Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1#ifndef _LINUX_MM_H
2#define _LINUX_MM_H
3
4#include <linux/errno.h>
5
6#ifdef __KERNEL__
7
8#include <linux/mmdebug.h>
9#include <linux/gfp.h>
10#include <linux/bug.h>
11#include <linux/list.h>
12#include <linux/mmzone.h>
13#include <linux/rbtree.h>
14#include <linux/atomic.h>
15#include <linux/debug_locks.h>
16#include <linux/mm_types.h>
17#include <linux/range.h>
18#include <linux/pfn.h>
19#include <linux/bit_spinlock.h>
20#include <linux/shrinker.h>
21#include <linux/resource.h>
22#include <linux/page_ext.h>
23
24struct mempolicy;
25struct anon_vma;
26struct anon_vma_chain;
27struct file_ra_state;
28struct user_struct;
29struct writeback_control;
30
31#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
32extern unsigned long max_mapnr;
33
34static inline void set_max_mapnr(unsigned long limit)
35{
36 max_mapnr = limit;
37}
38#else
39static inline void set_max_mapnr(unsigned long limit) { }
40#endif
41
42extern unsigned long totalram_pages;
43extern void * high_memory;
44extern int page_cluster;
45
46#ifdef CONFIG_SYSCTL
47extern int sysctl_legacy_va_layout;
48#else
49#define sysctl_legacy_va_layout 0
50#endif
51
52#include <asm/page.h>
53#include <asm/pgtable.h>
54#include <asm/processor.h>
55
56#ifndef __pa_symbol
57#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
58#endif
59
60/*
61 * To prevent common memory management code establishing
62 * a zero page mapping on a read fault.
63 * This macro should be defined within <asm/pgtable.h>.
64 * s390 does this to prevent multiplexing of hardware bits
65 * related to the physical page in case of virtualization.
66 */
67#ifndef mm_forbids_zeropage
68#define mm_forbids_zeropage(X) (0)
69#endif
70
71extern unsigned long sysctl_user_reserve_kbytes;
72extern unsigned long sysctl_admin_reserve_kbytes;
73
74extern int sysctl_overcommit_memory;
75extern int sysctl_overcommit_ratio;
76extern unsigned long sysctl_overcommit_kbytes;
77
78extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
79 size_t *, loff_t *);
80extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
81 size_t *, loff_t *);
82
83#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
84
85/* to align the pointer to the (next) page boundary */
86#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
87
88/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
89#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)addr, PAGE_SIZE)
90
91/*
92 * Linux kernel virtual memory manager primitives.
93 * The idea being to have a "virtual" mm in the same way
94 * we have a virtual fs - giving a cleaner interface to the
95 * mm details, and allowing different kinds of memory mappings
96 * (from shared memory to executable loading to arbitrary
97 * mmap() functions).
98 */
99
100extern struct kmem_cache *vm_area_cachep;
101
102#ifndef CONFIG_MMU
103extern struct rb_root nommu_region_tree;
104extern struct rw_semaphore nommu_region_sem;
105
106extern unsigned int kobjsize(const void *objp);
107#endif
108
109/*
110 * vm_flags in vm_area_struct, see mm_types.h.
111 */
112#define VM_NONE 0x00000000
113
114#define VM_READ 0x00000001 /* currently active flags */
115#define VM_WRITE 0x00000002
116#define VM_EXEC 0x00000004
117#define VM_SHARED 0x00000008
118
119/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
120#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
121#define VM_MAYWRITE 0x00000020
122#define VM_MAYEXEC 0x00000040
123#define VM_MAYSHARE 0x00000080
124
125#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
126#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
127#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
128
129#define VM_LOCKED 0x00002000
130#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
131
132 /* Used by sys_madvise() */
133#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
134#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
135
136#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
137#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
138#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
139#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
140#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
141#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
142#define VM_ARCH_2 0x02000000
143#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
144
145#ifdef CONFIG_MEM_SOFT_DIRTY
146# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
147#else
148# define VM_SOFTDIRTY 0
149#endif
150
151#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
152#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
153#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
154#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
155
156#if defined(CONFIG_X86)
157# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
158#elif defined(CONFIG_PPC)
159# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
160#elif defined(CONFIG_PARISC)
161# define VM_GROWSUP VM_ARCH_1
162#elif defined(CONFIG_METAG)
163# define VM_GROWSUP VM_ARCH_1
164#elif defined(CONFIG_IA64)
165# define VM_GROWSUP VM_ARCH_1
166#elif !defined(CONFIG_MMU)
167# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
168#endif
169
170#if defined(CONFIG_X86)
171/* MPX specific bounds table or bounds directory */
172# define VM_MPX VM_ARCH_2
173#endif
174
175#ifndef VM_GROWSUP
176# define VM_GROWSUP VM_NONE
177#endif
178
179/* Bits set in the VMA until the stack is in its final location */
180#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
181
182#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
183#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
184#endif
185
186#ifdef CONFIG_STACK_GROWSUP
187#define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
188#else
189#define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
190#endif
191
192/*
193 * Special vmas that are non-mergable, non-mlock()able.
194 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
195 */
196#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
197
198/* This mask defines which mm->def_flags a process can inherit its parent */
199#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
200
201/*
202 * mapping from the currently active vm_flags protection bits (the
203 * low four bits) to a page protection mask..
204 */
205extern pgprot_t protection_map[16];
206
207#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
208#define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
209#define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
210#define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
211#define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
212#define FAULT_FLAG_TRIED 0x20 /* Second try */
213#define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
214
215/*
216 * vm_fault is filled by the the pagefault handler and passed to the vma's
217 * ->fault function. The vma's ->fault is responsible for returning a bitmask
218 * of VM_FAULT_xxx flags that give details about how the fault was handled.
219 *
220 * pgoff should be used in favour of virtual_address, if possible.
221 */
222struct vm_fault {
223 unsigned int flags; /* FAULT_FLAG_xxx flags */
224 pgoff_t pgoff; /* Logical page offset based on vma */
225 void __user *virtual_address; /* Faulting virtual address */
226
227 struct page *cow_page; /* Handler may choose to COW */
228 struct page *page; /* ->fault handlers should return a
229 * page here, unless VM_FAULT_NOPAGE
230 * is set (which is also implied by
231 * VM_FAULT_ERROR).
232 */
233 /* for ->map_pages() only */
234 pgoff_t max_pgoff; /* map pages for offset from pgoff till
235 * max_pgoff inclusive */
236 pte_t *pte; /* pte entry associated with ->pgoff */
237};
238
239/*
240 * These are the virtual MM functions - opening of an area, closing and
241 * unmapping it (needed to keep files on disk up-to-date etc), pointer
242 * to the functions called when a no-page or a wp-page exception occurs.
243 */
244struct vm_operations_struct {
245 void (*open)(struct vm_area_struct * area);
246 void (*close)(struct vm_area_struct * area);
247 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
248 void (*map_pages)(struct vm_area_struct *vma, struct vm_fault *vmf);
249
250 /* notification that a previously read-only page is about to become
251 * writable, if an error is returned it will cause a SIGBUS */
252 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
253
254 /* called by access_process_vm when get_user_pages() fails, typically
255 * for use by special VMAs that can switch between memory and hardware
256 */
257 int (*access)(struct vm_area_struct *vma, unsigned long addr,
258 void *buf, int len, int write);
259
260 /* Called by the /proc/PID/maps code to ask the vma whether it
261 * has a special name. Returning non-NULL will also cause this
262 * vma to be dumped unconditionally. */
263 const char *(*name)(struct vm_area_struct *vma);
264
265#ifdef CONFIG_NUMA
266 /*
267 * set_policy() op must add a reference to any non-NULL @new mempolicy
268 * to hold the policy upon return. Caller should pass NULL @new to
269 * remove a policy and fall back to surrounding context--i.e. do not
270 * install a MPOL_DEFAULT policy, nor the task or system default
271 * mempolicy.
272 */
273 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
274
275 /*
276 * get_policy() op must add reference [mpol_get()] to any policy at
277 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
278 * in mm/mempolicy.c will do this automatically.
279 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
280 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
281 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
282 * must return NULL--i.e., do not "fallback" to task or system default
283 * policy.
284 */
285 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
286 unsigned long addr);
287#endif
288 /*
289 * Called by vm_normal_page() for special PTEs to find the
290 * page for @addr. This is useful if the default behavior
291 * (using pte_page()) would not find the correct page.
292 */
293 struct page *(*find_special_page)(struct vm_area_struct *vma,
294 unsigned long addr);
295};
296
297struct mmu_gather;
298struct inode;
299
300#define page_private(page) ((page)->private)
301#define set_page_private(page, v) ((page)->private = (v))
302
303/* It's valid only if the page is free path or free_list */
304static inline void set_freepage_migratetype(struct page *page, int migratetype)
305{
306 page->index = migratetype;
307}
308
309/* It's valid only if the page is free path or free_list */
310static inline int get_freepage_migratetype(struct page *page)
311{
312 return page->index;
313}
314
315/*
316 * FIXME: take this include out, include page-flags.h in
317 * files which need it (119 of them)
318 */
319#include <linux/page-flags.h>
320#include <linux/huge_mm.h>
321
322/*
323 * Methods to modify the page usage count.
324 *
325 * What counts for a page usage:
326 * - cache mapping (page->mapping)
327 * - private data (page->private)
328 * - page mapped in a task's page tables, each mapping
329 * is counted separately
330 *
331 * Also, many kernel routines increase the page count before a critical
332 * routine so they can be sure the page doesn't go away from under them.
333 */
334
335/*
336 * Drop a ref, return true if the refcount fell to zero (the page has no users)
337 */
338static inline int put_page_testzero(struct page *page)
339{
340 VM_BUG_ON_PAGE(atomic_read(&page->_count) == 0, page);
341 return atomic_dec_and_test(&page->_count);
342}
343
344/*
345 * Try to grab a ref unless the page has a refcount of zero, return false if
346 * that is the case.
347 * This can be called when MMU is off so it must not access
348 * any of the virtual mappings.
349 */
350static inline int get_page_unless_zero(struct page *page)
351{
352 return atomic_inc_not_zero(&page->_count);
353}
354
355/*
356 * Try to drop a ref unless the page has a refcount of one, return false if
357 * that is the case.
358 * This is to make sure that the refcount won't become zero after this drop.
359 * This can be called when MMU is off so it must not access
360 * any of the virtual mappings.
361 */
362static inline int put_page_unless_one(struct page *page)
363{
364 return atomic_add_unless(&page->_count, -1, 1);
365}
366
367extern int page_is_ram(unsigned long pfn);
368extern int region_is_ram(resource_size_t phys_addr, unsigned long size);
369
370/* Support for virtually mapped pages */
371struct page *vmalloc_to_page(const void *addr);
372unsigned long vmalloc_to_pfn(const void *addr);
373
374/*
375 * Determine if an address is within the vmalloc range
376 *
377 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
378 * is no special casing required.
379 */
380static inline int is_vmalloc_addr(const void *x)
381{
382#ifdef CONFIG_MMU
383 unsigned long addr = (unsigned long)x;
384
385 return addr >= VMALLOC_START && addr < VMALLOC_END;
386#else
387 return 0;
388#endif
389}
390#ifdef CONFIG_MMU
391extern int is_vmalloc_or_module_addr(const void *x);
392#else
393static inline int is_vmalloc_or_module_addr(const void *x)
394{
395 return 0;
396}
397#endif
398
399extern void kvfree(const void *addr);
400
401static inline void compound_lock(struct page *page)
402{
403#ifdef CONFIG_TRANSPARENT_HUGEPAGE
404 VM_BUG_ON_PAGE(PageSlab(page), page);
405 bit_spin_lock(PG_compound_lock, &page->flags);
406#endif
407}
408
409static inline void compound_unlock(struct page *page)
410{
411#ifdef CONFIG_TRANSPARENT_HUGEPAGE
412 VM_BUG_ON_PAGE(PageSlab(page), page);
413 bit_spin_unlock(PG_compound_lock, &page->flags);
414#endif
415}
416
417static inline unsigned long compound_lock_irqsave(struct page *page)
418{
419 unsigned long uninitialized_var(flags);
420#ifdef CONFIG_TRANSPARENT_HUGEPAGE
421 local_irq_save(flags);
422 compound_lock(page);
423#endif
424 return flags;
425}
426
427static inline void compound_unlock_irqrestore(struct page *page,
428 unsigned long flags)
429{
430#ifdef CONFIG_TRANSPARENT_HUGEPAGE
431 compound_unlock(page);
432 local_irq_restore(flags);
433#endif
434}
435
436static inline struct page *compound_head_by_tail(struct page *tail)
437{
438 struct page *head = tail->first_page;
439
440 /*
441 * page->first_page may be a dangling pointer to an old
442 * compound page, so recheck that it is still a tail
443 * page before returning.
444 */
445 smp_rmb();
446 if (likely(PageTail(tail)))
447 return head;
448 return tail;
449}
450
451/*
452 * Since either compound page could be dismantled asynchronously in THP
453 * or we access asynchronously arbitrary positioned struct page, there
454 * would be tail flag race. To handle this race, we should call
455 * smp_rmb() before checking tail flag. compound_head_by_tail() did it.
456 */
457static inline struct page *compound_head(struct page *page)
458{
459 if (unlikely(PageTail(page)))
460 return compound_head_by_tail(page);
461 return page;
462}
463
464/*
465 * If we access compound page synchronously such as access to
466 * allocated page, there is no need to handle tail flag race, so we can
467 * check tail flag directly without any synchronization primitive.
468 */
469static inline struct page *compound_head_fast(struct page *page)
470{
471 if (unlikely(PageTail(page)))
472 return page->first_page;
473 return page;
474}
475
476/*
477 * The atomic page->_mapcount, starts from -1: so that transitions
478 * both from it and to it can be tracked, using atomic_inc_and_test
479 * and atomic_add_negative(-1).
480 */
481static inline void page_mapcount_reset(struct page *page)
482{
483 atomic_set(&(page)->_mapcount, -1);
484}
485
486static inline int page_mapcount(struct page *page)
487{
488 VM_BUG_ON_PAGE(PageSlab(page), page);
489 return atomic_read(&page->_mapcount) + 1;
490}
491
492static inline int page_count(struct page *page)
493{
494 return atomic_read(&compound_head(page)->_count);
495}
496
497#ifdef CONFIG_HUGETLB_PAGE
498extern int PageHeadHuge(struct page *page_head);
499#else /* CONFIG_HUGETLB_PAGE */
500static inline int PageHeadHuge(struct page *page_head)
501{
502 return 0;
503}
504#endif /* CONFIG_HUGETLB_PAGE */
505
506static inline bool __compound_tail_refcounted(struct page *page)
507{
508 return !PageSlab(page) && !PageHeadHuge(page);
509}
510
511/*
512 * This takes a head page as parameter and tells if the
513 * tail page reference counting can be skipped.
514 *
515 * For this to be safe, PageSlab and PageHeadHuge must remain true on
516 * any given page where they return true here, until all tail pins
517 * have been released.
518 */
519static inline bool compound_tail_refcounted(struct page *page)
520{
521 VM_BUG_ON_PAGE(!PageHead(page), page);
522 return __compound_tail_refcounted(page);
523}
524
525static inline void get_huge_page_tail(struct page *page)
526{
527 /*
528 * __split_huge_page_refcount() cannot run from under us.
529 */
530 VM_BUG_ON_PAGE(!PageTail(page), page);
531 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
532 VM_BUG_ON_PAGE(atomic_read(&page->_count) != 0, page);
533 if (compound_tail_refcounted(page->first_page))
534 atomic_inc(&page->_mapcount);
535}
536
537extern bool __get_page_tail(struct page *page);
538
539static inline void get_page(struct page *page)
540{
541 if (unlikely(PageTail(page)))
542 if (likely(__get_page_tail(page)))
543 return;
544 /*
545 * Getting a normal page or the head of a compound page
546 * requires to already have an elevated page->_count.
547 */
548 VM_BUG_ON_PAGE(atomic_read(&page->_count) <= 0, page);
549 atomic_inc(&page->_count);
550}
551
552static inline struct page *virt_to_head_page(const void *x)
553{
554 struct page *page = virt_to_page(x);
555
556 /*
557 * We don't need to worry about synchronization of tail flag
558 * when we call virt_to_head_page() since it is only called for
559 * already allocated page and this page won't be freed until
560 * this virt_to_head_page() is finished. So use _fast variant.
561 */
562 return compound_head_fast(page);
563}
564
565/*
566 * Setup the page count before being freed into the page allocator for
567 * the first time (boot or memory hotplug)
568 */
569static inline void init_page_count(struct page *page)
570{
571 atomic_set(&page->_count, 1);
572}
573
574/*
575 * PageBuddy() indicate that the page is free and in the buddy system
576 * (see mm/page_alloc.c).
577 *
578 * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
579 * -2 so that an underflow of the page_mapcount() won't be mistaken
580 * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
581 * efficiently by most CPU architectures.
582 */
583#define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
584
585static inline int PageBuddy(struct page *page)
586{
587 return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE;
588}
589
590static inline void __SetPageBuddy(struct page *page)
591{
592 VM_BUG_ON_PAGE(atomic_read(&page->_mapcount) != -1, page);
593 atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE);
594}
595
596static inline void __ClearPageBuddy(struct page *page)
597{
598 VM_BUG_ON_PAGE(!PageBuddy(page), page);
599 atomic_set(&page->_mapcount, -1);
600}
601
602#define PAGE_BALLOON_MAPCOUNT_VALUE (-256)
603
604static inline int PageBalloon(struct page *page)
605{
606 return atomic_read(&page->_mapcount) == PAGE_BALLOON_MAPCOUNT_VALUE;
607}
608
609static inline void __SetPageBalloon(struct page *page)
610{
611 VM_BUG_ON_PAGE(atomic_read(&page->_mapcount) != -1, page);
612 atomic_set(&page->_mapcount, PAGE_BALLOON_MAPCOUNT_VALUE);
613}
614
615static inline void __ClearPageBalloon(struct page *page)
616{
617 VM_BUG_ON_PAGE(!PageBalloon(page), page);
618 atomic_set(&page->_mapcount, -1);
619}
620
621void put_page(struct page *page);
622void put_pages_list(struct list_head *pages);
623
624void split_page(struct page *page, unsigned int order);
625int split_free_page(struct page *page);
626
627/*
628 * Compound pages have a destructor function. Provide a
629 * prototype for that function and accessor functions.
630 * These are _only_ valid on the head of a PG_compound page.
631 */
632
633static inline void set_compound_page_dtor(struct page *page,
634 compound_page_dtor *dtor)
635{
636 page[1].compound_dtor = dtor;
637}
638
639static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
640{
641 return page[1].compound_dtor;
642}
643
644static inline int compound_order(struct page *page)
645{
646 if (!PageHead(page))
647 return 0;
648 return page[1].compound_order;
649}
650
651static inline void set_compound_order(struct page *page, unsigned long order)
652{
653 page[1].compound_order = order;
654}
655
656#ifdef CONFIG_MMU
657/*
658 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
659 * servicing faults for write access. In the normal case, do always want
660 * pte_mkwrite. But get_user_pages can cause write faults for mappings
661 * that do not have writing enabled, when used by access_process_vm.
662 */
663static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
664{
665 if (likely(vma->vm_flags & VM_WRITE))
666 pte = pte_mkwrite(pte);
667 return pte;
668}
669
670void do_set_pte(struct vm_area_struct *vma, unsigned long address,
671 struct page *page, pte_t *pte, bool write, bool anon);
672#endif
673
674/*
675 * Multiple processes may "see" the same page. E.g. for untouched
676 * mappings of /dev/null, all processes see the same page full of
677 * zeroes, and text pages of executables and shared libraries have
678 * only one copy in memory, at most, normally.
679 *
680 * For the non-reserved pages, page_count(page) denotes a reference count.
681 * page_count() == 0 means the page is free. page->lru is then used for
682 * freelist management in the buddy allocator.
683 * page_count() > 0 means the page has been allocated.
684 *
685 * Pages are allocated by the slab allocator in order to provide memory
686 * to kmalloc and kmem_cache_alloc. In this case, the management of the
687 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
688 * unless a particular usage is carefully commented. (the responsibility of
689 * freeing the kmalloc memory is the caller's, of course).
690 *
691 * A page may be used by anyone else who does a __get_free_page().
692 * In this case, page_count still tracks the references, and should only
693 * be used through the normal accessor functions. The top bits of page->flags
694 * and page->virtual store page management information, but all other fields
695 * are unused and could be used privately, carefully. The management of this
696 * page is the responsibility of the one who allocated it, and those who have
697 * subsequently been given references to it.
698 *
699 * The other pages (we may call them "pagecache pages") are completely
700 * managed by the Linux memory manager: I/O, buffers, swapping etc.
701 * The following discussion applies only to them.
702 *
703 * A pagecache page contains an opaque `private' member, which belongs to the
704 * page's address_space. Usually, this is the address of a circular list of
705 * the page's disk buffers. PG_private must be set to tell the VM to call
706 * into the filesystem to release these pages.
707 *
708 * A page may belong to an inode's memory mapping. In this case, page->mapping
709 * is the pointer to the inode, and page->index is the file offset of the page,
710 * in units of PAGE_CACHE_SIZE.
711 *
712 * If pagecache pages are not associated with an inode, they are said to be
713 * anonymous pages. These may become associated with the swapcache, and in that
714 * case PG_swapcache is set, and page->private is an offset into the swapcache.
715 *
716 * In either case (swapcache or inode backed), the pagecache itself holds one
717 * reference to the page. Setting PG_private should also increment the
718 * refcount. The each user mapping also has a reference to the page.
719 *
720 * The pagecache pages are stored in a per-mapping radix tree, which is
721 * rooted at mapping->page_tree, and indexed by offset.
722 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
723 * lists, we instead now tag pages as dirty/writeback in the radix tree.
724 *
725 * All pagecache pages may be subject to I/O:
726 * - inode pages may need to be read from disk,
727 * - inode pages which have been modified and are MAP_SHARED may need
728 * to be written back to the inode on disk,
729 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
730 * modified may need to be swapped out to swap space and (later) to be read
731 * back into memory.
732 */
733
734/*
735 * The zone field is never updated after free_area_init_core()
736 * sets it, so none of the operations on it need to be atomic.
737 */
738
739/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
740#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
741#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
742#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
743#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
744
745/*
746 * Define the bit shifts to access each section. For non-existent
747 * sections we define the shift as 0; that plus a 0 mask ensures
748 * the compiler will optimise away reference to them.
749 */
750#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
751#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
752#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
753#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
754
755/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
756#ifdef NODE_NOT_IN_PAGE_FLAGS
757#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
758#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
759 SECTIONS_PGOFF : ZONES_PGOFF)
760#else
761#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
762#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
763 NODES_PGOFF : ZONES_PGOFF)
764#endif
765
766#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
767
768#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
769#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
770#endif
771
772#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
773#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
774#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
775#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
776#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
777
778static inline enum zone_type page_zonenum(const struct page *page)
779{
780 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
781}
782
783#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
784#define SECTION_IN_PAGE_FLAGS
785#endif
786
787/*
788 * The identification function is mainly used by the buddy allocator for
789 * determining if two pages could be buddies. We are not really identifying
790 * the zone since we could be using the section number id if we do not have
791 * node id available in page flags.
792 * We only guarantee that it will return the same value for two combinable
793 * pages in a zone.
794 */
795static inline int page_zone_id(struct page *page)
796{
797 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
798}
799
800static inline int zone_to_nid(struct zone *zone)
801{
802#ifdef CONFIG_NUMA
803 return zone->node;
804#else
805 return 0;
806#endif
807}
808
809#ifdef NODE_NOT_IN_PAGE_FLAGS
810extern int page_to_nid(const struct page *page);
811#else
812static inline int page_to_nid(const struct page *page)
813{
814 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
815}
816#endif
817
818#ifdef CONFIG_NUMA_BALANCING
819static inline int cpu_pid_to_cpupid(int cpu, int pid)
820{
821 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
822}
823
824static inline int cpupid_to_pid(int cpupid)
825{
826 return cpupid & LAST__PID_MASK;
827}
828
829static inline int cpupid_to_cpu(int cpupid)
830{
831 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
832}
833
834static inline int cpupid_to_nid(int cpupid)
835{
836 return cpu_to_node(cpupid_to_cpu(cpupid));
837}
838
839static inline bool cpupid_pid_unset(int cpupid)
840{
841 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
842}
843
844static inline bool cpupid_cpu_unset(int cpupid)
845{
846 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
847}
848
849static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
850{
851 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
852}
853
854#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
855#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
856static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
857{
858 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
859}
860
861static inline int page_cpupid_last(struct page *page)
862{
863 return page->_last_cpupid;
864}
865static inline void page_cpupid_reset_last(struct page *page)
866{
867 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
868}
869#else
870static inline int page_cpupid_last(struct page *page)
871{
872 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
873}
874
875extern int page_cpupid_xchg_last(struct page *page, int cpupid);
876
877static inline void page_cpupid_reset_last(struct page *page)
878{
879 int cpupid = (1 << LAST_CPUPID_SHIFT) - 1;
880
881 page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT);
882 page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT;
883}
884#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
885#else /* !CONFIG_NUMA_BALANCING */
886static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
887{
888 return page_to_nid(page); /* XXX */
889}
890
891static inline int page_cpupid_last(struct page *page)
892{
893 return page_to_nid(page); /* XXX */
894}
895
896static inline int cpupid_to_nid(int cpupid)
897{
898 return -1;
899}
900
901static inline int cpupid_to_pid(int cpupid)
902{
903 return -1;
904}
905
906static inline int cpupid_to_cpu(int cpupid)
907{
908 return -1;
909}
910
911static inline int cpu_pid_to_cpupid(int nid, int pid)
912{
913 return -1;
914}
915
916static inline bool cpupid_pid_unset(int cpupid)
917{
918 return 1;
919}
920
921static inline void page_cpupid_reset_last(struct page *page)
922{
923}
924
925static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
926{
927 return false;
928}
929#endif /* CONFIG_NUMA_BALANCING */
930
931static inline struct zone *page_zone(const struct page *page)
932{
933 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
934}
935
936#ifdef SECTION_IN_PAGE_FLAGS
937static inline void set_page_section(struct page *page, unsigned long section)
938{
939 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
940 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
941}
942
943static inline unsigned long page_to_section(const struct page *page)
944{
945 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
946}
947#endif
948
949static inline void set_page_zone(struct page *page, enum zone_type zone)
950{
951 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
952 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
953}
954
955static inline void set_page_node(struct page *page, unsigned long node)
956{
957 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
958 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
959}
960
961static inline void set_page_links(struct page *page, enum zone_type zone,
962 unsigned long node, unsigned long pfn)
963{
964 set_page_zone(page, zone);
965 set_page_node(page, node);
966#ifdef SECTION_IN_PAGE_FLAGS
967 set_page_section(page, pfn_to_section_nr(pfn));
968#endif
969}
970
971/*
972 * Some inline functions in vmstat.h depend on page_zone()
973 */
974#include <linux/vmstat.h>
975
976static __always_inline void *lowmem_page_address(const struct page *page)
977{
978 return __va(PFN_PHYS(page_to_pfn(page)));
979}
980
981#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
982#define HASHED_PAGE_VIRTUAL
983#endif
984
985#if defined(WANT_PAGE_VIRTUAL)
986static inline void *page_address(const struct page *page)
987{
988 return page->virtual;
989}
990static inline void set_page_address(struct page *page, void *address)
991{
992 page->virtual = address;
993}
994#define page_address_init() do { } while(0)
995#endif
996
997#if defined(HASHED_PAGE_VIRTUAL)
998void *page_address(const struct page *page);
999void set_page_address(struct page *page, void *virtual);
1000void page_address_init(void);
1001#endif
1002
1003#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1004#define page_address(page) lowmem_page_address(page)
1005#define set_page_address(page, address) do { } while(0)
1006#define page_address_init() do { } while(0)
1007#endif
1008
1009/*
1010 * On an anonymous page mapped into a user virtual memory area,
1011 * page->mapping points to its anon_vma, not to a struct address_space;
1012 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
1013 *
1014 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
1015 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
1016 * and then page->mapping points, not to an anon_vma, but to a private
1017 * structure which KSM associates with that merged page. See ksm.h.
1018 *
1019 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
1020 *
1021 * Please note that, confusingly, "page_mapping" refers to the inode
1022 * address_space which maps the page from disk; whereas "page_mapped"
1023 * refers to user virtual address space into which the page is mapped.
1024 */
1025#define PAGE_MAPPING_ANON 1
1026#define PAGE_MAPPING_KSM 2
1027#define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
1028
1029extern struct address_space *page_mapping(struct page *page);
1030
1031/* Neutral page->mapping pointer to address_space or anon_vma or other */
1032static inline void *page_rmapping(struct page *page)
1033{
1034 return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
1035}
1036
1037extern struct address_space *__page_file_mapping(struct page *);
1038
1039static inline
1040struct address_space *page_file_mapping(struct page *page)
1041{
1042 if (unlikely(PageSwapCache(page)))
1043 return __page_file_mapping(page);
1044
1045 return page->mapping;
1046}
1047
1048static inline int PageAnon(struct page *page)
1049{
1050 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
1051}
1052
1053/*
1054 * Return the pagecache index of the passed page. Regular pagecache pages
1055 * use ->index whereas swapcache pages use ->private
1056 */
1057static inline pgoff_t page_index(struct page *page)
1058{
1059 if (unlikely(PageSwapCache(page)))
1060 return page_private(page);
1061 return page->index;
1062}
1063
1064extern pgoff_t __page_file_index(struct page *page);
1065
1066/*
1067 * Return the file index of the page. Regular pagecache pages use ->index
1068 * whereas swapcache pages use swp_offset(->private)
1069 */
1070static inline pgoff_t page_file_index(struct page *page)
1071{
1072 if (unlikely(PageSwapCache(page)))
1073 return __page_file_index(page);
1074
1075 return page->index;
1076}
1077
1078/*
1079 * Return true if this page is mapped into pagetables.
1080 */
1081static inline int page_mapped(struct page *page)
1082{
1083 return atomic_read(&(page)->_mapcount) >= 0;
1084}
1085
1086/*
1087 * Different kinds of faults, as returned by handle_mm_fault().
1088 * Used to decide whether a process gets delivered SIGBUS or
1089 * just gets major/minor fault counters bumped up.
1090 */
1091
1092#define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
1093
1094#define VM_FAULT_OOM 0x0001
1095#define VM_FAULT_SIGBUS 0x0002
1096#define VM_FAULT_MAJOR 0x0004
1097#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
1098#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
1099#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
1100#define VM_FAULT_SIGSEGV 0x0040
1101
1102#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
1103#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
1104#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
1105#define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
1106
1107#define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
1108
1109#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
1110 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
1111 VM_FAULT_FALLBACK)
1112
1113/* Encode hstate index for a hwpoisoned large page */
1114#define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1115#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
1116
1117/*
1118 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1119 */
1120extern void pagefault_out_of_memory(void);
1121
1122#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1123
1124/*
1125 * Flags passed to show_mem() and show_free_areas() to suppress output in
1126 * various contexts.
1127 */
1128#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
1129
1130extern void show_free_areas(unsigned int flags);
1131extern bool skip_free_areas_node(unsigned int flags, int nid);
1132
1133int shmem_zero_setup(struct vm_area_struct *);
1134#ifdef CONFIG_SHMEM
1135bool shmem_mapping(struct address_space *mapping);
1136#else
1137static inline bool shmem_mapping(struct address_space *mapping)
1138{
1139 return false;
1140}
1141#endif
1142
1143extern int can_do_mlock(void);
1144extern int user_shm_lock(size_t, struct user_struct *);
1145extern void user_shm_unlock(size_t, struct user_struct *);
1146
1147/*
1148 * Parameter block passed down to zap_pte_range in exceptional cases.
1149 */
1150struct zap_details {
1151 struct address_space *check_mapping; /* Check page->mapping if set */
1152 pgoff_t first_index; /* Lowest page->index to unmap */
1153 pgoff_t last_index; /* Highest page->index to unmap */
1154};
1155
1156struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1157 pte_t pte);
1158
1159int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1160 unsigned long size);
1161void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1162 unsigned long size, struct zap_details *);
1163void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1164 unsigned long start, unsigned long end);
1165
1166/**
1167 * mm_walk - callbacks for walk_page_range
1168 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
1169 * this handler is required to be able to handle
1170 * pmd_trans_huge() pmds. They may simply choose to
1171 * split_huge_page() instead of handling it explicitly.
1172 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1173 * @pte_hole: if set, called for each hole at all levels
1174 * @hugetlb_entry: if set, called for each hugetlb entry
1175 * @test_walk: caller specific callback function to determine whether
1176 * we walk over the current vma or not. A positive returned
1177 * value means "do page table walk over the current vma,"
1178 * and a negative one means "abort current page table walk
1179 * right now." 0 means "skip the current vma."
1180 * @mm: mm_struct representing the target process of page table walk
1181 * @vma: vma currently walked (NULL if walking outside vmas)
1182 * @private: private data for callbacks' usage
1183 *
1184 * (see the comment on walk_page_range() for more details)
1185 */
1186struct mm_walk {
1187 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1188 unsigned long next, struct mm_walk *walk);
1189 int (*pte_entry)(pte_t *pte, unsigned long addr,
1190 unsigned long next, struct mm_walk *walk);
1191 int (*pte_hole)(unsigned long addr, unsigned long next,
1192 struct mm_walk *walk);
1193 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1194 unsigned long addr, unsigned long next,
1195 struct mm_walk *walk);
1196 int (*test_walk)(unsigned long addr, unsigned long next,
1197 struct mm_walk *walk);
1198 struct mm_struct *mm;
1199 struct vm_area_struct *vma;
1200 void *private;
1201};
1202
1203int walk_page_range(unsigned long addr, unsigned long end,
1204 struct mm_walk *walk);
1205int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
1206void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1207 unsigned long end, unsigned long floor, unsigned long ceiling);
1208int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1209 struct vm_area_struct *vma);
1210void unmap_mapping_range(struct address_space *mapping,
1211 loff_t const holebegin, loff_t const holelen, int even_cows);
1212int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1213 unsigned long *pfn);
1214int follow_phys(struct vm_area_struct *vma, unsigned long address,
1215 unsigned int flags, unsigned long *prot, resource_size_t *phys);
1216int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1217 void *buf, int len, int write);
1218
1219static inline void unmap_shared_mapping_range(struct address_space *mapping,
1220 loff_t const holebegin, loff_t const holelen)
1221{
1222 unmap_mapping_range(mapping, holebegin, holelen, 0);
1223}
1224
1225extern void truncate_pagecache(struct inode *inode, loff_t new);
1226extern void truncate_setsize(struct inode *inode, loff_t newsize);
1227void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1228void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1229int truncate_inode_page(struct address_space *mapping, struct page *page);
1230int generic_error_remove_page(struct address_space *mapping, struct page *page);
1231int invalidate_inode_page(struct page *page);
1232
1233#ifdef CONFIG_MMU
1234extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
1235 unsigned long address, unsigned int flags);
1236extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1237 unsigned long address, unsigned int fault_flags);
1238#else
1239static inline int handle_mm_fault(struct mm_struct *mm,
1240 struct vm_area_struct *vma, unsigned long address,
1241 unsigned int flags)
1242{
1243 /* should never happen if there's no MMU */
1244 BUG();
1245 return VM_FAULT_SIGBUS;
1246}
1247static inline int fixup_user_fault(struct task_struct *tsk,
1248 struct mm_struct *mm, unsigned long address,
1249 unsigned int fault_flags)
1250{
1251 /* should never happen if there's no MMU */
1252 BUG();
1253 return -EFAULT;
1254}
1255#endif
1256
1257extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
1258extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1259 void *buf, int len, int write);
1260
1261long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1262 unsigned long start, unsigned long nr_pages,
1263 unsigned int foll_flags, struct page **pages,
1264 struct vm_area_struct **vmas, int *nonblocking);
1265long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1266 unsigned long start, unsigned long nr_pages,
1267 int write, int force, struct page **pages,
1268 struct vm_area_struct **vmas);
1269long get_user_pages_locked(struct task_struct *tsk, struct mm_struct *mm,
1270 unsigned long start, unsigned long nr_pages,
1271 int write, int force, struct page **pages,
1272 int *locked);
1273long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
1274 unsigned long start, unsigned long nr_pages,
1275 int write, int force, struct page **pages,
1276 unsigned int gup_flags);
1277long get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
1278 unsigned long start, unsigned long nr_pages,
1279 int write, int force, struct page **pages);
1280int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1281 struct page **pages);
1282struct kvec;
1283int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1284 struct page **pages);
1285int get_kernel_page(unsigned long start, int write, struct page **pages);
1286struct page *get_dump_page(unsigned long addr);
1287
1288extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1289extern void do_invalidatepage(struct page *page, unsigned int offset,
1290 unsigned int length);
1291
1292int __set_page_dirty_nobuffers(struct page *page);
1293int __set_page_dirty_no_writeback(struct page *page);
1294int redirty_page_for_writepage(struct writeback_control *wbc,
1295 struct page *page);
1296void account_page_dirtied(struct page *page, struct address_space *mapping);
1297int set_page_dirty(struct page *page);
1298int set_page_dirty_lock(struct page *page);
1299int clear_page_dirty_for_io(struct page *page);
1300int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1301
1302/* Is the vma a continuation of the stack vma above it? */
1303static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
1304{
1305 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1306}
1307
1308static inline int stack_guard_page_start(struct vm_area_struct *vma,
1309 unsigned long addr)
1310{
1311 return (vma->vm_flags & VM_GROWSDOWN) &&
1312 (vma->vm_start == addr) &&
1313 !vma_growsdown(vma->vm_prev, addr);
1314}
1315
1316/* Is the vma a continuation of the stack vma below it? */
1317static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1318{
1319 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1320}
1321
1322static inline int stack_guard_page_end(struct vm_area_struct *vma,
1323 unsigned long addr)
1324{
1325 return (vma->vm_flags & VM_GROWSUP) &&
1326 (vma->vm_end == addr) &&
1327 !vma_growsup(vma->vm_next, addr);
1328}
1329
1330extern struct task_struct *task_of_stack(struct task_struct *task,
1331 struct vm_area_struct *vma, bool in_group);
1332
1333extern unsigned long move_page_tables(struct vm_area_struct *vma,
1334 unsigned long old_addr, struct vm_area_struct *new_vma,
1335 unsigned long new_addr, unsigned long len,
1336 bool need_rmap_locks);
1337extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1338 unsigned long end, pgprot_t newprot,
1339 int dirty_accountable, int prot_numa);
1340extern int mprotect_fixup(struct vm_area_struct *vma,
1341 struct vm_area_struct **pprev, unsigned long start,
1342 unsigned long end, unsigned long newflags);
1343
1344/*
1345 * doesn't attempt to fault and will return short.
1346 */
1347int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1348 struct page **pages);
1349/*
1350 * per-process(per-mm_struct) statistics.
1351 */
1352static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1353{
1354 long val = atomic_long_read(&mm->rss_stat.count[member]);
1355
1356#ifdef SPLIT_RSS_COUNTING
1357 /*
1358 * counter is updated in asynchronous manner and may go to minus.
1359 * But it's never be expected number for users.
1360 */
1361 if (val < 0)
1362 val = 0;
1363#endif
1364 return (unsigned long)val;
1365}
1366
1367static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1368{
1369 atomic_long_add(value, &mm->rss_stat.count[member]);
1370}
1371
1372static inline void inc_mm_counter(struct mm_struct *mm, int member)
1373{
1374 atomic_long_inc(&mm->rss_stat.count[member]);
1375}
1376
1377static inline void dec_mm_counter(struct mm_struct *mm, int member)
1378{
1379 atomic_long_dec(&mm->rss_stat.count[member]);
1380}
1381
1382static inline unsigned long get_mm_rss(struct mm_struct *mm)
1383{
1384 return get_mm_counter(mm, MM_FILEPAGES) +
1385 get_mm_counter(mm, MM_ANONPAGES);
1386}
1387
1388static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1389{
1390 return max(mm->hiwater_rss, get_mm_rss(mm));
1391}
1392
1393static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1394{
1395 return max(mm->hiwater_vm, mm->total_vm);
1396}
1397
1398static inline void update_hiwater_rss(struct mm_struct *mm)
1399{
1400 unsigned long _rss = get_mm_rss(mm);
1401
1402 if ((mm)->hiwater_rss < _rss)
1403 (mm)->hiwater_rss = _rss;
1404}
1405
1406static inline void update_hiwater_vm(struct mm_struct *mm)
1407{
1408 if (mm->hiwater_vm < mm->total_vm)
1409 mm->hiwater_vm = mm->total_vm;
1410}
1411
1412static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1413{
1414 mm->hiwater_rss = get_mm_rss(mm);
1415}
1416
1417static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1418 struct mm_struct *mm)
1419{
1420 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1421
1422 if (*maxrss < hiwater_rss)
1423 *maxrss = hiwater_rss;
1424}
1425
1426#if defined(SPLIT_RSS_COUNTING)
1427void sync_mm_rss(struct mm_struct *mm);
1428#else
1429static inline void sync_mm_rss(struct mm_struct *mm)
1430{
1431}
1432#endif
1433
1434int vma_wants_writenotify(struct vm_area_struct *vma);
1435
1436extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1437 spinlock_t **ptl);
1438static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1439 spinlock_t **ptl)
1440{
1441 pte_t *ptep;
1442 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1443 return ptep;
1444}
1445
1446#ifdef __PAGETABLE_PUD_FOLDED
1447static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1448 unsigned long address)
1449{
1450 return 0;
1451}
1452#else
1453int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1454#endif
1455
1456#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
1457static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1458 unsigned long address)
1459{
1460 return 0;
1461}
1462
1463static inline void mm_nr_pmds_init(struct mm_struct *mm) {}
1464
1465static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1466{
1467 return 0;
1468}
1469
1470static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1471static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1472
1473#else
1474int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1475
1476static inline void mm_nr_pmds_init(struct mm_struct *mm)
1477{
1478 atomic_long_set(&mm->nr_pmds, 0);
1479}
1480
1481static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1482{
1483 return atomic_long_read(&mm->nr_pmds);
1484}
1485
1486static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1487{
1488 atomic_long_inc(&mm->nr_pmds);
1489}
1490
1491static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1492{
1493 atomic_long_dec(&mm->nr_pmds);
1494}
1495#endif
1496
1497int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1498 pmd_t *pmd, unsigned long address);
1499int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1500
1501/*
1502 * The following ifdef needed to get the 4level-fixup.h header to work.
1503 * Remove it when 4level-fixup.h has been removed.
1504 */
1505#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1506static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1507{
1508 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1509 NULL: pud_offset(pgd, address);
1510}
1511
1512static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1513{
1514 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1515 NULL: pmd_offset(pud, address);
1516}
1517#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1518
1519#if USE_SPLIT_PTE_PTLOCKS
1520#if ALLOC_SPLIT_PTLOCKS
1521void __init ptlock_cache_init(void);
1522extern bool ptlock_alloc(struct page *page);
1523extern void ptlock_free(struct page *page);
1524
1525static inline spinlock_t *ptlock_ptr(struct page *page)
1526{
1527 return page->ptl;
1528}
1529#else /* ALLOC_SPLIT_PTLOCKS */
1530static inline void ptlock_cache_init(void)
1531{
1532}
1533
1534static inline bool ptlock_alloc(struct page *page)
1535{
1536 return true;
1537}
1538
1539static inline void ptlock_free(struct page *page)
1540{
1541}
1542
1543static inline spinlock_t *ptlock_ptr(struct page *page)
1544{
1545 return &page->ptl;
1546}
1547#endif /* ALLOC_SPLIT_PTLOCKS */
1548
1549static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1550{
1551 return ptlock_ptr(pmd_page(*pmd));
1552}
1553
1554static inline bool ptlock_init(struct page *page)
1555{
1556 /*
1557 * prep_new_page() initialize page->private (and therefore page->ptl)
1558 * with 0. Make sure nobody took it in use in between.
1559 *
1560 * It can happen if arch try to use slab for page table allocation:
1561 * slab code uses page->slab_cache and page->first_page (for tail
1562 * pages), which share storage with page->ptl.
1563 */
1564 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
1565 if (!ptlock_alloc(page))
1566 return false;
1567 spin_lock_init(ptlock_ptr(page));
1568 return true;
1569}
1570
1571/* Reset page->mapping so free_pages_check won't complain. */
1572static inline void pte_lock_deinit(struct page *page)
1573{
1574 page->mapping = NULL;
1575 ptlock_free(page);
1576}
1577
1578#else /* !USE_SPLIT_PTE_PTLOCKS */
1579/*
1580 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1581 */
1582static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1583{
1584 return &mm->page_table_lock;
1585}
1586static inline void ptlock_cache_init(void) {}
1587static inline bool ptlock_init(struct page *page) { return true; }
1588static inline void pte_lock_deinit(struct page *page) {}
1589#endif /* USE_SPLIT_PTE_PTLOCKS */
1590
1591static inline void pgtable_init(void)
1592{
1593 ptlock_cache_init();
1594 pgtable_cache_init();
1595}
1596
1597static inline bool pgtable_page_ctor(struct page *page)
1598{
1599 inc_zone_page_state(page, NR_PAGETABLE);
1600 return ptlock_init(page);
1601}
1602
1603static inline void pgtable_page_dtor(struct page *page)
1604{
1605 pte_lock_deinit(page);
1606 dec_zone_page_state(page, NR_PAGETABLE);
1607}
1608
1609#define pte_offset_map_lock(mm, pmd, address, ptlp) \
1610({ \
1611 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
1612 pte_t *__pte = pte_offset_map(pmd, address); \
1613 *(ptlp) = __ptl; \
1614 spin_lock(__ptl); \
1615 __pte; \
1616})
1617
1618#define pte_unmap_unlock(pte, ptl) do { \
1619 spin_unlock(ptl); \
1620 pte_unmap(pte); \
1621} while (0)
1622
1623#define pte_alloc_map(mm, vma, pmd, address) \
1624 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
1625 pmd, address))? \
1626 NULL: pte_offset_map(pmd, address))
1627
1628#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
1629 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
1630 pmd, address))? \
1631 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1632
1633#define pte_alloc_kernel(pmd, address) \
1634 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1635 NULL: pte_offset_kernel(pmd, address))
1636
1637#if USE_SPLIT_PMD_PTLOCKS
1638
1639static struct page *pmd_to_page(pmd_t *pmd)
1640{
1641 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1642 return virt_to_page((void *)((unsigned long) pmd & mask));
1643}
1644
1645static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1646{
1647 return ptlock_ptr(pmd_to_page(pmd));
1648}
1649
1650static inline bool pgtable_pmd_page_ctor(struct page *page)
1651{
1652#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1653 page->pmd_huge_pte = NULL;
1654#endif
1655 return ptlock_init(page);
1656}
1657
1658static inline void pgtable_pmd_page_dtor(struct page *page)
1659{
1660#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1661 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
1662#endif
1663 ptlock_free(page);
1664}
1665
1666#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
1667
1668#else
1669
1670static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1671{
1672 return &mm->page_table_lock;
1673}
1674
1675static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1676static inline void pgtable_pmd_page_dtor(struct page *page) {}
1677
1678#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
1679
1680#endif
1681
1682static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1683{
1684 spinlock_t *ptl = pmd_lockptr(mm, pmd);
1685 spin_lock(ptl);
1686 return ptl;
1687}
1688
1689extern void free_area_init(unsigned long * zones_size);
1690extern void free_area_init_node(int nid, unsigned long * zones_size,
1691 unsigned long zone_start_pfn, unsigned long *zholes_size);
1692extern void free_initmem(void);
1693
1694/*
1695 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1696 * into the buddy system. The freed pages will be poisoned with pattern
1697 * "poison" if it's within range [0, UCHAR_MAX].
1698 * Return pages freed into the buddy system.
1699 */
1700extern unsigned long free_reserved_area(void *start, void *end,
1701 int poison, char *s);
1702
1703#ifdef CONFIG_HIGHMEM
1704/*
1705 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1706 * and totalram_pages.
1707 */
1708extern void free_highmem_page(struct page *page);
1709#endif
1710
1711extern void adjust_managed_page_count(struct page *page, long count);
1712extern void mem_init_print_info(const char *str);
1713
1714/* Free the reserved page into the buddy system, so it gets managed. */
1715static inline void __free_reserved_page(struct page *page)
1716{
1717 ClearPageReserved(page);
1718 init_page_count(page);
1719 __free_page(page);
1720}
1721
1722static inline void free_reserved_page(struct page *page)
1723{
1724 __free_reserved_page(page);
1725 adjust_managed_page_count(page, 1);
1726}
1727
1728static inline void mark_page_reserved(struct page *page)
1729{
1730 SetPageReserved(page);
1731 adjust_managed_page_count(page, -1);
1732}
1733
1734/*
1735 * Default method to free all the __init memory into the buddy system.
1736 * The freed pages will be poisoned with pattern "poison" if it's within
1737 * range [0, UCHAR_MAX].
1738 * Return pages freed into the buddy system.
1739 */
1740static inline unsigned long free_initmem_default(int poison)
1741{
1742 extern char __init_begin[], __init_end[];
1743
1744 return free_reserved_area(&__init_begin, &__init_end,
1745 poison, "unused kernel");
1746}
1747
1748static inline unsigned long get_num_physpages(void)
1749{
1750 int nid;
1751 unsigned long phys_pages = 0;
1752
1753 for_each_online_node(nid)
1754 phys_pages += node_present_pages(nid);
1755
1756 return phys_pages;
1757}
1758
1759#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1760/*
1761 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
1762 * zones, allocate the backing mem_map and account for memory holes in a more
1763 * architecture independent manner. This is a substitute for creating the
1764 * zone_sizes[] and zholes_size[] arrays and passing them to
1765 * free_area_init_node()
1766 *
1767 * An architecture is expected to register range of page frames backed by
1768 * physical memory with memblock_add[_node]() before calling
1769 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1770 * usage, an architecture is expected to do something like
1771 *
1772 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1773 * max_highmem_pfn};
1774 * for_each_valid_physical_page_range()
1775 * memblock_add_node(base, size, nid)
1776 * free_area_init_nodes(max_zone_pfns);
1777 *
1778 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1779 * registered physical page range. Similarly
1780 * sparse_memory_present_with_active_regions() calls memory_present() for
1781 * each range when SPARSEMEM is enabled.
1782 *
1783 * See mm/page_alloc.c for more information on each function exposed by
1784 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
1785 */
1786extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1787unsigned long node_map_pfn_alignment(void);
1788unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1789 unsigned long end_pfn);
1790extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1791 unsigned long end_pfn);
1792extern void get_pfn_range_for_nid(unsigned int nid,
1793 unsigned long *start_pfn, unsigned long *end_pfn);
1794extern unsigned long find_min_pfn_with_active_regions(void);
1795extern void free_bootmem_with_active_regions(int nid,
1796 unsigned long max_low_pfn);
1797extern void sparse_memory_present_with_active_regions(int nid);
1798
1799#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1800
1801#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
1802 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1803static inline int __early_pfn_to_nid(unsigned long pfn)
1804{
1805 return 0;
1806}
1807#else
1808/* please see mm/page_alloc.c */
1809extern int __meminit early_pfn_to_nid(unsigned long pfn);
1810/* there is a per-arch backend function. */
1811extern int __meminit __early_pfn_to_nid(unsigned long pfn);
1812#endif
1813
1814extern void set_dma_reserve(unsigned long new_dma_reserve);
1815extern void memmap_init_zone(unsigned long, int, unsigned long,
1816 unsigned long, enum memmap_context);
1817extern void setup_per_zone_wmarks(void);
1818extern int __meminit init_per_zone_wmark_min(void);
1819extern void mem_init(void);
1820extern void __init mmap_init(void);
1821extern void show_mem(unsigned int flags);
1822extern void si_meminfo(struct sysinfo * val);
1823extern void si_meminfo_node(struct sysinfo *val, int nid);
1824
1825extern __printf(3, 4)
1826void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
1827
1828extern void setup_per_cpu_pageset(void);
1829
1830extern void zone_pcp_update(struct zone *zone);
1831extern void zone_pcp_reset(struct zone *zone);
1832
1833/* page_alloc.c */
1834extern int min_free_kbytes;
1835
1836/* nommu.c */
1837extern atomic_long_t mmap_pages_allocated;
1838extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
1839
1840/* interval_tree.c */
1841void vma_interval_tree_insert(struct vm_area_struct *node,
1842 struct rb_root *root);
1843void vma_interval_tree_insert_after(struct vm_area_struct *node,
1844 struct vm_area_struct *prev,
1845 struct rb_root *root);
1846void vma_interval_tree_remove(struct vm_area_struct *node,
1847 struct rb_root *root);
1848struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1849 unsigned long start, unsigned long last);
1850struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1851 unsigned long start, unsigned long last);
1852
1853#define vma_interval_tree_foreach(vma, root, start, last) \
1854 for (vma = vma_interval_tree_iter_first(root, start, last); \
1855 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1856
1857void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1858 struct rb_root *root);
1859void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1860 struct rb_root *root);
1861struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1862 struct rb_root *root, unsigned long start, unsigned long last);
1863struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1864 struct anon_vma_chain *node, unsigned long start, unsigned long last);
1865#ifdef CONFIG_DEBUG_VM_RB
1866void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1867#endif
1868
1869#define anon_vma_interval_tree_foreach(avc, root, start, last) \
1870 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1871 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1872
1873/* mmap.c */
1874extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1875extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1876 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1877extern struct vm_area_struct *vma_merge(struct mm_struct *,
1878 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1879 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1880 struct mempolicy *);
1881extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1882extern int split_vma(struct mm_struct *,
1883 struct vm_area_struct *, unsigned long addr, int new_below);
1884extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1885extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1886 struct rb_node **, struct rb_node *);
1887extern void unlink_file_vma(struct vm_area_struct *);
1888extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1889 unsigned long addr, unsigned long len, pgoff_t pgoff,
1890 bool *need_rmap_locks);
1891extern void exit_mmap(struct mm_struct *);
1892
1893static inline int check_data_rlimit(unsigned long rlim,
1894 unsigned long new,
1895 unsigned long start,
1896 unsigned long end_data,
1897 unsigned long start_data)
1898{
1899 if (rlim < RLIM_INFINITY) {
1900 if (((new - start) + (end_data - start_data)) > rlim)
1901 return -ENOSPC;
1902 }
1903
1904 return 0;
1905}
1906
1907extern int mm_take_all_locks(struct mm_struct *mm);
1908extern void mm_drop_all_locks(struct mm_struct *mm);
1909
1910extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1911extern struct file *get_mm_exe_file(struct mm_struct *mm);
1912
1913extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
1914extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
1915 unsigned long addr, unsigned long len,
1916 unsigned long flags,
1917 const struct vm_special_mapping *spec);
1918/* This is an obsolete alternative to _install_special_mapping. */
1919extern int install_special_mapping(struct mm_struct *mm,
1920 unsigned long addr, unsigned long len,
1921 unsigned long flags, struct page **pages);
1922
1923extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1924
1925extern unsigned long mmap_region(struct file *file, unsigned long addr,
1926 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
1927extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1928 unsigned long len, unsigned long prot, unsigned long flags,
1929 unsigned long pgoff, unsigned long *populate);
1930extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1931
1932#ifdef CONFIG_MMU
1933extern int __mm_populate(unsigned long addr, unsigned long len,
1934 int ignore_errors);
1935static inline void mm_populate(unsigned long addr, unsigned long len)
1936{
1937 /* Ignore errors */
1938 (void) __mm_populate(addr, len, 1);
1939}
1940#else
1941static inline void mm_populate(unsigned long addr, unsigned long len) {}
1942#endif
1943
1944/* These take the mm semaphore themselves */
1945extern unsigned long vm_brk(unsigned long, unsigned long);
1946extern int vm_munmap(unsigned long, size_t);
1947extern unsigned long vm_mmap(struct file *, unsigned long,
1948 unsigned long, unsigned long,
1949 unsigned long, unsigned long);
1950
1951struct vm_unmapped_area_info {
1952#define VM_UNMAPPED_AREA_TOPDOWN 1
1953 unsigned long flags;
1954 unsigned long length;
1955 unsigned long low_limit;
1956 unsigned long high_limit;
1957 unsigned long align_mask;
1958 unsigned long align_offset;
1959};
1960
1961extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
1962extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
1963
1964/*
1965 * Search for an unmapped address range.
1966 *
1967 * We are looking for a range that:
1968 * - does not intersect with any VMA;
1969 * - is contained within the [low_limit, high_limit) interval;
1970 * - is at least the desired size.
1971 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1972 */
1973static inline unsigned long
1974vm_unmapped_area(struct vm_unmapped_area_info *info)
1975{
1976 if (!(info->flags & VM_UNMAPPED_AREA_TOPDOWN))
1977 return unmapped_area(info);
1978 else
1979 return unmapped_area_topdown(info);
1980}
1981
1982/* truncate.c */
1983extern void truncate_inode_pages(struct address_space *, loff_t);
1984extern void truncate_inode_pages_range(struct address_space *,
1985 loff_t lstart, loff_t lend);
1986extern void truncate_inode_pages_final(struct address_space *);
1987
1988/* generic vm_area_ops exported for stackable file systems */
1989extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
1990extern void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf);
1991extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
1992
1993/* mm/page-writeback.c */
1994int write_one_page(struct page *page, int wait);
1995void task_dirty_inc(struct task_struct *tsk);
1996
1997/* readahead.c */
1998#define VM_MAX_READAHEAD 128 /* kbytes */
1999#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
2000
2001int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
2002 pgoff_t offset, unsigned long nr_to_read);
2003
2004void page_cache_sync_readahead(struct address_space *mapping,
2005 struct file_ra_state *ra,
2006 struct file *filp,
2007 pgoff_t offset,
2008 unsigned long size);
2009
2010void page_cache_async_readahead(struct address_space *mapping,
2011 struct file_ra_state *ra,
2012 struct file *filp,
2013 struct page *pg,
2014 pgoff_t offset,
2015 unsigned long size);
2016
2017unsigned long max_sane_readahead(unsigned long nr);
2018
2019/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2020extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2021
2022/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2023extern int expand_downwards(struct vm_area_struct *vma,
2024 unsigned long address);
2025#if VM_GROWSUP
2026extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2027#else
2028 #define expand_upwards(vma, address) (0)
2029#endif
2030
2031/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2032extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2033extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2034 struct vm_area_struct **pprev);
2035
2036/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2037 NULL if none. Assume start_addr < end_addr. */
2038static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2039{
2040 struct vm_area_struct * vma = find_vma(mm,start_addr);
2041
2042 if (vma && end_addr <= vma->vm_start)
2043 vma = NULL;
2044 return vma;
2045}
2046
2047static inline unsigned long vma_pages(struct vm_area_struct *vma)
2048{
2049 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2050}
2051
2052/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2053static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2054 unsigned long vm_start, unsigned long vm_end)
2055{
2056 struct vm_area_struct *vma = find_vma(mm, vm_start);
2057
2058 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2059 vma = NULL;
2060
2061 return vma;
2062}
2063
2064#ifdef CONFIG_MMU
2065pgprot_t vm_get_page_prot(unsigned long vm_flags);
2066void vma_set_page_prot(struct vm_area_struct *vma);
2067#else
2068static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2069{
2070 return __pgprot(0);
2071}
2072static inline void vma_set_page_prot(struct vm_area_struct *vma)
2073{
2074 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2075}
2076#endif
2077
2078#ifdef CONFIG_NUMA_BALANCING
2079unsigned long change_prot_numa(struct vm_area_struct *vma,
2080 unsigned long start, unsigned long end);
2081#endif
2082
2083struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2084int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2085 unsigned long pfn, unsigned long size, pgprot_t);
2086int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2087int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2088 unsigned long pfn);
2089int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2090 unsigned long pfn);
2091int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2092
2093
2094struct page *follow_page_mask(struct vm_area_struct *vma,
2095 unsigned long address, unsigned int foll_flags,
2096 unsigned int *page_mask);
2097
2098static inline struct page *follow_page(struct vm_area_struct *vma,
2099 unsigned long address, unsigned int foll_flags)
2100{
2101 unsigned int unused_page_mask;
2102 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
2103}
2104
2105#define FOLL_WRITE 0x01 /* check pte is writable */
2106#define FOLL_TOUCH 0x02 /* mark page accessed */
2107#define FOLL_GET 0x04 /* do get_page on page */
2108#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
2109#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
2110#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2111 * and return without waiting upon it */
2112#define FOLL_MLOCK 0x40 /* mark page as mlocked */
2113#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
2114#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
2115#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
2116#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
2117#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
2118
2119typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
2120 void *data);
2121extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2122 unsigned long size, pte_fn_t fn, void *data);
2123
2124#ifdef CONFIG_PROC_FS
2125void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
2126#else
2127static inline void vm_stat_account(struct mm_struct *mm,
2128 unsigned long flags, struct file *file, long pages)
2129{
2130 mm->total_vm += pages;
2131}
2132#endif /* CONFIG_PROC_FS */
2133
2134#ifdef CONFIG_DEBUG_PAGEALLOC
2135extern bool _debug_pagealloc_enabled;
2136extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2137
2138static inline bool debug_pagealloc_enabled(void)
2139{
2140 return _debug_pagealloc_enabled;
2141}
2142
2143static inline void
2144kernel_map_pages(struct page *page, int numpages, int enable)
2145{
2146 if (!debug_pagealloc_enabled())
2147 return;
2148
2149 __kernel_map_pages(page, numpages, enable);
2150}
2151#ifdef CONFIG_HIBERNATION
2152extern bool kernel_page_present(struct page *page);
2153#endif /* CONFIG_HIBERNATION */
2154#else
2155static inline void
2156kernel_map_pages(struct page *page, int numpages, int enable) {}
2157#ifdef CONFIG_HIBERNATION
2158static inline bool kernel_page_present(struct page *page) { return true; }
2159#endif /* CONFIG_HIBERNATION */
2160#endif
2161
2162#ifdef __HAVE_ARCH_GATE_AREA
2163extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2164extern int in_gate_area_no_mm(unsigned long addr);
2165extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
2166#else
2167static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2168{
2169 return NULL;
2170}
2171static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2172static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2173{
2174 return 0;
2175}
2176#endif /* __HAVE_ARCH_GATE_AREA */
2177
2178#ifdef CONFIG_SYSCTL
2179extern int sysctl_drop_caches;
2180int drop_caches_sysctl_handler(struct ctl_table *, int,
2181 void __user *, size_t *, loff_t *);
2182#endif
2183
2184void drop_slab(void);
2185void drop_slab_node(int nid);
2186
2187#ifndef CONFIG_MMU
2188#define randomize_va_space 0
2189#else
2190extern int randomize_va_space;
2191#endif
2192
2193const char * arch_vma_name(struct vm_area_struct *vma);
2194void print_vma_addr(char *prefix, unsigned long rip);
2195
2196void sparse_mem_maps_populate_node(struct page **map_map,
2197 unsigned long pnum_begin,
2198 unsigned long pnum_end,
2199 unsigned long map_count,
2200 int nodeid);
2201
2202struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
2203pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2204pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
2205pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2206pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
2207void *vmemmap_alloc_block(unsigned long size, int node);
2208void *vmemmap_alloc_block_buf(unsigned long size, int node);
2209void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2210int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2211 int node);
2212int vmemmap_populate(unsigned long start, unsigned long end, int node);
2213void vmemmap_populate_print_last(void);
2214#ifdef CONFIG_MEMORY_HOTPLUG
2215void vmemmap_free(unsigned long start, unsigned long end);
2216#endif
2217void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2218 unsigned long size);
2219
2220enum mf_flags {
2221 MF_COUNT_INCREASED = 1 << 0,
2222 MF_ACTION_REQUIRED = 1 << 1,
2223 MF_MUST_KILL = 1 << 2,
2224 MF_SOFT_OFFLINE = 1 << 3,
2225};
2226extern int memory_failure(unsigned long pfn, int trapno, int flags);
2227extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
2228extern int unpoison_memory(unsigned long pfn);
2229extern int sysctl_memory_failure_early_kill;
2230extern int sysctl_memory_failure_recovery;
2231extern void shake_page(struct page *p, int access);
2232extern atomic_long_t num_poisoned_pages;
2233extern int soft_offline_page(struct page *page, int flags);
2234
2235#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2236extern void clear_huge_page(struct page *page,
2237 unsigned long addr,
2238 unsigned int pages_per_huge_page);
2239extern void copy_user_huge_page(struct page *dst, struct page *src,
2240 unsigned long addr, struct vm_area_struct *vma,
2241 unsigned int pages_per_huge_page);
2242#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2243
2244extern struct page_ext_operations debug_guardpage_ops;
2245extern struct page_ext_operations page_poisoning_ops;
2246
2247#ifdef CONFIG_DEBUG_PAGEALLOC
2248extern unsigned int _debug_guardpage_minorder;
2249extern bool _debug_guardpage_enabled;
2250
2251static inline unsigned int debug_guardpage_minorder(void)
2252{
2253 return _debug_guardpage_minorder;
2254}
2255
2256static inline bool debug_guardpage_enabled(void)
2257{
2258 return _debug_guardpage_enabled;
2259}
2260
2261static inline bool page_is_guard(struct page *page)
2262{
2263 struct page_ext *page_ext;
2264
2265 if (!debug_guardpage_enabled())
2266 return false;
2267
2268 page_ext = lookup_page_ext(page);
2269 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
2270}
2271#else
2272static inline unsigned int debug_guardpage_minorder(void) { return 0; }
2273static inline bool debug_guardpage_enabled(void) { return false; }
2274static inline bool page_is_guard(struct page *page) { return false; }
2275#endif /* CONFIG_DEBUG_PAGEALLOC */
2276
2277#if MAX_NUMNODES > 1
2278void __init setup_nr_node_ids(void);
2279#else
2280static inline void setup_nr_node_ids(void) {}
2281#endif
2282
2283#endif /* __KERNEL__ */
2284#endif /* _LINUX_MM_H */