at v4.1-rc7 1303 lines 34 kB view raw
1/* 2 * Core registration and callback routines for MTD 3 * drivers and users. 4 * 5 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org> 6 * Copyright © 2006 Red Hat UK Limited 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 21 * 22 */ 23 24#include <linux/module.h> 25#include <linux/kernel.h> 26#include <linux/ptrace.h> 27#include <linux/seq_file.h> 28#include <linux/string.h> 29#include <linux/timer.h> 30#include <linux/major.h> 31#include <linux/fs.h> 32#include <linux/err.h> 33#include <linux/ioctl.h> 34#include <linux/init.h> 35#include <linux/proc_fs.h> 36#include <linux/idr.h> 37#include <linux/backing-dev.h> 38#include <linux/gfp.h> 39#include <linux/slab.h> 40#include <linux/reboot.h> 41#include <linux/kconfig.h> 42 43#include <linux/mtd/mtd.h> 44#include <linux/mtd/partitions.h> 45 46#include "mtdcore.h" 47 48static struct backing_dev_info mtd_bdi = { 49}; 50 51static int mtd_cls_suspend(struct device *dev, pm_message_t state); 52static int mtd_cls_resume(struct device *dev); 53 54static struct class mtd_class = { 55 .name = "mtd", 56 .owner = THIS_MODULE, 57 .suspend = mtd_cls_suspend, 58 .resume = mtd_cls_resume, 59}; 60 61static DEFINE_IDR(mtd_idr); 62 63/* These are exported solely for the purpose of mtd_blkdevs.c. You 64 should not use them for _anything_ else */ 65DEFINE_MUTEX(mtd_table_mutex); 66EXPORT_SYMBOL_GPL(mtd_table_mutex); 67 68struct mtd_info *__mtd_next_device(int i) 69{ 70 return idr_get_next(&mtd_idr, &i); 71} 72EXPORT_SYMBOL_GPL(__mtd_next_device); 73 74static LIST_HEAD(mtd_notifiers); 75 76 77#define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2) 78 79/* REVISIT once MTD uses the driver model better, whoever allocates 80 * the mtd_info will probably want to use the release() hook... 81 */ 82static void mtd_release(struct device *dev) 83{ 84 struct mtd_info *mtd = dev_get_drvdata(dev); 85 dev_t index = MTD_DEVT(mtd->index); 86 87 /* remove /dev/mtdXro node */ 88 device_destroy(&mtd_class, index + 1); 89} 90 91static int mtd_cls_suspend(struct device *dev, pm_message_t state) 92{ 93 struct mtd_info *mtd = dev_get_drvdata(dev); 94 95 return mtd ? mtd_suspend(mtd) : 0; 96} 97 98static int mtd_cls_resume(struct device *dev) 99{ 100 struct mtd_info *mtd = dev_get_drvdata(dev); 101 102 if (mtd) 103 mtd_resume(mtd); 104 return 0; 105} 106 107static ssize_t mtd_type_show(struct device *dev, 108 struct device_attribute *attr, char *buf) 109{ 110 struct mtd_info *mtd = dev_get_drvdata(dev); 111 char *type; 112 113 switch (mtd->type) { 114 case MTD_ABSENT: 115 type = "absent"; 116 break; 117 case MTD_RAM: 118 type = "ram"; 119 break; 120 case MTD_ROM: 121 type = "rom"; 122 break; 123 case MTD_NORFLASH: 124 type = "nor"; 125 break; 126 case MTD_NANDFLASH: 127 type = "nand"; 128 break; 129 case MTD_DATAFLASH: 130 type = "dataflash"; 131 break; 132 case MTD_UBIVOLUME: 133 type = "ubi"; 134 break; 135 case MTD_MLCNANDFLASH: 136 type = "mlc-nand"; 137 break; 138 default: 139 type = "unknown"; 140 } 141 142 return snprintf(buf, PAGE_SIZE, "%s\n", type); 143} 144static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL); 145 146static ssize_t mtd_flags_show(struct device *dev, 147 struct device_attribute *attr, char *buf) 148{ 149 struct mtd_info *mtd = dev_get_drvdata(dev); 150 151 return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags); 152 153} 154static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL); 155 156static ssize_t mtd_size_show(struct device *dev, 157 struct device_attribute *attr, char *buf) 158{ 159 struct mtd_info *mtd = dev_get_drvdata(dev); 160 161 return snprintf(buf, PAGE_SIZE, "%llu\n", 162 (unsigned long long)mtd->size); 163 164} 165static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL); 166 167static ssize_t mtd_erasesize_show(struct device *dev, 168 struct device_attribute *attr, char *buf) 169{ 170 struct mtd_info *mtd = dev_get_drvdata(dev); 171 172 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize); 173 174} 175static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL); 176 177static ssize_t mtd_writesize_show(struct device *dev, 178 struct device_attribute *attr, char *buf) 179{ 180 struct mtd_info *mtd = dev_get_drvdata(dev); 181 182 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize); 183 184} 185static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL); 186 187static ssize_t mtd_subpagesize_show(struct device *dev, 188 struct device_attribute *attr, char *buf) 189{ 190 struct mtd_info *mtd = dev_get_drvdata(dev); 191 unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft; 192 193 return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize); 194 195} 196static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL); 197 198static ssize_t mtd_oobsize_show(struct device *dev, 199 struct device_attribute *attr, char *buf) 200{ 201 struct mtd_info *mtd = dev_get_drvdata(dev); 202 203 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize); 204 205} 206static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL); 207 208static ssize_t mtd_numeraseregions_show(struct device *dev, 209 struct device_attribute *attr, char *buf) 210{ 211 struct mtd_info *mtd = dev_get_drvdata(dev); 212 213 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions); 214 215} 216static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show, 217 NULL); 218 219static ssize_t mtd_name_show(struct device *dev, 220 struct device_attribute *attr, char *buf) 221{ 222 struct mtd_info *mtd = dev_get_drvdata(dev); 223 224 return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name); 225 226} 227static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL); 228 229static ssize_t mtd_ecc_strength_show(struct device *dev, 230 struct device_attribute *attr, char *buf) 231{ 232 struct mtd_info *mtd = dev_get_drvdata(dev); 233 234 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength); 235} 236static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL); 237 238static ssize_t mtd_bitflip_threshold_show(struct device *dev, 239 struct device_attribute *attr, 240 char *buf) 241{ 242 struct mtd_info *mtd = dev_get_drvdata(dev); 243 244 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold); 245} 246 247static ssize_t mtd_bitflip_threshold_store(struct device *dev, 248 struct device_attribute *attr, 249 const char *buf, size_t count) 250{ 251 struct mtd_info *mtd = dev_get_drvdata(dev); 252 unsigned int bitflip_threshold; 253 int retval; 254 255 retval = kstrtouint(buf, 0, &bitflip_threshold); 256 if (retval) 257 return retval; 258 259 mtd->bitflip_threshold = bitflip_threshold; 260 return count; 261} 262static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR, 263 mtd_bitflip_threshold_show, 264 mtd_bitflip_threshold_store); 265 266static ssize_t mtd_ecc_step_size_show(struct device *dev, 267 struct device_attribute *attr, char *buf) 268{ 269 struct mtd_info *mtd = dev_get_drvdata(dev); 270 271 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size); 272 273} 274static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL); 275 276static ssize_t mtd_ecc_stats_corrected_show(struct device *dev, 277 struct device_attribute *attr, char *buf) 278{ 279 struct mtd_info *mtd = dev_get_drvdata(dev); 280 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 281 282 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->corrected); 283} 284static DEVICE_ATTR(corrected_bits, S_IRUGO, 285 mtd_ecc_stats_corrected_show, NULL); 286 287static ssize_t mtd_ecc_stats_errors_show(struct device *dev, 288 struct device_attribute *attr, char *buf) 289{ 290 struct mtd_info *mtd = dev_get_drvdata(dev); 291 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 292 293 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->failed); 294} 295static DEVICE_ATTR(ecc_failures, S_IRUGO, mtd_ecc_stats_errors_show, NULL); 296 297static ssize_t mtd_badblocks_show(struct device *dev, 298 struct device_attribute *attr, char *buf) 299{ 300 struct mtd_info *mtd = dev_get_drvdata(dev); 301 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 302 303 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->badblocks); 304} 305static DEVICE_ATTR(bad_blocks, S_IRUGO, mtd_badblocks_show, NULL); 306 307static ssize_t mtd_bbtblocks_show(struct device *dev, 308 struct device_attribute *attr, char *buf) 309{ 310 struct mtd_info *mtd = dev_get_drvdata(dev); 311 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats; 312 313 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->bbtblocks); 314} 315static DEVICE_ATTR(bbt_blocks, S_IRUGO, mtd_bbtblocks_show, NULL); 316 317static struct attribute *mtd_attrs[] = { 318 &dev_attr_type.attr, 319 &dev_attr_flags.attr, 320 &dev_attr_size.attr, 321 &dev_attr_erasesize.attr, 322 &dev_attr_writesize.attr, 323 &dev_attr_subpagesize.attr, 324 &dev_attr_oobsize.attr, 325 &dev_attr_numeraseregions.attr, 326 &dev_attr_name.attr, 327 &dev_attr_ecc_strength.attr, 328 &dev_attr_ecc_step_size.attr, 329 &dev_attr_corrected_bits.attr, 330 &dev_attr_ecc_failures.attr, 331 &dev_attr_bad_blocks.attr, 332 &dev_attr_bbt_blocks.attr, 333 &dev_attr_bitflip_threshold.attr, 334 NULL, 335}; 336ATTRIBUTE_GROUPS(mtd); 337 338static struct device_type mtd_devtype = { 339 .name = "mtd", 340 .groups = mtd_groups, 341 .release = mtd_release, 342}; 343 344#ifndef CONFIG_MMU 345unsigned mtd_mmap_capabilities(struct mtd_info *mtd) 346{ 347 switch (mtd->type) { 348 case MTD_RAM: 349 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC | 350 NOMMU_MAP_READ | NOMMU_MAP_WRITE; 351 case MTD_ROM: 352 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC | 353 NOMMU_MAP_READ; 354 default: 355 return NOMMU_MAP_COPY; 356 } 357} 358EXPORT_SYMBOL_GPL(mtd_mmap_capabilities); 359#endif 360 361static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state, 362 void *cmd) 363{ 364 struct mtd_info *mtd; 365 366 mtd = container_of(n, struct mtd_info, reboot_notifier); 367 mtd->_reboot(mtd); 368 369 return NOTIFY_DONE; 370} 371 372/** 373 * add_mtd_device - register an MTD device 374 * @mtd: pointer to new MTD device info structure 375 * 376 * Add a device to the list of MTD devices present in the system, and 377 * notify each currently active MTD 'user' of its arrival. Returns 378 * zero on success or 1 on failure, which currently will only happen 379 * if there is insufficient memory or a sysfs error. 380 */ 381 382int add_mtd_device(struct mtd_info *mtd) 383{ 384 struct mtd_notifier *not; 385 int i, error; 386 387 mtd->backing_dev_info = &mtd_bdi; 388 389 BUG_ON(mtd->writesize == 0); 390 mutex_lock(&mtd_table_mutex); 391 392 i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL); 393 if (i < 0) 394 goto fail_locked; 395 396 mtd->index = i; 397 mtd->usecount = 0; 398 399 /* default value if not set by driver */ 400 if (mtd->bitflip_threshold == 0) 401 mtd->bitflip_threshold = mtd->ecc_strength; 402 403 if (is_power_of_2(mtd->erasesize)) 404 mtd->erasesize_shift = ffs(mtd->erasesize) - 1; 405 else 406 mtd->erasesize_shift = 0; 407 408 if (is_power_of_2(mtd->writesize)) 409 mtd->writesize_shift = ffs(mtd->writesize) - 1; 410 else 411 mtd->writesize_shift = 0; 412 413 mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1; 414 mtd->writesize_mask = (1 << mtd->writesize_shift) - 1; 415 416 /* Some chips always power up locked. Unlock them now */ 417 if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) { 418 error = mtd_unlock(mtd, 0, mtd->size); 419 if (error && error != -EOPNOTSUPP) 420 printk(KERN_WARNING 421 "%s: unlock failed, writes may not work\n", 422 mtd->name); 423 } 424 425 /* Caller should have set dev.parent to match the 426 * physical device. 427 */ 428 mtd->dev.type = &mtd_devtype; 429 mtd->dev.class = &mtd_class; 430 mtd->dev.devt = MTD_DEVT(i); 431 dev_set_name(&mtd->dev, "mtd%d", i); 432 dev_set_drvdata(&mtd->dev, mtd); 433 if (device_register(&mtd->dev) != 0) 434 goto fail_added; 435 436 device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL, 437 "mtd%dro", i); 438 439 pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name); 440 /* No need to get a refcount on the module containing 441 the notifier, since we hold the mtd_table_mutex */ 442 list_for_each_entry(not, &mtd_notifiers, list) 443 not->add(mtd); 444 445 mutex_unlock(&mtd_table_mutex); 446 /* We _know_ we aren't being removed, because 447 our caller is still holding us here. So none 448 of this try_ nonsense, and no bitching about it 449 either. :) */ 450 __module_get(THIS_MODULE); 451 return 0; 452 453fail_added: 454 idr_remove(&mtd_idr, i); 455fail_locked: 456 mutex_unlock(&mtd_table_mutex); 457 return 1; 458} 459 460/** 461 * del_mtd_device - unregister an MTD device 462 * @mtd: pointer to MTD device info structure 463 * 464 * Remove a device from the list of MTD devices present in the system, 465 * and notify each currently active MTD 'user' of its departure. 466 * Returns zero on success or 1 on failure, which currently will happen 467 * if the requested device does not appear to be present in the list. 468 */ 469 470int del_mtd_device(struct mtd_info *mtd) 471{ 472 int ret; 473 struct mtd_notifier *not; 474 475 mutex_lock(&mtd_table_mutex); 476 477 if (idr_find(&mtd_idr, mtd->index) != mtd) { 478 ret = -ENODEV; 479 goto out_error; 480 } 481 482 /* No need to get a refcount on the module containing 483 the notifier, since we hold the mtd_table_mutex */ 484 list_for_each_entry(not, &mtd_notifiers, list) 485 not->remove(mtd); 486 487 if (mtd->usecount) { 488 printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n", 489 mtd->index, mtd->name, mtd->usecount); 490 ret = -EBUSY; 491 } else { 492 device_unregister(&mtd->dev); 493 494 idr_remove(&mtd_idr, mtd->index); 495 496 module_put(THIS_MODULE); 497 ret = 0; 498 } 499 500out_error: 501 mutex_unlock(&mtd_table_mutex); 502 return ret; 503} 504 505static int mtd_add_device_partitions(struct mtd_info *mtd, 506 struct mtd_partition *real_parts, 507 int nbparts) 508{ 509 int ret; 510 511 if (nbparts == 0 || IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) { 512 ret = add_mtd_device(mtd); 513 if (ret == 1) 514 return -ENODEV; 515 } 516 517 if (nbparts > 0) { 518 ret = add_mtd_partitions(mtd, real_parts, nbparts); 519 if (ret && IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) 520 del_mtd_device(mtd); 521 return ret; 522 } 523 524 return 0; 525} 526 527 528/** 529 * mtd_device_parse_register - parse partitions and register an MTD device. 530 * 531 * @mtd: the MTD device to register 532 * @types: the list of MTD partition probes to try, see 533 * 'parse_mtd_partitions()' for more information 534 * @parser_data: MTD partition parser-specific data 535 * @parts: fallback partition information to register, if parsing fails; 536 * only valid if %nr_parts > %0 537 * @nr_parts: the number of partitions in parts, if zero then the full 538 * MTD device is registered if no partition info is found 539 * 540 * This function aggregates MTD partitions parsing (done by 541 * 'parse_mtd_partitions()') and MTD device and partitions registering. It 542 * basically follows the most common pattern found in many MTD drivers: 543 * 544 * * It first tries to probe partitions on MTD device @mtd using parsers 545 * specified in @types (if @types is %NULL, then the default list of parsers 546 * is used, see 'parse_mtd_partitions()' for more information). If none are 547 * found this functions tries to fallback to information specified in 548 * @parts/@nr_parts. 549 * * If any partitioning info was found, this function registers the found 550 * partitions. If the MTD_PARTITIONED_MASTER option is set, then the device 551 * as a whole is registered first. 552 * * If no partitions were found this function just registers the MTD device 553 * @mtd and exits. 554 * 555 * Returns zero in case of success and a negative error code in case of failure. 556 */ 557int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types, 558 struct mtd_part_parser_data *parser_data, 559 const struct mtd_partition *parts, 560 int nr_parts) 561{ 562 int ret; 563 struct mtd_partition *real_parts = NULL; 564 565 ret = parse_mtd_partitions(mtd, types, &real_parts, parser_data); 566 if (ret <= 0 && nr_parts && parts) { 567 real_parts = kmemdup(parts, sizeof(*parts) * nr_parts, 568 GFP_KERNEL); 569 if (!real_parts) 570 ret = -ENOMEM; 571 else 572 ret = nr_parts; 573 } 574 575 if (ret >= 0) 576 ret = mtd_add_device_partitions(mtd, real_parts, ret); 577 578 /* 579 * FIXME: some drivers unfortunately call this function more than once. 580 * So we have to check if we've already assigned the reboot notifier. 581 * 582 * Generally, we can make multiple calls work for most cases, but it 583 * does cause problems with parse_mtd_partitions() above (e.g., 584 * cmdlineparts will register partitions more than once). 585 */ 586 if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) { 587 mtd->reboot_notifier.notifier_call = mtd_reboot_notifier; 588 register_reboot_notifier(&mtd->reboot_notifier); 589 } 590 591 kfree(real_parts); 592 return ret; 593} 594EXPORT_SYMBOL_GPL(mtd_device_parse_register); 595 596/** 597 * mtd_device_unregister - unregister an existing MTD device. 598 * 599 * @master: the MTD device to unregister. This will unregister both the master 600 * and any partitions if registered. 601 */ 602int mtd_device_unregister(struct mtd_info *master) 603{ 604 int err; 605 606 if (master->_reboot) 607 unregister_reboot_notifier(&master->reboot_notifier); 608 609 err = del_mtd_partitions(master); 610 if (err) 611 return err; 612 613 if (!device_is_registered(&master->dev)) 614 return 0; 615 616 return del_mtd_device(master); 617} 618EXPORT_SYMBOL_GPL(mtd_device_unregister); 619 620/** 621 * register_mtd_user - register a 'user' of MTD devices. 622 * @new: pointer to notifier info structure 623 * 624 * Registers a pair of callbacks function to be called upon addition 625 * or removal of MTD devices. Causes the 'add' callback to be immediately 626 * invoked for each MTD device currently present in the system. 627 */ 628void register_mtd_user (struct mtd_notifier *new) 629{ 630 struct mtd_info *mtd; 631 632 mutex_lock(&mtd_table_mutex); 633 634 list_add(&new->list, &mtd_notifiers); 635 636 __module_get(THIS_MODULE); 637 638 mtd_for_each_device(mtd) 639 new->add(mtd); 640 641 mutex_unlock(&mtd_table_mutex); 642} 643EXPORT_SYMBOL_GPL(register_mtd_user); 644 645/** 646 * unregister_mtd_user - unregister a 'user' of MTD devices. 647 * @old: pointer to notifier info structure 648 * 649 * Removes a callback function pair from the list of 'users' to be 650 * notified upon addition or removal of MTD devices. Causes the 651 * 'remove' callback to be immediately invoked for each MTD device 652 * currently present in the system. 653 */ 654int unregister_mtd_user (struct mtd_notifier *old) 655{ 656 struct mtd_info *mtd; 657 658 mutex_lock(&mtd_table_mutex); 659 660 module_put(THIS_MODULE); 661 662 mtd_for_each_device(mtd) 663 old->remove(mtd); 664 665 list_del(&old->list); 666 mutex_unlock(&mtd_table_mutex); 667 return 0; 668} 669EXPORT_SYMBOL_GPL(unregister_mtd_user); 670 671/** 672 * get_mtd_device - obtain a validated handle for an MTD device 673 * @mtd: last known address of the required MTD device 674 * @num: internal device number of the required MTD device 675 * 676 * Given a number and NULL address, return the num'th entry in the device 677 * table, if any. Given an address and num == -1, search the device table 678 * for a device with that address and return if it's still present. Given 679 * both, return the num'th driver only if its address matches. Return 680 * error code if not. 681 */ 682struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num) 683{ 684 struct mtd_info *ret = NULL, *other; 685 int err = -ENODEV; 686 687 mutex_lock(&mtd_table_mutex); 688 689 if (num == -1) { 690 mtd_for_each_device(other) { 691 if (other == mtd) { 692 ret = mtd; 693 break; 694 } 695 } 696 } else if (num >= 0) { 697 ret = idr_find(&mtd_idr, num); 698 if (mtd && mtd != ret) 699 ret = NULL; 700 } 701 702 if (!ret) { 703 ret = ERR_PTR(err); 704 goto out; 705 } 706 707 err = __get_mtd_device(ret); 708 if (err) 709 ret = ERR_PTR(err); 710out: 711 mutex_unlock(&mtd_table_mutex); 712 return ret; 713} 714EXPORT_SYMBOL_GPL(get_mtd_device); 715 716 717int __get_mtd_device(struct mtd_info *mtd) 718{ 719 int err; 720 721 if (!try_module_get(mtd->owner)) 722 return -ENODEV; 723 724 if (mtd->_get_device) { 725 err = mtd->_get_device(mtd); 726 727 if (err) { 728 module_put(mtd->owner); 729 return err; 730 } 731 } 732 mtd->usecount++; 733 return 0; 734} 735EXPORT_SYMBOL_GPL(__get_mtd_device); 736 737/** 738 * get_mtd_device_nm - obtain a validated handle for an MTD device by 739 * device name 740 * @name: MTD device name to open 741 * 742 * This function returns MTD device description structure in case of 743 * success and an error code in case of failure. 744 */ 745struct mtd_info *get_mtd_device_nm(const char *name) 746{ 747 int err = -ENODEV; 748 struct mtd_info *mtd = NULL, *other; 749 750 mutex_lock(&mtd_table_mutex); 751 752 mtd_for_each_device(other) { 753 if (!strcmp(name, other->name)) { 754 mtd = other; 755 break; 756 } 757 } 758 759 if (!mtd) 760 goto out_unlock; 761 762 err = __get_mtd_device(mtd); 763 if (err) 764 goto out_unlock; 765 766 mutex_unlock(&mtd_table_mutex); 767 return mtd; 768 769out_unlock: 770 mutex_unlock(&mtd_table_mutex); 771 return ERR_PTR(err); 772} 773EXPORT_SYMBOL_GPL(get_mtd_device_nm); 774 775void put_mtd_device(struct mtd_info *mtd) 776{ 777 mutex_lock(&mtd_table_mutex); 778 __put_mtd_device(mtd); 779 mutex_unlock(&mtd_table_mutex); 780 781} 782EXPORT_SYMBOL_GPL(put_mtd_device); 783 784void __put_mtd_device(struct mtd_info *mtd) 785{ 786 --mtd->usecount; 787 BUG_ON(mtd->usecount < 0); 788 789 if (mtd->_put_device) 790 mtd->_put_device(mtd); 791 792 module_put(mtd->owner); 793} 794EXPORT_SYMBOL_GPL(__put_mtd_device); 795 796/* 797 * Erase is an asynchronous operation. Device drivers are supposed 798 * to call instr->callback() whenever the operation completes, even 799 * if it completes with a failure. 800 * Callers are supposed to pass a callback function and wait for it 801 * to be called before writing to the block. 802 */ 803int mtd_erase(struct mtd_info *mtd, struct erase_info *instr) 804{ 805 if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr) 806 return -EINVAL; 807 if (!(mtd->flags & MTD_WRITEABLE)) 808 return -EROFS; 809 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN; 810 if (!instr->len) { 811 instr->state = MTD_ERASE_DONE; 812 mtd_erase_callback(instr); 813 return 0; 814 } 815 return mtd->_erase(mtd, instr); 816} 817EXPORT_SYMBOL_GPL(mtd_erase); 818 819/* 820 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL. 821 */ 822int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, 823 void **virt, resource_size_t *phys) 824{ 825 *retlen = 0; 826 *virt = NULL; 827 if (phys) 828 *phys = 0; 829 if (!mtd->_point) 830 return -EOPNOTSUPP; 831 if (from < 0 || from >= mtd->size || len > mtd->size - from) 832 return -EINVAL; 833 if (!len) 834 return 0; 835 return mtd->_point(mtd, from, len, retlen, virt, phys); 836} 837EXPORT_SYMBOL_GPL(mtd_point); 838 839/* We probably shouldn't allow XIP if the unpoint isn't a NULL */ 840int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len) 841{ 842 if (!mtd->_point) 843 return -EOPNOTSUPP; 844 if (from < 0 || from >= mtd->size || len > mtd->size - from) 845 return -EINVAL; 846 if (!len) 847 return 0; 848 return mtd->_unpoint(mtd, from, len); 849} 850EXPORT_SYMBOL_GPL(mtd_unpoint); 851 852/* 853 * Allow NOMMU mmap() to directly map the device (if not NULL) 854 * - return the address to which the offset maps 855 * - return -ENOSYS to indicate refusal to do the mapping 856 */ 857unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len, 858 unsigned long offset, unsigned long flags) 859{ 860 if (!mtd->_get_unmapped_area) 861 return -EOPNOTSUPP; 862 if (offset >= mtd->size || len > mtd->size - offset) 863 return -EINVAL; 864 return mtd->_get_unmapped_area(mtd, len, offset, flags); 865} 866EXPORT_SYMBOL_GPL(mtd_get_unmapped_area); 867 868int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, 869 u_char *buf) 870{ 871 int ret_code; 872 *retlen = 0; 873 if (from < 0 || from >= mtd->size || len > mtd->size - from) 874 return -EINVAL; 875 if (!len) 876 return 0; 877 878 /* 879 * In the absence of an error, drivers return a non-negative integer 880 * representing the maximum number of bitflips that were corrected on 881 * any one ecc region (if applicable; zero otherwise). 882 */ 883 ret_code = mtd->_read(mtd, from, len, retlen, buf); 884 if (unlikely(ret_code < 0)) 885 return ret_code; 886 if (mtd->ecc_strength == 0) 887 return 0; /* device lacks ecc */ 888 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0; 889} 890EXPORT_SYMBOL_GPL(mtd_read); 891 892int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, 893 const u_char *buf) 894{ 895 *retlen = 0; 896 if (to < 0 || to >= mtd->size || len > mtd->size - to) 897 return -EINVAL; 898 if (!mtd->_write || !(mtd->flags & MTD_WRITEABLE)) 899 return -EROFS; 900 if (!len) 901 return 0; 902 return mtd->_write(mtd, to, len, retlen, buf); 903} 904EXPORT_SYMBOL_GPL(mtd_write); 905 906/* 907 * In blackbox flight recorder like scenarios we want to make successful writes 908 * in interrupt context. panic_write() is only intended to be called when its 909 * known the kernel is about to panic and we need the write to succeed. Since 910 * the kernel is not going to be running for much longer, this function can 911 * break locks and delay to ensure the write succeeds (but not sleep). 912 */ 913int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, 914 const u_char *buf) 915{ 916 *retlen = 0; 917 if (!mtd->_panic_write) 918 return -EOPNOTSUPP; 919 if (to < 0 || to >= mtd->size || len > mtd->size - to) 920 return -EINVAL; 921 if (!(mtd->flags & MTD_WRITEABLE)) 922 return -EROFS; 923 if (!len) 924 return 0; 925 return mtd->_panic_write(mtd, to, len, retlen, buf); 926} 927EXPORT_SYMBOL_GPL(mtd_panic_write); 928 929int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops) 930{ 931 int ret_code; 932 ops->retlen = ops->oobretlen = 0; 933 if (!mtd->_read_oob) 934 return -EOPNOTSUPP; 935 /* 936 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics 937 * similar to mtd->_read(), returning a non-negative integer 938 * representing max bitflips. In other cases, mtd->_read_oob() may 939 * return -EUCLEAN. In all cases, perform similar logic to mtd_read(). 940 */ 941 ret_code = mtd->_read_oob(mtd, from, ops); 942 if (unlikely(ret_code < 0)) 943 return ret_code; 944 if (mtd->ecc_strength == 0) 945 return 0; /* device lacks ecc */ 946 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0; 947} 948EXPORT_SYMBOL_GPL(mtd_read_oob); 949 950/* 951 * Method to access the protection register area, present in some flash 952 * devices. The user data is one time programmable but the factory data is read 953 * only. 954 */ 955int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, 956 struct otp_info *buf) 957{ 958 if (!mtd->_get_fact_prot_info) 959 return -EOPNOTSUPP; 960 if (!len) 961 return 0; 962 return mtd->_get_fact_prot_info(mtd, len, retlen, buf); 963} 964EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info); 965 966int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, 967 size_t *retlen, u_char *buf) 968{ 969 *retlen = 0; 970 if (!mtd->_read_fact_prot_reg) 971 return -EOPNOTSUPP; 972 if (!len) 973 return 0; 974 return mtd->_read_fact_prot_reg(mtd, from, len, retlen, buf); 975} 976EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg); 977 978int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, 979 struct otp_info *buf) 980{ 981 if (!mtd->_get_user_prot_info) 982 return -EOPNOTSUPP; 983 if (!len) 984 return 0; 985 return mtd->_get_user_prot_info(mtd, len, retlen, buf); 986} 987EXPORT_SYMBOL_GPL(mtd_get_user_prot_info); 988 989int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, 990 size_t *retlen, u_char *buf) 991{ 992 *retlen = 0; 993 if (!mtd->_read_user_prot_reg) 994 return -EOPNOTSUPP; 995 if (!len) 996 return 0; 997 return mtd->_read_user_prot_reg(mtd, from, len, retlen, buf); 998} 999EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg); 1000 1001int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len, 1002 size_t *retlen, u_char *buf) 1003{ 1004 int ret; 1005 1006 *retlen = 0; 1007 if (!mtd->_write_user_prot_reg) 1008 return -EOPNOTSUPP; 1009 if (!len) 1010 return 0; 1011 ret = mtd->_write_user_prot_reg(mtd, to, len, retlen, buf); 1012 if (ret) 1013 return ret; 1014 1015 /* 1016 * If no data could be written at all, we are out of memory and 1017 * must return -ENOSPC. 1018 */ 1019 return (*retlen) ? 0 : -ENOSPC; 1020} 1021EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg); 1022 1023int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len) 1024{ 1025 if (!mtd->_lock_user_prot_reg) 1026 return -EOPNOTSUPP; 1027 if (!len) 1028 return 0; 1029 return mtd->_lock_user_prot_reg(mtd, from, len); 1030} 1031EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg); 1032 1033/* Chip-supported device locking */ 1034int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 1035{ 1036 if (!mtd->_lock) 1037 return -EOPNOTSUPP; 1038 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs) 1039 return -EINVAL; 1040 if (!len) 1041 return 0; 1042 return mtd->_lock(mtd, ofs, len); 1043} 1044EXPORT_SYMBOL_GPL(mtd_lock); 1045 1046int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) 1047{ 1048 if (!mtd->_unlock) 1049 return -EOPNOTSUPP; 1050 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs) 1051 return -EINVAL; 1052 if (!len) 1053 return 0; 1054 return mtd->_unlock(mtd, ofs, len); 1055} 1056EXPORT_SYMBOL_GPL(mtd_unlock); 1057 1058int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len) 1059{ 1060 if (!mtd->_is_locked) 1061 return -EOPNOTSUPP; 1062 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs) 1063 return -EINVAL; 1064 if (!len) 1065 return 0; 1066 return mtd->_is_locked(mtd, ofs, len); 1067} 1068EXPORT_SYMBOL_GPL(mtd_is_locked); 1069 1070int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs) 1071{ 1072 if (ofs < 0 || ofs >= mtd->size) 1073 return -EINVAL; 1074 if (!mtd->_block_isreserved) 1075 return 0; 1076 return mtd->_block_isreserved(mtd, ofs); 1077} 1078EXPORT_SYMBOL_GPL(mtd_block_isreserved); 1079 1080int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs) 1081{ 1082 if (ofs < 0 || ofs >= mtd->size) 1083 return -EINVAL; 1084 if (!mtd->_block_isbad) 1085 return 0; 1086 return mtd->_block_isbad(mtd, ofs); 1087} 1088EXPORT_SYMBOL_GPL(mtd_block_isbad); 1089 1090int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs) 1091{ 1092 if (!mtd->_block_markbad) 1093 return -EOPNOTSUPP; 1094 if (ofs < 0 || ofs >= mtd->size) 1095 return -EINVAL; 1096 if (!(mtd->flags & MTD_WRITEABLE)) 1097 return -EROFS; 1098 return mtd->_block_markbad(mtd, ofs); 1099} 1100EXPORT_SYMBOL_GPL(mtd_block_markbad); 1101 1102/* 1103 * default_mtd_writev - the default writev method 1104 * @mtd: mtd device description object pointer 1105 * @vecs: the vectors to write 1106 * @count: count of vectors in @vecs 1107 * @to: the MTD device offset to write to 1108 * @retlen: on exit contains the count of bytes written to the MTD device. 1109 * 1110 * This function returns zero in case of success and a negative error code in 1111 * case of failure. 1112 */ 1113static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs, 1114 unsigned long count, loff_t to, size_t *retlen) 1115{ 1116 unsigned long i; 1117 size_t totlen = 0, thislen; 1118 int ret = 0; 1119 1120 for (i = 0; i < count; i++) { 1121 if (!vecs[i].iov_len) 1122 continue; 1123 ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen, 1124 vecs[i].iov_base); 1125 totlen += thislen; 1126 if (ret || thislen != vecs[i].iov_len) 1127 break; 1128 to += vecs[i].iov_len; 1129 } 1130 *retlen = totlen; 1131 return ret; 1132} 1133 1134/* 1135 * mtd_writev - the vector-based MTD write method 1136 * @mtd: mtd device description object pointer 1137 * @vecs: the vectors to write 1138 * @count: count of vectors in @vecs 1139 * @to: the MTD device offset to write to 1140 * @retlen: on exit contains the count of bytes written to the MTD device. 1141 * 1142 * This function returns zero in case of success and a negative error code in 1143 * case of failure. 1144 */ 1145int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs, 1146 unsigned long count, loff_t to, size_t *retlen) 1147{ 1148 *retlen = 0; 1149 if (!(mtd->flags & MTD_WRITEABLE)) 1150 return -EROFS; 1151 if (!mtd->_writev) 1152 return default_mtd_writev(mtd, vecs, count, to, retlen); 1153 return mtd->_writev(mtd, vecs, count, to, retlen); 1154} 1155EXPORT_SYMBOL_GPL(mtd_writev); 1156 1157/** 1158 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size 1159 * @mtd: mtd device description object pointer 1160 * @size: a pointer to the ideal or maximum size of the allocation, points 1161 * to the actual allocation size on success. 1162 * 1163 * This routine attempts to allocate a contiguous kernel buffer up to 1164 * the specified size, backing off the size of the request exponentially 1165 * until the request succeeds or until the allocation size falls below 1166 * the system page size. This attempts to make sure it does not adversely 1167 * impact system performance, so when allocating more than one page, we 1168 * ask the memory allocator to avoid re-trying, swapping, writing back 1169 * or performing I/O. 1170 * 1171 * Note, this function also makes sure that the allocated buffer is aligned to 1172 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value. 1173 * 1174 * This is called, for example by mtd_{read,write} and jffs2_scan_medium, 1175 * to handle smaller (i.e. degraded) buffer allocations under low- or 1176 * fragmented-memory situations where such reduced allocations, from a 1177 * requested ideal, are allowed. 1178 * 1179 * Returns a pointer to the allocated buffer on success; otherwise, NULL. 1180 */ 1181void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size) 1182{ 1183 gfp_t flags = __GFP_NOWARN | __GFP_WAIT | 1184 __GFP_NORETRY | __GFP_NO_KSWAPD; 1185 size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE); 1186 void *kbuf; 1187 1188 *size = min_t(size_t, *size, KMALLOC_MAX_SIZE); 1189 1190 while (*size > min_alloc) { 1191 kbuf = kmalloc(*size, flags); 1192 if (kbuf) 1193 return kbuf; 1194 1195 *size >>= 1; 1196 *size = ALIGN(*size, mtd->writesize); 1197 } 1198 1199 /* 1200 * For the last resort allocation allow 'kmalloc()' to do all sorts of 1201 * things (write-back, dropping caches, etc) by using GFP_KERNEL. 1202 */ 1203 return kmalloc(*size, GFP_KERNEL); 1204} 1205EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to); 1206 1207#ifdef CONFIG_PROC_FS 1208 1209/*====================================================================*/ 1210/* Support for /proc/mtd */ 1211 1212static int mtd_proc_show(struct seq_file *m, void *v) 1213{ 1214 struct mtd_info *mtd; 1215 1216 seq_puts(m, "dev: size erasesize name\n"); 1217 mutex_lock(&mtd_table_mutex); 1218 mtd_for_each_device(mtd) { 1219 seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n", 1220 mtd->index, (unsigned long long)mtd->size, 1221 mtd->erasesize, mtd->name); 1222 } 1223 mutex_unlock(&mtd_table_mutex); 1224 return 0; 1225} 1226 1227static int mtd_proc_open(struct inode *inode, struct file *file) 1228{ 1229 return single_open(file, mtd_proc_show, NULL); 1230} 1231 1232static const struct file_operations mtd_proc_ops = { 1233 .open = mtd_proc_open, 1234 .read = seq_read, 1235 .llseek = seq_lseek, 1236 .release = single_release, 1237}; 1238#endif /* CONFIG_PROC_FS */ 1239 1240/*====================================================================*/ 1241/* Init code */ 1242 1243static int __init mtd_bdi_init(struct backing_dev_info *bdi, const char *name) 1244{ 1245 int ret; 1246 1247 ret = bdi_init(bdi); 1248 if (!ret) 1249 ret = bdi_register(bdi, NULL, "%s", name); 1250 1251 if (ret) 1252 bdi_destroy(bdi); 1253 1254 return ret; 1255} 1256 1257static struct proc_dir_entry *proc_mtd; 1258 1259static int __init init_mtd(void) 1260{ 1261 int ret; 1262 1263 ret = class_register(&mtd_class); 1264 if (ret) 1265 goto err_reg; 1266 1267 ret = mtd_bdi_init(&mtd_bdi, "mtd"); 1268 if (ret) 1269 goto err_bdi; 1270 1271 proc_mtd = proc_create("mtd", 0, NULL, &mtd_proc_ops); 1272 1273 ret = init_mtdchar(); 1274 if (ret) 1275 goto out_procfs; 1276 1277 return 0; 1278 1279out_procfs: 1280 if (proc_mtd) 1281 remove_proc_entry("mtd", NULL); 1282err_bdi: 1283 class_unregister(&mtd_class); 1284err_reg: 1285 pr_err("Error registering mtd class or bdi: %d\n", ret); 1286 return ret; 1287} 1288 1289static void __exit cleanup_mtd(void) 1290{ 1291 cleanup_mtdchar(); 1292 if (proc_mtd) 1293 remove_proc_entry("mtd", NULL); 1294 class_unregister(&mtd_class); 1295 bdi_destroy(&mtd_bdi); 1296} 1297 1298module_init(init_mtd); 1299module_exit(cleanup_mtd); 1300 1301MODULE_LICENSE("GPL"); 1302MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>"); 1303MODULE_DESCRIPTION("Core MTD registration and access routines");