at v4.0 27 kB view raw
1/* 2 * Performance events: 3 * 4 * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de> 5 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra 7 * 8 * Data type definitions, declarations, prototypes. 9 * 10 * Started by: Thomas Gleixner and Ingo Molnar 11 * 12 * For licencing details see kernel-base/COPYING 13 */ 14#ifndef _LINUX_PERF_EVENT_H 15#define _LINUX_PERF_EVENT_H 16 17#include <uapi/linux/perf_event.h> 18 19/* 20 * Kernel-internal data types and definitions: 21 */ 22 23#ifdef CONFIG_PERF_EVENTS 24# include <asm/perf_event.h> 25# include <asm/local64.h> 26#endif 27 28struct perf_guest_info_callbacks { 29 int (*is_in_guest)(void); 30 int (*is_user_mode)(void); 31 unsigned long (*get_guest_ip)(void); 32}; 33 34#ifdef CONFIG_HAVE_HW_BREAKPOINT 35#include <asm/hw_breakpoint.h> 36#endif 37 38#include <linux/list.h> 39#include <linux/mutex.h> 40#include <linux/rculist.h> 41#include <linux/rcupdate.h> 42#include <linux/spinlock.h> 43#include <linux/hrtimer.h> 44#include <linux/fs.h> 45#include <linux/pid_namespace.h> 46#include <linux/workqueue.h> 47#include <linux/ftrace.h> 48#include <linux/cpu.h> 49#include <linux/irq_work.h> 50#include <linux/static_key.h> 51#include <linux/jump_label_ratelimit.h> 52#include <linux/atomic.h> 53#include <linux/sysfs.h> 54#include <linux/perf_regs.h> 55#include <linux/workqueue.h> 56#include <asm/local.h> 57 58struct perf_callchain_entry { 59 __u64 nr; 60 __u64 ip[PERF_MAX_STACK_DEPTH]; 61}; 62 63struct perf_raw_record { 64 u32 size; 65 void *data; 66}; 67 68/* 69 * branch stack layout: 70 * nr: number of taken branches stored in entries[] 71 * 72 * Note that nr can vary from sample to sample 73 * branches (to, from) are stored from most recent 74 * to least recent, i.e., entries[0] contains the most 75 * recent branch. 76 */ 77struct perf_branch_stack { 78 __u64 nr; 79 struct perf_branch_entry entries[0]; 80}; 81 82struct task_struct; 83 84/* 85 * extra PMU register associated with an event 86 */ 87struct hw_perf_event_extra { 88 u64 config; /* register value */ 89 unsigned int reg; /* register address or index */ 90 int alloc; /* extra register already allocated */ 91 int idx; /* index in shared_regs->regs[] */ 92}; 93 94struct event_constraint; 95 96/** 97 * struct hw_perf_event - performance event hardware details: 98 */ 99struct hw_perf_event { 100#ifdef CONFIG_PERF_EVENTS 101 union { 102 struct { /* hardware */ 103 u64 config; 104 u64 last_tag; 105 unsigned long config_base; 106 unsigned long event_base; 107 int event_base_rdpmc; 108 int idx; 109 int last_cpu; 110 int flags; 111 112 struct hw_perf_event_extra extra_reg; 113 struct hw_perf_event_extra branch_reg; 114 115 struct event_constraint *constraint; 116 }; 117 struct { /* software */ 118 struct hrtimer hrtimer; 119 }; 120 struct { /* tracepoint */ 121 struct task_struct *tp_target; 122 /* for tp_event->class */ 123 struct list_head tp_list; 124 }; 125#ifdef CONFIG_HAVE_HW_BREAKPOINT 126 struct { /* breakpoint */ 127 /* 128 * Crufty hack to avoid the chicken and egg 129 * problem hw_breakpoint has with context 130 * creation and event initalization. 131 */ 132 struct task_struct *bp_target; 133 struct arch_hw_breakpoint info; 134 struct list_head bp_list; 135 }; 136#endif 137 }; 138 int state; 139 local64_t prev_count; 140 u64 sample_period; 141 u64 last_period; 142 local64_t period_left; 143 u64 interrupts_seq; 144 u64 interrupts; 145 146 u64 freq_time_stamp; 147 u64 freq_count_stamp; 148#endif 149}; 150 151/* 152 * hw_perf_event::state flags 153 */ 154#define PERF_HES_STOPPED 0x01 /* the counter is stopped */ 155#define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */ 156#define PERF_HES_ARCH 0x04 157 158struct perf_event; 159 160/* 161 * Common implementation detail of pmu::{start,commit,cancel}_txn 162 */ 163#define PERF_EVENT_TXN 0x1 164 165/** 166 * pmu::capabilities flags 167 */ 168#define PERF_PMU_CAP_NO_INTERRUPT 0x01 169 170/** 171 * struct pmu - generic performance monitoring unit 172 */ 173struct pmu { 174 struct list_head entry; 175 176 struct module *module; 177 struct device *dev; 178 const struct attribute_group **attr_groups; 179 const char *name; 180 int type; 181 182 /* 183 * various common per-pmu feature flags 184 */ 185 int capabilities; 186 187 int * __percpu pmu_disable_count; 188 struct perf_cpu_context * __percpu pmu_cpu_context; 189 int task_ctx_nr; 190 int hrtimer_interval_ms; 191 192 /* 193 * Fully disable/enable this PMU, can be used to protect from the PMI 194 * as well as for lazy/batch writing of the MSRs. 195 */ 196 void (*pmu_enable) (struct pmu *pmu); /* optional */ 197 void (*pmu_disable) (struct pmu *pmu); /* optional */ 198 199 /* 200 * Try and initialize the event for this PMU. 201 * Should return -ENOENT when the @event doesn't match this PMU. 202 */ 203 int (*event_init) (struct perf_event *event); 204 205 /* 206 * Notification that the event was mapped or unmapped. Called 207 * in the context of the mapping task. 208 */ 209 void (*event_mapped) (struct perf_event *event); /*optional*/ 210 void (*event_unmapped) (struct perf_event *event); /*optional*/ 211 212#define PERF_EF_START 0x01 /* start the counter when adding */ 213#define PERF_EF_RELOAD 0x02 /* reload the counter when starting */ 214#define PERF_EF_UPDATE 0x04 /* update the counter when stopping */ 215 216 /* 217 * Adds/Removes a counter to/from the PMU, can be done inside 218 * a transaction, see the ->*_txn() methods. 219 */ 220 int (*add) (struct perf_event *event, int flags); 221 void (*del) (struct perf_event *event, int flags); 222 223 /* 224 * Starts/Stops a counter present on the PMU. The PMI handler 225 * should stop the counter when perf_event_overflow() returns 226 * !0. ->start() will be used to continue. 227 */ 228 void (*start) (struct perf_event *event, int flags); 229 void (*stop) (struct perf_event *event, int flags); 230 231 /* 232 * Updates the counter value of the event. 233 */ 234 void (*read) (struct perf_event *event); 235 236 /* 237 * Group events scheduling is treated as a transaction, add 238 * group events as a whole and perform one schedulability test. 239 * If the test fails, roll back the whole group 240 * 241 * Start the transaction, after this ->add() doesn't need to 242 * do schedulability tests. 243 */ 244 void (*start_txn) (struct pmu *pmu); /* optional */ 245 /* 246 * If ->start_txn() disabled the ->add() schedulability test 247 * then ->commit_txn() is required to perform one. On success 248 * the transaction is closed. On error the transaction is kept 249 * open until ->cancel_txn() is called. 250 */ 251 int (*commit_txn) (struct pmu *pmu); /* optional */ 252 /* 253 * Will cancel the transaction, assumes ->del() is called 254 * for each successful ->add() during the transaction. 255 */ 256 void (*cancel_txn) (struct pmu *pmu); /* optional */ 257 258 /* 259 * Will return the value for perf_event_mmap_page::index for this event, 260 * if no implementation is provided it will default to: event->hw.idx + 1. 261 */ 262 int (*event_idx) (struct perf_event *event); /*optional */ 263 264 /* 265 * flush branch stack on context-switches (needed in cpu-wide mode) 266 */ 267 void (*flush_branch_stack) (void); 268}; 269 270/** 271 * enum perf_event_active_state - the states of a event 272 */ 273enum perf_event_active_state { 274 PERF_EVENT_STATE_EXIT = -3, 275 PERF_EVENT_STATE_ERROR = -2, 276 PERF_EVENT_STATE_OFF = -1, 277 PERF_EVENT_STATE_INACTIVE = 0, 278 PERF_EVENT_STATE_ACTIVE = 1, 279}; 280 281struct file; 282struct perf_sample_data; 283 284typedef void (*perf_overflow_handler_t)(struct perf_event *, 285 struct perf_sample_data *, 286 struct pt_regs *regs); 287 288enum perf_group_flag { 289 PERF_GROUP_SOFTWARE = 0x1, 290}; 291 292#define SWEVENT_HLIST_BITS 8 293#define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS) 294 295struct swevent_hlist { 296 struct hlist_head heads[SWEVENT_HLIST_SIZE]; 297 struct rcu_head rcu_head; 298}; 299 300#define PERF_ATTACH_CONTEXT 0x01 301#define PERF_ATTACH_GROUP 0x02 302#define PERF_ATTACH_TASK 0x04 303 304struct perf_cgroup; 305struct ring_buffer; 306 307/** 308 * struct perf_event - performance event kernel representation: 309 */ 310struct perf_event { 311#ifdef CONFIG_PERF_EVENTS 312 /* 313 * entry onto perf_event_context::event_list; 314 * modifications require ctx->lock 315 * RCU safe iterations. 316 */ 317 struct list_head event_entry; 318 319 /* 320 * XXX: group_entry and sibling_list should be mutually exclusive; 321 * either you're a sibling on a group, or you're the group leader. 322 * Rework the code to always use the same list element. 323 * 324 * Locked for modification by both ctx->mutex and ctx->lock; holding 325 * either sufficies for read. 326 */ 327 struct list_head group_entry; 328 struct list_head sibling_list; 329 330 /* 331 * We need storage to track the entries in perf_pmu_migrate_context; we 332 * cannot use the event_entry because of RCU and we want to keep the 333 * group in tact which avoids us using the other two entries. 334 */ 335 struct list_head migrate_entry; 336 337 struct hlist_node hlist_entry; 338 struct list_head active_entry; 339 int nr_siblings; 340 int group_flags; 341 struct perf_event *group_leader; 342 struct pmu *pmu; 343 344 enum perf_event_active_state state; 345 unsigned int attach_state; 346 local64_t count; 347 atomic64_t child_count; 348 349 /* 350 * These are the total time in nanoseconds that the event 351 * has been enabled (i.e. eligible to run, and the task has 352 * been scheduled in, if this is a per-task event) 353 * and running (scheduled onto the CPU), respectively. 354 * 355 * They are computed from tstamp_enabled, tstamp_running and 356 * tstamp_stopped when the event is in INACTIVE or ACTIVE state. 357 */ 358 u64 total_time_enabled; 359 u64 total_time_running; 360 361 /* 362 * These are timestamps used for computing total_time_enabled 363 * and total_time_running when the event is in INACTIVE or 364 * ACTIVE state, measured in nanoseconds from an arbitrary point 365 * in time. 366 * tstamp_enabled: the notional time when the event was enabled 367 * tstamp_running: the notional time when the event was scheduled on 368 * tstamp_stopped: in INACTIVE state, the notional time when the 369 * event was scheduled off. 370 */ 371 u64 tstamp_enabled; 372 u64 tstamp_running; 373 u64 tstamp_stopped; 374 375 /* 376 * timestamp shadows the actual context timing but it can 377 * be safely used in NMI interrupt context. It reflects the 378 * context time as it was when the event was last scheduled in. 379 * 380 * ctx_time already accounts for ctx->timestamp. Therefore to 381 * compute ctx_time for a sample, simply add perf_clock(). 382 */ 383 u64 shadow_ctx_time; 384 385 struct perf_event_attr attr; 386 u16 header_size; 387 u16 id_header_size; 388 u16 read_size; 389 struct hw_perf_event hw; 390 391 struct perf_event_context *ctx; 392 atomic_long_t refcount; 393 394 /* 395 * These accumulate total time (in nanoseconds) that children 396 * events have been enabled and running, respectively. 397 */ 398 atomic64_t child_total_time_enabled; 399 atomic64_t child_total_time_running; 400 401 /* 402 * Protect attach/detach and child_list: 403 */ 404 struct mutex child_mutex; 405 struct list_head child_list; 406 struct perf_event *parent; 407 408 int oncpu; 409 int cpu; 410 411 struct list_head owner_entry; 412 struct task_struct *owner; 413 414 /* mmap bits */ 415 struct mutex mmap_mutex; 416 atomic_t mmap_count; 417 418 struct ring_buffer *rb; 419 struct list_head rb_entry; 420 unsigned long rcu_batches; 421 int rcu_pending; 422 423 /* poll related */ 424 wait_queue_head_t waitq; 425 struct fasync_struct *fasync; 426 427 /* delayed work for NMIs and such */ 428 int pending_wakeup; 429 int pending_kill; 430 int pending_disable; 431 struct irq_work pending; 432 433 atomic_t event_limit; 434 435 void (*destroy)(struct perf_event *); 436 struct rcu_head rcu_head; 437 438 struct pid_namespace *ns; 439 u64 id; 440 441 perf_overflow_handler_t overflow_handler; 442 void *overflow_handler_context; 443 444#ifdef CONFIG_EVENT_TRACING 445 struct ftrace_event_call *tp_event; 446 struct event_filter *filter; 447#ifdef CONFIG_FUNCTION_TRACER 448 struct ftrace_ops ftrace_ops; 449#endif 450#endif 451 452#ifdef CONFIG_CGROUP_PERF 453 struct perf_cgroup *cgrp; /* cgroup event is attach to */ 454 int cgrp_defer_enabled; 455#endif 456 457#endif /* CONFIG_PERF_EVENTS */ 458}; 459 460/** 461 * struct perf_event_context - event context structure 462 * 463 * Used as a container for task events and CPU events as well: 464 */ 465struct perf_event_context { 466 struct pmu *pmu; 467 /* 468 * Protect the states of the events in the list, 469 * nr_active, and the list: 470 */ 471 raw_spinlock_t lock; 472 /* 473 * Protect the list of events. Locking either mutex or lock 474 * is sufficient to ensure the list doesn't change; to change 475 * the list you need to lock both the mutex and the spinlock. 476 */ 477 struct mutex mutex; 478 479 struct list_head active_ctx_list; 480 struct list_head pinned_groups; 481 struct list_head flexible_groups; 482 struct list_head event_list; 483 int nr_events; 484 int nr_active; 485 int is_active; 486 int nr_stat; 487 int nr_freq; 488 int rotate_disable; 489 atomic_t refcount; 490 struct task_struct *task; 491 492 /* 493 * Context clock, runs when context enabled. 494 */ 495 u64 time; 496 u64 timestamp; 497 498 /* 499 * These fields let us detect when two contexts have both 500 * been cloned (inherited) from a common ancestor. 501 */ 502 struct perf_event_context *parent_ctx; 503 u64 parent_gen; 504 u64 generation; 505 int pin_count; 506 int nr_cgroups; /* cgroup evts */ 507 int nr_branch_stack; /* branch_stack evt */ 508 struct rcu_head rcu_head; 509 510 struct delayed_work orphans_remove; 511 bool orphans_remove_sched; 512}; 513 514/* 515 * Number of contexts where an event can trigger: 516 * task, softirq, hardirq, nmi. 517 */ 518#define PERF_NR_CONTEXTS 4 519 520/** 521 * struct perf_event_cpu_context - per cpu event context structure 522 */ 523struct perf_cpu_context { 524 struct perf_event_context ctx; 525 struct perf_event_context *task_ctx; 526 int active_oncpu; 527 int exclusive; 528 struct hrtimer hrtimer; 529 ktime_t hrtimer_interval; 530 struct pmu *unique_pmu; 531 struct perf_cgroup *cgrp; 532}; 533 534struct perf_output_handle { 535 struct perf_event *event; 536 struct ring_buffer *rb; 537 unsigned long wakeup; 538 unsigned long size; 539 void *addr; 540 int page; 541}; 542 543#ifdef CONFIG_PERF_EVENTS 544 545extern int perf_pmu_register(struct pmu *pmu, const char *name, int type); 546extern void perf_pmu_unregister(struct pmu *pmu); 547 548extern int perf_num_counters(void); 549extern const char *perf_pmu_name(void); 550extern void __perf_event_task_sched_in(struct task_struct *prev, 551 struct task_struct *task); 552extern void __perf_event_task_sched_out(struct task_struct *prev, 553 struct task_struct *next); 554extern int perf_event_init_task(struct task_struct *child); 555extern void perf_event_exit_task(struct task_struct *child); 556extern void perf_event_free_task(struct task_struct *task); 557extern void perf_event_delayed_put(struct task_struct *task); 558extern void perf_event_print_debug(void); 559extern void perf_pmu_disable(struct pmu *pmu); 560extern void perf_pmu_enable(struct pmu *pmu); 561extern int perf_event_task_disable(void); 562extern int perf_event_task_enable(void); 563extern int perf_event_refresh(struct perf_event *event, int refresh); 564extern void perf_event_update_userpage(struct perf_event *event); 565extern int perf_event_release_kernel(struct perf_event *event); 566extern struct perf_event * 567perf_event_create_kernel_counter(struct perf_event_attr *attr, 568 int cpu, 569 struct task_struct *task, 570 perf_overflow_handler_t callback, 571 void *context); 572extern void perf_pmu_migrate_context(struct pmu *pmu, 573 int src_cpu, int dst_cpu); 574extern u64 perf_event_read_value(struct perf_event *event, 575 u64 *enabled, u64 *running); 576 577 578struct perf_sample_data { 579 /* 580 * Fields set by perf_sample_data_init(), group so as to 581 * minimize the cachelines touched. 582 */ 583 u64 addr; 584 struct perf_raw_record *raw; 585 struct perf_branch_stack *br_stack; 586 u64 period; 587 u64 weight; 588 u64 txn; 589 union perf_mem_data_src data_src; 590 591 /* 592 * The other fields, optionally {set,used} by 593 * perf_{prepare,output}_sample(). 594 */ 595 u64 type; 596 u64 ip; 597 struct { 598 u32 pid; 599 u32 tid; 600 } tid_entry; 601 u64 time; 602 u64 id; 603 u64 stream_id; 604 struct { 605 u32 cpu; 606 u32 reserved; 607 } cpu_entry; 608 struct perf_callchain_entry *callchain; 609 610 /* 611 * regs_user may point to task_pt_regs or to regs_user_copy, depending 612 * on arch details. 613 */ 614 struct perf_regs regs_user; 615 struct pt_regs regs_user_copy; 616 617 struct perf_regs regs_intr; 618 u64 stack_user_size; 619} ____cacheline_aligned; 620 621/* default value for data source */ 622#define PERF_MEM_NA (PERF_MEM_S(OP, NA) |\ 623 PERF_MEM_S(LVL, NA) |\ 624 PERF_MEM_S(SNOOP, NA) |\ 625 PERF_MEM_S(LOCK, NA) |\ 626 PERF_MEM_S(TLB, NA)) 627 628static inline void perf_sample_data_init(struct perf_sample_data *data, 629 u64 addr, u64 period) 630{ 631 /* remaining struct members initialized in perf_prepare_sample() */ 632 data->addr = addr; 633 data->raw = NULL; 634 data->br_stack = NULL; 635 data->period = period; 636 data->weight = 0; 637 data->data_src.val = PERF_MEM_NA; 638 data->txn = 0; 639} 640 641extern void perf_output_sample(struct perf_output_handle *handle, 642 struct perf_event_header *header, 643 struct perf_sample_data *data, 644 struct perf_event *event); 645extern void perf_prepare_sample(struct perf_event_header *header, 646 struct perf_sample_data *data, 647 struct perf_event *event, 648 struct pt_regs *regs); 649 650extern int perf_event_overflow(struct perf_event *event, 651 struct perf_sample_data *data, 652 struct pt_regs *regs); 653 654static inline bool is_sampling_event(struct perf_event *event) 655{ 656 return event->attr.sample_period != 0; 657} 658 659/* 660 * Return 1 for a software event, 0 for a hardware event 661 */ 662static inline int is_software_event(struct perf_event *event) 663{ 664 return event->pmu->task_ctx_nr == perf_sw_context; 665} 666 667extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 668 669extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64); 670extern void __perf_sw_event(u32, u64, struct pt_regs *, u64); 671 672#ifndef perf_arch_fetch_caller_regs 673static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { } 674#endif 675 676/* 677 * Take a snapshot of the regs. Skip ip and frame pointer to 678 * the nth caller. We only need a few of the regs: 679 * - ip for PERF_SAMPLE_IP 680 * - cs for user_mode() tests 681 * - bp for callchains 682 * - eflags, for future purposes, just in case 683 */ 684static inline void perf_fetch_caller_regs(struct pt_regs *regs) 685{ 686 memset(regs, 0, sizeof(*regs)); 687 688 perf_arch_fetch_caller_regs(regs, CALLER_ADDR0); 689} 690 691static __always_inline void 692perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 693{ 694 if (static_key_false(&perf_swevent_enabled[event_id])) 695 __perf_sw_event(event_id, nr, regs, addr); 696} 697 698DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]); 699 700/* 701 * 'Special' version for the scheduler, it hard assumes no recursion, 702 * which is guaranteed by us not actually scheduling inside other swevents 703 * because those disable preemption. 704 */ 705static __always_inline void 706perf_sw_event_sched(u32 event_id, u64 nr, u64 addr) 707{ 708 if (static_key_false(&perf_swevent_enabled[event_id])) { 709 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]); 710 711 perf_fetch_caller_regs(regs); 712 ___perf_sw_event(event_id, nr, regs, addr); 713 } 714} 715 716extern struct static_key_deferred perf_sched_events; 717 718static inline void perf_event_task_sched_in(struct task_struct *prev, 719 struct task_struct *task) 720{ 721 if (static_key_false(&perf_sched_events.key)) 722 __perf_event_task_sched_in(prev, task); 723} 724 725static inline void perf_event_task_sched_out(struct task_struct *prev, 726 struct task_struct *next) 727{ 728 perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0); 729 730 if (static_key_false(&perf_sched_events.key)) 731 __perf_event_task_sched_out(prev, next); 732} 733 734extern void perf_event_mmap(struct vm_area_struct *vma); 735extern struct perf_guest_info_callbacks *perf_guest_cbs; 736extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks); 737extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks); 738 739extern void perf_event_exec(void); 740extern void perf_event_comm(struct task_struct *tsk, bool exec); 741extern void perf_event_fork(struct task_struct *tsk); 742 743/* Callchains */ 744DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry); 745 746extern void perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs); 747extern void perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs); 748 749static inline void perf_callchain_store(struct perf_callchain_entry *entry, u64 ip) 750{ 751 if (entry->nr < PERF_MAX_STACK_DEPTH) 752 entry->ip[entry->nr++] = ip; 753} 754 755extern int sysctl_perf_event_paranoid; 756extern int sysctl_perf_event_mlock; 757extern int sysctl_perf_event_sample_rate; 758extern int sysctl_perf_cpu_time_max_percent; 759 760extern void perf_sample_event_took(u64 sample_len_ns); 761 762extern int perf_proc_update_handler(struct ctl_table *table, int write, 763 void __user *buffer, size_t *lenp, 764 loff_t *ppos); 765extern int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 766 void __user *buffer, size_t *lenp, 767 loff_t *ppos); 768 769 770static inline bool perf_paranoid_tracepoint_raw(void) 771{ 772 return sysctl_perf_event_paranoid > -1; 773} 774 775static inline bool perf_paranoid_cpu(void) 776{ 777 return sysctl_perf_event_paranoid > 0; 778} 779 780static inline bool perf_paranoid_kernel(void) 781{ 782 return sysctl_perf_event_paranoid > 1; 783} 784 785extern void perf_event_init(void); 786extern void perf_tp_event(u64 addr, u64 count, void *record, 787 int entry_size, struct pt_regs *regs, 788 struct hlist_head *head, int rctx, 789 struct task_struct *task); 790extern void perf_bp_event(struct perf_event *event, void *data); 791 792#ifndef perf_misc_flags 793# define perf_misc_flags(regs) \ 794 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL) 795# define perf_instruction_pointer(regs) instruction_pointer(regs) 796#endif 797 798static inline bool has_branch_stack(struct perf_event *event) 799{ 800 return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK; 801} 802 803extern int perf_output_begin(struct perf_output_handle *handle, 804 struct perf_event *event, unsigned int size); 805extern void perf_output_end(struct perf_output_handle *handle); 806extern unsigned int perf_output_copy(struct perf_output_handle *handle, 807 const void *buf, unsigned int len); 808extern unsigned int perf_output_skip(struct perf_output_handle *handle, 809 unsigned int len); 810extern int perf_swevent_get_recursion_context(void); 811extern void perf_swevent_put_recursion_context(int rctx); 812extern u64 perf_swevent_set_period(struct perf_event *event); 813extern void perf_event_enable(struct perf_event *event); 814extern void perf_event_disable(struct perf_event *event); 815extern int __perf_event_disable(void *info); 816extern void perf_event_task_tick(void); 817#else /* !CONFIG_PERF_EVENTS: */ 818static inline void 819perf_event_task_sched_in(struct task_struct *prev, 820 struct task_struct *task) { } 821static inline void 822perf_event_task_sched_out(struct task_struct *prev, 823 struct task_struct *next) { } 824static inline int perf_event_init_task(struct task_struct *child) { return 0; } 825static inline void perf_event_exit_task(struct task_struct *child) { } 826static inline void perf_event_free_task(struct task_struct *task) { } 827static inline void perf_event_delayed_put(struct task_struct *task) { } 828static inline void perf_event_print_debug(void) { } 829static inline int perf_event_task_disable(void) { return -EINVAL; } 830static inline int perf_event_task_enable(void) { return -EINVAL; } 831static inline int perf_event_refresh(struct perf_event *event, int refresh) 832{ 833 return -EINVAL; 834} 835 836static inline void 837perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { } 838static inline void 839perf_sw_event_sched(u32 event_id, u64 nr, u64 addr) { } 840static inline void 841perf_bp_event(struct perf_event *event, void *data) { } 842 843static inline int perf_register_guest_info_callbacks 844(struct perf_guest_info_callbacks *callbacks) { return 0; } 845static inline int perf_unregister_guest_info_callbacks 846(struct perf_guest_info_callbacks *callbacks) { return 0; } 847 848static inline void perf_event_mmap(struct vm_area_struct *vma) { } 849static inline void perf_event_exec(void) { } 850static inline void perf_event_comm(struct task_struct *tsk, bool exec) { } 851static inline void perf_event_fork(struct task_struct *tsk) { } 852static inline void perf_event_init(void) { } 853static inline int perf_swevent_get_recursion_context(void) { return -1; } 854static inline void perf_swevent_put_recursion_context(int rctx) { } 855static inline u64 perf_swevent_set_period(struct perf_event *event) { return 0; } 856static inline void perf_event_enable(struct perf_event *event) { } 857static inline void perf_event_disable(struct perf_event *event) { } 858static inline int __perf_event_disable(void *info) { return -1; } 859static inline void perf_event_task_tick(void) { } 860#endif 861 862#if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_NO_HZ_FULL) 863extern bool perf_event_can_stop_tick(void); 864#else 865static inline bool perf_event_can_stop_tick(void) { return true; } 866#endif 867 868#if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL) 869extern void perf_restore_debug_store(void); 870#else 871static inline void perf_restore_debug_store(void) { } 872#endif 873 874#define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x)) 875 876/* 877 * This has to have a higher priority than migration_notifier in sched/core.c. 878 */ 879#define perf_cpu_notifier(fn) \ 880do { \ 881 static struct notifier_block fn##_nb = \ 882 { .notifier_call = fn, .priority = CPU_PRI_PERF }; \ 883 unsigned long cpu = smp_processor_id(); \ 884 unsigned long flags; \ 885 \ 886 cpu_notifier_register_begin(); \ 887 fn(&fn##_nb, (unsigned long)CPU_UP_PREPARE, \ 888 (void *)(unsigned long)cpu); \ 889 local_irq_save(flags); \ 890 fn(&fn##_nb, (unsigned long)CPU_STARTING, \ 891 (void *)(unsigned long)cpu); \ 892 local_irq_restore(flags); \ 893 fn(&fn##_nb, (unsigned long)CPU_ONLINE, \ 894 (void *)(unsigned long)cpu); \ 895 __register_cpu_notifier(&fn##_nb); \ 896 cpu_notifier_register_done(); \ 897} while (0) 898 899/* 900 * Bare-bones version of perf_cpu_notifier(), which doesn't invoke the 901 * callback for already online CPUs. 902 */ 903#define __perf_cpu_notifier(fn) \ 904do { \ 905 static struct notifier_block fn##_nb = \ 906 { .notifier_call = fn, .priority = CPU_PRI_PERF }; \ 907 \ 908 __register_cpu_notifier(&fn##_nb); \ 909} while (0) 910 911struct perf_pmu_events_attr { 912 struct device_attribute attr; 913 u64 id; 914 const char *event_str; 915}; 916 917ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 918 char *page); 919 920#define PMU_EVENT_ATTR(_name, _var, _id, _show) \ 921static struct perf_pmu_events_attr _var = { \ 922 .attr = __ATTR(_name, 0444, _show, NULL), \ 923 .id = _id, \ 924}; 925 926#define PMU_EVENT_ATTR_STRING(_name, _var, _str) \ 927static struct perf_pmu_events_attr _var = { \ 928 .attr = __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \ 929 .id = 0, \ 930 .event_str = _str, \ 931}; 932 933#define PMU_FORMAT_ATTR(_name, _format) \ 934static ssize_t \ 935_name##_show(struct device *dev, \ 936 struct device_attribute *attr, \ 937 char *page) \ 938{ \ 939 BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE); \ 940 return sprintf(page, _format "\n"); \ 941} \ 942 \ 943static struct device_attribute format_attr_##_name = __ATTR_RO(_name) 944 945#endif /* _LINUX_PERF_EVENT_H */