at v4.0 73 kB view raw
1#ifndef __LINUX_USB_H 2#define __LINUX_USB_H 3 4#include <linux/mod_devicetable.h> 5#include <linux/usb/ch9.h> 6 7#define USB_MAJOR 180 8#define USB_DEVICE_MAJOR 189 9 10 11#ifdef __KERNEL__ 12 13#include <linux/errno.h> /* for -ENODEV */ 14#include <linux/delay.h> /* for mdelay() */ 15#include <linux/interrupt.h> /* for in_interrupt() */ 16#include <linux/list.h> /* for struct list_head */ 17#include <linux/kref.h> /* for struct kref */ 18#include <linux/device.h> /* for struct device */ 19#include <linux/fs.h> /* for struct file_operations */ 20#include <linux/completion.h> /* for struct completion */ 21#include <linux/sched.h> /* for current && schedule_timeout */ 22#include <linux/mutex.h> /* for struct mutex */ 23#include <linux/pm_runtime.h> /* for runtime PM */ 24 25struct usb_device; 26struct usb_driver; 27struct wusb_dev; 28 29/*-------------------------------------------------------------------------*/ 30 31/* 32 * Host-side wrappers for standard USB descriptors ... these are parsed 33 * from the data provided by devices. Parsing turns them from a flat 34 * sequence of descriptors into a hierarchy: 35 * 36 * - devices have one (usually) or more configs; 37 * - configs have one (often) or more interfaces; 38 * - interfaces have one (usually) or more settings; 39 * - each interface setting has zero or (usually) more endpoints. 40 * - a SuperSpeed endpoint has a companion descriptor 41 * 42 * And there might be other descriptors mixed in with those. 43 * 44 * Devices may also have class-specific or vendor-specific descriptors. 45 */ 46 47struct ep_device; 48 49/** 50 * struct usb_host_endpoint - host-side endpoint descriptor and queue 51 * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder 52 * @ss_ep_comp: SuperSpeed companion descriptor for this endpoint 53 * @urb_list: urbs queued to this endpoint; maintained by usbcore 54 * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH) 55 * with one or more transfer descriptors (TDs) per urb 56 * @ep_dev: ep_device for sysfs info 57 * @extra: descriptors following this endpoint in the configuration 58 * @extralen: how many bytes of "extra" are valid 59 * @enabled: URBs may be submitted to this endpoint 60 * @streams: number of USB-3 streams allocated on the endpoint 61 * 62 * USB requests are always queued to a given endpoint, identified by a 63 * descriptor within an active interface in a given USB configuration. 64 */ 65struct usb_host_endpoint { 66 struct usb_endpoint_descriptor desc; 67 struct usb_ss_ep_comp_descriptor ss_ep_comp; 68 struct list_head urb_list; 69 void *hcpriv; 70 struct ep_device *ep_dev; /* For sysfs info */ 71 72 unsigned char *extra; /* Extra descriptors */ 73 int extralen; 74 int enabled; 75 int streams; 76}; 77 78/* host-side wrapper for one interface setting's parsed descriptors */ 79struct usb_host_interface { 80 struct usb_interface_descriptor desc; 81 82 int extralen; 83 unsigned char *extra; /* Extra descriptors */ 84 85 /* array of desc.bNumEndpoints endpoints associated with this 86 * interface setting. these will be in no particular order. 87 */ 88 struct usb_host_endpoint *endpoint; 89 90 char *string; /* iInterface string, if present */ 91}; 92 93enum usb_interface_condition { 94 USB_INTERFACE_UNBOUND = 0, 95 USB_INTERFACE_BINDING, 96 USB_INTERFACE_BOUND, 97 USB_INTERFACE_UNBINDING, 98}; 99 100/** 101 * struct usb_interface - what usb device drivers talk to 102 * @altsetting: array of interface structures, one for each alternate 103 * setting that may be selected. Each one includes a set of 104 * endpoint configurations. They will be in no particular order. 105 * @cur_altsetting: the current altsetting. 106 * @num_altsetting: number of altsettings defined. 107 * @intf_assoc: interface association descriptor 108 * @minor: the minor number assigned to this interface, if this 109 * interface is bound to a driver that uses the USB major number. 110 * If this interface does not use the USB major, this field should 111 * be unused. The driver should set this value in the probe() 112 * function of the driver, after it has been assigned a minor 113 * number from the USB core by calling usb_register_dev(). 114 * @condition: binding state of the interface: not bound, binding 115 * (in probe()), bound to a driver, or unbinding (in disconnect()) 116 * @sysfs_files_created: sysfs attributes exist 117 * @ep_devs_created: endpoint child pseudo-devices exist 118 * @unregistering: flag set when the interface is being unregistered 119 * @needs_remote_wakeup: flag set when the driver requires remote-wakeup 120 * capability during autosuspend. 121 * @needs_altsetting0: flag set when a set-interface request for altsetting 0 122 * has been deferred. 123 * @needs_binding: flag set when the driver should be re-probed or unbound 124 * following a reset or suspend operation it doesn't support. 125 * @dev: driver model's view of this device 126 * @usb_dev: if an interface is bound to the USB major, this will point 127 * to the sysfs representation for that device. 128 * @pm_usage_cnt: PM usage counter for this interface 129 * @reset_ws: Used for scheduling resets from atomic context. 130 * @resetting_device: USB core reset the device, so use alt setting 0 as 131 * current; needs bandwidth alloc after reset. 132 * 133 * USB device drivers attach to interfaces on a physical device. Each 134 * interface encapsulates a single high level function, such as feeding 135 * an audio stream to a speaker or reporting a change in a volume control. 136 * Many USB devices only have one interface. The protocol used to talk to 137 * an interface's endpoints can be defined in a usb "class" specification, 138 * or by a product's vendor. The (default) control endpoint is part of 139 * every interface, but is never listed among the interface's descriptors. 140 * 141 * The driver that is bound to the interface can use standard driver model 142 * calls such as dev_get_drvdata() on the dev member of this structure. 143 * 144 * Each interface may have alternate settings. The initial configuration 145 * of a device sets altsetting 0, but the device driver can change 146 * that setting using usb_set_interface(). Alternate settings are often 147 * used to control the use of periodic endpoints, such as by having 148 * different endpoints use different amounts of reserved USB bandwidth. 149 * All standards-conformant USB devices that use isochronous endpoints 150 * will use them in non-default settings. 151 * 152 * The USB specification says that alternate setting numbers must run from 153 * 0 to one less than the total number of alternate settings. But some 154 * devices manage to mess this up, and the structures aren't necessarily 155 * stored in numerical order anyhow. Use usb_altnum_to_altsetting() to 156 * look up an alternate setting in the altsetting array based on its number. 157 */ 158struct usb_interface { 159 /* array of alternate settings for this interface, 160 * stored in no particular order */ 161 struct usb_host_interface *altsetting; 162 163 struct usb_host_interface *cur_altsetting; /* the currently 164 * active alternate setting */ 165 unsigned num_altsetting; /* number of alternate settings */ 166 167 /* If there is an interface association descriptor then it will list 168 * the associated interfaces */ 169 struct usb_interface_assoc_descriptor *intf_assoc; 170 171 int minor; /* minor number this interface is 172 * bound to */ 173 enum usb_interface_condition condition; /* state of binding */ 174 unsigned sysfs_files_created:1; /* the sysfs attributes exist */ 175 unsigned ep_devs_created:1; /* endpoint "devices" exist */ 176 unsigned unregistering:1; /* unregistration is in progress */ 177 unsigned needs_remote_wakeup:1; /* driver requires remote wakeup */ 178 unsigned needs_altsetting0:1; /* switch to altsetting 0 is pending */ 179 unsigned needs_binding:1; /* needs delayed unbind/rebind */ 180 unsigned resetting_device:1; /* true: bandwidth alloc after reset */ 181 182 struct device dev; /* interface specific device info */ 183 struct device *usb_dev; 184 atomic_t pm_usage_cnt; /* usage counter for autosuspend */ 185 struct work_struct reset_ws; /* for resets in atomic context */ 186}; 187#define to_usb_interface(d) container_of(d, struct usb_interface, dev) 188 189static inline void *usb_get_intfdata(struct usb_interface *intf) 190{ 191 return dev_get_drvdata(&intf->dev); 192} 193 194static inline void usb_set_intfdata(struct usb_interface *intf, void *data) 195{ 196 dev_set_drvdata(&intf->dev, data); 197} 198 199struct usb_interface *usb_get_intf(struct usb_interface *intf); 200void usb_put_intf(struct usb_interface *intf); 201 202/* Hard limit */ 203#define USB_MAXENDPOINTS 30 204/* this maximum is arbitrary */ 205#define USB_MAXINTERFACES 32 206#define USB_MAXIADS (USB_MAXINTERFACES/2) 207 208/** 209 * struct usb_interface_cache - long-term representation of a device interface 210 * @num_altsetting: number of altsettings defined. 211 * @ref: reference counter. 212 * @altsetting: variable-length array of interface structures, one for 213 * each alternate setting that may be selected. Each one includes a 214 * set of endpoint configurations. They will be in no particular order. 215 * 216 * These structures persist for the lifetime of a usb_device, unlike 217 * struct usb_interface (which persists only as long as its configuration 218 * is installed). The altsetting arrays can be accessed through these 219 * structures at any time, permitting comparison of configurations and 220 * providing support for the /proc/bus/usb/devices pseudo-file. 221 */ 222struct usb_interface_cache { 223 unsigned num_altsetting; /* number of alternate settings */ 224 struct kref ref; /* reference counter */ 225 226 /* variable-length array of alternate settings for this interface, 227 * stored in no particular order */ 228 struct usb_host_interface altsetting[0]; 229}; 230#define ref_to_usb_interface_cache(r) \ 231 container_of(r, struct usb_interface_cache, ref) 232#define altsetting_to_usb_interface_cache(a) \ 233 container_of(a, struct usb_interface_cache, altsetting[0]) 234 235/** 236 * struct usb_host_config - representation of a device's configuration 237 * @desc: the device's configuration descriptor. 238 * @string: pointer to the cached version of the iConfiguration string, if 239 * present for this configuration. 240 * @intf_assoc: list of any interface association descriptors in this config 241 * @interface: array of pointers to usb_interface structures, one for each 242 * interface in the configuration. The number of interfaces is stored 243 * in desc.bNumInterfaces. These pointers are valid only while the 244 * the configuration is active. 245 * @intf_cache: array of pointers to usb_interface_cache structures, one 246 * for each interface in the configuration. These structures exist 247 * for the entire life of the device. 248 * @extra: pointer to buffer containing all extra descriptors associated 249 * with this configuration (those preceding the first interface 250 * descriptor). 251 * @extralen: length of the extra descriptors buffer. 252 * 253 * USB devices may have multiple configurations, but only one can be active 254 * at any time. Each encapsulates a different operational environment; 255 * for example, a dual-speed device would have separate configurations for 256 * full-speed and high-speed operation. The number of configurations 257 * available is stored in the device descriptor as bNumConfigurations. 258 * 259 * A configuration can contain multiple interfaces. Each corresponds to 260 * a different function of the USB device, and all are available whenever 261 * the configuration is active. The USB standard says that interfaces 262 * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot 263 * of devices get this wrong. In addition, the interface array is not 264 * guaranteed to be sorted in numerical order. Use usb_ifnum_to_if() to 265 * look up an interface entry based on its number. 266 * 267 * Device drivers should not attempt to activate configurations. The choice 268 * of which configuration to install is a policy decision based on such 269 * considerations as available power, functionality provided, and the user's 270 * desires (expressed through userspace tools). However, drivers can call 271 * usb_reset_configuration() to reinitialize the current configuration and 272 * all its interfaces. 273 */ 274struct usb_host_config { 275 struct usb_config_descriptor desc; 276 277 char *string; /* iConfiguration string, if present */ 278 279 /* List of any Interface Association Descriptors in this 280 * configuration. */ 281 struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS]; 282 283 /* the interfaces associated with this configuration, 284 * stored in no particular order */ 285 struct usb_interface *interface[USB_MAXINTERFACES]; 286 287 /* Interface information available even when this is not the 288 * active configuration */ 289 struct usb_interface_cache *intf_cache[USB_MAXINTERFACES]; 290 291 unsigned char *extra; /* Extra descriptors */ 292 int extralen; 293}; 294 295/* USB2.0 and USB3.0 device BOS descriptor set */ 296struct usb_host_bos { 297 struct usb_bos_descriptor *desc; 298 299 /* wireless cap descriptor is handled by wusb */ 300 struct usb_ext_cap_descriptor *ext_cap; 301 struct usb_ss_cap_descriptor *ss_cap; 302 struct usb_ss_container_id_descriptor *ss_id; 303}; 304 305int __usb_get_extra_descriptor(char *buffer, unsigned size, 306 unsigned char type, void **ptr); 307#define usb_get_extra_descriptor(ifpoint, type, ptr) \ 308 __usb_get_extra_descriptor((ifpoint)->extra, \ 309 (ifpoint)->extralen, \ 310 type, (void **)ptr) 311 312/* ----------------------------------------------------------------------- */ 313 314/* USB device number allocation bitmap */ 315struct usb_devmap { 316 unsigned long devicemap[128 / (8*sizeof(unsigned long))]; 317}; 318 319/* 320 * Allocated per bus (tree of devices) we have: 321 */ 322struct usb_bus { 323 struct device *controller; /* host/master side hardware */ 324 int busnum; /* Bus number (in order of reg) */ 325 const char *bus_name; /* stable id (PCI slot_name etc) */ 326 u8 uses_dma; /* Does the host controller use DMA? */ 327 u8 uses_pio_for_control; /* 328 * Does the host controller use PIO 329 * for control transfers? 330 */ 331 u8 otg_port; /* 0, or number of OTG/HNP port */ 332 unsigned is_b_host:1; /* true during some HNP roleswitches */ 333 unsigned b_hnp_enable:1; /* OTG: did A-Host enable HNP? */ 334 unsigned no_stop_on_short:1; /* 335 * Quirk: some controllers don't stop 336 * the ep queue on a short transfer 337 * with the URB_SHORT_NOT_OK flag set. 338 */ 339 unsigned no_sg_constraint:1; /* no sg constraint */ 340 unsigned sg_tablesize; /* 0 or largest number of sg list entries */ 341 342 int devnum_next; /* Next open device number in 343 * round-robin allocation */ 344 345 struct usb_devmap devmap; /* device address allocation map */ 346 struct usb_device *root_hub; /* Root hub */ 347 struct usb_bus *hs_companion; /* Companion EHCI bus, if any */ 348 struct list_head bus_list; /* list of busses */ 349 350 struct mutex usb_address0_mutex; /* unaddressed device mutex */ 351 352 int bandwidth_allocated; /* on this bus: how much of the time 353 * reserved for periodic (intr/iso) 354 * requests is used, on average? 355 * Units: microseconds/frame. 356 * Limits: Full/low speed reserve 90%, 357 * while high speed reserves 80%. 358 */ 359 int bandwidth_int_reqs; /* number of Interrupt requests */ 360 int bandwidth_isoc_reqs; /* number of Isoc. requests */ 361 362 unsigned resuming_ports; /* bit array: resuming root-hub ports */ 363 364#if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE) 365 struct mon_bus *mon_bus; /* non-null when associated */ 366 int monitored; /* non-zero when monitored */ 367#endif 368}; 369 370struct usb_dev_state; 371 372/* ----------------------------------------------------------------------- */ 373 374struct usb_tt; 375 376enum usb_device_removable { 377 USB_DEVICE_REMOVABLE_UNKNOWN = 0, 378 USB_DEVICE_REMOVABLE, 379 USB_DEVICE_FIXED, 380}; 381 382enum usb_port_connect_type { 383 USB_PORT_CONNECT_TYPE_UNKNOWN = 0, 384 USB_PORT_CONNECT_TYPE_HOT_PLUG, 385 USB_PORT_CONNECT_TYPE_HARD_WIRED, 386 USB_PORT_NOT_USED, 387}; 388 389/* 390 * USB 2.0 Link Power Management (LPM) parameters. 391 */ 392struct usb2_lpm_parameters { 393 /* Best effort service latency indicate how long the host will drive 394 * resume on an exit from L1. 395 */ 396 unsigned int besl; 397 398 /* Timeout value in microseconds for the L1 inactivity (LPM) timer. 399 * When the timer counts to zero, the parent hub will initiate a LPM 400 * transition to L1. 401 */ 402 int timeout; 403}; 404 405/* 406 * USB 3.0 Link Power Management (LPM) parameters. 407 * 408 * PEL and SEL are USB 3.0 Link PM latencies for device-initiated LPM exit. 409 * MEL is the USB 3.0 Link PM latency for host-initiated LPM exit. 410 * All three are stored in nanoseconds. 411 */ 412struct usb3_lpm_parameters { 413 /* 414 * Maximum exit latency (MEL) for the host to send a packet to the 415 * device (either a Ping for isoc endpoints, or a data packet for 416 * interrupt endpoints), the hubs to decode the packet, and for all hubs 417 * in the path to transition the links to U0. 418 */ 419 unsigned int mel; 420 /* 421 * Maximum exit latency for a device-initiated LPM transition to bring 422 * all links into U0. Abbreviated as "PEL" in section 9.4.12 of the USB 423 * 3.0 spec, with no explanation of what "P" stands for. "Path"? 424 */ 425 unsigned int pel; 426 427 /* 428 * The System Exit Latency (SEL) includes PEL, and three other 429 * latencies. After a device initiates a U0 transition, it will take 430 * some time from when the device sends the ERDY to when it will finally 431 * receive the data packet. Basically, SEL should be the worse-case 432 * latency from when a device starts initiating a U0 transition to when 433 * it will get data. 434 */ 435 unsigned int sel; 436 /* 437 * The idle timeout value that is currently programmed into the parent 438 * hub for this device. When the timer counts to zero, the parent hub 439 * will initiate an LPM transition to either U1 or U2. 440 */ 441 int timeout; 442}; 443 444/** 445 * struct usb_device - kernel's representation of a USB device 446 * @devnum: device number; address on a USB bus 447 * @devpath: device ID string for use in messages (e.g., /port/...) 448 * @route: tree topology hex string for use with xHCI 449 * @state: device state: configured, not attached, etc. 450 * @speed: device speed: high/full/low (or error) 451 * @tt: Transaction Translator info; used with low/full speed dev, highspeed hub 452 * @ttport: device port on that tt hub 453 * @toggle: one bit for each endpoint, with ([0] = IN, [1] = OUT) endpoints 454 * @parent: our hub, unless we're the root 455 * @bus: bus we're part of 456 * @ep0: endpoint 0 data (default control pipe) 457 * @dev: generic device interface 458 * @descriptor: USB device descriptor 459 * @bos: USB device BOS descriptor set 460 * @config: all of the device's configs 461 * @actconfig: the active configuration 462 * @ep_in: array of IN endpoints 463 * @ep_out: array of OUT endpoints 464 * @rawdescriptors: raw descriptors for each config 465 * @bus_mA: Current available from the bus 466 * @portnum: parent port number (origin 1) 467 * @level: number of USB hub ancestors 468 * @can_submit: URBs may be submitted 469 * @persist_enabled: USB_PERSIST enabled for this device 470 * @have_langid: whether string_langid is valid 471 * @authorized: policy has said we can use it; 472 * (user space) policy determines if we authorize this device to be 473 * used or not. By default, wired USB devices are authorized. 474 * WUSB devices are not, until we authorize them from user space. 475 * FIXME -- complete doc 476 * @authenticated: Crypto authentication passed 477 * @wusb: device is Wireless USB 478 * @lpm_capable: device supports LPM 479 * @usb2_hw_lpm_capable: device can perform USB2 hardware LPM 480 * @usb2_hw_lpm_besl_capable: device can perform USB2 hardware BESL LPM 481 * @usb2_hw_lpm_enabled: USB2 hardware LPM is enabled 482 * @usb2_hw_lpm_allowed: Userspace allows USB 2.0 LPM to be enabled 483 * @usb3_lpm_enabled: USB3 hardware LPM enabled 484 * @string_langid: language ID for strings 485 * @product: iProduct string, if present (static) 486 * @manufacturer: iManufacturer string, if present (static) 487 * @serial: iSerialNumber string, if present (static) 488 * @filelist: usbfs files that are open to this device 489 * @maxchild: number of ports if hub 490 * @quirks: quirks of the whole device 491 * @urbnum: number of URBs submitted for the whole device 492 * @active_duration: total time device is not suspended 493 * @connect_time: time device was first connected 494 * @do_remote_wakeup: remote wakeup should be enabled 495 * @reset_resume: needs reset instead of resume 496 * @port_is_suspended: the upstream port is suspended (L2 or U3) 497 * @wusb_dev: if this is a Wireless USB device, link to the WUSB 498 * specific data for the device. 499 * @slot_id: Slot ID assigned by xHCI 500 * @removable: Device can be physically removed from this port 501 * @l1_params: best effor service latency for USB2 L1 LPM state, and L1 timeout. 502 * @u1_params: exit latencies for USB3 U1 LPM state, and hub-initiated timeout. 503 * @u2_params: exit latencies for USB3 U2 LPM state, and hub-initiated timeout. 504 * @lpm_disable_count: Ref count used by usb_disable_lpm() and usb_enable_lpm() 505 * to keep track of the number of functions that require USB 3.0 Link Power 506 * Management to be disabled for this usb_device. This count should only 507 * be manipulated by those functions, with the bandwidth_mutex is held. 508 * 509 * Notes: 510 * Usbcore drivers should not set usbdev->state directly. Instead use 511 * usb_set_device_state(). 512 */ 513struct usb_device { 514 int devnum; 515 char devpath[16]; 516 u32 route; 517 enum usb_device_state state; 518 enum usb_device_speed speed; 519 520 struct usb_tt *tt; 521 int ttport; 522 523 unsigned int toggle[2]; 524 525 struct usb_device *parent; 526 struct usb_bus *bus; 527 struct usb_host_endpoint ep0; 528 529 struct device dev; 530 531 struct usb_device_descriptor descriptor; 532 struct usb_host_bos *bos; 533 struct usb_host_config *config; 534 535 struct usb_host_config *actconfig; 536 struct usb_host_endpoint *ep_in[16]; 537 struct usb_host_endpoint *ep_out[16]; 538 539 char **rawdescriptors; 540 541 unsigned short bus_mA; 542 u8 portnum; 543 u8 level; 544 545 unsigned can_submit:1; 546 unsigned persist_enabled:1; 547 unsigned have_langid:1; 548 unsigned authorized:1; 549 unsigned authenticated:1; 550 unsigned wusb:1; 551 unsigned lpm_capable:1; 552 unsigned usb2_hw_lpm_capable:1; 553 unsigned usb2_hw_lpm_besl_capable:1; 554 unsigned usb2_hw_lpm_enabled:1; 555 unsigned usb2_hw_lpm_allowed:1; 556 unsigned usb3_lpm_enabled:1; 557 int string_langid; 558 559 /* static strings from the device */ 560 char *product; 561 char *manufacturer; 562 char *serial; 563 564 struct list_head filelist; 565 566 int maxchild; 567 568 u32 quirks; 569 atomic_t urbnum; 570 571 unsigned long active_duration; 572 573#ifdef CONFIG_PM 574 unsigned long connect_time; 575 576 unsigned do_remote_wakeup:1; 577 unsigned reset_resume:1; 578 unsigned port_is_suspended:1; 579#endif 580 struct wusb_dev *wusb_dev; 581 int slot_id; 582 enum usb_device_removable removable; 583 struct usb2_lpm_parameters l1_params; 584 struct usb3_lpm_parameters u1_params; 585 struct usb3_lpm_parameters u2_params; 586 unsigned lpm_disable_count; 587}; 588#define to_usb_device(d) container_of(d, struct usb_device, dev) 589 590static inline struct usb_device *interface_to_usbdev(struct usb_interface *intf) 591{ 592 return to_usb_device(intf->dev.parent); 593} 594 595extern struct usb_device *usb_get_dev(struct usb_device *dev); 596extern void usb_put_dev(struct usb_device *dev); 597extern struct usb_device *usb_hub_find_child(struct usb_device *hdev, 598 int port1); 599 600/** 601 * usb_hub_for_each_child - iterate over all child devices on the hub 602 * @hdev: USB device belonging to the usb hub 603 * @port1: portnum associated with child device 604 * @child: child device pointer 605 */ 606#define usb_hub_for_each_child(hdev, port1, child) \ 607 for (port1 = 1, child = usb_hub_find_child(hdev, port1); \ 608 port1 <= hdev->maxchild; \ 609 child = usb_hub_find_child(hdev, ++port1)) \ 610 if (!child) continue; else 611 612/* USB device locking */ 613#define usb_lock_device(udev) device_lock(&(udev)->dev) 614#define usb_unlock_device(udev) device_unlock(&(udev)->dev) 615#define usb_trylock_device(udev) device_trylock(&(udev)->dev) 616extern int usb_lock_device_for_reset(struct usb_device *udev, 617 const struct usb_interface *iface); 618 619/* USB port reset for device reinitialization */ 620extern int usb_reset_device(struct usb_device *dev); 621extern void usb_queue_reset_device(struct usb_interface *dev); 622 623#ifdef CONFIG_ACPI 624extern int usb_acpi_set_power_state(struct usb_device *hdev, int index, 625 bool enable); 626extern bool usb_acpi_power_manageable(struct usb_device *hdev, int index); 627#else 628static inline int usb_acpi_set_power_state(struct usb_device *hdev, int index, 629 bool enable) { return 0; } 630static inline bool usb_acpi_power_manageable(struct usb_device *hdev, int index) 631 { return true; } 632#endif 633 634/* USB autosuspend and autoresume */ 635#ifdef CONFIG_PM 636extern void usb_enable_autosuspend(struct usb_device *udev); 637extern void usb_disable_autosuspend(struct usb_device *udev); 638 639extern int usb_autopm_get_interface(struct usb_interface *intf); 640extern void usb_autopm_put_interface(struct usb_interface *intf); 641extern int usb_autopm_get_interface_async(struct usb_interface *intf); 642extern void usb_autopm_put_interface_async(struct usb_interface *intf); 643extern void usb_autopm_get_interface_no_resume(struct usb_interface *intf); 644extern void usb_autopm_put_interface_no_suspend(struct usb_interface *intf); 645 646static inline void usb_mark_last_busy(struct usb_device *udev) 647{ 648 pm_runtime_mark_last_busy(&udev->dev); 649} 650 651#else 652 653static inline int usb_enable_autosuspend(struct usb_device *udev) 654{ return 0; } 655static inline int usb_disable_autosuspend(struct usb_device *udev) 656{ return 0; } 657 658static inline int usb_autopm_get_interface(struct usb_interface *intf) 659{ return 0; } 660static inline int usb_autopm_get_interface_async(struct usb_interface *intf) 661{ return 0; } 662 663static inline void usb_autopm_put_interface(struct usb_interface *intf) 664{ } 665static inline void usb_autopm_put_interface_async(struct usb_interface *intf) 666{ } 667static inline void usb_autopm_get_interface_no_resume( 668 struct usb_interface *intf) 669{ } 670static inline void usb_autopm_put_interface_no_suspend( 671 struct usb_interface *intf) 672{ } 673static inline void usb_mark_last_busy(struct usb_device *udev) 674{ } 675#endif 676 677extern int usb_disable_lpm(struct usb_device *udev); 678extern void usb_enable_lpm(struct usb_device *udev); 679/* Same as above, but these functions lock/unlock the bandwidth_mutex. */ 680extern int usb_unlocked_disable_lpm(struct usb_device *udev); 681extern void usb_unlocked_enable_lpm(struct usb_device *udev); 682 683extern int usb_disable_ltm(struct usb_device *udev); 684extern void usb_enable_ltm(struct usb_device *udev); 685 686static inline bool usb_device_supports_ltm(struct usb_device *udev) 687{ 688 if (udev->speed != USB_SPEED_SUPER || !udev->bos || !udev->bos->ss_cap) 689 return false; 690 return udev->bos->ss_cap->bmAttributes & USB_LTM_SUPPORT; 691} 692 693static inline bool usb_device_no_sg_constraint(struct usb_device *udev) 694{ 695 return udev && udev->bus && udev->bus->no_sg_constraint; 696} 697 698 699/*-------------------------------------------------------------------------*/ 700 701/* for drivers using iso endpoints */ 702extern int usb_get_current_frame_number(struct usb_device *usb_dev); 703 704/* Sets up a group of bulk endpoints to support multiple stream IDs. */ 705extern int usb_alloc_streams(struct usb_interface *interface, 706 struct usb_host_endpoint **eps, unsigned int num_eps, 707 unsigned int num_streams, gfp_t mem_flags); 708 709/* Reverts a group of bulk endpoints back to not using stream IDs. */ 710extern int usb_free_streams(struct usb_interface *interface, 711 struct usb_host_endpoint **eps, unsigned int num_eps, 712 gfp_t mem_flags); 713 714/* used these for multi-interface device registration */ 715extern int usb_driver_claim_interface(struct usb_driver *driver, 716 struct usb_interface *iface, void *priv); 717 718/** 719 * usb_interface_claimed - returns true iff an interface is claimed 720 * @iface: the interface being checked 721 * 722 * Return: %true (nonzero) iff the interface is claimed, else %false 723 * (zero). 724 * 725 * Note: 726 * Callers must own the driver model's usb bus readlock. So driver 727 * probe() entries don't need extra locking, but other call contexts 728 * may need to explicitly claim that lock. 729 * 730 */ 731static inline int usb_interface_claimed(struct usb_interface *iface) 732{ 733 return (iface->dev.driver != NULL); 734} 735 736extern void usb_driver_release_interface(struct usb_driver *driver, 737 struct usb_interface *iface); 738const struct usb_device_id *usb_match_id(struct usb_interface *interface, 739 const struct usb_device_id *id); 740extern int usb_match_one_id(struct usb_interface *interface, 741 const struct usb_device_id *id); 742 743extern int usb_for_each_dev(void *data, int (*fn)(struct usb_device *, void *)); 744extern struct usb_interface *usb_find_interface(struct usb_driver *drv, 745 int minor); 746extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev, 747 unsigned ifnum); 748extern struct usb_host_interface *usb_altnum_to_altsetting( 749 const struct usb_interface *intf, unsigned int altnum); 750extern struct usb_host_interface *usb_find_alt_setting( 751 struct usb_host_config *config, 752 unsigned int iface_num, 753 unsigned int alt_num); 754 755/* port claiming functions */ 756int usb_hub_claim_port(struct usb_device *hdev, unsigned port1, 757 struct usb_dev_state *owner); 758int usb_hub_release_port(struct usb_device *hdev, unsigned port1, 759 struct usb_dev_state *owner); 760 761/** 762 * usb_make_path - returns stable device path in the usb tree 763 * @dev: the device whose path is being constructed 764 * @buf: where to put the string 765 * @size: how big is "buf"? 766 * 767 * Return: Length of the string (> 0) or negative if size was too small. 768 * 769 * Note: 770 * This identifier is intended to be "stable", reflecting physical paths in 771 * hardware such as physical bus addresses for host controllers or ports on 772 * USB hubs. That makes it stay the same until systems are physically 773 * reconfigured, by re-cabling a tree of USB devices or by moving USB host 774 * controllers. Adding and removing devices, including virtual root hubs 775 * in host controller driver modules, does not change these path identifiers; 776 * neither does rebooting or re-enumerating. These are more useful identifiers 777 * than changeable ("unstable") ones like bus numbers or device addresses. 778 * 779 * With a partial exception for devices connected to USB 2.0 root hubs, these 780 * identifiers are also predictable. So long as the device tree isn't changed, 781 * plugging any USB device into a given hub port always gives it the same path. 782 * Because of the use of "companion" controllers, devices connected to ports on 783 * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are 784 * high speed, and a different one if they are full or low speed. 785 */ 786static inline int usb_make_path(struct usb_device *dev, char *buf, size_t size) 787{ 788 int actual; 789 actual = snprintf(buf, size, "usb-%s-%s", dev->bus->bus_name, 790 dev->devpath); 791 return (actual >= (int)size) ? -1 : actual; 792} 793 794/*-------------------------------------------------------------------------*/ 795 796#define USB_DEVICE_ID_MATCH_DEVICE \ 797 (USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT) 798#define USB_DEVICE_ID_MATCH_DEV_RANGE \ 799 (USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI) 800#define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \ 801 (USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE) 802#define USB_DEVICE_ID_MATCH_DEV_INFO \ 803 (USB_DEVICE_ID_MATCH_DEV_CLASS | \ 804 USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \ 805 USB_DEVICE_ID_MATCH_DEV_PROTOCOL) 806#define USB_DEVICE_ID_MATCH_INT_INFO \ 807 (USB_DEVICE_ID_MATCH_INT_CLASS | \ 808 USB_DEVICE_ID_MATCH_INT_SUBCLASS | \ 809 USB_DEVICE_ID_MATCH_INT_PROTOCOL) 810 811/** 812 * USB_DEVICE - macro used to describe a specific usb device 813 * @vend: the 16 bit USB Vendor ID 814 * @prod: the 16 bit USB Product ID 815 * 816 * This macro is used to create a struct usb_device_id that matches a 817 * specific device. 818 */ 819#define USB_DEVICE(vend, prod) \ 820 .match_flags = USB_DEVICE_ID_MATCH_DEVICE, \ 821 .idVendor = (vend), \ 822 .idProduct = (prod) 823/** 824 * USB_DEVICE_VER - describe a specific usb device with a version range 825 * @vend: the 16 bit USB Vendor ID 826 * @prod: the 16 bit USB Product ID 827 * @lo: the bcdDevice_lo value 828 * @hi: the bcdDevice_hi value 829 * 830 * This macro is used to create a struct usb_device_id that matches a 831 * specific device, with a version range. 832 */ 833#define USB_DEVICE_VER(vend, prod, lo, hi) \ 834 .match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \ 835 .idVendor = (vend), \ 836 .idProduct = (prod), \ 837 .bcdDevice_lo = (lo), \ 838 .bcdDevice_hi = (hi) 839 840/** 841 * USB_DEVICE_INTERFACE_CLASS - describe a usb device with a specific interface class 842 * @vend: the 16 bit USB Vendor ID 843 * @prod: the 16 bit USB Product ID 844 * @cl: bInterfaceClass value 845 * 846 * This macro is used to create a struct usb_device_id that matches a 847 * specific interface class of devices. 848 */ 849#define USB_DEVICE_INTERFACE_CLASS(vend, prod, cl) \ 850 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \ 851 USB_DEVICE_ID_MATCH_INT_CLASS, \ 852 .idVendor = (vend), \ 853 .idProduct = (prod), \ 854 .bInterfaceClass = (cl) 855 856/** 857 * USB_DEVICE_INTERFACE_PROTOCOL - describe a usb device with a specific interface protocol 858 * @vend: the 16 bit USB Vendor ID 859 * @prod: the 16 bit USB Product ID 860 * @pr: bInterfaceProtocol value 861 * 862 * This macro is used to create a struct usb_device_id that matches a 863 * specific interface protocol of devices. 864 */ 865#define USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr) \ 866 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \ 867 USB_DEVICE_ID_MATCH_INT_PROTOCOL, \ 868 .idVendor = (vend), \ 869 .idProduct = (prod), \ 870 .bInterfaceProtocol = (pr) 871 872/** 873 * USB_DEVICE_INTERFACE_NUMBER - describe a usb device with a specific interface number 874 * @vend: the 16 bit USB Vendor ID 875 * @prod: the 16 bit USB Product ID 876 * @num: bInterfaceNumber value 877 * 878 * This macro is used to create a struct usb_device_id that matches a 879 * specific interface number of devices. 880 */ 881#define USB_DEVICE_INTERFACE_NUMBER(vend, prod, num) \ 882 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \ 883 USB_DEVICE_ID_MATCH_INT_NUMBER, \ 884 .idVendor = (vend), \ 885 .idProduct = (prod), \ 886 .bInterfaceNumber = (num) 887 888/** 889 * USB_DEVICE_INFO - macro used to describe a class of usb devices 890 * @cl: bDeviceClass value 891 * @sc: bDeviceSubClass value 892 * @pr: bDeviceProtocol value 893 * 894 * This macro is used to create a struct usb_device_id that matches a 895 * specific class of devices. 896 */ 897#define USB_DEVICE_INFO(cl, sc, pr) \ 898 .match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, \ 899 .bDeviceClass = (cl), \ 900 .bDeviceSubClass = (sc), \ 901 .bDeviceProtocol = (pr) 902 903/** 904 * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces 905 * @cl: bInterfaceClass value 906 * @sc: bInterfaceSubClass value 907 * @pr: bInterfaceProtocol value 908 * 909 * This macro is used to create a struct usb_device_id that matches a 910 * specific class of interfaces. 911 */ 912#define USB_INTERFACE_INFO(cl, sc, pr) \ 913 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \ 914 .bInterfaceClass = (cl), \ 915 .bInterfaceSubClass = (sc), \ 916 .bInterfaceProtocol = (pr) 917 918/** 919 * USB_DEVICE_AND_INTERFACE_INFO - describe a specific usb device with a class of usb interfaces 920 * @vend: the 16 bit USB Vendor ID 921 * @prod: the 16 bit USB Product ID 922 * @cl: bInterfaceClass value 923 * @sc: bInterfaceSubClass value 924 * @pr: bInterfaceProtocol value 925 * 926 * This macro is used to create a struct usb_device_id that matches a 927 * specific device with a specific class of interfaces. 928 * 929 * This is especially useful when explicitly matching devices that have 930 * vendor specific bDeviceClass values, but standards-compliant interfaces. 931 */ 932#define USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr) \ 933 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \ 934 | USB_DEVICE_ID_MATCH_DEVICE, \ 935 .idVendor = (vend), \ 936 .idProduct = (prod), \ 937 .bInterfaceClass = (cl), \ 938 .bInterfaceSubClass = (sc), \ 939 .bInterfaceProtocol = (pr) 940 941/** 942 * USB_VENDOR_AND_INTERFACE_INFO - describe a specific usb vendor with a class of usb interfaces 943 * @vend: the 16 bit USB Vendor ID 944 * @cl: bInterfaceClass value 945 * @sc: bInterfaceSubClass value 946 * @pr: bInterfaceProtocol value 947 * 948 * This macro is used to create a struct usb_device_id that matches a 949 * specific vendor with a specific class of interfaces. 950 * 951 * This is especially useful when explicitly matching devices that have 952 * vendor specific bDeviceClass values, but standards-compliant interfaces. 953 */ 954#define USB_VENDOR_AND_INTERFACE_INFO(vend, cl, sc, pr) \ 955 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \ 956 | USB_DEVICE_ID_MATCH_VENDOR, \ 957 .idVendor = (vend), \ 958 .bInterfaceClass = (cl), \ 959 .bInterfaceSubClass = (sc), \ 960 .bInterfaceProtocol = (pr) 961 962/* ----------------------------------------------------------------------- */ 963 964/* Stuff for dynamic usb ids */ 965struct usb_dynids { 966 spinlock_t lock; 967 struct list_head list; 968}; 969 970struct usb_dynid { 971 struct list_head node; 972 struct usb_device_id id; 973}; 974 975extern ssize_t usb_store_new_id(struct usb_dynids *dynids, 976 const struct usb_device_id *id_table, 977 struct device_driver *driver, 978 const char *buf, size_t count); 979 980extern ssize_t usb_show_dynids(struct usb_dynids *dynids, char *buf); 981 982/** 983 * struct usbdrv_wrap - wrapper for driver-model structure 984 * @driver: The driver-model core driver structure. 985 * @for_devices: Non-zero for device drivers, 0 for interface drivers. 986 */ 987struct usbdrv_wrap { 988 struct device_driver driver; 989 int for_devices; 990}; 991 992/** 993 * struct usb_driver - identifies USB interface driver to usbcore 994 * @name: The driver name should be unique among USB drivers, 995 * and should normally be the same as the module name. 996 * @probe: Called to see if the driver is willing to manage a particular 997 * interface on a device. If it is, probe returns zero and uses 998 * usb_set_intfdata() to associate driver-specific data with the 999 * interface. It may also use usb_set_interface() to specify the 1000 * appropriate altsetting. If unwilling to manage the interface, 1001 * return -ENODEV, if genuine IO errors occurred, an appropriate 1002 * negative errno value. 1003 * @disconnect: Called when the interface is no longer accessible, usually 1004 * because its device has been (or is being) disconnected or the 1005 * driver module is being unloaded. 1006 * @unlocked_ioctl: Used for drivers that want to talk to userspace through 1007 * the "usbfs" filesystem. This lets devices provide ways to 1008 * expose information to user space regardless of where they 1009 * do (or don't) show up otherwise in the filesystem. 1010 * @suspend: Called when the device is going to be suspended by the 1011 * system either from system sleep or runtime suspend context. The 1012 * return value will be ignored in system sleep context, so do NOT 1013 * try to continue using the device if suspend fails in this case. 1014 * Instead, let the resume or reset-resume routine recover from 1015 * the failure. 1016 * @resume: Called when the device is being resumed by the system. 1017 * @reset_resume: Called when the suspended device has been reset instead 1018 * of being resumed. 1019 * @pre_reset: Called by usb_reset_device() when the device is about to be 1020 * reset. This routine must not return until the driver has no active 1021 * URBs for the device, and no more URBs may be submitted until the 1022 * post_reset method is called. 1023 * @post_reset: Called by usb_reset_device() after the device 1024 * has been reset 1025 * @id_table: USB drivers use ID table to support hotplugging. 1026 * Export this with MODULE_DEVICE_TABLE(usb,...). This must be set 1027 * or your driver's probe function will never get called. 1028 * @dynids: used internally to hold the list of dynamically added device 1029 * ids for this driver. 1030 * @drvwrap: Driver-model core structure wrapper. 1031 * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be 1032 * added to this driver by preventing the sysfs file from being created. 1033 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend 1034 * for interfaces bound to this driver. 1035 * @soft_unbind: if set to 1, the USB core will not kill URBs and disable 1036 * endpoints before calling the driver's disconnect method. 1037 * @disable_hub_initiated_lpm: if set to 0, the USB core will not allow hubs 1038 * to initiate lower power link state transitions when an idle timeout 1039 * occurs. Device-initiated USB 3.0 link PM will still be allowed. 1040 * 1041 * USB interface drivers must provide a name, probe() and disconnect() 1042 * methods, and an id_table. Other driver fields are optional. 1043 * 1044 * The id_table is used in hotplugging. It holds a set of descriptors, 1045 * and specialized data may be associated with each entry. That table 1046 * is used by both user and kernel mode hotplugging support. 1047 * 1048 * The probe() and disconnect() methods are called in a context where 1049 * they can sleep, but they should avoid abusing the privilege. Most 1050 * work to connect to a device should be done when the device is opened, 1051 * and undone at the last close. The disconnect code needs to address 1052 * concurrency issues with respect to open() and close() methods, as 1053 * well as forcing all pending I/O requests to complete (by unlinking 1054 * them as necessary, and blocking until the unlinks complete). 1055 */ 1056struct usb_driver { 1057 const char *name; 1058 1059 int (*probe) (struct usb_interface *intf, 1060 const struct usb_device_id *id); 1061 1062 void (*disconnect) (struct usb_interface *intf); 1063 1064 int (*unlocked_ioctl) (struct usb_interface *intf, unsigned int code, 1065 void *buf); 1066 1067 int (*suspend) (struct usb_interface *intf, pm_message_t message); 1068 int (*resume) (struct usb_interface *intf); 1069 int (*reset_resume)(struct usb_interface *intf); 1070 1071 int (*pre_reset)(struct usb_interface *intf); 1072 int (*post_reset)(struct usb_interface *intf); 1073 1074 const struct usb_device_id *id_table; 1075 1076 struct usb_dynids dynids; 1077 struct usbdrv_wrap drvwrap; 1078 unsigned int no_dynamic_id:1; 1079 unsigned int supports_autosuspend:1; 1080 unsigned int disable_hub_initiated_lpm:1; 1081 unsigned int soft_unbind:1; 1082}; 1083#define to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver) 1084 1085/** 1086 * struct usb_device_driver - identifies USB device driver to usbcore 1087 * @name: The driver name should be unique among USB drivers, 1088 * and should normally be the same as the module name. 1089 * @probe: Called to see if the driver is willing to manage a particular 1090 * device. If it is, probe returns zero and uses dev_set_drvdata() 1091 * to associate driver-specific data with the device. If unwilling 1092 * to manage the device, return a negative errno value. 1093 * @disconnect: Called when the device is no longer accessible, usually 1094 * because it has been (or is being) disconnected or the driver's 1095 * module is being unloaded. 1096 * @suspend: Called when the device is going to be suspended by the system. 1097 * @resume: Called when the device is being resumed by the system. 1098 * @drvwrap: Driver-model core structure wrapper. 1099 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend 1100 * for devices bound to this driver. 1101 * 1102 * USB drivers must provide all the fields listed above except drvwrap. 1103 */ 1104struct usb_device_driver { 1105 const char *name; 1106 1107 int (*probe) (struct usb_device *udev); 1108 void (*disconnect) (struct usb_device *udev); 1109 1110 int (*suspend) (struct usb_device *udev, pm_message_t message); 1111 int (*resume) (struct usb_device *udev, pm_message_t message); 1112 struct usbdrv_wrap drvwrap; 1113 unsigned int supports_autosuspend:1; 1114}; 1115#define to_usb_device_driver(d) container_of(d, struct usb_device_driver, \ 1116 drvwrap.driver) 1117 1118extern struct bus_type usb_bus_type; 1119 1120/** 1121 * struct usb_class_driver - identifies a USB driver that wants to use the USB major number 1122 * @name: the usb class device name for this driver. Will show up in sysfs. 1123 * @devnode: Callback to provide a naming hint for a possible 1124 * device node to create. 1125 * @fops: pointer to the struct file_operations of this driver. 1126 * @minor_base: the start of the minor range for this driver. 1127 * 1128 * This structure is used for the usb_register_dev() and 1129 * usb_unregister_dev() functions, to consolidate a number of the 1130 * parameters used for them. 1131 */ 1132struct usb_class_driver { 1133 char *name; 1134 char *(*devnode)(struct device *dev, umode_t *mode); 1135 const struct file_operations *fops; 1136 int minor_base; 1137}; 1138 1139/* 1140 * use these in module_init()/module_exit() 1141 * and don't forget MODULE_DEVICE_TABLE(usb, ...) 1142 */ 1143extern int usb_register_driver(struct usb_driver *, struct module *, 1144 const char *); 1145 1146/* use a define to avoid include chaining to get THIS_MODULE & friends */ 1147#define usb_register(driver) \ 1148 usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME) 1149 1150extern void usb_deregister(struct usb_driver *); 1151 1152/** 1153 * module_usb_driver() - Helper macro for registering a USB driver 1154 * @__usb_driver: usb_driver struct 1155 * 1156 * Helper macro for USB drivers which do not do anything special in module 1157 * init/exit. This eliminates a lot of boilerplate. Each module may only 1158 * use this macro once, and calling it replaces module_init() and module_exit() 1159 */ 1160#define module_usb_driver(__usb_driver) \ 1161 module_driver(__usb_driver, usb_register, \ 1162 usb_deregister) 1163 1164extern int usb_register_device_driver(struct usb_device_driver *, 1165 struct module *); 1166extern void usb_deregister_device_driver(struct usb_device_driver *); 1167 1168extern int usb_register_dev(struct usb_interface *intf, 1169 struct usb_class_driver *class_driver); 1170extern void usb_deregister_dev(struct usb_interface *intf, 1171 struct usb_class_driver *class_driver); 1172 1173extern int usb_disabled(void); 1174 1175/* ----------------------------------------------------------------------- */ 1176 1177/* 1178 * URB support, for asynchronous request completions 1179 */ 1180 1181/* 1182 * urb->transfer_flags: 1183 * 1184 * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb(). 1185 */ 1186#define URB_SHORT_NOT_OK 0x0001 /* report short reads as errors */ 1187#define URB_ISO_ASAP 0x0002 /* iso-only; use the first unexpired 1188 * slot in the schedule */ 1189#define URB_NO_TRANSFER_DMA_MAP 0x0004 /* urb->transfer_dma valid on submit */ 1190#define URB_NO_FSBR 0x0020 /* UHCI-specific */ 1191#define URB_ZERO_PACKET 0x0040 /* Finish bulk OUT with short packet */ 1192#define URB_NO_INTERRUPT 0x0080 /* HINT: no non-error interrupt 1193 * needed */ 1194#define URB_FREE_BUFFER 0x0100 /* Free transfer buffer with the URB */ 1195 1196/* The following flags are used internally by usbcore and HCDs */ 1197#define URB_DIR_IN 0x0200 /* Transfer from device to host */ 1198#define URB_DIR_OUT 0 1199#define URB_DIR_MASK URB_DIR_IN 1200 1201#define URB_DMA_MAP_SINGLE 0x00010000 /* Non-scatter-gather mapping */ 1202#define URB_DMA_MAP_PAGE 0x00020000 /* HCD-unsupported S-G */ 1203#define URB_DMA_MAP_SG 0x00040000 /* HCD-supported S-G */ 1204#define URB_MAP_LOCAL 0x00080000 /* HCD-local-memory mapping */ 1205#define URB_SETUP_MAP_SINGLE 0x00100000 /* Setup packet DMA mapped */ 1206#define URB_SETUP_MAP_LOCAL 0x00200000 /* HCD-local setup packet */ 1207#define URB_DMA_SG_COMBINED 0x00400000 /* S-G entries were combined */ 1208#define URB_ALIGNED_TEMP_BUFFER 0x00800000 /* Temp buffer was alloc'd */ 1209 1210struct usb_iso_packet_descriptor { 1211 unsigned int offset; 1212 unsigned int length; /* expected length */ 1213 unsigned int actual_length; 1214 int status; 1215}; 1216 1217struct urb; 1218 1219struct usb_anchor { 1220 struct list_head urb_list; 1221 wait_queue_head_t wait; 1222 spinlock_t lock; 1223 atomic_t suspend_wakeups; 1224 unsigned int poisoned:1; 1225}; 1226 1227static inline void init_usb_anchor(struct usb_anchor *anchor) 1228{ 1229 memset(anchor, 0, sizeof(*anchor)); 1230 INIT_LIST_HEAD(&anchor->urb_list); 1231 init_waitqueue_head(&anchor->wait); 1232 spin_lock_init(&anchor->lock); 1233} 1234 1235typedef void (*usb_complete_t)(struct urb *); 1236 1237/** 1238 * struct urb - USB Request Block 1239 * @urb_list: For use by current owner of the URB. 1240 * @anchor_list: membership in the list of an anchor 1241 * @anchor: to anchor URBs to a common mooring 1242 * @ep: Points to the endpoint's data structure. Will eventually 1243 * replace @pipe. 1244 * @pipe: Holds endpoint number, direction, type, and more. 1245 * Create these values with the eight macros available; 1246 * usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl" 1247 * (control), "bulk", "int" (interrupt), or "iso" (isochronous). 1248 * For example usb_sndbulkpipe() or usb_rcvintpipe(). Endpoint 1249 * numbers range from zero to fifteen. Note that "in" endpoint two 1250 * is a different endpoint (and pipe) from "out" endpoint two. 1251 * The current configuration controls the existence, type, and 1252 * maximum packet size of any given endpoint. 1253 * @stream_id: the endpoint's stream ID for bulk streams 1254 * @dev: Identifies the USB device to perform the request. 1255 * @status: This is read in non-iso completion functions to get the 1256 * status of the particular request. ISO requests only use it 1257 * to tell whether the URB was unlinked; detailed status for 1258 * each frame is in the fields of the iso_frame-desc. 1259 * @transfer_flags: A variety of flags may be used to affect how URB 1260 * submission, unlinking, or operation are handled. Different 1261 * kinds of URB can use different flags. 1262 * @transfer_buffer: This identifies the buffer to (or from) which the I/O 1263 * request will be performed unless URB_NO_TRANSFER_DMA_MAP is set 1264 * (however, do not leave garbage in transfer_buffer even then). 1265 * This buffer must be suitable for DMA; allocate it with 1266 * kmalloc() or equivalent. For transfers to "in" endpoints, contents 1267 * of this buffer will be modified. This buffer is used for the data 1268 * stage of control transfers. 1269 * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP, 1270 * the device driver is saying that it provided this DMA address, 1271 * which the host controller driver should use in preference to the 1272 * transfer_buffer. 1273 * @sg: scatter gather buffer list, the buffer size of each element in 1274 * the list (except the last) must be divisible by the endpoint's 1275 * max packet size if no_sg_constraint isn't set in 'struct usb_bus' 1276 * @num_mapped_sgs: (internal) number of mapped sg entries 1277 * @num_sgs: number of entries in the sg list 1278 * @transfer_buffer_length: How big is transfer_buffer. The transfer may 1279 * be broken up into chunks according to the current maximum packet 1280 * size for the endpoint, which is a function of the configuration 1281 * and is encoded in the pipe. When the length is zero, neither 1282 * transfer_buffer nor transfer_dma is used. 1283 * @actual_length: This is read in non-iso completion functions, and 1284 * it tells how many bytes (out of transfer_buffer_length) were 1285 * transferred. It will normally be the same as requested, unless 1286 * either an error was reported or a short read was performed. 1287 * The URB_SHORT_NOT_OK transfer flag may be used to make such 1288 * short reads be reported as errors. 1289 * @setup_packet: Only used for control transfers, this points to eight bytes 1290 * of setup data. Control transfers always start by sending this data 1291 * to the device. Then transfer_buffer is read or written, if needed. 1292 * @setup_dma: DMA pointer for the setup packet. The caller must not use 1293 * this field; setup_packet must point to a valid buffer. 1294 * @start_frame: Returns the initial frame for isochronous transfers. 1295 * @number_of_packets: Lists the number of ISO transfer buffers. 1296 * @interval: Specifies the polling interval for interrupt or isochronous 1297 * transfers. The units are frames (milliseconds) for full and low 1298 * speed devices, and microframes (1/8 millisecond) for highspeed 1299 * and SuperSpeed devices. 1300 * @error_count: Returns the number of ISO transfers that reported errors. 1301 * @context: For use in completion functions. This normally points to 1302 * request-specific driver context. 1303 * @complete: Completion handler. This URB is passed as the parameter to the 1304 * completion function. The completion function may then do what 1305 * it likes with the URB, including resubmitting or freeing it. 1306 * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to 1307 * collect the transfer status for each buffer. 1308 * 1309 * This structure identifies USB transfer requests. URBs must be allocated by 1310 * calling usb_alloc_urb() and freed with a call to usb_free_urb(). 1311 * Initialization may be done using various usb_fill_*_urb() functions. URBs 1312 * are submitted using usb_submit_urb(), and pending requests may be canceled 1313 * using usb_unlink_urb() or usb_kill_urb(). 1314 * 1315 * Data Transfer Buffers: 1316 * 1317 * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise 1318 * taken from the general page pool. That is provided by transfer_buffer 1319 * (control requests also use setup_packet), and host controller drivers 1320 * perform a dma mapping (and unmapping) for each buffer transferred. Those 1321 * mapping operations can be expensive on some platforms (perhaps using a dma 1322 * bounce buffer or talking to an IOMMU), 1323 * although they're cheap on commodity x86 and ppc hardware. 1324 * 1325 * Alternatively, drivers may pass the URB_NO_TRANSFER_DMA_MAP transfer flag, 1326 * which tells the host controller driver that no such mapping is needed for 1327 * the transfer_buffer since 1328 * the device driver is DMA-aware. For example, a device driver might 1329 * allocate a DMA buffer with usb_alloc_coherent() or call usb_buffer_map(). 1330 * When this transfer flag is provided, host controller drivers will 1331 * attempt to use the dma address found in the transfer_dma 1332 * field rather than determining a dma address themselves. 1333 * 1334 * Note that transfer_buffer must still be set if the controller 1335 * does not support DMA (as indicated by bus.uses_dma) and when talking 1336 * to root hub. If you have to trasfer between highmem zone and the device 1337 * on such controller, create a bounce buffer or bail out with an error. 1338 * If transfer_buffer cannot be set (is in highmem) and the controller is DMA 1339 * capable, assign NULL to it, so that usbmon knows not to use the value. 1340 * The setup_packet must always be set, so it cannot be located in highmem. 1341 * 1342 * Initialization: 1343 * 1344 * All URBs submitted must initialize the dev, pipe, transfer_flags (may be 1345 * zero), and complete fields. All URBs must also initialize 1346 * transfer_buffer and transfer_buffer_length. They may provide the 1347 * URB_SHORT_NOT_OK transfer flag, indicating that short reads are 1348 * to be treated as errors; that flag is invalid for write requests. 1349 * 1350 * Bulk URBs may 1351 * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers 1352 * should always terminate with a short packet, even if it means adding an 1353 * extra zero length packet. 1354 * 1355 * Control URBs must provide a valid pointer in the setup_packet field. 1356 * Unlike the transfer_buffer, the setup_packet may not be mapped for DMA 1357 * beforehand. 1358 * 1359 * Interrupt URBs must provide an interval, saying how often (in milliseconds 1360 * or, for highspeed devices, 125 microsecond units) 1361 * to poll for transfers. After the URB has been submitted, the interval 1362 * field reflects how the transfer was actually scheduled. 1363 * The polling interval may be more frequent than requested. 1364 * For example, some controllers have a maximum interval of 32 milliseconds, 1365 * while others support intervals of up to 1024 milliseconds. 1366 * Isochronous URBs also have transfer intervals. (Note that for isochronous 1367 * endpoints, as well as high speed interrupt endpoints, the encoding of 1368 * the transfer interval in the endpoint descriptor is logarithmic. 1369 * Device drivers must convert that value to linear units themselves.) 1370 * 1371 * If an isochronous endpoint queue isn't already running, the host 1372 * controller will schedule a new URB to start as soon as bandwidth 1373 * utilization allows. If the queue is running then a new URB will be 1374 * scheduled to start in the first transfer slot following the end of the 1375 * preceding URB, if that slot has not already expired. If the slot has 1376 * expired (which can happen when IRQ delivery is delayed for a long time), 1377 * the scheduling behavior depends on the URB_ISO_ASAP flag. If the flag 1378 * is clear then the URB will be scheduled to start in the expired slot, 1379 * implying that some of its packets will not be transferred; if the flag 1380 * is set then the URB will be scheduled in the first unexpired slot, 1381 * breaking the queue's synchronization. Upon URB completion, the 1382 * start_frame field will be set to the (micro)frame number in which the 1383 * transfer was scheduled. Ranges for frame counter values are HC-specific 1384 * and can go from as low as 256 to as high as 65536 frames. 1385 * 1386 * Isochronous URBs have a different data transfer model, in part because 1387 * the quality of service is only "best effort". Callers provide specially 1388 * allocated URBs, with number_of_packets worth of iso_frame_desc structures 1389 * at the end. Each such packet is an individual ISO transfer. Isochronous 1390 * URBs are normally queued, submitted by drivers to arrange that 1391 * transfers are at least double buffered, and then explicitly resubmitted 1392 * in completion handlers, so 1393 * that data (such as audio or video) streams at as constant a rate as the 1394 * host controller scheduler can support. 1395 * 1396 * Completion Callbacks: 1397 * 1398 * The completion callback is made in_interrupt(), and one of the first 1399 * things that a completion handler should do is check the status field. 1400 * The status field is provided for all URBs. It is used to report 1401 * unlinked URBs, and status for all non-ISO transfers. It should not 1402 * be examined before the URB is returned to the completion handler. 1403 * 1404 * The context field is normally used to link URBs back to the relevant 1405 * driver or request state. 1406 * 1407 * When the completion callback is invoked for non-isochronous URBs, the 1408 * actual_length field tells how many bytes were transferred. This field 1409 * is updated even when the URB terminated with an error or was unlinked. 1410 * 1411 * ISO transfer status is reported in the status and actual_length fields 1412 * of the iso_frame_desc array, and the number of errors is reported in 1413 * error_count. Completion callbacks for ISO transfers will normally 1414 * (re)submit URBs to ensure a constant transfer rate. 1415 * 1416 * Note that even fields marked "public" should not be touched by the driver 1417 * when the urb is owned by the hcd, that is, since the call to 1418 * usb_submit_urb() till the entry into the completion routine. 1419 */ 1420struct urb { 1421 /* private: usb core and host controller only fields in the urb */ 1422 struct kref kref; /* reference count of the URB */ 1423 void *hcpriv; /* private data for host controller */ 1424 atomic_t use_count; /* concurrent submissions counter */ 1425 atomic_t reject; /* submissions will fail */ 1426 int unlinked; /* unlink error code */ 1427 1428 /* public: documented fields in the urb that can be used by drivers */ 1429 struct list_head urb_list; /* list head for use by the urb's 1430 * current owner */ 1431 struct list_head anchor_list; /* the URB may be anchored */ 1432 struct usb_anchor *anchor; 1433 struct usb_device *dev; /* (in) pointer to associated device */ 1434 struct usb_host_endpoint *ep; /* (internal) pointer to endpoint */ 1435 unsigned int pipe; /* (in) pipe information */ 1436 unsigned int stream_id; /* (in) stream ID */ 1437 int status; /* (return) non-ISO status */ 1438 unsigned int transfer_flags; /* (in) URB_SHORT_NOT_OK | ...*/ 1439 void *transfer_buffer; /* (in) associated data buffer */ 1440 dma_addr_t transfer_dma; /* (in) dma addr for transfer_buffer */ 1441 struct scatterlist *sg; /* (in) scatter gather buffer list */ 1442 int num_mapped_sgs; /* (internal) mapped sg entries */ 1443 int num_sgs; /* (in) number of entries in the sg list */ 1444 u32 transfer_buffer_length; /* (in) data buffer length */ 1445 u32 actual_length; /* (return) actual transfer length */ 1446 unsigned char *setup_packet; /* (in) setup packet (control only) */ 1447 dma_addr_t setup_dma; /* (in) dma addr for setup_packet */ 1448 int start_frame; /* (modify) start frame (ISO) */ 1449 int number_of_packets; /* (in) number of ISO packets */ 1450 int interval; /* (modify) transfer interval 1451 * (INT/ISO) */ 1452 int error_count; /* (return) number of ISO errors */ 1453 void *context; /* (in) context for completion */ 1454 usb_complete_t complete; /* (in) completion routine */ 1455 struct usb_iso_packet_descriptor iso_frame_desc[0]; 1456 /* (in) ISO ONLY */ 1457}; 1458 1459/* ----------------------------------------------------------------------- */ 1460 1461/** 1462 * usb_fill_control_urb - initializes a control urb 1463 * @urb: pointer to the urb to initialize. 1464 * @dev: pointer to the struct usb_device for this urb. 1465 * @pipe: the endpoint pipe 1466 * @setup_packet: pointer to the setup_packet buffer 1467 * @transfer_buffer: pointer to the transfer buffer 1468 * @buffer_length: length of the transfer buffer 1469 * @complete_fn: pointer to the usb_complete_t function 1470 * @context: what to set the urb context to. 1471 * 1472 * Initializes a control urb with the proper information needed to submit 1473 * it to a device. 1474 */ 1475static inline void usb_fill_control_urb(struct urb *urb, 1476 struct usb_device *dev, 1477 unsigned int pipe, 1478 unsigned char *setup_packet, 1479 void *transfer_buffer, 1480 int buffer_length, 1481 usb_complete_t complete_fn, 1482 void *context) 1483{ 1484 urb->dev = dev; 1485 urb->pipe = pipe; 1486 urb->setup_packet = setup_packet; 1487 urb->transfer_buffer = transfer_buffer; 1488 urb->transfer_buffer_length = buffer_length; 1489 urb->complete = complete_fn; 1490 urb->context = context; 1491} 1492 1493/** 1494 * usb_fill_bulk_urb - macro to help initialize a bulk urb 1495 * @urb: pointer to the urb to initialize. 1496 * @dev: pointer to the struct usb_device for this urb. 1497 * @pipe: the endpoint pipe 1498 * @transfer_buffer: pointer to the transfer buffer 1499 * @buffer_length: length of the transfer buffer 1500 * @complete_fn: pointer to the usb_complete_t function 1501 * @context: what to set the urb context to. 1502 * 1503 * Initializes a bulk urb with the proper information needed to submit it 1504 * to a device. 1505 */ 1506static inline void usb_fill_bulk_urb(struct urb *urb, 1507 struct usb_device *dev, 1508 unsigned int pipe, 1509 void *transfer_buffer, 1510 int buffer_length, 1511 usb_complete_t complete_fn, 1512 void *context) 1513{ 1514 urb->dev = dev; 1515 urb->pipe = pipe; 1516 urb->transfer_buffer = transfer_buffer; 1517 urb->transfer_buffer_length = buffer_length; 1518 urb->complete = complete_fn; 1519 urb->context = context; 1520} 1521 1522/** 1523 * usb_fill_int_urb - macro to help initialize a interrupt urb 1524 * @urb: pointer to the urb to initialize. 1525 * @dev: pointer to the struct usb_device for this urb. 1526 * @pipe: the endpoint pipe 1527 * @transfer_buffer: pointer to the transfer buffer 1528 * @buffer_length: length of the transfer buffer 1529 * @complete_fn: pointer to the usb_complete_t function 1530 * @context: what to set the urb context to. 1531 * @interval: what to set the urb interval to, encoded like 1532 * the endpoint descriptor's bInterval value. 1533 * 1534 * Initializes a interrupt urb with the proper information needed to submit 1535 * it to a device. 1536 * 1537 * Note that High Speed and SuperSpeed interrupt endpoints use a logarithmic 1538 * encoding of the endpoint interval, and express polling intervals in 1539 * microframes (eight per millisecond) rather than in frames (one per 1540 * millisecond). 1541 * 1542 * Wireless USB also uses the logarithmic encoding, but specifies it in units of 1543 * 128us instead of 125us. For Wireless USB devices, the interval is passed 1544 * through to the host controller, rather than being translated into microframe 1545 * units. 1546 */ 1547static inline void usb_fill_int_urb(struct urb *urb, 1548 struct usb_device *dev, 1549 unsigned int pipe, 1550 void *transfer_buffer, 1551 int buffer_length, 1552 usb_complete_t complete_fn, 1553 void *context, 1554 int interval) 1555{ 1556 urb->dev = dev; 1557 urb->pipe = pipe; 1558 urb->transfer_buffer = transfer_buffer; 1559 urb->transfer_buffer_length = buffer_length; 1560 urb->complete = complete_fn; 1561 urb->context = context; 1562 1563 if (dev->speed == USB_SPEED_HIGH || dev->speed == USB_SPEED_SUPER) { 1564 /* make sure interval is within allowed range */ 1565 interval = clamp(interval, 1, 16); 1566 1567 urb->interval = 1 << (interval - 1); 1568 } else { 1569 urb->interval = interval; 1570 } 1571 1572 urb->start_frame = -1; 1573} 1574 1575extern void usb_init_urb(struct urb *urb); 1576extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags); 1577extern void usb_free_urb(struct urb *urb); 1578#define usb_put_urb usb_free_urb 1579extern struct urb *usb_get_urb(struct urb *urb); 1580extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags); 1581extern int usb_unlink_urb(struct urb *urb); 1582extern void usb_kill_urb(struct urb *urb); 1583extern void usb_poison_urb(struct urb *urb); 1584extern void usb_unpoison_urb(struct urb *urb); 1585extern void usb_block_urb(struct urb *urb); 1586extern void usb_kill_anchored_urbs(struct usb_anchor *anchor); 1587extern void usb_poison_anchored_urbs(struct usb_anchor *anchor); 1588extern void usb_unpoison_anchored_urbs(struct usb_anchor *anchor); 1589extern void usb_unlink_anchored_urbs(struct usb_anchor *anchor); 1590extern void usb_anchor_suspend_wakeups(struct usb_anchor *anchor); 1591extern void usb_anchor_resume_wakeups(struct usb_anchor *anchor); 1592extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor); 1593extern void usb_unanchor_urb(struct urb *urb); 1594extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor, 1595 unsigned int timeout); 1596extern struct urb *usb_get_from_anchor(struct usb_anchor *anchor); 1597extern void usb_scuttle_anchored_urbs(struct usb_anchor *anchor); 1598extern int usb_anchor_empty(struct usb_anchor *anchor); 1599 1600#define usb_unblock_urb usb_unpoison_urb 1601 1602/** 1603 * usb_urb_dir_in - check if an URB describes an IN transfer 1604 * @urb: URB to be checked 1605 * 1606 * Return: 1 if @urb describes an IN transfer (device-to-host), 1607 * otherwise 0. 1608 */ 1609static inline int usb_urb_dir_in(struct urb *urb) 1610{ 1611 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN; 1612} 1613 1614/** 1615 * usb_urb_dir_out - check if an URB describes an OUT transfer 1616 * @urb: URB to be checked 1617 * 1618 * Return: 1 if @urb describes an OUT transfer (host-to-device), 1619 * otherwise 0. 1620 */ 1621static inline int usb_urb_dir_out(struct urb *urb) 1622{ 1623 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT; 1624} 1625 1626void *usb_alloc_coherent(struct usb_device *dev, size_t size, 1627 gfp_t mem_flags, dma_addr_t *dma); 1628void usb_free_coherent(struct usb_device *dev, size_t size, 1629 void *addr, dma_addr_t dma); 1630 1631#if 0 1632struct urb *usb_buffer_map(struct urb *urb); 1633void usb_buffer_dmasync(struct urb *urb); 1634void usb_buffer_unmap(struct urb *urb); 1635#endif 1636 1637struct scatterlist; 1638int usb_buffer_map_sg(const struct usb_device *dev, int is_in, 1639 struct scatterlist *sg, int nents); 1640#if 0 1641void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in, 1642 struct scatterlist *sg, int n_hw_ents); 1643#endif 1644void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in, 1645 struct scatterlist *sg, int n_hw_ents); 1646 1647/*-------------------------------------------------------------------* 1648 * SYNCHRONOUS CALL SUPPORT * 1649 *-------------------------------------------------------------------*/ 1650 1651extern int usb_control_msg(struct usb_device *dev, unsigned int pipe, 1652 __u8 request, __u8 requesttype, __u16 value, __u16 index, 1653 void *data, __u16 size, int timeout); 1654extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe, 1655 void *data, int len, int *actual_length, int timeout); 1656extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe, 1657 void *data, int len, int *actual_length, 1658 int timeout); 1659 1660/* wrappers around usb_control_msg() for the most common standard requests */ 1661extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype, 1662 unsigned char descindex, void *buf, int size); 1663extern int usb_get_status(struct usb_device *dev, 1664 int type, int target, void *data); 1665extern int usb_string(struct usb_device *dev, int index, 1666 char *buf, size_t size); 1667 1668/* wrappers that also update important state inside usbcore */ 1669extern int usb_clear_halt(struct usb_device *dev, int pipe); 1670extern int usb_reset_configuration(struct usb_device *dev); 1671extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate); 1672extern void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr); 1673 1674/* this request isn't really synchronous, but it belongs with the others */ 1675extern int usb_driver_set_configuration(struct usb_device *udev, int config); 1676 1677/* choose and set configuration for device */ 1678extern int usb_choose_configuration(struct usb_device *udev); 1679extern int usb_set_configuration(struct usb_device *dev, int configuration); 1680 1681/* 1682 * timeouts, in milliseconds, used for sending/receiving control messages 1683 * they typically complete within a few frames (msec) after they're issued 1684 * USB identifies 5 second timeouts, maybe more in a few cases, and a few 1685 * slow devices (like some MGE Ellipse UPSes) actually push that limit. 1686 */ 1687#define USB_CTRL_GET_TIMEOUT 5000 1688#define USB_CTRL_SET_TIMEOUT 5000 1689 1690 1691/** 1692 * struct usb_sg_request - support for scatter/gather I/O 1693 * @status: zero indicates success, else negative errno 1694 * @bytes: counts bytes transferred. 1695 * 1696 * These requests are initialized using usb_sg_init(), and then are used 1697 * as request handles passed to usb_sg_wait() or usb_sg_cancel(). Most 1698 * members of the request object aren't for driver access. 1699 * 1700 * The status and bytecount values are valid only after usb_sg_wait() 1701 * returns. If the status is zero, then the bytecount matches the total 1702 * from the request. 1703 * 1704 * After an error completion, drivers may need to clear a halt condition 1705 * on the endpoint. 1706 */ 1707struct usb_sg_request { 1708 int status; 1709 size_t bytes; 1710 1711 /* private: 1712 * members below are private to usbcore, 1713 * and are not provided for driver access! 1714 */ 1715 spinlock_t lock; 1716 1717 struct usb_device *dev; 1718 int pipe; 1719 1720 int entries; 1721 struct urb **urbs; 1722 1723 int count; 1724 struct completion complete; 1725}; 1726 1727int usb_sg_init( 1728 struct usb_sg_request *io, 1729 struct usb_device *dev, 1730 unsigned pipe, 1731 unsigned period, 1732 struct scatterlist *sg, 1733 int nents, 1734 size_t length, 1735 gfp_t mem_flags 1736); 1737void usb_sg_cancel(struct usb_sg_request *io); 1738void usb_sg_wait(struct usb_sg_request *io); 1739 1740 1741/* ----------------------------------------------------------------------- */ 1742 1743/* 1744 * For various legacy reasons, Linux has a small cookie that's paired with 1745 * a struct usb_device to identify an endpoint queue. Queue characteristics 1746 * are defined by the endpoint's descriptor. This cookie is called a "pipe", 1747 * an unsigned int encoded as: 1748 * 1749 * - direction: bit 7 (0 = Host-to-Device [Out], 1750 * 1 = Device-to-Host [In] ... 1751 * like endpoint bEndpointAddress) 1752 * - device address: bits 8-14 ... bit positions known to uhci-hcd 1753 * - endpoint: bits 15-18 ... bit positions known to uhci-hcd 1754 * - pipe type: bits 30-31 (00 = isochronous, 01 = interrupt, 1755 * 10 = control, 11 = bulk) 1756 * 1757 * Given the device address and endpoint descriptor, pipes are redundant. 1758 */ 1759 1760/* NOTE: these are not the standard USB_ENDPOINT_XFER_* values!! */ 1761/* (yet ... they're the values used by usbfs) */ 1762#define PIPE_ISOCHRONOUS 0 1763#define PIPE_INTERRUPT 1 1764#define PIPE_CONTROL 2 1765#define PIPE_BULK 3 1766 1767#define usb_pipein(pipe) ((pipe) & USB_DIR_IN) 1768#define usb_pipeout(pipe) (!usb_pipein(pipe)) 1769 1770#define usb_pipedevice(pipe) (((pipe) >> 8) & 0x7f) 1771#define usb_pipeendpoint(pipe) (((pipe) >> 15) & 0xf) 1772 1773#define usb_pipetype(pipe) (((pipe) >> 30) & 3) 1774#define usb_pipeisoc(pipe) (usb_pipetype((pipe)) == PIPE_ISOCHRONOUS) 1775#define usb_pipeint(pipe) (usb_pipetype((pipe)) == PIPE_INTERRUPT) 1776#define usb_pipecontrol(pipe) (usb_pipetype((pipe)) == PIPE_CONTROL) 1777#define usb_pipebulk(pipe) (usb_pipetype((pipe)) == PIPE_BULK) 1778 1779static inline unsigned int __create_pipe(struct usb_device *dev, 1780 unsigned int endpoint) 1781{ 1782 return (dev->devnum << 8) | (endpoint << 15); 1783} 1784 1785/* Create various pipes... */ 1786#define usb_sndctrlpipe(dev, endpoint) \ 1787 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint)) 1788#define usb_rcvctrlpipe(dev, endpoint) \ 1789 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1790#define usb_sndisocpipe(dev, endpoint) \ 1791 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint)) 1792#define usb_rcvisocpipe(dev, endpoint) \ 1793 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1794#define usb_sndbulkpipe(dev, endpoint) \ 1795 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint)) 1796#define usb_rcvbulkpipe(dev, endpoint) \ 1797 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1798#define usb_sndintpipe(dev, endpoint) \ 1799 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint)) 1800#define usb_rcvintpipe(dev, endpoint) \ 1801 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN) 1802 1803static inline struct usb_host_endpoint * 1804usb_pipe_endpoint(struct usb_device *dev, unsigned int pipe) 1805{ 1806 struct usb_host_endpoint **eps; 1807 eps = usb_pipein(pipe) ? dev->ep_in : dev->ep_out; 1808 return eps[usb_pipeendpoint(pipe)]; 1809} 1810 1811/*-------------------------------------------------------------------------*/ 1812 1813static inline __u16 1814usb_maxpacket(struct usb_device *udev, int pipe, int is_out) 1815{ 1816 struct usb_host_endpoint *ep; 1817 unsigned epnum = usb_pipeendpoint(pipe); 1818 1819 if (is_out) { 1820 WARN_ON(usb_pipein(pipe)); 1821 ep = udev->ep_out[epnum]; 1822 } else { 1823 WARN_ON(usb_pipeout(pipe)); 1824 ep = udev->ep_in[epnum]; 1825 } 1826 if (!ep) 1827 return 0; 1828 1829 /* NOTE: only 0x07ff bits are for packet size... */ 1830 return usb_endpoint_maxp(&ep->desc); 1831} 1832 1833/* ----------------------------------------------------------------------- */ 1834 1835/* translate USB error codes to codes user space understands */ 1836static inline int usb_translate_errors(int error_code) 1837{ 1838 switch (error_code) { 1839 case 0: 1840 case -ENOMEM: 1841 case -ENODEV: 1842 case -EOPNOTSUPP: 1843 return error_code; 1844 default: 1845 return -EIO; 1846 } 1847} 1848 1849/* Events from the usb core */ 1850#define USB_DEVICE_ADD 0x0001 1851#define USB_DEVICE_REMOVE 0x0002 1852#define USB_BUS_ADD 0x0003 1853#define USB_BUS_REMOVE 0x0004 1854extern void usb_register_notify(struct notifier_block *nb); 1855extern void usb_unregister_notify(struct notifier_block *nb); 1856 1857/* debugfs stuff */ 1858extern struct dentry *usb_debug_root; 1859 1860/* LED triggers */ 1861enum usb_led_event { 1862 USB_LED_EVENT_HOST = 0, 1863 USB_LED_EVENT_GADGET = 1, 1864}; 1865 1866#ifdef CONFIG_USB_LED_TRIG 1867extern void usb_led_activity(enum usb_led_event ev); 1868#else 1869static inline void usb_led_activity(enum usb_led_event ev) {} 1870#endif 1871 1872#endif /* __KERNEL__ */ 1873 1874#endif