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list) 2360#define for_each_netdev_in_bond_rcu(bond, slave) \ 2361 for_each_netdev_rcu(&init_net, slave) \ 2362 if (netdev_master_upper_dev_get_rcu(slave) == (bond)) 2363#define net_device_entry(lh) list_entry(lh, struct net_device, dev_list) 2364 2365static inline struct net_device *next_net_device(struct net_device *dev) 2366{ 2367 struct list_head *lh; 2368 struct net *net; 2369 2370 net = dev_net(dev); 2371 lh = dev->dev_list.next; 2372 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2373} 2374 2375static inline struct net_device *next_net_device_rcu(struct net_device *dev) 2376{ 2377 struct list_head *lh; 2378 struct net *net; 2379 2380 net = dev_net(dev); 2381 lh = rcu_dereference(list_next_rcu(&dev->dev_list)); 2382 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2383} 2384 2385static inline struct net_device *first_net_device(struct net *net) 2386{ 2387 return list_empty(&net->dev_base_head) ? NULL : 2388 net_device_entry(net->dev_base_head.next); 2389} 2390 2391static inline struct net_device *first_net_device_rcu(struct net *net) 2392{ 2393 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head)); 2394 2395 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2396} 2397 2398int netdev_boot_setup_check(struct net_device *dev); 2399unsigned long netdev_boot_base(const char *prefix, int unit); 2400struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 2401 const char *hwaddr); 2402struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type); 2403struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type); 2404void dev_add_pack(struct packet_type *pt); 2405void dev_remove_pack(struct packet_type *pt); 2406void __dev_remove_pack(struct packet_type *pt); 2407void dev_add_offload(struct packet_offload *po); 2408void dev_remove_offload(struct packet_offload *po); 2409 2410int dev_get_iflink(const struct net_device *dev); 2411int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb); 2412struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags, 2413 unsigned short mask); 2414struct net_device *dev_get_by_name(struct net *net, const char *name); 2415struct net_device *dev_get_by_name_rcu(struct net *net, const char *name); 2416struct net_device *__dev_get_by_name(struct net *net, const char *name); 2417int dev_alloc_name(struct net_device *dev, const char *name); 2418int dev_open(struct net_device *dev); 2419int dev_close(struct net_device *dev); 2420int dev_close_many(struct list_head *head, bool unlink); 2421void dev_disable_lro(struct net_device *dev); 2422int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb); 2423int dev_queue_xmit(struct sk_buff *skb); 2424int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv); 2425int register_netdevice(struct net_device *dev); 2426void unregister_netdevice_queue(struct net_device *dev, struct list_head *head); 2427void unregister_netdevice_many(struct list_head *head); 2428static inline void unregister_netdevice(struct net_device *dev) 2429{ 2430 unregister_netdevice_queue(dev, NULL); 2431} 2432 2433int netdev_refcnt_read(const struct net_device *dev); 2434void free_netdev(struct net_device *dev); 2435void netdev_freemem(struct net_device *dev); 2436void synchronize_net(void); 2437int init_dummy_netdev(struct net_device *dev); 2438 2439DECLARE_PER_CPU(int, xmit_recursion); 2440#define XMIT_RECURSION_LIMIT 10 2441 2442static inline int dev_recursion_level(void) 2443{ 2444 return this_cpu_read(xmit_recursion); 2445} 2446 2447struct net_device *dev_get_by_index(struct net *net, int ifindex); 2448struct net_device *__dev_get_by_index(struct net *net, int ifindex); 2449struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex); 2450int netdev_get_name(struct net *net, char *name, int ifindex); 2451int dev_restart(struct net_device *dev); 2452int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb); 2453 2454static inline unsigned int skb_gro_offset(const struct sk_buff *skb) 2455{ 2456 return NAPI_GRO_CB(skb)->data_offset; 2457} 2458 2459static inline unsigned int skb_gro_len(const struct sk_buff *skb) 2460{ 2461 return skb->len - NAPI_GRO_CB(skb)->data_offset; 2462} 2463 2464static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len) 2465{ 2466 NAPI_GRO_CB(skb)->data_offset += len; 2467} 2468 2469static inline void *skb_gro_header_fast(struct sk_buff *skb, 2470 unsigned int offset) 2471{ 2472 return NAPI_GRO_CB(skb)->frag0 + offset; 2473} 2474 2475static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen) 2476{ 2477 return NAPI_GRO_CB(skb)->frag0_len < hlen; 2478} 2479 2480static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen, 2481 unsigned int offset) 2482{ 2483 if (!pskb_may_pull(skb, hlen)) 2484 return NULL; 2485 2486 NAPI_GRO_CB(skb)->frag0 = NULL; 2487 NAPI_GRO_CB(skb)->frag0_len = 0; 2488 return skb->data + offset; 2489} 2490 2491static inline void *skb_gro_network_header(struct sk_buff *skb) 2492{ 2493 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) + 2494 skb_network_offset(skb); 2495} 2496 2497static inline void skb_gro_postpull_rcsum(struct sk_buff *skb, 2498 const void *start, unsigned int len) 2499{ 2500 if (NAPI_GRO_CB(skb)->csum_valid) 2501 NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum, 2502 csum_partial(start, len, 0)); 2503} 2504 2505/* GRO checksum functions. These are logical equivalents of the normal 2506 * checksum functions (in skbuff.h) except that they operate on the GRO 2507 * offsets and fields in sk_buff. 2508 */ 2509 2510__sum16 __skb_gro_checksum_complete(struct sk_buff *skb); 2511 2512static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb) 2513{ 2514 return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb)); 2515} 2516 2517static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb, 2518 bool zero_okay, 2519 __sum16 check) 2520{ 2521 return ((skb->ip_summed != CHECKSUM_PARTIAL || 2522 skb_checksum_start_offset(skb) < 2523 skb_gro_offset(skb)) && 2524 !skb_at_gro_remcsum_start(skb) && 2525 NAPI_GRO_CB(skb)->csum_cnt == 0 && 2526 (!zero_okay || check)); 2527} 2528 2529static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb, 2530 __wsum psum) 2531{ 2532 if (NAPI_GRO_CB(skb)->csum_valid && 2533 !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum))) 2534 return 0; 2535 2536 NAPI_GRO_CB(skb)->csum = psum; 2537 2538 return __skb_gro_checksum_complete(skb); 2539} 2540 2541static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb) 2542{ 2543 if (NAPI_GRO_CB(skb)->csum_cnt > 0) { 2544 /* Consume a checksum from CHECKSUM_UNNECESSARY */ 2545 NAPI_GRO_CB(skb)->csum_cnt--; 2546 } else { 2547 /* Update skb for CHECKSUM_UNNECESSARY and csum_level when we 2548 * verified a new top level checksum or an encapsulated one 2549 * during GRO. This saves work if we fallback to normal path. 2550 */ 2551 __skb_incr_checksum_unnecessary(skb); 2552 } 2553} 2554 2555#define __skb_gro_checksum_validate(skb, proto, zero_okay, check, \ 2556 compute_pseudo) \ 2557({ \ 2558 __sum16 __ret = 0; \ 2559 if (__skb_gro_checksum_validate_needed(skb, zero_okay, check)) \ 2560 __ret = __skb_gro_checksum_validate_complete(skb, \ 2561 compute_pseudo(skb, proto)); \ 2562 if (__ret) \ 2563 __skb_mark_checksum_bad(skb); \ 2564 else \ 2565 skb_gro_incr_csum_unnecessary(skb); \ 2566 __ret; \ 2567}) 2568 2569#define skb_gro_checksum_validate(skb, proto, compute_pseudo) \ 2570 __skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo) 2571 2572#define skb_gro_checksum_validate_zero_check(skb, proto, check, \ 2573 compute_pseudo) \ 2574 __skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo) 2575 2576#define skb_gro_checksum_simple_validate(skb) \ 2577 __skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo) 2578 2579static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb) 2580{ 2581 return (NAPI_GRO_CB(skb)->csum_cnt == 0 && 2582 !NAPI_GRO_CB(skb)->csum_valid); 2583} 2584 2585static inline void __skb_gro_checksum_convert(struct sk_buff *skb, 2586 __sum16 check, __wsum pseudo) 2587{ 2588 NAPI_GRO_CB(skb)->csum = ~pseudo; 2589 NAPI_GRO_CB(skb)->csum_valid = 1; 2590} 2591 2592#define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo) \ 2593do { \ 2594 if (__skb_gro_checksum_convert_check(skb)) \ 2595 __skb_gro_checksum_convert(skb, check, \ 2596 compute_pseudo(skb, proto)); \ 2597} while (0) 2598 2599struct gro_remcsum { 2600 int offset; 2601 __wsum delta; 2602}; 2603 2604static inline void skb_gro_remcsum_init(struct gro_remcsum *grc) 2605{ 2606 grc->offset = 0; 2607 grc->delta = 0; 2608} 2609 2610static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr, 2611 unsigned int off, size_t hdrlen, 2612 int start, int offset, 2613 struct gro_remcsum *grc, 2614 bool nopartial) 2615{ 2616 __wsum delta; 2617 size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start); 2618 2619 BUG_ON(!NAPI_GRO_CB(skb)->csum_valid); 2620 2621 if (!nopartial) { 2622 NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start; 2623 return ptr; 2624 } 2625 2626 ptr = skb_gro_header_fast(skb, off); 2627 if (skb_gro_header_hard(skb, off + plen)) { 2628 ptr = skb_gro_header_slow(skb, off + plen, off); 2629 if (!ptr) 2630 return NULL; 2631 } 2632 2633 delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum, 2634 start, offset); 2635 2636 /* Adjust skb->csum since we changed the packet */ 2637 NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta); 2638 2639 grc->offset = off + hdrlen + offset; 2640 grc->delta = delta; 2641 2642 return ptr; 2643} 2644 2645static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb, 2646 struct gro_remcsum *grc) 2647{ 2648 void *ptr; 2649 size_t plen = grc->offset + sizeof(u16); 2650 2651 if (!grc->delta) 2652 return; 2653 2654 ptr = skb_gro_header_fast(skb, grc->offset); 2655 if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) { 2656 ptr = skb_gro_header_slow(skb, plen, grc->offset); 2657 if (!ptr) 2658 return; 2659 } 2660 2661 remcsum_unadjust((__sum16 *)ptr, grc->delta); 2662} 2663 2664static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev, 2665 unsigned short type, 2666 const void *daddr, const void *saddr, 2667 unsigned int len) 2668{ 2669 if (!dev->header_ops || !dev->header_ops->create) 2670 return 0; 2671 2672 return dev->header_ops->create(skb, dev, type, daddr, saddr, len); 2673} 2674 2675static inline int dev_parse_header(const struct sk_buff *skb, 2676 unsigned char *haddr) 2677{ 2678 const struct net_device *dev = skb->dev; 2679 2680 if (!dev->header_ops || !dev->header_ops->parse) 2681 return 0; 2682 return dev->header_ops->parse(skb, haddr); 2683} 2684 2685/* ll_header must have at least hard_header_len allocated */ 2686static inline bool dev_validate_header(const struct net_device *dev, 2687 char *ll_header, int len) 2688{ 2689 if (likely(len >= dev->hard_header_len)) 2690 return true; 2691 2692 if (capable(CAP_SYS_RAWIO)) { 2693 memset(ll_header + len, 0, dev->hard_header_len - len); 2694 return true; 2695 } 2696 2697 if (dev->header_ops && dev->header_ops->validate) 2698 return dev->header_ops->validate(ll_header, len); 2699 2700 return false; 2701} 2702 2703typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len); 2704int register_gifconf(unsigned int family, gifconf_func_t *gifconf); 2705static inline int unregister_gifconf(unsigned int family) 2706{ 2707 return register_gifconf(family, NULL); 2708} 2709 2710#ifdef CONFIG_NET_FLOW_LIMIT 2711#define FLOW_LIMIT_HISTORY (1 << 7) /* must be ^2 and !overflow buckets */ 2712struct sd_flow_limit { 2713 u64 count; 2714 unsigned int num_buckets; 2715 unsigned int history_head; 2716 u16 history[FLOW_LIMIT_HISTORY]; 2717 u8 buckets[]; 2718}; 2719 2720extern int netdev_flow_limit_table_len; 2721#endif /* CONFIG_NET_FLOW_LIMIT */ 2722 2723/* 2724 * Incoming packets are placed on per-CPU queues 2725 */ 2726struct softnet_data { 2727 struct list_head poll_list; 2728 struct sk_buff_head process_queue; 2729 2730 /* stats */ 2731 unsigned int processed; 2732 unsigned int time_squeeze; 2733 unsigned int received_rps; 2734#ifdef CONFIG_RPS 2735 struct softnet_data *rps_ipi_list; 2736#endif 2737#ifdef CONFIG_NET_FLOW_LIMIT 2738 struct sd_flow_limit __rcu *flow_limit; 2739#endif 2740 struct Qdisc *output_queue; 2741 struct Qdisc **output_queue_tailp; 2742 struct sk_buff *completion_queue; 2743 2744#ifdef CONFIG_RPS 2745 /* input_queue_head should be written by cpu owning this struct, 2746 * and only read by other cpus. Worth using a cache line. 2747 */ 2748 unsigned int input_queue_head ____cacheline_aligned_in_smp; 2749 2750 /* Elements below can be accessed between CPUs for RPS/RFS */ 2751 struct call_single_data csd ____cacheline_aligned_in_smp; 2752 struct softnet_data *rps_ipi_next; 2753 unsigned int cpu; 2754 unsigned int input_queue_tail; 2755#endif 2756 unsigned int dropped; 2757 struct sk_buff_head input_pkt_queue; 2758 struct napi_struct backlog; 2759 2760}; 2761 2762static inline void input_queue_head_incr(struct softnet_data *sd) 2763{ 2764#ifdef CONFIG_RPS 2765 sd->input_queue_head++; 2766#endif 2767} 2768 2769static inline void input_queue_tail_incr_save(struct softnet_data *sd, 2770 unsigned int *qtail) 2771{ 2772#ifdef CONFIG_RPS 2773 *qtail = ++sd->input_queue_tail; 2774#endif 2775} 2776 2777DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 2778 2779void __netif_schedule(struct Qdisc *q); 2780void netif_schedule_queue(struct netdev_queue *txq); 2781 2782static inline void netif_tx_schedule_all(struct net_device *dev) 2783{ 2784 unsigned int i; 2785 2786 for (i = 0; i < dev->num_tx_queues; i++) 2787 netif_schedule_queue(netdev_get_tx_queue(dev, i)); 2788} 2789 2790static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue) 2791{ 2792 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 2793} 2794 2795/** 2796 * netif_start_queue - allow transmit 2797 * @dev: network device 2798 * 2799 * Allow upper layers to call the device hard_start_xmit routine. 2800 */ 2801static inline void netif_start_queue(struct net_device *dev) 2802{ 2803 netif_tx_start_queue(netdev_get_tx_queue(dev, 0)); 2804} 2805 2806static inline void netif_tx_start_all_queues(struct net_device *dev) 2807{ 2808 unsigned int i; 2809 2810 for (i = 0; i < dev->num_tx_queues; i++) { 2811 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2812 netif_tx_start_queue(txq); 2813 } 2814} 2815 2816void netif_tx_wake_queue(struct netdev_queue *dev_queue); 2817 2818/** 2819 * netif_wake_queue - restart transmit 2820 * @dev: network device 2821 * 2822 * Allow upper layers to call the device hard_start_xmit routine. 2823 * Used for flow control when transmit resources are available. 2824 */ 2825static inline void netif_wake_queue(struct net_device *dev) 2826{ 2827 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0)); 2828} 2829 2830static inline void netif_tx_wake_all_queues(struct net_device *dev) 2831{ 2832 unsigned int i; 2833 2834 for (i = 0; i < dev->num_tx_queues; i++) { 2835 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2836 netif_tx_wake_queue(txq); 2837 } 2838} 2839 2840static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue) 2841{ 2842 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 2843} 2844 2845/** 2846 * netif_stop_queue - stop transmitted packets 2847 * @dev: network device 2848 * 2849 * Stop upper layers calling the device hard_start_xmit routine. 2850 * Used for flow control when transmit resources are unavailable. 2851 */ 2852static inline void netif_stop_queue(struct net_device *dev) 2853{ 2854 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0)); 2855} 2856 2857void netif_tx_stop_all_queues(struct net_device *dev); 2858 2859static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue) 2860{ 2861 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 2862} 2863 2864/** 2865 * netif_queue_stopped - test if transmit queue is flowblocked 2866 * @dev: network device 2867 * 2868 * Test if transmit queue on device is currently unable to send. 2869 */ 2870static inline bool netif_queue_stopped(const struct net_device *dev) 2871{ 2872 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0)); 2873} 2874 2875static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue) 2876{ 2877 return dev_queue->state & QUEUE_STATE_ANY_XOFF; 2878} 2879 2880static inline bool 2881netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue) 2882{ 2883 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN; 2884} 2885 2886static inline bool 2887netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue) 2888{ 2889 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN; 2890} 2891 2892/** 2893 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write 2894 * @dev_queue: pointer to transmit queue 2895 * 2896 * BQL enabled drivers might use this helper in their ndo_start_xmit(), 2897 * to give appropriate hint to the CPU. 2898 */ 2899static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue) 2900{ 2901#ifdef CONFIG_BQL 2902 prefetchw(&dev_queue->dql.num_queued); 2903#endif 2904} 2905 2906/** 2907 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write 2908 * @dev_queue: pointer to transmit queue 2909 * 2910 * BQL enabled drivers might use this helper in their TX completion path, 2911 * to give appropriate hint to the CPU. 2912 */ 2913static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue) 2914{ 2915#ifdef CONFIG_BQL 2916 prefetchw(&dev_queue->dql.limit); 2917#endif 2918} 2919 2920static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue, 2921 unsigned int bytes) 2922{ 2923#ifdef CONFIG_BQL 2924 dql_queued(&dev_queue->dql, bytes); 2925 2926 if (likely(dql_avail(&dev_queue->dql) >= 0)) 2927 return; 2928 2929 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 2930 2931 /* 2932 * The XOFF flag must be set before checking the dql_avail below, 2933 * because in netdev_tx_completed_queue we update the dql_completed 2934 * before checking the XOFF flag. 2935 */ 2936 smp_mb(); 2937 2938 /* check again in case another CPU has just made room avail */ 2939 if (unlikely(dql_avail(&dev_queue->dql) >= 0)) 2940 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 2941#endif 2942} 2943 2944/** 2945 * netdev_sent_queue - report the number of bytes queued to hardware 2946 * @dev: network device 2947 * @bytes: number of bytes queued to the hardware device queue 2948 * 2949 * Report the number of bytes queued for sending/completion to the network 2950 * device hardware queue. @bytes should be a good approximation and should 2951 * exactly match netdev_completed_queue() @bytes 2952 */ 2953static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes) 2954{ 2955 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes); 2956} 2957 2958static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue, 2959 unsigned int pkts, unsigned int bytes) 2960{ 2961#ifdef CONFIG_BQL 2962 if (unlikely(!bytes)) 2963 return; 2964 2965 dql_completed(&dev_queue->dql, bytes); 2966 2967 /* 2968 * Without the memory barrier there is a small possiblity that 2969 * netdev_tx_sent_queue will miss the update and cause the queue to 2970 * be stopped forever 2971 */ 2972 smp_mb(); 2973 2974 if (dql_avail(&dev_queue->dql) < 0) 2975 return; 2976 2977 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state)) 2978 netif_schedule_queue(dev_queue); 2979#endif 2980} 2981 2982/** 2983 * netdev_completed_queue - report bytes and packets completed by device 2984 * @dev: network device 2985 * @pkts: actual number of packets sent over the medium 2986 * @bytes: actual number of bytes sent over the medium 2987 * 2988 * Report the number of bytes and packets transmitted by the network device 2989 * hardware queue over the physical medium, @bytes must exactly match the 2990 * @bytes amount passed to netdev_sent_queue() 2991 */ 2992static inline void netdev_completed_queue(struct net_device *dev, 2993 unsigned int pkts, unsigned int bytes) 2994{ 2995 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes); 2996} 2997 2998static inline void netdev_tx_reset_queue(struct netdev_queue *q) 2999{ 3000#ifdef CONFIG_BQL 3001 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state); 3002 dql_reset(&q->dql); 3003#endif 3004} 3005 3006/** 3007 * netdev_reset_queue - reset the packets and bytes count of a network device 3008 * @dev_queue: network device 3009 * 3010 * Reset the bytes and packet count of a network device and clear the 3011 * software flow control OFF bit for this network device 3012 */ 3013static inline void netdev_reset_queue(struct net_device *dev_queue) 3014{ 3015 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0)); 3016} 3017 3018/** 3019 * netdev_cap_txqueue - check if selected tx queue exceeds device queues 3020 * @dev: network device 3021 * @queue_index: given tx queue index 3022 * 3023 * Returns 0 if given tx queue index >= number of device tx queues, 3024 * otherwise returns the originally passed tx queue index. 3025 */ 3026static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index) 3027{ 3028 if (unlikely(queue_index >= dev->real_num_tx_queues)) { 3029 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n", 3030 dev->name, queue_index, 3031 dev->real_num_tx_queues); 3032 return 0; 3033 } 3034 3035 return queue_index; 3036} 3037 3038/** 3039 * netif_running - test if up 3040 * @dev: network device 3041 * 3042 * Test if the device has been brought up. 3043 */ 3044static inline bool netif_running(const struct net_device *dev) 3045{ 3046 return test_bit(__LINK_STATE_START, &dev->state); 3047} 3048 3049/* 3050 * Routines to manage the subqueues on a device. We only need start, 3051 * stop, and a check if it's stopped. All other device management is 3052 * done at the overall netdevice level. 3053 * Also test the device if we're multiqueue. 3054 */ 3055 3056/** 3057 * netif_start_subqueue - allow sending packets on subqueue 3058 * @dev: network device 3059 * @queue_index: sub queue index 3060 * 3061 * Start individual transmit queue of a device with multiple transmit queues. 3062 */ 3063static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index) 3064{ 3065 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3066 3067 netif_tx_start_queue(txq); 3068} 3069 3070/** 3071 * netif_stop_subqueue - stop sending packets on subqueue 3072 * @dev: network device 3073 * @queue_index: sub queue index 3074 * 3075 * Stop individual transmit queue of a device with multiple transmit queues. 3076 */ 3077static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index) 3078{ 3079 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3080 netif_tx_stop_queue(txq); 3081} 3082 3083/** 3084 * netif_subqueue_stopped - test status of subqueue 3085 * @dev: network device 3086 * @queue_index: sub queue index 3087 * 3088 * Check individual transmit queue of a device with multiple transmit queues. 3089 */ 3090static inline bool __netif_subqueue_stopped(const struct net_device *dev, 3091 u16 queue_index) 3092{ 3093 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 3094 3095 return netif_tx_queue_stopped(txq); 3096} 3097 3098static inline bool netif_subqueue_stopped(const struct net_device *dev, 3099 struct sk_buff *skb) 3100{ 3101 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb)); 3102} 3103 3104void netif_wake_subqueue(struct net_device *dev, u16 queue_index); 3105 3106#ifdef CONFIG_XPS 3107int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 3108 u16 index); 3109#else 3110static inline int netif_set_xps_queue(struct net_device *dev, 3111 const struct cpumask *mask, 3112 u16 index) 3113{ 3114 return 0; 3115} 3116#endif 3117 3118u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb, 3119 unsigned int num_tx_queues); 3120 3121/* 3122 * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used 3123 * as a distribution range limit for the returned value. 3124 */ 3125static inline u16 skb_tx_hash(const struct net_device *dev, 3126 struct sk_buff *skb) 3127{ 3128 return __skb_tx_hash(dev, skb, dev->real_num_tx_queues); 3129} 3130 3131/** 3132 * netif_is_multiqueue - test if device has multiple transmit queues 3133 * @dev: network device 3134 * 3135 * Check if device has multiple transmit queues 3136 */ 3137static inline bool netif_is_multiqueue(const struct net_device *dev) 3138{ 3139 return dev->num_tx_queues > 1; 3140} 3141 3142int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq); 3143 3144#ifdef CONFIG_SYSFS 3145int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq); 3146#else 3147static inline int netif_set_real_num_rx_queues(struct net_device *dev, 3148 unsigned int rxq) 3149{ 3150 return 0; 3151} 3152#endif 3153 3154#ifdef CONFIG_SYSFS 3155static inline unsigned int get_netdev_rx_queue_index( 3156 struct netdev_rx_queue *queue) 3157{ 3158 struct net_device *dev = queue->dev; 3159 int index = queue - dev->_rx; 3160 3161 BUG_ON(index >= dev->num_rx_queues); 3162 return index; 3163} 3164#endif 3165 3166#define DEFAULT_MAX_NUM_RSS_QUEUES (8) 3167int netif_get_num_default_rss_queues(void); 3168 3169enum skb_free_reason { 3170 SKB_REASON_CONSUMED, 3171 SKB_REASON_DROPPED, 3172}; 3173 3174void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason); 3175void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason); 3176 3177/* 3178 * It is not allowed to call kfree_skb() or consume_skb() from hardware 3179 * interrupt context or with hardware interrupts being disabled. 3180 * (in_irq() || irqs_disabled()) 3181 * 3182 * We provide four helpers that can be used in following contexts : 3183 * 3184 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context, 3185 * replacing kfree_skb(skb) 3186 * 3187 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context. 3188 * Typically used in place of consume_skb(skb) in TX completion path 3189 * 3190 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context, 3191 * replacing kfree_skb(skb) 3192 * 3193 * dev_consume_skb_any(skb) when caller doesn't know its current irq context, 3194 * and consumed a packet. Used in place of consume_skb(skb) 3195 */ 3196static inline void dev_kfree_skb_irq(struct sk_buff *skb) 3197{ 3198 __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED); 3199} 3200 3201static inline void dev_consume_skb_irq(struct sk_buff *skb) 3202{ 3203 __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED); 3204} 3205 3206static inline void dev_kfree_skb_any(struct sk_buff *skb) 3207{ 3208 __dev_kfree_skb_any(skb, SKB_REASON_DROPPED); 3209} 3210 3211static inline void dev_consume_skb_any(struct sk_buff *skb) 3212{ 3213 __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED); 3214} 3215 3216int netif_rx(struct sk_buff *skb); 3217int netif_rx_ni(struct sk_buff *skb); 3218int netif_receive_skb(struct sk_buff *skb); 3219gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb); 3220void napi_gro_flush(struct napi_struct *napi, bool flush_old); 3221struct sk_buff *napi_get_frags(struct napi_struct *napi); 3222gro_result_t napi_gro_frags(struct napi_struct *napi); 3223struct packet_offload *gro_find_receive_by_type(__be16 type); 3224struct packet_offload *gro_find_complete_by_type(__be16 type); 3225 3226static inline void napi_free_frags(struct napi_struct *napi) 3227{ 3228 kfree_skb(napi->skb); 3229 napi->skb = NULL; 3230} 3231 3232bool netdev_is_rx_handler_busy(struct net_device *dev); 3233int netdev_rx_handler_register(struct net_device *dev, 3234 rx_handler_func_t *rx_handler, 3235 void *rx_handler_data); 3236void netdev_rx_handler_unregister(struct net_device *dev); 3237 3238bool dev_valid_name(const char *name); 3239int dev_ioctl(struct net *net, unsigned int cmd, void __user *); 3240int dev_ethtool(struct net *net, struct ifreq *); 3241unsigned int dev_get_flags(const struct net_device *); 3242int __dev_change_flags(struct net_device *, unsigned int flags); 3243int dev_change_flags(struct net_device *, unsigned int); 3244void __dev_notify_flags(struct net_device *, unsigned int old_flags, 3245 unsigned int gchanges); 3246int dev_change_name(struct net_device *, const char *); 3247int dev_set_alias(struct net_device *, const char *, size_t); 3248int dev_change_net_namespace(struct net_device *, struct net *, const char *); 3249int dev_set_mtu(struct net_device *, int); 3250void dev_set_group(struct net_device *, int); 3251int dev_set_mac_address(struct net_device *, struct sockaddr *); 3252int dev_change_carrier(struct net_device *, bool new_carrier); 3253int dev_get_phys_port_id(struct net_device *dev, 3254 struct netdev_phys_item_id *ppid); 3255int dev_get_phys_port_name(struct net_device *dev, 3256 char *name, size_t len); 3257int dev_change_proto_down(struct net_device *dev, bool proto_down); 3258int dev_change_xdp_fd(struct net_device *dev, int fd, u32 flags); 3259struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev); 3260struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 3261 struct netdev_queue *txq, int *ret); 3262int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3263int dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 3264bool is_skb_forwardable(const struct net_device *dev, 3265 const struct sk_buff *skb); 3266 3267static __always_inline int ____dev_forward_skb(struct net_device *dev, 3268 struct sk_buff *skb) 3269{ 3270 if (skb_orphan_frags(skb, GFP_ATOMIC) || 3271 unlikely(!is_skb_forwardable(dev, skb))) { 3272 atomic_long_inc(&dev->rx_dropped); 3273 kfree_skb(skb); 3274 return NET_RX_DROP; 3275 } 3276 3277 skb_scrub_packet(skb, true); 3278 skb->priority = 0; 3279 return 0; 3280} 3281 3282void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev); 3283 3284extern int netdev_budget; 3285 3286/* Called by rtnetlink.c:rtnl_unlock() */ 3287void netdev_run_todo(void); 3288 3289/** 3290 * dev_put - release reference to device 3291 * @dev: network device 3292 * 3293 * Release reference to device to allow it to be freed. 3294 */ 3295static inline void dev_put(struct net_device *dev) 3296{ 3297 this_cpu_dec(*dev->pcpu_refcnt); 3298} 3299 3300/** 3301 * dev_hold - get reference to device 3302 * @dev: network device 3303 * 3304 * Hold reference to device to keep it from being freed. 3305 */ 3306static inline void dev_hold(struct net_device *dev) 3307{ 3308 this_cpu_inc(*dev->pcpu_refcnt); 3309} 3310 3311/* Carrier loss detection, dial on demand. The functions netif_carrier_on 3312 * and _off may be called from IRQ context, but it is caller 3313 * who is responsible for serialization of these calls. 3314 * 3315 * The name carrier is inappropriate, these functions should really be 3316 * called netif_lowerlayer_*() because they represent the state of any 3317 * kind of lower layer not just hardware media. 3318 */ 3319 3320void linkwatch_init_dev(struct net_device *dev); 3321void linkwatch_fire_event(struct net_device *dev); 3322void linkwatch_forget_dev(struct net_device *dev); 3323 3324/** 3325 * netif_carrier_ok - test if carrier present 3326 * @dev: network device 3327 * 3328 * Check if carrier is present on device 3329 */ 3330static inline bool netif_carrier_ok(const struct net_device *dev) 3331{ 3332 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state); 3333} 3334 3335unsigned long dev_trans_start(struct net_device *dev); 3336 3337void __netdev_watchdog_up(struct net_device *dev); 3338 3339void netif_carrier_on(struct net_device *dev); 3340 3341void netif_carrier_off(struct net_device *dev); 3342 3343/** 3344 * netif_dormant_on - mark device as dormant. 3345 * @dev: network device 3346 * 3347 * Mark device as dormant (as per RFC2863). 3348 * 3349 * The dormant state indicates that the relevant interface is not 3350 * actually in a condition to pass packets (i.e., it is not 'up') but is 3351 * in a "pending" state, waiting for some external event. For "on- 3352 * demand" interfaces, this new state identifies the situation where the 3353 * interface is waiting for events to place it in the up state. 3354 */ 3355static inline void netif_dormant_on(struct net_device *dev) 3356{ 3357 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state)) 3358 linkwatch_fire_event(dev); 3359} 3360 3361/** 3362 * netif_dormant_off - set device as not dormant. 3363 * @dev: network device 3364 * 3365 * Device is not in dormant state. 3366 */ 3367static inline void netif_dormant_off(struct net_device *dev) 3368{ 3369 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state)) 3370 linkwatch_fire_event(dev); 3371} 3372 3373/** 3374 * netif_dormant - test if carrier present 3375 * @dev: network device 3376 * 3377 * Check if carrier is present on device 3378 */ 3379static inline bool netif_dormant(const struct net_device *dev) 3380{ 3381 return test_bit(__LINK_STATE_DORMANT, &dev->state); 3382} 3383 3384 3385/** 3386 * netif_oper_up - test if device is operational 3387 * @dev: network device 3388 * 3389 * Check if carrier is operational 3390 */ 3391static inline bool netif_oper_up(const struct net_device *dev) 3392{ 3393 return (dev->operstate == IF_OPER_UP || 3394 dev->operstate == IF_OPER_UNKNOWN /* backward compat */); 3395} 3396 3397/** 3398 * netif_device_present - is device available or removed 3399 * @dev: network device 3400 * 3401 * Check if device has not been removed from system. 3402 */ 3403static inline bool netif_device_present(struct net_device *dev) 3404{ 3405 return test_bit(__LINK_STATE_PRESENT, &dev->state); 3406} 3407 3408void netif_device_detach(struct net_device *dev); 3409 3410void netif_device_attach(struct net_device *dev); 3411 3412/* 3413 * Network interface message level settings 3414 */ 3415 3416enum { 3417 NETIF_MSG_DRV = 0x0001, 3418 NETIF_MSG_PROBE = 0x0002, 3419 NETIF_MSG_LINK = 0x0004, 3420 NETIF_MSG_TIMER = 0x0008, 3421 NETIF_MSG_IFDOWN = 0x0010, 3422 NETIF_MSG_IFUP = 0x0020, 3423 NETIF_MSG_RX_ERR = 0x0040, 3424 NETIF_MSG_TX_ERR = 0x0080, 3425 NETIF_MSG_TX_QUEUED = 0x0100, 3426 NETIF_MSG_INTR = 0x0200, 3427 NETIF_MSG_TX_DONE = 0x0400, 3428 NETIF_MSG_RX_STATUS = 0x0800, 3429 NETIF_MSG_PKTDATA = 0x1000, 3430 NETIF_MSG_HW = 0x2000, 3431 NETIF_MSG_WOL = 0x4000, 3432}; 3433 3434#define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV) 3435#define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE) 3436#define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK) 3437#define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER) 3438#define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN) 3439#define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP) 3440#define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR) 3441#define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR) 3442#define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED) 3443#define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR) 3444#define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE) 3445#define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS) 3446#define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA) 3447#define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW) 3448#define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL) 3449 3450static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits) 3451{ 3452 /* use default */ 3453 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8)) 3454 return default_msg_enable_bits; 3455 if (debug_value == 0) /* no output */ 3456 return 0; 3457 /* set low N bits */ 3458 return (1 << debug_value) - 1; 3459} 3460 3461static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu) 3462{ 3463 spin_lock(&txq->_xmit_lock); 3464 txq->xmit_lock_owner = cpu; 3465} 3466 3467static inline bool __netif_tx_acquire(struct netdev_queue *txq) 3468{ 3469 __acquire(&txq->_xmit_lock); 3470 return true; 3471} 3472 3473static inline void __netif_tx_release(struct netdev_queue *txq) 3474{ 3475 __release(&txq->_xmit_lock); 3476} 3477 3478static inline void __netif_tx_lock_bh(struct netdev_queue *txq) 3479{ 3480 spin_lock_bh(&txq->_xmit_lock); 3481 txq->xmit_lock_owner = smp_processor_id(); 3482} 3483 3484static inline bool __netif_tx_trylock(struct netdev_queue *txq) 3485{ 3486 bool ok = spin_trylock(&txq->_xmit_lock); 3487 if (likely(ok)) 3488 txq->xmit_lock_owner = smp_processor_id(); 3489 return ok; 3490} 3491 3492static inline void __netif_tx_unlock(struct netdev_queue *txq) 3493{ 3494 txq->xmit_lock_owner = -1; 3495 spin_unlock(&txq->_xmit_lock); 3496} 3497 3498static inline void __netif_tx_unlock_bh(struct netdev_queue *txq) 3499{ 3500 txq->xmit_lock_owner = -1; 3501 spin_unlock_bh(&txq->_xmit_lock); 3502} 3503 3504static inline void txq_trans_update(struct netdev_queue *txq) 3505{ 3506 if (txq->xmit_lock_owner != -1) 3507 txq->trans_start = jiffies; 3508} 3509 3510/* legacy drivers only, netdev_start_xmit() sets txq->trans_start */ 3511static inline void netif_trans_update(struct net_device *dev) 3512{ 3513 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0); 3514 3515 if (txq->trans_start != jiffies) 3516 txq->trans_start = jiffies; 3517} 3518 3519/** 3520 * netif_tx_lock - grab network device transmit lock 3521 * @dev: network device 3522 * 3523 * Get network device transmit lock 3524 */ 3525static inline void netif_tx_lock(struct net_device *dev) 3526{ 3527 unsigned int i; 3528 int cpu; 3529 3530 spin_lock(&dev->tx_global_lock); 3531 cpu = smp_processor_id(); 3532 for (i = 0; i < dev->num_tx_queues; i++) { 3533 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3534 3535 /* We are the only thread of execution doing a 3536 * freeze, but we have to grab the _xmit_lock in 3537 * order to synchronize with threads which are in 3538 * the ->hard_start_xmit() handler and already 3539 * checked the frozen bit. 3540 */ 3541 __netif_tx_lock(txq, cpu); 3542 set_bit(__QUEUE_STATE_FROZEN, &txq->state); 3543 __netif_tx_unlock(txq); 3544 } 3545} 3546 3547static inline void netif_tx_lock_bh(struct net_device *dev) 3548{ 3549 local_bh_disable(); 3550 netif_tx_lock(dev); 3551} 3552 3553static inline void netif_tx_unlock(struct net_device *dev) 3554{ 3555 unsigned int i; 3556 3557 for (i = 0; i < dev->num_tx_queues; i++) { 3558 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3559 3560 /* No need to grab the _xmit_lock here. If the 3561 * queue is not stopped for another reason, we 3562 * force a schedule. 3563 */ 3564 clear_bit(__QUEUE_STATE_FROZEN, &txq->state); 3565 netif_schedule_queue(txq); 3566 } 3567 spin_unlock(&dev->tx_global_lock); 3568} 3569 3570static inline void netif_tx_unlock_bh(struct net_device *dev) 3571{ 3572 netif_tx_unlock(dev); 3573 local_bh_enable(); 3574} 3575 3576#define HARD_TX_LOCK(dev, txq, cpu) { \ 3577 if ((dev->features & NETIF_F_LLTX) == 0) { \ 3578 __netif_tx_lock(txq, cpu); \ 3579 } else { \ 3580 __netif_tx_acquire(txq); \ 3581 } \ 3582} 3583 3584#define HARD_TX_TRYLOCK(dev, txq) \ 3585 (((dev->features & NETIF_F_LLTX) == 0) ? \ 3586 __netif_tx_trylock(txq) : \ 3587 __netif_tx_acquire(txq)) 3588 3589#define HARD_TX_UNLOCK(dev, txq) { \ 3590 if ((dev->features & NETIF_F_LLTX) == 0) { \ 3591 __netif_tx_unlock(txq); \ 3592 } else { \ 3593 __netif_tx_release(txq); \ 3594 } \ 3595} 3596 3597static inline void netif_tx_disable(struct net_device *dev) 3598{ 3599 unsigned int i; 3600 int cpu; 3601 3602 local_bh_disable(); 3603 cpu = smp_processor_id(); 3604 for (i = 0; i < dev->num_tx_queues; i++) { 3605 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3606 3607 __netif_tx_lock(txq, cpu); 3608 netif_tx_stop_queue(txq); 3609 __netif_tx_unlock(txq); 3610 } 3611 local_bh_enable(); 3612} 3613 3614static inline void netif_addr_lock(struct net_device *dev) 3615{ 3616 spin_lock(&dev->addr_list_lock); 3617} 3618 3619static inline void netif_addr_lock_nested(struct net_device *dev) 3620{ 3621 int subclass = SINGLE_DEPTH_NESTING; 3622 3623 if (dev->netdev_ops->ndo_get_lock_subclass) 3624 subclass = dev->netdev_ops->ndo_get_lock_subclass(dev); 3625 3626 spin_lock_nested(&dev->addr_list_lock, subclass); 3627} 3628 3629static inline void netif_addr_lock_bh(struct net_device *dev) 3630{ 3631 spin_lock_bh(&dev->addr_list_lock); 3632} 3633 3634static inline void netif_addr_unlock(struct net_device *dev) 3635{ 3636 spin_unlock(&dev->addr_list_lock); 3637} 3638 3639static inline void netif_addr_unlock_bh(struct net_device *dev) 3640{ 3641 spin_unlock_bh(&dev->addr_list_lock); 3642} 3643 3644/* 3645 * dev_addrs walker. Should be used only for read access. Call with 3646 * rcu_read_lock held. 3647 */ 3648#define for_each_dev_addr(dev, ha) \ 3649 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list) 3650 3651/* These functions live elsewhere (drivers/net/net_init.c, but related) */ 3652 3653void ether_setup(struct net_device *dev); 3654 3655/* Support for loadable net-drivers */ 3656struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 3657 unsigned char name_assign_type, 3658 void (*setup)(struct net_device *), 3659 unsigned int txqs, unsigned int rxqs); 3660#define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \ 3661 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1) 3662 3663#define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \ 3664 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \ 3665 count) 3666 3667int register_netdev(struct net_device *dev); 3668void unregister_netdev(struct net_device *dev); 3669 3670/* General hardware address lists handling functions */ 3671int __hw_addr_sync(struct netdev_hw_addr_list *to_list, 3672 struct netdev_hw_addr_list *from_list, int addr_len); 3673void __hw_addr_unsync(struct netdev_hw_addr_list *to_list, 3674 struct netdev_hw_addr_list *from_list, int addr_len); 3675int __hw_addr_sync_dev(struct netdev_hw_addr_list *list, 3676 struct net_device *dev, 3677 int (*sync)(struct net_device *, const unsigned char *), 3678 int (*unsync)(struct net_device *, 3679 const unsigned char *)); 3680void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list, 3681 struct net_device *dev, 3682 int (*unsync)(struct net_device *, 3683 const unsigned char *)); 3684void __hw_addr_init(struct netdev_hw_addr_list *list); 3685 3686/* Functions used for device addresses handling */ 3687int dev_addr_add(struct net_device *dev, const unsigned char *addr, 3688 unsigned char addr_type); 3689int dev_addr_del(struct net_device *dev, const unsigned char *addr, 3690 unsigned char addr_type); 3691void dev_addr_flush(struct net_device *dev); 3692int dev_addr_init(struct net_device *dev); 3693 3694/* Functions used for unicast addresses handling */ 3695int dev_uc_add(struct net_device *dev, const unsigned char *addr); 3696int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr); 3697int dev_uc_del(struct net_device *dev, const unsigned char *addr); 3698int dev_uc_sync(struct net_device *to, struct net_device *from); 3699int dev_uc_sync_multiple(struct net_device *to, struct net_device *from); 3700void dev_uc_unsync(struct net_device *to, struct net_device *from); 3701void dev_uc_flush(struct net_device *dev); 3702void dev_uc_init(struct net_device *dev); 3703 3704/** 3705 * __dev_uc_sync - Synchonize device's unicast list 3706 * @dev: device to sync 3707 * @sync: function to call if address should be added 3708 * @unsync: function to call if address should be removed 3709 * 3710 * Add newly added addresses to the interface, and release 3711 * addresses that have been deleted. 3712 */ 3713static inline int __dev_uc_sync(struct net_device *dev, 3714 int (*sync)(struct net_device *, 3715 const unsigned char *), 3716 int (*unsync)(struct net_device *, 3717 const unsigned char *)) 3718{ 3719 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync); 3720} 3721 3722/** 3723 * __dev_uc_unsync - Remove synchronized addresses from device 3724 * @dev: device to sync 3725 * @unsync: function to call if address should be removed 3726 * 3727 * Remove all addresses that were added to the device by dev_uc_sync(). 3728 */ 3729static inline void __dev_uc_unsync(struct net_device *dev, 3730 int (*unsync)(struct net_device *, 3731 const unsigned char *)) 3732{ 3733 __hw_addr_unsync_dev(&dev->uc, dev, unsync); 3734} 3735 3736/* Functions used for multicast addresses handling */ 3737int dev_mc_add(struct net_device *dev, const unsigned char *addr); 3738int dev_mc_add_global(struct net_device *dev, const unsigned char *addr); 3739int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr); 3740int dev_mc_del(struct net_device *dev, const unsigned char *addr); 3741int dev_mc_del_global(struct net_device *dev, const unsigned char *addr); 3742int dev_mc_sync(struct net_device *to, struct net_device *from); 3743int dev_mc_sync_multiple(struct net_device *to, struct net_device *from); 3744void dev_mc_unsync(struct net_device *to, struct net_device *from); 3745void dev_mc_flush(struct net_device *dev); 3746void dev_mc_init(struct net_device *dev); 3747 3748/** 3749 * __dev_mc_sync - Synchonize device's multicast list 3750 * @dev: device to sync 3751 * @sync: function to call if address should be added 3752 * @unsync: function to call if address should be removed 3753 * 3754 * Add newly added addresses to the interface, and release 3755 * addresses that have been deleted. 3756 */ 3757static inline int __dev_mc_sync(struct net_device *dev, 3758 int (*sync)(struct net_device *, 3759 const unsigned char *), 3760 int (*unsync)(struct net_device *, 3761 const unsigned char *)) 3762{ 3763 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync); 3764} 3765 3766/** 3767 * __dev_mc_unsync - Remove synchronized addresses from device 3768 * @dev: device to sync 3769 * @unsync: function to call if address should be removed 3770 * 3771 * Remove all addresses that were added to the device by dev_mc_sync(). 3772 */ 3773static inline void __dev_mc_unsync(struct net_device *dev, 3774 int (*unsync)(struct net_device *, 3775 const unsigned char *)) 3776{ 3777 __hw_addr_unsync_dev(&dev->mc, dev, unsync); 3778} 3779 3780/* Functions used for secondary unicast and multicast support */ 3781void dev_set_rx_mode(struct net_device *dev); 3782void __dev_set_rx_mode(struct net_device *dev); 3783int dev_set_promiscuity(struct net_device *dev, int inc); 3784int dev_set_allmulti(struct net_device *dev, int inc); 3785void netdev_state_change(struct net_device *dev); 3786void netdev_notify_peers(struct net_device *dev); 3787void netdev_features_change(struct net_device *dev); 3788/* Load a device via the kmod */ 3789void dev_load(struct net *net, const char *name); 3790struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 3791 struct rtnl_link_stats64 *storage); 3792void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 3793 const struct net_device_stats *netdev_stats); 3794 3795extern int netdev_max_backlog; 3796extern int netdev_tstamp_prequeue; 3797extern int weight_p; 3798 3799bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev); 3800struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 3801 struct list_head **iter); 3802struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev, 3803 struct list_head **iter); 3804 3805/* iterate through upper list, must be called under RCU read lock */ 3806#define netdev_for_each_upper_dev_rcu(dev, updev, iter) \ 3807 for (iter = &(dev)->adj_list.upper, \ 3808 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \ 3809 updev; \ 3810 updev = netdev_upper_get_next_dev_rcu(dev, &(iter))) 3811 3812int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 3813 int (*fn)(struct net_device *upper_dev, 3814 void *data), 3815 void *data); 3816 3817bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 3818 struct net_device *upper_dev); 3819 3820void *netdev_lower_get_next_private(struct net_device *dev, 3821 struct list_head **iter); 3822void *netdev_lower_get_next_private_rcu(struct net_device *dev, 3823 struct list_head **iter); 3824 3825#define netdev_for_each_lower_private(dev, priv, iter) \ 3826 for (iter = (dev)->adj_list.lower.next, \ 3827 priv = netdev_lower_get_next_private(dev, &(iter)); \ 3828 priv; \ 3829 priv = netdev_lower_get_next_private(dev, &(iter))) 3830 3831#define netdev_for_each_lower_private_rcu(dev, priv, iter) \ 3832 for (iter = &(dev)->adj_list.lower, \ 3833 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \ 3834 priv; \ 3835 priv = netdev_lower_get_next_private_rcu(dev, &(iter))) 3836 3837void *netdev_lower_get_next(struct net_device *dev, 3838 struct list_head **iter); 3839 3840#define netdev_for_each_lower_dev(dev, ldev, iter) \ 3841 for (iter = (dev)->adj_list.lower.next, \ 3842 ldev = netdev_lower_get_next(dev, &(iter)); \ 3843 ldev; \ 3844 ldev = netdev_lower_get_next(dev, &(iter))) 3845 3846struct net_device *netdev_all_lower_get_next(struct net_device *dev, 3847 struct list_head **iter); 3848struct net_device *netdev_all_lower_get_next_rcu(struct net_device *dev, 3849 struct list_head **iter); 3850 3851int netdev_walk_all_lower_dev(struct net_device *dev, 3852 int (*fn)(struct net_device *lower_dev, 3853 void *data), 3854 void *data); 3855int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 3856 int (*fn)(struct net_device *lower_dev, 3857 void *data), 3858 void *data); 3859 3860void *netdev_adjacent_get_private(struct list_head *adj_list); 3861void *netdev_lower_get_first_private_rcu(struct net_device *dev); 3862struct net_device *netdev_master_upper_dev_get(struct net_device *dev); 3863struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev); 3864int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev); 3865int netdev_master_upper_dev_link(struct net_device *dev, 3866 struct net_device *upper_dev, 3867 void *upper_priv, void *upper_info); 3868void netdev_upper_dev_unlink(struct net_device *dev, 3869 struct net_device *upper_dev); 3870void netdev_adjacent_rename_links(struct net_device *dev, char *oldname); 3871void *netdev_lower_dev_get_private(struct net_device *dev, 3872 struct net_device *lower_dev); 3873void netdev_lower_state_changed(struct net_device *lower_dev, 3874 void *lower_state_info); 3875int netdev_default_l2upper_neigh_construct(struct net_device *dev, 3876 struct neighbour *n); 3877void netdev_default_l2upper_neigh_destroy(struct net_device *dev, 3878 struct neighbour *n); 3879 3880/* RSS keys are 40 or 52 bytes long */ 3881#define NETDEV_RSS_KEY_LEN 52 3882extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly; 3883void netdev_rss_key_fill(void *buffer, size_t len); 3884 3885int dev_get_nest_level(struct net_device *dev); 3886int skb_checksum_help(struct sk_buff *skb); 3887struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 3888 netdev_features_t features, bool tx_path); 3889struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 3890 netdev_features_t features); 3891 3892struct netdev_bonding_info { 3893 ifslave slave; 3894 ifbond master; 3895}; 3896 3897struct netdev_notifier_bonding_info { 3898 struct netdev_notifier_info info; /* must be first */ 3899 struct netdev_bonding_info bonding_info; 3900}; 3901 3902void netdev_bonding_info_change(struct net_device *dev, 3903 struct netdev_bonding_info *bonding_info); 3904 3905static inline 3906struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features) 3907{ 3908 return __skb_gso_segment(skb, features, true); 3909} 3910__be16 skb_network_protocol(struct sk_buff *skb, int *depth); 3911 3912static inline bool can_checksum_protocol(netdev_features_t features, 3913 __be16 protocol) 3914{ 3915 if (protocol == htons(ETH_P_FCOE)) 3916 return !!(features & NETIF_F_FCOE_CRC); 3917 3918 /* Assume this is an IP checksum (not SCTP CRC) */ 3919 3920 if (features & NETIF_F_HW_CSUM) { 3921 /* Can checksum everything */ 3922 return true; 3923 } 3924 3925 switch (protocol) { 3926 case htons(ETH_P_IP): 3927 return !!(features & NETIF_F_IP_CSUM); 3928 case htons(ETH_P_IPV6): 3929 return !!(features & NETIF_F_IPV6_CSUM); 3930 default: 3931 return false; 3932 } 3933} 3934 3935#ifdef CONFIG_BUG 3936void netdev_rx_csum_fault(struct net_device *dev); 3937#else 3938static inline void netdev_rx_csum_fault(struct net_device *dev) 3939{ 3940} 3941#endif 3942/* rx skb timestamps */ 3943void net_enable_timestamp(void); 3944void net_disable_timestamp(void); 3945 3946#ifdef CONFIG_PROC_FS 3947int __init dev_proc_init(void); 3948#else 3949#define dev_proc_init() 0 3950#endif 3951 3952static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops, 3953 struct sk_buff *skb, struct net_device *dev, 3954 bool more) 3955{ 3956 skb->xmit_more = more ? 1 : 0; 3957 return ops->ndo_start_xmit(skb, dev); 3958} 3959 3960static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev, 3961 struct netdev_queue *txq, bool more) 3962{ 3963 const struct net_device_ops *ops = dev->netdev_ops; 3964 int rc; 3965 3966 rc = __netdev_start_xmit(ops, skb, dev, more); 3967 if (rc == NETDEV_TX_OK) 3968 txq_trans_update(txq); 3969 3970 return rc; 3971} 3972 3973int netdev_class_create_file_ns(struct class_attribute *class_attr, 3974 const void *ns); 3975void netdev_class_remove_file_ns(struct class_attribute *class_attr, 3976 const void *ns); 3977 3978static inline int netdev_class_create_file(struct class_attribute *class_attr) 3979{ 3980 return netdev_class_create_file_ns(class_attr, NULL); 3981} 3982 3983static inline void netdev_class_remove_file(struct class_attribute *class_attr) 3984{ 3985 netdev_class_remove_file_ns(class_attr, NULL); 3986} 3987 3988extern struct kobj_ns_type_operations net_ns_type_operations; 3989 3990const char *netdev_drivername(const struct net_device *dev); 3991 3992void linkwatch_run_queue(void); 3993 3994static inline netdev_features_t netdev_intersect_features(netdev_features_t f1, 3995 netdev_features_t f2) 3996{ 3997 if ((f1 ^ f2) & NETIF_F_HW_CSUM) { 3998 if (f1 & NETIF_F_HW_CSUM) 3999 f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4000 else 4001 f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4002 } 4003 4004 return f1 & f2; 4005} 4006 4007static inline netdev_features_t netdev_get_wanted_features( 4008 struct net_device *dev) 4009{ 4010 return (dev->features & ~dev->hw_features) | dev->wanted_features; 4011} 4012netdev_features_t netdev_increment_features(netdev_features_t all, 4013 netdev_features_t one, netdev_features_t mask); 4014 4015/* Allow TSO being used on stacked device : 4016 * Performing the GSO segmentation before last device 4017 * is a performance improvement. 4018 */ 4019static inline netdev_features_t netdev_add_tso_features(netdev_features_t features, 4020 netdev_features_t mask) 4021{ 4022 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask); 4023} 4024 4025int __netdev_update_features(struct net_device *dev); 4026void netdev_update_features(struct net_device *dev); 4027void netdev_change_features(struct net_device *dev); 4028 4029void netif_stacked_transfer_operstate(const struct net_device *rootdev, 4030 struct net_device *dev); 4031 4032netdev_features_t passthru_features_check(struct sk_buff *skb, 4033 struct net_device *dev, 4034 netdev_features_t features); 4035netdev_features_t netif_skb_features(struct sk_buff *skb); 4036 4037static inline bool net_gso_ok(netdev_features_t features, int gso_type) 4038{ 4039 netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT; 4040 4041 /* check flags correspondence */ 4042 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT)); 4043 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT)); 4044 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT)); 4045 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT)); 4046 BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT)); 4047 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT)); 4048 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT)); 4049 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT)); 4050 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT)); 4051 BUILD_BUG_ON(SKB_GSO_IPXIP4 != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT)); 4052 BUILD_BUG_ON(SKB_GSO_IPXIP6 != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT)); 4053 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT)); 4054 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT)); 4055 BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT)); 4056 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT)); 4057 BUILD_BUG_ON(SKB_GSO_SCTP != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT)); 4058 4059 return (features & feature) == feature; 4060} 4061 4062static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features) 4063{ 4064 return net_gso_ok(features, skb_shinfo(skb)->gso_type) && 4065 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST)); 4066} 4067 4068static inline bool netif_needs_gso(struct sk_buff *skb, 4069 netdev_features_t features) 4070{ 4071 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) || 4072 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) && 4073 (skb->ip_summed != CHECKSUM_UNNECESSARY))); 4074} 4075 4076static inline void netif_set_gso_max_size(struct net_device *dev, 4077 unsigned int size) 4078{ 4079 dev->gso_max_size = size; 4080} 4081 4082static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol, 4083 int pulled_hlen, u16 mac_offset, 4084 int mac_len) 4085{ 4086 skb->protocol = protocol; 4087 skb->encapsulation = 1; 4088 skb_push(skb, pulled_hlen); 4089 skb_reset_transport_header(skb); 4090 skb->mac_header = mac_offset; 4091 skb->network_header = skb->mac_header + mac_len; 4092 skb->mac_len = mac_len; 4093} 4094 4095static inline bool netif_is_macsec(const struct net_device *dev) 4096{ 4097 return dev->priv_flags & IFF_MACSEC; 4098} 4099 4100static inline bool netif_is_macvlan(const struct net_device *dev) 4101{ 4102 return dev->priv_flags & IFF_MACVLAN; 4103} 4104 4105static inline bool netif_is_macvlan_port(const struct net_device *dev) 4106{ 4107 return dev->priv_flags & IFF_MACVLAN_PORT; 4108} 4109 4110static inline bool netif_is_ipvlan(const struct net_device *dev) 4111{ 4112 return dev->priv_flags & IFF_IPVLAN_SLAVE; 4113} 4114 4115static inline bool netif_is_ipvlan_port(const struct net_device *dev) 4116{ 4117 return dev->priv_flags & IFF_IPVLAN_MASTER; 4118} 4119 4120static inline bool netif_is_bond_master(const struct net_device *dev) 4121{ 4122 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING; 4123} 4124 4125static inline bool netif_is_bond_slave(const struct net_device *dev) 4126{ 4127 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING; 4128} 4129 4130static inline bool netif_supports_nofcs(struct net_device *dev) 4131{ 4132 return dev->priv_flags & IFF_SUPP_NOFCS; 4133} 4134 4135static inline bool netif_is_l3_master(const struct net_device *dev) 4136{ 4137 return dev->priv_flags & IFF_L3MDEV_MASTER; 4138} 4139 4140static inline bool netif_is_l3_slave(const struct net_device *dev) 4141{ 4142 return dev->priv_flags & IFF_L3MDEV_SLAVE; 4143} 4144 4145static inline bool netif_is_bridge_master(const struct net_device *dev) 4146{ 4147 return dev->priv_flags & IFF_EBRIDGE; 4148} 4149 4150static inline bool netif_is_bridge_port(const struct net_device *dev) 4151{ 4152 return dev->priv_flags & IFF_BRIDGE_PORT; 4153} 4154 4155static inline bool netif_is_ovs_master(const struct net_device *dev) 4156{ 4157 return dev->priv_flags & IFF_OPENVSWITCH; 4158} 4159 4160static inline bool netif_is_team_master(const struct net_device *dev) 4161{ 4162 return dev->priv_flags & IFF_TEAM; 4163} 4164 4165static inline bool netif_is_team_port(const struct net_device *dev) 4166{ 4167 return dev->priv_flags & IFF_TEAM_PORT; 4168} 4169 4170static inline bool netif_is_lag_master(const struct net_device *dev) 4171{ 4172 return netif_is_bond_master(dev) || netif_is_team_master(dev); 4173} 4174 4175static inline bool netif_is_lag_port(const struct net_device *dev) 4176{ 4177 return netif_is_bond_slave(dev) || netif_is_team_port(dev); 4178} 4179 4180static inline bool netif_is_rxfh_configured(const struct net_device *dev) 4181{ 4182 return dev->priv_flags & IFF_RXFH_CONFIGURED; 4183} 4184 4185/* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */ 4186static inline void netif_keep_dst(struct net_device *dev) 4187{ 4188 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM); 4189} 4190 4191/* return true if dev can't cope with mtu frames that need vlan tag insertion */ 4192static inline bool netif_reduces_vlan_mtu(struct net_device *dev) 4193{ 4194 /* TODO: reserve and use an additional IFF bit, if we get more users */ 4195 return dev->priv_flags & IFF_MACSEC; 4196} 4197 4198extern struct pernet_operations __net_initdata loopback_net_ops; 4199 4200/* Logging, debugging and troubleshooting/diagnostic helpers. */ 4201 4202/* netdev_printk helpers, similar to dev_printk */ 4203 4204static inline const char *netdev_name(const struct net_device *dev) 4205{ 4206 if (!dev->name[0] || strchr(dev->name, '%')) 4207 return "(unnamed net_device)"; 4208 return dev->name; 4209} 4210 4211static inline const char *netdev_reg_state(const struct net_device *dev) 4212{ 4213 switch (dev->reg_state) { 4214 case NETREG_UNINITIALIZED: return " (uninitialized)"; 4215 case NETREG_REGISTERED: return ""; 4216 case NETREG_UNREGISTERING: return " (unregistering)"; 4217 case NETREG_UNREGISTERED: return " (unregistered)"; 4218 case NETREG_RELEASED: return " (released)"; 4219 case NETREG_DUMMY: return " (dummy)"; 4220 } 4221 4222 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state); 4223 return " (unknown)"; 4224} 4225 4226__printf(3, 4) 4227void netdev_printk(const char *level, const struct net_device *dev, 4228 const char *format, ...); 4229__printf(2, 3) 4230void netdev_emerg(const struct net_device *dev, const char *format, ...); 4231__printf(2, 3) 4232void netdev_alert(const struct net_device *dev, const char *format, ...); 4233__printf(2, 3) 4234void netdev_crit(const struct net_device *dev, const char *format, ...); 4235__printf(2, 3) 4236void netdev_err(const struct net_device *dev, const char *format, ...); 4237__printf(2, 3) 4238void netdev_warn(const struct net_device *dev, const char *format, ...); 4239__printf(2, 3) 4240void netdev_notice(const struct net_device *dev, const char *format, ...); 4241__printf(2, 3) 4242void netdev_info(const struct net_device *dev, const char *format, ...); 4243 4244#define MODULE_ALIAS_NETDEV(device) \ 4245 MODULE_ALIAS("netdev-" device) 4246 4247#if defined(CONFIG_DYNAMIC_DEBUG) 4248#define netdev_dbg(__dev, format, args...) \ 4249do { \ 4250 dynamic_netdev_dbg(__dev, format, ##args); \ 4251} while (0) 4252#elif defined(DEBUG) 4253#define netdev_dbg(__dev, format, args...) \ 4254 netdev_printk(KERN_DEBUG, __dev, format, ##args) 4255#else 4256#define netdev_dbg(__dev, format, args...) \ 4257({ \ 4258 if (0) \ 4259 netdev_printk(KERN_DEBUG, __dev, format, ##args); \ 4260}) 4261#endif 4262 4263#if defined(VERBOSE_DEBUG) 4264#define netdev_vdbg netdev_dbg 4265#else 4266 4267#define netdev_vdbg(dev, format, args...) \ 4268({ \ 4269 if (0) \ 4270 netdev_printk(KERN_DEBUG, dev, format, ##args); \ 4271 0; \ 4272}) 4273#endif 4274 4275/* 4276 * netdev_WARN() acts like dev_printk(), but with the key difference 4277 * of using a WARN/WARN_ON to get the message out, including the 4278 * file/line information and a backtrace. 4279 */ 4280#define netdev_WARN(dev, format, args...) \ 4281 WARN(1, "netdevice: %s%s\n" format, netdev_name(dev), \ 4282 netdev_reg_state(dev), ##args) 4283 4284/* netif printk helpers, similar to netdev_printk */ 4285 4286#define netif_printk(priv, type, level, dev, fmt, args...) \ 4287do { \ 4288 if (netif_msg_##type(priv)) \ 4289 netdev_printk(level, (dev), fmt, ##args); \ 4290} while (0) 4291 4292#define netif_level(level, priv, type, dev, fmt, args...) \ 4293do { \ 4294 if (netif_msg_##type(priv)) \ 4295 netdev_##level(dev, fmt, ##args); \ 4296} while (0) 4297 4298#define netif_emerg(priv, type, dev, fmt, args...) \ 4299 netif_level(emerg, priv, type, dev, fmt, ##args) 4300#define netif_alert(priv, type, dev, fmt, args...) \ 4301 netif_level(alert, priv, type, dev, fmt, ##args) 4302#define netif_crit(priv, type, dev, fmt, args...) \ 4303 netif_level(crit, priv, type, dev, fmt, ##args) 4304#define netif_err(priv, type, dev, fmt, args...) \ 4305 netif_level(err, priv, type, dev, fmt, ##args) 4306#define netif_warn(priv, type, dev, fmt, args...) \ 4307 netif_level(warn, priv, type, dev, fmt, ##args) 4308#define netif_notice(priv, type, dev, fmt, args...) \ 4309 netif_level(notice, priv, type, dev, fmt, ##args) 4310#define netif_info(priv, type, dev, fmt, args...) \ 4311 netif_level(info, priv, type, dev, fmt, ##args) 4312 4313#if defined(CONFIG_DYNAMIC_DEBUG) 4314#define netif_dbg(priv, type, netdev, format, args...) \ 4315do { \ 4316 if (netif_msg_##type(priv)) \ 4317 dynamic_netdev_dbg(netdev, format, ##args); \ 4318} while (0) 4319#elif defined(DEBUG) 4320#define netif_dbg(priv, type, dev, format, args...) \ 4321 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args) 4322#else 4323#define netif_dbg(priv, type, dev, format, args...) \ 4324({ \ 4325 if (0) \ 4326 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 4327 0; \ 4328}) 4329#endif 4330 4331#if defined(VERBOSE_DEBUG) 4332#define netif_vdbg netif_dbg 4333#else 4334#define netif_vdbg(priv, type, dev, format, args...) \ 4335({ \ 4336 if (0) \ 4337 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 4338 0; \ 4339}) 4340#endif 4341 4342/* 4343 * The list of packet types we will receive (as opposed to discard) 4344 * and the routines to invoke. 4345 * 4346 * Why 16. Because with 16 the only overlap we get on a hash of the 4347 * low nibble of the protocol value is RARP/SNAP/X.25. 4348 * 4349 * NOTE: That is no longer true with the addition of VLAN tags. Not 4350 * sure which should go first, but I bet it won't make much 4351 * difference if we are running VLANs. The good news is that 4352 * this protocol won't be in the list unless compiled in, so 4353 * the average user (w/out VLANs) will not be adversely affected. 4354 * --BLG 4355 * 4356 * 0800 IP 4357 * 8100 802.1Q VLAN 4358 * 0001 802.3 4359 * 0002 AX.25 4360 * 0004 802.2 4361 * 8035 RARP 4362 * 0005 SNAP 4363 * 0805 X.25 4364 * 0806 ARP 4365 * 8137 IPX 4366 * 0009 Localtalk 4367 * 86DD IPv6 4368 */ 4369#define PTYPE_HASH_SIZE (16) 4370#define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 4371 4372#endif /* _LINUX_NETDEVICE_H */