at v4.10-rc1 2239 lines 57 kB view raw
1/* 2 * linux/fs/block_dev.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * Copyright (C) 2001 Andrea Arcangeli <andrea@suse.de> SuSE 6 */ 7 8#include <linux/init.h> 9#include <linux/mm.h> 10#include <linux/fcntl.h> 11#include <linux/slab.h> 12#include <linux/kmod.h> 13#include <linux/major.h> 14#include <linux/device_cgroup.h> 15#include <linux/highmem.h> 16#include <linux/blkdev.h> 17#include <linux/backing-dev.h> 18#include <linux/module.h> 19#include <linux/blkpg.h> 20#include <linux/magic.h> 21#include <linux/buffer_head.h> 22#include <linux/swap.h> 23#include <linux/pagevec.h> 24#include <linux/writeback.h> 25#include <linux/mpage.h> 26#include <linux/mount.h> 27#include <linux/uio.h> 28#include <linux/namei.h> 29#include <linux/log2.h> 30#include <linux/cleancache.h> 31#include <linux/dax.h> 32#include <linux/badblocks.h> 33#include <linux/task_io_accounting_ops.h> 34#include <linux/falloc.h> 35#include <linux/uaccess.h> 36#include "internal.h" 37 38struct bdev_inode { 39 struct block_device bdev; 40 struct inode vfs_inode; 41}; 42 43static const struct address_space_operations def_blk_aops; 44 45static inline struct bdev_inode *BDEV_I(struct inode *inode) 46{ 47 return container_of(inode, struct bdev_inode, vfs_inode); 48} 49 50struct block_device *I_BDEV(struct inode *inode) 51{ 52 return &BDEV_I(inode)->bdev; 53} 54EXPORT_SYMBOL(I_BDEV); 55 56void __vfs_msg(struct super_block *sb, const char *prefix, const char *fmt, ...) 57{ 58 struct va_format vaf; 59 va_list args; 60 61 va_start(args, fmt); 62 vaf.fmt = fmt; 63 vaf.va = &args; 64 printk_ratelimited("%sVFS (%s): %pV\n", prefix, sb->s_id, &vaf); 65 va_end(args); 66} 67 68static void bdev_write_inode(struct block_device *bdev) 69{ 70 struct inode *inode = bdev->bd_inode; 71 int ret; 72 73 spin_lock(&inode->i_lock); 74 while (inode->i_state & I_DIRTY) { 75 spin_unlock(&inode->i_lock); 76 ret = write_inode_now(inode, true); 77 if (ret) { 78 char name[BDEVNAME_SIZE]; 79 pr_warn_ratelimited("VFS: Dirty inode writeback failed " 80 "for block device %s (err=%d).\n", 81 bdevname(bdev, name), ret); 82 } 83 spin_lock(&inode->i_lock); 84 } 85 spin_unlock(&inode->i_lock); 86} 87 88/* Kill _all_ buffers and pagecache , dirty or not.. */ 89void kill_bdev(struct block_device *bdev) 90{ 91 struct address_space *mapping = bdev->bd_inode->i_mapping; 92 93 if (mapping->nrpages == 0 && mapping->nrexceptional == 0) 94 return; 95 96 invalidate_bh_lrus(); 97 truncate_inode_pages(mapping, 0); 98} 99EXPORT_SYMBOL(kill_bdev); 100 101/* Invalidate clean unused buffers and pagecache. */ 102void invalidate_bdev(struct block_device *bdev) 103{ 104 struct address_space *mapping = bdev->bd_inode->i_mapping; 105 106 if (mapping->nrpages == 0) 107 return; 108 109 invalidate_bh_lrus(); 110 lru_add_drain_all(); /* make sure all lru add caches are flushed */ 111 invalidate_mapping_pages(mapping, 0, -1); 112 /* 99% of the time, we don't need to flush the cleancache on the bdev. 113 * But, for the strange corners, lets be cautious 114 */ 115 cleancache_invalidate_inode(mapping); 116} 117EXPORT_SYMBOL(invalidate_bdev); 118 119int set_blocksize(struct block_device *bdev, int size) 120{ 121 /* Size must be a power of two, and between 512 and PAGE_SIZE */ 122 if (size > PAGE_SIZE || size < 512 || !is_power_of_2(size)) 123 return -EINVAL; 124 125 /* Size cannot be smaller than the size supported by the device */ 126 if (size < bdev_logical_block_size(bdev)) 127 return -EINVAL; 128 129 /* Don't change the size if it is same as current */ 130 if (bdev->bd_block_size != size) { 131 sync_blockdev(bdev); 132 bdev->bd_block_size = size; 133 bdev->bd_inode->i_blkbits = blksize_bits(size); 134 kill_bdev(bdev); 135 } 136 return 0; 137} 138 139EXPORT_SYMBOL(set_blocksize); 140 141int sb_set_blocksize(struct super_block *sb, int size) 142{ 143 if (set_blocksize(sb->s_bdev, size)) 144 return 0; 145 /* If we get here, we know size is power of two 146 * and it's value is between 512 and PAGE_SIZE */ 147 sb->s_blocksize = size; 148 sb->s_blocksize_bits = blksize_bits(size); 149 return sb->s_blocksize; 150} 151 152EXPORT_SYMBOL(sb_set_blocksize); 153 154int sb_min_blocksize(struct super_block *sb, int size) 155{ 156 int minsize = bdev_logical_block_size(sb->s_bdev); 157 if (size < minsize) 158 size = minsize; 159 return sb_set_blocksize(sb, size); 160} 161 162EXPORT_SYMBOL(sb_min_blocksize); 163 164static int 165blkdev_get_block(struct inode *inode, sector_t iblock, 166 struct buffer_head *bh, int create) 167{ 168 bh->b_bdev = I_BDEV(inode); 169 bh->b_blocknr = iblock; 170 set_buffer_mapped(bh); 171 return 0; 172} 173 174static struct inode *bdev_file_inode(struct file *file) 175{ 176 return file->f_mapping->host; 177} 178 179static unsigned int dio_bio_write_op(struct kiocb *iocb) 180{ 181 unsigned int op = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE; 182 183 /* avoid the need for a I/O completion work item */ 184 if (iocb->ki_flags & IOCB_DSYNC) 185 op |= REQ_FUA; 186 return op; 187} 188 189#define DIO_INLINE_BIO_VECS 4 190 191static void blkdev_bio_end_io_simple(struct bio *bio) 192{ 193 struct task_struct *waiter = bio->bi_private; 194 195 WRITE_ONCE(bio->bi_private, NULL); 196 wake_up_process(waiter); 197} 198 199static ssize_t 200__blkdev_direct_IO_simple(struct kiocb *iocb, struct iov_iter *iter, 201 int nr_pages) 202{ 203 struct file *file = iocb->ki_filp; 204 struct block_device *bdev = I_BDEV(bdev_file_inode(file)); 205 struct bio_vec inline_vecs[DIO_INLINE_BIO_VECS], *vecs, *bvec; 206 loff_t pos = iocb->ki_pos; 207 bool should_dirty = false; 208 struct bio bio; 209 ssize_t ret; 210 blk_qc_t qc; 211 int i; 212 213 if ((pos | iov_iter_alignment(iter)) & 214 (bdev_logical_block_size(bdev) - 1)) 215 return -EINVAL; 216 217 if (nr_pages <= DIO_INLINE_BIO_VECS) 218 vecs = inline_vecs; 219 else { 220 vecs = kmalloc(nr_pages * sizeof(struct bio_vec), GFP_KERNEL); 221 if (!vecs) 222 return -ENOMEM; 223 } 224 225 bio_init(&bio, vecs, nr_pages); 226 bio.bi_bdev = bdev; 227 bio.bi_iter.bi_sector = pos >> 9; 228 bio.bi_private = current; 229 bio.bi_end_io = blkdev_bio_end_io_simple; 230 231 ret = bio_iov_iter_get_pages(&bio, iter); 232 if (unlikely(ret)) 233 return ret; 234 ret = bio.bi_iter.bi_size; 235 236 if (iov_iter_rw(iter) == READ) { 237 bio.bi_opf = REQ_OP_READ; 238 if (iter_is_iovec(iter)) 239 should_dirty = true; 240 } else { 241 bio.bi_opf = dio_bio_write_op(iocb); 242 task_io_account_write(ret); 243 } 244 245 qc = submit_bio(&bio); 246 for (;;) { 247 set_current_state(TASK_UNINTERRUPTIBLE); 248 if (!READ_ONCE(bio.bi_private)) 249 break; 250 if (!(iocb->ki_flags & IOCB_HIPRI) || 251 !blk_mq_poll(bdev_get_queue(bdev), qc)) 252 io_schedule(); 253 } 254 __set_current_state(TASK_RUNNING); 255 256 bio_for_each_segment_all(bvec, &bio, i) { 257 if (should_dirty && !PageCompound(bvec->bv_page)) 258 set_page_dirty_lock(bvec->bv_page); 259 put_page(bvec->bv_page); 260 } 261 262 if (vecs != inline_vecs) 263 kfree(vecs); 264 265 if (unlikely(bio.bi_error)) 266 return bio.bi_error; 267 return ret; 268} 269 270struct blkdev_dio { 271 union { 272 struct kiocb *iocb; 273 struct task_struct *waiter; 274 }; 275 size_t size; 276 atomic_t ref; 277 bool multi_bio : 1; 278 bool should_dirty : 1; 279 bool is_sync : 1; 280 struct bio bio; 281}; 282 283static struct bio_set *blkdev_dio_pool __read_mostly; 284 285static void blkdev_bio_end_io(struct bio *bio) 286{ 287 struct blkdev_dio *dio = bio->bi_private; 288 bool should_dirty = dio->should_dirty; 289 290 if (dio->multi_bio && !atomic_dec_and_test(&dio->ref)) { 291 if (bio->bi_error && !dio->bio.bi_error) 292 dio->bio.bi_error = bio->bi_error; 293 } else { 294 if (!dio->is_sync) { 295 struct kiocb *iocb = dio->iocb; 296 ssize_t ret = dio->bio.bi_error; 297 298 if (likely(!ret)) { 299 ret = dio->size; 300 iocb->ki_pos += ret; 301 } 302 303 dio->iocb->ki_complete(iocb, ret, 0); 304 bio_put(&dio->bio); 305 } else { 306 struct task_struct *waiter = dio->waiter; 307 308 WRITE_ONCE(dio->waiter, NULL); 309 wake_up_process(waiter); 310 } 311 } 312 313 if (should_dirty) { 314 bio_check_pages_dirty(bio); 315 } else { 316 struct bio_vec *bvec; 317 int i; 318 319 bio_for_each_segment_all(bvec, bio, i) 320 put_page(bvec->bv_page); 321 bio_put(bio); 322 } 323} 324 325static ssize_t 326__blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter, int nr_pages) 327{ 328 struct file *file = iocb->ki_filp; 329 struct inode *inode = bdev_file_inode(file); 330 struct block_device *bdev = I_BDEV(inode); 331 struct blkdev_dio *dio; 332 struct bio *bio; 333 bool is_read = (iov_iter_rw(iter) == READ); 334 loff_t pos = iocb->ki_pos; 335 blk_qc_t qc = BLK_QC_T_NONE; 336 int ret; 337 338 if ((pos | iov_iter_alignment(iter)) & 339 (bdev_logical_block_size(bdev) - 1)) 340 return -EINVAL; 341 342 bio = bio_alloc_bioset(GFP_KERNEL, nr_pages, blkdev_dio_pool); 343 bio_get(bio); /* extra ref for the completion handler */ 344 345 dio = container_of(bio, struct blkdev_dio, bio); 346 dio->is_sync = is_sync_kiocb(iocb); 347 if (dio->is_sync) 348 dio->waiter = current; 349 else 350 dio->iocb = iocb; 351 352 dio->size = 0; 353 dio->multi_bio = false; 354 dio->should_dirty = is_read && (iter->type == ITER_IOVEC); 355 356 for (;;) { 357 bio->bi_bdev = bdev; 358 bio->bi_iter.bi_sector = pos >> 9; 359 bio->bi_private = dio; 360 bio->bi_end_io = blkdev_bio_end_io; 361 362 ret = bio_iov_iter_get_pages(bio, iter); 363 if (unlikely(ret)) { 364 bio->bi_error = ret; 365 bio_endio(bio); 366 break; 367 } 368 369 if (is_read) { 370 bio->bi_opf = REQ_OP_READ; 371 if (dio->should_dirty) 372 bio_set_pages_dirty(bio); 373 } else { 374 bio->bi_opf = dio_bio_write_op(iocb); 375 task_io_account_write(bio->bi_iter.bi_size); 376 } 377 378 dio->size += bio->bi_iter.bi_size; 379 pos += bio->bi_iter.bi_size; 380 381 nr_pages = iov_iter_npages(iter, BIO_MAX_PAGES); 382 if (!nr_pages) { 383 qc = submit_bio(bio); 384 break; 385 } 386 387 if (!dio->multi_bio) { 388 dio->multi_bio = true; 389 atomic_set(&dio->ref, 2); 390 } else { 391 atomic_inc(&dio->ref); 392 } 393 394 submit_bio(bio); 395 bio = bio_alloc(GFP_KERNEL, nr_pages); 396 } 397 398 if (!dio->is_sync) 399 return -EIOCBQUEUED; 400 401 for (;;) { 402 set_current_state(TASK_UNINTERRUPTIBLE); 403 if (!READ_ONCE(dio->waiter)) 404 break; 405 406 if (!(iocb->ki_flags & IOCB_HIPRI) || 407 !blk_mq_poll(bdev_get_queue(bdev), qc)) 408 io_schedule(); 409 } 410 __set_current_state(TASK_RUNNING); 411 412 ret = dio->bio.bi_error; 413 if (likely(!ret)) 414 ret = dio->size; 415 416 bio_put(&dio->bio); 417 return ret; 418} 419 420static ssize_t 421blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 422{ 423 int nr_pages; 424 425 nr_pages = iov_iter_npages(iter, BIO_MAX_PAGES + 1); 426 if (!nr_pages) 427 return 0; 428 if (is_sync_kiocb(iocb) && nr_pages <= BIO_MAX_PAGES) 429 return __blkdev_direct_IO_simple(iocb, iter, nr_pages); 430 431 return __blkdev_direct_IO(iocb, iter, min(nr_pages, BIO_MAX_PAGES)); 432} 433 434static __init int blkdev_init(void) 435{ 436 blkdev_dio_pool = bioset_create(4, offsetof(struct blkdev_dio, bio)); 437 if (!blkdev_dio_pool) 438 return -ENOMEM; 439 return 0; 440} 441module_init(blkdev_init); 442 443int __sync_blockdev(struct block_device *bdev, int wait) 444{ 445 if (!bdev) 446 return 0; 447 if (!wait) 448 return filemap_flush(bdev->bd_inode->i_mapping); 449 return filemap_write_and_wait(bdev->bd_inode->i_mapping); 450} 451 452/* 453 * Write out and wait upon all the dirty data associated with a block 454 * device via its mapping. Does not take the superblock lock. 455 */ 456int sync_blockdev(struct block_device *bdev) 457{ 458 return __sync_blockdev(bdev, 1); 459} 460EXPORT_SYMBOL(sync_blockdev); 461 462/* 463 * Write out and wait upon all dirty data associated with this 464 * device. Filesystem data as well as the underlying block 465 * device. Takes the superblock lock. 466 */ 467int fsync_bdev(struct block_device *bdev) 468{ 469 struct super_block *sb = get_super(bdev); 470 if (sb) { 471 int res = sync_filesystem(sb); 472 drop_super(sb); 473 return res; 474 } 475 return sync_blockdev(bdev); 476} 477EXPORT_SYMBOL(fsync_bdev); 478 479/** 480 * freeze_bdev -- lock a filesystem and force it into a consistent state 481 * @bdev: blockdevice to lock 482 * 483 * If a superblock is found on this device, we take the s_umount semaphore 484 * on it to make sure nobody unmounts until the snapshot creation is done. 485 * The reference counter (bd_fsfreeze_count) guarantees that only the last 486 * unfreeze process can unfreeze the frozen filesystem actually when multiple 487 * freeze requests arrive simultaneously. It counts up in freeze_bdev() and 488 * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze 489 * actually. 490 */ 491struct super_block *freeze_bdev(struct block_device *bdev) 492{ 493 struct super_block *sb; 494 int error = 0; 495 496 mutex_lock(&bdev->bd_fsfreeze_mutex); 497 if (++bdev->bd_fsfreeze_count > 1) { 498 /* 499 * We don't even need to grab a reference - the first call 500 * to freeze_bdev grab an active reference and only the last 501 * thaw_bdev drops it. 502 */ 503 sb = get_super(bdev); 504 if (sb) 505 drop_super(sb); 506 mutex_unlock(&bdev->bd_fsfreeze_mutex); 507 return sb; 508 } 509 510 sb = get_active_super(bdev); 511 if (!sb) 512 goto out; 513 if (sb->s_op->freeze_super) 514 error = sb->s_op->freeze_super(sb); 515 else 516 error = freeze_super(sb); 517 if (error) { 518 deactivate_super(sb); 519 bdev->bd_fsfreeze_count--; 520 mutex_unlock(&bdev->bd_fsfreeze_mutex); 521 return ERR_PTR(error); 522 } 523 deactivate_super(sb); 524 out: 525 sync_blockdev(bdev); 526 mutex_unlock(&bdev->bd_fsfreeze_mutex); 527 return sb; /* thaw_bdev releases s->s_umount */ 528} 529EXPORT_SYMBOL(freeze_bdev); 530 531/** 532 * thaw_bdev -- unlock filesystem 533 * @bdev: blockdevice to unlock 534 * @sb: associated superblock 535 * 536 * Unlocks the filesystem and marks it writeable again after freeze_bdev(). 537 */ 538int thaw_bdev(struct block_device *bdev, struct super_block *sb) 539{ 540 int error = -EINVAL; 541 542 mutex_lock(&bdev->bd_fsfreeze_mutex); 543 if (!bdev->bd_fsfreeze_count) 544 goto out; 545 546 error = 0; 547 if (--bdev->bd_fsfreeze_count > 0) 548 goto out; 549 550 if (!sb) 551 goto out; 552 553 if (sb->s_op->thaw_super) 554 error = sb->s_op->thaw_super(sb); 555 else 556 error = thaw_super(sb); 557 if (error) 558 bdev->bd_fsfreeze_count++; 559out: 560 mutex_unlock(&bdev->bd_fsfreeze_mutex); 561 return error; 562} 563EXPORT_SYMBOL(thaw_bdev); 564 565static int blkdev_writepage(struct page *page, struct writeback_control *wbc) 566{ 567 return block_write_full_page(page, blkdev_get_block, wbc); 568} 569 570static int blkdev_readpage(struct file * file, struct page * page) 571{ 572 return block_read_full_page(page, blkdev_get_block); 573} 574 575static int blkdev_readpages(struct file *file, struct address_space *mapping, 576 struct list_head *pages, unsigned nr_pages) 577{ 578 return mpage_readpages(mapping, pages, nr_pages, blkdev_get_block); 579} 580 581static int blkdev_write_begin(struct file *file, struct address_space *mapping, 582 loff_t pos, unsigned len, unsigned flags, 583 struct page **pagep, void **fsdata) 584{ 585 return block_write_begin(mapping, pos, len, flags, pagep, 586 blkdev_get_block); 587} 588 589static int blkdev_write_end(struct file *file, struct address_space *mapping, 590 loff_t pos, unsigned len, unsigned copied, 591 struct page *page, void *fsdata) 592{ 593 int ret; 594 ret = block_write_end(file, mapping, pos, len, copied, page, fsdata); 595 596 unlock_page(page); 597 put_page(page); 598 599 return ret; 600} 601 602/* 603 * private llseek: 604 * for a block special file file_inode(file)->i_size is zero 605 * so we compute the size by hand (just as in block_read/write above) 606 */ 607static loff_t block_llseek(struct file *file, loff_t offset, int whence) 608{ 609 struct inode *bd_inode = bdev_file_inode(file); 610 loff_t retval; 611 612 inode_lock(bd_inode); 613 retval = fixed_size_llseek(file, offset, whence, i_size_read(bd_inode)); 614 inode_unlock(bd_inode); 615 return retval; 616} 617 618int blkdev_fsync(struct file *filp, loff_t start, loff_t end, int datasync) 619{ 620 struct inode *bd_inode = bdev_file_inode(filp); 621 struct block_device *bdev = I_BDEV(bd_inode); 622 int error; 623 624 error = filemap_write_and_wait_range(filp->f_mapping, start, end); 625 if (error) 626 return error; 627 628 /* 629 * There is no need to serialise calls to blkdev_issue_flush with 630 * i_mutex and doing so causes performance issues with concurrent 631 * O_SYNC writers to a block device. 632 */ 633 error = blkdev_issue_flush(bdev, GFP_KERNEL, NULL); 634 if (error == -EOPNOTSUPP) 635 error = 0; 636 637 return error; 638} 639EXPORT_SYMBOL(blkdev_fsync); 640 641/** 642 * bdev_read_page() - Start reading a page from a block device 643 * @bdev: The device to read the page from 644 * @sector: The offset on the device to read the page to (need not be aligned) 645 * @page: The page to read 646 * 647 * On entry, the page should be locked. It will be unlocked when the page 648 * has been read. If the block driver implements rw_page synchronously, 649 * that will be true on exit from this function, but it need not be. 650 * 651 * Errors returned by this function are usually "soft", eg out of memory, or 652 * queue full; callers should try a different route to read this page rather 653 * than propagate an error back up the stack. 654 * 655 * Return: negative errno if an error occurs, 0 if submission was successful. 656 */ 657int bdev_read_page(struct block_device *bdev, sector_t sector, 658 struct page *page) 659{ 660 const struct block_device_operations *ops = bdev->bd_disk->fops; 661 int result = -EOPNOTSUPP; 662 663 if (!ops->rw_page || bdev_get_integrity(bdev)) 664 return result; 665 666 result = blk_queue_enter(bdev->bd_queue, false); 667 if (result) 668 return result; 669 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, false); 670 blk_queue_exit(bdev->bd_queue); 671 return result; 672} 673EXPORT_SYMBOL_GPL(bdev_read_page); 674 675/** 676 * bdev_write_page() - Start writing a page to a block device 677 * @bdev: The device to write the page to 678 * @sector: The offset on the device to write the page to (need not be aligned) 679 * @page: The page to write 680 * @wbc: The writeback_control for the write 681 * 682 * On entry, the page should be locked and not currently under writeback. 683 * On exit, if the write started successfully, the page will be unlocked and 684 * under writeback. If the write failed already (eg the driver failed to 685 * queue the page to the device), the page will still be locked. If the 686 * caller is a ->writepage implementation, it will need to unlock the page. 687 * 688 * Errors returned by this function are usually "soft", eg out of memory, or 689 * queue full; callers should try a different route to write this page rather 690 * than propagate an error back up the stack. 691 * 692 * Return: negative errno if an error occurs, 0 if submission was successful. 693 */ 694int bdev_write_page(struct block_device *bdev, sector_t sector, 695 struct page *page, struct writeback_control *wbc) 696{ 697 int result; 698 const struct block_device_operations *ops = bdev->bd_disk->fops; 699 700 if (!ops->rw_page || bdev_get_integrity(bdev)) 701 return -EOPNOTSUPP; 702 result = blk_queue_enter(bdev->bd_queue, false); 703 if (result) 704 return result; 705 706 set_page_writeback(page); 707 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, true); 708 if (result) 709 end_page_writeback(page); 710 else 711 unlock_page(page); 712 blk_queue_exit(bdev->bd_queue); 713 return result; 714} 715EXPORT_SYMBOL_GPL(bdev_write_page); 716 717/** 718 * bdev_direct_access() - Get the address for directly-accessibly memory 719 * @bdev: The device containing the memory 720 * @dax: control and output parameters for ->direct_access 721 * 722 * If a block device is made up of directly addressable memory, this function 723 * will tell the caller the PFN and the address of the memory. The address 724 * may be directly dereferenced within the kernel without the need to call 725 * ioremap(), kmap() or similar. The PFN is suitable for inserting into 726 * page tables. 727 * 728 * Return: negative errno if an error occurs, otherwise the number of bytes 729 * accessible at this address. 730 */ 731long bdev_direct_access(struct block_device *bdev, struct blk_dax_ctl *dax) 732{ 733 sector_t sector = dax->sector; 734 long avail, size = dax->size; 735 const struct block_device_operations *ops = bdev->bd_disk->fops; 736 737 /* 738 * The device driver is allowed to sleep, in order to make the 739 * memory directly accessible. 740 */ 741 might_sleep(); 742 743 if (size < 0) 744 return size; 745 if (!blk_queue_dax(bdev_get_queue(bdev)) || !ops->direct_access) 746 return -EOPNOTSUPP; 747 if ((sector + DIV_ROUND_UP(size, 512)) > 748 part_nr_sects_read(bdev->bd_part)) 749 return -ERANGE; 750 sector += get_start_sect(bdev); 751 if (sector % (PAGE_SIZE / 512)) 752 return -EINVAL; 753 avail = ops->direct_access(bdev, sector, &dax->addr, &dax->pfn, size); 754 if (!avail) 755 return -ERANGE; 756 if (avail > 0 && avail & ~PAGE_MASK) 757 return -ENXIO; 758 return min(avail, size); 759} 760EXPORT_SYMBOL_GPL(bdev_direct_access); 761 762/** 763 * bdev_dax_supported() - Check if the device supports dax for filesystem 764 * @sb: The superblock of the device 765 * @blocksize: The block size of the device 766 * 767 * This is a library function for filesystems to check if the block device 768 * can be mounted with dax option. 769 * 770 * Return: negative errno if unsupported, 0 if supported. 771 */ 772int bdev_dax_supported(struct super_block *sb, int blocksize) 773{ 774 struct blk_dax_ctl dax = { 775 .sector = 0, 776 .size = PAGE_SIZE, 777 }; 778 int err; 779 780 if (blocksize != PAGE_SIZE) { 781 vfs_msg(sb, KERN_ERR, "error: unsupported blocksize for dax"); 782 return -EINVAL; 783 } 784 785 err = bdev_direct_access(sb->s_bdev, &dax); 786 if (err < 0) { 787 switch (err) { 788 case -EOPNOTSUPP: 789 vfs_msg(sb, KERN_ERR, 790 "error: device does not support dax"); 791 break; 792 case -EINVAL: 793 vfs_msg(sb, KERN_ERR, 794 "error: unaligned partition for dax"); 795 break; 796 default: 797 vfs_msg(sb, KERN_ERR, 798 "error: dax access failed (%d)", err); 799 } 800 return err; 801 } 802 803 return 0; 804} 805EXPORT_SYMBOL_GPL(bdev_dax_supported); 806 807/** 808 * bdev_dax_capable() - Return if the raw device is capable for dax 809 * @bdev: The device for raw block device access 810 */ 811bool bdev_dax_capable(struct block_device *bdev) 812{ 813 struct blk_dax_ctl dax = { 814 .size = PAGE_SIZE, 815 }; 816 817 if (!IS_ENABLED(CONFIG_FS_DAX)) 818 return false; 819 820 dax.sector = 0; 821 if (bdev_direct_access(bdev, &dax) < 0) 822 return false; 823 824 dax.sector = bdev->bd_part->nr_sects - (PAGE_SIZE / 512); 825 if (bdev_direct_access(bdev, &dax) < 0) 826 return false; 827 828 return true; 829} 830 831/* 832 * pseudo-fs 833 */ 834 835static __cacheline_aligned_in_smp DEFINE_SPINLOCK(bdev_lock); 836static struct kmem_cache * bdev_cachep __read_mostly; 837 838static struct inode *bdev_alloc_inode(struct super_block *sb) 839{ 840 struct bdev_inode *ei = kmem_cache_alloc(bdev_cachep, GFP_KERNEL); 841 if (!ei) 842 return NULL; 843 return &ei->vfs_inode; 844} 845 846static void bdev_i_callback(struct rcu_head *head) 847{ 848 struct inode *inode = container_of(head, struct inode, i_rcu); 849 struct bdev_inode *bdi = BDEV_I(inode); 850 851 kmem_cache_free(bdev_cachep, bdi); 852} 853 854static void bdev_destroy_inode(struct inode *inode) 855{ 856 call_rcu(&inode->i_rcu, bdev_i_callback); 857} 858 859static void init_once(void *foo) 860{ 861 struct bdev_inode *ei = (struct bdev_inode *) foo; 862 struct block_device *bdev = &ei->bdev; 863 864 memset(bdev, 0, sizeof(*bdev)); 865 mutex_init(&bdev->bd_mutex); 866 INIT_LIST_HEAD(&bdev->bd_list); 867#ifdef CONFIG_SYSFS 868 INIT_LIST_HEAD(&bdev->bd_holder_disks); 869#endif 870 inode_init_once(&ei->vfs_inode); 871 /* Initialize mutex for freeze. */ 872 mutex_init(&bdev->bd_fsfreeze_mutex); 873} 874 875static void bdev_evict_inode(struct inode *inode) 876{ 877 struct block_device *bdev = &BDEV_I(inode)->bdev; 878 truncate_inode_pages_final(&inode->i_data); 879 invalidate_inode_buffers(inode); /* is it needed here? */ 880 clear_inode(inode); 881 spin_lock(&bdev_lock); 882 list_del_init(&bdev->bd_list); 883 spin_unlock(&bdev_lock); 884} 885 886static const struct super_operations bdev_sops = { 887 .statfs = simple_statfs, 888 .alloc_inode = bdev_alloc_inode, 889 .destroy_inode = bdev_destroy_inode, 890 .drop_inode = generic_delete_inode, 891 .evict_inode = bdev_evict_inode, 892}; 893 894static struct dentry *bd_mount(struct file_system_type *fs_type, 895 int flags, const char *dev_name, void *data) 896{ 897 struct dentry *dent; 898 dent = mount_pseudo(fs_type, "bdev:", &bdev_sops, NULL, BDEVFS_MAGIC); 899 if (!IS_ERR(dent)) 900 dent->d_sb->s_iflags |= SB_I_CGROUPWB; 901 return dent; 902} 903 904static struct file_system_type bd_type = { 905 .name = "bdev", 906 .mount = bd_mount, 907 .kill_sb = kill_anon_super, 908}; 909 910struct super_block *blockdev_superblock __read_mostly; 911EXPORT_SYMBOL_GPL(blockdev_superblock); 912 913void __init bdev_cache_init(void) 914{ 915 int err; 916 static struct vfsmount *bd_mnt; 917 918 bdev_cachep = kmem_cache_create("bdev_cache", sizeof(struct bdev_inode), 919 0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT| 920 SLAB_MEM_SPREAD|SLAB_ACCOUNT|SLAB_PANIC), 921 init_once); 922 err = register_filesystem(&bd_type); 923 if (err) 924 panic("Cannot register bdev pseudo-fs"); 925 bd_mnt = kern_mount(&bd_type); 926 if (IS_ERR(bd_mnt)) 927 panic("Cannot create bdev pseudo-fs"); 928 blockdev_superblock = bd_mnt->mnt_sb; /* For writeback */ 929} 930 931/* 932 * Most likely _very_ bad one - but then it's hardly critical for small 933 * /dev and can be fixed when somebody will need really large one. 934 * Keep in mind that it will be fed through icache hash function too. 935 */ 936static inline unsigned long hash(dev_t dev) 937{ 938 return MAJOR(dev)+MINOR(dev); 939} 940 941static int bdev_test(struct inode *inode, void *data) 942{ 943 return BDEV_I(inode)->bdev.bd_dev == *(dev_t *)data; 944} 945 946static int bdev_set(struct inode *inode, void *data) 947{ 948 BDEV_I(inode)->bdev.bd_dev = *(dev_t *)data; 949 return 0; 950} 951 952static LIST_HEAD(all_bdevs); 953 954struct block_device *bdget(dev_t dev) 955{ 956 struct block_device *bdev; 957 struct inode *inode; 958 959 inode = iget5_locked(blockdev_superblock, hash(dev), 960 bdev_test, bdev_set, &dev); 961 962 if (!inode) 963 return NULL; 964 965 bdev = &BDEV_I(inode)->bdev; 966 967 if (inode->i_state & I_NEW) { 968 bdev->bd_contains = NULL; 969 bdev->bd_super = NULL; 970 bdev->bd_inode = inode; 971 bdev->bd_block_size = (1 << inode->i_blkbits); 972 bdev->bd_part_count = 0; 973 bdev->bd_invalidated = 0; 974 inode->i_mode = S_IFBLK; 975 inode->i_rdev = dev; 976 inode->i_bdev = bdev; 977 inode->i_data.a_ops = &def_blk_aops; 978 mapping_set_gfp_mask(&inode->i_data, GFP_USER); 979 spin_lock(&bdev_lock); 980 list_add(&bdev->bd_list, &all_bdevs); 981 spin_unlock(&bdev_lock); 982 unlock_new_inode(inode); 983 } 984 return bdev; 985} 986 987EXPORT_SYMBOL(bdget); 988 989/** 990 * bdgrab -- Grab a reference to an already referenced block device 991 * @bdev: Block device to grab a reference to. 992 */ 993struct block_device *bdgrab(struct block_device *bdev) 994{ 995 ihold(bdev->bd_inode); 996 return bdev; 997} 998EXPORT_SYMBOL(bdgrab); 999 1000long nr_blockdev_pages(void) 1001{ 1002 struct block_device *bdev; 1003 long ret = 0; 1004 spin_lock(&bdev_lock); 1005 list_for_each_entry(bdev, &all_bdevs, bd_list) { 1006 ret += bdev->bd_inode->i_mapping->nrpages; 1007 } 1008 spin_unlock(&bdev_lock); 1009 return ret; 1010} 1011 1012void bdput(struct block_device *bdev) 1013{ 1014 iput(bdev->bd_inode); 1015} 1016 1017EXPORT_SYMBOL(bdput); 1018 1019static struct block_device *bd_acquire(struct inode *inode) 1020{ 1021 struct block_device *bdev; 1022 1023 spin_lock(&bdev_lock); 1024 bdev = inode->i_bdev; 1025 if (bdev) { 1026 bdgrab(bdev); 1027 spin_unlock(&bdev_lock); 1028 return bdev; 1029 } 1030 spin_unlock(&bdev_lock); 1031 1032 bdev = bdget(inode->i_rdev); 1033 if (bdev) { 1034 spin_lock(&bdev_lock); 1035 if (!inode->i_bdev) { 1036 /* 1037 * We take an additional reference to bd_inode, 1038 * and it's released in clear_inode() of inode. 1039 * So, we can access it via ->i_mapping always 1040 * without igrab(). 1041 */ 1042 bdgrab(bdev); 1043 inode->i_bdev = bdev; 1044 inode->i_mapping = bdev->bd_inode->i_mapping; 1045 } 1046 spin_unlock(&bdev_lock); 1047 } 1048 return bdev; 1049} 1050 1051/* Call when you free inode */ 1052 1053void bd_forget(struct inode *inode) 1054{ 1055 struct block_device *bdev = NULL; 1056 1057 spin_lock(&bdev_lock); 1058 if (!sb_is_blkdev_sb(inode->i_sb)) 1059 bdev = inode->i_bdev; 1060 inode->i_bdev = NULL; 1061 inode->i_mapping = &inode->i_data; 1062 spin_unlock(&bdev_lock); 1063 1064 if (bdev) 1065 bdput(bdev); 1066} 1067 1068/** 1069 * bd_may_claim - test whether a block device can be claimed 1070 * @bdev: block device of interest 1071 * @whole: whole block device containing @bdev, may equal @bdev 1072 * @holder: holder trying to claim @bdev 1073 * 1074 * Test whether @bdev can be claimed by @holder. 1075 * 1076 * CONTEXT: 1077 * spin_lock(&bdev_lock). 1078 * 1079 * RETURNS: 1080 * %true if @bdev can be claimed, %false otherwise. 1081 */ 1082static bool bd_may_claim(struct block_device *bdev, struct block_device *whole, 1083 void *holder) 1084{ 1085 if (bdev->bd_holder == holder) 1086 return true; /* already a holder */ 1087 else if (bdev->bd_holder != NULL) 1088 return false; /* held by someone else */ 1089 else if (whole == bdev) 1090 return true; /* is a whole device which isn't held */ 1091 1092 else if (whole->bd_holder == bd_may_claim) 1093 return true; /* is a partition of a device that is being partitioned */ 1094 else if (whole->bd_holder != NULL) 1095 return false; /* is a partition of a held device */ 1096 else 1097 return true; /* is a partition of an un-held device */ 1098} 1099 1100/** 1101 * bd_prepare_to_claim - prepare to claim a block device 1102 * @bdev: block device of interest 1103 * @whole: the whole device containing @bdev, may equal @bdev 1104 * @holder: holder trying to claim @bdev 1105 * 1106 * Prepare to claim @bdev. This function fails if @bdev is already 1107 * claimed by another holder and waits if another claiming is in 1108 * progress. This function doesn't actually claim. On successful 1109 * return, the caller has ownership of bd_claiming and bd_holder[s]. 1110 * 1111 * CONTEXT: 1112 * spin_lock(&bdev_lock). Might release bdev_lock, sleep and regrab 1113 * it multiple times. 1114 * 1115 * RETURNS: 1116 * 0 if @bdev can be claimed, -EBUSY otherwise. 1117 */ 1118static int bd_prepare_to_claim(struct block_device *bdev, 1119 struct block_device *whole, void *holder) 1120{ 1121retry: 1122 /* if someone else claimed, fail */ 1123 if (!bd_may_claim(bdev, whole, holder)) 1124 return -EBUSY; 1125 1126 /* if claiming is already in progress, wait for it to finish */ 1127 if (whole->bd_claiming) { 1128 wait_queue_head_t *wq = bit_waitqueue(&whole->bd_claiming, 0); 1129 DEFINE_WAIT(wait); 1130 1131 prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE); 1132 spin_unlock(&bdev_lock); 1133 schedule(); 1134 finish_wait(wq, &wait); 1135 spin_lock(&bdev_lock); 1136 goto retry; 1137 } 1138 1139 /* yay, all mine */ 1140 return 0; 1141} 1142 1143/** 1144 * bd_start_claiming - start claiming a block device 1145 * @bdev: block device of interest 1146 * @holder: holder trying to claim @bdev 1147 * 1148 * @bdev is about to be opened exclusively. Check @bdev can be opened 1149 * exclusively and mark that an exclusive open is in progress. Each 1150 * successful call to this function must be matched with a call to 1151 * either bd_finish_claiming() or bd_abort_claiming() (which do not 1152 * fail). 1153 * 1154 * This function is used to gain exclusive access to the block device 1155 * without actually causing other exclusive open attempts to fail. It 1156 * should be used when the open sequence itself requires exclusive 1157 * access but may subsequently fail. 1158 * 1159 * CONTEXT: 1160 * Might sleep. 1161 * 1162 * RETURNS: 1163 * Pointer to the block device containing @bdev on success, ERR_PTR() 1164 * value on failure. 1165 */ 1166static struct block_device *bd_start_claiming(struct block_device *bdev, 1167 void *holder) 1168{ 1169 struct gendisk *disk; 1170 struct block_device *whole; 1171 int partno, err; 1172 1173 might_sleep(); 1174 1175 /* 1176 * @bdev might not have been initialized properly yet, look up 1177 * and grab the outer block device the hard way. 1178 */ 1179 disk = get_gendisk(bdev->bd_dev, &partno); 1180 if (!disk) 1181 return ERR_PTR(-ENXIO); 1182 1183 /* 1184 * Normally, @bdev should equal what's returned from bdget_disk() 1185 * if partno is 0; however, some drivers (floppy) use multiple 1186 * bdev's for the same physical device and @bdev may be one of the 1187 * aliases. Keep @bdev if partno is 0. This means claimer 1188 * tracking is broken for those devices but it has always been that 1189 * way. 1190 */ 1191 if (partno) 1192 whole = bdget_disk(disk, 0); 1193 else 1194 whole = bdgrab(bdev); 1195 1196 module_put(disk->fops->owner); 1197 put_disk(disk); 1198 if (!whole) 1199 return ERR_PTR(-ENOMEM); 1200 1201 /* prepare to claim, if successful, mark claiming in progress */ 1202 spin_lock(&bdev_lock); 1203 1204 err = bd_prepare_to_claim(bdev, whole, holder); 1205 if (err == 0) { 1206 whole->bd_claiming = holder; 1207 spin_unlock(&bdev_lock); 1208 return whole; 1209 } else { 1210 spin_unlock(&bdev_lock); 1211 bdput(whole); 1212 return ERR_PTR(err); 1213 } 1214} 1215 1216#ifdef CONFIG_SYSFS 1217struct bd_holder_disk { 1218 struct list_head list; 1219 struct gendisk *disk; 1220 int refcnt; 1221}; 1222 1223static struct bd_holder_disk *bd_find_holder_disk(struct block_device *bdev, 1224 struct gendisk *disk) 1225{ 1226 struct bd_holder_disk *holder; 1227 1228 list_for_each_entry(holder, &bdev->bd_holder_disks, list) 1229 if (holder->disk == disk) 1230 return holder; 1231 return NULL; 1232} 1233 1234static int add_symlink(struct kobject *from, struct kobject *to) 1235{ 1236 return sysfs_create_link(from, to, kobject_name(to)); 1237} 1238 1239static void del_symlink(struct kobject *from, struct kobject *to) 1240{ 1241 sysfs_remove_link(from, kobject_name(to)); 1242} 1243 1244/** 1245 * bd_link_disk_holder - create symlinks between holding disk and slave bdev 1246 * @bdev: the claimed slave bdev 1247 * @disk: the holding disk 1248 * 1249 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT. 1250 * 1251 * This functions creates the following sysfs symlinks. 1252 * 1253 * - from "slaves" directory of the holder @disk to the claimed @bdev 1254 * - from "holders" directory of the @bdev to the holder @disk 1255 * 1256 * For example, if /dev/dm-0 maps to /dev/sda and disk for dm-0 is 1257 * passed to bd_link_disk_holder(), then: 1258 * 1259 * /sys/block/dm-0/slaves/sda --> /sys/block/sda 1260 * /sys/block/sda/holders/dm-0 --> /sys/block/dm-0 1261 * 1262 * The caller must have claimed @bdev before calling this function and 1263 * ensure that both @bdev and @disk are valid during the creation and 1264 * lifetime of these symlinks. 1265 * 1266 * CONTEXT: 1267 * Might sleep. 1268 * 1269 * RETURNS: 1270 * 0 on success, -errno on failure. 1271 */ 1272int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk) 1273{ 1274 struct bd_holder_disk *holder; 1275 int ret = 0; 1276 1277 mutex_lock(&bdev->bd_mutex); 1278 1279 WARN_ON_ONCE(!bdev->bd_holder); 1280 1281 /* FIXME: remove the following once add_disk() handles errors */ 1282 if (WARN_ON(!disk->slave_dir || !bdev->bd_part->holder_dir)) 1283 goto out_unlock; 1284 1285 holder = bd_find_holder_disk(bdev, disk); 1286 if (holder) { 1287 holder->refcnt++; 1288 goto out_unlock; 1289 } 1290 1291 holder = kzalloc(sizeof(*holder), GFP_KERNEL); 1292 if (!holder) { 1293 ret = -ENOMEM; 1294 goto out_unlock; 1295 } 1296 1297 INIT_LIST_HEAD(&holder->list); 1298 holder->disk = disk; 1299 holder->refcnt = 1; 1300 1301 ret = add_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj); 1302 if (ret) 1303 goto out_free; 1304 1305 ret = add_symlink(bdev->bd_part->holder_dir, &disk_to_dev(disk)->kobj); 1306 if (ret) 1307 goto out_del; 1308 /* 1309 * bdev could be deleted beneath us which would implicitly destroy 1310 * the holder directory. Hold on to it. 1311 */ 1312 kobject_get(bdev->bd_part->holder_dir); 1313 1314 list_add(&holder->list, &bdev->bd_holder_disks); 1315 goto out_unlock; 1316 1317out_del: 1318 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj); 1319out_free: 1320 kfree(holder); 1321out_unlock: 1322 mutex_unlock(&bdev->bd_mutex); 1323 return ret; 1324} 1325EXPORT_SYMBOL_GPL(bd_link_disk_holder); 1326 1327/** 1328 * bd_unlink_disk_holder - destroy symlinks created by bd_link_disk_holder() 1329 * @bdev: the calimed slave bdev 1330 * @disk: the holding disk 1331 * 1332 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT. 1333 * 1334 * CONTEXT: 1335 * Might sleep. 1336 */ 1337void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk) 1338{ 1339 struct bd_holder_disk *holder; 1340 1341 mutex_lock(&bdev->bd_mutex); 1342 1343 holder = bd_find_holder_disk(bdev, disk); 1344 1345 if (!WARN_ON_ONCE(holder == NULL) && !--holder->refcnt) { 1346 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj); 1347 del_symlink(bdev->bd_part->holder_dir, 1348 &disk_to_dev(disk)->kobj); 1349 kobject_put(bdev->bd_part->holder_dir); 1350 list_del_init(&holder->list); 1351 kfree(holder); 1352 } 1353 1354 mutex_unlock(&bdev->bd_mutex); 1355} 1356EXPORT_SYMBOL_GPL(bd_unlink_disk_holder); 1357#endif 1358 1359/** 1360 * flush_disk - invalidates all buffer-cache entries on a disk 1361 * 1362 * @bdev: struct block device to be flushed 1363 * @kill_dirty: flag to guide handling of dirty inodes 1364 * 1365 * Invalidates all buffer-cache entries on a disk. It should be called 1366 * when a disk has been changed -- either by a media change or online 1367 * resize. 1368 */ 1369static void flush_disk(struct block_device *bdev, bool kill_dirty) 1370{ 1371 if (__invalidate_device(bdev, kill_dirty)) { 1372 printk(KERN_WARNING "VFS: busy inodes on changed media or " 1373 "resized disk %s\n", 1374 bdev->bd_disk ? bdev->bd_disk->disk_name : ""); 1375 } 1376 1377 if (!bdev->bd_disk) 1378 return; 1379 if (disk_part_scan_enabled(bdev->bd_disk)) 1380 bdev->bd_invalidated = 1; 1381} 1382 1383/** 1384 * check_disk_size_change - checks for disk size change and adjusts bdev size. 1385 * @disk: struct gendisk to check 1386 * @bdev: struct bdev to adjust. 1387 * 1388 * This routine checks to see if the bdev size does not match the disk size 1389 * and adjusts it if it differs. 1390 */ 1391void check_disk_size_change(struct gendisk *disk, struct block_device *bdev) 1392{ 1393 loff_t disk_size, bdev_size; 1394 1395 disk_size = (loff_t)get_capacity(disk) << 9; 1396 bdev_size = i_size_read(bdev->bd_inode); 1397 if (disk_size != bdev_size) { 1398 printk(KERN_INFO 1399 "%s: detected capacity change from %lld to %lld\n", 1400 disk->disk_name, bdev_size, disk_size); 1401 i_size_write(bdev->bd_inode, disk_size); 1402 flush_disk(bdev, false); 1403 } 1404} 1405EXPORT_SYMBOL(check_disk_size_change); 1406 1407/** 1408 * revalidate_disk - wrapper for lower-level driver's revalidate_disk call-back 1409 * @disk: struct gendisk to be revalidated 1410 * 1411 * This routine is a wrapper for lower-level driver's revalidate_disk 1412 * call-backs. It is used to do common pre and post operations needed 1413 * for all revalidate_disk operations. 1414 */ 1415int revalidate_disk(struct gendisk *disk) 1416{ 1417 struct block_device *bdev; 1418 int ret = 0; 1419 1420 if (disk->fops->revalidate_disk) 1421 ret = disk->fops->revalidate_disk(disk); 1422 blk_integrity_revalidate(disk); 1423 bdev = bdget_disk(disk, 0); 1424 if (!bdev) 1425 return ret; 1426 1427 mutex_lock(&bdev->bd_mutex); 1428 check_disk_size_change(disk, bdev); 1429 bdev->bd_invalidated = 0; 1430 mutex_unlock(&bdev->bd_mutex); 1431 bdput(bdev); 1432 return ret; 1433} 1434EXPORT_SYMBOL(revalidate_disk); 1435 1436/* 1437 * This routine checks whether a removable media has been changed, 1438 * and invalidates all buffer-cache-entries in that case. This 1439 * is a relatively slow routine, so we have to try to minimize using 1440 * it. Thus it is called only upon a 'mount' or 'open'. This 1441 * is the best way of combining speed and utility, I think. 1442 * People changing diskettes in the middle of an operation deserve 1443 * to lose :-) 1444 */ 1445int check_disk_change(struct block_device *bdev) 1446{ 1447 struct gendisk *disk = bdev->bd_disk; 1448 const struct block_device_operations *bdops = disk->fops; 1449 unsigned int events; 1450 1451 events = disk_clear_events(disk, DISK_EVENT_MEDIA_CHANGE | 1452 DISK_EVENT_EJECT_REQUEST); 1453 if (!(events & DISK_EVENT_MEDIA_CHANGE)) 1454 return 0; 1455 1456 flush_disk(bdev, true); 1457 if (bdops->revalidate_disk) 1458 bdops->revalidate_disk(bdev->bd_disk); 1459 return 1; 1460} 1461 1462EXPORT_SYMBOL(check_disk_change); 1463 1464void bd_set_size(struct block_device *bdev, loff_t size) 1465{ 1466 unsigned bsize = bdev_logical_block_size(bdev); 1467 1468 inode_lock(bdev->bd_inode); 1469 i_size_write(bdev->bd_inode, size); 1470 inode_unlock(bdev->bd_inode); 1471 while (bsize < PAGE_SIZE) { 1472 if (size & bsize) 1473 break; 1474 bsize <<= 1; 1475 } 1476 bdev->bd_block_size = bsize; 1477 bdev->bd_inode->i_blkbits = blksize_bits(bsize); 1478} 1479EXPORT_SYMBOL(bd_set_size); 1480 1481static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part); 1482 1483/* 1484 * bd_mutex locking: 1485 * 1486 * mutex_lock(part->bd_mutex) 1487 * mutex_lock_nested(whole->bd_mutex, 1) 1488 */ 1489 1490static int __blkdev_get(struct block_device *bdev, fmode_t mode, int for_part) 1491{ 1492 struct gendisk *disk; 1493 struct module *owner; 1494 int ret; 1495 int partno; 1496 int perm = 0; 1497 1498 if (mode & FMODE_READ) 1499 perm |= MAY_READ; 1500 if (mode & FMODE_WRITE) 1501 perm |= MAY_WRITE; 1502 /* 1503 * hooks: /n/, see "layering violations". 1504 */ 1505 if (!for_part) { 1506 ret = devcgroup_inode_permission(bdev->bd_inode, perm); 1507 if (ret != 0) { 1508 bdput(bdev); 1509 return ret; 1510 } 1511 } 1512 1513 restart: 1514 1515 ret = -ENXIO; 1516 disk = get_gendisk(bdev->bd_dev, &partno); 1517 if (!disk) 1518 goto out; 1519 owner = disk->fops->owner; 1520 1521 disk_block_events(disk); 1522 mutex_lock_nested(&bdev->bd_mutex, for_part); 1523 if (!bdev->bd_openers) { 1524 bdev->bd_disk = disk; 1525 bdev->bd_queue = disk->queue; 1526 bdev->bd_contains = bdev; 1527 1528 if (!partno) { 1529 ret = -ENXIO; 1530 bdev->bd_part = disk_get_part(disk, partno); 1531 if (!bdev->bd_part) 1532 goto out_clear; 1533 1534 ret = 0; 1535 if (disk->fops->open) { 1536 ret = disk->fops->open(bdev, mode); 1537 if (ret == -ERESTARTSYS) { 1538 /* Lost a race with 'disk' being 1539 * deleted, try again. 1540 * See md.c 1541 */ 1542 disk_put_part(bdev->bd_part); 1543 bdev->bd_part = NULL; 1544 bdev->bd_disk = NULL; 1545 bdev->bd_queue = NULL; 1546 mutex_unlock(&bdev->bd_mutex); 1547 disk_unblock_events(disk); 1548 put_disk(disk); 1549 module_put(owner); 1550 goto restart; 1551 } 1552 } 1553 1554 if (!ret) 1555 bd_set_size(bdev,(loff_t)get_capacity(disk)<<9); 1556 1557 /* 1558 * If the device is invalidated, rescan partition 1559 * if open succeeded or failed with -ENOMEDIUM. 1560 * The latter is necessary to prevent ghost 1561 * partitions on a removed medium. 1562 */ 1563 if (bdev->bd_invalidated) { 1564 if (!ret) 1565 rescan_partitions(disk, bdev); 1566 else if (ret == -ENOMEDIUM) 1567 invalidate_partitions(disk, bdev); 1568 } 1569 1570 if (ret) 1571 goto out_clear; 1572 } else { 1573 struct block_device *whole; 1574 whole = bdget_disk(disk, 0); 1575 ret = -ENOMEM; 1576 if (!whole) 1577 goto out_clear; 1578 BUG_ON(for_part); 1579 ret = __blkdev_get(whole, mode, 1); 1580 if (ret) 1581 goto out_clear; 1582 bdev->bd_contains = whole; 1583 bdev->bd_part = disk_get_part(disk, partno); 1584 if (!(disk->flags & GENHD_FL_UP) || 1585 !bdev->bd_part || !bdev->bd_part->nr_sects) { 1586 ret = -ENXIO; 1587 goto out_clear; 1588 } 1589 bd_set_size(bdev, (loff_t)bdev->bd_part->nr_sects << 9); 1590 } 1591 } else { 1592 if (bdev->bd_contains == bdev) { 1593 ret = 0; 1594 if (bdev->bd_disk->fops->open) 1595 ret = bdev->bd_disk->fops->open(bdev, mode); 1596 /* the same as first opener case, read comment there */ 1597 if (bdev->bd_invalidated) { 1598 if (!ret) 1599 rescan_partitions(bdev->bd_disk, bdev); 1600 else if (ret == -ENOMEDIUM) 1601 invalidate_partitions(bdev->bd_disk, bdev); 1602 } 1603 if (ret) 1604 goto out_unlock_bdev; 1605 } 1606 /* only one opener holds refs to the module and disk */ 1607 put_disk(disk); 1608 module_put(owner); 1609 } 1610 bdev->bd_openers++; 1611 if (for_part) 1612 bdev->bd_part_count++; 1613 mutex_unlock(&bdev->bd_mutex); 1614 disk_unblock_events(disk); 1615 return 0; 1616 1617 out_clear: 1618 disk_put_part(bdev->bd_part); 1619 bdev->bd_disk = NULL; 1620 bdev->bd_part = NULL; 1621 bdev->bd_queue = NULL; 1622 if (bdev != bdev->bd_contains) 1623 __blkdev_put(bdev->bd_contains, mode, 1); 1624 bdev->bd_contains = NULL; 1625 out_unlock_bdev: 1626 mutex_unlock(&bdev->bd_mutex); 1627 disk_unblock_events(disk); 1628 put_disk(disk); 1629 module_put(owner); 1630 out: 1631 bdput(bdev); 1632 1633 return ret; 1634} 1635 1636/** 1637 * blkdev_get - open a block device 1638 * @bdev: block_device to open 1639 * @mode: FMODE_* mask 1640 * @holder: exclusive holder identifier 1641 * 1642 * Open @bdev with @mode. If @mode includes %FMODE_EXCL, @bdev is 1643 * open with exclusive access. Specifying %FMODE_EXCL with %NULL 1644 * @holder is invalid. Exclusive opens may nest for the same @holder. 1645 * 1646 * On success, the reference count of @bdev is unchanged. On failure, 1647 * @bdev is put. 1648 * 1649 * CONTEXT: 1650 * Might sleep. 1651 * 1652 * RETURNS: 1653 * 0 on success, -errno on failure. 1654 */ 1655int blkdev_get(struct block_device *bdev, fmode_t mode, void *holder) 1656{ 1657 struct block_device *whole = NULL; 1658 int res; 1659 1660 WARN_ON_ONCE((mode & FMODE_EXCL) && !holder); 1661 1662 if ((mode & FMODE_EXCL) && holder) { 1663 whole = bd_start_claiming(bdev, holder); 1664 if (IS_ERR(whole)) { 1665 bdput(bdev); 1666 return PTR_ERR(whole); 1667 } 1668 } 1669 1670 res = __blkdev_get(bdev, mode, 0); 1671 1672 if (whole) { 1673 struct gendisk *disk = whole->bd_disk; 1674 1675 /* finish claiming */ 1676 mutex_lock(&bdev->bd_mutex); 1677 spin_lock(&bdev_lock); 1678 1679 if (!res) { 1680 BUG_ON(!bd_may_claim(bdev, whole, holder)); 1681 /* 1682 * Note that for a whole device bd_holders 1683 * will be incremented twice, and bd_holder 1684 * will be set to bd_may_claim before being 1685 * set to holder 1686 */ 1687 whole->bd_holders++; 1688 whole->bd_holder = bd_may_claim; 1689 bdev->bd_holders++; 1690 bdev->bd_holder = holder; 1691 } 1692 1693 /* tell others that we're done */ 1694 BUG_ON(whole->bd_claiming != holder); 1695 whole->bd_claiming = NULL; 1696 wake_up_bit(&whole->bd_claiming, 0); 1697 1698 spin_unlock(&bdev_lock); 1699 1700 /* 1701 * Block event polling for write claims if requested. Any 1702 * write holder makes the write_holder state stick until 1703 * all are released. This is good enough and tracking 1704 * individual writeable reference is too fragile given the 1705 * way @mode is used in blkdev_get/put(). 1706 */ 1707 if (!res && (mode & FMODE_WRITE) && !bdev->bd_write_holder && 1708 (disk->flags & GENHD_FL_BLOCK_EVENTS_ON_EXCL_WRITE)) { 1709 bdev->bd_write_holder = true; 1710 disk_block_events(disk); 1711 } 1712 1713 mutex_unlock(&bdev->bd_mutex); 1714 bdput(whole); 1715 } 1716 1717 return res; 1718} 1719EXPORT_SYMBOL(blkdev_get); 1720 1721/** 1722 * blkdev_get_by_path - open a block device by name 1723 * @path: path to the block device to open 1724 * @mode: FMODE_* mask 1725 * @holder: exclusive holder identifier 1726 * 1727 * Open the blockdevice described by the device file at @path. @mode 1728 * and @holder are identical to blkdev_get(). 1729 * 1730 * On success, the returned block_device has reference count of one. 1731 * 1732 * CONTEXT: 1733 * Might sleep. 1734 * 1735 * RETURNS: 1736 * Pointer to block_device on success, ERR_PTR(-errno) on failure. 1737 */ 1738struct block_device *blkdev_get_by_path(const char *path, fmode_t mode, 1739 void *holder) 1740{ 1741 struct block_device *bdev; 1742 int err; 1743 1744 bdev = lookup_bdev(path); 1745 if (IS_ERR(bdev)) 1746 return bdev; 1747 1748 err = blkdev_get(bdev, mode, holder); 1749 if (err) 1750 return ERR_PTR(err); 1751 1752 if ((mode & FMODE_WRITE) && bdev_read_only(bdev)) { 1753 blkdev_put(bdev, mode); 1754 return ERR_PTR(-EACCES); 1755 } 1756 1757 return bdev; 1758} 1759EXPORT_SYMBOL(blkdev_get_by_path); 1760 1761/** 1762 * blkdev_get_by_dev - open a block device by device number 1763 * @dev: device number of block device to open 1764 * @mode: FMODE_* mask 1765 * @holder: exclusive holder identifier 1766 * 1767 * Open the blockdevice described by device number @dev. @mode and 1768 * @holder are identical to blkdev_get(). 1769 * 1770 * Use it ONLY if you really do not have anything better - i.e. when 1771 * you are behind a truly sucky interface and all you are given is a 1772 * device number. _Never_ to be used for internal purposes. If you 1773 * ever need it - reconsider your API. 1774 * 1775 * On success, the returned block_device has reference count of one. 1776 * 1777 * CONTEXT: 1778 * Might sleep. 1779 * 1780 * RETURNS: 1781 * Pointer to block_device on success, ERR_PTR(-errno) on failure. 1782 */ 1783struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder) 1784{ 1785 struct block_device *bdev; 1786 int err; 1787 1788 bdev = bdget(dev); 1789 if (!bdev) 1790 return ERR_PTR(-ENOMEM); 1791 1792 err = blkdev_get(bdev, mode, holder); 1793 if (err) 1794 return ERR_PTR(err); 1795 1796 return bdev; 1797} 1798EXPORT_SYMBOL(blkdev_get_by_dev); 1799 1800static int blkdev_open(struct inode * inode, struct file * filp) 1801{ 1802 struct block_device *bdev; 1803 1804 /* 1805 * Preserve backwards compatibility and allow large file access 1806 * even if userspace doesn't ask for it explicitly. Some mkfs 1807 * binary needs it. We might want to drop this workaround 1808 * during an unstable branch. 1809 */ 1810 filp->f_flags |= O_LARGEFILE; 1811 1812 if (filp->f_flags & O_NDELAY) 1813 filp->f_mode |= FMODE_NDELAY; 1814 if (filp->f_flags & O_EXCL) 1815 filp->f_mode |= FMODE_EXCL; 1816 if ((filp->f_flags & O_ACCMODE) == 3) 1817 filp->f_mode |= FMODE_WRITE_IOCTL; 1818 1819 bdev = bd_acquire(inode); 1820 if (bdev == NULL) 1821 return -ENOMEM; 1822 1823 filp->f_mapping = bdev->bd_inode->i_mapping; 1824 1825 return blkdev_get(bdev, filp->f_mode, filp); 1826} 1827 1828static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part) 1829{ 1830 struct gendisk *disk = bdev->bd_disk; 1831 struct block_device *victim = NULL; 1832 1833 mutex_lock_nested(&bdev->bd_mutex, for_part); 1834 if (for_part) 1835 bdev->bd_part_count--; 1836 1837 if (!--bdev->bd_openers) { 1838 WARN_ON_ONCE(bdev->bd_holders); 1839 sync_blockdev(bdev); 1840 kill_bdev(bdev); 1841 1842 bdev_write_inode(bdev); 1843 /* 1844 * Detaching bdev inode from its wb in __destroy_inode() 1845 * is too late: the queue which embeds its bdi (along with 1846 * root wb) can be gone as soon as we put_disk() below. 1847 */ 1848 inode_detach_wb(bdev->bd_inode); 1849 } 1850 if (bdev->bd_contains == bdev) { 1851 if (disk->fops->release) 1852 disk->fops->release(disk, mode); 1853 } 1854 if (!bdev->bd_openers) { 1855 struct module *owner = disk->fops->owner; 1856 1857 disk_put_part(bdev->bd_part); 1858 bdev->bd_part = NULL; 1859 bdev->bd_disk = NULL; 1860 if (bdev != bdev->bd_contains) 1861 victim = bdev->bd_contains; 1862 bdev->bd_contains = NULL; 1863 1864 put_disk(disk); 1865 module_put(owner); 1866 } 1867 mutex_unlock(&bdev->bd_mutex); 1868 bdput(bdev); 1869 if (victim) 1870 __blkdev_put(victim, mode, 1); 1871} 1872 1873void blkdev_put(struct block_device *bdev, fmode_t mode) 1874{ 1875 mutex_lock(&bdev->bd_mutex); 1876 1877 if (mode & FMODE_EXCL) { 1878 bool bdev_free; 1879 1880 /* 1881 * Release a claim on the device. The holder fields 1882 * are protected with bdev_lock. bd_mutex is to 1883 * synchronize disk_holder unlinking. 1884 */ 1885 spin_lock(&bdev_lock); 1886 1887 WARN_ON_ONCE(--bdev->bd_holders < 0); 1888 WARN_ON_ONCE(--bdev->bd_contains->bd_holders < 0); 1889 1890 /* bd_contains might point to self, check in a separate step */ 1891 if ((bdev_free = !bdev->bd_holders)) 1892 bdev->bd_holder = NULL; 1893 if (!bdev->bd_contains->bd_holders) 1894 bdev->bd_contains->bd_holder = NULL; 1895 1896 spin_unlock(&bdev_lock); 1897 1898 /* 1899 * If this was the last claim, remove holder link and 1900 * unblock evpoll if it was a write holder. 1901 */ 1902 if (bdev_free && bdev->bd_write_holder) { 1903 disk_unblock_events(bdev->bd_disk); 1904 bdev->bd_write_holder = false; 1905 } 1906 } 1907 1908 /* 1909 * Trigger event checking and tell drivers to flush MEDIA_CHANGE 1910 * event. This is to ensure detection of media removal commanded 1911 * from userland - e.g. eject(1). 1912 */ 1913 disk_flush_events(bdev->bd_disk, DISK_EVENT_MEDIA_CHANGE); 1914 1915 mutex_unlock(&bdev->bd_mutex); 1916 1917 __blkdev_put(bdev, mode, 0); 1918} 1919EXPORT_SYMBOL(blkdev_put); 1920 1921static int blkdev_close(struct inode * inode, struct file * filp) 1922{ 1923 struct block_device *bdev = I_BDEV(bdev_file_inode(filp)); 1924 blkdev_put(bdev, filp->f_mode); 1925 return 0; 1926} 1927 1928static long block_ioctl(struct file *file, unsigned cmd, unsigned long arg) 1929{ 1930 struct block_device *bdev = I_BDEV(bdev_file_inode(file)); 1931 fmode_t mode = file->f_mode; 1932 1933 /* 1934 * O_NDELAY can be altered using fcntl(.., F_SETFL, ..), so we have 1935 * to updated it before every ioctl. 1936 */ 1937 if (file->f_flags & O_NDELAY) 1938 mode |= FMODE_NDELAY; 1939 else 1940 mode &= ~FMODE_NDELAY; 1941 1942 return blkdev_ioctl(bdev, mode, cmd, arg); 1943} 1944 1945/* 1946 * Write data to the block device. Only intended for the block device itself 1947 * and the raw driver which basically is a fake block device. 1948 * 1949 * Does not take i_mutex for the write and thus is not for general purpose 1950 * use. 1951 */ 1952ssize_t blkdev_write_iter(struct kiocb *iocb, struct iov_iter *from) 1953{ 1954 struct file *file = iocb->ki_filp; 1955 struct inode *bd_inode = bdev_file_inode(file); 1956 loff_t size = i_size_read(bd_inode); 1957 struct blk_plug plug; 1958 ssize_t ret; 1959 1960 if (bdev_read_only(I_BDEV(bd_inode))) 1961 return -EPERM; 1962 1963 if (!iov_iter_count(from)) 1964 return 0; 1965 1966 if (iocb->ki_pos >= size) 1967 return -ENOSPC; 1968 1969 iov_iter_truncate(from, size - iocb->ki_pos); 1970 1971 blk_start_plug(&plug); 1972 ret = __generic_file_write_iter(iocb, from); 1973 if (ret > 0) 1974 ret = generic_write_sync(iocb, ret); 1975 blk_finish_plug(&plug); 1976 return ret; 1977} 1978EXPORT_SYMBOL_GPL(blkdev_write_iter); 1979 1980ssize_t blkdev_read_iter(struct kiocb *iocb, struct iov_iter *to) 1981{ 1982 struct file *file = iocb->ki_filp; 1983 struct inode *bd_inode = bdev_file_inode(file); 1984 loff_t size = i_size_read(bd_inode); 1985 loff_t pos = iocb->ki_pos; 1986 1987 if (pos >= size) 1988 return 0; 1989 1990 size -= pos; 1991 iov_iter_truncate(to, size); 1992 return generic_file_read_iter(iocb, to); 1993} 1994EXPORT_SYMBOL_GPL(blkdev_read_iter); 1995 1996/* 1997 * Try to release a page associated with block device when the system 1998 * is under memory pressure. 1999 */ 2000static int blkdev_releasepage(struct page *page, gfp_t wait) 2001{ 2002 struct super_block *super = BDEV_I(page->mapping->host)->bdev.bd_super; 2003 2004 if (super && super->s_op->bdev_try_to_free_page) 2005 return super->s_op->bdev_try_to_free_page(super, page, wait); 2006 2007 return try_to_free_buffers(page); 2008} 2009 2010static int blkdev_writepages(struct address_space *mapping, 2011 struct writeback_control *wbc) 2012{ 2013 if (dax_mapping(mapping)) { 2014 struct block_device *bdev = I_BDEV(mapping->host); 2015 2016 return dax_writeback_mapping_range(mapping, bdev, wbc); 2017 } 2018 return generic_writepages(mapping, wbc); 2019} 2020 2021static const struct address_space_operations def_blk_aops = { 2022 .readpage = blkdev_readpage, 2023 .readpages = blkdev_readpages, 2024 .writepage = blkdev_writepage, 2025 .write_begin = blkdev_write_begin, 2026 .write_end = blkdev_write_end, 2027 .writepages = blkdev_writepages, 2028 .releasepage = blkdev_releasepage, 2029 .direct_IO = blkdev_direct_IO, 2030 .is_dirty_writeback = buffer_check_dirty_writeback, 2031}; 2032 2033#define BLKDEV_FALLOC_FL_SUPPORTED \ 2034 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \ 2035 FALLOC_FL_ZERO_RANGE | FALLOC_FL_NO_HIDE_STALE) 2036 2037static long blkdev_fallocate(struct file *file, int mode, loff_t start, 2038 loff_t len) 2039{ 2040 struct block_device *bdev = I_BDEV(bdev_file_inode(file)); 2041 struct request_queue *q = bdev_get_queue(bdev); 2042 struct address_space *mapping; 2043 loff_t end = start + len - 1; 2044 loff_t isize; 2045 int error; 2046 2047 /* Fail if we don't recognize the flags. */ 2048 if (mode & ~BLKDEV_FALLOC_FL_SUPPORTED) 2049 return -EOPNOTSUPP; 2050 2051 /* Don't go off the end of the device. */ 2052 isize = i_size_read(bdev->bd_inode); 2053 if (start >= isize) 2054 return -EINVAL; 2055 if (end >= isize) { 2056 if (mode & FALLOC_FL_KEEP_SIZE) { 2057 len = isize - start; 2058 end = start + len - 1; 2059 } else 2060 return -EINVAL; 2061 } 2062 2063 /* 2064 * Don't allow IO that isn't aligned to logical block size. 2065 */ 2066 if ((start | len) & (bdev_logical_block_size(bdev) - 1)) 2067 return -EINVAL; 2068 2069 /* Invalidate the page cache, including dirty pages. */ 2070 mapping = bdev->bd_inode->i_mapping; 2071 truncate_inode_pages_range(mapping, start, end); 2072 2073 switch (mode) { 2074 case FALLOC_FL_ZERO_RANGE: 2075 case FALLOC_FL_ZERO_RANGE | FALLOC_FL_KEEP_SIZE: 2076 error = blkdev_issue_zeroout(bdev, start >> 9, len >> 9, 2077 GFP_KERNEL, false); 2078 break; 2079 case FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE: 2080 /* Only punch if the device can do zeroing discard. */ 2081 if (!blk_queue_discard(q) || !q->limits.discard_zeroes_data) 2082 return -EOPNOTSUPP; 2083 error = blkdev_issue_discard(bdev, start >> 9, len >> 9, 2084 GFP_KERNEL, 0); 2085 break; 2086 case FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE | FALLOC_FL_NO_HIDE_STALE: 2087 if (!blk_queue_discard(q)) 2088 return -EOPNOTSUPP; 2089 error = blkdev_issue_discard(bdev, start >> 9, len >> 9, 2090 GFP_KERNEL, 0); 2091 break; 2092 default: 2093 return -EOPNOTSUPP; 2094 } 2095 if (error) 2096 return error; 2097 2098 /* 2099 * Invalidate again; if someone wandered in and dirtied a page, 2100 * the caller will be given -EBUSY. The third argument is 2101 * inclusive, so the rounding here is safe. 2102 */ 2103 return invalidate_inode_pages2_range(mapping, 2104 start >> PAGE_SHIFT, 2105 end >> PAGE_SHIFT); 2106} 2107 2108const struct file_operations def_blk_fops = { 2109 .open = blkdev_open, 2110 .release = blkdev_close, 2111 .llseek = block_llseek, 2112 .read_iter = blkdev_read_iter, 2113 .write_iter = blkdev_write_iter, 2114 .mmap = generic_file_mmap, 2115 .fsync = blkdev_fsync, 2116 .unlocked_ioctl = block_ioctl, 2117#ifdef CONFIG_COMPAT 2118 .compat_ioctl = compat_blkdev_ioctl, 2119#endif 2120 .splice_read = generic_file_splice_read, 2121 .splice_write = iter_file_splice_write, 2122 .fallocate = blkdev_fallocate, 2123}; 2124 2125int ioctl_by_bdev(struct block_device *bdev, unsigned cmd, unsigned long arg) 2126{ 2127 int res; 2128 mm_segment_t old_fs = get_fs(); 2129 set_fs(KERNEL_DS); 2130 res = blkdev_ioctl(bdev, 0, cmd, arg); 2131 set_fs(old_fs); 2132 return res; 2133} 2134 2135EXPORT_SYMBOL(ioctl_by_bdev); 2136 2137/** 2138 * lookup_bdev - lookup a struct block_device by name 2139 * @pathname: special file representing the block device 2140 * 2141 * Get a reference to the blockdevice at @pathname in the current 2142 * namespace if possible and return it. Return ERR_PTR(error) 2143 * otherwise. 2144 */ 2145struct block_device *lookup_bdev(const char *pathname) 2146{ 2147 struct block_device *bdev; 2148 struct inode *inode; 2149 struct path path; 2150 int error; 2151 2152 if (!pathname || !*pathname) 2153 return ERR_PTR(-EINVAL); 2154 2155 error = kern_path(pathname, LOOKUP_FOLLOW, &path); 2156 if (error) 2157 return ERR_PTR(error); 2158 2159 inode = d_backing_inode(path.dentry); 2160 error = -ENOTBLK; 2161 if (!S_ISBLK(inode->i_mode)) 2162 goto fail; 2163 error = -EACCES; 2164 if (!may_open_dev(&path)) 2165 goto fail; 2166 error = -ENOMEM; 2167 bdev = bd_acquire(inode); 2168 if (!bdev) 2169 goto fail; 2170out: 2171 path_put(&path); 2172 return bdev; 2173fail: 2174 bdev = ERR_PTR(error); 2175 goto out; 2176} 2177EXPORT_SYMBOL(lookup_bdev); 2178 2179int __invalidate_device(struct block_device *bdev, bool kill_dirty) 2180{ 2181 struct super_block *sb = get_super(bdev); 2182 int res = 0; 2183 2184 if (sb) { 2185 /* 2186 * no need to lock the super, get_super holds the 2187 * read mutex so the filesystem cannot go away 2188 * under us (->put_super runs with the write lock 2189 * hold). 2190 */ 2191 shrink_dcache_sb(sb); 2192 res = invalidate_inodes(sb, kill_dirty); 2193 drop_super(sb); 2194 } 2195 invalidate_bdev(bdev); 2196 return res; 2197} 2198EXPORT_SYMBOL(__invalidate_device); 2199 2200void iterate_bdevs(void (*func)(struct block_device *, void *), void *arg) 2201{ 2202 struct inode *inode, *old_inode = NULL; 2203 2204 spin_lock(&blockdev_superblock->s_inode_list_lock); 2205 list_for_each_entry(inode, &blockdev_superblock->s_inodes, i_sb_list) { 2206 struct address_space *mapping = inode->i_mapping; 2207 struct block_device *bdev; 2208 2209 spin_lock(&inode->i_lock); 2210 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW) || 2211 mapping->nrpages == 0) { 2212 spin_unlock(&inode->i_lock); 2213 continue; 2214 } 2215 __iget(inode); 2216 spin_unlock(&inode->i_lock); 2217 spin_unlock(&blockdev_superblock->s_inode_list_lock); 2218 /* 2219 * We hold a reference to 'inode' so it couldn't have been 2220 * removed from s_inodes list while we dropped the 2221 * s_inode_list_lock We cannot iput the inode now as we can 2222 * be holding the last reference and we cannot iput it under 2223 * s_inode_list_lock. So we keep the reference and iput it 2224 * later. 2225 */ 2226 iput(old_inode); 2227 old_inode = inode; 2228 bdev = I_BDEV(inode); 2229 2230 mutex_lock(&bdev->bd_mutex); 2231 if (bdev->bd_openers) 2232 func(bdev, arg); 2233 mutex_unlock(&bdev->bd_mutex); 2234 2235 spin_lock(&blockdev_superblock->s_inode_list_lock); 2236 } 2237 spin_unlock(&blockdev_superblock->s_inode_list_lock); 2238 iput(old_inode); 2239}