Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * linux/drivers/mmc/core/core.c
3 *
4 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
6 * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
7 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 */
13#include <linux/module.h>
14#include <linux/init.h>
15#include <linux/interrupt.h>
16#include <linux/completion.h>
17#include <linux/device.h>
18#include <linux/delay.h>
19#include <linux/pagemap.h>
20#include <linux/err.h>
21#include <linux/leds.h>
22#include <linux/scatterlist.h>
23#include <linux/log2.h>
24#include <linux/regulator/consumer.h>
25#include <linux/pm_runtime.h>
26#include <linux/pm_wakeup.h>
27#include <linux/suspend.h>
28#include <linux/fault-inject.h>
29#include <linux/random.h>
30#include <linux/slab.h>
31#include <linux/of.h>
32
33#include <linux/mmc/card.h>
34#include <linux/mmc/host.h>
35#include <linux/mmc/mmc.h>
36#include <linux/mmc/sd.h>
37#include <linux/mmc/slot-gpio.h>
38
39#include "core.h"
40#include "bus.h"
41#include "host.h"
42#include "sdio_bus.h"
43#include "pwrseq.h"
44
45#include "mmc_ops.h"
46#include "sd_ops.h"
47#include "sdio_ops.h"
48
49/* If the device is not responding */
50#define MMC_CORE_TIMEOUT_MS (10 * 60 * 1000) /* 10 minute timeout */
51
52/*
53 * Background operations can take a long time, depending on the housekeeping
54 * operations the card has to perform.
55 */
56#define MMC_BKOPS_MAX_TIMEOUT (4 * 60 * 1000) /* max time to wait in ms */
57
58static struct workqueue_struct *workqueue;
59static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
60
61/*
62 * Enabling software CRCs on the data blocks can be a significant (30%)
63 * performance cost, and for other reasons may not always be desired.
64 * So we allow it it to be disabled.
65 */
66bool use_spi_crc = 1;
67module_param(use_spi_crc, bool, 0);
68
69/*
70 * Internal function. Schedule delayed work in the MMC work queue.
71 */
72static int mmc_schedule_delayed_work(struct delayed_work *work,
73 unsigned long delay)
74{
75 return queue_delayed_work(workqueue, work, delay);
76}
77
78/*
79 * Internal function. Flush all scheduled work from the MMC work queue.
80 */
81static void mmc_flush_scheduled_work(void)
82{
83 flush_workqueue(workqueue);
84}
85
86#ifdef CONFIG_FAIL_MMC_REQUEST
87
88/*
89 * Internal function. Inject random data errors.
90 * If mmc_data is NULL no errors are injected.
91 */
92static void mmc_should_fail_request(struct mmc_host *host,
93 struct mmc_request *mrq)
94{
95 struct mmc_command *cmd = mrq->cmd;
96 struct mmc_data *data = mrq->data;
97 static const int data_errors[] = {
98 -ETIMEDOUT,
99 -EILSEQ,
100 -EIO,
101 };
102
103 if (!data)
104 return;
105
106 if (cmd->error || data->error ||
107 !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
108 return;
109
110 data->error = data_errors[prandom_u32() % ARRAY_SIZE(data_errors)];
111 data->bytes_xfered = (prandom_u32() % (data->bytes_xfered >> 9)) << 9;
112}
113
114#else /* CONFIG_FAIL_MMC_REQUEST */
115
116static inline void mmc_should_fail_request(struct mmc_host *host,
117 struct mmc_request *mrq)
118{
119}
120
121#endif /* CONFIG_FAIL_MMC_REQUEST */
122
123/**
124 * mmc_request_done - finish processing an MMC request
125 * @host: MMC host which completed request
126 * @mrq: MMC request which request
127 *
128 * MMC drivers should call this function when they have completed
129 * their processing of a request.
130 */
131void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
132{
133 struct mmc_command *cmd = mrq->cmd;
134 int err = cmd->error;
135
136 if (err && cmd->retries && mmc_host_is_spi(host)) {
137 if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
138 cmd->retries = 0;
139 }
140
141 if (err && cmd->retries && !mmc_card_removed(host->card)) {
142 /*
143 * Request starter must handle retries - see
144 * mmc_wait_for_req_done().
145 */
146 if (mrq->done)
147 mrq->done(mrq);
148 } else {
149 mmc_should_fail_request(host, mrq);
150
151 led_trigger_event(host->led, LED_OFF);
152
153 if (mrq->sbc) {
154 pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n",
155 mmc_hostname(host), mrq->sbc->opcode,
156 mrq->sbc->error,
157 mrq->sbc->resp[0], mrq->sbc->resp[1],
158 mrq->sbc->resp[2], mrq->sbc->resp[3]);
159 }
160
161 pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
162 mmc_hostname(host), cmd->opcode, err,
163 cmd->resp[0], cmd->resp[1],
164 cmd->resp[2], cmd->resp[3]);
165
166 if (mrq->data) {
167 pr_debug("%s: %d bytes transferred: %d\n",
168 mmc_hostname(host),
169 mrq->data->bytes_xfered, mrq->data->error);
170 }
171
172 if (mrq->stop) {
173 pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n",
174 mmc_hostname(host), mrq->stop->opcode,
175 mrq->stop->error,
176 mrq->stop->resp[0], mrq->stop->resp[1],
177 mrq->stop->resp[2], mrq->stop->resp[3]);
178 }
179
180 if (mrq->done)
181 mrq->done(mrq);
182
183 mmc_host_clk_release(host);
184 }
185}
186
187EXPORT_SYMBOL(mmc_request_done);
188
189static int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
190{
191#ifdef CONFIG_MMC_DEBUG
192 unsigned int i, sz;
193 struct scatterlist *sg;
194#endif
195 if (mmc_card_removed(host->card))
196 return -ENOMEDIUM;
197
198 if (mrq->sbc) {
199 pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
200 mmc_hostname(host), mrq->sbc->opcode,
201 mrq->sbc->arg, mrq->sbc->flags);
202 }
203
204 pr_debug("%s: starting CMD%u arg %08x flags %08x\n",
205 mmc_hostname(host), mrq->cmd->opcode,
206 mrq->cmd->arg, mrq->cmd->flags);
207
208 if (mrq->data) {
209 pr_debug("%s: blksz %d blocks %d flags %08x "
210 "tsac %d ms nsac %d\n",
211 mmc_hostname(host), mrq->data->blksz,
212 mrq->data->blocks, mrq->data->flags,
213 mrq->data->timeout_ns / 1000000,
214 mrq->data->timeout_clks);
215 }
216
217 if (mrq->stop) {
218 pr_debug("%s: CMD%u arg %08x flags %08x\n",
219 mmc_hostname(host), mrq->stop->opcode,
220 mrq->stop->arg, mrq->stop->flags);
221 }
222
223 WARN_ON(!host->claimed);
224
225 mrq->cmd->error = 0;
226 mrq->cmd->mrq = mrq;
227 if (mrq->sbc) {
228 mrq->sbc->error = 0;
229 mrq->sbc->mrq = mrq;
230 }
231 if (mrq->data) {
232 BUG_ON(mrq->data->blksz > host->max_blk_size);
233 BUG_ON(mrq->data->blocks > host->max_blk_count);
234 BUG_ON(mrq->data->blocks * mrq->data->blksz >
235 host->max_req_size);
236
237#ifdef CONFIG_MMC_DEBUG
238 sz = 0;
239 for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
240 sz += sg->length;
241 BUG_ON(sz != mrq->data->blocks * mrq->data->blksz);
242#endif
243
244 mrq->cmd->data = mrq->data;
245 mrq->data->error = 0;
246 mrq->data->mrq = mrq;
247 if (mrq->stop) {
248 mrq->data->stop = mrq->stop;
249 mrq->stop->error = 0;
250 mrq->stop->mrq = mrq;
251 }
252 }
253 mmc_host_clk_hold(host);
254 led_trigger_event(host->led, LED_FULL);
255 host->ops->request(host, mrq);
256
257 return 0;
258}
259
260/**
261 * mmc_start_bkops - start BKOPS for supported cards
262 * @card: MMC card to start BKOPS
263 * @form_exception: A flag to indicate if this function was
264 * called due to an exception raised by the card
265 *
266 * Start background operations whenever requested.
267 * When the urgent BKOPS bit is set in a R1 command response
268 * then background operations should be started immediately.
269*/
270void mmc_start_bkops(struct mmc_card *card, bool from_exception)
271{
272 int err;
273 int timeout;
274 bool use_busy_signal;
275
276 BUG_ON(!card);
277
278 if (!card->ext_csd.man_bkops_en || mmc_card_doing_bkops(card))
279 return;
280
281 err = mmc_read_bkops_status(card);
282 if (err) {
283 pr_err("%s: Failed to read bkops status: %d\n",
284 mmc_hostname(card->host), err);
285 return;
286 }
287
288 if (!card->ext_csd.raw_bkops_status)
289 return;
290
291 if (card->ext_csd.raw_bkops_status < EXT_CSD_BKOPS_LEVEL_2 &&
292 from_exception)
293 return;
294
295 mmc_claim_host(card->host);
296 if (card->ext_csd.raw_bkops_status >= EXT_CSD_BKOPS_LEVEL_2) {
297 timeout = MMC_BKOPS_MAX_TIMEOUT;
298 use_busy_signal = true;
299 } else {
300 timeout = 0;
301 use_busy_signal = false;
302 }
303
304 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
305 EXT_CSD_BKOPS_START, 1, timeout,
306 use_busy_signal, true, false);
307 if (err) {
308 pr_warn("%s: Error %d starting bkops\n",
309 mmc_hostname(card->host), err);
310 goto out;
311 }
312
313 /*
314 * For urgent bkops status (LEVEL_2 and more)
315 * bkops executed synchronously, otherwise
316 * the operation is in progress
317 */
318 if (!use_busy_signal)
319 mmc_card_set_doing_bkops(card);
320out:
321 mmc_release_host(card->host);
322}
323EXPORT_SYMBOL(mmc_start_bkops);
324
325/*
326 * mmc_wait_data_done() - done callback for data request
327 * @mrq: done data request
328 *
329 * Wakes up mmc context, passed as a callback to host controller driver
330 */
331static void mmc_wait_data_done(struct mmc_request *mrq)
332{
333 mrq->host->context_info.is_done_rcv = true;
334 wake_up_interruptible(&mrq->host->context_info.wait);
335}
336
337static void mmc_wait_done(struct mmc_request *mrq)
338{
339 complete(&mrq->completion);
340}
341
342/*
343 *__mmc_start_data_req() - starts data request
344 * @host: MMC host to start the request
345 * @mrq: data request to start
346 *
347 * Sets the done callback to be called when request is completed by the card.
348 * Starts data mmc request execution
349 */
350static int __mmc_start_data_req(struct mmc_host *host, struct mmc_request *mrq)
351{
352 int err;
353
354 mrq->done = mmc_wait_data_done;
355 mrq->host = host;
356
357 err = mmc_start_request(host, mrq);
358 if (err) {
359 mrq->cmd->error = err;
360 mmc_wait_data_done(mrq);
361 }
362
363 return err;
364}
365
366static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
367{
368 int err;
369
370 init_completion(&mrq->completion);
371 mrq->done = mmc_wait_done;
372
373 err = mmc_start_request(host, mrq);
374 if (err) {
375 mrq->cmd->error = err;
376 complete(&mrq->completion);
377 }
378
379 return err;
380}
381
382/*
383 * mmc_wait_for_data_req_done() - wait for request completed
384 * @host: MMC host to prepare the command.
385 * @mrq: MMC request to wait for
386 *
387 * Blocks MMC context till host controller will ack end of data request
388 * execution or new request notification arrives from the block layer.
389 * Handles command retries.
390 *
391 * Returns enum mmc_blk_status after checking errors.
392 */
393static int mmc_wait_for_data_req_done(struct mmc_host *host,
394 struct mmc_request *mrq,
395 struct mmc_async_req *next_req)
396{
397 struct mmc_command *cmd;
398 struct mmc_context_info *context_info = &host->context_info;
399 int err;
400 unsigned long flags;
401
402 while (1) {
403 wait_event_interruptible(context_info->wait,
404 (context_info->is_done_rcv ||
405 context_info->is_new_req));
406 spin_lock_irqsave(&context_info->lock, flags);
407 context_info->is_waiting_last_req = false;
408 spin_unlock_irqrestore(&context_info->lock, flags);
409 if (context_info->is_done_rcv) {
410 context_info->is_done_rcv = false;
411 context_info->is_new_req = false;
412 cmd = mrq->cmd;
413
414 if (!cmd->error || !cmd->retries ||
415 mmc_card_removed(host->card)) {
416 err = host->areq->err_check(host->card,
417 host->areq);
418 break; /* return err */
419 } else {
420 pr_info("%s: req failed (CMD%u): %d, retrying...\n",
421 mmc_hostname(host),
422 cmd->opcode, cmd->error);
423 cmd->retries--;
424 cmd->error = 0;
425 host->ops->request(host, mrq);
426 continue; /* wait for done/new event again */
427 }
428 } else if (context_info->is_new_req) {
429 context_info->is_new_req = false;
430 if (!next_req) {
431 err = MMC_BLK_NEW_REQUEST;
432 break; /* return err */
433 }
434 }
435 }
436 return err;
437}
438
439static void mmc_wait_for_req_done(struct mmc_host *host,
440 struct mmc_request *mrq)
441{
442 struct mmc_command *cmd;
443
444 while (1) {
445 wait_for_completion(&mrq->completion);
446
447 cmd = mrq->cmd;
448
449 /*
450 * If host has timed out waiting for the sanitize
451 * to complete, card might be still in programming state
452 * so let's try to bring the card out of programming
453 * state.
454 */
455 if (cmd->sanitize_busy && cmd->error == -ETIMEDOUT) {
456 if (!mmc_interrupt_hpi(host->card)) {
457 pr_warn("%s: %s: Interrupted sanitize\n",
458 mmc_hostname(host), __func__);
459 cmd->error = 0;
460 break;
461 } else {
462 pr_err("%s: %s: Failed to interrupt sanitize\n",
463 mmc_hostname(host), __func__);
464 }
465 }
466 if (!cmd->error || !cmd->retries ||
467 mmc_card_removed(host->card))
468 break;
469
470 pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
471 mmc_hostname(host), cmd->opcode, cmd->error);
472 cmd->retries--;
473 cmd->error = 0;
474 host->ops->request(host, mrq);
475 }
476}
477
478/**
479 * mmc_pre_req - Prepare for a new request
480 * @host: MMC host to prepare command
481 * @mrq: MMC request to prepare for
482 * @is_first_req: true if there is no previous started request
483 * that may run in parellel to this call, otherwise false
484 *
485 * mmc_pre_req() is called in prior to mmc_start_req() to let
486 * host prepare for the new request. Preparation of a request may be
487 * performed while another request is running on the host.
488 */
489static void mmc_pre_req(struct mmc_host *host, struct mmc_request *mrq,
490 bool is_first_req)
491{
492 if (host->ops->pre_req) {
493 mmc_host_clk_hold(host);
494 host->ops->pre_req(host, mrq, is_first_req);
495 mmc_host_clk_release(host);
496 }
497}
498
499/**
500 * mmc_post_req - Post process a completed request
501 * @host: MMC host to post process command
502 * @mrq: MMC request to post process for
503 * @err: Error, if non zero, clean up any resources made in pre_req
504 *
505 * Let the host post process a completed request. Post processing of
506 * a request may be performed while another reuqest is running.
507 */
508static void mmc_post_req(struct mmc_host *host, struct mmc_request *mrq,
509 int err)
510{
511 if (host->ops->post_req) {
512 mmc_host_clk_hold(host);
513 host->ops->post_req(host, mrq, err);
514 mmc_host_clk_release(host);
515 }
516}
517
518/**
519 * mmc_start_req - start a non-blocking request
520 * @host: MMC host to start command
521 * @areq: async request to start
522 * @error: out parameter returns 0 for success, otherwise non zero
523 *
524 * Start a new MMC custom command request for a host.
525 * If there is on ongoing async request wait for completion
526 * of that request and start the new one and return.
527 * Does not wait for the new request to complete.
528 *
529 * Returns the completed request, NULL in case of none completed.
530 * Wait for the an ongoing request (previoulsy started) to complete and
531 * return the completed request. If there is no ongoing request, NULL
532 * is returned without waiting. NULL is not an error condition.
533 */
534struct mmc_async_req *mmc_start_req(struct mmc_host *host,
535 struct mmc_async_req *areq, int *error)
536{
537 int err = 0;
538 int start_err = 0;
539 struct mmc_async_req *data = host->areq;
540
541 /* Prepare a new request */
542 if (areq)
543 mmc_pre_req(host, areq->mrq, !host->areq);
544
545 if (host->areq) {
546 err = mmc_wait_for_data_req_done(host, host->areq->mrq, areq);
547 if (err == MMC_BLK_NEW_REQUEST) {
548 if (error)
549 *error = err;
550 /*
551 * The previous request was not completed,
552 * nothing to return
553 */
554 return NULL;
555 }
556 /*
557 * Check BKOPS urgency for each R1 response
558 */
559 if (host->card && mmc_card_mmc(host->card) &&
560 ((mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1) ||
561 (mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1B)) &&
562 (host->areq->mrq->cmd->resp[0] & R1_EXCEPTION_EVENT)) {
563
564 /* Cancel the prepared request */
565 if (areq)
566 mmc_post_req(host, areq->mrq, -EINVAL);
567
568 mmc_start_bkops(host->card, true);
569
570 /* prepare the request again */
571 if (areq)
572 mmc_pre_req(host, areq->mrq, !host->areq);
573 }
574 }
575
576 if (!err && areq)
577 start_err = __mmc_start_data_req(host, areq->mrq);
578
579 if (host->areq)
580 mmc_post_req(host, host->areq->mrq, 0);
581
582 /* Cancel a prepared request if it was not started. */
583 if ((err || start_err) && areq)
584 mmc_post_req(host, areq->mrq, -EINVAL);
585
586 if (err)
587 host->areq = NULL;
588 else
589 host->areq = areq;
590
591 if (error)
592 *error = err;
593 return data;
594}
595EXPORT_SYMBOL(mmc_start_req);
596
597/**
598 * mmc_wait_for_req - start a request and wait for completion
599 * @host: MMC host to start command
600 * @mrq: MMC request to start
601 *
602 * Start a new MMC custom command request for a host, and wait
603 * for the command to complete. Does not attempt to parse the
604 * response.
605 */
606void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
607{
608 __mmc_start_req(host, mrq);
609 mmc_wait_for_req_done(host, mrq);
610}
611EXPORT_SYMBOL(mmc_wait_for_req);
612
613/**
614 * mmc_interrupt_hpi - Issue for High priority Interrupt
615 * @card: the MMC card associated with the HPI transfer
616 *
617 * Issued High Priority Interrupt, and check for card status
618 * until out-of prg-state.
619 */
620int mmc_interrupt_hpi(struct mmc_card *card)
621{
622 int err;
623 u32 status;
624 unsigned long prg_wait;
625
626 BUG_ON(!card);
627
628 if (!card->ext_csd.hpi_en) {
629 pr_info("%s: HPI enable bit unset\n", mmc_hostname(card->host));
630 return 1;
631 }
632
633 mmc_claim_host(card->host);
634 err = mmc_send_status(card, &status);
635 if (err) {
636 pr_err("%s: Get card status fail\n", mmc_hostname(card->host));
637 goto out;
638 }
639
640 switch (R1_CURRENT_STATE(status)) {
641 case R1_STATE_IDLE:
642 case R1_STATE_READY:
643 case R1_STATE_STBY:
644 case R1_STATE_TRAN:
645 /*
646 * In idle and transfer states, HPI is not needed and the caller
647 * can issue the next intended command immediately
648 */
649 goto out;
650 case R1_STATE_PRG:
651 break;
652 default:
653 /* In all other states, it's illegal to issue HPI */
654 pr_debug("%s: HPI cannot be sent. Card state=%d\n",
655 mmc_hostname(card->host), R1_CURRENT_STATE(status));
656 err = -EINVAL;
657 goto out;
658 }
659
660 err = mmc_send_hpi_cmd(card, &status);
661 if (err)
662 goto out;
663
664 prg_wait = jiffies + msecs_to_jiffies(card->ext_csd.out_of_int_time);
665 do {
666 err = mmc_send_status(card, &status);
667
668 if (!err && R1_CURRENT_STATE(status) == R1_STATE_TRAN)
669 break;
670 if (time_after(jiffies, prg_wait))
671 err = -ETIMEDOUT;
672 } while (!err);
673
674out:
675 mmc_release_host(card->host);
676 return err;
677}
678EXPORT_SYMBOL(mmc_interrupt_hpi);
679
680/**
681 * mmc_wait_for_cmd - start a command and wait for completion
682 * @host: MMC host to start command
683 * @cmd: MMC command to start
684 * @retries: maximum number of retries
685 *
686 * Start a new MMC command for a host, and wait for the command
687 * to complete. Return any error that occurred while the command
688 * was executing. Do not attempt to parse the response.
689 */
690int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
691{
692 struct mmc_request mrq = {NULL};
693
694 WARN_ON(!host->claimed);
695
696 memset(cmd->resp, 0, sizeof(cmd->resp));
697 cmd->retries = retries;
698
699 mrq.cmd = cmd;
700 cmd->data = NULL;
701
702 mmc_wait_for_req(host, &mrq);
703
704 return cmd->error;
705}
706
707EXPORT_SYMBOL(mmc_wait_for_cmd);
708
709/**
710 * mmc_stop_bkops - stop ongoing BKOPS
711 * @card: MMC card to check BKOPS
712 *
713 * Send HPI command to stop ongoing background operations to
714 * allow rapid servicing of foreground operations, e.g. read/
715 * writes. Wait until the card comes out of the programming state
716 * to avoid errors in servicing read/write requests.
717 */
718int mmc_stop_bkops(struct mmc_card *card)
719{
720 int err = 0;
721
722 BUG_ON(!card);
723 err = mmc_interrupt_hpi(card);
724
725 /*
726 * If err is EINVAL, we can't issue an HPI.
727 * It should complete the BKOPS.
728 */
729 if (!err || (err == -EINVAL)) {
730 mmc_card_clr_doing_bkops(card);
731 err = 0;
732 }
733
734 return err;
735}
736EXPORT_SYMBOL(mmc_stop_bkops);
737
738int mmc_read_bkops_status(struct mmc_card *card)
739{
740 int err;
741 u8 *ext_csd;
742
743 mmc_claim_host(card->host);
744 err = mmc_get_ext_csd(card, &ext_csd);
745 mmc_release_host(card->host);
746 if (err)
747 return err;
748
749 card->ext_csd.raw_bkops_status = ext_csd[EXT_CSD_BKOPS_STATUS];
750 card->ext_csd.raw_exception_status = ext_csd[EXT_CSD_EXP_EVENTS_STATUS];
751 kfree(ext_csd);
752 return 0;
753}
754EXPORT_SYMBOL(mmc_read_bkops_status);
755
756/**
757 * mmc_set_data_timeout - set the timeout for a data command
758 * @data: data phase for command
759 * @card: the MMC card associated with the data transfer
760 *
761 * Computes the data timeout parameters according to the
762 * correct algorithm given the card type.
763 */
764void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
765{
766 unsigned int mult;
767
768 /*
769 * SDIO cards only define an upper 1 s limit on access.
770 */
771 if (mmc_card_sdio(card)) {
772 data->timeout_ns = 1000000000;
773 data->timeout_clks = 0;
774 return;
775 }
776
777 /*
778 * SD cards use a 100 multiplier rather than 10
779 */
780 mult = mmc_card_sd(card) ? 100 : 10;
781
782 /*
783 * Scale up the multiplier (and therefore the timeout) by
784 * the r2w factor for writes.
785 */
786 if (data->flags & MMC_DATA_WRITE)
787 mult <<= card->csd.r2w_factor;
788
789 data->timeout_ns = card->csd.tacc_ns * mult;
790 data->timeout_clks = card->csd.tacc_clks * mult;
791
792 /*
793 * SD cards also have an upper limit on the timeout.
794 */
795 if (mmc_card_sd(card)) {
796 unsigned int timeout_us, limit_us;
797
798 timeout_us = data->timeout_ns / 1000;
799 if (mmc_host_clk_rate(card->host))
800 timeout_us += data->timeout_clks * 1000 /
801 (mmc_host_clk_rate(card->host) / 1000);
802
803 if (data->flags & MMC_DATA_WRITE)
804 /*
805 * The MMC spec "It is strongly recommended
806 * for hosts to implement more than 500ms
807 * timeout value even if the card indicates
808 * the 250ms maximum busy length." Even the
809 * previous value of 300ms is known to be
810 * insufficient for some cards.
811 */
812 limit_us = 3000000;
813 else
814 limit_us = 100000;
815
816 /*
817 * SDHC cards always use these fixed values.
818 */
819 if (timeout_us > limit_us || mmc_card_blockaddr(card)) {
820 data->timeout_ns = limit_us * 1000;
821 data->timeout_clks = 0;
822 }
823
824 /* assign limit value if invalid */
825 if (timeout_us == 0)
826 data->timeout_ns = limit_us * 1000;
827 }
828
829 /*
830 * Some cards require longer data read timeout than indicated in CSD.
831 * Address this by setting the read timeout to a "reasonably high"
832 * value. For the cards tested, 300ms has proven enough. If necessary,
833 * this value can be increased if other problematic cards require this.
834 */
835 if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
836 data->timeout_ns = 300000000;
837 data->timeout_clks = 0;
838 }
839
840 /*
841 * Some cards need very high timeouts if driven in SPI mode.
842 * The worst observed timeout was 900ms after writing a
843 * continuous stream of data until the internal logic
844 * overflowed.
845 */
846 if (mmc_host_is_spi(card->host)) {
847 if (data->flags & MMC_DATA_WRITE) {
848 if (data->timeout_ns < 1000000000)
849 data->timeout_ns = 1000000000; /* 1s */
850 } else {
851 if (data->timeout_ns < 100000000)
852 data->timeout_ns = 100000000; /* 100ms */
853 }
854 }
855}
856EXPORT_SYMBOL(mmc_set_data_timeout);
857
858/**
859 * mmc_align_data_size - pads a transfer size to a more optimal value
860 * @card: the MMC card associated with the data transfer
861 * @sz: original transfer size
862 *
863 * Pads the original data size with a number of extra bytes in
864 * order to avoid controller bugs and/or performance hits
865 * (e.g. some controllers revert to PIO for certain sizes).
866 *
867 * Returns the improved size, which might be unmodified.
868 *
869 * Note that this function is only relevant when issuing a
870 * single scatter gather entry.
871 */
872unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz)
873{
874 /*
875 * FIXME: We don't have a system for the controller to tell
876 * the core about its problems yet, so for now we just 32-bit
877 * align the size.
878 */
879 sz = ((sz + 3) / 4) * 4;
880
881 return sz;
882}
883EXPORT_SYMBOL(mmc_align_data_size);
884
885/**
886 * __mmc_claim_host - exclusively claim a host
887 * @host: mmc host to claim
888 * @abort: whether or not the operation should be aborted
889 *
890 * Claim a host for a set of operations. If @abort is non null and
891 * dereference a non-zero value then this will return prematurely with
892 * that non-zero value without acquiring the lock. Returns zero
893 * with the lock held otherwise.
894 */
895int __mmc_claim_host(struct mmc_host *host, atomic_t *abort)
896{
897 DECLARE_WAITQUEUE(wait, current);
898 unsigned long flags;
899 int stop;
900 bool pm = false;
901
902 might_sleep();
903
904 add_wait_queue(&host->wq, &wait);
905 spin_lock_irqsave(&host->lock, flags);
906 while (1) {
907 set_current_state(TASK_UNINTERRUPTIBLE);
908 stop = abort ? atomic_read(abort) : 0;
909 if (stop || !host->claimed || host->claimer == current)
910 break;
911 spin_unlock_irqrestore(&host->lock, flags);
912 schedule();
913 spin_lock_irqsave(&host->lock, flags);
914 }
915 set_current_state(TASK_RUNNING);
916 if (!stop) {
917 host->claimed = 1;
918 host->claimer = current;
919 host->claim_cnt += 1;
920 if (host->claim_cnt == 1)
921 pm = true;
922 } else
923 wake_up(&host->wq);
924 spin_unlock_irqrestore(&host->lock, flags);
925 remove_wait_queue(&host->wq, &wait);
926
927 if (pm)
928 pm_runtime_get_sync(mmc_dev(host));
929
930 return stop;
931}
932EXPORT_SYMBOL(__mmc_claim_host);
933
934/**
935 * mmc_release_host - release a host
936 * @host: mmc host to release
937 *
938 * Release a MMC host, allowing others to claim the host
939 * for their operations.
940 */
941void mmc_release_host(struct mmc_host *host)
942{
943 unsigned long flags;
944
945 WARN_ON(!host->claimed);
946
947 spin_lock_irqsave(&host->lock, flags);
948 if (--host->claim_cnt) {
949 /* Release for nested claim */
950 spin_unlock_irqrestore(&host->lock, flags);
951 } else {
952 host->claimed = 0;
953 host->claimer = NULL;
954 spin_unlock_irqrestore(&host->lock, flags);
955 wake_up(&host->wq);
956 pm_runtime_mark_last_busy(mmc_dev(host));
957 pm_runtime_put_autosuspend(mmc_dev(host));
958 }
959}
960EXPORT_SYMBOL(mmc_release_host);
961
962/*
963 * This is a helper function, which fetches a runtime pm reference for the
964 * card device and also claims the host.
965 */
966void mmc_get_card(struct mmc_card *card)
967{
968 pm_runtime_get_sync(&card->dev);
969 mmc_claim_host(card->host);
970}
971EXPORT_SYMBOL(mmc_get_card);
972
973/*
974 * This is a helper function, which releases the host and drops the runtime
975 * pm reference for the card device.
976 */
977void mmc_put_card(struct mmc_card *card)
978{
979 mmc_release_host(card->host);
980 pm_runtime_mark_last_busy(&card->dev);
981 pm_runtime_put_autosuspend(&card->dev);
982}
983EXPORT_SYMBOL(mmc_put_card);
984
985/*
986 * Internal function that does the actual ios call to the host driver,
987 * optionally printing some debug output.
988 */
989static inline void mmc_set_ios(struct mmc_host *host)
990{
991 struct mmc_ios *ios = &host->ios;
992
993 pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
994 "width %u timing %u\n",
995 mmc_hostname(host), ios->clock, ios->bus_mode,
996 ios->power_mode, ios->chip_select, ios->vdd,
997 ios->bus_width, ios->timing);
998
999 if (ios->clock > 0)
1000 mmc_set_ungated(host);
1001 host->ops->set_ios(host, ios);
1002}
1003
1004/*
1005 * Control chip select pin on a host.
1006 */
1007void mmc_set_chip_select(struct mmc_host *host, int mode)
1008{
1009 mmc_host_clk_hold(host);
1010 host->ios.chip_select = mode;
1011 mmc_set_ios(host);
1012 mmc_host_clk_release(host);
1013}
1014
1015/*
1016 * Sets the host clock to the highest possible frequency that
1017 * is below "hz".
1018 */
1019static void __mmc_set_clock(struct mmc_host *host, unsigned int hz)
1020{
1021 WARN_ON(hz && hz < host->f_min);
1022
1023 if (hz > host->f_max)
1024 hz = host->f_max;
1025
1026 host->ios.clock = hz;
1027 mmc_set_ios(host);
1028}
1029
1030void mmc_set_clock(struct mmc_host *host, unsigned int hz)
1031{
1032 mmc_host_clk_hold(host);
1033 __mmc_set_clock(host, hz);
1034 mmc_host_clk_release(host);
1035}
1036
1037#ifdef CONFIG_MMC_CLKGATE
1038/*
1039 * This gates the clock by setting it to 0 Hz.
1040 */
1041void mmc_gate_clock(struct mmc_host *host)
1042{
1043 unsigned long flags;
1044
1045 spin_lock_irqsave(&host->clk_lock, flags);
1046 host->clk_old = host->ios.clock;
1047 host->ios.clock = 0;
1048 host->clk_gated = true;
1049 spin_unlock_irqrestore(&host->clk_lock, flags);
1050 mmc_set_ios(host);
1051}
1052
1053/*
1054 * This restores the clock from gating by using the cached
1055 * clock value.
1056 */
1057void mmc_ungate_clock(struct mmc_host *host)
1058{
1059 /*
1060 * We should previously have gated the clock, so the clock shall
1061 * be 0 here! The clock may however be 0 during initialization,
1062 * when some request operations are performed before setting
1063 * the frequency. When ungate is requested in that situation
1064 * we just ignore the call.
1065 */
1066 if (host->clk_old) {
1067 BUG_ON(host->ios.clock);
1068 /* This call will also set host->clk_gated to false */
1069 __mmc_set_clock(host, host->clk_old);
1070 }
1071}
1072
1073void mmc_set_ungated(struct mmc_host *host)
1074{
1075 unsigned long flags;
1076
1077 /*
1078 * We've been given a new frequency while the clock is gated,
1079 * so make sure we regard this as ungating it.
1080 */
1081 spin_lock_irqsave(&host->clk_lock, flags);
1082 host->clk_gated = false;
1083 spin_unlock_irqrestore(&host->clk_lock, flags);
1084}
1085
1086#else
1087void mmc_set_ungated(struct mmc_host *host)
1088{
1089}
1090#endif
1091
1092int mmc_execute_tuning(struct mmc_card *card)
1093{
1094 struct mmc_host *host = card->host;
1095 u32 opcode;
1096 int err;
1097
1098 if (!host->ops->execute_tuning)
1099 return 0;
1100
1101 if (mmc_card_mmc(card))
1102 opcode = MMC_SEND_TUNING_BLOCK_HS200;
1103 else
1104 opcode = MMC_SEND_TUNING_BLOCK;
1105
1106 mmc_host_clk_hold(host);
1107 err = host->ops->execute_tuning(host, opcode);
1108 mmc_host_clk_release(host);
1109
1110 if (err)
1111 pr_err("%s: tuning execution failed\n", mmc_hostname(host));
1112
1113 return err;
1114}
1115
1116/*
1117 * Change the bus mode (open drain/push-pull) of a host.
1118 */
1119void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
1120{
1121 mmc_host_clk_hold(host);
1122 host->ios.bus_mode = mode;
1123 mmc_set_ios(host);
1124 mmc_host_clk_release(host);
1125}
1126
1127/*
1128 * Change data bus width of a host.
1129 */
1130void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
1131{
1132 mmc_host_clk_hold(host);
1133 host->ios.bus_width = width;
1134 mmc_set_ios(host);
1135 mmc_host_clk_release(host);
1136}
1137
1138/*
1139 * Set initial state after a power cycle or a hw_reset.
1140 */
1141void mmc_set_initial_state(struct mmc_host *host)
1142{
1143 if (mmc_host_is_spi(host))
1144 host->ios.chip_select = MMC_CS_HIGH;
1145 else
1146 host->ios.chip_select = MMC_CS_DONTCARE;
1147 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
1148 host->ios.bus_width = MMC_BUS_WIDTH_1;
1149 host->ios.timing = MMC_TIMING_LEGACY;
1150
1151 mmc_set_ios(host);
1152}
1153
1154/**
1155 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1156 * @vdd: voltage (mV)
1157 * @low_bits: prefer low bits in boundary cases
1158 *
1159 * This function returns the OCR bit number according to the provided @vdd
1160 * value. If conversion is not possible a negative errno value returned.
1161 *
1162 * Depending on the @low_bits flag the function prefers low or high OCR bits
1163 * on boundary voltages. For example,
1164 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1165 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1166 *
1167 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1168 */
1169static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1170{
1171 const int max_bit = ilog2(MMC_VDD_35_36);
1172 int bit;
1173
1174 if (vdd < 1650 || vdd > 3600)
1175 return -EINVAL;
1176
1177 if (vdd >= 1650 && vdd <= 1950)
1178 return ilog2(MMC_VDD_165_195);
1179
1180 if (low_bits)
1181 vdd -= 1;
1182
1183 /* Base 2000 mV, step 100 mV, bit's base 8. */
1184 bit = (vdd - 2000) / 100 + 8;
1185 if (bit > max_bit)
1186 return max_bit;
1187 return bit;
1188}
1189
1190/**
1191 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1192 * @vdd_min: minimum voltage value (mV)
1193 * @vdd_max: maximum voltage value (mV)
1194 *
1195 * This function returns the OCR mask bits according to the provided @vdd_min
1196 * and @vdd_max values. If conversion is not possible the function returns 0.
1197 *
1198 * Notes wrt boundary cases:
1199 * This function sets the OCR bits for all boundary voltages, for example
1200 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1201 * MMC_VDD_34_35 mask.
1202 */
1203u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1204{
1205 u32 mask = 0;
1206
1207 if (vdd_max < vdd_min)
1208 return 0;
1209
1210 /* Prefer high bits for the boundary vdd_max values. */
1211 vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1212 if (vdd_max < 0)
1213 return 0;
1214
1215 /* Prefer low bits for the boundary vdd_min values. */
1216 vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1217 if (vdd_min < 0)
1218 return 0;
1219
1220 /* Fill the mask, from max bit to min bit. */
1221 while (vdd_max >= vdd_min)
1222 mask |= 1 << vdd_max--;
1223
1224 return mask;
1225}
1226EXPORT_SYMBOL(mmc_vddrange_to_ocrmask);
1227
1228#ifdef CONFIG_OF
1229
1230/**
1231 * mmc_of_parse_voltage - return mask of supported voltages
1232 * @np: The device node need to be parsed.
1233 * @mask: mask of voltages available for MMC/SD/SDIO
1234 *
1235 * 1. Return zero on success.
1236 * 2. Return negative errno: voltage-range is invalid.
1237 */
1238int mmc_of_parse_voltage(struct device_node *np, u32 *mask)
1239{
1240 const u32 *voltage_ranges;
1241 int num_ranges, i;
1242
1243 voltage_ranges = of_get_property(np, "voltage-ranges", &num_ranges);
1244 num_ranges = num_ranges / sizeof(*voltage_ranges) / 2;
1245 if (!voltage_ranges || !num_ranges) {
1246 pr_info("%s: voltage-ranges unspecified\n", np->full_name);
1247 return -EINVAL;
1248 }
1249
1250 for (i = 0; i < num_ranges; i++) {
1251 const int j = i * 2;
1252 u32 ocr_mask;
1253
1254 ocr_mask = mmc_vddrange_to_ocrmask(
1255 be32_to_cpu(voltage_ranges[j]),
1256 be32_to_cpu(voltage_ranges[j + 1]));
1257 if (!ocr_mask) {
1258 pr_err("%s: voltage-range #%d is invalid\n",
1259 np->full_name, i);
1260 return -EINVAL;
1261 }
1262 *mask |= ocr_mask;
1263 }
1264
1265 return 0;
1266}
1267EXPORT_SYMBOL(mmc_of_parse_voltage);
1268
1269#endif /* CONFIG_OF */
1270
1271static int mmc_of_get_func_num(struct device_node *node)
1272{
1273 u32 reg;
1274 int ret;
1275
1276 ret = of_property_read_u32(node, "reg", ®);
1277 if (ret < 0)
1278 return ret;
1279
1280 return reg;
1281}
1282
1283struct device_node *mmc_of_find_child_device(struct mmc_host *host,
1284 unsigned func_num)
1285{
1286 struct device_node *node;
1287
1288 if (!host->parent || !host->parent->of_node)
1289 return NULL;
1290
1291 for_each_child_of_node(host->parent->of_node, node) {
1292 if (mmc_of_get_func_num(node) == func_num)
1293 return node;
1294 }
1295
1296 return NULL;
1297}
1298
1299#ifdef CONFIG_REGULATOR
1300
1301/**
1302 * mmc_regulator_get_ocrmask - return mask of supported voltages
1303 * @supply: regulator to use
1304 *
1305 * This returns either a negative errno, or a mask of voltages that
1306 * can be provided to MMC/SD/SDIO devices using the specified voltage
1307 * regulator. This would normally be called before registering the
1308 * MMC host adapter.
1309 */
1310int mmc_regulator_get_ocrmask(struct regulator *supply)
1311{
1312 int result = 0;
1313 int count;
1314 int i;
1315 int vdd_uV;
1316 int vdd_mV;
1317
1318 count = regulator_count_voltages(supply);
1319 if (count < 0)
1320 return count;
1321
1322 for (i = 0; i < count; i++) {
1323 vdd_uV = regulator_list_voltage(supply, i);
1324 if (vdd_uV <= 0)
1325 continue;
1326
1327 vdd_mV = vdd_uV / 1000;
1328 result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1329 }
1330
1331 if (!result) {
1332 vdd_uV = regulator_get_voltage(supply);
1333 if (vdd_uV <= 0)
1334 return vdd_uV;
1335
1336 vdd_mV = vdd_uV / 1000;
1337 result = mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1338 }
1339
1340 return result;
1341}
1342EXPORT_SYMBOL_GPL(mmc_regulator_get_ocrmask);
1343
1344/**
1345 * mmc_regulator_set_ocr - set regulator to match host->ios voltage
1346 * @mmc: the host to regulate
1347 * @supply: regulator to use
1348 * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
1349 *
1350 * Returns zero on success, else negative errno.
1351 *
1352 * MMC host drivers may use this to enable or disable a regulator using
1353 * a particular supply voltage. This would normally be called from the
1354 * set_ios() method.
1355 */
1356int mmc_regulator_set_ocr(struct mmc_host *mmc,
1357 struct regulator *supply,
1358 unsigned short vdd_bit)
1359{
1360 int result = 0;
1361 int min_uV, max_uV;
1362
1363 if (vdd_bit) {
1364 int tmp;
1365
1366 /*
1367 * REVISIT mmc_vddrange_to_ocrmask() may have set some
1368 * bits this regulator doesn't quite support ... don't
1369 * be too picky, most cards and regulators are OK with
1370 * a 0.1V range goof (it's a small error percentage).
1371 */
1372 tmp = vdd_bit - ilog2(MMC_VDD_165_195);
1373 if (tmp == 0) {
1374 min_uV = 1650 * 1000;
1375 max_uV = 1950 * 1000;
1376 } else {
1377 min_uV = 1900 * 1000 + tmp * 100 * 1000;
1378 max_uV = min_uV + 100 * 1000;
1379 }
1380
1381 result = regulator_set_voltage(supply, min_uV, max_uV);
1382 if (result == 0 && !mmc->regulator_enabled) {
1383 result = regulator_enable(supply);
1384 if (!result)
1385 mmc->regulator_enabled = true;
1386 }
1387 } else if (mmc->regulator_enabled) {
1388 result = regulator_disable(supply);
1389 if (result == 0)
1390 mmc->regulator_enabled = false;
1391 }
1392
1393 if (result)
1394 dev_err(mmc_dev(mmc),
1395 "could not set regulator OCR (%d)\n", result);
1396 return result;
1397}
1398EXPORT_SYMBOL_GPL(mmc_regulator_set_ocr);
1399
1400#endif /* CONFIG_REGULATOR */
1401
1402int mmc_regulator_get_supply(struct mmc_host *mmc)
1403{
1404 struct device *dev = mmc_dev(mmc);
1405 int ret;
1406
1407 mmc->supply.vmmc = devm_regulator_get_optional(dev, "vmmc");
1408 mmc->supply.vqmmc = devm_regulator_get_optional(dev, "vqmmc");
1409
1410 if (IS_ERR(mmc->supply.vmmc)) {
1411 if (PTR_ERR(mmc->supply.vmmc) == -EPROBE_DEFER)
1412 return -EPROBE_DEFER;
1413 dev_info(dev, "No vmmc regulator found\n");
1414 } else {
1415 ret = mmc_regulator_get_ocrmask(mmc->supply.vmmc);
1416 if (ret > 0)
1417 mmc->ocr_avail = ret;
1418 else
1419 dev_warn(dev, "Failed getting OCR mask: %d\n", ret);
1420 }
1421
1422 if (IS_ERR(mmc->supply.vqmmc)) {
1423 if (PTR_ERR(mmc->supply.vqmmc) == -EPROBE_DEFER)
1424 return -EPROBE_DEFER;
1425 dev_info(dev, "No vqmmc regulator found\n");
1426 }
1427
1428 return 0;
1429}
1430EXPORT_SYMBOL_GPL(mmc_regulator_get_supply);
1431
1432/*
1433 * Mask off any voltages we don't support and select
1434 * the lowest voltage
1435 */
1436u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1437{
1438 int bit;
1439
1440 /*
1441 * Sanity check the voltages that the card claims to
1442 * support.
1443 */
1444 if (ocr & 0x7F) {
1445 dev_warn(mmc_dev(host),
1446 "card claims to support voltages below defined range\n");
1447 ocr &= ~0x7F;
1448 }
1449
1450 ocr &= host->ocr_avail;
1451 if (!ocr) {
1452 dev_warn(mmc_dev(host), "no support for card's volts\n");
1453 return 0;
1454 }
1455
1456 if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) {
1457 bit = ffs(ocr) - 1;
1458 ocr &= 3 << bit;
1459 mmc_power_cycle(host, ocr);
1460 } else {
1461 bit = fls(ocr) - 1;
1462 ocr &= 3 << bit;
1463 if (bit != host->ios.vdd)
1464 dev_warn(mmc_dev(host), "exceeding card's volts\n");
1465 }
1466
1467 return ocr;
1468}
1469
1470int __mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1471{
1472 int err = 0;
1473 int old_signal_voltage = host->ios.signal_voltage;
1474
1475 host->ios.signal_voltage = signal_voltage;
1476 if (host->ops->start_signal_voltage_switch) {
1477 mmc_host_clk_hold(host);
1478 err = host->ops->start_signal_voltage_switch(host, &host->ios);
1479 mmc_host_clk_release(host);
1480 }
1481
1482 if (err)
1483 host->ios.signal_voltage = old_signal_voltage;
1484
1485 return err;
1486
1487}
1488
1489int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage, u32 ocr)
1490{
1491 struct mmc_command cmd = {0};
1492 int err = 0;
1493 u32 clock;
1494
1495 BUG_ON(!host);
1496
1497 /*
1498 * Send CMD11 only if the request is to switch the card to
1499 * 1.8V signalling.
1500 */
1501 if (signal_voltage == MMC_SIGNAL_VOLTAGE_330)
1502 return __mmc_set_signal_voltage(host, signal_voltage);
1503
1504 /*
1505 * If we cannot switch voltages, return failure so the caller
1506 * can continue without UHS mode
1507 */
1508 if (!host->ops->start_signal_voltage_switch)
1509 return -EPERM;
1510 if (!host->ops->card_busy)
1511 pr_warn("%s: cannot verify signal voltage switch\n",
1512 mmc_hostname(host));
1513
1514 mmc_host_clk_hold(host);
1515
1516 cmd.opcode = SD_SWITCH_VOLTAGE;
1517 cmd.arg = 0;
1518 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1519
1520 err = mmc_wait_for_cmd(host, &cmd, 0);
1521 if (err)
1522 goto err_command;
1523
1524 if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR)) {
1525 err = -EIO;
1526 goto err_command;
1527 }
1528 /*
1529 * The card should drive cmd and dat[0:3] low immediately
1530 * after the response of cmd11, but wait 1 ms to be sure
1531 */
1532 mmc_delay(1);
1533 if (host->ops->card_busy && !host->ops->card_busy(host)) {
1534 err = -EAGAIN;
1535 goto power_cycle;
1536 }
1537 /*
1538 * During a signal voltage level switch, the clock must be gated
1539 * for 5 ms according to the SD spec
1540 */
1541 clock = host->ios.clock;
1542 host->ios.clock = 0;
1543 mmc_set_ios(host);
1544
1545 if (__mmc_set_signal_voltage(host, signal_voltage)) {
1546 /*
1547 * Voltages may not have been switched, but we've already
1548 * sent CMD11, so a power cycle is required anyway
1549 */
1550 err = -EAGAIN;
1551 goto power_cycle;
1552 }
1553
1554 /* Keep clock gated for at least 5 ms */
1555 mmc_delay(5);
1556 host->ios.clock = clock;
1557 mmc_set_ios(host);
1558
1559 /* Wait for at least 1 ms according to spec */
1560 mmc_delay(1);
1561
1562 /*
1563 * Failure to switch is indicated by the card holding
1564 * dat[0:3] low
1565 */
1566 if (host->ops->card_busy && host->ops->card_busy(host))
1567 err = -EAGAIN;
1568
1569power_cycle:
1570 if (err) {
1571 pr_debug("%s: Signal voltage switch failed, "
1572 "power cycling card\n", mmc_hostname(host));
1573 mmc_power_cycle(host, ocr);
1574 }
1575
1576err_command:
1577 mmc_host_clk_release(host);
1578
1579 return err;
1580}
1581
1582/*
1583 * Select timing parameters for host.
1584 */
1585void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1586{
1587 mmc_host_clk_hold(host);
1588 host->ios.timing = timing;
1589 mmc_set_ios(host);
1590 mmc_host_clk_release(host);
1591}
1592
1593/*
1594 * Select appropriate driver type for host.
1595 */
1596void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1597{
1598 mmc_host_clk_hold(host);
1599 host->ios.drv_type = drv_type;
1600 mmc_set_ios(host);
1601 mmc_host_clk_release(host);
1602}
1603
1604/*
1605 * Apply power to the MMC stack. This is a two-stage process.
1606 * First, we enable power to the card without the clock running.
1607 * We then wait a bit for the power to stabilise. Finally,
1608 * enable the bus drivers and clock to the card.
1609 *
1610 * We must _NOT_ enable the clock prior to power stablising.
1611 *
1612 * If a host does all the power sequencing itself, ignore the
1613 * initial MMC_POWER_UP stage.
1614 */
1615void mmc_power_up(struct mmc_host *host, u32 ocr)
1616{
1617 if (host->ios.power_mode == MMC_POWER_ON)
1618 return;
1619
1620 mmc_host_clk_hold(host);
1621
1622 mmc_pwrseq_pre_power_on(host);
1623
1624 host->ios.vdd = fls(ocr) - 1;
1625 host->ios.power_mode = MMC_POWER_UP;
1626 /* Set initial state and call mmc_set_ios */
1627 mmc_set_initial_state(host);
1628
1629 /* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */
1630 if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330) == 0)
1631 dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n");
1632 else if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180) == 0)
1633 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n");
1634 else if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120) == 0)
1635 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n");
1636
1637 /*
1638 * This delay should be sufficient to allow the power supply
1639 * to reach the minimum voltage.
1640 */
1641 mmc_delay(10);
1642
1643 mmc_pwrseq_post_power_on(host);
1644
1645 host->ios.clock = host->f_init;
1646
1647 host->ios.power_mode = MMC_POWER_ON;
1648 mmc_set_ios(host);
1649
1650 /*
1651 * This delay must be at least 74 clock sizes, or 1 ms, or the
1652 * time required to reach a stable voltage.
1653 */
1654 mmc_delay(10);
1655
1656 mmc_host_clk_release(host);
1657}
1658
1659void mmc_power_off(struct mmc_host *host)
1660{
1661 if (host->ios.power_mode == MMC_POWER_OFF)
1662 return;
1663
1664 mmc_host_clk_hold(host);
1665
1666 mmc_pwrseq_power_off(host);
1667
1668 host->ios.clock = 0;
1669 host->ios.vdd = 0;
1670
1671 host->ios.power_mode = MMC_POWER_OFF;
1672 /* Set initial state and call mmc_set_ios */
1673 mmc_set_initial_state(host);
1674
1675 /*
1676 * Some configurations, such as the 802.11 SDIO card in the OLPC
1677 * XO-1.5, require a short delay after poweroff before the card
1678 * can be successfully turned on again.
1679 */
1680 mmc_delay(1);
1681
1682 mmc_host_clk_release(host);
1683}
1684
1685void mmc_power_cycle(struct mmc_host *host, u32 ocr)
1686{
1687 mmc_power_off(host);
1688 /* Wait at least 1 ms according to SD spec */
1689 mmc_delay(1);
1690 mmc_power_up(host, ocr);
1691}
1692
1693/*
1694 * Cleanup when the last reference to the bus operator is dropped.
1695 */
1696static void __mmc_release_bus(struct mmc_host *host)
1697{
1698 BUG_ON(!host);
1699 BUG_ON(host->bus_refs);
1700 BUG_ON(!host->bus_dead);
1701
1702 host->bus_ops = NULL;
1703}
1704
1705/*
1706 * Increase reference count of bus operator
1707 */
1708static inline void mmc_bus_get(struct mmc_host *host)
1709{
1710 unsigned long flags;
1711
1712 spin_lock_irqsave(&host->lock, flags);
1713 host->bus_refs++;
1714 spin_unlock_irqrestore(&host->lock, flags);
1715}
1716
1717/*
1718 * Decrease reference count of bus operator and free it if
1719 * it is the last reference.
1720 */
1721static inline void mmc_bus_put(struct mmc_host *host)
1722{
1723 unsigned long flags;
1724
1725 spin_lock_irqsave(&host->lock, flags);
1726 host->bus_refs--;
1727 if ((host->bus_refs == 0) && host->bus_ops)
1728 __mmc_release_bus(host);
1729 spin_unlock_irqrestore(&host->lock, flags);
1730}
1731
1732/*
1733 * Assign a mmc bus handler to a host. Only one bus handler may control a
1734 * host at any given time.
1735 */
1736void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1737{
1738 unsigned long flags;
1739
1740 BUG_ON(!host);
1741 BUG_ON(!ops);
1742
1743 WARN_ON(!host->claimed);
1744
1745 spin_lock_irqsave(&host->lock, flags);
1746
1747 BUG_ON(host->bus_ops);
1748 BUG_ON(host->bus_refs);
1749
1750 host->bus_ops = ops;
1751 host->bus_refs = 1;
1752 host->bus_dead = 0;
1753
1754 spin_unlock_irqrestore(&host->lock, flags);
1755}
1756
1757/*
1758 * Remove the current bus handler from a host.
1759 */
1760void mmc_detach_bus(struct mmc_host *host)
1761{
1762 unsigned long flags;
1763
1764 BUG_ON(!host);
1765
1766 WARN_ON(!host->claimed);
1767 WARN_ON(!host->bus_ops);
1768
1769 spin_lock_irqsave(&host->lock, flags);
1770
1771 host->bus_dead = 1;
1772
1773 spin_unlock_irqrestore(&host->lock, flags);
1774
1775 mmc_bus_put(host);
1776}
1777
1778static void _mmc_detect_change(struct mmc_host *host, unsigned long delay,
1779 bool cd_irq)
1780{
1781#ifdef CONFIG_MMC_DEBUG
1782 unsigned long flags;
1783 spin_lock_irqsave(&host->lock, flags);
1784 WARN_ON(host->removed);
1785 spin_unlock_irqrestore(&host->lock, flags);
1786#endif
1787
1788 /*
1789 * If the device is configured as wakeup, we prevent a new sleep for
1790 * 5 s to give provision for user space to consume the event.
1791 */
1792 if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL) &&
1793 device_can_wakeup(mmc_dev(host)))
1794 pm_wakeup_event(mmc_dev(host), 5000);
1795
1796 host->detect_change = 1;
1797 mmc_schedule_delayed_work(&host->detect, delay);
1798}
1799
1800/**
1801 * mmc_detect_change - process change of state on a MMC socket
1802 * @host: host which changed state.
1803 * @delay: optional delay to wait before detection (jiffies)
1804 *
1805 * MMC drivers should call this when they detect a card has been
1806 * inserted or removed. The MMC layer will confirm that any
1807 * present card is still functional, and initialize any newly
1808 * inserted.
1809 */
1810void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1811{
1812 _mmc_detect_change(host, delay, true);
1813}
1814EXPORT_SYMBOL(mmc_detect_change);
1815
1816void mmc_init_erase(struct mmc_card *card)
1817{
1818 unsigned int sz;
1819
1820 if (is_power_of_2(card->erase_size))
1821 card->erase_shift = ffs(card->erase_size) - 1;
1822 else
1823 card->erase_shift = 0;
1824
1825 /*
1826 * It is possible to erase an arbitrarily large area of an SD or MMC
1827 * card. That is not desirable because it can take a long time
1828 * (minutes) potentially delaying more important I/O, and also the
1829 * timeout calculations become increasingly hugely over-estimated.
1830 * Consequently, 'pref_erase' is defined as a guide to limit erases
1831 * to that size and alignment.
1832 *
1833 * For SD cards that define Allocation Unit size, limit erases to one
1834 * Allocation Unit at a time. For MMC cards that define High Capacity
1835 * Erase Size, whether it is switched on or not, limit to that size.
1836 * Otherwise just have a stab at a good value. For modern cards it
1837 * will end up being 4MiB. Note that if the value is too small, it
1838 * can end up taking longer to erase.
1839 */
1840 if (mmc_card_sd(card) && card->ssr.au) {
1841 card->pref_erase = card->ssr.au;
1842 card->erase_shift = ffs(card->ssr.au) - 1;
1843 } else if (card->ext_csd.hc_erase_size) {
1844 card->pref_erase = card->ext_csd.hc_erase_size;
1845 } else if (card->erase_size) {
1846 sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1847 if (sz < 128)
1848 card->pref_erase = 512 * 1024 / 512;
1849 else if (sz < 512)
1850 card->pref_erase = 1024 * 1024 / 512;
1851 else if (sz < 1024)
1852 card->pref_erase = 2 * 1024 * 1024 / 512;
1853 else
1854 card->pref_erase = 4 * 1024 * 1024 / 512;
1855 if (card->pref_erase < card->erase_size)
1856 card->pref_erase = card->erase_size;
1857 else {
1858 sz = card->pref_erase % card->erase_size;
1859 if (sz)
1860 card->pref_erase += card->erase_size - sz;
1861 }
1862 } else
1863 card->pref_erase = 0;
1864}
1865
1866static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1867 unsigned int arg, unsigned int qty)
1868{
1869 unsigned int erase_timeout;
1870
1871 if (arg == MMC_DISCARD_ARG ||
1872 (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1873 erase_timeout = card->ext_csd.trim_timeout;
1874 } else if (card->ext_csd.erase_group_def & 1) {
1875 /* High Capacity Erase Group Size uses HC timeouts */
1876 if (arg == MMC_TRIM_ARG)
1877 erase_timeout = card->ext_csd.trim_timeout;
1878 else
1879 erase_timeout = card->ext_csd.hc_erase_timeout;
1880 } else {
1881 /* CSD Erase Group Size uses write timeout */
1882 unsigned int mult = (10 << card->csd.r2w_factor);
1883 unsigned int timeout_clks = card->csd.tacc_clks * mult;
1884 unsigned int timeout_us;
1885
1886 /* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */
1887 if (card->csd.tacc_ns < 1000000)
1888 timeout_us = (card->csd.tacc_ns * mult) / 1000;
1889 else
1890 timeout_us = (card->csd.tacc_ns / 1000) * mult;
1891
1892 /*
1893 * ios.clock is only a target. The real clock rate might be
1894 * less but not that much less, so fudge it by multiplying by 2.
1895 */
1896 timeout_clks <<= 1;
1897 timeout_us += (timeout_clks * 1000) /
1898 (mmc_host_clk_rate(card->host) / 1000);
1899
1900 erase_timeout = timeout_us / 1000;
1901
1902 /*
1903 * Theoretically, the calculation could underflow so round up
1904 * to 1ms in that case.
1905 */
1906 if (!erase_timeout)
1907 erase_timeout = 1;
1908 }
1909
1910 /* Multiplier for secure operations */
1911 if (arg & MMC_SECURE_ARGS) {
1912 if (arg == MMC_SECURE_ERASE_ARG)
1913 erase_timeout *= card->ext_csd.sec_erase_mult;
1914 else
1915 erase_timeout *= card->ext_csd.sec_trim_mult;
1916 }
1917
1918 erase_timeout *= qty;
1919
1920 /*
1921 * Ensure at least a 1 second timeout for SPI as per
1922 * 'mmc_set_data_timeout()'
1923 */
1924 if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1925 erase_timeout = 1000;
1926
1927 return erase_timeout;
1928}
1929
1930static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1931 unsigned int arg,
1932 unsigned int qty)
1933{
1934 unsigned int erase_timeout;
1935
1936 if (card->ssr.erase_timeout) {
1937 /* Erase timeout specified in SD Status Register (SSR) */
1938 erase_timeout = card->ssr.erase_timeout * qty +
1939 card->ssr.erase_offset;
1940 } else {
1941 /*
1942 * Erase timeout not specified in SD Status Register (SSR) so
1943 * use 250ms per write block.
1944 */
1945 erase_timeout = 250 * qty;
1946 }
1947
1948 /* Must not be less than 1 second */
1949 if (erase_timeout < 1000)
1950 erase_timeout = 1000;
1951
1952 return erase_timeout;
1953}
1954
1955static unsigned int mmc_erase_timeout(struct mmc_card *card,
1956 unsigned int arg,
1957 unsigned int qty)
1958{
1959 if (mmc_card_sd(card))
1960 return mmc_sd_erase_timeout(card, arg, qty);
1961 else
1962 return mmc_mmc_erase_timeout(card, arg, qty);
1963}
1964
1965static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1966 unsigned int to, unsigned int arg)
1967{
1968 struct mmc_command cmd = {0};
1969 unsigned int qty = 0;
1970 unsigned long timeout;
1971 int err;
1972
1973 /*
1974 * qty is used to calculate the erase timeout which depends on how many
1975 * erase groups (or allocation units in SD terminology) are affected.
1976 * We count erasing part of an erase group as one erase group.
1977 * For SD, the allocation units are always a power of 2. For MMC, the
1978 * erase group size is almost certainly also power of 2, but it does not
1979 * seem to insist on that in the JEDEC standard, so we fall back to
1980 * division in that case. SD may not specify an allocation unit size,
1981 * in which case the timeout is based on the number of write blocks.
1982 *
1983 * Note that the timeout for secure trim 2 will only be correct if the
1984 * number of erase groups specified is the same as the total of all
1985 * preceding secure trim 1 commands. Since the power may have been
1986 * lost since the secure trim 1 commands occurred, it is generally
1987 * impossible to calculate the secure trim 2 timeout correctly.
1988 */
1989 if (card->erase_shift)
1990 qty += ((to >> card->erase_shift) -
1991 (from >> card->erase_shift)) + 1;
1992 else if (mmc_card_sd(card))
1993 qty += to - from + 1;
1994 else
1995 qty += ((to / card->erase_size) -
1996 (from / card->erase_size)) + 1;
1997
1998 if (!mmc_card_blockaddr(card)) {
1999 from <<= 9;
2000 to <<= 9;
2001 }
2002
2003 if (mmc_card_sd(card))
2004 cmd.opcode = SD_ERASE_WR_BLK_START;
2005 else
2006 cmd.opcode = MMC_ERASE_GROUP_START;
2007 cmd.arg = from;
2008 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2009 err = mmc_wait_for_cmd(card->host, &cmd, 0);
2010 if (err) {
2011 pr_err("mmc_erase: group start error %d, "
2012 "status %#x\n", err, cmd.resp[0]);
2013 err = -EIO;
2014 goto out;
2015 }
2016
2017 memset(&cmd, 0, sizeof(struct mmc_command));
2018 if (mmc_card_sd(card))
2019 cmd.opcode = SD_ERASE_WR_BLK_END;
2020 else
2021 cmd.opcode = MMC_ERASE_GROUP_END;
2022 cmd.arg = to;
2023 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2024 err = mmc_wait_for_cmd(card->host, &cmd, 0);
2025 if (err) {
2026 pr_err("mmc_erase: group end error %d, status %#x\n",
2027 err, cmd.resp[0]);
2028 err = -EIO;
2029 goto out;
2030 }
2031
2032 memset(&cmd, 0, sizeof(struct mmc_command));
2033 cmd.opcode = MMC_ERASE;
2034 cmd.arg = arg;
2035 cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
2036 cmd.busy_timeout = mmc_erase_timeout(card, arg, qty);
2037 err = mmc_wait_for_cmd(card->host, &cmd, 0);
2038 if (err) {
2039 pr_err("mmc_erase: erase error %d, status %#x\n",
2040 err, cmd.resp[0]);
2041 err = -EIO;
2042 goto out;
2043 }
2044
2045 if (mmc_host_is_spi(card->host))
2046 goto out;
2047
2048 timeout = jiffies + msecs_to_jiffies(MMC_CORE_TIMEOUT_MS);
2049 do {
2050 memset(&cmd, 0, sizeof(struct mmc_command));
2051 cmd.opcode = MMC_SEND_STATUS;
2052 cmd.arg = card->rca << 16;
2053 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
2054 /* Do not retry else we can't see errors */
2055 err = mmc_wait_for_cmd(card->host, &cmd, 0);
2056 if (err || (cmd.resp[0] & 0xFDF92000)) {
2057 pr_err("error %d requesting status %#x\n",
2058 err, cmd.resp[0]);
2059 err = -EIO;
2060 goto out;
2061 }
2062
2063 /* Timeout if the device never becomes ready for data and
2064 * never leaves the program state.
2065 */
2066 if (time_after(jiffies, timeout)) {
2067 pr_err("%s: Card stuck in programming state! %s\n",
2068 mmc_hostname(card->host), __func__);
2069 err = -EIO;
2070 goto out;
2071 }
2072
2073 } while (!(cmd.resp[0] & R1_READY_FOR_DATA) ||
2074 (R1_CURRENT_STATE(cmd.resp[0]) == R1_STATE_PRG));
2075out:
2076 return err;
2077}
2078
2079/**
2080 * mmc_erase - erase sectors.
2081 * @card: card to erase
2082 * @from: first sector to erase
2083 * @nr: number of sectors to erase
2084 * @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
2085 *
2086 * Caller must claim host before calling this function.
2087 */
2088int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
2089 unsigned int arg)
2090{
2091 unsigned int rem, to = from + nr;
2092
2093 if (!(card->host->caps & MMC_CAP_ERASE) ||
2094 !(card->csd.cmdclass & CCC_ERASE))
2095 return -EOPNOTSUPP;
2096
2097 if (!card->erase_size)
2098 return -EOPNOTSUPP;
2099
2100 if (mmc_card_sd(card) && arg != MMC_ERASE_ARG)
2101 return -EOPNOTSUPP;
2102
2103 if ((arg & MMC_SECURE_ARGS) &&
2104 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
2105 return -EOPNOTSUPP;
2106
2107 if ((arg & MMC_TRIM_ARGS) &&
2108 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
2109 return -EOPNOTSUPP;
2110
2111 if (arg == MMC_SECURE_ERASE_ARG) {
2112 if (from % card->erase_size || nr % card->erase_size)
2113 return -EINVAL;
2114 }
2115
2116 if (arg == MMC_ERASE_ARG) {
2117 rem = from % card->erase_size;
2118 if (rem) {
2119 rem = card->erase_size - rem;
2120 from += rem;
2121 if (nr > rem)
2122 nr -= rem;
2123 else
2124 return 0;
2125 }
2126 rem = nr % card->erase_size;
2127 if (rem)
2128 nr -= rem;
2129 }
2130
2131 if (nr == 0)
2132 return 0;
2133
2134 to = from + nr;
2135
2136 if (to <= from)
2137 return -EINVAL;
2138
2139 /* 'from' and 'to' are inclusive */
2140 to -= 1;
2141
2142 return mmc_do_erase(card, from, to, arg);
2143}
2144EXPORT_SYMBOL(mmc_erase);
2145
2146int mmc_can_erase(struct mmc_card *card)
2147{
2148 if ((card->host->caps & MMC_CAP_ERASE) &&
2149 (card->csd.cmdclass & CCC_ERASE) && card->erase_size)
2150 return 1;
2151 return 0;
2152}
2153EXPORT_SYMBOL(mmc_can_erase);
2154
2155int mmc_can_trim(struct mmc_card *card)
2156{
2157 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN)
2158 return 1;
2159 return 0;
2160}
2161EXPORT_SYMBOL(mmc_can_trim);
2162
2163int mmc_can_discard(struct mmc_card *card)
2164{
2165 /*
2166 * As there's no way to detect the discard support bit at v4.5
2167 * use the s/w feature support filed.
2168 */
2169 if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
2170 return 1;
2171 return 0;
2172}
2173EXPORT_SYMBOL(mmc_can_discard);
2174
2175int mmc_can_sanitize(struct mmc_card *card)
2176{
2177 if (!mmc_can_trim(card) && !mmc_can_erase(card))
2178 return 0;
2179 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
2180 return 1;
2181 return 0;
2182}
2183EXPORT_SYMBOL(mmc_can_sanitize);
2184
2185int mmc_can_secure_erase_trim(struct mmc_card *card)
2186{
2187 if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) &&
2188 !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN))
2189 return 1;
2190 return 0;
2191}
2192EXPORT_SYMBOL(mmc_can_secure_erase_trim);
2193
2194int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
2195 unsigned int nr)
2196{
2197 if (!card->erase_size)
2198 return 0;
2199 if (from % card->erase_size || nr % card->erase_size)
2200 return 0;
2201 return 1;
2202}
2203EXPORT_SYMBOL(mmc_erase_group_aligned);
2204
2205static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
2206 unsigned int arg)
2207{
2208 struct mmc_host *host = card->host;
2209 unsigned int max_discard, x, y, qty = 0, max_qty, timeout;
2210 unsigned int last_timeout = 0;
2211
2212 if (card->erase_shift)
2213 max_qty = UINT_MAX >> card->erase_shift;
2214 else if (mmc_card_sd(card))
2215 max_qty = UINT_MAX;
2216 else
2217 max_qty = UINT_MAX / card->erase_size;
2218
2219 /* Find the largest qty with an OK timeout */
2220 do {
2221 y = 0;
2222 for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
2223 timeout = mmc_erase_timeout(card, arg, qty + x);
2224 if (timeout > host->max_busy_timeout)
2225 break;
2226 if (timeout < last_timeout)
2227 break;
2228 last_timeout = timeout;
2229 y = x;
2230 }
2231 qty += y;
2232 } while (y);
2233
2234 if (!qty)
2235 return 0;
2236
2237 if (qty == 1)
2238 return 1;
2239
2240 /* Convert qty to sectors */
2241 if (card->erase_shift)
2242 max_discard = --qty << card->erase_shift;
2243 else if (mmc_card_sd(card))
2244 max_discard = qty;
2245 else
2246 max_discard = --qty * card->erase_size;
2247
2248 return max_discard;
2249}
2250
2251unsigned int mmc_calc_max_discard(struct mmc_card *card)
2252{
2253 struct mmc_host *host = card->host;
2254 unsigned int max_discard, max_trim;
2255
2256 if (!host->max_busy_timeout)
2257 return UINT_MAX;
2258
2259 /*
2260 * Without erase_group_def set, MMC erase timeout depends on clock
2261 * frequence which can change. In that case, the best choice is
2262 * just the preferred erase size.
2263 */
2264 if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
2265 return card->pref_erase;
2266
2267 max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
2268 if (mmc_can_trim(card)) {
2269 max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
2270 if (max_trim < max_discard)
2271 max_discard = max_trim;
2272 } else if (max_discard < card->erase_size) {
2273 max_discard = 0;
2274 }
2275 pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
2276 mmc_hostname(host), max_discard, host->max_busy_timeout);
2277 return max_discard;
2278}
2279EXPORT_SYMBOL(mmc_calc_max_discard);
2280
2281int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
2282{
2283 struct mmc_command cmd = {0};
2284
2285 if (mmc_card_blockaddr(card) || mmc_card_ddr52(card))
2286 return 0;
2287
2288 cmd.opcode = MMC_SET_BLOCKLEN;
2289 cmd.arg = blocklen;
2290 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2291 return mmc_wait_for_cmd(card->host, &cmd, 5);
2292}
2293EXPORT_SYMBOL(mmc_set_blocklen);
2294
2295int mmc_set_blockcount(struct mmc_card *card, unsigned int blockcount,
2296 bool is_rel_write)
2297{
2298 struct mmc_command cmd = {0};
2299
2300 cmd.opcode = MMC_SET_BLOCK_COUNT;
2301 cmd.arg = blockcount & 0x0000FFFF;
2302 if (is_rel_write)
2303 cmd.arg |= 1 << 31;
2304 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2305 return mmc_wait_for_cmd(card->host, &cmd, 5);
2306}
2307EXPORT_SYMBOL(mmc_set_blockcount);
2308
2309static void mmc_hw_reset_for_init(struct mmc_host *host)
2310{
2311 if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
2312 return;
2313 mmc_host_clk_hold(host);
2314 host->ops->hw_reset(host);
2315 mmc_host_clk_release(host);
2316}
2317
2318int mmc_hw_reset(struct mmc_host *host)
2319{
2320 int ret;
2321
2322 if (!host->card)
2323 return -EINVAL;
2324
2325 mmc_bus_get(host);
2326 if (!host->bus_ops || host->bus_dead || !host->bus_ops->reset) {
2327 mmc_bus_put(host);
2328 return -EOPNOTSUPP;
2329 }
2330
2331 ret = host->bus_ops->reset(host);
2332 mmc_bus_put(host);
2333
2334 pr_warn("%s: tried to reset card\n", mmc_hostname(host));
2335
2336 return ret;
2337}
2338EXPORT_SYMBOL(mmc_hw_reset);
2339
2340static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2341{
2342 host->f_init = freq;
2343
2344#ifdef CONFIG_MMC_DEBUG
2345 pr_info("%s: %s: trying to init card at %u Hz\n",
2346 mmc_hostname(host), __func__, host->f_init);
2347#endif
2348 mmc_power_up(host, host->ocr_avail);
2349
2350 /*
2351 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2352 * do a hardware reset if possible.
2353 */
2354 mmc_hw_reset_for_init(host);
2355
2356 /*
2357 * sdio_reset sends CMD52 to reset card. Since we do not know
2358 * if the card is being re-initialized, just send it. CMD52
2359 * should be ignored by SD/eMMC cards.
2360 */
2361 sdio_reset(host);
2362 mmc_go_idle(host);
2363
2364 mmc_send_if_cond(host, host->ocr_avail);
2365
2366 /* Order's important: probe SDIO, then SD, then MMC */
2367 if (!mmc_attach_sdio(host))
2368 return 0;
2369 if (!mmc_attach_sd(host))
2370 return 0;
2371 if (!mmc_attach_mmc(host))
2372 return 0;
2373
2374 mmc_power_off(host);
2375 return -EIO;
2376}
2377
2378int _mmc_detect_card_removed(struct mmc_host *host)
2379{
2380 int ret;
2381
2382 if (host->caps & MMC_CAP_NONREMOVABLE)
2383 return 0;
2384
2385 if (!host->card || mmc_card_removed(host->card))
2386 return 1;
2387
2388 ret = host->bus_ops->alive(host);
2389
2390 /*
2391 * Card detect status and alive check may be out of sync if card is
2392 * removed slowly, when card detect switch changes while card/slot
2393 * pads are still contacted in hardware (refer to "SD Card Mechanical
2394 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2395 * detect work 200ms later for this case.
2396 */
2397 if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
2398 mmc_detect_change(host, msecs_to_jiffies(200));
2399 pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
2400 }
2401
2402 if (ret) {
2403 mmc_card_set_removed(host->card);
2404 pr_debug("%s: card remove detected\n", mmc_hostname(host));
2405 }
2406
2407 return ret;
2408}
2409
2410int mmc_detect_card_removed(struct mmc_host *host)
2411{
2412 struct mmc_card *card = host->card;
2413 int ret;
2414
2415 WARN_ON(!host->claimed);
2416
2417 if (!card)
2418 return 1;
2419
2420 ret = mmc_card_removed(card);
2421 /*
2422 * The card will be considered unchanged unless we have been asked to
2423 * detect a change or host requires polling to provide card detection.
2424 */
2425 if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
2426 return ret;
2427
2428 host->detect_change = 0;
2429 if (!ret) {
2430 ret = _mmc_detect_card_removed(host);
2431 if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
2432 /*
2433 * Schedule a detect work as soon as possible to let a
2434 * rescan handle the card removal.
2435 */
2436 cancel_delayed_work(&host->detect);
2437 _mmc_detect_change(host, 0, false);
2438 }
2439 }
2440
2441 return ret;
2442}
2443EXPORT_SYMBOL(mmc_detect_card_removed);
2444
2445void mmc_rescan(struct work_struct *work)
2446{
2447 struct mmc_host *host =
2448 container_of(work, struct mmc_host, detect.work);
2449 int i;
2450
2451 if (host->trigger_card_event && host->ops->card_event) {
2452 host->ops->card_event(host);
2453 host->trigger_card_event = false;
2454 }
2455
2456 if (host->rescan_disable)
2457 return;
2458
2459 /* If there is a non-removable card registered, only scan once */
2460 if ((host->caps & MMC_CAP_NONREMOVABLE) && host->rescan_entered)
2461 return;
2462 host->rescan_entered = 1;
2463
2464 mmc_bus_get(host);
2465
2466 /*
2467 * if there is a _removable_ card registered, check whether it is
2468 * still present
2469 */
2470 if (host->bus_ops && !host->bus_dead
2471 && !(host->caps & MMC_CAP_NONREMOVABLE))
2472 host->bus_ops->detect(host);
2473
2474 host->detect_change = 0;
2475
2476 /*
2477 * Let mmc_bus_put() free the bus/bus_ops if we've found that
2478 * the card is no longer present.
2479 */
2480 mmc_bus_put(host);
2481 mmc_bus_get(host);
2482
2483 /* if there still is a card present, stop here */
2484 if (host->bus_ops != NULL) {
2485 mmc_bus_put(host);
2486 goto out;
2487 }
2488
2489 /*
2490 * Only we can add a new handler, so it's safe to
2491 * release the lock here.
2492 */
2493 mmc_bus_put(host);
2494
2495 if (!(host->caps & MMC_CAP_NONREMOVABLE) && host->ops->get_cd &&
2496 host->ops->get_cd(host) == 0) {
2497 mmc_claim_host(host);
2498 mmc_power_off(host);
2499 mmc_release_host(host);
2500 goto out;
2501 }
2502
2503 mmc_claim_host(host);
2504 for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2505 if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min)))
2506 break;
2507 if (freqs[i] <= host->f_min)
2508 break;
2509 }
2510 mmc_release_host(host);
2511
2512 out:
2513 if (host->caps & MMC_CAP_NEEDS_POLL)
2514 mmc_schedule_delayed_work(&host->detect, HZ);
2515}
2516
2517void mmc_start_host(struct mmc_host *host)
2518{
2519 host->f_init = max(freqs[0], host->f_min);
2520 host->rescan_disable = 0;
2521 host->ios.power_mode = MMC_POWER_UNDEFINED;
2522 if (host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)
2523 mmc_power_off(host);
2524 else
2525 mmc_power_up(host, host->ocr_avail);
2526 mmc_gpiod_request_cd_irq(host);
2527 _mmc_detect_change(host, 0, false);
2528}
2529
2530void mmc_stop_host(struct mmc_host *host)
2531{
2532#ifdef CONFIG_MMC_DEBUG
2533 unsigned long flags;
2534 spin_lock_irqsave(&host->lock, flags);
2535 host->removed = 1;
2536 spin_unlock_irqrestore(&host->lock, flags);
2537#endif
2538 if (host->slot.cd_irq >= 0)
2539 disable_irq(host->slot.cd_irq);
2540
2541 host->rescan_disable = 1;
2542 cancel_delayed_work_sync(&host->detect);
2543 mmc_flush_scheduled_work();
2544
2545 /* clear pm flags now and let card drivers set them as needed */
2546 host->pm_flags = 0;
2547
2548 mmc_bus_get(host);
2549 if (host->bus_ops && !host->bus_dead) {
2550 /* Calling bus_ops->remove() with a claimed host can deadlock */
2551 host->bus_ops->remove(host);
2552 mmc_claim_host(host);
2553 mmc_detach_bus(host);
2554 mmc_power_off(host);
2555 mmc_release_host(host);
2556 mmc_bus_put(host);
2557 return;
2558 }
2559 mmc_bus_put(host);
2560
2561 BUG_ON(host->card);
2562
2563 mmc_power_off(host);
2564}
2565
2566int mmc_power_save_host(struct mmc_host *host)
2567{
2568 int ret = 0;
2569
2570#ifdef CONFIG_MMC_DEBUG
2571 pr_info("%s: %s: powering down\n", mmc_hostname(host), __func__);
2572#endif
2573
2574 mmc_bus_get(host);
2575
2576 if (!host->bus_ops || host->bus_dead) {
2577 mmc_bus_put(host);
2578 return -EINVAL;
2579 }
2580
2581 if (host->bus_ops->power_save)
2582 ret = host->bus_ops->power_save(host);
2583
2584 mmc_bus_put(host);
2585
2586 mmc_power_off(host);
2587
2588 return ret;
2589}
2590EXPORT_SYMBOL(mmc_power_save_host);
2591
2592int mmc_power_restore_host(struct mmc_host *host)
2593{
2594 int ret;
2595
2596#ifdef CONFIG_MMC_DEBUG
2597 pr_info("%s: %s: powering up\n", mmc_hostname(host), __func__);
2598#endif
2599
2600 mmc_bus_get(host);
2601
2602 if (!host->bus_ops || host->bus_dead) {
2603 mmc_bus_put(host);
2604 return -EINVAL;
2605 }
2606
2607 mmc_power_up(host, host->card->ocr);
2608 ret = host->bus_ops->power_restore(host);
2609
2610 mmc_bus_put(host);
2611
2612 return ret;
2613}
2614EXPORT_SYMBOL(mmc_power_restore_host);
2615
2616/*
2617 * Flush the cache to the non-volatile storage.
2618 */
2619int mmc_flush_cache(struct mmc_card *card)
2620{
2621 int err = 0;
2622
2623 if (mmc_card_mmc(card) &&
2624 (card->ext_csd.cache_size > 0) &&
2625 (card->ext_csd.cache_ctrl & 1)) {
2626 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
2627 EXT_CSD_FLUSH_CACHE, 1, 0);
2628 if (err)
2629 pr_err("%s: cache flush error %d\n",
2630 mmc_hostname(card->host), err);
2631 }
2632
2633 return err;
2634}
2635EXPORT_SYMBOL(mmc_flush_cache);
2636
2637#ifdef CONFIG_PM
2638
2639/* Do the card removal on suspend if card is assumed removeable
2640 * Do that in pm notifier while userspace isn't yet frozen, so we will be able
2641 to sync the card.
2642*/
2643int mmc_pm_notify(struct notifier_block *notify_block,
2644 unsigned long mode, void *unused)
2645{
2646 struct mmc_host *host = container_of(
2647 notify_block, struct mmc_host, pm_notify);
2648 unsigned long flags;
2649 int err = 0;
2650
2651 switch (mode) {
2652 case PM_HIBERNATION_PREPARE:
2653 case PM_SUSPEND_PREPARE:
2654 case PM_RESTORE_PREPARE:
2655 spin_lock_irqsave(&host->lock, flags);
2656 host->rescan_disable = 1;
2657 spin_unlock_irqrestore(&host->lock, flags);
2658 cancel_delayed_work_sync(&host->detect);
2659
2660 if (!host->bus_ops)
2661 break;
2662
2663 /* Validate prerequisites for suspend */
2664 if (host->bus_ops->pre_suspend)
2665 err = host->bus_ops->pre_suspend(host);
2666 if (!err)
2667 break;
2668
2669 /* Calling bus_ops->remove() with a claimed host can deadlock */
2670 host->bus_ops->remove(host);
2671 mmc_claim_host(host);
2672 mmc_detach_bus(host);
2673 mmc_power_off(host);
2674 mmc_release_host(host);
2675 host->pm_flags = 0;
2676 break;
2677
2678 case PM_POST_SUSPEND:
2679 case PM_POST_HIBERNATION:
2680 case PM_POST_RESTORE:
2681
2682 spin_lock_irqsave(&host->lock, flags);
2683 host->rescan_disable = 0;
2684 spin_unlock_irqrestore(&host->lock, flags);
2685 _mmc_detect_change(host, 0, false);
2686
2687 }
2688
2689 return 0;
2690}
2691#endif
2692
2693/**
2694 * mmc_init_context_info() - init synchronization context
2695 * @host: mmc host
2696 *
2697 * Init struct context_info needed to implement asynchronous
2698 * request mechanism, used by mmc core, host driver and mmc requests
2699 * supplier.
2700 */
2701void mmc_init_context_info(struct mmc_host *host)
2702{
2703 spin_lock_init(&host->context_info.lock);
2704 host->context_info.is_new_req = false;
2705 host->context_info.is_done_rcv = false;
2706 host->context_info.is_waiting_last_req = false;
2707 init_waitqueue_head(&host->context_info.wait);
2708}
2709
2710static int __init mmc_init(void)
2711{
2712 int ret;
2713
2714 workqueue = alloc_ordered_workqueue("kmmcd", 0);
2715 if (!workqueue)
2716 return -ENOMEM;
2717
2718 ret = mmc_register_bus();
2719 if (ret)
2720 goto destroy_workqueue;
2721
2722 ret = mmc_register_host_class();
2723 if (ret)
2724 goto unregister_bus;
2725
2726 ret = sdio_register_bus();
2727 if (ret)
2728 goto unregister_host_class;
2729
2730 return 0;
2731
2732unregister_host_class:
2733 mmc_unregister_host_class();
2734unregister_bus:
2735 mmc_unregister_bus();
2736destroy_workqueue:
2737 destroy_workqueue(workqueue);
2738
2739 return ret;
2740}
2741
2742static void __exit mmc_exit(void)
2743{
2744 sdio_unregister_bus();
2745 mmc_unregister_host_class();
2746 mmc_unregister_bus();
2747 destroy_workqueue(workqueue);
2748}
2749
2750subsys_initcall(mmc_init);
2751module_exit(mmc_exit);
2752
2753MODULE_LICENSE("GPL");