Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * Linux Socket Filter Data Structures
3 */
4#ifndef __LINUX_FILTER_H__
5#define __LINUX_FILTER_H__
6
7#include <stdarg.h>
8
9#include <linux/atomic.h>
10#include <linux/compat.h>
11#include <linux/skbuff.h>
12#include <linux/linkage.h>
13#include <linux/printk.h>
14#include <linux/workqueue.h>
15#include <linux/sched.h>
16#include <linux/capability.h>
17#include <linux/cryptohash.h>
18
19#include <net/sch_generic.h>
20
21#include <asm/cacheflush.h>
22
23#include <uapi/linux/filter.h>
24#include <uapi/linux/bpf.h>
25
26struct sk_buff;
27struct sock;
28struct seccomp_data;
29struct bpf_prog_aux;
30
31/* ArgX, context and stack frame pointer register positions. Note,
32 * Arg1, Arg2, Arg3, etc are used as argument mappings of function
33 * calls in BPF_CALL instruction.
34 */
35#define BPF_REG_ARG1 BPF_REG_1
36#define BPF_REG_ARG2 BPF_REG_2
37#define BPF_REG_ARG3 BPF_REG_3
38#define BPF_REG_ARG4 BPF_REG_4
39#define BPF_REG_ARG5 BPF_REG_5
40#define BPF_REG_CTX BPF_REG_6
41#define BPF_REG_FP BPF_REG_10
42
43/* Additional register mappings for converted user programs. */
44#define BPF_REG_A BPF_REG_0
45#define BPF_REG_X BPF_REG_7
46#define BPF_REG_TMP BPF_REG_8
47
48/* Kernel hidden auxiliary/helper register for hardening step.
49 * Only used by eBPF JITs. It's nothing more than a temporary
50 * register that JITs use internally, only that here it's part
51 * of eBPF instructions that have been rewritten for blinding
52 * constants. See JIT pre-step in bpf_jit_blind_constants().
53 */
54#define BPF_REG_AX MAX_BPF_REG
55#define MAX_BPF_JIT_REG (MAX_BPF_REG + 1)
56
57/* BPF program can access up to 512 bytes of stack space. */
58#define MAX_BPF_STACK 512
59
60/* Helper macros for filter block array initializers. */
61
62/* ALU ops on registers, bpf_add|sub|...: dst_reg += src_reg */
63
64#define BPF_ALU64_REG(OP, DST, SRC) \
65 ((struct bpf_insn) { \
66 .code = BPF_ALU64 | BPF_OP(OP) | BPF_X, \
67 .dst_reg = DST, \
68 .src_reg = SRC, \
69 .off = 0, \
70 .imm = 0 })
71
72#define BPF_ALU32_REG(OP, DST, SRC) \
73 ((struct bpf_insn) { \
74 .code = BPF_ALU | BPF_OP(OP) | BPF_X, \
75 .dst_reg = DST, \
76 .src_reg = SRC, \
77 .off = 0, \
78 .imm = 0 })
79
80/* ALU ops on immediates, bpf_add|sub|...: dst_reg += imm32 */
81
82#define BPF_ALU64_IMM(OP, DST, IMM) \
83 ((struct bpf_insn) { \
84 .code = BPF_ALU64 | BPF_OP(OP) | BPF_K, \
85 .dst_reg = DST, \
86 .src_reg = 0, \
87 .off = 0, \
88 .imm = IMM })
89
90#define BPF_ALU32_IMM(OP, DST, IMM) \
91 ((struct bpf_insn) { \
92 .code = BPF_ALU | BPF_OP(OP) | BPF_K, \
93 .dst_reg = DST, \
94 .src_reg = 0, \
95 .off = 0, \
96 .imm = IMM })
97
98/* Endianess conversion, cpu_to_{l,b}e(), {l,b}e_to_cpu() */
99
100#define BPF_ENDIAN(TYPE, DST, LEN) \
101 ((struct bpf_insn) { \
102 .code = BPF_ALU | BPF_END | BPF_SRC(TYPE), \
103 .dst_reg = DST, \
104 .src_reg = 0, \
105 .off = 0, \
106 .imm = LEN })
107
108/* Short form of mov, dst_reg = src_reg */
109
110#define BPF_MOV64_REG(DST, SRC) \
111 ((struct bpf_insn) { \
112 .code = BPF_ALU64 | BPF_MOV | BPF_X, \
113 .dst_reg = DST, \
114 .src_reg = SRC, \
115 .off = 0, \
116 .imm = 0 })
117
118#define BPF_MOV32_REG(DST, SRC) \
119 ((struct bpf_insn) { \
120 .code = BPF_ALU | BPF_MOV | BPF_X, \
121 .dst_reg = DST, \
122 .src_reg = SRC, \
123 .off = 0, \
124 .imm = 0 })
125
126/* Short form of mov, dst_reg = imm32 */
127
128#define BPF_MOV64_IMM(DST, IMM) \
129 ((struct bpf_insn) { \
130 .code = BPF_ALU64 | BPF_MOV | BPF_K, \
131 .dst_reg = DST, \
132 .src_reg = 0, \
133 .off = 0, \
134 .imm = IMM })
135
136#define BPF_MOV32_IMM(DST, IMM) \
137 ((struct bpf_insn) { \
138 .code = BPF_ALU | BPF_MOV | BPF_K, \
139 .dst_reg = DST, \
140 .src_reg = 0, \
141 .off = 0, \
142 .imm = IMM })
143
144/* BPF_LD_IMM64 macro encodes single 'load 64-bit immediate' insn */
145#define BPF_LD_IMM64(DST, IMM) \
146 BPF_LD_IMM64_RAW(DST, 0, IMM)
147
148#define BPF_LD_IMM64_RAW(DST, SRC, IMM) \
149 ((struct bpf_insn) { \
150 .code = BPF_LD | BPF_DW | BPF_IMM, \
151 .dst_reg = DST, \
152 .src_reg = SRC, \
153 .off = 0, \
154 .imm = (__u32) (IMM) }), \
155 ((struct bpf_insn) { \
156 .code = 0, /* zero is reserved opcode */ \
157 .dst_reg = 0, \
158 .src_reg = 0, \
159 .off = 0, \
160 .imm = ((__u64) (IMM)) >> 32 })
161
162/* pseudo BPF_LD_IMM64 insn used to refer to process-local map_fd */
163#define BPF_LD_MAP_FD(DST, MAP_FD) \
164 BPF_LD_IMM64_RAW(DST, BPF_PSEUDO_MAP_FD, MAP_FD)
165
166/* Short form of mov based on type, BPF_X: dst_reg = src_reg, BPF_K: dst_reg = imm32 */
167
168#define BPF_MOV64_RAW(TYPE, DST, SRC, IMM) \
169 ((struct bpf_insn) { \
170 .code = BPF_ALU64 | BPF_MOV | BPF_SRC(TYPE), \
171 .dst_reg = DST, \
172 .src_reg = SRC, \
173 .off = 0, \
174 .imm = IMM })
175
176#define BPF_MOV32_RAW(TYPE, DST, SRC, IMM) \
177 ((struct bpf_insn) { \
178 .code = BPF_ALU | BPF_MOV | BPF_SRC(TYPE), \
179 .dst_reg = DST, \
180 .src_reg = SRC, \
181 .off = 0, \
182 .imm = IMM })
183
184/* Direct packet access, R0 = *(uint *) (skb->data + imm32) */
185
186#define BPF_LD_ABS(SIZE, IMM) \
187 ((struct bpf_insn) { \
188 .code = BPF_LD | BPF_SIZE(SIZE) | BPF_ABS, \
189 .dst_reg = 0, \
190 .src_reg = 0, \
191 .off = 0, \
192 .imm = IMM })
193
194/* Indirect packet access, R0 = *(uint *) (skb->data + src_reg + imm32) */
195
196#define BPF_LD_IND(SIZE, SRC, IMM) \
197 ((struct bpf_insn) { \
198 .code = BPF_LD | BPF_SIZE(SIZE) | BPF_IND, \
199 .dst_reg = 0, \
200 .src_reg = SRC, \
201 .off = 0, \
202 .imm = IMM })
203
204/* Memory load, dst_reg = *(uint *) (src_reg + off16) */
205
206#define BPF_LDX_MEM(SIZE, DST, SRC, OFF) \
207 ((struct bpf_insn) { \
208 .code = BPF_LDX | BPF_SIZE(SIZE) | BPF_MEM, \
209 .dst_reg = DST, \
210 .src_reg = SRC, \
211 .off = OFF, \
212 .imm = 0 })
213
214/* Memory store, *(uint *) (dst_reg + off16) = src_reg */
215
216#define BPF_STX_MEM(SIZE, DST, SRC, OFF) \
217 ((struct bpf_insn) { \
218 .code = BPF_STX | BPF_SIZE(SIZE) | BPF_MEM, \
219 .dst_reg = DST, \
220 .src_reg = SRC, \
221 .off = OFF, \
222 .imm = 0 })
223
224/* Atomic memory add, *(uint *)(dst_reg + off16) += src_reg */
225
226#define BPF_STX_XADD(SIZE, DST, SRC, OFF) \
227 ((struct bpf_insn) { \
228 .code = BPF_STX | BPF_SIZE(SIZE) | BPF_XADD, \
229 .dst_reg = DST, \
230 .src_reg = SRC, \
231 .off = OFF, \
232 .imm = 0 })
233
234/* Memory store, *(uint *) (dst_reg + off16) = imm32 */
235
236#define BPF_ST_MEM(SIZE, DST, OFF, IMM) \
237 ((struct bpf_insn) { \
238 .code = BPF_ST | BPF_SIZE(SIZE) | BPF_MEM, \
239 .dst_reg = DST, \
240 .src_reg = 0, \
241 .off = OFF, \
242 .imm = IMM })
243
244/* Conditional jumps against registers, if (dst_reg 'op' src_reg) goto pc + off16 */
245
246#define BPF_JMP_REG(OP, DST, SRC, OFF) \
247 ((struct bpf_insn) { \
248 .code = BPF_JMP | BPF_OP(OP) | BPF_X, \
249 .dst_reg = DST, \
250 .src_reg = SRC, \
251 .off = OFF, \
252 .imm = 0 })
253
254/* Conditional jumps against immediates, if (dst_reg 'op' imm32) goto pc + off16 */
255
256#define BPF_JMP_IMM(OP, DST, IMM, OFF) \
257 ((struct bpf_insn) { \
258 .code = BPF_JMP | BPF_OP(OP) | BPF_K, \
259 .dst_reg = DST, \
260 .src_reg = 0, \
261 .off = OFF, \
262 .imm = IMM })
263
264/* Function call */
265
266#define BPF_EMIT_CALL(FUNC) \
267 ((struct bpf_insn) { \
268 .code = BPF_JMP | BPF_CALL, \
269 .dst_reg = 0, \
270 .src_reg = 0, \
271 .off = 0, \
272 .imm = ((FUNC) - __bpf_call_base) })
273
274/* Raw code statement block */
275
276#define BPF_RAW_INSN(CODE, DST, SRC, OFF, IMM) \
277 ((struct bpf_insn) { \
278 .code = CODE, \
279 .dst_reg = DST, \
280 .src_reg = SRC, \
281 .off = OFF, \
282 .imm = IMM })
283
284/* Program exit */
285
286#define BPF_EXIT_INSN() \
287 ((struct bpf_insn) { \
288 .code = BPF_JMP | BPF_EXIT, \
289 .dst_reg = 0, \
290 .src_reg = 0, \
291 .off = 0, \
292 .imm = 0 })
293
294/* Internal classic blocks for direct assignment */
295
296#define __BPF_STMT(CODE, K) \
297 ((struct sock_filter) BPF_STMT(CODE, K))
298
299#define __BPF_JUMP(CODE, K, JT, JF) \
300 ((struct sock_filter) BPF_JUMP(CODE, K, JT, JF))
301
302#define bytes_to_bpf_size(bytes) \
303({ \
304 int bpf_size = -EINVAL; \
305 \
306 if (bytes == sizeof(u8)) \
307 bpf_size = BPF_B; \
308 else if (bytes == sizeof(u16)) \
309 bpf_size = BPF_H; \
310 else if (bytes == sizeof(u32)) \
311 bpf_size = BPF_W; \
312 else if (bytes == sizeof(u64)) \
313 bpf_size = BPF_DW; \
314 \
315 bpf_size; \
316})
317
318#define BPF_SIZEOF(type) \
319 ({ \
320 const int __size = bytes_to_bpf_size(sizeof(type)); \
321 BUILD_BUG_ON(__size < 0); \
322 __size; \
323 })
324
325#define BPF_FIELD_SIZEOF(type, field) \
326 ({ \
327 const int __size = bytes_to_bpf_size(FIELD_SIZEOF(type, field)); \
328 BUILD_BUG_ON(__size < 0); \
329 __size; \
330 })
331
332#define __BPF_MAP_0(m, v, ...) v
333#define __BPF_MAP_1(m, v, t, a, ...) m(t, a)
334#define __BPF_MAP_2(m, v, t, a, ...) m(t, a), __BPF_MAP_1(m, v, __VA_ARGS__)
335#define __BPF_MAP_3(m, v, t, a, ...) m(t, a), __BPF_MAP_2(m, v, __VA_ARGS__)
336#define __BPF_MAP_4(m, v, t, a, ...) m(t, a), __BPF_MAP_3(m, v, __VA_ARGS__)
337#define __BPF_MAP_5(m, v, t, a, ...) m(t, a), __BPF_MAP_4(m, v, __VA_ARGS__)
338
339#define __BPF_REG_0(...) __BPF_PAD(5)
340#define __BPF_REG_1(...) __BPF_MAP(1, __VA_ARGS__), __BPF_PAD(4)
341#define __BPF_REG_2(...) __BPF_MAP(2, __VA_ARGS__), __BPF_PAD(3)
342#define __BPF_REG_3(...) __BPF_MAP(3, __VA_ARGS__), __BPF_PAD(2)
343#define __BPF_REG_4(...) __BPF_MAP(4, __VA_ARGS__), __BPF_PAD(1)
344#define __BPF_REG_5(...) __BPF_MAP(5, __VA_ARGS__)
345
346#define __BPF_MAP(n, ...) __BPF_MAP_##n(__VA_ARGS__)
347#define __BPF_REG(n, ...) __BPF_REG_##n(__VA_ARGS__)
348
349#define __BPF_CAST(t, a) \
350 (__force t) \
351 (__force \
352 typeof(__builtin_choose_expr(sizeof(t) == sizeof(unsigned long), \
353 (unsigned long)0, (t)0))) a
354#define __BPF_V void
355#define __BPF_N
356
357#define __BPF_DECL_ARGS(t, a) t a
358#define __BPF_DECL_REGS(t, a) u64 a
359
360#define __BPF_PAD(n) \
361 __BPF_MAP(n, __BPF_DECL_ARGS, __BPF_N, u64, __ur_1, u64, __ur_2, \
362 u64, __ur_3, u64, __ur_4, u64, __ur_5)
363
364#define BPF_CALL_x(x, name, ...) \
365 static __always_inline \
366 u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)); \
367 u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__)); \
368 u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__)) \
369 { \
370 return ____##name(__BPF_MAP(x,__BPF_CAST,__BPF_N,__VA_ARGS__));\
371 } \
372 static __always_inline \
373 u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__))
374
375#define BPF_CALL_0(name, ...) BPF_CALL_x(0, name, __VA_ARGS__)
376#define BPF_CALL_1(name, ...) BPF_CALL_x(1, name, __VA_ARGS__)
377#define BPF_CALL_2(name, ...) BPF_CALL_x(2, name, __VA_ARGS__)
378#define BPF_CALL_3(name, ...) BPF_CALL_x(3, name, __VA_ARGS__)
379#define BPF_CALL_4(name, ...) BPF_CALL_x(4, name, __VA_ARGS__)
380#define BPF_CALL_5(name, ...) BPF_CALL_x(5, name, __VA_ARGS__)
381
382#ifdef CONFIG_COMPAT
383/* A struct sock_filter is architecture independent. */
384struct compat_sock_fprog {
385 u16 len;
386 compat_uptr_t filter; /* struct sock_filter * */
387};
388#endif
389
390struct sock_fprog_kern {
391 u16 len;
392 struct sock_filter *filter;
393};
394
395struct bpf_binary_header {
396 unsigned int pages;
397 u8 image[];
398};
399
400struct bpf_prog {
401 u16 pages; /* Number of allocated pages */
402 kmemcheck_bitfield_begin(meta);
403 u16 jited:1, /* Is our filter JIT'ed? */
404 gpl_compatible:1, /* Is filter GPL compatible? */
405 cb_access:1, /* Is control block accessed? */
406 dst_needed:1, /* Do we need dst entry? */
407 xdp_adjust_head:1; /* Adjusting pkt head? */
408 kmemcheck_bitfield_end(meta);
409 enum bpf_prog_type type; /* Type of BPF program */
410 u32 len; /* Number of filter blocks */
411 u32 digest[SHA_DIGEST_WORDS]; /* Program digest */
412 struct bpf_prog_aux *aux; /* Auxiliary fields */
413 struct sock_fprog_kern *orig_prog; /* Original BPF program */
414 unsigned int (*bpf_func)(const void *ctx,
415 const struct bpf_insn *insn);
416 /* Instructions for interpreter */
417 union {
418 struct sock_filter insns[0];
419 struct bpf_insn insnsi[0];
420 };
421};
422
423struct sk_filter {
424 atomic_t refcnt;
425 struct rcu_head rcu;
426 struct bpf_prog *prog;
427};
428
429#define BPF_PROG_RUN(filter, ctx) (*filter->bpf_func)(ctx, filter->insnsi)
430
431#define BPF_SKB_CB_LEN QDISC_CB_PRIV_LEN
432
433struct bpf_skb_data_end {
434 struct qdisc_skb_cb qdisc_cb;
435 void *data_end;
436};
437
438struct xdp_buff {
439 void *data;
440 void *data_end;
441 void *data_hard_start;
442};
443
444/* compute the linear packet data range [data, data_end) which
445 * will be accessed by cls_bpf, act_bpf and lwt programs
446 */
447static inline void bpf_compute_data_end(struct sk_buff *skb)
448{
449 struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
450
451 BUILD_BUG_ON(sizeof(*cb) > FIELD_SIZEOF(struct sk_buff, cb));
452 cb->data_end = skb->data + skb_headlen(skb);
453}
454
455static inline u8 *bpf_skb_cb(struct sk_buff *skb)
456{
457 /* eBPF programs may read/write skb->cb[] area to transfer meta
458 * data between tail calls. Since this also needs to work with
459 * tc, that scratch memory is mapped to qdisc_skb_cb's data area.
460 *
461 * In some socket filter cases, the cb unfortunately needs to be
462 * saved/restored so that protocol specific skb->cb[] data won't
463 * be lost. In any case, due to unpriviledged eBPF programs
464 * attached to sockets, we need to clear the bpf_skb_cb() area
465 * to not leak previous contents to user space.
466 */
467 BUILD_BUG_ON(FIELD_SIZEOF(struct __sk_buff, cb) != BPF_SKB_CB_LEN);
468 BUILD_BUG_ON(FIELD_SIZEOF(struct __sk_buff, cb) !=
469 FIELD_SIZEOF(struct qdisc_skb_cb, data));
470
471 return qdisc_skb_cb(skb)->data;
472}
473
474static inline u32 bpf_prog_run_save_cb(const struct bpf_prog *prog,
475 struct sk_buff *skb)
476{
477 u8 *cb_data = bpf_skb_cb(skb);
478 u8 cb_saved[BPF_SKB_CB_LEN];
479 u32 res;
480
481 if (unlikely(prog->cb_access)) {
482 memcpy(cb_saved, cb_data, sizeof(cb_saved));
483 memset(cb_data, 0, sizeof(cb_saved));
484 }
485
486 res = BPF_PROG_RUN(prog, skb);
487
488 if (unlikely(prog->cb_access))
489 memcpy(cb_data, cb_saved, sizeof(cb_saved));
490
491 return res;
492}
493
494static inline u32 bpf_prog_run_clear_cb(const struct bpf_prog *prog,
495 struct sk_buff *skb)
496{
497 u8 *cb_data = bpf_skb_cb(skb);
498
499 if (unlikely(prog->cb_access))
500 memset(cb_data, 0, BPF_SKB_CB_LEN);
501
502 return BPF_PROG_RUN(prog, skb);
503}
504
505static __always_inline u32 bpf_prog_run_xdp(const struct bpf_prog *prog,
506 struct xdp_buff *xdp)
507{
508 /* Caller needs to hold rcu_read_lock() (!), otherwise program
509 * can be released while still running, or map elements could be
510 * freed early while still having concurrent users. XDP fastpath
511 * already takes rcu_read_lock() when fetching the program, so
512 * it's not necessary here anymore.
513 */
514 return BPF_PROG_RUN(prog, xdp);
515}
516
517static inline u32 bpf_prog_insn_size(const struct bpf_prog *prog)
518{
519 return prog->len * sizeof(struct bpf_insn);
520}
521
522static inline u32 bpf_prog_digest_scratch_size(const struct bpf_prog *prog)
523{
524 return round_up(bpf_prog_insn_size(prog) +
525 sizeof(__be64) + 1, SHA_MESSAGE_BYTES);
526}
527
528static inline unsigned int bpf_prog_size(unsigned int proglen)
529{
530 return max(sizeof(struct bpf_prog),
531 offsetof(struct bpf_prog, insns[proglen]));
532}
533
534static inline bool bpf_prog_was_classic(const struct bpf_prog *prog)
535{
536 /* When classic BPF programs have been loaded and the arch
537 * does not have a classic BPF JIT (anymore), they have been
538 * converted via bpf_migrate_filter() to eBPF and thus always
539 * have an unspec program type.
540 */
541 return prog->type == BPF_PROG_TYPE_UNSPEC;
542}
543
544#define bpf_classic_proglen(fprog) (fprog->len * sizeof(fprog->filter[0]))
545
546#ifdef CONFIG_DEBUG_SET_MODULE_RONX
547static inline void bpf_prog_lock_ro(struct bpf_prog *fp)
548{
549 set_memory_ro((unsigned long)fp, fp->pages);
550}
551
552static inline void bpf_prog_unlock_ro(struct bpf_prog *fp)
553{
554 set_memory_rw((unsigned long)fp, fp->pages);
555}
556#else
557static inline void bpf_prog_lock_ro(struct bpf_prog *fp)
558{
559}
560
561static inline void bpf_prog_unlock_ro(struct bpf_prog *fp)
562{
563}
564#endif /* CONFIG_DEBUG_SET_MODULE_RONX */
565
566int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap);
567static inline int sk_filter(struct sock *sk, struct sk_buff *skb)
568{
569 return sk_filter_trim_cap(sk, skb, 1);
570}
571
572struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err);
573void bpf_prog_free(struct bpf_prog *fp);
574
575struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags);
576struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
577 gfp_t gfp_extra_flags);
578void __bpf_prog_free(struct bpf_prog *fp);
579
580static inline void bpf_prog_unlock_free(struct bpf_prog *fp)
581{
582 bpf_prog_unlock_ro(fp);
583 __bpf_prog_free(fp);
584}
585
586typedef int (*bpf_aux_classic_check_t)(struct sock_filter *filter,
587 unsigned int flen);
588
589int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog);
590int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
591 bpf_aux_classic_check_t trans, bool save_orig);
592void bpf_prog_destroy(struct bpf_prog *fp);
593
594int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk);
595int sk_attach_bpf(u32 ufd, struct sock *sk);
596int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk);
597int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk);
598int sk_detach_filter(struct sock *sk);
599int sk_get_filter(struct sock *sk, struct sock_filter __user *filter,
600 unsigned int len);
601
602bool sk_filter_charge(struct sock *sk, struct sk_filter *fp);
603void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp);
604
605u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
606
607struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog);
608bool bpf_helper_changes_pkt_data(void *func);
609
610struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
611 const struct bpf_insn *patch, u32 len);
612void bpf_warn_invalid_xdp_action(u32 act);
613
614#ifdef CONFIG_BPF_JIT
615extern int bpf_jit_enable;
616extern int bpf_jit_harden;
617
618typedef void (*bpf_jit_fill_hole_t)(void *area, unsigned int size);
619
620struct bpf_binary_header *
621bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
622 unsigned int alignment,
623 bpf_jit_fill_hole_t bpf_fill_ill_insns);
624void bpf_jit_binary_free(struct bpf_binary_header *hdr);
625
626void bpf_jit_compile(struct bpf_prog *fp);
627void bpf_jit_free(struct bpf_prog *fp);
628
629struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *fp);
630void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other);
631
632static inline void bpf_jit_dump(unsigned int flen, unsigned int proglen,
633 u32 pass, void *image)
634{
635 pr_err("flen=%u proglen=%u pass=%u image=%pK from=%s pid=%d\n", flen,
636 proglen, pass, image, current->comm, task_pid_nr(current));
637
638 if (image)
639 print_hex_dump(KERN_ERR, "JIT code: ", DUMP_PREFIX_OFFSET,
640 16, 1, image, proglen, false);
641}
642
643static inline bool bpf_jit_is_ebpf(void)
644{
645# ifdef CONFIG_HAVE_EBPF_JIT
646 return true;
647# else
648 return false;
649# endif
650}
651
652static inline bool bpf_jit_blinding_enabled(void)
653{
654 /* These are the prerequisites, should someone ever have the
655 * idea to call blinding outside of them, we make sure to
656 * bail out.
657 */
658 if (!bpf_jit_is_ebpf())
659 return false;
660 if (!bpf_jit_enable)
661 return false;
662 if (!bpf_jit_harden)
663 return false;
664 if (bpf_jit_harden == 1 && capable(CAP_SYS_ADMIN))
665 return false;
666
667 return true;
668}
669#else
670static inline void bpf_jit_compile(struct bpf_prog *fp)
671{
672}
673
674static inline void bpf_jit_free(struct bpf_prog *fp)
675{
676 bpf_prog_unlock_free(fp);
677}
678#endif /* CONFIG_BPF_JIT */
679
680#define BPF_ANC BIT(15)
681
682static inline bool bpf_needs_clear_a(const struct sock_filter *first)
683{
684 switch (first->code) {
685 case BPF_RET | BPF_K:
686 case BPF_LD | BPF_W | BPF_LEN:
687 return false;
688
689 case BPF_LD | BPF_W | BPF_ABS:
690 case BPF_LD | BPF_H | BPF_ABS:
691 case BPF_LD | BPF_B | BPF_ABS:
692 if (first->k == SKF_AD_OFF + SKF_AD_ALU_XOR_X)
693 return true;
694 return false;
695
696 default:
697 return true;
698 }
699}
700
701static inline u16 bpf_anc_helper(const struct sock_filter *ftest)
702{
703 BUG_ON(ftest->code & BPF_ANC);
704
705 switch (ftest->code) {
706 case BPF_LD | BPF_W | BPF_ABS:
707 case BPF_LD | BPF_H | BPF_ABS:
708 case BPF_LD | BPF_B | BPF_ABS:
709#define BPF_ANCILLARY(CODE) case SKF_AD_OFF + SKF_AD_##CODE: \
710 return BPF_ANC | SKF_AD_##CODE
711 switch (ftest->k) {
712 BPF_ANCILLARY(PROTOCOL);
713 BPF_ANCILLARY(PKTTYPE);
714 BPF_ANCILLARY(IFINDEX);
715 BPF_ANCILLARY(NLATTR);
716 BPF_ANCILLARY(NLATTR_NEST);
717 BPF_ANCILLARY(MARK);
718 BPF_ANCILLARY(QUEUE);
719 BPF_ANCILLARY(HATYPE);
720 BPF_ANCILLARY(RXHASH);
721 BPF_ANCILLARY(CPU);
722 BPF_ANCILLARY(ALU_XOR_X);
723 BPF_ANCILLARY(VLAN_TAG);
724 BPF_ANCILLARY(VLAN_TAG_PRESENT);
725 BPF_ANCILLARY(PAY_OFFSET);
726 BPF_ANCILLARY(RANDOM);
727 BPF_ANCILLARY(VLAN_TPID);
728 }
729 /* Fallthrough. */
730 default:
731 return ftest->code;
732 }
733}
734
735void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb,
736 int k, unsigned int size);
737
738static inline void *bpf_load_pointer(const struct sk_buff *skb, int k,
739 unsigned int size, void *buffer)
740{
741 if (k >= 0)
742 return skb_header_pointer(skb, k, size, buffer);
743
744 return bpf_internal_load_pointer_neg_helper(skb, k, size);
745}
746
747static inline int bpf_tell_extensions(void)
748{
749 return SKF_AD_MAX;
750}
751
752#endif /* __LINUX_FILTER_H__ */