at v4.1 71 kB view raw
1#ifndef _LINUX_MM_H 2#define _LINUX_MM_H 3 4#include <linux/errno.h> 5 6#ifdef __KERNEL__ 7 8#include <linux/mmdebug.h> 9#include <linux/gfp.h> 10#include <linux/bug.h> 11#include <linux/list.h> 12#include <linux/mmzone.h> 13#include <linux/rbtree.h> 14#include <linux/atomic.h> 15#include <linux/debug_locks.h> 16#include <linux/mm_types.h> 17#include <linux/range.h> 18#include <linux/pfn.h> 19#include <linux/bit_spinlock.h> 20#include <linux/shrinker.h> 21#include <linux/resource.h> 22#include <linux/page_ext.h> 23 24struct mempolicy; 25struct anon_vma; 26struct anon_vma_chain; 27struct file_ra_state; 28struct user_struct; 29struct writeback_control; 30 31#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */ 32extern unsigned long max_mapnr; 33 34static inline void set_max_mapnr(unsigned long limit) 35{ 36 max_mapnr = limit; 37} 38#else 39static inline void set_max_mapnr(unsigned long limit) { } 40#endif 41 42extern unsigned long totalram_pages; 43extern void * high_memory; 44extern int page_cluster; 45 46#ifdef CONFIG_SYSCTL 47extern int sysctl_legacy_va_layout; 48#else 49#define sysctl_legacy_va_layout 0 50#endif 51 52#include <asm/page.h> 53#include <asm/pgtable.h> 54#include <asm/processor.h> 55 56#ifndef __pa_symbol 57#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 58#endif 59 60/* 61 * To prevent common memory management code establishing 62 * a zero page mapping on a read fault. 63 * This macro should be defined within <asm/pgtable.h>. 64 * s390 does this to prevent multiplexing of hardware bits 65 * related to the physical page in case of virtualization. 66 */ 67#ifndef mm_forbids_zeropage 68#define mm_forbids_zeropage(X) (0) 69#endif 70 71extern unsigned long sysctl_user_reserve_kbytes; 72extern unsigned long sysctl_admin_reserve_kbytes; 73 74extern int sysctl_overcommit_memory; 75extern int sysctl_overcommit_ratio; 76extern unsigned long sysctl_overcommit_kbytes; 77 78extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *, 79 size_t *, loff_t *); 80extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *, 81 size_t *, loff_t *); 82 83#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 84 85/* to align the pointer to the (next) page boundary */ 86#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 87 88/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 89#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)addr, PAGE_SIZE) 90 91/* 92 * Linux kernel virtual memory manager primitives. 93 * The idea being to have a "virtual" mm in the same way 94 * we have a virtual fs - giving a cleaner interface to the 95 * mm details, and allowing different kinds of memory mappings 96 * (from shared memory to executable loading to arbitrary 97 * mmap() functions). 98 */ 99 100extern struct kmem_cache *vm_area_cachep; 101 102#ifndef CONFIG_MMU 103extern struct rb_root nommu_region_tree; 104extern struct rw_semaphore nommu_region_sem; 105 106extern unsigned int kobjsize(const void *objp); 107#endif 108 109/* 110 * vm_flags in vm_area_struct, see mm_types.h. 111 */ 112#define VM_NONE 0x00000000 113 114#define VM_READ 0x00000001 /* currently active flags */ 115#define VM_WRITE 0x00000002 116#define VM_EXEC 0x00000004 117#define VM_SHARED 0x00000008 118 119/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 120#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 121#define VM_MAYWRITE 0x00000020 122#define VM_MAYEXEC 0x00000040 123#define VM_MAYSHARE 0x00000080 124 125#define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 126#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 127#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 128 129#define VM_LOCKED 0x00002000 130#define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 131 132 /* Used by sys_madvise() */ 133#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 134#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 135 136#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 137#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 138#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 139#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 140#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 141#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 142#define VM_ARCH_2 0x02000000 143#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 144 145#ifdef CONFIG_MEM_SOFT_DIRTY 146# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 147#else 148# define VM_SOFTDIRTY 0 149#endif 150 151#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 152#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 153#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 154#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 155 156#if defined(CONFIG_X86) 157# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 158#elif defined(CONFIG_PPC) 159# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 160#elif defined(CONFIG_PARISC) 161# define VM_GROWSUP VM_ARCH_1 162#elif defined(CONFIG_METAG) 163# define VM_GROWSUP VM_ARCH_1 164#elif defined(CONFIG_IA64) 165# define VM_GROWSUP VM_ARCH_1 166#elif !defined(CONFIG_MMU) 167# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 168#endif 169 170#if defined(CONFIG_X86) 171/* MPX specific bounds table or bounds directory */ 172# define VM_MPX VM_ARCH_2 173#endif 174 175#ifndef VM_GROWSUP 176# define VM_GROWSUP VM_NONE 177#endif 178 179/* Bits set in the VMA until the stack is in its final location */ 180#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) 181 182#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 183#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 184#endif 185 186#ifdef CONFIG_STACK_GROWSUP 187#define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 188#else 189#define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 190#endif 191 192/* 193 * Special vmas that are non-mergable, non-mlock()able. 194 * Note: mm/huge_memory.c VM_NO_THP depends on this definition. 195 */ 196#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 197 198/* This mask defines which mm->def_flags a process can inherit its parent */ 199#define VM_INIT_DEF_MASK VM_NOHUGEPAGE 200 201/* 202 * mapping from the currently active vm_flags protection bits (the 203 * low four bits) to a page protection mask.. 204 */ 205extern pgprot_t protection_map[16]; 206 207#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */ 208#define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */ 209#define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */ 210#define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */ 211#define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */ 212#define FAULT_FLAG_TRIED 0x20 /* Second try */ 213#define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */ 214 215/* 216 * vm_fault is filled by the the pagefault handler and passed to the vma's 217 * ->fault function. The vma's ->fault is responsible for returning a bitmask 218 * of VM_FAULT_xxx flags that give details about how the fault was handled. 219 * 220 * pgoff should be used in favour of virtual_address, if possible. 221 */ 222struct vm_fault { 223 unsigned int flags; /* FAULT_FLAG_xxx flags */ 224 pgoff_t pgoff; /* Logical page offset based on vma */ 225 void __user *virtual_address; /* Faulting virtual address */ 226 227 struct page *cow_page; /* Handler may choose to COW */ 228 struct page *page; /* ->fault handlers should return a 229 * page here, unless VM_FAULT_NOPAGE 230 * is set (which is also implied by 231 * VM_FAULT_ERROR). 232 */ 233 /* for ->map_pages() only */ 234 pgoff_t max_pgoff; /* map pages for offset from pgoff till 235 * max_pgoff inclusive */ 236 pte_t *pte; /* pte entry associated with ->pgoff */ 237}; 238 239/* 240 * These are the virtual MM functions - opening of an area, closing and 241 * unmapping it (needed to keep files on disk up-to-date etc), pointer 242 * to the functions called when a no-page or a wp-page exception occurs. 243 */ 244struct vm_operations_struct { 245 void (*open)(struct vm_area_struct * area); 246 void (*close)(struct vm_area_struct * area); 247 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf); 248 void (*map_pages)(struct vm_area_struct *vma, struct vm_fault *vmf); 249 250 /* notification that a previously read-only page is about to become 251 * writable, if an error is returned it will cause a SIGBUS */ 252 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf); 253 254 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ 255 int (*pfn_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf); 256 257 /* called by access_process_vm when get_user_pages() fails, typically 258 * for use by special VMAs that can switch between memory and hardware 259 */ 260 int (*access)(struct vm_area_struct *vma, unsigned long addr, 261 void *buf, int len, int write); 262 263 /* Called by the /proc/PID/maps code to ask the vma whether it 264 * has a special name. Returning non-NULL will also cause this 265 * vma to be dumped unconditionally. */ 266 const char *(*name)(struct vm_area_struct *vma); 267 268#ifdef CONFIG_NUMA 269 /* 270 * set_policy() op must add a reference to any non-NULL @new mempolicy 271 * to hold the policy upon return. Caller should pass NULL @new to 272 * remove a policy and fall back to surrounding context--i.e. do not 273 * install a MPOL_DEFAULT policy, nor the task or system default 274 * mempolicy. 275 */ 276 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 277 278 /* 279 * get_policy() op must add reference [mpol_get()] to any policy at 280 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 281 * in mm/mempolicy.c will do this automatically. 282 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 283 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem. 284 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 285 * must return NULL--i.e., do not "fallback" to task or system default 286 * policy. 287 */ 288 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 289 unsigned long addr); 290#endif 291 /* 292 * Called by vm_normal_page() for special PTEs to find the 293 * page for @addr. This is useful if the default behavior 294 * (using pte_page()) would not find the correct page. 295 */ 296 struct page *(*find_special_page)(struct vm_area_struct *vma, 297 unsigned long addr); 298}; 299 300struct mmu_gather; 301struct inode; 302 303#define page_private(page) ((page)->private) 304#define set_page_private(page, v) ((page)->private = (v)) 305 306/* It's valid only if the page is free path or free_list */ 307static inline void set_freepage_migratetype(struct page *page, int migratetype) 308{ 309 page->index = migratetype; 310} 311 312/* It's valid only if the page is free path or free_list */ 313static inline int get_freepage_migratetype(struct page *page) 314{ 315 return page->index; 316} 317 318/* 319 * FIXME: take this include out, include page-flags.h in 320 * files which need it (119 of them) 321 */ 322#include <linux/page-flags.h> 323#include <linux/huge_mm.h> 324 325/* 326 * Methods to modify the page usage count. 327 * 328 * What counts for a page usage: 329 * - cache mapping (page->mapping) 330 * - private data (page->private) 331 * - page mapped in a task's page tables, each mapping 332 * is counted separately 333 * 334 * Also, many kernel routines increase the page count before a critical 335 * routine so they can be sure the page doesn't go away from under them. 336 */ 337 338/* 339 * Drop a ref, return true if the refcount fell to zero (the page has no users) 340 */ 341static inline int put_page_testzero(struct page *page) 342{ 343 VM_BUG_ON_PAGE(atomic_read(&page->_count) == 0, page); 344 return atomic_dec_and_test(&page->_count); 345} 346 347/* 348 * Try to grab a ref unless the page has a refcount of zero, return false if 349 * that is the case. 350 * This can be called when MMU is off so it must not access 351 * any of the virtual mappings. 352 */ 353static inline int get_page_unless_zero(struct page *page) 354{ 355 return atomic_inc_not_zero(&page->_count); 356} 357 358/* 359 * Try to drop a ref unless the page has a refcount of one, return false if 360 * that is the case. 361 * This is to make sure that the refcount won't become zero after this drop. 362 * This can be called when MMU is off so it must not access 363 * any of the virtual mappings. 364 */ 365static inline int put_page_unless_one(struct page *page) 366{ 367 return atomic_add_unless(&page->_count, -1, 1); 368} 369 370extern int page_is_ram(unsigned long pfn); 371extern int region_is_ram(resource_size_t phys_addr, unsigned long size); 372 373/* Support for virtually mapped pages */ 374struct page *vmalloc_to_page(const void *addr); 375unsigned long vmalloc_to_pfn(const void *addr); 376 377/* 378 * Determine if an address is within the vmalloc range 379 * 380 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 381 * is no special casing required. 382 */ 383static inline int is_vmalloc_addr(const void *x) 384{ 385#ifdef CONFIG_MMU 386 unsigned long addr = (unsigned long)x; 387 388 return addr >= VMALLOC_START && addr < VMALLOC_END; 389#else 390 return 0; 391#endif 392} 393#ifdef CONFIG_MMU 394extern int is_vmalloc_or_module_addr(const void *x); 395#else 396static inline int is_vmalloc_or_module_addr(const void *x) 397{ 398 return 0; 399} 400#endif 401 402extern void kvfree(const void *addr); 403 404static inline void compound_lock(struct page *page) 405{ 406#ifdef CONFIG_TRANSPARENT_HUGEPAGE 407 VM_BUG_ON_PAGE(PageSlab(page), page); 408 bit_spin_lock(PG_compound_lock, &page->flags); 409#endif 410} 411 412static inline void compound_unlock(struct page *page) 413{ 414#ifdef CONFIG_TRANSPARENT_HUGEPAGE 415 VM_BUG_ON_PAGE(PageSlab(page), page); 416 bit_spin_unlock(PG_compound_lock, &page->flags); 417#endif 418} 419 420static inline unsigned long compound_lock_irqsave(struct page *page) 421{ 422 unsigned long uninitialized_var(flags); 423#ifdef CONFIG_TRANSPARENT_HUGEPAGE 424 local_irq_save(flags); 425 compound_lock(page); 426#endif 427 return flags; 428} 429 430static inline void compound_unlock_irqrestore(struct page *page, 431 unsigned long flags) 432{ 433#ifdef CONFIG_TRANSPARENT_HUGEPAGE 434 compound_unlock(page); 435 local_irq_restore(flags); 436#endif 437} 438 439static inline struct page *compound_head_by_tail(struct page *tail) 440{ 441 struct page *head = tail->first_page; 442 443 /* 444 * page->first_page may be a dangling pointer to an old 445 * compound page, so recheck that it is still a tail 446 * page before returning. 447 */ 448 smp_rmb(); 449 if (likely(PageTail(tail))) 450 return head; 451 return tail; 452} 453 454/* 455 * Since either compound page could be dismantled asynchronously in THP 456 * or we access asynchronously arbitrary positioned struct page, there 457 * would be tail flag race. To handle this race, we should call 458 * smp_rmb() before checking tail flag. compound_head_by_tail() did it. 459 */ 460static inline struct page *compound_head(struct page *page) 461{ 462 if (unlikely(PageTail(page))) 463 return compound_head_by_tail(page); 464 return page; 465} 466 467/* 468 * If we access compound page synchronously such as access to 469 * allocated page, there is no need to handle tail flag race, so we can 470 * check tail flag directly without any synchronization primitive. 471 */ 472static inline struct page *compound_head_fast(struct page *page) 473{ 474 if (unlikely(PageTail(page))) 475 return page->first_page; 476 return page; 477} 478 479/* 480 * The atomic page->_mapcount, starts from -1: so that transitions 481 * both from it and to it can be tracked, using atomic_inc_and_test 482 * and atomic_add_negative(-1). 483 */ 484static inline void page_mapcount_reset(struct page *page) 485{ 486 atomic_set(&(page)->_mapcount, -1); 487} 488 489static inline int page_mapcount(struct page *page) 490{ 491 VM_BUG_ON_PAGE(PageSlab(page), page); 492 return atomic_read(&page->_mapcount) + 1; 493} 494 495static inline int page_count(struct page *page) 496{ 497 return atomic_read(&compound_head(page)->_count); 498} 499 500static inline bool __compound_tail_refcounted(struct page *page) 501{ 502 return !PageSlab(page) && !PageHeadHuge(page); 503} 504 505/* 506 * This takes a head page as parameter and tells if the 507 * tail page reference counting can be skipped. 508 * 509 * For this to be safe, PageSlab and PageHeadHuge must remain true on 510 * any given page where they return true here, until all tail pins 511 * have been released. 512 */ 513static inline bool compound_tail_refcounted(struct page *page) 514{ 515 VM_BUG_ON_PAGE(!PageHead(page), page); 516 return __compound_tail_refcounted(page); 517} 518 519static inline void get_huge_page_tail(struct page *page) 520{ 521 /* 522 * __split_huge_page_refcount() cannot run from under us. 523 */ 524 VM_BUG_ON_PAGE(!PageTail(page), page); 525 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page); 526 VM_BUG_ON_PAGE(atomic_read(&page->_count) != 0, page); 527 if (compound_tail_refcounted(page->first_page)) 528 atomic_inc(&page->_mapcount); 529} 530 531extern bool __get_page_tail(struct page *page); 532 533static inline void get_page(struct page *page) 534{ 535 if (unlikely(PageTail(page))) 536 if (likely(__get_page_tail(page))) 537 return; 538 /* 539 * Getting a normal page or the head of a compound page 540 * requires to already have an elevated page->_count. 541 */ 542 VM_BUG_ON_PAGE(atomic_read(&page->_count) <= 0, page); 543 atomic_inc(&page->_count); 544} 545 546static inline struct page *virt_to_head_page(const void *x) 547{ 548 struct page *page = virt_to_page(x); 549 550 /* 551 * We don't need to worry about synchronization of tail flag 552 * when we call virt_to_head_page() since it is only called for 553 * already allocated page and this page won't be freed until 554 * this virt_to_head_page() is finished. So use _fast variant. 555 */ 556 return compound_head_fast(page); 557} 558 559/* 560 * Setup the page count before being freed into the page allocator for 561 * the first time (boot or memory hotplug) 562 */ 563static inline void init_page_count(struct page *page) 564{ 565 atomic_set(&page->_count, 1); 566} 567 568void put_page(struct page *page); 569void put_pages_list(struct list_head *pages); 570 571void split_page(struct page *page, unsigned int order); 572int split_free_page(struct page *page); 573 574/* 575 * Compound pages have a destructor function. Provide a 576 * prototype for that function and accessor functions. 577 * These are _only_ valid on the head of a PG_compound page. 578 */ 579 580static inline void set_compound_page_dtor(struct page *page, 581 compound_page_dtor *dtor) 582{ 583 page[1].compound_dtor = dtor; 584} 585 586static inline compound_page_dtor *get_compound_page_dtor(struct page *page) 587{ 588 return page[1].compound_dtor; 589} 590 591static inline int compound_order(struct page *page) 592{ 593 if (!PageHead(page)) 594 return 0; 595 return page[1].compound_order; 596} 597 598static inline void set_compound_order(struct page *page, unsigned long order) 599{ 600 page[1].compound_order = order; 601} 602 603#ifdef CONFIG_MMU 604/* 605 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 606 * servicing faults for write access. In the normal case, do always want 607 * pte_mkwrite. But get_user_pages can cause write faults for mappings 608 * that do not have writing enabled, when used by access_process_vm. 609 */ 610static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 611{ 612 if (likely(vma->vm_flags & VM_WRITE)) 613 pte = pte_mkwrite(pte); 614 return pte; 615} 616 617void do_set_pte(struct vm_area_struct *vma, unsigned long address, 618 struct page *page, pte_t *pte, bool write, bool anon); 619#endif 620 621/* 622 * Multiple processes may "see" the same page. E.g. for untouched 623 * mappings of /dev/null, all processes see the same page full of 624 * zeroes, and text pages of executables and shared libraries have 625 * only one copy in memory, at most, normally. 626 * 627 * For the non-reserved pages, page_count(page) denotes a reference count. 628 * page_count() == 0 means the page is free. page->lru is then used for 629 * freelist management in the buddy allocator. 630 * page_count() > 0 means the page has been allocated. 631 * 632 * Pages are allocated by the slab allocator in order to provide memory 633 * to kmalloc and kmem_cache_alloc. In this case, the management of the 634 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 635 * unless a particular usage is carefully commented. (the responsibility of 636 * freeing the kmalloc memory is the caller's, of course). 637 * 638 * A page may be used by anyone else who does a __get_free_page(). 639 * In this case, page_count still tracks the references, and should only 640 * be used through the normal accessor functions. The top bits of page->flags 641 * and page->virtual store page management information, but all other fields 642 * are unused and could be used privately, carefully. The management of this 643 * page is the responsibility of the one who allocated it, and those who have 644 * subsequently been given references to it. 645 * 646 * The other pages (we may call them "pagecache pages") are completely 647 * managed by the Linux memory manager: I/O, buffers, swapping etc. 648 * The following discussion applies only to them. 649 * 650 * A pagecache page contains an opaque `private' member, which belongs to the 651 * page's address_space. Usually, this is the address of a circular list of 652 * the page's disk buffers. PG_private must be set to tell the VM to call 653 * into the filesystem to release these pages. 654 * 655 * A page may belong to an inode's memory mapping. In this case, page->mapping 656 * is the pointer to the inode, and page->index is the file offset of the page, 657 * in units of PAGE_CACHE_SIZE. 658 * 659 * If pagecache pages are not associated with an inode, they are said to be 660 * anonymous pages. These may become associated with the swapcache, and in that 661 * case PG_swapcache is set, and page->private is an offset into the swapcache. 662 * 663 * In either case (swapcache or inode backed), the pagecache itself holds one 664 * reference to the page. Setting PG_private should also increment the 665 * refcount. The each user mapping also has a reference to the page. 666 * 667 * The pagecache pages are stored in a per-mapping radix tree, which is 668 * rooted at mapping->page_tree, and indexed by offset. 669 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 670 * lists, we instead now tag pages as dirty/writeback in the radix tree. 671 * 672 * All pagecache pages may be subject to I/O: 673 * - inode pages may need to be read from disk, 674 * - inode pages which have been modified and are MAP_SHARED may need 675 * to be written back to the inode on disk, 676 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 677 * modified may need to be swapped out to swap space and (later) to be read 678 * back into memory. 679 */ 680 681/* 682 * The zone field is never updated after free_area_init_core() 683 * sets it, so none of the operations on it need to be atomic. 684 */ 685 686/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */ 687#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 688#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 689#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 690#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH) 691 692/* 693 * Define the bit shifts to access each section. For non-existent 694 * sections we define the shift as 0; that plus a 0 mask ensures 695 * the compiler will optimise away reference to them. 696 */ 697#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 698#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 699#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 700#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0)) 701 702/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 703#ifdef NODE_NOT_IN_PAGE_FLAGS 704#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 705#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ 706 SECTIONS_PGOFF : ZONES_PGOFF) 707#else 708#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 709#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ 710 NODES_PGOFF : ZONES_PGOFF) 711#endif 712 713#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 714 715#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 716#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 717#endif 718 719#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 720#define NODES_MASK ((1UL << NODES_WIDTH) - 1) 721#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 722#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1) 723#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 724 725static inline enum zone_type page_zonenum(const struct page *page) 726{ 727 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 728} 729 730#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 731#define SECTION_IN_PAGE_FLAGS 732#endif 733 734/* 735 * The identification function is mainly used by the buddy allocator for 736 * determining if two pages could be buddies. We are not really identifying 737 * the zone since we could be using the section number id if we do not have 738 * node id available in page flags. 739 * We only guarantee that it will return the same value for two combinable 740 * pages in a zone. 741 */ 742static inline int page_zone_id(struct page *page) 743{ 744 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 745} 746 747static inline int zone_to_nid(struct zone *zone) 748{ 749#ifdef CONFIG_NUMA 750 return zone->node; 751#else 752 return 0; 753#endif 754} 755 756#ifdef NODE_NOT_IN_PAGE_FLAGS 757extern int page_to_nid(const struct page *page); 758#else 759static inline int page_to_nid(const struct page *page) 760{ 761 return (page->flags >> NODES_PGSHIFT) & NODES_MASK; 762} 763#endif 764 765#ifdef CONFIG_NUMA_BALANCING 766static inline int cpu_pid_to_cpupid(int cpu, int pid) 767{ 768 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 769} 770 771static inline int cpupid_to_pid(int cpupid) 772{ 773 return cpupid & LAST__PID_MASK; 774} 775 776static inline int cpupid_to_cpu(int cpupid) 777{ 778 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 779} 780 781static inline int cpupid_to_nid(int cpupid) 782{ 783 return cpu_to_node(cpupid_to_cpu(cpupid)); 784} 785 786static inline bool cpupid_pid_unset(int cpupid) 787{ 788 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 789} 790 791static inline bool cpupid_cpu_unset(int cpupid) 792{ 793 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 794} 795 796static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 797{ 798 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 799} 800 801#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 802#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 803static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 804{ 805 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK); 806} 807 808static inline int page_cpupid_last(struct page *page) 809{ 810 return page->_last_cpupid; 811} 812static inline void page_cpupid_reset_last(struct page *page) 813{ 814 page->_last_cpupid = -1 & LAST_CPUPID_MASK; 815} 816#else 817static inline int page_cpupid_last(struct page *page) 818{ 819 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 820} 821 822extern int page_cpupid_xchg_last(struct page *page, int cpupid); 823 824static inline void page_cpupid_reset_last(struct page *page) 825{ 826 int cpupid = (1 << LAST_CPUPID_SHIFT) - 1; 827 828 page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT); 829 page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT; 830} 831#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 832#else /* !CONFIG_NUMA_BALANCING */ 833static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 834{ 835 return page_to_nid(page); /* XXX */ 836} 837 838static inline int page_cpupid_last(struct page *page) 839{ 840 return page_to_nid(page); /* XXX */ 841} 842 843static inline int cpupid_to_nid(int cpupid) 844{ 845 return -1; 846} 847 848static inline int cpupid_to_pid(int cpupid) 849{ 850 return -1; 851} 852 853static inline int cpupid_to_cpu(int cpupid) 854{ 855 return -1; 856} 857 858static inline int cpu_pid_to_cpupid(int nid, int pid) 859{ 860 return -1; 861} 862 863static inline bool cpupid_pid_unset(int cpupid) 864{ 865 return 1; 866} 867 868static inline void page_cpupid_reset_last(struct page *page) 869{ 870} 871 872static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 873{ 874 return false; 875} 876#endif /* CONFIG_NUMA_BALANCING */ 877 878static inline struct zone *page_zone(const struct page *page) 879{ 880 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 881} 882 883#ifdef SECTION_IN_PAGE_FLAGS 884static inline void set_page_section(struct page *page, unsigned long section) 885{ 886 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 887 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 888} 889 890static inline unsigned long page_to_section(const struct page *page) 891{ 892 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 893} 894#endif 895 896static inline void set_page_zone(struct page *page, enum zone_type zone) 897{ 898 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 899 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 900} 901 902static inline void set_page_node(struct page *page, unsigned long node) 903{ 904 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 905 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 906} 907 908static inline void set_page_links(struct page *page, enum zone_type zone, 909 unsigned long node, unsigned long pfn) 910{ 911 set_page_zone(page, zone); 912 set_page_node(page, node); 913#ifdef SECTION_IN_PAGE_FLAGS 914 set_page_section(page, pfn_to_section_nr(pfn)); 915#endif 916} 917 918/* 919 * Some inline functions in vmstat.h depend on page_zone() 920 */ 921#include <linux/vmstat.h> 922 923static __always_inline void *lowmem_page_address(const struct page *page) 924{ 925 return __va(PFN_PHYS(page_to_pfn(page))); 926} 927 928#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 929#define HASHED_PAGE_VIRTUAL 930#endif 931 932#if defined(WANT_PAGE_VIRTUAL) 933static inline void *page_address(const struct page *page) 934{ 935 return page->virtual; 936} 937static inline void set_page_address(struct page *page, void *address) 938{ 939 page->virtual = address; 940} 941#define page_address_init() do { } while(0) 942#endif 943 944#if defined(HASHED_PAGE_VIRTUAL) 945void *page_address(const struct page *page); 946void set_page_address(struct page *page, void *virtual); 947void page_address_init(void); 948#endif 949 950#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 951#define page_address(page) lowmem_page_address(page) 952#define set_page_address(page, address) do { } while(0) 953#define page_address_init() do { } while(0) 954#endif 955 956extern void *page_rmapping(struct page *page); 957extern struct anon_vma *page_anon_vma(struct page *page); 958extern struct address_space *page_mapping(struct page *page); 959 960extern struct address_space *__page_file_mapping(struct page *); 961 962static inline 963struct address_space *page_file_mapping(struct page *page) 964{ 965 if (unlikely(PageSwapCache(page))) 966 return __page_file_mapping(page); 967 968 return page->mapping; 969} 970 971/* 972 * Return the pagecache index of the passed page. Regular pagecache pages 973 * use ->index whereas swapcache pages use ->private 974 */ 975static inline pgoff_t page_index(struct page *page) 976{ 977 if (unlikely(PageSwapCache(page))) 978 return page_private(page); 979 return page->index; 980} 981 982extern pgoff_t __page_file_index(struct page *page); 983 984/* 985 * Return the file index of the page. Regular pagecache pages use ->index 986 * whereas swapcache pages use swp_offset(->private) 987 */ 988static inline pgoff_t page_file_index(struct page *page) 989{ 990 if (unlikely(PageSwapCache(page))) 991 return __page_file_index(page); 992 993 return page->index; 994} 995 996/* 997 * Return true if this page is mapped into pagetables. 998 */ 999static inline int page_mapped(struct page *page) 1000{ 1001 return atomic_read(&(page)->_mapcount) >= 0; 1002} 1003 1004/* 1005 * Different kinds of faults, as returned by handle_mm_fault(). 1006 * Used to decide whether a process gets delivered SIGBUS or 1007 * just gets major/minor fault counters bumped up. 1008 */ 1009 1010#define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */ 1011 1012#define VM_FAULT_OOM 0x0001 1013#define VM_FAULT_SIGBUS 0x0002 1014#define VM_FAULT_MAJOR 0x0004 1015#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */ 1016#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */ 1017#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */ 1018#define VM_FAULT_SIGSEGV 0x0040 1019 1020#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */ 1021#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */ 1022#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */ 1023#define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */ 1024 1025#define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */ 1026 1027#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \ 1028 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \ 1029 VM_FAULT_FALLBACK) 1030 1031/* Encode hstate index for a hwpoisoned large page */ 1032#define VM_FAULT_SET_HINDEX(x) ((x) << 12) 1033#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf) 1034 1035/* 1036 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 1037 */ 1038extern void pagefault_out_of_memory(void); 1039 1040#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 1041 1042/* 1043 * Flags passed to show_mem() and show_free_areas() to suppress output in 1044 * various contexts. 1045 */ 1046#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */ 1047 1048extern void show_free_areas(unsigned int flags); 1049extern bool skip_free_areas_node(unsigned int flags, int nid); 1050 1051int shmem_zero_setup(struct vm_area_struct *); 1052#ifdef CONFIG_SHMEM 1053bool shmem_mapping(struct address_space *mapping); 1054#else 1055static inline bool shmem_mapping(struct address_space *mapping) 1056{ 1057 return false; 1058} 1059#endif 1060 1061extern int can_do_mlock(void); 1062extern int user_shm_lock(size_t, struct user_struct *); 1063extern void user_shm_unlock(size_t, struct user_struct *); 1064 1065/* 1066 * Parameter block passed down to zap_pte_range in exceptional cases. 1067 */ 1068struct zap_details { 1069 struct address_space *check_mapping; /* Check page->mapping if set */ 1070 pgoff_t first_index; /* Lowest page->index to unmap */ 1071 pgoff_t last_index; /* Highest page->index to unmap */ 1072}; 1073 1074struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 1075 pte_t pte); 1076 1077int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1078 unsigned long size); 1079void zap_page_range(struct vm_area_struct *vma, unsigned long address, 1080 unsigned long size, struct zap_details *); 1081void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma, 1082 unsigned long start, unsigned long end); 1083 1084/** 1085 * mm_walk - callbacks for walk_page_range 1086 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry 1087 * this handler is required to be able to handle 1088 * pmd_trans_huge() pmds. They may simply choose to 1089 * split_huge_page() instead of handling it explicitly. 1090 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry 1091 * @pte_hole: if set, called for each hole at all levels 1092 * @hugetlb_entry: if set, called for each hugetlb entry 1093 * @test_walk: caller specific callback function to determine whether 1094 * we walk over the current vma or not. A positive returned 1095 * value means "do page table walk over the current vma," 1096 * and a negative one means "abort current page table walk 1097 * right now." 0 means "skip the current vma." 1098 * @mm: mm_struct representing the target process of page table walk 1099 * @vma: vma currently walked (NULL if walking outside vmas) 1100 * @private: private data for callbacks' usage 1101 * 1102 * (see the comment on walk_page_range() for more details) 1103 */ 1104struct mm_walk { 1105 int (*pmd_entry)(pmd_t *pmd, unsigned long addr, 1106 unsigned long next, struct mm_walk *walk); 1107 int (*pte_entry)(pte_t *pte, unsigned long addr, 1108 unsigned long next, struct mm_walk *walk); 1109 int (*pte_hole)(unsigned long addr, unsigned long next, 1110 struct mm_walk *walk); 1111 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask, 1112 unsigned long addr, unsigned long next, 1113 struct mm_walk *walk); 1114 int (*test_walk)(unsigned long addr, unsigned long next, 1115 struct mm_walk *walk); 1116 struct mm_struct *mm; 1117 struct vm_area_struct *vma; 1118 void *private; 1119}; 1120 1121int walk_page_range(unsigned long addr, unsigned long end, 1122 struct mm_walk *walk); 1123int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk); 1124void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 1125 unsigned long end, unsigned long floor, unsigned long ceiling); 1126int copy_page_range(struct mm_struct *dst, struct mm_struct *src, 1127 struct vm_area_struct *vma); 1128void unmap_mapping_range(struct address_space *mapping, 1129 loff_t const holebegin, loff_t const holelen, int even_cows); 1130int follow_pfn(struct vm_area_struct *vma, unsigned long address, 1131 unsigned long *pfn); 1132int follow_phys(struct vm_area_struct *vma, unsigned long address, 1133 unsigned int flags, unsigned long *prot, resource_size_t *phys); 1134int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 1135 void *buf, int len, int write); 1136 1137static inline void unmap_shared_mapping_range(struct address_space *mapping, 1138 loff_t const holebegin, loff_t const holelen) 1139{ 1140 unmap_mapping_range(mapping, holebegin, holelen, 0); 1141} 1142 1143extern void truncate_pagecache(struct inode *inode, loff_t new); 1144extern void truncate_setsize(struct inode *inode, loff_t newsize); 1145void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); 1146void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 1147int truncate_inode_page(struct address_space *mapping, struct page *page); 1148int generic_error_remove_page(struct address_space *mapping, struct page *page); 1149int invalidate_inode_page(struct page *page); 1150 1151#ifdef CONFIG_MMU 1152extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 1153 unsigned long address, unsigned int flags); 1154extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, 1155 unsigned long address, unsigned int fault_flags); 1156#else 1157static inline int handle_mm_fault(struct mm_struct *mm, 1158 struct vm_area_struct *vma, unsigned long address, 1159 unsigned int flags) 1160{ 1161 /* should never happen if there's no MMU */ 1162 BUG(); 1163 return VM_FAULT_SIGBUS; 1164} 1165static inline int fixup_user_fault(struct task_struct *tsk, 1166 struct mm_struct *mm, unsigned long address, 1167 unsigned int fault_flags) 1168{ 1169 /* should never happen if there's no MMU */ 1170 BUG(); 1171 return -EFAULT; 1172} 1173#endif 1174 1175extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write); 1176extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1177 void *buf, int len, int write); 1178 1179long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1180 unsigned long start, unsigned long nr_pages, 1181 unsigned int foll_flags, struct page **pages, 1182 struct vm_area_struct **vmas, int *nonblocking); 1183long get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1184 unsigned long start, unsigned long nr_pages, 1185 int write, int force, struct page **pages, 1186 struct vm_area_struct **vmas); 1187long get_user_pages_locked(struct task_struct *tsk, struct mm_struct *mm, 1188 unsigned long start, unsigned long nr_pages, 1189 int write, int force, struct page **pages, 1190 int *locked); 1191long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm, 1192 unsigned long start, unsigned long nr_pages, 1193 int write, int force, struct page **pages, 1194 unsigned int gup_flags); 1195long get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm, 1196 unsigned long start, unsigned long nr_pages, 1197 int write, int force, struct page **pages); 1198int get_user_pages_fast(unsigned long start, int nr_pages, int write, 1199 struct page **pages); 1200struct kvec; 1201int get_kernel_pages(const struct kvec *iov, int nr_pages, int write, 1202 struct page **pages); 1203int get_kernel_page(unsigned long start, int write, struct page **pages); 1204struct page *get_dump_page(unsigned long addr); 1205 1206extern int try_to_release_page(struct page * page, gfp_t gfp_mask); 1207extern void do_invalidatepage(struct page *page, unsigned int offset, 1208 unsigned int length); 1209 1210int __set_page_dirty_nobuffers(struct page *page); 1211int __set_page_dirty_no_writeback(struct page *page); 1212int redirty_page_for_writepage(struct writeback_control *wbc, 1213 struct page *page); 1214void account_page_dirtied(struct page *page, struct address_space *mapping); 1215void account_page_cleaned(struct page *page, struct address_space *mapping); 1216int set_page_dirty(struct page *page); 1217int set_page_dirty_lock(struct page *page); 1218int clear_page_dirty_for_io(struct page *page); 1219 1220int get_cmdline(struct task_struct *task, char *buffer, int buflen); 1221 1222/* Is the vma a continuation of the stack vma above it? */ 1223static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr) 1224{ 1225 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN); 1226} 1227 1228static inline int stack_guard_page_start(struct vm_area_struct *vma, 1229 unsigned long addr) 1230{ 1231 return (vma->vm_flags & VM_GROWSDOWN) && 1232 (vma->vm_start == addr) && 1233 !vma_growsdown(vma->vm_prev, addr); 1234} 1235 1236/* Is the vma a continuation of the stack vma below it? */ 1237static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr) 1238{ 1239 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP); 1240} 1241 1242static inline int stack_guard_page_end(struct vm_area_struct *vma, 1243 unsigned long addr) 1244{ 1245 return (vma->vm_flags & VM_GROWSUP) && 1246 (vma->vm_end == addr) && 1247 !vma_growsup(vma->vm_next, addr); 1248} 1249 1250extern struct task_struct *task_of_stack(struct task_struct *task, 1251 struct vm_area_struct *vma, bool in_group); 1252 1253extern unsigned long move_page_tables(struct vm_area_struct *vma, 1254 unsigned long old_addr, struct vm_area_struct *new_vma, 1255 unsigned long new_addr, unsigned long len, 1256 bool need_rmap_locks); 1257extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start, 1258 unsigned long end, pgprot_t newprot, 1259 int dirty_accountable, int prot_numa); 1260extern int mprotect_fixup(struct vm_area_struct *vma, 1261 struct vm_area_struct **pprev, unsigned long start, 1262 unsigned long end, unsigned long newflags); 1263 1264/* 1265 * doesn't attempt to fault and will return short. 1266 */ 1267int __get_user_pages_fast(unsigned long start, int nr_pages, int write, 1268 struct page **pages); 1269/* 1270 * per-process(per-mm_struct) statistics. 1271 */ 1272static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 1273{ 1274 long val = atomic_long_read(&mm->rss_stat.count[member]); 1275 1276#ifdef SPLIT_RSS_COUNTING 1277 /* 1278 * counter is updated in asynchronous manner and may go to minus. 1279 * But it's never be expected number for users. 1280 */ 1281 if (val < 0) 1282 val = 0; 1283#endif 1284 return (unsigned long)val; 1285} 1286 1287static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 1288{ 1289 atomic_long_add(value, &mm->rss_stat.count[member]); 1290} 1291 1292static inline void inc_mm_counter(struct mm_struct *mm, int member) 1293{ 1294 atomic_long_inc(&mm->rss_stat.count[member]); 1295} 1296 1297static inline void dec_mm_counter(struct mm_struct *mm, int member) 1298{ 1299 atomic_long_dec(&mm->rss_stat.count[member]); 1300} 1301 1302static inline unsigned long get_mm_rss(struct mm_struct *mm) 1303{ 1304 return get_mm_counter(mm, MM_FILEPAGES) + 1305 get_mm_counter(mm, MM_ANONPAGES); 1306} 1307 1308static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 1309{ 1310 return max(mm->hiwater_rss, get_mm_rss(mm)); 1311} 1312 1313static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 1314{ 1315 return max(mm->hiwater_vm, mm->total_vm); 1316} 1317 1318static inline void update_hiwater_rss(struct mm_struct *mm) 1319{ 1320 unsigned long _rss = get_mm_rss(mm); 1321 1322 if ((mm)->hiwater_rss < _rss) 1323 (mm)->hiwater_rss = _rss; 1324} 1325 1326static inline void update_hiwater_vm(struct mm_struct *mm) 1327{ 1328 if (mm->hiwater_vm < mm->total_vm) 1329 mm->hiwater_vm = mm->total_vm; 1330} 1331 1332static inline void reset_mm_hiwater_rss(struct mm_struct *mm) 1333{ 1334 mm->hiwater_rss = get_mm_rss(mm); 1335} 1336 1337static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 1338 struct mm_struct *mm) 1339{ 1340 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 1341 1342 if (*maxrss < hiwater_rss) 1343 *maxrss = hiwater_rss; 1344} 1345 1346#if defined(SPLIT_RSS_COUNTING) 1347void sync_mm_rss(struct mm_struct *mm); 1348#else 1349static inline void sync_mm_rss(struct mm_struct *mm) 1350{ 1351} 1352#endif 1353 1354int vma_wants_writenotify(struct vm_area_struct *vma); 1355 1356extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1357 spinlock_t **ptl); 1358static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 1359 spinlock_t **ptl) 1360{ 1361 pte_t *ptep; 1362 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 1363 return ptep; 1364} 1365 1366#ifdef __PAGETABLE_PUD_FOLDED 1367static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, 1368 unsigned long address) 1369{ 1370 return 0; 1371} 1372#else 1373int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 1374#endif 1375 1376#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) 1377static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 1378 unsigned long address) 1379{ 1380 return 0; 1381} 1382 1383static inline void mm_nr_pmds_init(struct mm_struct *mm) {} 1384 1385static inline unsigned long mm_nr_pmds(struct mm_struct *mm) 1386{ 1387 return 0; 1388} 1389 1390static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} 1391static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} 1392 1393#else 1394int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 1395 1396static inline void mm_nr_pmds_init(struct mm_struct *mm) 1397{ 1398 atomic_long_set(&mm->nr_pmds, 0); 1399} 1400 1401static inline unsigned long mm_nr_pmds(struct mm_struct *mm) 1402{ 1403 return atomic_long_read(&mm->nr_pmds); 1404} 1405 1406static inline void mm_inc_nr_pmds(struct mm_struct *mm) 1407{ 1408 atomic_long_inc(&mm->nr_pmds); 1409} 1410 1411static inline void mm_dec_nr_pmds(struct mm_struct *mm) 1412{ 1413 atomic_long_dec(&mm->nr_pmds); 1414} 1415#endif 1416 1417int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, 1418 pmd_t *pmd, unsigned long address); 1419int __pte_alloc_kernel(pmd_t *pmd, unsigned long address); 1420 1421/* 1422 * The following ifdef needed to get the 4level-fixup.h header to work. 1423 * Remove it when 4level-fixup.h has been removed. 1424 */ 1425#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK) 1426static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 1427{ 1428 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))? 1429 NULL: pud_offset(pgd, address); 1430} 1431 1432static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 1433{ 1434 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 1435 NULL: pmd_offset(pud, address); 1436} 1437#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */ 1438 1439#if USE_SPLIT_PTE_PTLOCKS 1440#if ALLOC_SPLIT_PTLOCKS 1441void __init ptlock_cache_init(void); 1442extern bool ptlock_alloc(struct page *page); 1443extern void ptlock_free(struct page *page); 1444 1445static inline spinlock_t *ptlock_ptr(struct page *page) 1446{ 1447 return page->ptl; 1448} 1449#else /* ALLOC_SPLIT_PTLOCKS */ 1450static inline void ptlock_cache_init(void) 1451{ 1452} 1453 1454static inline bool ptlock_alloc(struct page *page) 1455{ 1456 return true; 1457} 1458 1459static inline void ptlock_free(struct page *page) 1460{ 1461} 1462 1463static inline spinlock_t *ptlock_ptr(struct page *page) 1464{ 1465 return &page->ptl; 1466} 1467#endif /* ALLOC_SPLIT_PTLOCKS */ 1468 1469static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 1470{ 1471 return ptlock_ptr(pmd_page(*pmd)); 1472} 1473 1474static inline bool ptlock_init(struct page *page) 1475{ 1476 /* 1477 * prep_new_page() initialize page->private (and therefore page->ptl) 1478 * with 0. Make sure nobody took it in use in between. 1479 * 1480 * It can happen if arch try to use slab for page table allocation: 1481 * slab code uses page->slab_cache and page->first_page (for tail 1482 * pages), which share storage with page->ptl. 1483 */ 1484 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page); 1485 if (!ptlock_alloc(page)) 1486 return false; 1487 spin_lock_init(ptlock_ptr(page)); 1488 return true; 1489} 1490 1491/* Reset page->mapping so free_pages_check won't complain. */ 1492static inline void pte_lock_deinit(struct page *page) 1493{ 1494 page->mapping = NULL; 1495 ptlock_free(page); 1496} 1497 1498#else /* !USE_SPLIT_PTE_PTLOCKS */ 1499/* 1500 * We use mm->page_table_lock to guard all pagetable pages of the mm. 1501 */ 1502static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 1503{ 1504 return &mm->page_table_lock; 1505} 1506static inline void ptlock_cache_init(void) {} 1507static inline bool ptlock_init(struct page *page) { return true; } 1508static inline void pte_lock_deinit(struct page *page) {} 1509#endif /* USE_SPLIT_PTE_PTLOCKS */ 1510 1511static inline void pgtable_init(void) 1512{ 1513 ptlock_cache_init(); 1514 pgtable_cache_init(); 1515} 1516 1517static inline bool pgtable_page_ctor(struct page *page) 1518{ 1519 inc_zone_page_state(page, NR_PAGETABLE); 1520 return ptlock_init(page); 1521} 1522 1523static inline void pgtable_page_dtor(struct page *page) 1524{ 1525 pte_lock_deinit(page); 1526 dec_zone_page_state(page, NR_PAGETABLE); 1527} 1528 1529#define pte_offset_map_lock(mm, pmd, address, ptlp) \ 1530({ \ 1531 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 1532 pte_t *__pte = pte_offset_map(pmd, address); \ 1533 *(ptlp) = __ptl; \ 1534 spin_lock(__ptl); \ 1535 __pte; \ 1536}) 1537 1538#define pte_unmap_unlock(pte, ptl) do { \ 1539 spin_unlock(ptl); \ 1540 pte_unmap(pte); \ 1541} while (0) 1542 1543#define pte_alloc_map(mm, vma, pmd, address) \ 1544 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \ 1545 pmd, address))? \ 1546 NULL: pte_offset_map(pmd, address)) 1547 1548#define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 1549 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \ 1550 pmd, address))? \ 1551 NULL: pte_offset_map_lock(mm, pmd, address, ptlp)) 1552 1553#define pte_alloc_kernel(pmd, address) \ 1554 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \ 1555 NULL: pte_offset_kernel(pmd, address)) 1556 1557#if USE_SPLIT_PMD_PTLOCKS 1558 1559static struct page *pmd_to_page(pmd_t *pmd) 1560{ 1561 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 1562 return virt_to_page((void *)((unsigned long) pmd & mask)); 1563} 1564 1565static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 1566{ 1567 return ptlock_ptr(pmd_to_page(pmd)); 1568} 1569 1570static inline bool pgtable_pmd_page_ctor(struct page *page) 1571{ 1572#ifdef CONFIG_TRANSPARENT_HUGEPAGE 1573 page->pmd_huge_pte = NULL; 1574#endif 1575 return ptlock_init(page); 1576} 1577 1578static inline void pgtable_pmd_page_dtor(struct page *page) 1579{ 1580#ifdef CONFIG_TRANSPARENT_HUGEPAGE 1581 VM_BUG_ON_PAGE(page->pmd_huge_pte, page); 1582#endif 1583 ptlock_free(page); 1584} 1585 1586#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte) 1587 1588#else 1589 1590static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 1591{ 1592 return &mm->page_table_lock; 1593} 1594 1595static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; } 1596static inline void pgtable_pmd_page_dtor(struct page *page) {} 1597 1598#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 1599 1600#endif 1601 1602static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 1603{ 1604 spinlock_t *ptl = pmd_lockptr(mm, pmd); 1605 spin_lock(ptl); 1606 return ptl; 1607} 1608 1609extern void free_area_init(unsigned long * zones_size); 1610extern void free_area_init_node(int nid, unsigned long * zones_size, 1611 unsigned long zone_start_pfn, unsigned long *zholes_size); 1612extern void free_initmem(void); 1613 1614/* 1615 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 1616 * into the buddy system. The freed pages will be poisoned with pattern 1617 * "poison" if it's within range [0, UCHAR_MAX]. 1618 * Return pages freed into the buddy system. 1619 */ 1620extern unsigned long free_reserved_area(void *start, void *end, 1621 int poison, char *s); 1622 1623#ifdef CONFIG_HIGHMEM 1624/* 1625 * Free a highmem page into the buddy system, adjusting totalhigh_pages 1626 * and totalram_pages. 1627 */ 1628extern void free_highmem_page(struct page *page); 1629#endif 1630 1631extern void adjust_managed_page_count(struct page *page, long count); 1632extern void mem_init_print_info(const char *str); 1633 1634/* Free the reserved page into the buddy system, so it gets managed. */ 1635static inline void __free_reserved_page(struct page *page) 1636{ 1637 ClearPageReserved(page); 1638 init_page_count(page); 1639 __free_page(page); 1640} 1641 1642static inline void free_reserved_page(struct page *page) 1643{ 1644 __free_reserved_page(page); 1645 adjust_managed_page_count(page, 1); 1646} 1647 1648static inline void mark_page_reserved(struct page *page) 1649{ 1650 SetPageReserved(page); 1651 adjust_managed_page_count(page, -1); 1652} 1653 1654/* 1655 * Default method to free all the __init memory into the buddy system. 1656 * The freed pages will be poisoned with pattern "poison" if it's within 1657 * range [0, UCHAR_MAX]. 1658 * Return pages freed into the buddy system. 1659 */ 1660static inline unsigned long free_initmem_default(int poison) 1661{ 1662 extern char __init_begin[], __init_end[]; 1663 1664 return free_reserved_area(&__init_begin, &__init_end, 1665 poison, "unused kernel"); 1666} 1667 1668static inline unsigned long get_num_physpages(void) 1669{ 1670 int nid; 1671 unsigned long phys_pages = 0; 1672 1673 for_each_online_node(nid) 1674 phys_pages += node_present_pages(nid); 1675 1676 return phys_pages; 1677} 1678 1679#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 1680/* 1681 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its 1682 * zones, allocate the backing mem_map and account for memory holes in a more 1683 * architecture independent manner. This is a substitute for creating the 1684 * zone_sizes[] and zholes_size[] arrays and passing them to 1685 * free_area_init_node() 1686 * 1687 * An architecture is expected to register range of page frames backed by 1688 * physical memory with memblock_add[_node]() before calling 1689 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic 1690 * usage, an architecture is expected to do something like 1691 * 1692 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 1693 * max_highmem_pfn}; 1694 * for_each_valid_physical_page_range() 1695 * memblock_add_node(base, size, nid) 1696 * free_area_init_nodes(max_zone_pfns); 1697 * 1698 * free_bootmem_with_active_regions() calls free_bootmem_node() for each 1699 * registered physical page range. Similarly 1700 * sparse_memory_present_with_active_regions() calls memory_present() for 1701 * each range when SPARSEMEM is enabled. 1702 * 1703 * See mm/page_alloc.c for more information on each function exposed by 1704 * CONFIG_HAVE_MEMBLOCK_NODE_MAP. 1705 */ 1706extern void free_area_init_nodes(unsigned long *max_zone_pfn); 1707unsigned long node_map_pfn_alignment(void); 1708unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, 1709 unsigned long end_pfn); 1710extern unsigned long absent_pages_in_range(unsigned long start_pfn, 1711 unsigned long end_pfn); 1712extern void get_pfn_range_for_nid(unsigned int nid, 1713 unsigned long *start_pfn, unsigned long *end_pfn); 1714extern unsigned long find_min_pfn_with_active_regions(void); 1715extern void free_bootmem_with_active_regions(int nid, 1716 unsigned long max_low_pfn); 1717extern void sparse_memory_present_with_active_regions(int nid); 1718 1719#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 1720 1721#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \ 1722 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) 1723static inline int __early_pfn_to_nid(unsigned long pfn) 1724{ 1725 return 0; 1726} 1727#else 1728/* please see mm/page_alloc.c */ 1729extern int __meminit early_pfn_to_nid(unsigned long pfn); 1730/* there is a per-arch backend function. */ 1731extern int __meminit __early_pfn_to_nid(unsigned long pfn); 1732#endif 1733 1734extern void set_dma_reserve(unsigned long new_dma_reserve); 1735extern void memmap_init_zone(unsigned long, int, unsigned long, 1736 unsigned long, enum memmap_context); 1737extern void setup_per_zone_wmarks(void); 1738extern int __meminit init_per_zone_wmark_min(void); 1739extern void mem_init(void); 1740extern void __init mmap_init(void); 1741extern void show_mem(unsigned int flags); 1742extern void si_meminfo(struct sysinfo * val); 1743extern void si_meminfo_node(struct sysinfo *val, int nid); 1744 1745extern __printf(3, 4) 1746void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...); 1747 1748extern void setup_per_cpu_pageset(void); 1749 1750extern void zone_pcp_update(struct zone *zone); 1751extern void zone_pcp_reset(struct zone *zone); 1752 1753/* page_alloc.c */ 1754extern int min_free_kbytes; 1755 1756/* nommu.c */ 1757extern atomic_long_t mmap_pages_allocated; 1758extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 1759 1760/* interval_tree.c */ 1761void vma_interval_tree_insert(struct vm_area_struct *node, 1762 struct rb_root *root); 1763void vma_interval_tree_insert_after(struct vm_area_struct *node, 1764 struct vm_area_struct *prev, 1765 struct rb_root *root); 1766void vma_interval_tree_remove(struct vm_area_struct *node, 1767 struct rb_root *root); 1768struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root, 1769 unsigned long start, unsigned long last); 1770struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 1771 unsigned long start, unsigned long last); 1772 1773#define vma_interval_tree_foreach(vma, root, start, last) \ 1774 for (vma = vma_interval_tree_iter_first(root, start, last); \ 1775 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 1776 1777void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 1778 struct rb_root *root); 1779void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 1780 struct rb_root *root); 1781struct anon_vma_chain *anon_vma_interval_tree_iter_first( 1782 struct rb_root *root, unsigned long start, unsigned long last); 1783struct anon_vma_chain *anon_vma_interval_tree_iter_next( 1784 struct anon_vma_chain *node, unsigned long start, unsigned long last); 1785#ifdef CONFIG_DEBUG_VM_RB 1786void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 1787#endif 1788 1789#define anon_vma_interval_tree_foreach(avc, root, start, last) \ 1790 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 1791 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 1792 1793/* mmap.c */ 1794extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 1795extern int vma_adjust(struct vm_area_struct *vma, unsigned long start, 1796 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert); 1797extern struct vm_area_struct *vma_merge(struct mm_struct *, 1798 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 1799 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 1800 struct mempolicy *); 1801extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 1802extern int split_vma(struct mm_struct *, 1803 struct vm_area_struct *, unsigned long addr, int new_below); 1804extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 1805extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 1806 struct rb_node **, struct rb_node *); 1807extern void unlink_file_vma(struct vm_area_struct *); 1808extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 1809 unsigned long addr, unsigned long len, pgoff_t pgoff, 1810 bool *need_rmap_locks); 1811extern void exit_mmap(struct mm_struct *); 1812 1813static inline int check_data_rlimit(unsigned long rlim, 1814 unsigned long new, 1815 unsigned long start, 1816 unsigned long end_data, 1817 unsigned long start_data) 1818{ 1819 if (rlim < RLIM_INFINITY) { 1820 if (((new - start) + (end_data - start_data)) > rlim) 1821 return -ENOSPC; 1822 } 1823 1824 return 0; 1825} 1826 1827extern int mm_take_all_locks(struct mm_struct *mm); 1828extern void mm_drop_all_locks(struct mm_struct *mm); 1829 1830extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 1831extern struct file *get_mm_exe_file(struct mm_struct *mm); 1832 1833extern int may_expand_vm(struct mm_struct *mm, unsigned long npages); 1834extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, 1835 unsigned long addr, unsigned long len, 1836 unsigned long flags, 1837 const struct vm_special_mapping *spec); 1838/* This is an obsolete alternative to _install_special_mapping. */ 1839extern int install_special_mapping(struct mm_struct *mm, 1840 unsigned long addr, unsigned long len, 1841 unsigned long flags, struct page **pages); 1842 1843extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 1844 1845extern unsigned long mmap_region(struct file *file, unsigned long addr, 1846 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff); 1847extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr, 1848 unsigned long len, unsigned long prot, unsigned long flags, 1849 unsigned long pgoff, unsigned long *populate); 1850extern int do_munmap(struct mm_struct *, unsigned long, size_t); 1851 1852#ifdef CONFIG_MMU 1853extern int __mm_populate(unsigned long addr, unsigned long len, 1854 int ignore_errors); 1855static inline void mm_populate(unsigned long addr, unsigned long len) 1856{ 1857 /* Ignore errors */ 1858 (void) __mm_populate(addr, len, 1); 1859} 1860#else 1861static inline void mm_populate(unsigned long addr, unsigned long len) {} 1862#endif 1863 1864/* These take the mm semaphore themselves */ 1865extern unsigned long vm_brk(unsigned long, unsigned long); 1866extern int vm_munmap(unsigned long, size_t); 1867extern unsigned long vm_mmap(struct file *, unsigned long, 1868 unsigned long, unsigned long, 1869 unsigned long, unsigned long); 1870 1871struct vm_unmapped_area_info { 1872#define VM_UNMAPPED_AREA_TOPDOWN 1 1873 unsigned long flags; 1874 unsigned long length; 1875 unsigned long low_limit; 1876 unsigned long high_limit; 1877 unsigned long align_mask; 1878 unsigned long align_offset; 1879}; 1880 1881extern unsigned long unmapped_area(struct vm_unmapped_area_info *info); 1882extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info); 1883 1884/* 1885 * Search for an unmapped address range. 1886 * 1887 * We are looking for a range that: 1888 * - does not intersect with any VMA; 1889 * - is contained within the [low_limit, high_limit) interval; 1890 * - is at least the desired size. 1891 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask) 1892 */ 1893static inline unsigned long 1894vm_unmapped_area(struct vm_unmapped_area_info *info) 1895{ 1896 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN) 1897 return unmapped_area_topdown(info); 1898 else 1899 return unmapped_area(info); 1900} 1901 1902/* truncate.c */ 1903extern void truncate_inode_pages(struct address_space *, loff_t); 1904extern void truncate_inode_pages_range(struct address_space *, 1905 loff_t lstart, loff_t lend); 1906extern void truncate_inode_pages_final(struct address_space *); 1907 1908/* generic vm_area_ops exported for stackable file systems */ 1909extern int filemap_fault(struct vm_area_struct *, struct vm_fault *); 1910extern void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf); 1911extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf); 1912 1913/* mm/page-writeback.c */ 1914int write_one_page(struct page *page, int wait); 1915void task_dirty_inc(struct task_struct *tsk); 1916 1917/* readahead.c */ 1918#define VM_MAX_READAHEAD 128 /* kbytes */ 1919#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */ 1920 1921int force_page_cache_readahead(struct address_space *mapping, struct file *filp, 1922 pgoff_t offset, unsigned long nr_to_read); 1923 1924void page_cache_sync_readahead(struct address_space *mapping, 1925 struct file_ra_state *ra, 1926 struct file *filp, 1927 pgoff_t offset, 1928 unsigned long size); 1929 1930void page_cache_async_readahead(struct address_space *mapping, 1931 struct file_ra_state *ra, 1932 struct file *filp, 1933 struct page *pg, 1934 pgoff_t offset, 1935 unsigned long size); 1936 1937unsigned long max_sane_readahead(unsigned long nr); 1938 1939/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 1940extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 1941 1942/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */ 1943extern int expand_downwards(struct vm_area_struct *vma, 1944 unsigned long address); 1945#if VM_GROWSUP 1946extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 1947#else 1948 #define expand_upwards(vma, address) (0) 1949#endif 1950 1951/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 1952extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 1953extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 1954 struct vm_area_struct **pprev); 1955 1956/* Look up the first VMA which intersects the interval start_addr..end_addr-1, 1957 NULL if none. Assume start_addr < end_addr. */ 1958static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) 1959{ 1960 struct vm_area_struct * vma = find_vma(mm,start_addr); 1961 1962 if (vma && end_addr <= vma->vm_start) 1963 vma = NULL; 1964 return vma; 1965} 1966 1967static inline unsigned long vma_pages(struct vm_area_struct *vma) 1968{ 1969 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 1970} 1971 1972/* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 1973static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 1974 unsigned long vm_start, unsigned long vm_end) 1975{ 1976 struct vm_area_struct *vma = find_vma(mm, vm_start); 1977 1978 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 1979 vma = NULL; 1980 1981 return vma; 1982} 1983 1984#ifdef CONFIG_MMU 1985pgprot_t vm_get_page_prot(unsigned long vm_flags); 1986void vma_set_page_prot(struct vm_area_struct *vma); 1987#else 1988static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 1989{ 1990 return __pgprot(0); 1991} 1992static inline void vma_set_page_prot(struct vm_area_struct *vma) 1993{ 1994 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 1995} 1996#endif 1997 1998#ifdef CONFIG_NUMA_BALANCING 1999unsigned long change_prot_numa(struct vm_area_struct *vma, 2000 unsigned long start, unsigned long end); 2001#endif 2002 2003struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 2004int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 2005 unsigned long pfn, unsigned long size, pgprot_t); 2006int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 2007int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2008 unsigned long pfn); 2009int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2010 unsigned long pfn); 2011int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 2012 2013 2014struct page *follow_page_mask(struct vm_area_struct *vma, 2015 unsigned long address, unsigned int foll_flags, 2016 unsigned int *page_mask); 2017 2018static inline struct page *follow_page(struct vm_area_struct *vma, 2019 unsigned long address, unsigned int foll_flags) 2020{ 2021 unsigned int unused_page_mask; 2022 return follow_page_mask(vma, address, foll_flags, &unused_page_mask); 2023} 2024 2025#define FOLL_WRITE 0x01 /* check pte is writable */ 2026#define FOLL_TOUCH 0x02 /* mark page accessed */ 2027#define FOLL_GET 0x04 /* do get_page on page */ 2028#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */ 2029#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */ 2030#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO 2031 * and return without waiting upon it */ 2032#define FOLL_POPULATE 0x40 /* fault in page */ 2033#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */ 2034#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */ 2035#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */ 2036#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */ 2037#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */ 2038 2039typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr, 2040 void *data); 2041extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 2042 unsigned long size, pte_fn_t fn, void *data); 2043 2044#ifdef CONFIG_PROC_FS 2045void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long); 2046#else 2047static inline void vm_stat_account(struct mm_struct *mm, 2048 unsigned long flags, struct file *file, long pages) 2049{ 2050 mm->total_vm += pages; 2051} 2052#endif /* CONFIG_PROC_FS */ 2053 2054#ifdef CONFIG_DEBUG_PAGEALLOC 2055extern bool _debug_pagealloc_enabled; 2056extern void __kernel_map_pages(struct page *page, int numpages, int enable); 2057 2058static inline bool debug_pagealloc_enabled(void) 2059{ 2060 return _debug_pagealloc_enabled; 2061} 2062 2063static inline void 2064kernel_map_pages(struct page *page, int numpages, int enable) 2065{ 2066 if (!debug_pagealloc_enabled()) 2067 return; 2068 2069 __kernel_map_pages(page, numpages, enable); 2070} 2071#ifdef CONFIG_HIBERNATION 2072extern bool kernel_page_present(struct page *page); 2073#endif /* CONFIG_HIBERNATION */ 2074#else 2075static inline void 2076kernel_map_pages(struct page *page, int numpages, int enable) {} 2077#ifdef CONFIG_HIBERNATION 2078static inline bool kernel_page_present(struct page *page) { return true; } 2079#endif /* CONFIG_HIBERNATION */ 2080#endif 2081 2082#ifdef __HAVE_ARCH_GATE_AREA 2083extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 2084extern int in_gate_area_no_mm(unsigned long addr); 2085extern int in_gate_area(struct mm_struct *mm, unsigned long addr); 2086#else 2087static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 2088{ 2089 return NULL; 2090} 2091static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } 2092static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) 2093{ 2094 return 0; 2095} 2096#endif /* __HAVE_ARCH_GATE_AREA */ 2097 2098#ifdef CONFIG_SYSCTL 2099extern int sysctl_drop_caches; 2100int drop_caches_sysctl_handler(struct ctl_table *, int, 2101 void __user *, size_t *, loff_t *); 2102#endif 2103 2104void drop_slab(void); 2105void drop_slab_node(int nid); 2106 2107#ifndef CONFIG_MMU 2108#define randomize_va_space 0 2109#else 2110extern int randomize_va_space; 2111#endif 2112 2113const char * arch_vma_name(struct vm_area_struct *vma); 2114void print_vma_addr(char *prefix, unsigned long rip); 2115 2116void sparse_mem_maps_populate_node(struct page **map_map, 2117 unsigned long pnum_begin, 2118 unsigned long pnum_end, 2119 unsigned long map_count, 2120 int nodeid); 2121 2122struct page *sparse_mem_map_populate(unsigned long pnum, int nid); 2123pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 2124pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node); 2125pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 2126pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node); 2127void *vmemmap_alloc_block(unsigned long size, int node); 2128void *vmemmap_alloc_block_buf(unsigned long size, int node); 2129void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 2130int vmemmap_populate_basepages(unsigned long start, unsigned long end, 2131 int node); 2132int vmemmap_populate(unsigned long start, unsigned long end, int node); 2133void vmemmap_populate_print_last(void); 2134#ifdef CONFIG_MEMORY_HOTPLUG 2135void vmemmap_free(unsigned long start, unsigned long end); 2136#endif 2137void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, 2138 unsigned long size); 2139 2140enum mf_flags { 2141 MF_COUNT_INCREASED = 1 << 0, 2142 MF_ACTION_REQUIRED = 1 << 1, 2143 MF_MUST_KILL = 1 << 2, 2144 MF_SOFT_OFFLINE = 1 << 3, 2145}; 2146extern int memory_failure(unsigned long pfn, int trapno, int flags); 2147extern void memory_failure_queue(unsigned long pfn, int trapno, int flags); 2148extern int unpoison_memory(unsigned long pfn); 2149extern int sysctl_memory_failure_early_kill; 2150extern int sysctl_memory_failure_recovery; 2151extern void shake_page(struct page *p, int access); 2152extern atomic_long_t num_poisoned_pages; 2153extern int soft_offline_page(struct page *page, int flags); 2154 2155#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 2156extern void clear_huge_page(struct page *page, 2157 unsigned long addr, 2158 unsigned int pages_per_huge_page); 2159extern void copy_user_huge_page(struct page *dst, struct page *src, 2160 unsigned long addr, struct vm_area_struct *vma, 2161 unsigned int pages_per_huge_page); 2162#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 2163 2164extern struct page_ext_operations debug_guardpage_ops; 2165extern struct page_ext_operations page_poisoning_ops; 2166 2167#ifdef CONFIG_DEBUG_PAGEALLOC 2168extern unsigned int _debug_guardpage_minorder; 2169extern bool _debug_guardpage_enabled; 2170 2171static inline unsigned int debug_guardpage_minorder(void) 2172{ 2173 return _debug_guardpage_minorder; 2174} 2175 2176static inline bool debug_guardpage_enabled(void) 2177{ 2178 return _debug_guardpage_enabled; 2179} 2180 2181static inline bool page_is_guard(struct page *page) 2182{ 2183 struct page_ext *page_ext; 2184 2185 if (!debug_guardpage_enabled()) 2186 return false; 2187 2188 page_ext = lookup_page_ext(page); 2189 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); 2190} 2191#else 2192static inline unsigned int debug_guardpage_minorder(void) { return 0; } 2193static inline bool debug_guardpage_enabled(void) { return false; } 2194static inline bool page_is_guard(struct page *page) { return false; } 2195#endif /* CONFIG_DEBUG_PAGEALLOC */ 2196 2197#if MAX_NUMNODES > 1 2198void __init setup_nr_node_ids(void); 2199#else 2200static inline void setup_nr_node_ids(void) {} 2201#endif 2202 2203#endif /* __KERNEL__ */ 2204#endif /* _LINUX_MM_H */