at v4.0 7.2 kB view raw
1/* 2 * include/linux/ktime.h 3 * 4 * ktime_t - nanosecond-resolution time format. 5 * 6 * Copyright(C) 2005, Thomas Gleixner <tglx@linutronix.de> 7 * Copyright(C) 2005, Red Hat, Inc., Ingo Molnar 8 * 9 * data type definitions, declarations, prototypes and macros. 10 * 11 * Started by: Thomas Gleixner and Ingo Molnar 12 * 13 * Credits: 14 * 15 * Roman Zippel provided the ideas and primary code snippets of 16 * the ktime_t union and further simplifications of the original 17 * code. 18 * 19 * For licencing details see kernel-base/COPYING 20 */ 21#ifndef _LINUX_KTIME_H 22#define _LINUX_KTIME_H 23 24#include <linux/time.h> 25#include <linux/jiffies.h> 26 27/* 28 * ktime_t: 29 * 30 * A single 64-bit variable is used to store the hrtimers 31 * internal representation of time values in scalar nanoseconds. The 32 * design plays out best on 64-bit CPUs, where most conversions are 33 * NOPs and most arithmetic ktime_t operations are plain arithmetic 34 * operations. 35 * 36 */ 37union ktime { 38 s64 tv64; 39}; 40 41typedef union ktime ktime_t; /* Kill this */ 42 43/** 44 * ktime_set - Set a ktime_t variable from a seconds/nanoseconds value 45 * @secs: seconds to set 46 * @nsecs: nanoseconds to set 47 * 48 * Return: The ktime_t representation of the value. 49 */ 50static inline ktime_t ktime_set(const s64 secs, const unsigned long nsecs) 51{ 52 if (unlikely(secs >= KTIME_SEC_MAX)) 53 return (ktime_t){ .tv64 = KTIME_MAX }; 54 55 return (ktime_t) { .tv64 = secs * NSEC_PER_SEC + (s64)nsecs }; 56} 57 58/* Subtract two ktime_t variables. rem = lhs -rhs: */ 59#define ktime_sub(lhs, rhs) \ 60 ({ (ktime_t){ .tv64 = (lhs).tv64 - (rhs).tv64 }; }) 61 62/* Add two ktime_t variables. res = lhs + rhs: */ 63#define ktime_add(lhs, rhs) \ 64 ({ (ktime_t){ .tv64 = (lhs).tv64 + (rhs).tv64 }; }) 65 66/* 67 * Add a ktime_t variable and a scalar nanosecond value. 68 * res = kt + nsval: 69 */ 70#define ktime_add_ns(kt, nsval) \ 71 ({ (ktime_t){ .tv64 = (kt).tv64 + (nsval) }; }) 72 73/* 74 * Subtract a scalar nanosecod from a ktime_t variable 75 * res = kt - nsval: 76 */ 77#define ktime_sub_ns(kt, nsval) \ 78 ({ (ktime_t){ .tv64 = (kt).tv64 - (nsval) }; }) 79 80/* convert a timespec to ktime_t format: */ 81static inline ktime_t timespec_to_ktime(struct timespec ts) 82{ 83 return ktime_set(ts.tv_sec, ts.tv_nsec); 84} 85 86/* convert a timespec64 to ktime_t format: */ 87static inline ktime_t timespec64_to_ktime(struct timespec64 ts) 88{ 89 return ktime_set(ts.tv_sec, ts.tv_nsec); 90} 91 92/* convert a timeval to ktime_t format: */ 93static inline ktime_t timeval_to_ktime(struct timeval tv) 94{ 95 return ktime_set(tv.tv_sec, tv.tv_usec * NSEC_PER_USEC); 96} 97 98/* Map the ktime_t to timespec conversion to ns_to_timespec function */ 99#define ktime_to_timespec(kt) ns_to_timespec((kt).tv64) 100 101/* Map the ktime_t to timespec conversion to ns_to_timespec function */ 102#define ktime_to_timespec64(kt) ns_to_timespec64((kt).tv64) 103 104/* Map the ktime_t to timeval conversion to ns_to_timeval function */ 105#define ktime_to_timeval(kt) ns_to_timeval((kt).tv64) 106 107/* Convert ktime_t to nanoseconds - NOP in the scalar storage format: */ 108#define ktime_to_ns(kt) ((kt).tv64) 109 110 111/** 112 * ktime_equal - Compares two ktime_t variables to see if they are equal 113 * @cmp1: comparable1 114 * @cmp2: comparable2 115 * 116 * Compare two ktime_t variables. 117 * 118 * Return: 1 if equal. 119 */ 120static inline int ktime_equal(const ktime_t cmp1, const ktime_t cmp2) 121{ 122 return cmp1.tv64 == cmp2.tv64; 123} 124 125/** 126 * ktime_compare - Compares two ktime_t variables for less, greater or equal 127 * @cmp1: comparable1 128 * @cmp2: comparable2 129 * 130 * Return: ... 131 * cmp1 < cmp2: return <0 132 * cmp1 == cmp2: return 0 133 * cmp1 > cmp2: return >0 134 */ 135static inline int ktime_compare(const ktime_t cmp1, const ktime_t cmp2) 136{ 137 if (cmp1.tv64 < cmp2.tv64) 138 return -1; 139 if (cmp1.tv64 > cmp2.tv64) 140 return 1; 141 return 0; 142} 143 144/** 145 * ktime_after - Compare if a ktime_t value is bigger than another one. 146 * @cmp1: comparable1 147 * @cmp2: comparable2 148 * 149 * Return: true if cmp1 happened after cmp2. 150 */ 151static inline bool ktime_after(const ktime_t cmp1, const ktime_t cmp2) 152{ 153 return ktime_compare(cmp1, cmp2) > 0; 154} 155 156/** 157 * ktime_before - Compare if a ktime_t value is smaller than another one. 158 * @cmp1: comparable1 159 * @cmp2: comparable2 160 * 161 * Return: true if cmp1 happened before cmp2. 162 */ 163static inline bool ktime_before(const ktime_t cmp1, const ktime_t cmp2) 164{ 165 return ktime_compare(cmp1, cmp2) < 0; 166} 167 168#if BITS_PER_LONG < 64 169extern u64 __ktime_divns(const ktime_t kt, s64 div); 170static inline u64 ktime_divns(const ktime_t kt, s64 div) 171{ 172 if (__builtin_constant_p(div) && !(div >> 32)) { 173 u64 ns = kt.tv64; 174 do_div(ns, div); 175 return ns; 176 } else { 177 return __ktime_divns(kt, div); 178 } 179} 180#else /* BITS_PER_LONG < 64 */ 181# define ktime_divns(kt, div) (u64)((kt).tv64 / (div)) 182#endif 183 184static inline s64 ktime_to_us(const ktime_t kt) 185{ 186 return ktime_divns(kt, NSEC_PER_USEC); 187} 188 189static inline s64 ktime_to_ms(const ktime_t kt) 190{ 191 return ktime_divns(kt, NSEC_PER_MSEC); 192} 193 194static inline s64 ktime_us_delta(const ktime_t later, const ktime_t earlier) 195{ 196 return ktime_to_us(ktime_sub(later, earlier)); 197} 198 199static inline s64 ktime_ms_delta(const ktime_t later, const ktime_t earlier) 200{ 201 return ktime_to_ms(ktime_sub(later, earlier)); 202} 203 204static inline ktime_t ktime_add_us(const ktime_t kt, const u64 usec) 205{ 206 return ktime_add_ns(kt, usec * NSEC_PER_USEC); 207} 208 209static inline ktime_t ktime_add_ms(const ktime_t kt, const u64 msec) 210{ 211 return ktime_add_ns(kt, msec * NSEC_PER_MSEC); 212} 213 214static inline ktime_t ktime_sub_us(const ktime_t kt, const u64 usec) 215{ 216 return ktime_sub_ns(kt, usec * NSEC_PER_USEC); 217} 218 219extern ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs); 220 221/** 222 * ktime_to_timespec_cond - convert a ktime_t variable to timespec 223 * format only if the variable contains data 224 * @kt: the ktime_t variable to convert 225 * @ts: the timespec variable to store the result in 226 * 227 * Return: %true if there was a successful conversion, %false if kt was 0. 228 */ 229static inline __must_check bool ktime_to_timespec_cond(const ktime_t kt, 230 struct timespec *ts) 231{ 232 if (kt.tv64) { 233 *ts = ktime_to_timespec(kt); 234 return true; 235 } else { 236 return false; 237 } 238} 239 240/** 241 * ktime_to_timespec64_cond - convert a ktime_t variable to timespec64 242 * format only if the variable contains data 243 * @kt: the ktime_t variable to convert 244 * @ts: the timespec variable to store the result in 245 * 246 * Return: %true if there was a successful conversion, %false if kt was 0. 247 */ 248static inline __must_check bool ktime_to_timespec64_cond(const ktime_t kt, 249 struct timespec64 *ts) 250{ 251 if (kt.tv64) { 252 *ts = ktime_to_timespec64(kt); 253 return true; 254 } else { 255 return false; 256 } 257} 258 259/* 260 * The resolution of the clocks. The resolution value is returned in 261 * the clock_getres() system call to give application programmers an 262 * idea of the (in)accuracy of timers. Timer values are rounded up to 263 * this resolution values. 264 */ 265#define LOW_RES_NSEC TICK_NSEC 266#define KTIME_LOW_RES (ktime_t){ .tv64 = LOW_RES_NSEC } 267 268static inline ktime_t ns_to_ktime(u64 ns) 269{ 270 static const ktime_t ktime_zero = { .tv64 = 0 }; 271 272 return ktime_add_ns(ktime_zero, ns); 273} 274 275static inline ktime_t ms_to_ktime(u64 ms) 276{ 277 static const ktime_t ktime_zero = { .tv64 = 0 }; 278 279 return ktime_add_ms(ktime_zero, ms); 280} 281 282# include <linux/timekeeping.h> 283 284#endif