Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * Performance events:
3 *
4 * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
7 *
8 * Data type definitions, declarations, prototypes.
9 *
10 * Started by: Thomas Gleixner and Ingo Molnar
11 *
12 * For licencing details see kernel-base/COPYING
13 */
14#ifndef _LINUX_PERF_EVENT_H
15#define _LINUX_PERF_EVENT_H
16
17#include <uapi/linux/perf_event.h>
18
19/*
20 * Kernel-internal data types and definitions:
21 */
22
23#ifdef CONFIG_PERF_EVENTS
24# include <asm/perf_event.h>
25# include <asm/local64.h>
26#endif
27
28struct perf_guest_info_callbacks {
29 int (*is_in_guest)(void);
30 int (*is_user_mode)(void);
31 unsigned long (*get_guest_ip)(void);
32};
33
34#ifdef CONFIG_HAVE_HW_BREAKPOINT
35#include <asm/hw_breakpoint.h>
36#endif
37
38#include <linux/list.h>
39#include <linux/mutex.h>
40#include <linux/rculist.h>
41#include <linux/rcupdate.h>
42#include <linux/spinlock.h>
43#include <linux/hrtimer.h>
44#include <linux/fs.h>
45#include <linux/pid_namespace.h>
46#include <linux/workqueue.h>
47#include <linux/ftrace.h>
48#include <linux/cpu.h>
49#include <linux/irq_work.h>
50#include <linux/static_key.h>
51#include <linux/jump_label_ratelimit.h>
52#include <linux/atomic.h>
53#include <linux/sysfs.h>
54#include <linux/perf_regs.h>
55#include <linux/workqueue.h>
56#include <asm/local.h>
57
58struct perf_callchain_entry {
59 __u64 nr;
60 __u64 ip[PERF_MAX_STACK_DEPTH];
61};
62
63struct perf_raw_record {
64 u32 size;
65 void *data;
66};
67
68/*
69 * branch stack layout:
70 * nr: number of taken branches stored in entries[]
71 *
72 * Note that nr can vary from sample to sample
73 * branches (to, from) are stored from most recent
74 * to least recent, i.e., entries[0] contains the most
75 * recent branch.
76 */
77struct perf_branch_stack {
78 __u64 nr;
79 struct perf_branch_entry entries[0];
80};
81
82struct task_struct;
83
84/*
85 * extra PMU register associated with an event
86 */
87struct hw_perf_event_extra {
88 u64 config; /* register value */
89 unsigned int reg; /* register address or index */
90 int alloc; /* extra register already allocated */
91 int idx; /* index in shared_regs->regs[] */
92};
93
94struct event_constraint;
95
96/**
97 * struct hw_perf_event - performance event hardware details:
98 */
99struct hw_perf_event {
100#ifdef CONFIG_PERF_EVENTS
101 union {
102 struct { /* hardware */
103 u64 config;
104 u64 last_tag;
105 unsigned long config_base;
106 unsigned long event_base;
107 int event_base_rdpmc;
108 int idx;
109 int last_cpu;
110 int flags;
111
112 struct hw_perf_event_extra extra_reg;
113 struct hw_perf_event_extra branch_reg;
114
115 struct event_constraint *constraint;
116 };
117 struct { /* software */
118 struct hrtimer hrtimer;
119 };
120 struct { /* tracepoint */
121 struct task_struct *tp_target;
122 /* for tp_event->class */
123 struct list_head tp_list;
124 };
125#ifdef CONFIG_HAVE_HW_BREAKPOINT
126 struct { /* breakpoint */
127 /*
128 * Crufty hack to avoid the chicken and egg
129 * problem hw_breakpoint has with context
130 * creation and event initalization.
131 */
132 struct task_struct *bp_target;
133 struct arch_hw_breakpoint info;
134 struct list_head bp_list;
135 };
136#endif
137 };
138 int state;
139 local64_t prev_count;
140 u64 sample_period;
141 u64 last_period;
142 local64_t period_left;
143 u64 interrupts_seq;
144 u64 interrupts;
145
146 u64 freq_time_stamp;
147 u64 freq_count_stamp;
148#endif
149};
150
151/*
152 * hw_perf_event::state flags
153 */
154#define PERF_HES_STOPPED 0x01 /* the counter is stopped */
155#define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */
156#define PERF_HES_ARCH 0x04
157
158struct perf_event;
159
160/*
161 * Common implementation detail of pmu::{start,commit,cancel}_txn
162 */
163#define PERF_EVENT_TXN 0x1
164
165/**
166 * pmu::capabilities flags
167 */
168#define PERF_PMU_CAP_NO_INTERRUPT 0x01
169
170/**
171 * struct pmu - generic performance monitoring unit
172 */
173struct pmu {
174 struct list_head entry;
175
176 struct module *module;
177 struct device *dev;
178 const struct attribute_group **attr_groups;
179 const char *name;
180 int type;
181
182 /*
183 * various common per-pmu feature flags
184 */
185 int capabilities;
186
187 int * __percpu pmu_disable_count;
188 struct perf_cpu_context * __percpu pmu_cpu_context;
189 int task_ctx_nr;
190 int hrtimer_interval_ms;
191
192 /*
193 * Fully disable/enable this PMU, can be used to protect from the PMI
194 * as well as for lazy/batch writing of the MSRs.
195 */
196 void (*pmu_enable) (struct pmu *pmu); /* optional */
197 void (*pmu_disable) (struct pmu *pmu); /* optional */
198
199 /*
200 * Try and initialize the event for this PMU.
201 * Should return -ENOENT when the @event doesn't match this PMU.
202 */
203 int (*event_init) (struct perf_event *event);
204
205 /*
206 * Notification that the event was mapped or unmapped. Called
207 * in the context of the mapping task.
208 */
209 void (*event_mapped) (struct perf_event *event); /*optional*/
210 void (*event_unmapped) (struct perf_event *event); /*optional*/
211
212#define PERF_EF_START 0x01 /* start the counter when adding */
213#define PERF_EF_RELOAD 0x02 /* reload the counter when starting */
214#define PERF_EF_UPDATE 0x04 /* update the counter when stopping */
215
216 /*
217 * Adds/Removes a counter to/from the PMU, can be done inside
218 * a transaction, see the ->*_txn() methods.
219 */
220 int (*add) (struct perf_event *event, int flags);
221 void (*del) (struct perf_event *event, int flags);
222
223 /*
224 * Starts/Stops a counter present on the PMU. The PMI handler
225 * should stop the counter when perf_event_overflow() returns
226 * !0. ->start() will be used to continue.
227 */
228 void (*start) (struct perf_event *event, int flags);
229 void (*stop) (struct perf_event *event, int flags);
230
231 /*
232 * Updates the counter value of the event.
233 */
234 void (*read) (struct perf_event *event);
235
236 /*
237 * Group events scheduling is treated as a transaction, add
238 * group events as a whole and perform one schedulability test.
239 * If the test fails, roll back the whole group
240 *
241 * Start the transaction, after this ->add() doesn't need to
242 * do schedulability tests.
243 */
244 void (*start_txn) (struct pmu *pmu); /* optional */
245 /*
246 * If ->start_txn() disabled the ->add() schedulability test
247 * then ->commit_txn() is required to perform one. On success
248 * the transaction is closed. On error the transaction is kept
249 * open until ->cancel_txn() is called.
250 */
251 int (*commit_txn) (struct pmu *pmu); /* optional */
252 /*
253 * Will cancel the transaction, assumes ->del() is called
254 * for each successful ->add() during the transaction.
255 */
256 void (*cancel_txn) (struct pmu *pmu); /* optional */
257
258 /*
259 * Will return the value for perf_event_mmap_page::index for this event,
260 * if no implementation is provided it will default to: event->hw.idx + 1.
261 */
262 int (*event_idx) (struct perf_event *event); /*optional */
263
264 /*
265 * flush branch stack on context-switches (needed in cpu-wide mode)
266 */
267 void (*flush_branch_stack) (void);
268};
269
270/**
271 * enum perf_event_active_state - the states of a event
272 */
273enum perf_event_active_state {
274 PERF_EVENT_STATE_EXIT = -3,
275 PERF_EVENT_STATE_ERROR = -2,
276 PERF_EVENT_STATE_OFF = -1,
277 PERF_EVENT_STATE_INACTIVE = 0,
278 PERF_EVENT_STATE_ACTIVE = 1,
279};
280
281struct file;
282struct perf_sample_data;
283
284typedef void (*perf_overflow_handler_t)(struct perf_event *,
285 struct perf_sample_data *,
286 struct pt_regs *regs);
287
288enum perf_group_flag {
289 PERF_GROUP_SOFTWARE = 0x1,
290};
291
292#define SWEVENT_HLIST_BITS 8
293#define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS)
294
295struct swevent_hlist {
296 struct hlist_head heads[SWEVENT_HLIST_SIZE];
297 struct rcu_head rcu_head;
298};
299
300#define PERF_ATTACH_CONTEXT 0x01
301#define PERF_ATTACH_GROUP 0x02
302#define PERF_ATTACH_TASK 0x04
303
304struct perf_cgroup;
305struct ring_buffer;
306
307/**
308 * struct perf_event - performance event kernel representation:
309 */
310struct perf_event {
311#ifdef CONFIG_PERF_EVENTS
312 /*
313 * entry onto perf_event_context::event_list;
314 * modifications require ctx->lock
315 * RCU safe iterations.
316 */
317 struct list_head event_entry;
318
319 /*
320 * XXX: group_entry and sibling_list should be mutually exclusive;
321 * either you're a sibling on a group, or you're the group leader.
322 * Rework the code to always use the same list element.
323 *
324 * Locked for modification by both ctx->mutex and ctx->lock; holding
325 * either sufficies for read.
326 */
327 struct list_head group_entry;
328 struct list_head sibling_list;
329
330 /*
331 * We need storage to track the entries in perf_pmu_migrate_context; we
332 * cannot use the event_entry because of RCU and we want to keep the
333 * group in tact which avoids us using the other two entries.
334 */
335 struct list_head migrate_entry;
336
337 struct hlist_node hlist_entry;
338 struct list_head active_entry;
339 int nr_siblings;
340 int group_flags;
341 struct perf_event *group_leader;
342 struct pmu *pmu;
343
344 enum perf_event_active_state state;
345 unsigned int attach_state;
346 local64_t count;
347 atomic64_t child_count;
348
349 /*
350 * These are the total time in nanoseconds that the event
351 * has been enabled (i.e. eligible to run, and the task has
352 * been scheduled in, if this is a per-task event)
353 * and running (scheduled onto the CPU), respectively.
354 *
355 * They are computed from tstamp_enabled, tstamp_running and
356 * tstamp_stopped when the event is in INACTIVE or ACTIVE state.
357 */
358 u64 total_time_enabled;
359 u64 total_time_running;
360
361 /*
362 * These are timestamps used for computing total_time_enabled
363 * and total_time_running when the event is in INACTIVE or
364 * ACTIVE state, measured in nanoseconds from an arbitrary point
365 * in time.
366 * tstamp_enabled: the notional time when the event was enabled
367 * tstamp_running: the notional time when the event was scheduled on
368 * tstamp_stopped: in INACTIVE state, the notional time when the
369 * event was scheduled off.
370 */
371 u64 tstamp_enabled;
372 u64 tstamp_running;
373 u64 tstamp_stopped;
374
375 /*
376 * timestamp shadows the actual context timing but it can
377 * be safely used in NMI interrupt context. It reflects the
378 * context time as it was when the event was last scheduled in.
379 *
380 * ctx_time already accounts for ctx->timestamp. Therefore to
381 * compute ctx_time for a sample, simply add perf_clock().
382 */
383 u64 shadow_ctx_time;
384
385 struct perf_event_attr attr;
386 u16 header_size;
387 u16 id_header_size;
388 u16 read_size;
389 struct hw_perf_event hw;
390
391 struct perf_event_context *ctx;
392 atomic_long_t refcount;
393
394 /*
395 * These accumulate total time (in nanoseconds) that children
396 * events have been enabled and running, respectively.
397 */
398 atomic64_t child_total_time_enabled;
399 atomic64_t child_total_time_running;
400
401 /*
402 * Protect attach/detach and child_list:
403 */
404 struct mutex child_mutex;
405 struct list_head child_list;
406 struct perf_event *parent;
407
408 int oncpu;
409 int cpu;
410
411 struct list_head owner_entry;
412 struct task_struct *owner;
413
414 /* mmap bits */
415 struct mutex mmap_mutex;
416 atomic_t mmap_count;
417
418 struct ring_buffer *rb;
419 struct list_head rb_entry;
420 unsigned long rcu_batches;
421 int rcu_pending;
422
423 /* poll related */
424 wait_queue_head_t waitq;
425 struct fasync_struct *fasync;
426
427 /* delayed work for NMIs and such */
428 int pending_wakeup;
429 int pending_kill;
430 int pending_disable;
431 struct irq_work pending;
432
433 atomic_t event_limit;
434
435 void (*destroy)(struct perf_event *);
436 struct rcu_head rcu_head;
437
438 struct pid_namespace *ns;
439 u64 id;
440
441 perf_overflow_handler_t overflow_handler;
442 void *overflow_handler_context;
443
444#ifdef CONFIG_EVENT_TRACING
445 struct ftrace_event_call *tp_event;
446 struct event_filter *filter;
447#ifdef CONFIG_FUNCTION_TRACER
448 struct ftrace_ops ftrace_ops;
449#endif
450#endif
451
452#ifdef CONFIG_CGROUP_PERF
453 struct perf_cgroup *cgrp; /* cgroup event is attach to */
454 int cgrp_defer_enabled;
455#endif
456
457#endif /* CONFIG_PERF_EVENTS */
458};
459
460/**
461 * struct perf_event_context - event context structure
462 *
463 * Used as a container for task events and CPU events as well:
464 */
465struct perf_event_context {
466 struct pmu *pmu;
467 /*
468 * Protect the states of the events in the list,
469 * nr_active, and the list:
470 */
471 raw_spinlock_t lock;
472 /*
473 * Protect the list of events. Locking either mutex or lock
474 * is sufficient to ensure the list doesn't change; to change
475 * the list you need to lock both the mutex and the spinlock.
476 */
477 struct mutex mutex;
478
479 struct list_head active_ctx_list;
480 struct list_head pinned_groups;
481 struct list_head flexible_groups;
482 struct list_head event_list;
483 int nr_events;
484 int nr_active;
485 int is_active;
486 int nr_stat;
487 int nr_freq;
488 int rotate_disable;
489 atomic_t refcount;
490 struct task_struct *task;
491
492 /*
493 * Context clock, runs when context enabled.
494 */
495 u64 time;
496 u64 timestamp;
497
498 /*
499 * These fields let us detect when two contexts have both
500 * been cloned (inherited) from a common ancestor.
501 */
502 struct perf_event_context *parent_ctx;
503 u64 parent_gen;
504 u64 generation;
505 int pin_count;
506 int nr_cgroups; /* cgroup evts */
507 int nr_branch_stack; /* branch_stack evt */
508 struct rcu_head rcu_head;
509
510 struct delayed_work orphans_remove;
511 bool orphans_remove_sched;
512};
513
514/*
515 * Number of contexts where an event can trigger:
516 * task, softirq, hardirq, nmi.
517 */
518#define PERF_NR_CONTEXTS 4
519
520/**
521 * struct perf_event_cpu_context - per cpu event context structure
522 */
523struct perf_cpu_context {
524 struct perf_event_context ctx;
525 struct perf_event_context *task_ctx;
526 int active_oncpu;
527 int exclusive;
528 struct hrtimer hrtimer;
529 ktime_t hrtimer_interval;
530 struct pmu *unique_pmu;
531 struct perf_cgroup *cgrp;
532};
533
534struct perf_output_handle {
535 struct perf_event *event;
536 struct ring_buffer *rb;
537 unsigned long wakeup;
538 unsigned long size;
539 void *addr;
540 int page;
541};
542
543#ifdef CONFIG_PERF_EVENTS
544
545extern int perf_pmu_register(struct pmu *pmu, const char *name, int type);
546extern void perf_pmu_unregister(struct pmu *pmu);
547
548extern int perf_num_counters(void);
549extern const char *perf_pmu_name(void);
550extern void __perf_event_task_sched_in(struct task_struct *prev,
551 struct task_struct *task);
552extern void __perf_event_task_sched_out(struct task_struct *prev,
553 struct task_struct *next);
554extern int perf_event_init_task(struct task_struct *child);
555extern void perf_event_exit_task(struct task_struct *child);
556extern void perf_event_free_task(struct task_struct *task);
557extern void perf_event_delayed_put(struct task_struct *task);
558extern void perf_event_print_debug(void);
559extern void perf_pmu_disable(struct pmu *pmu);
560extern void perf_pmu_enable(struct pmu *pmu);
561extern int perf_event_task_disable(void);
562extern int perf_event_task_enable(void);
563extern int perf_event_refresh(struct perf_event *event, int refresh);
564extern void perf_event_update_userpage(struct perf_event *event);
565extern int perf_event_release_kernel(struct perf_event *event);
566extern struct perf_event *
567perf_event_create_kernel_counter(struct perf_event_attr *attr,
568 int cpu,
569 struct task_struct *task,
570 perf_overflow_handler_t callback,
571 void *context);
572extern void perf_pmu_migrate_context(struct pmu *pmu,
573 int src_cpu, int dst_cpu);
574extern u64 perf_event_read_value(struct perf_event *event,
575 u64 *enabled, u64 *running);
576
577
578struct perf_sample_data {
579 /*
580 * Fields set by perf_sample_data_init(), group so as to
581 * minimize the cachelines touched.
582 */
583 u64 addr;
584 struct perf_raw_record *raw;
585 struct perf_branch_stack *br_stack;
586 u64 period;
587 u64 weight;
588 u64 txn;
589 union perf_mem_data_src data_src;
590
591 /*
592 * The other fields, optionally {set,used} by
593 * perf_{prepare,output}_sample().
594 */
595 u64 type;
596 u64 ip;
597 struct {
598 u32 pid;
599 u32 tid;
600 } tid_entry;
601 u64 time;
602 u64 id;
603 u64 stream_id;
604 struct {
605 u32 cpu;
606 u32 reserved;
607 } cpu_entry;
608 struct perf_callchain_entry *callchain;
609
610 /*
611 * regs_user may point to task_pt_regs or to regs_user_copy, depending
612 * on arch details.
613 */
614 struct perf_regs regs_user;
615 struct pt_regs regs_user_copy;
616
617 struct perf_regs regs_intr;
618 u64 stack_user_size;
619} ____cacheline_aligned;
620
621/* default value for data source */
622#define PERF_MEM_NA (PERF_MEM_S(OP, NA) |\
623 PERF_MEM_S(LVL, NA) |\
624 PERF_MEM_S(SNOOP, NA) |\
625 PERF_MEM_S(LOCK, NA) |\
626 PERF_MEM_S(TLB, NA))
627
628static inline void perf_sample_data_init(struct perf_sample_data *data,
629 u64 addr, u64 period)
630{
631 /* remaining struct members initialized in perf_prepare_sample() */
632 data->addr = addr;
633 data->raw = NULL;
634 data->br_stack = NULL;
635 data->period = period;
636 data->weight = 0;
637 data->data_src.val = PERF_MEM_NA;
638 data->txn = 0;
639}
640
641extern void perf_output_sample(struct perf_output_handle *handle,
642 struct perf_event_header *header,
643 struct perf_sample_data *data,
644 struct perf_event *event);
645extern void perf_prepare_sample(struct perf_event_header *header,
646 struct perf_sample_data *data,
647 struct perf_event *event,
648 struct pt_regs *regs);
649
650extern int perf_event_overflow(struct perf_event *event,
651 struct perf_sample_data *data,
652 struct pt_regs *regs);
653
654static inline bool is_sampling_event(struct perf_event *event)
655{
656 return event->attr.sample_period != 0;
657}
658
659/*
660 * Return 1 for a software event, 0 for a hardware event
661 */
662static inline int is_software_event(struct perf_event *event)
663{
664 return event->pmu->task_ctx_nr == perf_sw_context;
665}
666
667extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
668
669extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64);
670extern void __perf_sw_event(u32, u64, struct pt_regs *, u64);
671
672#ifndef perf_arch_fetch_caller_regs
673static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
674#endif
675
676/*
677 * Take a snapshot of the regs. Skip ip and frame pointer to
678 * the nth caller. We only need a few of the regs:
679 * - ip for PERF_SAMPLE_IP
680 * - cs for user_mode() tests
681 * - bp for callchains
682 * - eflags, for future purposes, just in case
683 */
684static inline void perf_fetch_caller_regs(struct pt_regs *regs)
685{
686 memset(regs, 0, sizeof(*regs));
687
688 perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
689}
690
691static __always_inline void
692perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
693{
694 if (static_key_false(&perf_swevent_enabled[event_id]))
695 __perf_sw_event(event_id, nr, regs, addr);
696}
697
698DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]);
699
700/*
701 * 'Special' version for the scheduler, it hard assumes no recursion,
702 * which is guaranteed by us not actually scheduling inside other swevents
703 * because those disable preemption.
704 */
705static __always_inline void
706perf_sw_event_sched(u32 event_id, u64 nr, u64 addr)
707{
708 if (static_key_false(&perf_swevent_enabled[event_id])) {
709 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
710
711 perf_fetch_caller_regs(regs);
712 ___perf_sw_event(event_id, nr, regs, addr);
713 }
714}
715
716extern struct static_key_deferred perf_sched_events;
717
718static inline void perf_event_task_sched_in(struct task_struct *prev,
719 struct task_struct *task)
720{
721 if (static_key_false(&perf_sched_events.key))
722 __perf_event_task_sched_in(prev, task);
723}
724
725static inline void perf_event_task_sched_out(struct task_struct *prev,
726 struct task_struct *next)
727{
728 perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0);
729
730 if (static_key_false(&perf_sched_events.key))
731 __perf_event_task_sched_out(prev, next);
732}
733
734extern void perf_event_mmap(struct vm_area_struct *vma);
735extern struct perf_guest_info_callbacks *perf_guest_cbs;
736extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
737extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
738
739extern void perf_event_exec(void);
740extern void perf_event_comm(struct task_struct *tsk, bool exec);
741extern void perf_event_fork(struct task_struct *tsk);
742
743/* Callchains */
744DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
745
746extern void perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs);
747extern void perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs);
748
749static inline void perf_callchain_store(struct perf_callchain_entry *entry, u64 ip)
750{
751 if (entry->nr < PERF_MAX_STACK_DEPTH)
752 entry->ip[entry->nr++] = ip;
753}
754
755extern int sysctl_perf_event_paranoid;
756extern int sysctl_perf_event_mlock;
757extern int sysctl_perf_event_sample_rate;
758extern int sysctl_perf_cpu_time_max_percent;
759
760extern void perf_sample_event_took(u64 sample_len_ns);
761
762extern int perf_proc_update_handler(struct ctl_table *table, int write,
763 void __user *buffer, size_t *lenp,
764 loff_t *ppos);
765extern int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
766 void __user *buffer, size_t *lenp,
767 loff_t *ppos);
768
769
770static inline bool perf_paranoid_tracepoint_raw(void)
771{
772 return sysctl_perf_event_paranoid > -1;
773}
774
775static inline bool perf_paranoid_cpu(void)
776{
777 return sysctl_perf_event_paranoid > 0;
778}
779
780static inline bool perf_paranoid_kernel(void)
781{
782 return sysctl_perf_event_paranoid > 1;
783}
784
785extern void perf_event_init(void);
786extern void perf_tp_event(u64 addr, u64 count, void *record,
787 int entry_size, struct pt_regs *regs,
788 struct hlist_head *head, int rctx,
789 struct task_struct *task);
790extern void perf_bp_event(struct perf_event *event, void *data);
791
792#ifndef perf_misc_flags
793# define perf_misc_flags(regs) \
794 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL)
795# define perf_instruction_pointer(regs) instruction_pointer(regs)
796#endif
797
798static inline bool has_branch_stack(struct perf_event *event)
799{
800 return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK;
801}
802
803extern int perf_output_begin(struct perf_output_handle *handle,
804 struct perf_event *event, unsigned int size);
805extern void perf_output_end(struct perf_output_handle *handle);
806extern unsigned int perf_output_copy(struct perf_output_handle *handle,
807 const void *buf, unsigned int len);
808extern unsigned int perf_output_skip(struct perf_output_handle *handle,
809 unsigned int len);
810extern int perf_swevent_get_recursion_context(void);
811extern void perf_swevent_put_recursion_context(int rctx);
812extern u64 perf_swevent_set_period(struct perf_event *event);
813extern void perf_event_enable(struct perf_event *event);
814extern void perf_event_disable(struct perf_event *event);
815extern int __perf_event_disable(void *info);
816extern void perf_event_task_tick(void);
817#else /* !CONFIG_PERF_EVENTS: */
818static inline void
819perf_event_task_sched_in(struct task_struct *prev,
820 struct task_struct *task) { }
821static inline void
822perf_event_task_sched_out(struct task_struct *prev,
823 struct task_struct *next) { }
824static inline int perf_event_init_task(struct task_struct *child) { return 0; }
825static inline void perf_event_exit_task(struct task_struct *child) { }
826static inline void perf_event_free_task(struct task_struct *task) { }
827static inline void perf_event_delayed_put(struct task_struct *task) { }
828static inline void perf_event_print_debug(void) { }
829static inline int perf_event_task_disable(void) { return -EINVAL; }
830static inline int perf_event_task_enable(void) { return -EINVAL; }
831static inline int perf_event_refresh(struct perf_event *event, int refresh)
832{
833 return -EINVAL;
834}
835
836static inline void
837perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { }
838static inline void
839perf_sw_event_sched(u32 event_id, u64 nr, u64 addr) { }
840static inline void
841perf_bp_event(struct perf_event *event, void *data) { }
842
843static inline int perf_register_guest_info_callbacks
844(struct perf_guest_info_callbacks *callbacks) { return 0; }
845static inline int perf_unregister_guest_info_callbacks
846(struct perf_guest_info_callbacks *callbacks) { return 0; }
847
848static inline void perf_event_mmap(struct vm_area_struct *vma) { }
849static inline void perf_event_exec(void) { }
850static inline void perf_event_comm(struct task_struct *tsk, bool exec) { }
851static inline void perf_event_fork(struct task_struct *tsk) { }
852static inline void perf_event_init(void) { }
853static inline int perf_swevent_get_recursion_context(void) { return -1; }
854static inline void perf_swevent_put_recursion_context(int rctx) { }
855static inline u64 perf_swevent_set_period(struct perf_event *event) { return 0; }
856static inline void perf_event_enable(struct perf_event *event) { }
857static inline void perf_event_disable(struct perf_event *event) { }
858static inline int __perf_event_disable(void *info) { return -1; }
859static inline void perf_event_task_tick(void) { }
860#endif
861
862#if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_NO_HZ_FULL)
863extern bool perf_event_can_stop_tick(void);
864#else
865static inline bool perf_event_can_stop_tick(void) { return true; }
866#endif
867
868#if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL)
869extern void perf_restore_debug_store(void);
870#else
871static inline void perf_restore_debug_store(void) { }
872#endif
873
874#define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x))
875
876/*
877 * This has to have a higher priority than migration_notifier in sched/core.c.
878 */
879#define perf_cpu_notifier(fn) \
880do { \
881 static struct notifier_block fn##_nb = \
882 { .notifier_call = fn, .priority = CPU_PRI_PERF }; \
883 unsigned long cpu = smp_processor_id(); \
884 unsigned long flags; \
885 \
886 cpu_notifier_register_begin(); \
887 fn(&fn##_nb, (unsigned long)CPU_UP_PREPARE, \
888 (void *)(unsigned long)cpu); \
889 local_irq_save(flags); \
890 fn(&fn##_nb, (unsigned long)CPU_STARTING, \
891 (void *)(unsigned long)cpu); \
892 local_irq_restore(flags); \
893 fn(&fn##_nb, (unsigned long)CPU_ONLINE, \
894 (void *)(unsigned long)cpu); \
895 __register_cpu_notifier(&fn##_nb); \
896 cpu_notifier_register_done(); \
897} while (0)
898
899/*
900 * Bare-bones version of perf_cpu_notifier(), which doesn't invoke the
901 * callback for already online CPUs.
902 */
903#define __perf_cpu_notifier(fn) \
904do { \
905 static struct notifier_block fn##_nb = \
906 { .notifier_call = fn, .priority = CPU_PRI_PERF }; \
907 \
908 __register_cpu_notifier(&fn##_nb); \
909} while (0)
910
911struct perf_pmu_events_attr {
912 struct device_attribute attr;
913 u64 id;
914 const char *event_str;
915};
916
917ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
918 char *page);
919
920#define PMU_EVENT_ATTR(_name, _var, _id, _show) \
921static struct perf_pmu_events_attr _var = { \
922 .attr = __ATTR(_name, 0444, _show, NULL), \
923 .id = _id, \
924};
925
926#define PMU_EVENT_ATTR_STRING(_name, _var, _str) \
927static struct perf_pmu_events_attr _var = { \
928 .attr = __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \
929 .id = 0, \
930 .event_str = _str, \
931};
932
933#define PMU_FORMAT_ATTR(_name, _format) \
934static ssize_t \
935_name##_show(struct device *dev, \
936 struct device_attribute *attr, \
937 char *page) \
938{ \
939 BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE); \
940 return sprintf(page, _format "\n"); \
941} \
942 \
943static struct device_attribute format_attr_##_name = __ATTR_RO(_name)
944
945#endif /* _LINUX_PERF_EVENT_H */