at v4.0 46 kB view raw
1/* 2 * linux/fs/block_dev.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * Copyright (C) 2001 Andrea Arcangeli <andrea@suse.de> SuSE 6 */ 7 8#include <linux/init.h> 9#include <linux/mm.h> 10#include <linux/fcntl.h> 11#include <linux/slab.h> 12#include <linux/kmod.h> 13#include <linux/major.h> 14#include <linux/device_cgroup.h> 15#include <linux/highmem.h> 16#include <linux/blkdev.h> 17#include <linux/module.h> 18#include <linux/blkpg.h> 19#include <linux/magic.h> 20#include <linux/buffer_head.h> 21#include <linux/swap.h> 22#include <linux/pagevec.h> 23#include <linux/writeback.h> 24#include <linux/mpage.h> 25#include <linux/mount.h> 26#include <linux/uio.h> 27#include <linux/namei.h> 28#include <linux/log2.h> 29#include <linux/cleancache.h> 30#include <linux/aio.h> 31#include <asm/uaccess.h> 32#include "internal.h" 33 34struct bdev_inode { 35 struct block_device bdev; 36 struct inode vfs_inode; 37}; 38 39static const struct address_space_operations def_blk_aops; 40 41static inline struct bdev_inode *BDEV_I(struct inode *inode) 42{ 43 return container_of(inode, struct bdev_inode, vfs_inode); 44} 45 46inline struct block_device *I_BDEV(struct inode *inode) 47{ 48 return &BDEV_I(inode)->bdev; 49} 50EXPORT_SYMBOL(I_BDEV); 51 52static void bdev_write_inode(struct inode *inode) 53{ 54 spin_lock(&inode->i_lock); 55 while (inode->i_state & I_DIRTY) { 56 spin_unlock(&inode->i_lock); 57 WARN_ON_ONCE(write_inode_now(inode, true)); 58 spin_lock(&inode->i_lock); 59 } 60 spin_unlock(&inode->i_lock); 61} 62 63/* Kill _all_ buffers and pagecache , dirty or not.. */ 64void kill_bdev(struct block_device *bdev) 65{ 66 struct address_space *mapping = bdev->bd_inode->i_mapping; 67 68 if (mapping->nrpages == 0 && mapping->nrshadows == 0) 69 return; 70 71 invalidate_bh_lrus(); 72 truncate_inode_pages(mapping, 0); 73} 74EXPORT_SYMBOL(kill_bdev); 75 76/* Invalidate clean unused buffers and pagecache. */ 77void invalidate_bdev(struct block_device *bdev) 78{ 79 struct address_space *mapping = bdev->bd_inode->i_mapping; 80 81 if (mapping->nrpages == 0) 82 return; 83 84 invalidate_bh_lrus(); 85 lru_add_drain_all(); /* make sure all lru add caches are flushed */ 86 invalidate_mapping_pages(mapping, 0, -1); 87 /* 99% of the time, we don't need to flush the cleancache on the bdev. 88 * But, for the strange corners, lets be cautious 89 */ 90 cleancache_invalidate_inode(mapping); 91} 92EXPORT_SYMBOL(invalidate_bdev); 93 94int set_blocksize(struct block_device *bdev, int size) 95{ 96 /* Size must be a power of two, and between 512 and PAGE_SIZE */ 97 if (size > PAGE_SIZE || size < 512 || !is_power_of_2(size)) 98 return -EINVAL; 99 100 /* Size cannot be smaller than the size supported by the device */ 101 if (size < bdev_logical_block_size(bdev)) 102 return -EINVAL; 103 104 /* Don't change the size if it is same as current */ 105 if (bdev->bd_block_size != size) { 106 sync_blockdev(bdev); 107 bdev->bd_block_size = size; 108 bdev->bd_inode->i_blkbits = blksize_bits(size); 109 kill_bdev(bdev); 110 } 111 return 0; 112} 113 114EXPORT_SYMBOL(set_blocksize); 115 116int sb_set_blocksize(struct super_block *sb, int size) 117{ 118 if (set_blocksize(sb->s_bdev, size)) 119 return 0; 120 /* If we get here, we know size is power of two 121 * and it's value is between 512 and PAGE_SIZE */ 122 sb->s_blocksize = size; 123 sb->s_blocksize_bits = blksize_bits(size); 124 return sb->s_blocksize; 125} 126 127EXPORT_SYMBOL(sb_set_blocksize); 128 129int sb_min_blocksize(struct super_block *sb, int size) 130{ 131 int minsize = bdev_logical_block_size(sb->s_bdev); 132 if (size < minsize) 133 size = minsize; 134 return sb_set_blocksize(sb, size); 135} 136 137EXPORT_SYMBOL(sb_min_blocksize); 138 139static int 140blkdev_get_block(struct inode *inode, sector_t iblock, 141 struct buffer_head *bh, int create) 142{ 143 bh->b_bdev = I_BDEV(inode); 144 bh->b_blocknr = iblock; 145 set_buffer_mapped(bh); 146 return 0; 147} 148 149static ssize_t 150blkdev_direct_IO(int rw, struct kiocb *iocb, struct iov_iter *iter, 151 loff_t offset) 152{ 153 struct file *file = iocb->ki_filp; 154 struct inode *inode = file->f_mapping->host; 155 156 return __blockdev_direct_IO(rw, iocb, inode, I_BDEV(inode), iter, 157 offset, blkdev_get_block, 158 NULL, NULL, 0); 159} 160 161int __sync_blockdev(struct block_device *bdev, int wait) 162{ 163 if (!bdev) 164 return 0; 165 if (!wait) 166 return filemap_flush(bdev->bd_inode->i_mapping); 167 return filemap_write_and_wait(bdev->bd_inode->i_mapping); 168} 169 170/* 171 * Write out and wait upon all the dirty data associated with a block 172 * device via its mapping. Does not take the superblock lock. 173 */ 174int sync_blockdev(struct block_device *bdev) 175{ 176 return __sync_blockdev(bdev, 1); 177} 178EXPORT_SYMBOL(sync_blockdev); 179 180/* 181 * Write out and wait upon all dirty data associated with this 182 * device. Filesystem data as well as the underlying block 183 * device. Takes the superblock lock. 184 */ 185int fsync_bdev(struct block_device *bdev) 186{ 187 struct super_block *sb = get_super(bdev); 188 if (sb) { 189 int res = sync_filesystem(sb); 190 drop_super(sb); 191 return res; 192 } 193 return sync_blockdev(bdev); 194} 195EXPORT_SYMBOL(fsync_bdev); 196 197/** 198 * freeze_bdev -- lock a filesystem and force it into a consistent state 199 * @bdev: blockdevice to lock 200 * 201 * If a superblock is found on this device, we take the s_umount semaphore 202 * on it to make sure nobody unmounts until the snapshot creation is done. 203 * The reference counter (bd_fsfreeze_count) guarantees that only the last 204 * unfreeze process can unfreeze the frozen filesystem actually when multiple 205 * freeze requests arrive simultaneously. It counts up in freeze_bdev() and 206 * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze 207 * actually. 208 */ 209struct super_block *freeze_bdev(struct block_device *bdev) 210{ 211 struct super_block *sb; 212 int error = 0; 213 214 mutex_lock(&bdev->bd_fsfreeze_mutex); 215 if (++bdev->bd_fsfreeze_count > 1) { 216 /* 217 * We don't even need to grab a reference - the first call 218 * to freeze_bdev grab an active reference and only the last 219 * thaw_bdev drops it. 220 */ 221 sb = get_super(bdev); 222 drop_super(sb); 223 mutex_unlock(&bdev->bd_fsfreeze_mutex); 224 return sb; 225 } 226 227 sb = get_active_super(bdev); 228 if (!sb) 229 goto out; 230 if (sb->s_op->freeze_super) 231 error = sb->s_op->freeze_super(sb); 232 else 233 error = freeze_super(sb); 234 if (error) { 235 deactivate_super(sb); 236 bdev->bd_fsfreeze_count--; 237 mutex_unlock(&bdev->bd_fsfreeze_mutex); 238 return ERR_PTR(error); 239 } 240 deactivate_super(sb); 241 out: 242 sync_blockdev(bdev); 243 mutex_unlock(&bdev->bd_fsfreeze_mutex); 244 return sb; /* thaw_bdev releases s->s_umount */ 245} 246EXPORT_SYMBOL(freeze_bdev); 247 248/** 249 * thaw_bdev -- unlock filesystem 250 * @bdev: blockdevice to unlock 251 * @sb: associated superblock 252 * 253 * Unlocks the filesystem and marks it writeable again after freeze_bdev(). 254 */ 255int thaw_bdev(struct block_device *bdev, struct super_block *sb) 256{ 257 int error = -EINVAL; 258 259 mutex_lock(&bdev->bd_fsfreeze_mutex); 260 if (!bdev->bd_fsfreeze_count) 261 goto out; 262 263 error = 0; 264 if (--bdev->bd_fsfreeze_count > 0) 265 goto out; 266 267 if (!sb) 268 goto out; 269 270 if (sb->s_op->thaw_super) 271 error = sb->s_op->thaw_super(sb); 272 else 273 error = thaw_super(sb); 274 if (error) { 275 bdev->bd_fsfreeze_count++; 276 mutex_unlock(&bdev->bd_fsfreeze_mutex); 277 return error; 278 } 279out: 280 mutex_unlock(&bdev->bd_fsfreeze_mutex); 281 return 0; 282} 283EXPORT_SYMBOL(thaw_bdev); 284 285static int blkdev_writepage(struct page *page, struct writeback_control *wbc) 286{ 287 return block_write_full_page(page, blkdev_get_block, wbc); 288} 289 290static int blkdev_readpage(struct file * file, struct page * page) 291{ 292 return block_read_full_page(page, blkdev_get_block); 293} 294 295static int blkdev_readpages(struct file *file, struct address_space *mapping, 296 struct list_head *pages, unsigned nr_pages) 297{ 298 return mpage_readpages(mapping, pages, nr_pages, blkdev_get_block); 299} 300 301static int blkdev_write_begin(struct file *file, struct address_space *mapping, 302 loff_t pos, unsigned len, unsigned flags, 303 struct page **pagep, void **fsdata) 304{ 305 return block_write_begin(mapping, pos, len, flags, pagep, 306 blkdev_get_block); 307} 308 309static int blkdev_write_end(struct file *file, struct address_space *mapping, 310 loff_t pos, unsigned len, unsigned copied, 311 struct page *page, void *fsdata) 312{ 313 int ret; 314 ret = block_write_end(file, mapping, pos, len, copied, page, fsdata); 315 316 unlock_page(page); 317 page_cache_release(page); 318 319 return ret; 320} 321 322/* 323 * private llseek: 324 * for a block special file file_inode(file)->i_size is zero 325 * so we compute the size by hand (just as in block_read/write above) 326 */ 327static loff_t block_llseek(struct file *file, loff_t offset, int whence) 328{ 329 struct inode *bd_inode = file->f_mapping->host; 330 loff_t retval; 331 332 mutex_lock(&bd_inode->i_mutex); 333 retval = fixed_size_llseek(file, offset, whence, i_size_read(bd_inode)); 334 mutex_unlock(&bd_inode->i_mutex); 335 return retval; 336} 337 338int blkdev_fsync(struct file *filp, loff_t start, loff_t end, int datasync) 339{ 340 struct inode *bd_inode = filp->f_mapping->host; 341 struct block_device *bdev = I_BDEV(bd_inode); 342 int error; 343 344 error = filemap_write_and_wait_range(filp->f_mapping, start, end); 345 if (error) 346 return error; 347 348 /* 349 * There is no need to serialise calls to blkdev_issue_flush with 350 * i_mutex and doing so causes performance issues with concurrent 351 * O_SYNC writers to a block device. 352 */ 353 error = blkdev_issue_flush(bdev, GFP_KERNEL, NULL); 354 if (error == -EOPNOTSUPP) 355 error = 0; 356 357 return error; 358} 359EXPORT_SYMBOL(blkdev_fsync); 360 361/** 362 * bdev_read_page() - Start reading a page from a block device 363 * @bdev: The device to read the page from 364 * @sector: The offset on the device to read the page to (need not be aligned) 365 * @page: The page to read 366 * 367 * On entry, the page should be locked. It will be unlocked when the page 368 * has been read. If the block driver implements rw_page synchronously, 369 * that will be true on exit from this function, but it need not be. 370 * 371 * Errors returned by this function are usually "soft", eg out of memory, or 372 * queue full; callers should try a different route to read this page rather 373 * than propagate an error back up the stack. 374 * 375 * Return: negative errno if an error occurs, 0 if submission was successful. 376 */ 377int bdev_read_page(struct block_device *bdev, sector_t sector, 378 struct page *page) 379{ 380 const struct block_device_operations *ops = bdev->bd_disk->fops; 381 if (!ops->rw_page) 382 return -EOPNOTSUPP; 383 return ops->rw_page(bdev, sector + get_start_sect(bdev), page, READ); 384} 385EXPORT_SYMBOL_GPL(bdev_read_page); 386 387/** 388 * bdev_write_page() - Start writing a page to a block device 389 * @bdev: The device to write the page to 390 * @sector: The offset on the device to write the page to (need not be aligned) 391 * @page: The page to write 392 * @wbc: The writeback_control for the write 393 * 394 * On entry, the page should be locked and not currently under writeback. 395 * On exit, if the write started successfully, the page will be unlocked and 396 * under writeback. If the write failed already (eg the driver failed to 397 * queue the page to the device), the page will still be locked. If the 398 * caller is a ->writepage implementation, it will need to unlock the page. 399 * 400 * Errors returned by this function are usually "soft", eg out of memory, or 401 * queue full; callers should try a different route to write this page rather 402 * than propagate an error back up the stack. 403 * 404 * Return: negative errno if an error occurs, 0 if submission was successful. 405 */ 406int bdev_write_page(struct block_device *bdev, sector_t sector, 407 struct page *page, struct writeback_control *wbc) 408{ 409 int result; 410 int rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE; 411 const struct block_device_operations *ops = bdev->bd_disk->fops; 412 if (!ops->rw_page) 413 return -EOPNOTSUPP; 414 set_page_writeback(page); 415 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, rw); 416 if (result) 417 end_page_writeback(page); 418 else 419 unlock_page(page); 420 return result; 421} 422EXPORT_SYMBOL_GPL(bdev_write_page); 423 424/** 425 * bdev_direct_access() - Get the address for directly-accessibly memory 426 * @bdev: The device containing the memory 427 * @sector: The offset within the device 428 * @addr: Where to put the address of the memory 429 * @pfn: The Page Frame Number for the memory 430 * @size: The number of bytes requested 431 * 432 * If a block device is made up of directly addressable memory, this function 433 * will tell the caller the PFN and the address of the memory. The address 434 * may be directly dereferenced within the kernel without the need to call 435 * ioremap(), kmap() or similar. The PFN is suitable for inserting into 436 * page tables. 437 * 438 * Return: negative errno if an error occurs, otherwise the number of bytes 439 * accessible at this address. 440 */ 441long bdev_direct_access(struct block_device *bdev, sector_t sector, 442 void **addr, unsigned long *pfn, long size) 443{ 444 long avail; 445 const struct block_device_operations *ops = bdev->bd_disk->fops; 446 447 if (size < 0) 448 return size; 449 if (!ops->direct_access) 450 return -EOPNOTSUPP; 451 if ((sector + DIV_ROUND_UP(size, 512)) > 452 part_nr_sects_read(bdev->bd_part)) 453 return -ERANGE; 454 sector += get_start_sect(bdev); 455 if (sector % (PAGE_SIZE / 512)) 456 return -EINVAL; 457 avail = ops->direct_access(bdev, sector, addr, pfn, size); 458 if (!avail) 459 return -ERANGE; 460 return min(avail, size); 461} 462EXPORT_SYMBOL_GPL(bdev_direct_access); 463 464/* 465 * pseudo-fs 466 */ 467 468static __cacheline_aligned_in_smp DEFINE_SPINLOCK(bdev_lock); 469static struct kmem_cache * bdev_cachep __read_mostly; 470 471static struct inode *bdev_alloc_inode(struct super_block *sb) 472{ 473 struct bdev_inode *ei = kmem_cache_alloc(bdev_cachep, GFP_KERNEL); 474 if (!ei) 475 return NULL; 476 return &ei->vfs_inode; 477} 478 479static void bdev_i_callback(struct rcu_head *head) 480{ 481 struct inode *inode = container_of(head, struct inode, i_rcu); 482 struct bdev_inode *bdi = BDEV_I(inode); 483 484 kmem_cache_free(bdev_cachep, bdi); 485} 486 487static void bdev_destroy_inode(struct inode *inode) 488{ 489 call_rcu(&inode->i_rcu, bdev_i_callback); 490} 491 492static void init_once(void *foo) 493{ 494 struct bdev_inode *ei = (struct bdev_inode *) foo; 495 struct block_device *bdev = &ei->bdev; 496 497 memset(bdev, 0, sizeof(*bdev)); 498 mutex_init(&bdev->bd_mutex); 499 INIT_LIST_HEAD(&bdev->bd_inodes); 500 INIT_LIST_HEAD(&bdev->bd_list); 501#ifdef CONFIG_SYSFS 502 INIT_LIST_HEAD(&bdev->bd_holder_disks); 503#endif 504 inode_init_once(&ei->vfs_inode); 505 /* Initialize mutex for freeze. */ 506 mutex_init(&bdev->bd_fsfreeze_mutex); 507} 508 509static inline void __bd_forget(struct inode *inode) 510{ 511 list_del_init(&inode->i_devices); 512 inode->i_bdev = NULL; 513 inode->i_mapping = &inode->i_data; 514} 515 516static void bdev_evict_inode(struct inode *inode) 517{ 518 struct block_device *bdev = &BDEV_I(inode)->bdev; 519 struct list_head *p; 520 truncate_inode_pages_final(&inode->i_data); 521 invalidate_inode_buffers(inode); /* is it needed here? */ 522 clear_inode(inode); 523 spin_lock(&bdev_lock); 524 while ( (p = bdev->bd_inodes.next) != &bdev->bd_inodes ) { 525 __bd_forget(list_entry(p, struct inode, i_devices)); 526 } 527 list_del_init(&bdev->bd_list); 528 spin_unlock(&bdev_lock); 529} 530 531static const struct super_operations bdev_sops = { 532 .statfs = simple_statfs, 533 .alloc_inode = bdev_alloc_inode, 534 .destroy_inode = bdev_destroy_inode, 535 .drop_inode = generic_delete_inode, 536 .evict_inode = bdev_evict_inode, 537}; 538 539static struct dentry *bd_mount(struct file_system_type *fs_type, 540 int flags, const char *dev_name, void *data) 541{ 542 return mount_pseudo(fs_type, "bdev:", &bdev_sops, NULL, BDEVFS_MAGIC); 543} 544 545static struct file_system_type bd_type = { 546 .name = "bdev", 547 .mount = bd_mount, 548 .kill_sb = kill_anon_super, 549}; 550 551static struct super_block *blockdev_superblock __read_mostly; 552 553void __init bdev_cache_init(void) 554{ 555 int err; 556 static struct vfsmount *bd_mnt; 557 558 bdev_cachep = kmem_cache_create("bdev_cache", sizeof(struct bdev_inode), 559 0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT| 560 SLAB_MEM_SPREAD|SLAB_PANIC), 561 init_once); 562 err = register_filesystem(&bd_type); 563 if (err) 564 panic("Cannot register bdev pseudo-fs"); 565 bd_mnt = kern_mount(&bd_type); 566 if (IS_ERR(bd_mnt)) 567 panic("Cannot create bdev pseudo-fs"); 568 blockdev_superblock = bd_mnt->mnt_sb; /* For writeback */ 569} 570 571/* 572 * Most likely _very_ bad one - but then it's hardly critical for small 573 * /dev and can be fixed when somebody will need really large one. 574 * Keep in mind that it will be fed through icache hash function too. 575 */ 576static inline unsigned long hash(dev_t dev) 577{ 578 return MAJOR(dev)+MINOR(dev); 579} 580 581static int bdev_test(struct inode *inode, void *data) 582{ 583 return BDEV_I(inode)->bdev.bd_dev == *(dev_t *)data; 584} 585 586static int bdev_set(struct inode *inode, void *data) 587{ 588 BDEV_I(inode)->bdev.bd_dev = *(dev_t *)data; 589 return 0; 590} 591 592static LIST_HEAD(all_bdevs); 593 594struct block_device *bdget(dev_t dev) 595{ 596 struct block_device *bdev; 597 struct inode *inode; 598 599 inode = iget5_locked(blockdev_superblock, hash(dev), 600 bdev_test, bdev_set, &dev); 601 602 if (!inode) 603 return NULL; 604 605 bdev = &BDEV_I(inode)->bdev; 606 607 if (inode->i_state & I_NEW) { 608 bdev->bd_contains = NULL; 609 bdev->bd_super = NULL; 610 bdev->bd_inode = inode; 611 bdev->bd_block_size = (1 << inode->i_blkbits); 612 bdev->bd_part_count = 0; 613 bdev->bd_invalidated = 0; 614 inode->i_mode = S_IFBLK; 615 inode->i_rdev = dev; 616 inode->i_bdev = bdev; 617 inode->i_data.a_ops = &def_blk_aops; 618 mapping_set_gfp_mask(&inode->i_data, GFP_USER); 619 spin_lock(&bdev_lock); 620 list_add(&bdev->bd_list, &all_bdevs); 621 spin_unlock(&bdev_lock); 622 unlock_new_inode(inode); 623 } 624 return bdev; 625} 626 627EXPORT_SYMBOL(bdget); 628 629/** 630 * bdgrab -- Grab a reference to an already referenced block device 631 * @bdev: Block device to grab a reference to. 632 */ 633struct block_device *bdgrab(struct block_device *bdev) 634{ 635 ihold(bdev->bd_inode); 636 return bdev; 637} 638EXPORT_SYMBOL(bdgrab); 639 640long nr_blockdev_pages(void) 641{ 642 struct block_device *bdev; 643 long ret = 0; 644 spin_lock(&bdev_lock); 645 list_for_each_entry(bdev, &all_bdevs, bd_list) { 646 ret += bdev->bd_inode->i_mapping->nrpages; 647 } 648 spin_unlock(&bdev_lock); 649 return ret; 650} 651 652void bdput(struct block_device *bdev) 653{ 654 iput(bdev->bd_inode); 655} 656 657EXPORT_SYMBOL(bdput); 658 659static struct block_device *bd_acquire(struct inode *inode) 660{ 661 struct block_device *bdev; 662 663 spin_lock(&bdev_lock); 664 bdev = inode->i_bdev; 665 if (bdev) { 666 ihold(bdev->bd_inode); 667 spin_unlock(&bdev_lock); 668 return bdev; 669 } 670 spin_unlock(&bdev_lock); 671 672 bdev = bdget(inode->i_rdev); 673 if (bdev) { 674 spin_lock(&bdev_lock); 675 if (!inode->i_bdev) { 676 /* 677 * We take an additional reference to bd_inode, 678 * and it's released in clear_inode() of inode. 679 * So, we can access it via ->i_mapping always 680 * without igrab(). 681 */ 682 ihold(bdev->bd_inode); 683 inode->i_bdev = bdev; 684 inode->i_mapping = bdev->bd_inode->i_mapping; 685 list_add(&inode->i_devices, &bdev->bd_inodes); 686 } 687 spin_unlock(&bdev_lock); 688 } 689 return bdev; 690} 691 692int sb_is_blkdev_sb(struct super_block *sb) 693{ 694 return sb == blockdev_superblock; 695} 696 697/* Call when you free inode */ 698 699void bd_forget(struct inode *inode) 700{ 701 struct block_device *bdev = NULL; 702 703 spin_lock(&bdev_lock); 704 if (!sb_is_blkdev_sb(inode->i_sb)) 705 bdev = inode->i_bdev; 706 __bd_forget(inode); 707 spin_unlock(&bdev_lock); 708 709 if (bdev) 710 iput(bdev->bd_inode); 711} 712 713/** 714 * bd_may_claim - test whether a block device can be claimed 715 * @bdev: block device of interest 716 * @whole: whole block device containing @bdev, may equal @bdev 717 * @holder: holder trying to claim @bdev 718 * 719 * Test whether @bdev can be claimed by @holder. 720 * 721 * CONTEXT: 722 * spin_lock(&bdev_lock). 723 * 724 * RETURNS: 725 * %true if @bdev can be claimed, %false otherwise. 726 */ 727static bool bd_may_claim(struct block_device *bdev, struct block_device *whole, 728 void *holder) 729{ 730 if (bdev->bd_holder == holder) 731 return true; /* already a holder */ 732 else if (bdev->bd_holder != NULL) 733 return false; /* held by someone else */ 734 else if (bdev->bd_contains == bdev) 735 return true; /* is a whole device which isn't held */ 736 737 else if (whole->bd_holder == bd_may_claim) 738 return true; /* is a partition of a device that is being partitioned */ 739 else if (whole->bd_holder != NULL) 740 return false; /* is a partition of a held device */ 741 else 742 return true; /* is a partition of an un-held device */ 743} 744 745/** 746 * bd_prepare_to_claim - prepare to claim a block device 747 * @bdev: block device of interest 748 * @whole: the whole device containing @bdev, may equal @bdev 749 * @holder: holder trying to claim @bdev 750 * 751 * Prepare to claim @bdev. This function fails if @bdev is already 752 * claimed by another holder and waits if another claiming is in 753 * progress. This function doesn't actually claim. On successful 754 * return, the caller has ownership of bd_claiming and bd_holder[s]. 755 * 756 * CONTEXT: 757 * spin_lock(&bdev_lock). Might release bdev_lock, sleep and regrab 758 * it multiple times. 759 * 760 * RETURNS: 761 * 0 if @bdev can be claimed, -EBUSY otherwise. 762 */ 763static int bd_prepare_to_claim(struct block_device *bdev, 764 struct block_device *whole, void *holder) 765{ 766retry: 767 /* if someone else claimed, fail */ 768 if (!bd_may_claim(bdev, whole, holder)) 769 return -EBUSY; 770 771 /* if claiming is already in progress, wait for it to finish */ 772 if (whole->bd_claiming) { 773 wait_queue_head_t *wq = bit_waitqueue(&whole->bd_claiming, 0); 774 DEFINE_WAIT(wait); 775 776 prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE); 777 spin_unlock(&bdev_lock); 778 schedule(); 779 finish_wait(wq, &wait); 780 spin_lock(&bdev_lock); 781 goto retry; 782 } 783 784 /* yay, all mine */ 785 return 0; 786} 787 788/** 789 * bd_start_claiming - start claiming a block device 790 * @bdev: block device of interest 791 * @holder: holder trying to claim @bdev 792 * 793 * @bdev is about to be opened exclusively. Check @bdev can be opened 794 * exclusively and mark that an exclusive open is in progress. Each 795 * successful call to this function must be matched with a call to 796 * either bd_finish_claiming() or bd_abort_claiming() (which do not 797 * fail). 798 * 799 * This function is used to gain exclusive access to the block device 800 * without actually causing other exclusive open attempts to fail. It 801 * should be used when the open sequence itself requires exclusive 802 * access but may subsequently fail. 803 * 804 * CONTEXT: 805 * Might sleep. 806 * 807 * RETURNS: 808 * Pointer to the block device containing @bdev on success, ERR_PTR() 809 * value on failure. 810 */ 811static struct block_device *bd_start_claiming(struct block_device *bdev, 812 void *holder) 813{ 814 struct gendisk *disk; 815 struct block_device *whole; 816 int partno, err; 817 818 might_sleep(); 819 820 /* 821 * @bdev might not have been initialized properly yet, look up 822 * and grab the outer block device the hard way. 823 */ 824 disk = get_gendisk(bdev->bd_dev, &partno); 825 if (!disk) 826 return ERR_PTR(-ENXIO); 827 828 /* 829 * Normally, @bdev should equal what's returned from bdget_disk() 830 * if partno is 0; however, some drivers (floppy) use multiple 831 * bdev's for the same physical device and @bdev may be one of the 832 * aliases. Keep @bdev if partno is 0. This means claimer 833 * tracking is broken for those devices but it has always been that 834 * way. 835 */ 836 if (partno) 837 whole = bdget_disk(disk, 0); 838 else 839 whole = bdgrab(bdev); 840 841 module_put(disk->fops->owner); 842 put_disk(disk); 843 if (!whole) 844 return ERR_PTR(-ENOMEM); 845 846 /* prepare to claim, if successful, mark claiming in progress */ 847 spin_lock(&bdev_lock); 848 849 err = bd_prepare_to_claim(bdev, whole, holder); 850 if (err == 0) { 851 whole->bd_claiming = holder; 852 spin_unlock(&bdev_lock); 853 return whole; 854 } else { 855 spin_unlock(&bdev_lock); 856 bdput(whole); 857 return ERR_PTR(err); 858 } 859} 860 861#ifdef CONFIG_SYSFS 862struct bd_holder_disk { 863 struct list_head list; 864 struct gendisk *disk; 865 int refcnt; 866}; 867 868static struct bd_holder_disk *bd_find_holder_disk(struct block_device *bdev, 869 struct gendisk *disk) 870{ 871 struct bd_holder_disk *holder; 872 873 list_for_each_entry(holder, &bdev->bd_holder_disks, list) 874 if (holder->disk == disk) 875 return holder; 876 return NULL; 877} 878 879static int add_symlink(struct kobject *from, struct kobject *to) 880{ 881 return sysfs_create_link(from, to, kobject_name(to)); 882} 883 884static void del_symlink(struct kobject *from, struct kobject *to) 885{ 886 sysfs_remove_link(from, kobject_name(to)); 887} 888 889/** 890 * bd_link_disk_holder - create symlinks between holding disk and slave bdev 891 * @bdev: the claimed slave bdev 892 * @disk: the holding disk 893 * 894 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT. 895 * 896 * This functions creates the following sysfs symlinks. 897 * 898 * - from "slaves" directory of the holder @disk to the claimed @bdev 899 * - from "holders" directory of the @bdev to the holder @disk 900 * 901 * For example, if /dev/dm-0 maps to /dev/sda and disk for dm-0 is 902 * passed to bd_link_disk_holder(), then: 903 * 904 * /sys/block/dm-0/slaves/sda --> /sys/block/sda 905 * /sys/block/sda/holders/dm-0 --> /sys/block/dm-0 906 * 907 * The caller must have claimed @bdev before calling this function and 908 * ensure that both @bdev and @disk are valid during the creation and 909 * lifetime of these symlinks. 910 * 911 * CONTEXT: 912 * Might sleep. 913 * 914 * RETURNS: 915 * 0 on success, -errno on failure. 916 */ 917int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk) 918{ 919 struct bd_holder_disk *holder; 920 int ret = 0; 921 922 mutex_lock(&bdev->bd_mutex); 923 924 WARN_ON_ONCE(!bdev->bd_holder); 925 926 /* FIXME: remove the following once add_disk() handles errors */ 927 if (WARN_ON(!disk->slave_dir || !bdev->bd_part->holder_dir)) 928 goto out_unlock; 929 930 holder = bd_find_holder_disk(bdev, disk); 931 if (holder) { 932 holder->refcnt++; 933 goto out_unlock; 934 } 935 936 holder = kzalloc(sizeof(*holder), GFP_KERNEL); 937 if (!holder) { 938 ret = -ENOMEM; 939 goto out_unlock; 940 } 941 942 INIT_LIST_HEAD(&holder->list); 943 holder->disk = disk; 944 holder->refcnt = 1; 945 946 ret = add_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj); 947 if (ret) 948 goto out_free; 949 950 ret = add_symlink(bdev->bd_part->holder_dir, &disk_to_dev(disk)->kobj); 951 if (ret) 952 goto out_del; 953 /* 954 * bdev could be deleted beneath us which would implicitly destroy 955 * the holder directory. Hold on to it. 956 */ 957 kobject_get(bdev->bd_part->holder_dir); 958 959 list_add(&holder->list, &bdev->bd_holder_disks); 960 goto out_unlock; 961 962out_del: 963 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj); 964out_free: 965 kfree(holder); 966out_unlock: 967 mutex_unlock(&bdev->bd_mutex); 968 return ret; 969} 970EXPORT_SYMBOL_GPL(bd_link_disk_holder); 971 972/** 973 * bd_unlink_disk_holder - destroy symlinks created by bd_link_disk_holder() 974 * @bdev: the calimed slave bdev 975 * @disk: the holding disk 976 * 977 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT. 978 * 979 * CONTEXT: 980 * Might sleep. 981 */ 982void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk) 983{ 984 struct bd_holder_disk *holder; 985 986 mutex_lock(&bdev->bd_mutex); 987 988 holder = bd_find_holder_disk(bdev, disk); 989 990 if (!WARN_ON_ONCE(holder == NULL) && !--holder->refcnt) { 991 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj); 992 del_symlink(bdev->bd_part->holder_dir, 993 &disk_to_dev(disk)->kobj); 994 kobject_put(bdev->bd_part->holder_dir); 995 list_del_init(&holder->list); 996 kfree(holder); 997 } 998 999 mutex_unlock(&bdev->bd_mutex); 1000} 1001EXPORT_SYMBOL_GPL(bd_unlink_disk_holder); 1002#endif 1003 1004/** 1005 * flush_disk - invalidates all buffer-cache entries on a disk 1006 * 1007 * @bdev: struct block device to be flushed 1008 * @kill_dirty: flag to guide handling of dirty inodes 1009 * 1010 * Invalidates all buffer-cache entries on a disk. It should be called 1011 * when a disk has been changed -- either by a media change or online 1012 * resize. 1013 */ 1014static void flush_disk(struct block_device *bdev, bool kill_dirty) 1015{ 1016 if (__invalidate_device(bdev, kill_dirty)) { 1017 char name[BDEVNAME_SIZE] = ""; 1018 1019 if (bdev->bd_disk) 1020 disk_name(bdev->bd_disk, 0, name); 1021 printk(KERN_WARNING "VFS: busy inodes on changed media or " 1022 "resized disk %s\n", name); 1023 } 1024 1025 if (!bdev->bd_disk) 1026 return; 1027 if (disk_part_scan_enabled(bdev->bd_disk)) 1028 bdev->bd_invalidated = 1; 1029} 1030 1031/** 1032 * check_disk_size_change - checks for disk size change and adjusts bdev size. 1033 * @disk: struct gendisk to check 1034 * @bdev: struct bdev to adjust. 1035 * 1036 * This routine checks to see if the bdev size does not match the disk size 1037 * and adjusts it if it differs. 1038 */ 1039void check_disk_size_change(struct gendisk *disk, struct block_device *bdev) 1040{ 1041 loff_t disk_size, bdev_size; 1042 1043 disk_size = (loff_t)get_capacity(disk) << 9; 1044 bdev_size = i_size_read(bdev->bd_inode); 1045 if (disk_size != bdev_size) { 1046 char name[BDEVNAME_SIZE]; 1047 1048 disk_name(disk, 0, name); 1049 printk(KERN_INFO 1050 "%s: detected capacity change from %lld to %lld\n", 1051 name, bdev_size, disk_size); 1052 i_size_write(bdev->bd_inode, disk_size); 1053 flush_disk(bdev, false); 1054 } 1055} 1056EXPORT_SYMBOL(check_disk_size_change); 1057 1058/** 1059 * revalidate_disk - wrapper for lower-level driver's revalidate_disk call-back 1060 * @disk: struct gendisk to be revalidated 1061 * 1062 * This routine is a wrapper for lower-level driver's revalidate_disk 1063 * call-backs. It is used to do common pre and post operations needed 1064 * for all revalidate_disk operations. 1065 */ 1066int revalidate_disk(struct gendisk *disk) 1067{ 1068 struct block_device *bdev; 1069 int ret = 0; 1070 1071 if (disk->fops->revalidate_disk) 1072 ret = disk->fops->revalidate_disk(disk); 1073 1074 bdev = bdget_disk(disk, 0); 1075 if (!bdev) 1076 return ret; 1077 1078 mutex_lock(&bdev->bd_mutex); 1079 check_disk_size_change(disk, bdev); 1080 bdev->bd_invalidated = 0; 1081 mutex_unlock(&bdev->bd_mutex); 1082 bdput(bdev); 1083 return ret; 1084} 1085EXPORT_SYMBOL(revalidate_disk); 1086 1087/* 1088 * This routine checks whether a removable media has been changed, 1089 * and invalidates all buffer-cache-entries in that case. This 1090 * is a relatively slow routine, so we have to try to minimize using 1091 * it. Thus it is called only upon a 'mount' or 'open'. This 1092 * is the best way of combining speed and utility, I think. 1093 * People changing diskettes in the middle of an operation deserve 1094 * to lose :-) 1095 */ 1096int check_disk_change(struct block_device *bdev) 1097{ 1098 struct gendisk *disk = bdev->bd_disk; 1099 const struct block_device_operations *bdops = disk->fops; 1100 unsigned int events; 1101 1102 events = disk_clear_events(disk, DISK_EVENT_MEDIA_CHANGE | 1103 DISK_EVENT_EJECT_REQUEST); 1104 if (!(events & DISK_EVENT_MEDIA_CHANGE)) 1105 return 0; 1106 1107 flush_disk(bdev, true); 1108 if (bdops->revalidate_disk) 1109 bdops->revalidate_disk(bdev->bd_disk); 1110 return 1; 1111} 1112 1113EXPORT_SYMBOL(check_disk_change); 1114 1115void bd_set_size(struct block_device *bdev, loff_t size) 1116{ 1117 unsigned bsize = bdev_logical_block_size(bdev); 1118 1119 mutex_lock(&bdev->bd_inode->i_mutex); 1120 i_size_write(bdev->bd_inode, size); 1121 mutex_unlock(&bdev->bd_inode->i_mutex); 1122 while (bsize < PAGE_CACHE_SIZE) { 1123 if (size & bsize) 1124 break; 1125 bsize <<= 1; 1126 } 1127 bdev->bd_block_size = bsize; 1128 bdev->bd_inode->i_blkbits = blksize_bits(bsize); 1129} 1130EXPORT_SYMBOL(bd_set_size); 1131 1132static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part); 1133 1134/* 1135 * bd_mutex locking: 1136 * 1137 * mutex_lock(part->bd_mutex) 1138 * mutex_lock_nested(whole->bd_mutex, 1) 1139 */ 1140 1141static int __blkdev_get(struct block_device *bdev, fmode_t mode, int for_part) 1142{ 1143 struct gendisk *disk; 1144 struct module *owner; 1145 int ret; 1146 int partno; 1147 int perm = 0; 1148 1149 if (mode & FMODE_READ) 1150 perm |= MAY_READ; 1151 if (mode & FMODE_WRITE) 1152 perm |= MAY_WRITE; 1153 /* 1154 * hooks: /n/, see "layering violations". 1155 */ 1156 if (!for_part) { 1157 ret = devcgroup_inode_permission(bdev->bd_inode, perm); 1158 if (ret != 0) { 1159 bdput(bdev); 1160 return ret; 1161 } 1162 } 1163 1164 restart: 1165 1166 ret = -ENXIO; 1167 disk = get_gendisk(bdev->bd_dev, &partno); 1168 if (!disk) 1169 goto out; 1170 owner = disk->fops->owner; 1171 1172 disk_block_events(disk); 1173 mutex_lock_nested(&bdev->bd_mutex, for_part); 1174 if (!bdev->bd_openers) { 1175 bdev->bd_disk = disk; 1176 bdev->bd_queue = disk->queue; 1177 bdev->bd_contains = bdev; 1178 if (!partno) { 1179 ret = -ENXIO; 1180 bdev->bd_part = disk_get_part(disk, partno); 1181 if (!bdev->bd_part) 1182 goto out_clear; 1183 1184 ret = 0; 1185 if (disk->fops->open) { 1186 ret = disk->fops->open(bdev, mode); 1187 if (ret == -ERESTARTSYS) { 1188 /* Lost a race with 'disk' being 1189 * deleted, try again. 1190 * See md.c 1191 */ 1192 disk_put_part(bdev->bd_part); 1193 bdev->bd_part = NULL; 1194 bdev->bd_disk = NULL; 1195 bdev->bd_queue = NULL; 1196 mutex_unlock(&bdev->bd_mutex); 1197 disk_unblock_events(disk); 1198 put_disk(disk); 1199 module_put(owner); 1200 goto restart; 1201 } 1202 } 1203 1204 if (!ret) 1205 bd_set_size(bdev,(loff_t)get_capacity(disk)<<9); 1206 1207 /* 1208 * If the device is invalidated, rescan partition 1209 * if open succeeded or failed with -ENOMEDIUM. 1210 * The latter is necessary to prevent ghost 1211 * partitions on a removed medium. 1212 */ 1213 if (bdev->bd_invalidated) { 1214 if (!ret) 1215 rescan_partitions(disk, bdev); 1216 else if (ret == -ENOMEDIUM) 1217 invalidate_partitions(disk, bdev); 1218 } 1219 if (ret) 1220 goto out_clear; 1221 } else { 1222 struct block_device *whole; 1223 whole = bdget_disk(disk, 0); 1224 ret = -ENOMEM; 1225 if (!whole) 1226 goto out_clear; 1227 BUG_ON(for_part); 1228 ret = __blkdev_get(whole, mode, 1); 1229 if (ret) 1230 goto out_clear; 1231 bdev->bd_contains = whole; 1232 bdev->bd_part = disk_get_part(disk, partno); 1233 if (!(disk->flags & GENHD_FL_UP) || 1234 !bdev->bd_part || !bdev->bd_part->nr_sects) { 1235 ret = -ENXIO; 1236 goto out_clear; 1237 } 1238 bd_set_size(bdev, (loff_t)bdev->bd_part->nr_sects << 9); 1239 } 1240 } else { 1241 if (bdev->bd_contains == bdev) { 1242 ret = 0; 1243 if (bdev->bd_disk->fops->open) 1244 ret = bdev->bd_disk->fops->open(bdev, mode); 1245 /* the same as first opener case, read comment there */ 1246 if (bdev->bd_invalidated) { 1247 if (!ret) 1248 rescan_partitions(bdev->bd_disk, bdev); 1249 else if (ret == -ENOMEDIUM) 1250 invalidate_partitions(bdev->bd_disk, bdev); 1251 } 1252 if (ret) 1253 goto out_unlock_bdev; 1254 } 1255 /* only one opener holds refs to the module and disk */ 1256 put_disk(disk); 1257 module_put(owner); 1258 } 1259 bdev->bd_openers++; 1260 if (for_part) 1261 bdev->bd_part_count++; 1262 mutex_unlock(&bdev->bd_mutex); 1263 disk_unblock_events(disk); 1264 return 0; 1265 1266 out_clear: 1267 disk_put_part(bdev->bd_part); 1268 bdev->bd_disk = NULL; 1269 bdev->bd_part = NULL; 1270 bdev->bd_queue = NULL; 1271 if (bdev != bdev->bd_contains) 1272 __blkdev_put(bdev->bd_contains, mode, 1); 1273 bdev->bd_contains = NULL; 1274 out_unlock_bdev: 1275 mutex_unlock(&bdev->bd_mutex); 1276 disk_unblock_events(disk); 1277 put_disk(disk); 1278 module_put(owner); 1279 out: 1280 bdput(bdev); 1281 1282 return ret; 1283} 1284 1285/** 1286 * blkdev_get - open a block device 1287 * @bdev: block_device to open 1288 * @mode: FMODE_* mask 1289 * @holder: exclusive holder identifier 1290 * 1291 * Open @bdev with @mode. If @mode includes %FMODE_EXCL, @bdev is 1292 * open with exclusive access. Specifying %FMODE_EXCL with %NULL 1293 * @holder is invalid. Exclusive opens may nest for the same @holder. 1294 * 1295 * On success, the reference count of @bdev is unchanged. On failure, 1296 * @bdev is put. 1297 * 1298 * CONTEXT: 1299 * Might sleep. 1300 * 1301 * RETURNS: 1302 * 0 on success, -errno on failure. 1303 */ 1304int blkdev_get(struct block_device *bdev, fmode_t mode, void *holder) 1305{ 1306 struct block_device *whole = NULL; 1307 int res; 1308 1309 WARN_ON_ONCE((mode & FMODE_EXCL) && !holder); 1310 1311 if ((mode & FMODE_EXCL) && holder) { 1312 whole = bd_start_claiming(bdev, holder); 1313 if (IS_ERR(whole)) { 1314 bdput(bdev); 1315 return PTR_ERR(whole); 1316 } 1317 } 1318 1319 res = __blkdev_get(bdev, mode, 0); 1320 1321 if (whole) { 1322 struct gendisk *disk = whole->bd_disk; 1323 1324 /* finish claiming */ 1325 mutex_lock(&bdev->bd_mutex); 1326 spin_lock(&bdev_lock); 1327 1328 if (!res) { 1329 BUG_ON(!bd_may_claim(bdev, whole, holder)); 1330 /* 1331 * Note that for a whole device bd_holders 1332 * will be incremented twice, and bd_holder 1333 * will be set to bd_may_claim before being 1334 * set to holder 1335 */ 1336 whole->bd_holders++; 1337 whole->bd_holder = bd_may_claim; 1338 bdev->bd_holders++; 1339 bdev->bd_holder = holder; 1340 } 1341 1342 /* tell others that we're done */ 1343 BUG_ON(whole->bd_claiming != holder); 1344 whole->bd_claiming = NULL; 1345 wake_up_bit(&whole->bd_claiming, 0); 1346 1347 spin_unlock(&bdev_lock); 1348 1349 /* 1350 * Block event polling for write claims if requested. Any 1351 * write holder makes the write_holder state stick until 1352 * all are released. This is good enough and tracking 1353 * individual writeable reference is too fragile given the 1354 * way @mode is used in blkdev_get/put(). 1355 */ 1356 if (!res && (mode & FMODE_WRITE) && !bdev->bd_write_holder && 1357 (disk->flags & GENHD_FL_BLOCK_EVENTS_ON_EXCL_WRITE)) { 1358 bdev->bd_write_holder = true; 1359 disk_block_events(disk); 1360 } 1361 1362 mutex_unlock(&bdev->bd_mutex); 1363 bdput(whole); 1364 } 1365 1366 return res; 1367} 1368EXPORT_SYMBOL(blkdev_get); 1369 1370/** 1371 * blkdev_get_by_path - open a block device by name 1372 * @path: path to the block device to open 1373 * @mode: FMODE_* mask 1374 * @holder: exclusive holder identifier 1375 * 1376 * Open the blockdevice described by the device file at @path. @mode 1377 * and @holder are identical to blkdev_get(). 1378 * 1379 * On success, the returned block_device has reference count of one. 1380 * 1381 * CONTEXT: 1382 * Might sleep. 1383 * 1384 * RETURNS: 1385 * Pointer to block_device on success, ERR_PTR(-errno) on failure. 1386 */ 1387struct block_device *blkdev_get_by_path(const char *path, fmode_t mode, 1388 void *holder) 1389{ 1390 struct block_device *bdev; 1391 int err; 1392 1393 bdev = lookup_bdev(path); 1394 if (IS_ERR(bdev)) 1395 return bdev; 1396 1397 err = blkdev_get(bdev, mode, holder); 1398 if (err) 1399 return ERR_PTR(err); 1400 1401 if ((mode & FMODE_WRITE) && bdev_read_only(bdev)) { 1402 blkdev_put(bdev, mode); 1403 return ERR_PTR(-EACCES); 1404 } 1405 1406 return bdev; 1407} 1408EXPORT_SYMBOL(blkdev_get_by_path); 1409 1410/** 1411 * blkdev_get_by_dev - open a block device by device number 1412 * @dev: device number of block device to open 1413 * @mode: FMODE_* mask 1414 * @holder: exclusive holder identifier 1415 * 1416 * Open the blockdevice described by device number @dev. @mode and 1417 * @holder are identical to blkdev_get(). 1418 * 1419 * Use it ONLY if you really do not have anything better - i.e. when 1420 * you are behind a truly sucky interface and all you are given is a 1421 * device number. _Never_ to be used for internal purposes. If you 1422 * ever need it - reconsider your API. 1423 * 1424 * On success, the returned block_device has reference count of one. 1425 * 1426 * CONTEXT: 1427 * Might sleep. 1428 * 1429 * RETURNS: 1430 * Pointer to block_device on success, ERR_PTR(-errno) on failure. 1431 */ 1432struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder) 1433{ 1434 struct block_device *bdev; 1435 int err; 1436 1437 bdev = bdget(dev); 1438 if (!bdev) 1439 return ERR_PTR(-ENOMEM); 1440 1441 err = blkdev_get(bdev, mode, holder); 1442 if (err) 1443 return ERR_PTR(err); 1444 1445 return bdev; 1446} 1447EXPORT_SYMBOL(blkdev_get_by_dev); 1448 1449static int blkdev_open(struct inode * inode, struct file * filp) 1450{ 1451 struct block_device *bdev; 1452 1453 /* 1454 * Preserve backwards compatibility and allow large file access 1455 * even if userspace doesn't ask for it explicitly. Some mkfs 1456 * binary needs it. We might want to drop this workaround 1457 * during an unstable branch. 1458 */ 1459 filp->f_flags |= O_LARGEFILE; 1460 1461 if (filp->f_flags & O_NDELAY) 1462 filp->f_mode |= FMODE_NDELAY; 1463 if (filp->f_flags & O_EXCL) 1464 filp->f_mode |= FMODE_EXCL; 1465 if ((filp->f_flags & O_ACCMODE) == 3) 1466 filp->f_mode |= FMODE_WRITE_IOCTL; 1467 1468 bdev = bd_acquire(inode); 1469 if (bdev == NULL) 1470 return -ENOMEM; 1471 1472 filp->f_mapping = bdev->bd_inode->i_mapping; 1473 1474 return blkdev_get(bdev, filp->f_mode, filp); 1475} 1476 1477static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part) 1478{ 1479 struct gendisk *disk = bdev->bd_disk; 1480 struct block_device *victim = NULL; 1481 1482 mutex_lock_nested(&bdev->bd_mutex, for_part); 1483 if (for_part) 1484 bdev->bd_part_count--; 1485 1486 if (!--bdev->bd_openers) { 1487 WARN_ON_ONCE(bdev->bd_holders); 1488 sync_blockdev(bdev); 1489 kill_bdev(bdev); 1490 /* 1491 * ->release can cause the queue to disappear, so flush all 1492 * dirty data before. 1493 */ 1494 bdev_write_inode(bdev->bd_inode); 1495 } 1496 if (bdev->bd_contains == bdev) { 1497 if (disk->fops->release) 1498 disk->fops->release(disk, mode); 1499 } 1500 if (!bdev->bd_openers) { 1501 struct module *owner = disk->fops->owner; 1502 1503 disk_put_part(bdev->bd_part); 1504 bdev->bd_part = NULL; 1505 bdev->bd_disk = NULL; 1506 if (bdev != bdev->bd_contains) 1507 victim = bdev->bd_contains; 1508 bdev->bd_contains = NULL; 1509 1510 put_disk(disk); 1511 module_put(owner); 1512 } 1513 mutex_unlock(&bdev->bd_mutex); 1514 bdput(bdev); 1515 if (victim) 1516 __blkdev_put(victim, mode, 1); 1517} 1518 1519void blkdev_put(struct block_device *bdev, fmode_t mode) 1520{ 1521 mutex_lock(&bdev->bd_mutex); 1522 1523 if (mode & FMODE_EXCL) { 1524 bool bdev_free; 1525 1526 /* 1527 * Release a claim on the device. The holder fields 1528 * are protected with bdev_lock. bd_mutex is to 1529 * synchronize disk_holder unlinking. 1530 */ 1531 spin_lock(&bdev_lock); 1532 1533 WARN_ON_ONCE(--bdev->bd_holders < 0); 1534 WARN_ON_ONCE(--bdev->bd_contains->bd_holders < 0); 1535 1536 /* bd_contains might point to self, check in a separate step */ 1537 if ((bdev_free = !bdev->bd_holders)) 1538 bdev->bd_holder = NULL; 1539 if (!bdev->bd_contains->bd_holders) 1540 bdev->bd_contains->bd_holder = NULL; 1541 1542 spin_unlock(&bdev_lock); 1543 1544 /* 1545 * If this was the last claim, remove holder link and 1546 * unblock evpoll if it was a write holder. 1547 */ 1548 if (bdev_free && bdev->bd_write_holder) { 1549 disk_unblock_events(bdev->bd_disk); 1550 bdev->bd_write_holder = false; 1551 } 1552 } 1553 1554 /* 1555 * Trigger event checking and tell drivers to flush MEDIA_CHANGE 1556 * event. This is to ensure detection of media removal commanded 1557 * from userland - e.g. eject(1). 1558 */ 1559 disk_flush_events(bdev->bd_disk, DISK_EVENT_MEDIA_CHANGE); 1560 1561 mutex_unlock(&bdev->bd_mutex); 1562 1563 __blkdev_put(bdev, mode, 0); 1564} 1565EXPORT_SYMBOL(blkdev_put); 1566 1567static int blkdev_close(struct inode * inode, struct file * filp) 1568{ 1569 struct block_device *bdev = I_BDEV(filp->f_mapping->host); 1570 blkdev_put(bdev, filp->f_mode); 1571 return 0; 1572} 1573 1574static long block_ioctl(struct file *file, unsigned cmd, unsigned long arg) 1575{ 1576 struct block_device *bdev = I_BDEV(file->f_mapping->host); 1577 fmode_t mode = file->f_mode; 1578 1579 /* 1580 * O_NDELAY can be altered using fcntl(.., F_SETFL, ..), so we have 1581 * to updated it before every ioctl. 1582 */ 1583 if (file->f_flags & O_NDELAY) 1584 mode |= FMODE_NDELAY; 1585 else 1586 mode &= ~FMODE_NDELAY; 1587 1588 return blkdev_ioctl(bdev, mode, cmd, arg); 1589} 1590 1591/* 1592 * Write data to the block device. Only intended for the block device itself 1593 * and the raw driver which basically is a fake block device. 1594 * 1595 * Does not take i_mutex for the write and thus is not for general purpose 1596 * use. 1597 */ 1598ssize_t blkdev_write_iter(struct kiocb *iocb, struct iov_iter *from) 1599{ 1600 struct file *file = iocb->ki_filp; 1601 struct blk_plug plug; 1602 ssize_t ret; 1603 1604 blk_start_plug(&plug); 1605 ret = __generic_file_write_iter(iocb, from); 1606 if (ret > 0) { 1607 ssize_t err; 1608 err = generic_write_sync(file, iocb->ki_pos - ret, ret); 1609 if (err < 0) 1610 ret = err; 1611 } 1612 blk_finish_plug(&plug); 1613 return ret; 1614} 1615EXPORT_SYMBOL_GPL(blkdev_write_iter); 1616 1617ssize_t blkdev_read_iter(struct kiocb *iocb, struct iov_iter *to) 1618{ 1619 struct file *file = iocb->ki_filp; 1620 struct inode *bd_inode = file->f_mapping->host; 1621 loff_t size = i_size_read(bd_inode); 1622 loff_t pos = iocb->ki_pos; 1623 1624 if (pos >= size) 1625 return 0; 1626 1627 size -= pos; 1628 iov_iter_truncate(to, size); 1629 return generic_file_read_iter(iocb, to); 1630} 1631EXPORT_SYMBOL_GPL(blkdev_read_iter); 1632 1633/* 1634 * Try to release a page associated with block device when the system 1635 * is under memory pressure. 1636 */ 1637static int blkdev_releasepage(struct page *page, gfp_t wait) 1638{ 1639 struct super_block *super = BDEV_I(page->mapping->host)->bdev.bd_super; 1640 1641 if (super && super->s_op->bdev_try_to_free_page) 1642 return super->s_op->bdev_try_to_free_page(super, page, wait); 1643 1644 return try_to_free_buffers(page); 1645} 1646 1647static const struct address_space_operations def_blk_aops = { 1648 .readpage = blkdev_readpage, 1649 .readpages = blkdev_readpages, 1650 .writepage = blkdev_writepage, 1651 .write_begin = blkdev_write_begin, 1652 .write_end = blkdev_write_end, 1653 .writepages = generic_writepages, 1654 .releasepage = blkdev_releasepage, 1655 .direct_IO = blkdev_direct_IO, 1656 .is_dirty_writeback = buffer_check_dirty_writeback, 1657}; 1658 1659const struct file_operations def_blk_fops = { 1660 .open = blkdev_open, 1661 .release = blkdev_close, 1662 .llseek = block_llseek, 1663 .read = new_sync_read, 1664 .write = new_sync_write, 1665 .read_iter = blkdev_read_iter, 1666 .write_iter = blkdev_write_iter, 1667 .mmap = generic_file_mmap, 1668 .fsync = blkdev_fsync, 1669 .unlocked_ioctl = block_ioctl, 1670#ifdef CONFIG_COMPAT 1671 .compat_ioctl = compat_blkdev_ioctl, 1672#endif 1673 .splice_read = generic_file_splice_read, 1674 .splice_write = iter_file_splice_write, 1675}; 1676 1677int ioctl_by_bdev(struct block_device *bdev, unsigned cmd, unsigned long arg) 1678{ 1679 int res; 1680 mm_segment_t old_fs = get_fs(); 1681 set_fs(KERNEL_DS); 1682 res = blkdev_ioctl(bdev, 0, cmd, arg); 1683 set_fs(old_fs); 1684 return res; 1685} 1686 1687EXPORT_SYMBOL(ioctl_by_bdev); 1688 1689/** 1690 * lookup_bdev - lookup a struct block_device by name 1691 * @pathname: special file representing the block device 1692 * 1693 * Get a reference to the blockdevice at @pathname in the current 1694 * namespace if possible and return it. Return ERR_PTR(error) 1695 * otherwise. 1696 */ 1697struct block_device *lookup_bdev(const char *pathname) 1698{ 1699 struct block_device *bdev; 1700 struct inode *inode; 1701 struct path path; 1702 int error; 1703 1704 if (!pathname || !*pathname) 1705 return ERR_PTR(-EINVAL); 1706 1707 error = kern_path(pathname, LOOKUP_FOLLOW, &path); 1708 if (error) 1709 return ERR_PTR(error); 1710 1711 inode = path.dentry->d_inode; 1712 error = -ENOTBLK; 1713 if (!S_ISBLK(inode->i_mode)) 1714 goto fail; 1715 error = -EACCES; 1716 if (path.mnt->mnt_flags & MNT_NODEV) 1717 goto fail; 1718 error = -ENOMEM; 1719 bdev = bd_acquire(inode); 1720 if (!bdev) 1721 goto fail; 1722out: 1723 path_put(&path); 1724 return bdev; 1725fail: 1726 bdev = ERR_PTR(error); 1727 goto out; 1728} 1729EXPORT_SYMBOL(lookup_bdev); 1730 1731int __invalidate_device(struct block_device *bdev, bool kill_dirty) 1732{ 1733 struct super_block *sb = get_super(bdev); 1734 int res = 0; 1735 1736 if (sb) { 1737 /* 1738 * no need to lock the super, get_super holds the 1739 * read mutex so the filesystem cannot go away 1740 * under us (->put_super runs with the write lock 1741 * hold). 1742 */ 1743 shrink_dcache_sb(sb); 1744 res = invalidate_inodes(sb, kill_dirty); 1745 drop_super(sb); 1746 } 1747 invalidate_bdev(bdev); 1748 return res; 1749} 1750EXPORT_SYMBOL(__invalidate_device); 1751 1752void iterate_bdevs(void (*func)(struct block_device *, void *), void *arg) 1753{ 1754 struct inode *inode, *old_inode = NULL; 1755 1756 spin_lock(&inode_sb_list_lock); 1757 list_for_each_entry(inode, &blockdev_superblock->s_inodes, i_sb_list) { 1758 struct address_space *mapping = inode->i_mapping; 1759 1760 spin_lock(&inode->i_lock); 1761 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW) || 1762 mapping->nrpages == 0) { 1763 spin_unlock(&inode->i_lock); 1764 continue; 1765 } 1766 __iget(inode); 1767 spin_unlock(&inode->i_lock); 1768 spin_unlock(&inode_sb_list_lock); 1769 /* 1770 * We hold a reference to 'inode' so it couldn't have been 1771 * removed from s_inodes list while we dropped the 1772 * inode_sb_list_lock. We cannot iput the inode now as we can 1773 * be holding the last reference and we cannot iput it under 1774 * inode_sb_list_lock. So we keep the reference and iput it 1775 * later. 1776 */ 1777 iput(old_inode); 1778 old_inode = inode; 1779 1780 func(I_BDEV(inode), arg); 1781 1782 spin_lock(&inode_sb_list_lock); 1783 } 1784 spin_unlock(&inode_sb_list_lock); 1785 iput(old_inode); 1786}