Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75#include <asm/uaccess.h>
76#include <linux/bitops.h>
77#include <linux/capability.h>
78#include <linux/cpu.h>
79#include <linux/types.h>
80#include <linux/kernel.h>
81#include <linux/hash.h>
82#include <linux/slab.h>
83#include <linux/sched.h>
84#include <linux/mutex.h>
85#include <linux/string.h>
86#include <linux/mm.h>
87#include <linux/socket.h>
88#include <linux/sockios.h>
89#include <linux/errno.h>
90#include <linux/interrupt.h>
91#include <linux/if_ether.h>
92#include <linux/netdevice.h>
93#include <linux/etherdevice.h>
94#include <linux/ethtool.h>
95#include <linux/notifier.h>
96#include <linux/skbuff.h>
97#include <net/net_namespace.h>
98#include <net/sock.h>
99#include <linux/rtnetlink.h>
100#include <linux/stat.h>
101#include <net/dst.h>
102#include <net/pkt_sched.h>
103#include <net/checksum.h>
104#include <net/xfrm.h>
105#include <linux/highmem.h>
106#include <linux/init.h>
107#include <linux/module.h>
108#include <linux/netpoll.h>
109#include <linux/rcupdate.h>
110#include <linux/delay.h>
111#include <net/iw_handler.h>
112#include <asm/current.h>
113#include <linux/audit.h>
114#include <linux/dmaengine.h>
115#include <linux/err.h>
116#include <linux/ctype.h>
117#include <linux/if_arp.h>
118#include <linux/if_vlan.h>
119#include <linux/ip.h>
120#include <net/ip.h>
121#include <net/mpls.h>
122#include <linux/ipv6.h>
123#include <linux/in.h>
124#include <linux/jhash.h>
125#include <linux/random.h>
126#include <trace/events/napi.h>
127#include <trace/events/net.h>
128#include <trace/events/skb.h>
129#include <linux/pci.h>
130#include <linux/inetdevice.h>
131#include <linux/cpu_rmap.h>
132#include <linux/static_key.h>
133#include <linux/hashtable.h>
134#include <linux/vmalloc.h>
135#include <linux/if_macvlan.h>
136#include <linux/errqueue.h>
137#include <linux/hrtimer.h>
138
139#include "net-sysfs.h"
140
141/* Instead of increasing this, you should create a hash table. */
142#define MAX_GRO_SKBS 8
143
144/* This should be increased if a protocol with a bigger head is added. */
145#define GRO_MAX_HEAD (MAX_HEADER + 128)
146
147static DEFINE_SPINLOCK(ptype_lock);
148static DEFINE_SPINLOCK(offload_lock);
149struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
150struct list_head ptype_all __read_mostly; /* Taps */
151static struct list_head offload_base __read_mostly;
152
153static int netif_rx_internal(struct sk_buff *skb);
154static int call_netdevice_notifiers_info(unsigned long val,
155 struct net_device *dev,
156 struct netdev_notifier_info *info);
157
158/*
159 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
160 * semaphore.
161 *
162 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
163 *
164 * Writers must hold the rtnl semaphore while they loop through the
165 * dev_base_head list, and hold dev_base_lock for writing when they do the
166 * actual updates. This allows pure readers to access the list even
167 * while a writer is preparing to update it.
168 *
169 * To put it another way, dev_base_lock is held for writing only to
170 * protect against pure readers; the rtnl semaphore provides the
171 * protection against other writers.
172 *
173 * See, for example usages, register_netdevice() and
174 * unregister_netdevice(), which must be called with the rtnl
175 * semaphore held.
176 */
177DEFINE_RWLOCK(dev_base_lock);
178EXPORT_SYMBOL(dev_base_lock);
179
180/* protects napi_hash addition/deletion and napi_gen_id */
181static DEFINE_SPINLOCK(napi_hash_lock);
182
183static unsigned int napi_gen_id;
184static DEFINE_HASHTABLE(napi_hash, 8);
185
186static seqcount_t devnet_rename_seq;
187
188static inline void dev_base_seq_inc(struct net *net)
189{
190 while (++net->dev_base_seq == 0);
191}
192
193static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
194{
195 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
196
197 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
198}
199
200static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
201{
202 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
203}
204
205static inline void rps_lock(struct softnet_data *sd)
206{
207#ifdef CONFIG_RPS
208 spin_lock(&sd->input_pkt_queue.lock);
209#endif
210}
211
212static inline void rps_unlock(struct softnet_data *sd)
213{
214#ifdef CONFIG_RPS
215 spin_unlock(&sd->input_pkt_queue.lock);
216#endif
217}
218
219/* Device list insertion */
220static void list_netdevice(struct net_device *dev)
221{
222 struct net *net = dev_net(dev);
223
224 ASSERT_RTNL();
225
226 write_lock_bh(&dev_base_lock);
227 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
228 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
229 hlist_add_head_rcu(&dev->index_hlist,
230 dev_index_hash(net, dev->ifindex));
231 write_unlock_bh(&dev_base_lock);
232
233 dev_base_seq_inc(net);
234}
235
236/* Device list removal
237 * caller must respect a RCU grace period before freeing/reusing dev
238 */
239static void unlist_netdevice(struct net_device *dev)
240{
241 ASSERT_RTNL();
242
243 /* Unlink dev from the device chain */
244 write_lock_bh(&dev_base_lock);
245 list_del_rcu(&dev->dev_list);
246 hlist_del_rcu(&dev->name_hlist);
247 hlist_del_rcu(&dev->index_hlist);
248 write_unlock_bh(&dev_base_lock);
249
250 dev_base_seq_inc(dev_net(dev));
251}
252
253/*
254 * Our notifier list
255 */
256
257static RAW_NOTIFIER_HEAD(netdev_chain);
258
259/*
260 * Device drivers call our routines to queue packets here. We empty the
261 * queue in the local softnet handler.
262 */
263
264DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
265EXPORT_PER_CPU_SYMBOL(softnet_data);
266
267#ifdef CONFIG_LOCKDEP
268/*
269 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
270 * according to dev->type
271 */
272static const unsigned short netdev_lock_type[] =
273 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
274 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
275 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
276 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
277 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
278 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
279 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
280 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
281 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
282 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
283 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
284 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
285 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
286 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
287 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
288
289static const char *const netdev_lock_name[] =
290 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
291 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
292 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
293 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
294 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
295 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
296 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
297 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
298 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
299 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
300 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
301 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
302 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
303 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
304 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
305
306static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
307static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
308
309static inline unsigned short netdev_lock_pos(unsigned short dev_type)
310{
311 int i;
312
313 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
314 if (netdev_lock_type[i] == dev_type)
315 return i;
316 /* the last key is used by default */
317 return ARRAY_SIZE(netdev_lock_type) - 1;
318}
319
320static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
321 unsigned short dev_type)
322{
323 int i;
324
325 i = netdev_lock_pos(dev_type);
326 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
327 netdev_lock_name[i]);
328}
329
330static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
331{
332 int i;
333
334 i = netdev_lock_pos(dev->type);
335 lockdep_set_class_and_name(&dev->addr_list_lock,
336 &netdev_addr_lock_key[i],
337 netdev_lock_name[i]);
338}
339#else
340static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
341 unsigned short dev_type)
342{
343}
344static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
345{
346}
347#endif
348
349/*******************************************************************************
350
351 Protocol management and registration routines
352
353*******************************************************************************/
354
355/*
356 * Add a protocol ID to the list. Now that the input handler is
357 * smarter we can dispense with all the messy stuff that used to be
358 * here.
359 *
360 * BEWARE!!! Protocol handlers, mangling input packets,
361 * MUST BE last in hash buckets and checking protocol handlers
362 * MUST start from promiscuous ptype_all chain in net_bh.
363 * It is true now, do not change it.
364 * Explanation follows: if protocol handler, mangling packet, will
365 * be the first on list, it is not able to sense, that packet
366 * is cloned and should be copied-on-write, so that it will
367 * change it and subsequent readers will get broken packet.
368 * --ANK (980803)
369 */
370
371static inline struct list_head *ptype_head(const struct packet_type *pt)
372{
373 if (pt->type == htons(ETH_P_ALL))
374 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
375 else
376 return pt->dev ? &pt->dev->ptype_specific :
377 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
378}
379
380/**
381 * dev_add_pack - add packet handler
382 * @pt: packet type declaration
383 *
384 * Add a protocol handler to the networking stack. The passed &packet_type
385 * is linked into kernel lists and may not be freed until it has been
386 * removed from the kernel lists.
387 *
388 * This call does not sleep therefore it can not
389 * guarantee all CPU's that are in middle of receiving packets
390 * will see the new packet type (until the next received packet).
391 */
392
393void dev_add_pack(struct packet_type *pt)
394{
395 struct list_head *head = ptype_head(pt);
396
397 spin_lock(&ptype_lock);
398 list_add_rcu(&pt->list, head);
399 spin_unlock(&ptype_lock);
400}
401EXPORT_SYMBOL(dev_add_pack);
402
403/**
404 * __dev_remove_pack - remove packet handler
405 * @pt: packet type declaration
406 *
407 * Remove a protocol handler that was previously added to the kernel
408 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
409 * from the kernel lists and can be freed or reused once this function
410 * returns.
411 *
412 * The packet type might still be in use by receivers
413 * and must not be freed until after all the CPU's have gone
414 * through a quiescent state.
415 */
416void __dev_remove_pack(struct packet_type *pt)
417{
418 struct list_head *head = ptype_head(pt);
419 struct packet_type *pt1;
420
421 spin_lock(&ptype_lock);
422
423 list_for_each_entry(pt1, head, list) {
424 if (pt == pt1) {
425 list_del_rcu(&pt->list);
426 goto out;
427 }
428 }
429
430 pr_warn("dev_remove_pack: %p not found\n", pt);
431out:
432 spin_unlock(&ptype_lock);
433}
434EXPORT_SYMBOL(__dev_remove_pack);
435
436/**
437 * dev_remove_pack - remove packet handler
438 * @pt: packet type declaration
439 *
440 * Remove a protocol handler that was previously added to the kernel
441 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
442 * from the kernel lists and can be freed or reused once this function
443 * returns.
444 *
445 * This call sleeps to guarantee that no CPU is looking at the packet
446 * type after return.
447 */
448void dev_remove_pack(struct packet_type *pt)
449{
450 __dev_remove_pack(pt);
451
452 synchronize_net();
453}
454EXPORT_SYMBOL(dev_remove_pack);
455
456
457/**
458 * dev_add_offload - register offload handlers
459 * @po: protocol offload declaration
460 *
461 * Add protocol offload handlers to the networking stack. The passed
462 * &proto_offload is linked into kernel lists and may not be freed until
463 * it has been removed from the kernel lists.
464 *
465 * This call does not sleep therefore it can not
466 * guarantee all CPU's that are in middle of receiving packets
467 * will see the new offload handlers (until the next received packet).
468 */
469void dev_add_offload(struct packet_offload *po)
470{
471 struct list_head *head = &offload_base;
472
473 spin_lock(&offload_lock);
474 list_add_rcu(&po->list, head);
475 spin_unlock(&offload_lock);
476}
477EXPORT_SYMBOL(dev_add_offload);
478
479/**
480 * __dev_remove_offload - remove offload handler
481 * @po: packet offload declaration
482 *
483 * Remove a protocol offload handler that was previously added to the
484 * kernel offload handlers by dev_add_offload(). The passed &offload_type
485 * is removed from the kernel lists and can be freed or reused once this
486 * function returns.
487 *
488 * The packet type might still be in use by receivers
489 * and must not be freed until after all the CPU's have gone
490 * through a quiescent state.
491 */
492static void __dev_remove_offload(struct packet_offload *po)
493{
494 struct list_head *head = &offload_base;
495 struct packet_offload *po1;
496
497 spin_lock(&offload_lock);
498
499 list_for_each_entry(po1, head, list) {
500 if (po == po1) {
501 list_del_rcu(&po->list);
502 goto out;
503 }
504 }
505
506 pr_warn("dev_remove_offload: %p not found\n", po);
507out:
508 spin_unlock(&offload_lock);
509}
510
511/**
512 * dev_remove_offload - remove packet offload handler
513 * @po: packet offload declaration
514 *
515 * Remove a packet offload handler that was previously added to the kernel
516 * offload handlers by dev_add_offload(). The passed &offload_type is
517 * removed from the kernel lists and can be freed or reused once this
518 * function returns.
519 *
520 * This call sleeps to guarantee that no CPU is looking at the packet
521 * type after return.
522 */
523void dev_remove_offload(struct packet_offload *po)
524{
525 __dev_remove_offload(po);
526
527 synchronize_net();
528}
529EXPORT_SYMBOL(dev_remove_offload);
530
531/******************************************************************************
532
533 Device Boot-time Settings Routines
534
535*******************************************************************************/
536
537/* Boot time configuration table */
538static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
539
540/**
541 * netdev_boot_setup_add - add new setup entry
542 * @name: name of the device
543 * @map: configured settings for the device
544 *
545 * Adds new setup entry to the dev_boot_setup list. The function
546 * returns 0 on error and 1 on success. This is a generic routine to
547 * all netdevices.
548 */
549static int netdev_boot_setup_add(char *name, struct ifmap *map)
550{
551 struct netdev_boot_setup *s;
552 int i;
553
554 s = dev_boot_setup;
555 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
556 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
557 memset(s[i].name, 0, sizeof(s[i].name));
558 strlcpy(s[i].name, name, IFNAMSIZ);
559 memcpy(&s[i].map, map, sizeof(s[i].map));
560 break;
561 }
562 }
563
564 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
565}
566
567/**
568 * netdev_boot_setup_check - check boot time settings
569 * @dev: the netdevice
570 *
571 * Check boot time settings for the device.
572 * The found settings are set for the device to be used
573 * later in the device probing.
574 * Returns 0 if no settings found, 1 if they are.
575 */
576int netdev_boot_setup_check(struct net_device *dev)
577{
578 struct netdev_boot_setup *s = dev_boot_setup;
579 int i;
580
581 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
582 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
583 !strcmp(dev->name, s[i].name)) {
584 dev->irq = s[i].map.irq;
585 dev->base_addr = s[i].map.base_addr;
586 dev->mem_start = s[i].map.mem_start;
587 dev->mem_end = s[i].map.mem_end;
588 return 1;
589 }
590 }
591 return 0;
592}
593EXPORT_SYMBOL(netdev_boot_setup_check);
594
595
596/**
597 * netdev_boot_base - get address from boot time settings
598 * @prefix: prefix for network device
599 * @unit: id for network device
600 *
601 * Check boot time settings for the base address of device.
602 * The found settings are set for the device to be used
603 * later in the device probing.
604 * Returns 0 if no settings found.
605 */
606unsigned long netdev_boot_base(const char *prefix, int unit)
607{
608 const struct netdev_boot_setup *s = dev_boot_setup;
609 char name[IFNAMSIZ];
610 int i;
611
612 sprintf(name, "%s%d", prefix, unit);
613
614 /*
615 * If device already registered then return base of 1
616 * to indicate not to probe for this interface
617 */
618 if (__dev_get_by_name(&init_net, name))
619 return 1;
620
621 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
622 if (!strcmp(name, s[i].name))
623 return s[i].map.base_addr;
624 return 0;
625}
626
627/*
628 * Saves at boot time configured settings for any netdevice.
629 */
630int __init netdev_boot_setup(char *str)
631{
632 int ints[5];
633 struct ifmap map;
634
635 str = get_options(str, ARRAY_SIZE(ints), ints);
636 if (!str || !*str)
637 return 0;
638
639 /* Save settings */
640 memset(&map, 0, sizeof(map));
641 if (ints[0] > 0)
642 map.irq = ints[1];
643 if (ints[0] > 1)
644 map.base_addr = ints[2];
645 if (ints[0] > 2)
646 map.mem_start = ints[3];
647 if (ints[0] > 3)
648 map.mem_end = ints[4];
649
650 /* Add new entry to the list */
651 return netdev_boot_setup_add(str, &map);
652}
653
654__setup("netdev=", netdev_boot_setup);
655
656/*******************************************************************************
657
658 Device Interface Subroutines
659
660*******************************************************************************/
661
662/**
663 * __dev_get_by_name - find a device by its name
664 * @net: the applicable net namespace
665 * @name: name to find
666 *
667 * Find an interface by name. Must be called under RTNL semaphore
668 * or @dev_base_lock. If the name is found a pointer to the device
669 * is returned. If the name is not found then %NULL is returned. The
670 * reference counters are not incremented so the caller must be
671 * careful with locks.
672 */
673
674struct net_device *__dev_get_by_name(struct net *net, const char *name)
675{
676 struct net_device *dev;
677 struct hlist_head *head = dev_name_hash(net, name);
678
679 hlist_for_each_entry(dev, head, name_hlist)
680 if (!strncmp(dev->name, name, IFNAMSIZ))
681 return dev;
682
683 return NULL;
684}
685EXPORT_SYMBOL(__dev_get_by_name);
686
687/**
688 * dev_get_by_name_rcu - find a device by its name
689 * @net: the applicable net namespace
690 * @name: name to find
691 *
692 * Find an interface by name.
693 * If the name is found a pointer to the device is returned.
694 * If the name is not found then %NULL is returned.
695 * The reference counters are not incremented so the caller must be
696 * careful with locks. The caller must hold RCU lock.
697 */
698
699struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
700{
701 struct net_device *dev;
702 struct hlist_head *head = dev_name_hash(net, name);
703
704 hlist_for_each_entry_rcu(dev, head, name_hlist)
705 if (!strncmp(dev->name, name, IFNAMSIZ))
706 return dev;
707
708 return NULL;
709}
710EXPORT_SYMBOL(dev_get_by_name_rcu);
711
712/**
713 * dev_get_by_name - find a device by its name
714 * @net: the applicable net namespace
715 * @name: name to find
716 *
717 * Find an interface by name. This can be called from any
718 * context and does its own locking. The returned handle has
719 * the usage count incremented and the caller must use dev_put() to
720 * release it when it is no longer needed. %NULL is returned if no
721 * matching device is found.
722 */
723
724struct net_device *dev_get_by_name(struct net *net, const char *name)
725{
726 struct net_device *dev;
727
728 rcu_read_lock();
729 dev = dev_get_by_name_rcu(net, name);
730 if (dev)
731 dev_hold(dev);
732 rcu_read_unlock();
733 return dev;
734}
735EXPORT_SYMBOL(dev_get_by_name);
736
737/**
738 * __dev_get_by_index - find a device by its ifindex
739 * @net: the applicable net namespace
740 * @ifindex: index of device
741 *
742 * Search for an interface by index. Returns %NULL if the device
743 * is not found or a pointer to the device. The device has not
744 * had its reference counter increased so the caller must be careful
745 * about locking. The caller must hold either the RTNL semaphore
746 * or @dev_base_lock.
747 */
748
749struct net_device *__dev_get_by_index(struct net *net, int ifindex)
750{
751 struct net_device *dev;
752 struct hlist_head *head = dev_index_hash(net, ifindex);
753
754 hlist_for_each_entry(dev, head, index_hlist)
755 if (dev->ifindex == ifindex)
756 return dev;
757
758 return NULL;
759}
760EXPORT_SYMBOL(__dev_get_by_index);
761
762/**
763 * dev_get_by_index_rcu - find a device by its ifindex
764 * @net: the applicable net namespace
765 * @ifindex: index of device
766 *
767 * Search for an interface by index. Returns %NULL if the device
768 * is not found or a pointer to the device. The device has not
769 * had its reference counter increased so the caller must be careful
770 * about locking. The caller must hold RCU lock.
771 */
772
773struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
774{
775 struct net_device *dev;
776 struct hlist_head *head = dev_index_hash(net, ifindex);
777
778 hlist_for_each_entry_rcu(dev, head, index_hlist)
779 if (dev->ifindex == ifindex)
780 return dev;
781
782 return NULL;
783}
784EXPORT_SYMBOL(dev_get_by_index_rcu);
785
786
787/**
788 * dev_get_by_index - find a device by its ifindex
789 * @net: the applicable net namespace
790 * @ifindex: index of device
791 *
792 * Search for an interface by index. Returns NULL if the device
793 * is not found or a pointer to the device. The device returned has
794 * had a reference added and the pointer is safe until the user calls
795 * dev_put to indicate they have finished with it.
796 */
797
798struct net_device *dev_get_by_index(struct net *net, int ifindex)
799{
800 struct net_device *dev;
801
802 rcu_read_lock();
803 dev = dev_get_by_index_rcu(net, ifindex);
804 if (dev)
805 dev_hold(dev);
806 rcu_read_unlock();
807 return dev;
808}
809EXPORT_SYMBOL(dev_get_by_index);
810
811/**
812 * netdev_get_name - get a netdevice name, knowing its ifindex.
813 * @net: network namespace
814 * @name: a pointer to the buffer where the name will be stored.
815 * @ifindex: the ifindex of the interface to get the name from.
816 *
817 * The use of raw_seqcount_begin() and cond_resched() before
818 * retrying is required as we want to give the writers a chance
819 * to complete when CONFIG_PREEMPT is not set.
820 */
821int netdev_get_name(struct net *net, char *name, int ifindex)
822{
823 struct net_device *dev;
824 unsigned int seq;
825
826retry:
827 seq = raw_seqcount_begin(&devnet_rename_seq);
828 rcu_read_lock();
829 dev = dev_get_by_index_rcu(net, ifindex);
830 if (!dev) {
831 rcu_read_unlock();
832 return -ENODEV;
833 }
834
835 strcpy(name, dev->name);
836 rcu_read_unlock();
837 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
838 cond_resched();
839 goto retry;
840 }
841
842 return 0;
843}
844
845/**
846 * dev_getbyhwaddr_rcu - find a device by its hardware address
847 * @net: the applicable net namespace
848 * @type: media type of device
849 * @ha: hardware address
850 *
851 * Search for an interface by MAC address. Returns NULL if the device
852 * is not found or a pointer to the device.
853 * The caller must hold RCU or RTNL.
854 * The returned device has not had its ref count increased
855 * and the caller must therefore be careful about locking
856 *
857 */
858
859struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
860 const char *ha)
861{
862 struct net_device *dev;
863
864 for_each_netdev_rcu(net, dev)
865 if (dev->type == type &&
866 !memcmp(dev->dev_addr, ha, dev->addr_len))
867 return dev;
868
869 return NULL;
870}
871EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
872
873struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
874{
875 struct net_device *dev;
876
877 ASSERT_RTNL();
878 for_each_netdev(net, dev)
879 if (dev->type == type)
880 return dev;
881
882 return NULL;
883}
884EXPORT_SYMBOL(__dev_getfirstbyhwtype);
885
886struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
887{
888 struct net_device *dev, *ret = NULL;
889
890 rcu_read_lock();
891 for_each_netdev_rcu(net, dev)
892 if (dev->type == type) {
893 dev_hold(dev);
894 ret = dev;
895 break;
896 }
897 rcu_read_unlock();
898 return ret;
899}
900EXPORT_SYMBOL(dev_getfirstbyhwtype);
901
902/**
903 * __dev_get_by_flags - find any device with given flags
904 * @net: the applicable net namespace
905 * @if_flags: IFF_* values
906 * @mask: bitmask of bits in if_flags to check
907 *
908 * Search for any interface with the given flags. Returns NULL if a device
909 * is not found or a pointer to the device. Must be called inside
910 * rtnl_lock(), and result refcount is unchanged.
911 */
912
913struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
914 unsigned short mask)
915{
916 struct net_device *dev, *ret;
917
918 ASSERT_RTNL();
919
920 ret = NULL;
921 for_each_netdev(net, dev) {
922 if (((dev->flags ^ if_flags) & mask) == 0) {
923 ret = dev;
924 break;
925 }
926 }
927 return ret;
928}
929EXPORT_SYMBOL(__dev_get_by_flags);
930
931/**
932 * dev_valid_name - check if name is okay for network device
933 * @name: name string
934 *
935 * Network device names need to be valid file names to
936 * to allow sysfs to work. We also disallow any kind of
937 * whitespace.
938 */
939bool dev_valid_name(const char *name)
940{
941 if (*name == '\0')
942 return false;
943 if (strlen(name) >= IFNAMSIZ)
944 return false;
945 if (!strcmp(name, ".") || !strcmp(name, ".."))
946 return false;
947
948 while (*name) {
949 if (*name == '/' || *name == ':' || isspace(*name))
950 return false;
951 name++;
952 }
953 return true;
954}
955EXPORT_SYMBOL(dev_valid_name);
956
957/**
958 * __dev_alloc_name - allocate a name for a device
959 * @net: network namespace to allocate the device name in
960 * @name: name format string
961 * @buf: scratch buffer and result name string
962 *
963 * Passed a format string - eg "lt%d" it will try and find a suitable
964 * id. It scans list of devices to build up a free map, then chooses
965 * the first empty slot. The caller must hold the dev_base or rtnl lock
966 * while allocating the name and adding the device in order to avoid
967 * duplicates.
968 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
969 * Returns the number of the unit assigned or a negative errno code.
970 */
971
972static int __dev_alloc_name(struct net *net, const char *name, char *buf)
973{
974 int i = 0;
975 const char *p;
976 const int max_netdevices = 8*PAGE_SIZE;
977 unsigned long *inuse;
978 struct net_device *d;
979
980 p = strnchr(name, IFNAMSIZ-1, '%');
981 if (p) {
982 /*
983 * Verify the string as this thing may have come from
984 * the user. There must be either one "%d" and no other "%"
985 * characters.
986 */
987 if (p[1] != 'd' || strchr(p + 2, '%'))
988 return -EINVAL;
989
990 /* Use one page as a bit array of possible slots */
991 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
992 if (!inuse)
993 return -ENOMEM;
994
995 for_each_netdev(net, d) {
996 if (!sscanf(d->name, name, &i))
997 continue;
998 if (i < 0 || i >= max_netdevices)
999 continue;
1000
1001 /* avoid cases where sscanf is not exact inverse of printf */
1002 snprintf(buf, IFNAMSIZ, name, i);
1003 if (!strncmp(buf, d->name, IFNAMSIZ))
1004 set_bit(i, inuse);
1005 }
1006
1007 i = find_first_zero_bit(inuse, max_netdevices);
1008 free_page((unsigned long) inuse);
1009 }
1010
1011 if (buf != name)
1012 snprintf(buf, IFNAMSIZ, name, i);
1013 if (!__dev_get_by_name(net, buf))
1014 return i;
1015
1016 /* It is possible to run out of possible slots
1017 * when the name is long and there isn't enough space left
1018 * for the digits, or if all bits are used.
1019 */
1020 return -ENFILE;
1021}
1022
1023/**
1024 * dev_alloc_name - allocate a name for a device
1025 * @dev: device
1026 * @name: name format string
1027 *
1028 * Passed a format string - eg "lt%d" it will try and find a suitable
1029 * id. It scans list of devices to build up a free map, then chooses
1030 * the first empty slot. The caller must hold the dev_base or rtnl lock
1031 * while allocating the name and adding the device in order to avoid
1032 * duplicates.
1033 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1034 * Returns the number of the unit assigned or a negative errno code.
1035 */
1036
1037int dev_alloc_name(struct net_device *dev, const char *name)
1038{
1039 char buf[IFNAMSIZ];
1040 struct net *net;
1041 int ret;
1042
1043 BUG_ON(!dev_net(dev));
1044 net = dev_net(dev);
1045 ret = __dev_alloc_name(net, name, buf);
1046 if (ret >= 0)
1047 strlcpy(dev->name, buf, IFNAMSIZ);
1048 return ret;
1049}
1050EXPORT_SYMBOL(dev_alloc_name);
1051
1052static int dev_alloc_name_ns(struct net *net,
1053 struct net_device *dev,
1054 const char *name)
1055{
1056 char buf[IFNAMSIZ];
1057 int ret;
1058
1059 ret = __dev_alloc_name(net, name, buf);
1060 if (ret >= 0)
1061 strlcpy(dev->name, buf, IFNAMSIZ);
1062 return ret;
1063}
1064
1065static int dev_get_valid_name(struct net *net,
1066 struct net_device *dev,
1067 const char *name)
1068{
1069 BUG_ON(!net);
1070
1071 if (!dev_valid_name(name))
1072 return -EINVAL;
1073
1074 if (strchr(name, '%'))
1075 return dev_alloc_name_ns(net, dev, name);
1076 else if (__dev_get_by_name(net, name))
1077 return -EEXIST;
1078 else if (dev->name != name)
1079 strlcpy(dev->name, name, IFNAMSIZ);
1080
1081 return 0;
1082}
1083
1084/**
1085 * dev_change_name - change name of a device
1086 * @dev: device
1087 * @newname: name (or format string) must be at least IFNAMSIZ
1088 *
1089 * Change name of a device, can pass format strings "eth%d".
1090 * for wildcarding.
1091 */
1092int dev_change_name(struct net_device *dev, const char *newname)
1093{
1094 unsigned char old_assign_type;
1095 char oldname[IFNAMSIZ];
1096 int err = 0;
1097 int ret;
1098 struct net *net;
1099
1100 ASSERT_RTNL();
1101 BUG_ON(!dev_net(dev));
1102
1103 net = dev_net(dev);
1104 if (dev->flags & IFF_UP)
1105 return -EBUSY;
1106
1107 write_seqcount_begin(&devnet_rename_seq);
1108
1109 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1110 write_seqcount_end(&devnet_rename_seq);
1111 return 0;
1112 }
1113
1114 memcpy(oldname, dev->name, IFNAMSIZ);
1115
1116 err = dev_get_valid_name(net, dev, newname);
1117 if (err < 0) {
1118 write_seqcount_end(&devnet_rename_seq);
1119 return err;
1120 }
1121
1122 if (oldname[0] && !strchr(oldname, '%'))
1123 netdev_info(dev, "renamed from %s\n", oldname);
1124
1125 old_assign_type = dev->name_assign_type;
1126 dev->name_assign_type = NET_NAME_RENAMED;
1127
1128rollback:
1129 ret = device_rename(&dev->dev, dev->name);
1130 if (ret) {
1131 memcpy(dev->name, oldname, IFNAMSIZ);
1132 dev->name_assign_type = old_assign_type;
1133 write_seqcount_end(&devnet_rename_seq);
1134 return ret;
1135 }
1136
1137 write_seqcount_end(&devnet_rename_seq);
1138
1139 netdev_adjacent_rename_links(dev, oldname);
1140
1141 write_lock_bh(&dev_base_lock);
1142 hlist_del_rcu(&dev->name_hlist);
1143 write_unlock_bh(&dev_base_lock);
1144
1145 synchronize_rcu();
1146
1147 write_lock_bh(&dev_base_lock);
1148 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1149 write_unlock_bh(&dev_base_lock);
1150
1151 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1152 ret = notifier_to_errno(ret);
1153
1154 if (ret) {
1155 /* err >= 0 after dev_alloc_name() or stores the first errno */
1156 if (err >= 0) {
1157 err = ret;
1158 write_seqcount_begin(&devnet_rename_seq);
1159 memcpy(dev->name, oldname, IFNAMSIZ);
1160 memcpy(oldname, newname, IFNAMSIZ);
1161 dev->name_assign_type = old_assign_type;
1162 old_assign_type = NET_NAME_RENAMED;
1163 goto rollback;
1164 } else {
1165 pr_err("%s: name change rollback failed: %d\n",
1166 dev->name, ret);
1167 }
1168 }
1169
1170 return err;
1171}
1172
1173/**
1174 * dev_set_alias - change ifalias of a device
1175 * @dev: device
1176 * @alias: name up to IFALIASZ
1177 * @len: limit of bytes to copy from info
1178 *
1179 * Set ifalias for a device,
1180 */
1181int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1182{
1183 char *new_ifalias;
1184
1185 ASSERT_RTNL();
1186
1187 if (len >= IFALIASZ)
1188 return -EINVAL;
1189
1190 if (!len) {
1191 kfree(dev->ifalias);
1192 dev->ifalias = NULL;
1193 return 0;
1194 }
1195
1196 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1197 if (!new_ifalias)
1198 return -ENOMEM;
1199 dev->ifalias = new_ifalias;
1200
1201 strlcpy(dev->ifalias, alias, len+1);
1202 return len;
1203}
1204
1205
1206/**
1207 * netdev_features_change - device changes features
1208 * @dev: device to cause notification
1209 *
1210 * Called to indicate a device has changed features.
1211 */
1212void netdev_features_change(struct net_device *dev)
1213{
1214 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1215}
1216EXPORT_SYMBOL(netdev_features_change);
1217
1218/**
1219 * netdev_state_change - device changes state
1220 * @dev: device to cause notification
1221 *
1222 * Called to indicate a device has changed state. This function calls
1223 * the notifier chains for netdev_chain and sends a NEWLINK message
1224 * to the routing socket.
1225 */
1226void netdev_state_change(struct net_device *dev)
1227{
1228 if (dev->flags & IFF_UP) {
1229 struct netdev_notifier_change_info change_info;
1230
1231 change_info.flags_changed = 0;
1232 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1233 &change_info.info);
1234 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1235 }
1236}
1237EXPORT_SYMBOL(netdev_state_change);
1238
1239/**
1240 * netdev_notify_peers - notify network peers about existence of @dev
1241 * @dev: network device
1242 *
1243 * Generate traffic such that interested network peers are aware of
1244 * @dev, such as by generating a gratuitous ARP. This may be used when
1245 * a device wants to inform the rest of the network about some sort of
1246 * reconfiguration such as a failover event or virtual machine
1247 * migration.
1248 */
1249void netdev_notify_peers(struct net_device *dev)
1250{
1251 rtnl_lock();
1252 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1253 rtnl_unlock();
1254}
1255EXPORT_SYMBOL(netdev_notify_peers);
1256
1257static int __dev_open(struct net_device *dev)
1258{
1259 const struct net_device_ops *ops = dev->netdev_ops;
1260 int ret;
1261
1262 ASSERT_RTNL();
1263
1264 if (!netif_device_present(dev))
1265 return -ENODEV;
1266
1267 /* Block netpoll from trying to do any rx path servicing.
1268 * If we don't do this there is a chance ndo_poll_controller
1269 * or ndo_poll may be running while we open the device
1270 */
1271 netpoll_poll_disable(dev);
1272
1273 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1274 ret = notifier_to_errno(ret);
1275 if (ret)
1276 return ret;
1277
1278 set_bit(__LINK_STATE_START, &dev->state);
1279
1280 if (ops->ndo_validate_addr)
1281 ret = ops->ndo_validate_addr(dev);
1282
1283 if (!ret && ops->ndo_open)
1284 ret = ops->ndo_open(dev);
1285
1286 netpoll_poll_enable(dev);
1287
1288 if (ret)
1289 clear_bit(__LINK_STATE_START, &dev->state);
1290 else {
1291 dev->flags |= IFF_UP;
1292 dev_set_rx_mode(dev);
1293 dev_activate(dev);
1294 add_device_randomness(dev->dev_addr, dev->addr_len);
1295 }
1296
1297 return ret;
1298}
1299
1300/**
1301 * dev_open - prepare an interface for use.
1302 * @dev: device to open
1303 *
1304 * Takes a device from down to up state. The device's private open
1305 * function is invoked and then the multicast lists are loaded. Finally
1306 * the device is moved into the up state and a %NETDEV_UP message is
1307 * sent to the netdev notifier chain.
1308 *
1309 * Calling this function on an active interface is a nop. On a failure
1310 * a negative errno code is returned.
1311 */
1312int dev_open(struct net_device *dev)
1313{
1314 int ret;
1315
1316 if (dev->flags & IFF_UP)
1317 return 0;
1318
1319 ret = __dev_open(dev);
1320 if (ret < 0)
1321 return ret;
1322
1323 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1324 call_netdevice_notifiers(NETDEV_UP, dev);
1325
1326 return ret;
1327}
1328EXPORT_SYMBOL(dev_open);
1329
1330static int __dev_close_many(struct list_head *head)
1331{
1332 struct net_device *dev;
1333
1334 ASSERT_RTNL();
1335 might_sleep();
1336
1337 list_for_each_entry(dev, head, close_list) {
1338 /* Temporarily disable netpoll until the interface is down */
1339 netpoll_poll_disable(dev);
1340
1341 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1342
1343 clear_bit(__LINK_STATE_START, &dev->state);
1344
1345 /* Synchronize to scheduled poll. We cannot touch poll list, it
1346 * can be even on different cpu. So just clear netif_running().
1347 *
1348 * dev->stop() will invoke napi_disable() on all of it's
1349 * napi_struct instances on this device.
1350 */
1351 smp_mb__after_atomic(); /* Commit netif_running(). */
1352 }
1353
1354 dev_deactivate_many(head);
1355
1356 list_for_each_entry(dev, head, close_list) {
1357 const struct net_device_ops *ops = dev->netdev_ops;
1358
1359 /*
1360 * Call the device specific close. This cannot fail.
1361 * Only if device is UP
1362 *
1363 * We allow it to be called even after a DETACH hot-plug
1364 * event.
1365 */
1366 if (ops->ndo_stop)
1367 ops->ndo_stop(dev);
1368
1369 dev->flags &= ~IFF_UP;
1370 netpoll_poll_enable(dev);
1371 }
1372
1373 return 0;
1374}
1375
1376static int __dev_close(struct net_device *dev)
1377{
1378 int retval;
1379 LIST_HEAD(single);
1380
1381 list_add(&dev->close_list, &single);
1382 retval = __dev_close_many(&single);
1383 list_del(&single);
1384
1385 return retval;
1386}
1387
1388static int dev_close_many(struct list_head *head)
1389{
1390 struct net_device *dev, *tmp;
1391
1392 /* Remove the devices that don't need to be closed */
1393 list_for_each_entry_safe(dev, tmp, head, close_list)
1394 if (!(dev->flags & IFF_UP))
1395 list_del_init(&dev->close_list);
1396
1397 __dev_close_many(head);
1398
1399 list_for_each_entry_safe(dev, tmp, head, close_list) {
1400 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1401 call_netdevice_notifiers(NETDEV_DOWN, dev);
1402 list_del_init(&dev->close_list);
1403 }
1404
1405 return 0;
1406}
1407
1408/**
1409 * dev_close - shutdown an interface.
1410 * @dev: device to shutdown
1411 *
1412 * This function moves an active device into down state. A
1413 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1414 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1415 * chain.
1416 */
1417int dev_close(struct net_device *dev)
1418{
1419 if (dev->flags & IFF_UP) {
1420 LIST_HEAD(single);
1421
1422 list_add(&dev->close_list, &single);
1423 dev_close_many(&single);
1424 list_del(&single);
1425 }
1426 return 0;
1427}
1428EXPORT_SYMBOL(dev_close);
1429
1430
1431/**
1432 * dev_disable_lro - disable Large Receive Offload on a device
1433 * @dev: device
1434 *
1435 * Disable Large Receive Offload (LRO) on a net device. Must be
1436 * called under RTNL. This is needed if received packets may be
1437 * forwarded to another interface.
1438 */
1439void dev_disable_lro(struct net_device *dev)
1440{
1441 struct net_device *lower_dev;
1442 struct list_head *iter;
1443
1444 dev->wanted_features &= ~NETIF_F_LRO;
1445 netdev_update_features(dev);
1446
1447 if (unlikely(dev->features & NETIF_F_LRO))
1448 netdev_WARN(dev, "failed to disable LRO!\n");
1449
1450 netdev_for_each_lower_dev(dev, lower_dev, iter)
1451 dev_disable_lro(lower_dev);
1452}
1453EXPORT_SYMBOL(dev_disable_lro);
1454
1455static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1456 struct net_device *dev)
1457{
1458 struct netdev_notifier_info info;
1459
1460 netdev_notifier_info_init(&info, dev);
1461 return nb->notifier_call(nb, val, &info);
1462}
1463
1464static int dev_boot_phase = 1;
1465
1466/**
1467 * register_netdevice_notifier - register a network notifier block
1468 * @nb: notifier
1469 *
1470 * Register a notifier to be called when network device events occur.
1471 * The notifier passed is linked into the kernel structures and must
1472 * not be reused until it has been unregistered. A negative errno code
1473 * is returned on a failure.
1474 *
1475 * When registered all registration and up events are replayed
1476 * to the new notifier to allow device to have a race free
1477 * view of the network device list.
1478 */
1479
1480int register_netdevice_notifier(struct notifier_block *nb)
1481{
1482 struct net_device *dev;
1483 struct net_device *last;
1484 struct net *net;
1485 int err;
1486
1487 rtnl_lock();
1488 err = raw_notifier_chain_register(&netdev_chain, nb);
1489 if (err)
1490 goto unlock;
1491 if (dev_boot_phase)
1492 goto unlock;
1493 for_each_net(net) {
1494 for_each_netdev(net, dev) {
1495 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1496 err = notifier_to_errno(err);
1497 if (err)
1498 goto rollback;
1499
1500 if (!(dev->flags & IFF_UP))
1501 continue;
1502
1503 call_netdevice_notifier(nb, NETDEV_UP, dev);
1504 }
1505 }
1506
1507unlock:
1508 rtnl_unlock();
1509 return err;
1510
1511rollback:
1512 last = dev;
1513 for_each_net(net) {
1514 for_each_netdev(net, dev) {
1515 if (dev == last)
1516 goto outroll;
1517
1518 if (dev->flags & IFF_UP) {
1519 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1520 dev);
1521 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1522 }
1523 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1524 }
1525 }
1526
1527outroll:
1528 raw_notifier_chain_unregister(&netdev_chain, nb);
1529 goto unlock;
1530}
1531EXPORT_SYMBOL(register_netdevice_notifier);
1532
1533/**
1534 * unregister_netdevice_notifier - unregister a network notifier block
1535 * @nb: notifier
1536 *
1537 * Unregister a notifier previously registered by
1538 * register_netdevice_notifier(). The notifier is unlinked into the
1539 * kernel structures and may then be reused. A negative errno code
1540 * is returned on a failure.
1541 *
1542 * After unregistering unregister and down device events are synthesized
1543 * for all devices on the device list to the removed notifier to remove
1544 * the need for special case cleanup code.
1545 */
1546
1547int unregister_netdevice_notifier(struct notifier_block *nb)
1548{
1549 struct net_device *dev;
1550 struct net *net;
1551 int err;
1552
1553 rtnl_lock();
1554 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1555 if (err)
1556 goto unlock;
1557
1558 for_each_net(net) {
1559 for_each_netdev(net, dev) {
1560 if (dev->flags & IFF_UP) {
1561 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1562 dev);
1563 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1564 }
1565 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1566 }
1567 }
1568unlock:
1569 rtnl_unlock();
1570 return err;
1571}
1572EXPORT_SYMBOL(unregister_netdevice_notifier);
1573
1574/**
1575 * call_netdevice_notifiers_info - call all network notifier blocks
1576 * @val: value passed unmodified to notifier function
1577 * @dev: net_device pointer passed unmodified to notifier function
1578 * @info: notifier information data
1579 *
1580 * Call all network notifier blocks. Parameters and return value
1581 * are as for raw_notifier_call_chain().
1582 */
1583
1584static int call_netdevice_notifiers_info(unsigned long val,
1585 struct net_device *dev,
1586 struct netdev_notifier_info *info)
1587{
1588 ASSERT_RTNL();
1589 netdev_notifier_info_init(info, dev);
1590 return raw_notifier_call_chain(&netdev_chain, val, info);
1591}
1592
1593/**
1594 * call_netdevice_notifiers - call all network notifier blocks
1595 * @val: value passed unmodified to notifier function
1596 * @dev: net_device pointer passed unmodified to notifier function
1597 *
1598 * Call all network notifier blocks. Parameters and return value
1599 * are as for raw_notifier_call_chain().
1600 */
1601
1602int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1603{
1604 struct netdev_notifier_info info;
1605
1606 return call_netdevice_notifiers_info(val, dev, &info);
1607}
1608EXPORT_SYMBOL(call_netdevice_notifiers);
1609
1610static struct static_key netstamp_needed __read_mostly;
1611#ifdef HAVE_JUMP_LABEL
1612/* We are not allowed to call static_key_slow_dec() from irq context
1613 * If net_disable_timestamp() is called from irq context, defer the
1614 * static_key_slow_dec() calls.
1615 */
1616static atomic_t netstamp_needed_deferred;
1617#endif
1618
1619void net_enable_timestamp(void)
1620{
1621#ifdef HAVE_JUMP_LABEL
1622 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1623
1624 if (deferred) {
1625 while (--deferred)
1626 static_key_slow_dec(&netstamp_needed);
1627 return;
1628 }
1629#endif
1630 static_key_slow_inc(&netstamp_needed);
1631}
1632EXPORT_SYMBOL(net_enable_timestamp);
1633
1634void net_disable_timestamp(void)
1635{
1636#ifdef HAVE_JUMP_LABEL
1637 if (in_interrupt()) {
1638 atomic_inc(&netstamp_needed_deferred);
1639 return;
1640 }
1641#endif
1642 static_key_slow_dec(&netstamp_needed);
1643}
1644EXPORT_SYMBOL(net_disable_timestamp);
1645
1646static inline void net_timestamp_set(struct sk_buff *skb)
1647{
1648 skb->tstamp.tv64 = 0;
1649 if (static_key_false(&netstamp_needed))
1650 __net_timestamp(skb);
1651}
1652
1653#define net_timestamp_check(COND, SKB) \
1654 if (static_key_false(&netstamp_needed)) { \
1655 if ((COND) && !(SKB)->tstamp.tv64) \
1656 __net_timestamp(SKB); \
1657 } \
1658
1659bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb)
1660{
1661 unsigned int len;
1662
1663 if (!(dev->flags & IFF_UP))
1664 return false;
1665
1666 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1667 if (skb->len <= len)
1668 return true;
1669
1670 /* if TSO is enabled, we don't care about the length as the packet
1671 * could be forwarded without being segmented before
1672 */
1673 if (skb_is_gso(skb))
1674 return true;
1675
1676 return false;
1677}
1678EXPORT_SYMBOL_GPL(is_skb_forwardable);
1679
1680int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1681{
1682 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1683 if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1684 atomic_long_inc(&dev->rx_dropped);
1685 kfree_skb(skb);
1686 return NET_RX_DROP;
1687 }
1688 }
1689
1690 if (unlikely(!is_skb_forwardable(dev, skb))) {
1691 atomic_long_inc(&dev->rx_dropped);
1692 kfree_skb(skb);
1693 return NET_RX_DROP;
1694 }
1695
1696 skb_scrub_packet(skb, true);
1697 skb->protocol = eth_type_trans(skb, dev);
1698 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1699
1700 return 0;
1701}
1702EXPORT_SYMBOL_GPL(__dev_forward_skb);
1703
1704/**
1705 * dev_forward_skb - loopback an skb to another netif
1706 *
1707 * @dev: destination network device
1708 * @skb: buffer to forward
1709 *
1710 * return values:
1711 * NET_RX_SUCCESS (no congestion)
1712 * NET_RX_DROP (packet was dropped, but freed)
1713 *
1714 * dev_forward_skb can be used for injecting an skb from the
1715 * start_xmit function of one device into the receive queue
1716 * of another device.
1717 *
1718 * The receiving device may be in another namespace, so
1719 * we have to clear all information in the skb that could
1720 * impact namespace isolation.
1721 */
1722int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1723{
1724 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1725}
1726EXPORT_SYMBOL_GPL(dev_forward_skb);
1727
1728static inline int deliver_skb(struct sk_buff *skb,
1729 struct packet_type *pt_prev,
1730 struct net_device *orig_dev)
1731{
1732 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1733 return -ENOMEM;
1734 atomic_inc(&skb->users);
1735 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1736}
1737
1738static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1739 struct packet_type **pt,
1740 struct net_device *dev, __be16 type,
1741 struct list_head *ptype_list)
1742{
1743 struct packet_type *ptype, *pt_prev = *pt;
1744
1745 list_for_each_entry_rcu(ptype, ptype_list, list) {
1746 if (ptype->type != type)
1747 continue;
1748 if (pt_prev)
1749 deliver_skb(skb, pt_prev, dev);
1750 pt_prev = ptype;
1751 }
1752 *pt = pt_prev;
1753}
1754
1755static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1756{
1757 if (!ptype->af_packet_priv || !skb->sk)
1758 return false;
1759
1760 if (ptype->id_match)
1761 return ptype->id_match(ptype, skb->sk);
1762 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1763 return true;
1764
1765 return false;
1766}
1767
1768/*
1769 * Support routine. Sends outgoing frames to any network
1770 * taps currently in use.
1771 */
1772
1773static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1774{
1775 struct packet_type *ptype;
1776 struct sk_buff *skb2 = NULL;
1777 struct packet_type *pt_prev = NULL;
1778 struct list_head *ptype_list = &ptype_all;
1779
1780 rcu_read_lock();
1781again:
1782 list_for_each_entry_rcu(ptype, ptype_list, list) {
1783 /* Never send packets back to the socket
1784 * they originated from - MvS (miquels@drinkel.ow.org)
1785 */
1786 if (skb_loop_sk(ptype, skb))
1787 continue;
1788
1789 if (pt_prev) {
1790 deliver_skb(skb2, pt_prev, skb->dev);
1791 pt_prev = ptype;
1792 continue;
1793 }
1794
1795 /* need to clone skb, done only once */
1796 skb2 = skb_clone(skb, GFP_ATOMIC);
1797 if (!skb2)
1798 goto out_unlock;
1799
1800 net_timestamp_set(skb2);
1801
1802 /* skb->nh should be correctly
1803 * set by sender, so that the second statement is
1804 * just protection against buggy protocols.
1805 */
1806 skb_reset_mac_header(skb2);
1807
1808 if (skb_network_header(skb2) < skb2->data ||
1809 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1810 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1811 ntohs(skb2->protocol),
1812 dev->name);
1813 skb_reset_network_header(skb2);
1814 }
1815
1816 skb2->transport_header = skb2->network_header;
1817 skb2->pkt_type = PACKET_OUTGOING;
1818 pt_prev = ptype;
1819 }
1820
1821 if (ptype_list == &ptype_all) {
1822 ptype_list = &dev->ptype_all;
1823 goto again;
1824 }
1825out_unlock:
1826 if (pt_prev)
1827 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1828 rcu_read_unlock();
1829}
1830
1831/**
1832 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1833 * @dev: Network device
1834 * @txq: number of queues available
1835 *
1836 * If real_num_tx_queues is changed the tc mappings may no longer be
1837 * valid. To resolve this verify the tc mapping remains valid and if
1838 * not NULL the mapping. With no priorities mapping to this
1839 * offset/count pair it will no longer be used. In the worst case TC0
1840 * is invalid nothing can be done so disable priority mappings. If is
1841 * expected that drivers will fix this mapping if they can before
1842 * calling netif_set_real_num_tx_queues.
1843 */
1844static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1845{
1846 int i;
1847 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1848
1849 /* If TC0 is invalidated disable TC mapping */
1850 if (tc->offset + tc->count > txq) {
1851 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1852 dev->num_tc = 0;
1853 return;
1854 }
1855
1856 /* Invalidated prio to tc mappings set to TC0 */
1857 for (i = 1; i < TC_BITMASK + 1; i++) {
1858 int q = netdev_get_prio_tc_map(dev, i);
1859
1860 tc = &dev->tc_to_txq[q];
1861 if (tc->offset + tc->count > txq) {
1862 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1863 i, q);
1864 netdev_set_prio_tc_map(dev, i, 0);
1865 }
1866 }
1867}
1868
1869#ifdef CONFIG_XPS
1870static DEFINE_MUTEX(xps_map_mutex);
1871#define xmap_dereference(P) \
1872 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1873
1874static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1875 int cpu, u16 index)
1876{
1877 struct xps_map *map = NULL;
1878 int pos;
1879
1880 if (dev_maps)
1881 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1882
1883 for (pos = 0; map && pos < map->len; pos++) {
1884 if (map->queues[pos] == index) {
1885 if (map->len > 1) {
1886 map->queues[pos] = map->queues[--map->len];
1887 } else {
1888 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1889 kfree_rcu(map, rcu);
1890 map = NULL;
1891 }
1892 break;
1893 }
1894 }
1895
1896 return map;
1897}
1898
1899static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1900{
1901 struct xps_dev_maps *dev_maps;
1902 int cpu, i;
1903 bool active = false;
1904
1905 mutex_lock(&xps_map_mutex);
1906 dev_maps = xmap_dereference(dev->xps_maps);
1907
1908 if (!dev_maps)
1909 goto out_no_maps;
1910
1911 for_each_possible_cpu(cpu) {
1912 for (i = index; i < dev->num_tx_queues; i++) {
1913 if (!remove_xps_queue(dev_maps, cpu, i))
1914 break;
1915 }
1916 if (i == dev->num_tx_queues)
1917 active = true;
1918 }
1919
1920 if (!active) {
1921 RCU_INIT_POINTER(dev->xps_maps, NULL);
1922 kfree_rcu(dev_maps, rcu);
1923 }
1924
1925 for (i = index; i < dev->num_tx_queues; i++)
1926 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1927 NUMA_NO_NODE);
1928
1929out_no_maps:
1930 mutex_unlock(&xps_map_mutex);
1931}
1932
1933static struct xps_map *expand_xps_map(struct xps_map *map,
1934 int cpu, u16 index)
1935{
1936 struct xps_map *new_map;
1937 int alloc_len = XPS_MIN_MAP_ALLOC;
1938 int i, pos;
1939
1940 for (pos = 0; map && pos < map->len; pos++) {
1941 if (map->queues[pos] != index)
1942 continue;
1943 return map;
1944 }
1945
1946 /* Need to add queue to this CPU's existing map */
1947 if (map) {
1948 if (pos < map->alloc_len)
1949 return map;
1950
1951 alloc_len = map->alloc_len * 2;
1952 }
1953
1954 /* Need to allocate new map to store queue on this CPU's map */
1955 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
1956 cpu_to_node(cpu));
1957 if (!new_map)
1958 return NULL;
1959
1960 for (i = 0; i < pos; i++)
1961 new_map->queues[i] = map->queues[i];
1962 new_map->alloc_len = alloc_len;
1963 new_map->len = pos;
1964
1965 return new_map;
1966}
1967
1968int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
1969 u16 index)
1970{
1971 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
1972 struct xps_map *map, *new_map;
1973 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
1974 int cpu, numa_node_id = -2;
1975 bool active = false;
1976
1977 mutex_lock(&xps_map_mutex);
1978
1979 dev_maps = xmap_dereference(dev->xps_maps);
1980
1981 /* allocate memory for queue storage */
1982 for_each_online_cpu(cpu) {
1983 if (!cpumask_test_cpu(cpu, mask))
1984 continue;
1985
1986 if (!new_dev_maps)
1987 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
1988 if (!new_dev_maps) {
1989 mutex_unlock(&xps_map_mutex);
1990 return -ENOMEM;
1991 }
1992
1993 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
1994 NULL;
1995
1996 map = expand_xps_map(map, cpu, index);
1997 if (!map)
1998 goto error;
1999
2000 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2001 }
2002
2003 if (!new_dev_maps)
2004 goto out_no_new_maps;
2005
2006 for_each_possible_cpu(cpu) {
2007 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2008 /* add queue to CPU maps */
2009 int pos = 0;
2010
2011 map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2012 while ((pos < map->len) && (map->queues[pos] != index))
2013 pos++;
2014
2015 if (pos == map->len)
2016 map->queues[map->len++] = index;
2017#ifdef CONFIG_NUMA
2018 if (numa_node_id == -2)
2019 numa_node_id = cpu_to_node(cpu);
2020 else if (numa_node_id != cpu_to_node(cpu))
2021 numa_node_id = -1;
2022#endif
2023 } else if (dev_maps) {
2024 /* fill in the new device map from the old device map */
2025 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2026 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2027 }
2028
2029 }
2030
2031 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2032
2033 /* Cleanup old maps */
2034 if (dev_maps) {
2035 for_each_possible_cpu(cpu) {
2036 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2037 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2038 if (map && map != new_map)
2039 kfree_rcu(map, rcu);
2040 }
2041
2042 kfree_rcu(dev_maps, rcu);
2043 }
2044
2045 dev_maps = new_dev_maps;
2046 active = true;
2047
2048out_no_new_maps:
2049 /* update Tx queue numa node */
2050 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2051 (numa_node_id >= 0) ? numa_node_id :
2052 NUMA_NO_NODE);
2053
2054 if (!dev_maps)
2055 goto out_no_maps;
2056
2057 /* removes queue from unused CPUs */
2058 for_each_possible_cpu(cpu) {
2059 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2060 continue;
2061
2062 if (remove_xps_queue(dev_maps, cpu, index))
2063 active = true;
2064 }
2065
2066 /* free map if not active */
2067 if (!active) {
2068 RCU_INIT_POINTER(dev->xps_maps, NULL);
2069 kfree_rcu(dev_maps, rcu);
2070 }
2071
2072out_no_maps:
2073 mutex_unlock(&xps_map_mutex);
2074
2075 return 0;
2076error:
2077 /* remove any maps that we added */
2078 for_each_possible_cpu(cpu) {
2079 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2080 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2081 NULL;
2082 if (new_map && new_map != map)
2083 kfree(new_map);
2084 }
2085
2086 mutex_unlock(&xps_map_mutex);
2087
2088 kfree(new_dev_maps);
2089 return -ENOMEM;
2090}
2091EXPORT_SYMBOL(netif_set_xps_queue);
2092
2093#endif
2094/*
2095 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2096 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2097 */
2098int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2099{
2100 int rc;
2101
2102 if (txq < 1 || txq > dev->num_tx_queues)
2103 return -EINVAL;
2104
2105 if (dev->reg_state == NETREG_REGISTERED ||
2106 dev->reg_state == NETREG_UNREGISTERING) {
2107 ASSERT_RTNL();
2108
2109 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2110 txq);
2111 if (rc)
2112 return rc;
2113
2114 if (dev->num_tc)
2115 netif_setup_tc(dev, txq);
2116
2117 if (txq < dev->real_num_tx_queues) {
2118 qdisc_reset_all_tx_gt(dev, txq);
2119#ifdef CONFIG_XPS
2120 netif_reset_xps_queues_gt(dev, txq);
2121#endif
2122 }
2123 }
2124
2125 dev->real_num_tx_queues = txq;
2126 return 0;
2127}
2128EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2129
2130#ifdef CONFIG_SYSFS
2131/**
2132 * netif_set_real_num_rx_queues - set actual number of RX queues used
2133 * @dev: Network device
2134 * @rxq: Actual number of RX queues
2135 *
2136 * This must be called either with the rtnl_lock held or before
2137 * registration of the net device. Returns 0 on success, or a
2138 * negative error code. If called before registration, it always
2139 * succeeds.
2140 */
2141int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2142{
2143 int rc;
2144
2145 if (rxq < 1 || rxq > dev->num_rx_queues)
2146 return -EINVAL;
2147
2148 if (dev->reg_state == NETREG_REGISTERED) {
2149 ASSERT_RTNL();
2150
2151 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2152 rxq);
2153 if (rc)
2154 return rc;
2155 }
2156
2157 dev->real_num_rx_queues = rxq;
2158 return 0;
2159}
2160EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2161#endif
2162
2163/**
2164 * netif_get_num_default_rss_queues - default number of RSS queues
2165 *
2166 * This routine should set an upper limit on the number of RSS queues
2167 * used by default by multiqueue devices.
2168 */
2169int netif_get_num_default_rss_queues(void)
2170{
2171 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2172}
2173EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2174
2175static inline void __netif_reschedule(struct Qdisc *q)
2176{
2177 struct softnet_data *sd;
2178 unsigned long flags;
2179
2180 local_irq_save(flags);
2181 sd = this_cpu_ptr(&softnet_data);
2182 q->next_sched = NULL;
2183 *sd->output_queue_tailp = q;
2184 sd->output_queue_tailp = &q->next_sched;
2185 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2186 local_irq_restore(flags);
2187}
2188
2189void __netif_schedule(struct Qdisc *q)
2190{
2191 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2192 __netif_reschedule(q);
2193}
2194EXPORT_SYMBOL(__netif_schedule);
2195
2196struct dev_kfree_skb_cb {
2197 enum skb_free_reason reason;
2198};
2199
2200static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2201{
2202 return (struct dev_kfree_skb_cb *)skb->cb;
2203}
2204
2205void netif_schedule_queue(struct netdev_queue *txq)
2206{
2207 rcu_read_lock();
2208 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2209 struct Qdisc *q = rcu_dereference(txq->qdisc);
2210
2211 __netif_schedule(q);
2212 }
2213 rcu_read_unlock();
2214}
2215EXPORT_SYMBOL(netif_schedule_queue);
2216
2217/**
2218 * netif_wake_subqueue - allow sending packets on subqueue
2219 * @dev: network device
2220 * @queue_index: sub queue index
2221 *
2222 * Resume individual transmit queue of a device with multiple transmit queues.
2223 */
2224void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2225{
2226 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2227
2228 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2229 struct Qdisc *q;
2230
2231 rcu_read_lock();
2232 q = rcu_dereference(txq->qdisc);
2233 __netif_schedule(q);
2234 rcu_read_unlock();
2235 }
2236}
2237EXPORT_SYMBOL(netif_wake_subqueue);
2238
2239void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2240{
2241 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2242 struct Qdisc *q;
2243
2244 rcu_read_lock();
2245 q = rcu_dereference(dev_queue->qdisc);
2246 __netif_schedule(q);
2247 rcu_read_unlock();
2248 }
2249}
2250EXPORT_SYMBOL(netif_tx_wake_queue);
2251
2252void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2253{
2254 unsigned long flags;
2255
2256 if (likely(atomic_read(&skb->users) == 1)) {
2257 smp_rmb();
2258 atomic_set(&skb->users, 0);
2259 } else if (likely(!atomic_dec_and_test(&skb->users))) {
2260 return;
2261 }
2262 get_kfree_skb_cb(skb)->reason = reason;
2263 local_irq_save(flags);
2264 skb->next = __this_cpu_read(softnet_data.completion_queue);
2265 __this_cpu_write(softnet_data.completion_queue, skb);
2266 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2267 local_irq_restore(flags);
2268}
2269EXPORT_SYMBOL(__dev_kfree_skb_irq);
2270
2271void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2272{
2273 if (in_irq() || irqs_disabled())
2274 __dev_kfree_skb_irq(skb, reason);
2275 else
2276 dev_kfree_skb(skb);
2277}
2278EXPORT_SYMBOL(__dev_kfree_skb_any);
2279
2280
2281/**
2282 * netif_device_detach - mark device as removed
2283 * @dev: network device
2284 *
2285 * Mark device as removed from system and therefore no longer available.
2286 */
2287void netif_device_detach(struct net_device *dev)
2288{
2289 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2290 netif_running(dev)) {
2291 netif_tx_stop_all_queues(dev);
2292 }
2293}
2294EXPORT_SYMBOL(netif_device_detach);
2295
2296/**
2297 * netif_device_attach - mark device as attached
2298 * @dev: network device
2299 *
2300 * Mark device as attached from system and restart if needed.
2301 */
2302void netif_device_attach(struct net_device *dev)
2303{
2304 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2305 netif_running(dev)) {
2306 netif_tx_wake_all_queues(dev);
2307 __netdev_watchdog_up(dev);
2308 }
2309}
2310EXPORT_SYMBOL(netif_device_attach);
2311
2312static void skb_warn_bad_offload(const struct sk_buff *skb)
2313{
2314 static const netdev_features_t null_features = 0;
2315 struct net_device *dev = skb->dev;
2316 const char *driver = "";
2317
2318 if (!net_ratelimit())
2319 return;
2320
2321 if (dev && dev->dev.parent)
2322 driver = dev_driver_string(dev->dev.parent);
2323
2324 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2325 "gso_type=%d ip_summed=%d\n",
2326 driver, dev ? &dev->features : &null_features,
2327 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2328 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2329 skb_shinfo(skb)->gso_type, skb->ip_summed);
2330}
2331
2332/*
2333 * Invalidate hardware checksum when packet is to be mangled, and
2334 * complete checksum manually on outgoing path.
2335 */
2336int skb_checksum_help(struct sk_buff *skb)
2337{
2338 __wsum csum;
2339 int ret = 0, offset;
2340
2341 if (skb->ip_summed == CHECKSUM_COMPLETE)
2342 goto out_set_summed;
2343
2344 if (unlikely(skb_shinfo(skb)->gso_size)) {
2345 skb_warn_bad_offload(skb);
2346 return -EINVAL;
2347 }
2348
2349 /* Before computing a checksum, we should make sure no frag could
2350 * be modified by an external entity : checksum could be wrong.
2351 */
2352 if (skb_has_shared_frag(skb)) {
2353 ret = __skb_linearize(skb);
2354 if (ret)
2355 goto out;
2356 }
2357
2358 offset = skb_checksum_start_offset(skb);
2359 BUG_ON(offset >= skb_headlen(skb));
2360 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2361
2362 offset += skb->csum_offset;
2363 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2364
2365 if (skb_cloned(skb) &&
2366 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2367 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2368 if (ret)
2369 goto out;
2370 }
2371
2372 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2373out_set_summed:
2374 skb->ip_summed = CHECKSUM_NONE;
2375out:
2376 return ret;
2377}
2378EXPORT_SYMBOL(skb_checksum_help);
2379
2380__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2381{
2382 __be16 type = skb->protocol;
2383
2384 /* Tunnel gso handlers can set protocol to ethernet. */
2385 if (type == htons(ETH_P_TEB)) {
2386 struct ethhdr *eth;
2387
2388 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2389 return 0;
2390
2391 eth = (struct ethhdr *)skb_mac_header(skb);
2392 type = eth->h_proto;
2393 }
2394
2395 return __vlan_get_protocol(skb, type, depth);
2396}
2397
2398/**
2399 * skb_mac_gso_segment - mac layer segmentation handler.
2400 * @skb: buffer to segment
2401 * @features: features for the output path (see dev->features)
2402 */
2403struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2404 netdev_features_t features)
2405{
2406 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2407 struct packet_offload *ptype;
2408 int vlan_depth = skb->mac_len;
2409 __be16 type = skb_network_protocol(skb, &vlan_depth);
2410
2411 if (unlikely(!type))
2412 return ERR_PTR(-EINVAL);
2413
2414 __skb_pull(skb, vlan_depth);
2415
2416 rcu_read_lock();
2417 list_for_each_entry_rcu(ptype, &offload_base, list) {
2418 if (ptype->type == type && ptype->callbacks.gso_segment) {
2419 segs = ptype->callbacks.gso_segment(skb, features);
2420 break;
2421 }
2422 }
2423 rcu_read_unlock();
2424
2425 __skb_push(skb, skb->data - skb_mac_header(skb));
2426
2427 return segs;
2428}
2429EXPORT_SYMBOL(skb_mac_gso_segment);
2430
2431
2432/* openvswitch calls this on rx path, so we need a different check.
2433 */
2434static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2435{
2436 if (tx_path)
2437 return skb->ip_summed != CHECKSUM_PARTIAL;
2438 else
2439 return skb->ip_summed == CHECKSUM_NONE;
2440}
2441
2442/**
2443 * __skb_gso_segment - Perform segmentation on skb.
2444 * @skb: buffer to segment
2445 * @features: features for the output path (see dev->features)
2446 * @tx_path: whether it is called in TX path
2447 *
2448 * This function segments the given skb and returns a list of segments.
2449 *
2450 * It may return NULL if the skb requires no segmentation. This is
2451 * only possible when GSO is used for verifying header integrity.
2452 */
2453struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2454 netdev_features_t features, bool tx_path)
2455{
2456 if (unlikely(skb_needs_check(skb, tx_path))) {
2457 int err;
2458
2459 skb_warn_bad_offload(skb);
2460
2461 err = skb_cow_head(skb, 0);
2462 if (err < 0)
2463 return ERR_PTR(err);
2464 }
2465
2466 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2467 SKB_GSO_CB(skb)->encap_level = 0;
2468
2469 skb_reset_mac_header(skb);
2470 skb_reset_mac_len(skb);
2471
2472 return skb_mac_gso_segment(skb, features);
2473}
2474EXPORT_SYMBOL(__skb_gso_segment);
2475
2476/* Take action when hardware reception checksum errors are detected. */
2477#ifdef CONFIG_BUG
2478void netdev_rx_csum_fault(struct net_device *dev)
2479{
2480 if (net_ratelimit()) {
2481 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2482 dump_stack();
2483 }
2484}
2485EXPORT_SYMBOL(netdev_rx_csum_fault);
2486#endif
2487
2488/* Actually, we should eliminate this check as soon as we know, that:
2489 * 1. IOMMU is present and allows to map all the memory.
2490 * 2. No high memory really exists on this machine.
2491 */
2492
2493static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2494{
2495#ifdef CONFIG_HIGHMEM
2496 int i;
2497 if (!(dev->features & NETIF_F_HIGHDMA)) {
2498 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2499 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2500 if (PageHighMem(skb_frag_page(frag)))
2501 return 1;
2502 }
2503 }
2504
2505 if (PCI_DMA_BUS_IS_PHYS) {
2506 struct device *pdev = dev->dev.parent;
2507
2508 if (!pdev)
2509 return 0;
2510 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2511 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2512 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2513 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2514 return 1;
2515 }
2516 }
2517#endif
2518 return 0;
2519}
2520
2521/* If MPLS offload request, verify we are testing hardware MPLS features
2522 * instead of standard features for the netdev.
2523 */
2524#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2525static netdev_features_t net_mpls_features(struct sk_buff *skb,
2526 netdev_features_t features,
2527 __be16 type)
2528{
2529 if (eth_p_mpls(type))
2530 features &= skb->dev->mpls_features;
2531
2532 return features;
2533}
2534#else
2535static netdev_features_t net_mpls_features(struct sk_buff *skb,
2536 netdev_features_t features,
2537 __be16 type)
2538{
2539 return features;
2540}
2541#endif
2542
2543static netdev_features_t harmonize_features(struct sk_buff *skb,
2544 netdev_features_t features)
2545{
2546 int tmp;
2547 __be16 type;
2548
2549 type = skb_network_protocol(skb, &tmp);
2550 features = net_mpls_features(skb, features, type);
2551
2552 if (skb->ip_summed != CHECKSUM_NONE &&
2553 !can_checksum_protocol(features, type)) {
2554 features &= ~NETIF_F_ALL_CSUM;
2555 } else if (illegal_highdma(skb->dev, skb)) {
2556 features &= ~NETIF_F_SG;
2557 }
2558
2559 return features;
2560}
2561
2562netdev_features_t netif_skb_features(struct sk_buff *skb)
2563{
2564 struct net_device *dev = skb->dev;
2565 netdev_features_t features = dev->features;
2566 u16 gso_segs = skb_shinfo(skb)->gso_segs;
2567 __be16 protocol = skb->protocol;
2568
2569 if (gso_segs > dev->gso_max_segs || gso_segs < dev->gso_min_segs)
2570 features &= ~NETIF_F_GSO_MASK;
2571
2572 /* If encapsulation offload request, verify we are testing
2573 * hardware encapsulation features instead of standard
2574 * features for the netdev
2575 */
2576 if (skb->encapsulation)
2577 features &= dev->hw_enc_features;
2578
2579 if (!skb_vlan_tag_present(skb)) {
2580 if (unlikely(protocol == htons(ETH_P_8021Q) ||
2581 protocol == htons(ETH_P_8021AD))) {
2582 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2583 protocol = veh->h_vlan_encapsulated_proto;
2584 } else {
2585 goto finalize;
2586 }
2587 }
2588
2589 features = netdev_intersect_features(features,
2590 dev->vlan_features |
2591 NETIF_F_HW_VLAN_CTAG_TX |
2592 NETIF_F_HW_VLAN_STAG_TX);
2593
2594 if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD))
2595 features = netdev_intersect_features(features,
2596 NETIF_F_SG |
2597 NETIF_F_HIGHDMA |
2598 NETIF_F_FRAGLIST |
2599 NETIF_F_GEN_CSUM |
2600 NETIF_F_HW_VLAN_CTAG_TX |
2601 NETIF_F_HW_VLAN_STAG_TX);
2602
2603finalize:
2604 if (dev->netdev_ops->ndo_features_check)
2605 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2606 features);
2607
2608 return harmonize_features(skb, features);
2609}
2610EXPORT_SYMBOL(netif_skb_features);
2611
2612static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2613 struct netdev_queue *txq, bool more)
2614{
2615 unsigned int len;
2616 int rc;
2617
2618 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2619 dev_queue_xmit_nit(skb, dev);
2620
2621 len = skb->len;
2622 trace_net_dev_start_xmit(skb, dev);
2623 rc = netdev_start_xmit(skb, dev, txq, more);
2624 trace_net_dev_xmit(skb, rc, dev, len);
2625
2626 return rc;
2627}
2628
2629struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2630 struct netdev_queue *txq, int *ret)
2631{
2632 struct sk_buff *skb = first;
2633 int rc = NETDEV_TX_OK;
2634
2635 while (skb) {
2636 struct sk_buff *next = skb->next;
2637
2638 skb->next = NULL;
2639 rc = xmit_one(skb, dev, txq, next != NULL);
2640 if (unlikely(!dev_xmit_complete(rc))) {
2641 skb->next = next;
2642 goto out;
2643 }
2644
2645 skb = next;
2646 if (netif_xmit_stopped(txq) && skb) {
2647 rc = NETDEV_TX_BUSY;
2648 break;
2649 }
2650 }
2651
2652out:
2653 *ret = rc;
2654 return skb;
2655}
2656
2657static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2658 netdev_features_t features)
2659{
2660 if (skb_vlan_tag_present(skb) &&
2661 !vlan_hw_offload_capable(features, skb->vlan_proto))
2662 skb = __vlan_hwaccel_push_inside(skb);
2663 return skb;
2664}
2665
2666static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2667{
2668 netdev_features_t features;
2669
2670 if (skb->next)
2671 return skb;
2672
2673 features = netif_skb_features(skb);
2674 skb = validate_xmit_vlan(skb, features);
2675 if (unlikely(!skb))
2676 goto out_null;
2677
2678 if (netif_needs_gso(dev, skb, features)) {
2679 struct sk_buff *segs;
2680
2681 segs = skb_gso_segment(skb, features);
2682 if (IS_ERR(segs)) {
2683 goto out_kfree_skb;
2684 } else if (segs) {
2685 consume_skb(skb);
2686 skb = segs;
2687 }
2688 } else {
2689 if (skb_needs_linearize(skb, features) &&
2690 __skb_linearize(skb))
2691 goto out_kfree_skb;
2692
2693 /* If packet is not checksummed and device does not
2694 * support checksumming for this protocol, complete
2695 * checksumming here.
2696 */
2697 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2698 if (skb->encapsulation)
2699 skb_set_inner_transport_header(skb,
2700 skb_checksum_start_offset(skb));
2701 else
2702 skb_set_transport_header(skb,
2703 skb_checksum_start_offset(skb));
2704 if (!(features & NETIF_F_ALL_CSUM) &&
2705 skb_checksum_help(skb))
2706 goto out_kfree_skb;
2707 }
2708 }
2709
2710 return skb;
2711
2712out_kfree_skb:
2713 kfree_skb(skb);
2714out_null:
2715 return NULL;
2716}
2717
2718struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
2719{
2720 struct sk_buff *next, *head = NULL, *tail;
2721
2722 for (; skb != NULL; skb = next) {
2723 next = skb->next;
2724 skb->next = NULL;
2725
2726 /* in case skb wont be segmented, point to itself */
2727 skb->prev = skb;
2728
2729 skb = validate_xmit_skb(skb, dev);
2730 if (!skb)
2731 continue;
2732
2733 if (!head)
2734 head = skb;
2735 else
2736 tail->next = skb;
2737 /* If skb was segmented, skb->prev points to
2738 * the last segment. If not, it still contains skb.
2739 */
2740 tail = skb->prev;
2741 }
2742 return head;
2743}
2744
2745static void qdisc_pkt_len_init(struct sk_buff *skb)
2746{
2747 const struct skb_shared_info *shinfo = skb_shinfo(skb);
2748
2749 qdisc_skb_cb(skb)->pkt_len = skb->len;
2750
2751 /* To get more precise estimation of bytes sent on wire,
2752 * we add to pkt_len the headers size of all segments
2753 */
2754 if (shinfo->gso_size) {
2755 unsigned int hdr_len;
2756 u16 gso_segs = shinfo->gso_segs;
2757
2758 /* mac layer + network layer */
2759 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2760
2761 /* + transport layer */
2762 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2763 hdr_len += tcp_hdrlen(skb);
2764 else
2765 hdr_len += sizeof(struct udphdr);
2766
2767 if (shinfo->gso_type & SKB_GSO_DODGY)
2768 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2769 shinfo->gso_size);
2770
2771 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
2772 }
2773}
2774
2775static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2776 struct net_device *dev,
2777 struct netdev_queue *txq)
2778{
2779 spinlock_t *root_lock = qdisc_lock(q);
2780 bool contended;
2781 int rc;
2782
2783 qdisc_pkt_len_init(skb);
2784 qdisc_calculate_pkt_len(skb, q);
2785 /*
2786 * Heuristic to force contended enqueues to serialize on a
2787 * separate lock before trying to get qdisc main lock.
2788 * This permits __QDISC___STATE_RUNNING owner to get the lock more
2789 * often and dequeue packets faster.
2790 */
2791 contended = qdisc_is_running(q);
2792 if (unlikely(contended))
2793 spin_lock(&q->busylock);
2794
2795 spin_lock(root_lock);
2796 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2797 kfree_skb(skb);
2798 rc = NET_XMIT_DROP;
2799 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2800 qdisc_run_begin(q)) {
2801 /*
2802 * This is a work-conserving queue; there are no old skbs
2803 * waiting to be sent out; and the qdisc is not running -
2804 * xmit the skb directly.
2805 */
2806
2807 qdisc_bstats_update(q, skb);
2808
2809 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
2810 if (unlikely(contended)) {
2811 spin_unlock(&q->busylock);
2812 contended = false;
2813 }
2814 __qdisc_run(q);
2815 } else
2816 qdisc_run_end(q);
2817
2818 rc = NET_XMIT_SUCCESS;
2819 } else {
2820 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2821 if (qdisc_run_begin(q)) {
2822 if (unlikely(contended)) {
2823 spin_unlock(&q->busylock);
2824 contended = false;
2825 }
2826 __qdisc_run(q);
2827 }
2828 }
2829 spin_unlock(root_lock);
2830 if (unlikely(contended))
2831 spin_unlock(&q->busylock);
2832 return rc;
2833}
2834
2835#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2836static void skb_update_prio(struct sk_buff *skb)
2837{
2838 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2839
2840 if (!skb->priority && skb->sk && map) {
2841 unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2842
2843 if (prioidx < map->priomap_len)
2844 skb->priority = map->priomap[prioidx];
2845 }
2846}
2847#else
2848#define skb_update_prio(skb)
2849#endif
2850
2851DEFINE_PER_CPU(int, xmit_recursion);
2852EXPORT_SYMBOL(xmit_recursion);
2853
2854#define RECURSION_LIMIT 10
2855
2856/**
2857 * dev_loopback_xmit - loop back @skb
2858 * @skb: buffer to transmit
2859 */
2860int dev_loopback_xmit(struct sk_buff *skb)
2861{
2862 skb_reset_mac_header(skb);
2863 __skb_pull(skb, skb_network_offset(skb));
2864 skb->pkt_type = PACKET_LOOPBACK;
2865 skb->ip_summed = CHECKSUM_UNNECESSARY;
2866 WARN_ON(!skb_dst(skb));
2867 skb_dst_force(skb);
2868 netif_rx_ni(skb);
2869 return 0;
2870}
2871EXPORT_SYMBOL(dev_loopback_xmit);
2872
2873/**
2874 * __dev_queue_xmit - transmit a buffer
2875 * @skb: buffer to transmit
2876 * @accel_priv: private data used for L2 forwarding offload
2877 *
2878 * Queue a buffer for transmission to a network device. The caller must
2879 * have set the device and priority and built the buffer before calling
2880 * this function. The function can be called from an interrupt.
2881 *
2882 * A negative errno code is returned on a failure. A success does not
2883 * guarantee the frame will be transmitted as it may be dropped due
2884 * to congestion or traffic shaping.
2885 *
2886 * -----------------------------------------------------------------------------------
2887 * I notice this method can also return errors from the queue disciplines,
2888 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2889 * be positive.
2890 *
2891 * Regardless of the return value, the skb is consumed, so it is currently
2892 * difficult to retry a send to this method. (You can bump the ref count
2893 * before sending to hold a reference for retry if you are careful.)
2894 *
2895 * When calling this method, interrupts MUST be enabled. This is because
2896 * the BH enable code must have IRQs enabled so that it will not deadlock.
2897 * --BLG
2898 */
2899static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
2900{
2901 struct net_device *dev = skb->dev;
2902 struct netdev_queue *txq;
2903 struct Qdisc *q;
2904 int rc = -ENOMEM;
2905
2906 skb_reset_mac_header(skb);
2907
2908 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
2909 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
2910
2911 /* Disable soft irqs for various locks below. Also
2912 * stops preemption for RCU.
2913 */
2914 rcu_read_lock_bh();
2915
2916 skb_update_prio(skb);
2917
2918 /* If device/qdisc don't need skb->dst, release it right now while
2919 * its hot in this cpu cache.
2920 */
2921 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2922 skb_dst_drop(skb);
2923 else
2924 skb_dst_force(skb);
2925
2926 txq = netdev_pick_tx(dev, skb, accel_priv);
2927 q = rcu_dereference_bh(txq->qdisc);
2928
2929#ifdef CONFIG_NET_CLS_ACT
2930 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2931#endif
2932 trace_net_dev_queue(skb);
2933 if (q->enqueue) {
2934 rc = __dev_xmit_skb(skb, q, dev, txq);
2935 goto out;
2936 }
2937
2938 /* The device has no queue. Common case for software devices:
2939 loopback, all the sorts of tunnels...
2940
2941 Really, it is unlikely that netif_tx_lock protection is necessary
2942 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2943 counters.)
2944 However, it is possible, that they rely on protection
2945 made by us here.
2946
2947 Check this and shot the lock. It is not prone from deadlocks.
2948 Either shot noqueue qdisc, it is even simpler 8)
2949 */
2950 if (dev->flags & IFF_UP) {
2951 int cpu = smp_processor_id(); /* ok because BHs are off */
2952
2953 if (txq->xmit_lock_owner != cpu) {
2954
2955 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2956 goto recursion_alert;
2957
2958 skb = validate_xmit_skb(skb, dev);
2959 if (!skb)
2960 goto drop;
2961
2962 HARD_TX_LOCK(dev, txq, cpu);
2963
2964 if (!netif_xmit_stopped(txq)) {
2965 __this_cpu_inc(xmit_recursion);
2966 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
2967 __this_cpu_dec(xmit_recursion);
2968 if (dev_xmit_complete(rc)) {
2969 HARD_TX_UNLOCK(dev, txq);
2970 goto out;
2971 }
2972 }
2973 HARD_TX_UNLOCK(dev, txq);
2974 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2975 dev->name);
2976 } else {
2977 /* Recursion is detected! It is possible,
2978 * unfortunately
2979 */
2980recursion_alert:
2981 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
2982 dev->name);
2983 }
2984 }
2985
2986 rc = -ENETDOWN;
2987drop:
2988 rcu_read_unlock_bh();
2989
2990 atomic_long_inc(&dev->tx_dropped);
2991 kfree_skb_list(skb);
2992 return rc;
2993out:
2994 rcu_read_unlock_bh();
2995 return rc;
2996}
2997
2998int dev_queue_xmit(struct sk_buff *skb)
2999{
3000 return __dev_queue_xmit(skb, NULL);
3001}
3002EXPORT_SYMBOL(dev_queue_xmit);
3003
3004int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3005{
3006 return __dev_queue_xmit(skb, accel_priv);
3007}
3008EXPORT_SYMBOL(dev_queue_xmit_accel);
3009
3010
3011/*=======================================================================
3012 Receiver routines
3013 =======================================================================*/
3014
3015int netdev_max_backlog __read_mostly = 1000;
3016EXPORT_SYMBOL(netdev_max_backlog);
3017
3018int netdev_tstamp_prequeue __read_mostly = 1;
3019int netdev_budget __read_mostly = 300;
3020int weight_p __read_mostly = 64; /* old backlog weight */
3021
3022/* Called with irq disabled */
3023static inline void ____napi_schedule(struct softnet_data *sd,
3024 struct napi_struct *napi)
3025{
3026 list_add_tail(&napi->poll_list, &sd->poll_list);
3027 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3028}
3029
3030#ifdef CONFIG_RPS
3031
3032/* One global table that all flow-based protocols share. */
3033struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3034EXPORT_SYMBOL(rps_sock_flow_table);
3035u32 rps_cpu_mask __read_mostly;
3036EXPORT_SYMBOL(rps_cpu_mask);
3037
3038struct static_key rps_needed __read_mostly;
3039
3040static struct rps_dev_flow *
3041set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3042 struct rps_dev_flow *rflow, u16 next_cpu)
3043{
3044 if (next_cpu != RPS_NO_CPU) {
3045#ifdef CONFIG_RFS_ACCEL
3046 struct netdev_rx_queue *rxqueue;
3047 struct rps_dev_flow_table *flow_table;
3048 struct rps_dev_flow *old_rflow;
3049 u32 flow_id;
3050 u16 rxq_index;
3051 int rc;
3052
3053 /* Should we steer this flow to a different hardware queue? */
3054 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3055 !(dev->features & NETIF_F_NTUPLE))
3056 goto out;
3057 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3058 if (rxq_index == skb_get_rx_queue(skb))
3059 goto out;
3060
3061 rxqueue = dev->_rx + rxq_index;
3062 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3063 if (!flow_table)
3064 goto out;
3065 flow_id = skb_get_hash(skb) & flow_table->mask;
3066 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3067 rxq_index, flow_id);
3068 if (rc < 0)
3069 goto out;
3070 old_rflow = rflow;
3071 rflow = &flow_table->flows[flow_id];
3072 rflow->filter = rc;
3073 if (old_rflow->filter == rflow->filter)
3074 old_rflow->filter = RPS_NO_FILTER;
3075 out:
3076#endif
3077 rflow->last_qtail =
3078 per_cpu(softnet_data, next_cpu).input_queue_head;
3079 }
3080
3081 rflow->cpu = next_cpu;
3082 return rflow;
3083}
3084
3085/*
3086 * get_rps_cpu is called from netif_receive_skb and returns the target
3087 * CPU from the RPS map of the receiving queue for a given skb.
3088 * rcu_read_lock must be held on entry.
3089 */
3090static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3091 struct rps_dev_flow **rflowp)
3092{
3093 const struct rps_sock_flow_table *sock_flow_table;
3094 struct netdev_rx_queue *rxqueue = dev->_rx;
3095 struct rps_dev_flow_table *flow_table;
3096 struct rps_map *map;
3097 int cpu = -1;
3098 u32 tcpu;
3099 u32 hash;
3100
3101 if (skb_rx_queue_recorded(skb)) {
3102 u16 index = skb_get_rx_queue(skb);
3103
3104 if (unlikely(index >= dev->real_num_rx_queues)) {
3105 WARN_ONCE(dev->real_num_rx_queues > 1,
3106 "%s received packet on queue %u, but number "
3107 "of RX queues is %u\n",
3108 dev->name, index, dev->real_num_rx_queues);
3109 goto done;
3110 }
3111 rxqueue += index;
3112 }
3113
3114 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3115
3116 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3117 map = rcu_dereference(rxqueue->rps_map);
3118 if (!flow_table && !map)
3119 goto done;
3120
3121 skb_reset_network_header(skb);
3122 hash = skb_get_hash(skb);
3123 if (!hash)
3124 goto done;
3125
3126 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3127 if (flow_table && sock_flow_table) {
3128 struct rps_dev_flow *rflow;
3129 u32 next_cpu;
3130 u32 ident;
3131
3132 /* First check into global flow table if there is a match */
3133 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3134 if ((ident ^ hash) & ~rps_cpu_mask)
3135 goto try_rps;
3136
3137 next_cpu = ident & rps_cpu_mask;
3138
3139 /* OK, now we know there is a match,
3140 * we can look at the local (per receive queue) flow table
3141 */
3142 rflow = &flow_table->flows[hash & flow_table->mask];
3143 tcpu = rflow->cpu;
3144
3145 /*
3146 * If the desired CPU (where last recvmsg was done) is
3147 * different from current CPU (one in the rx-queue flow
3148 * table entry), switch if one of the following holds:
3149 * - Current CPU is unset (equal to RPS_NO_CPU).
3150 * - Current CPU is offline.
3151 * - The current CPU's queue tail has advanced beyond the
3152 * last packet that was enqueued using this table entry.
3153 * This guarantees that all previous packets for the flow
3154 * have been dequeued, thus preserving in order delivery.
3155 */
3156 if (unlikely(tcpu != next_cpu) &&
3157 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
3158 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3159 rflow->last_qtail)) >= 0)) {
3160 tcpu = next_cpu;
3161 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3162 }
3163
3164 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
3165 *rflowp = rflow;
3166 cpu = tcpu;
3167 goto done;
3168 }
3169 }
3170
3171try_rps:
3172
3173 if (map) {
3174 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3175 if (cpu_online(tcpu)) {
3176 cpu = tcpu;
3177 goto done;
3178 }
3179 }
3180
3181done:
3182 return cpu;
3183}
3184
3185#ifdef CONFIG_RFS_ACCEL
3186
3187/**
3188 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3189 * @dev: Device on which the filter was set
3190 * @rxq_index: RX queue index
3191 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3192 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3193 *
3194 * Drivers that implement ndo_rx_flow_steer() should periodically call
3195 * this function for each installed filter and remove the filters for
3196 * which it returns %true.
3197 */
3198bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3199 u32 flow_id, u16 filter_id)
3200{
3201 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3202 struct rps_dev_flow_table *flow_table;
3203 struct rps_dev_flow *rflow;
3204 bool expire = true;
3205 int cpu;
3206
3207 rcu_read_lock();
3208 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3209 if (flow_table && flow_id <= flow_table->mask) {
3210 rflow = &flow_table->flows[flow_id];
3211 cpu = ACCESS_ONCE(rflow->cpu);
3212 if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
3213 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3214 rflow->last_qtail) <
3215 (int)(10 * flow_table->mask)))
3216 expire = false;
3217 }
3218 rcu_read_unlock();
3219 return expire;
3220}
3221EXPORT_SYMBOL(rps_may_expire_flow);
3222
3223#endif /* CONFIG_RFS_ACCEL */
3224
3225/* Called from hardirq (IPI) context */
3226static void rps_trigger_softirq(void *data)
3227{
3228 struct softnet_data *sd = data;
3229
3230 ____napi_schedule(sd, &sd->backlog);
3231 sd->received_rps++;
3232}
3233
3234#endif /* CONFIG_RPS */
3235
3236/*
3237 * Check if this softnet_data structure is another cpu one
3238 * If yes, queue it to our IPI list and return 1
3239 * If no, return 0
3240 */
3241static int rps_ipi_queued(struct softnet_data *sd)
3242{
3243#ifdef CONFIG_RPS
3244 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3245
3246 if (sd != mysd) {
3247 sd->rps_ipi_next = mysd->rps_ipi_list;
3248 mysd->rps_ipi_list = sd;
3249
3250 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3251 return 1;
3252 }
3253#endif /* CONFIG_RPS */
3254 return 0;
3255}
3256
3257#ifdef CONFIG_NET_FLOW_LIMIT
3258int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3259#endif
3260
3261static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3262{
3263#ifdef CONFIG_NET_FLOW_LIMIT
3264 struct sd_flow_limit *fl;
3265 struct softnet_data *sd;
3266 unsigned int old_flow, new_flow;
3267
3268 if (qlen < (netdev_max_backlog >> 1))
3269 return false;
3270
3271 sd = this_cpu_ptr(&softnet_data);
3272
3273 rcu_read_lock();
3274 fl = rcu_dereference(sd->flow_limit);
3275 if (fl) {
3276 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3277 old_flow = fl->history[fl->history_head];
3278 fl->history[fl->history_head] = new_flow;
3279
3280 fl->history_head++;
3281 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3282
3283 if (likely(fl->buckets[old_flow]))
3284 fl->buckets[old_flow]--;
3285
3286 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3287 fl->count++;
3288 rcu_read_unlock();
3289 return true;
3290 }
3291 }
3292 rcu_read_unlock();
3293#endif
3294 return false;
3295}
3296
3297/*
3298 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3299 * queue (may be a remote CPU queue).
3300 */
3301static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3302 unsigned int *qtail)
3303{
3304 struct softnet_data *sd;
3305 unsigned long flags;
3306 unsigned int qlen;
3307
3308 sd = &per_cpu(softnet_data, cpu);
3309
3310 local_irq_save(flags);
3311
3312 rps_lock(sd);
3313 qlen = skb_queue_len(&sd->input_pkt_queue);
3314 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3315 if (qlen) {
3316enqueue:
3317 __skb_queue_tail(&sd->input_pkt_queue, skb);
3318 input_queue_tail_incr_save(sd, qtail);
3319 rps_unlock(sd);
3320 local_irq_restore(flags);
3321 return NET_RX_SUCCESS;
3322 }
3323
3324 /* Schedule NAPI for backlog device
3325 * We can use non atomic operation since we own the queue lock
3326 */
3327 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3328 if (!rps_ipi_queued(sd))
3329 ____napi_schedule(sd, &sd->backlog);
3330 }
3331 goto enqueue;
3332 }
3333
3334 sd->dropped++;
3335 rps_unlock(sd);
3336
3337 local_irq_restore(flags);
3338
3339 atomic_long_inc(&skb->dev->rx_dropped);
3340 kfree_skb(skb);
3341 return NET_RX_DROP;
3342}
3343
3344static int netif_rx_internal(struct sk_buff *skb)
3345{
3346 int ret;
3347
3348 net_timestamp_check(netdev_tstamp_prequeue, skb);
3349
3350 trace_netif_rx(skb);
3351#ifdef CONFIG_RPS
3352 if (static_key_false(&rps_needed)) {
3353 struct rps_dev_flow voidflow, *rflow = &voidflow;
3354 int cpu;
3355
3356 preempt_disable();
3357 rcu_read_lock();
3358
3359 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3360 if (cpu < 0)
3361 cpu = smp_processor_id();
3362
3363 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3364
3365 rcu_read_unlock();
3366 preempt_enable();
3367 } else
3368#endif
3369 {
3370 unsigned int qtail;
3371 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3372 put_cpu();
3373 }
3374 return ret;
3375}
3376
3377/**
3378 * netif_rx - post buffer to the network code
3379 * @skb: buffer to post
3380 *
3381 * This function receives a packet from a device driver and queues it for
3382 * the upper (protocol) levels to process. It always succeeds. The buffer
3383 * may be dropped during processing for congestion control or by the
3384 * protocol layers.
3385 *
3386 * return values:
3387 * NET_RX_SUCCESS (no congestion)
3388 * NET_RX_DROP (packet was dropped)
3389 *
3390 */
3391
3392int netif_rx(struct sk_buff *skb)
3393{
3394 trace_netif_rx_entry(skb);
3395
3396 return netif_rx_internal(skb);
3397}
3398EXPORT_SYMBOL(netif_rx);
3399
3400int netif_rx_ni(struct sk_buff *skb)
3401{
3402 int err;
3403
3404 trace_netif_rx_ni_entry(skb);
3405
3406 preempt_disable();
3407 err = netif_rx_internal(skb);
3408 if (local_softirq_pending())
3409 do_softirq();
3410 preempt_enable();
3411
3412 return err;
3413}
3414EXPORT_SYMBOL(netif_rx_ni);
3415
3416static void net_tx_action(struct softirq_action *h)
3417{
3418 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3419
3420 if (sd->completion_queue) {
3421 struct sk_buff *clist;
3422
3423 local_irq_disable();
3424 clist = sd->completion_queue;
3425 sd->completion_queue = NULL;
3426 local_irq_enable();
3427
3428 while (clist) {
3429 struct sk_buff *skb = clist;
3430 clist = clist->next;
3431
3432 WARN_ON(atomic_read(&skb->users));
3433 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3434 trace_consume_skb(skb);
3435 else
3436 trace_kfree_skb(skb, net_tx_action);
3437 __kfree_skb(skb);
3438 }
3439 }
3440
3441 if (sd->output_queue) {
3442 struct Qdisc *head;
3443
3444 local_irq_disable();
3445 head = sd->output_queue;
3446 sd->output_queue = NULL;
3447 sd->output_queue_tailp = &sd->output_queue;
3448 local_irq_enable();
3449
3450 while (head) {
3451 struct Qdisc *q = head;
3452 spinlock_t *root_lock;
3453
3454 head = head->next_sched;
3455
3456 root_lock = qdisc_lock(q);
3457 if (spin_trylock(root_lock)) {
3458 smp_mb__before_atomic();
3459 clear_bit(__QDISC_STATE_SCHED,
3460 &q->state);
3461 qdisc_run(q);
3462 spin_unlock(root_lock);
3463 } else {
3464 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3465 &q->state)) {
3466 __netif_reschedule(q);
3467 } else {
3468 smp_mb__before_atomic();
3469 clear_bit(__QDISC_STATE_SCHED,
3470 &q->state);
3471 }
3472 }
3473 }
3474 }
3475}
3476
3477#if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3478 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3479/* This hook is defined here for ATM LANE */
3480int (*br_fdb_test_addr_hook)(struct net_device *dev,
3481 unsigned char *addr) __read_mostly;
3482EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3483#endif
3484
3485#ifdef CONFIG_NET_CLS_ACT
3486/* TODO: Maybe we should just force sch_ingress to be compiled in
3487 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3488 * a compare and 2 stores extra right now if we dont have it on
3489 * but have CONFIG_NET_CLS_ACT
3490 * NOTE: This doesn't stop any functionality; if you dont have
3491 * the ingress scheduler, you just can't add policies on ingress.
3492 *
3493 */
3494static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3495{
3496 struct net_device *dev = skb->dev;
3497 u32 ttl = G_TC_RTTL(skb->tc_verd);
3498 int result = TC_ACT_OK;
3499 struct Qdisc *q;
3500
3501 if (unlikely(MAX_RED_LOOP < ttl++)) {
3502 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3503 skb->skb_iif, dev->ifindex);
3504 return TC_ACT_SHOT;
3505 }
3506
3507 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3508 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3509
3510 q = rcu_dereference(rxq->qdisc);
3511 if (q != &noop_qdisc) {
3512 spin_lock(qdisc_lock(q));
3513 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3514 result = qdisc_enqueue_root(skb, q);
3515 spin_unlock(qdisc_lock(q));
3516 }
3517
3518 return result;
3519}
3520
3521static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3522 struct packet_type **pt_prev,
3523 int *ret, struct net_device *orig_dev)
3524{
3525 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3526
3527 if (!rxq || rcu_access_pointer(rxq->qdisc) == &noop_qdisc)
3528 goto out;
3529
3530 if (*pt_prev) {
3531 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3532 *pt_prev = NULL;
3533 }
3534
3535 switch (ing_filter(skb, rxq)) {
3536 case TC_ACT_SHOT:
3537 case TC_ACT_STOLEN:
3538 kfree_skb(skb);
3539 return NULL;
3540 }
3541
3542out:
3543 skb->tc_verd = 0;
3544 return skb;
3545}
3546#endif
3547
3548/**
3549 * netdev_rx_handler_register - register receive handler
3550 * @dev: device to register a handler for
3551 * @rx_handler: receive handler to register
3552 * @rx_handler_data: data pointer that is used by rx handler
3553 *
3554 * Register a receive handler for a device. This handler will then be
3555 * called from __netif_receive_skb. A negative errno code is returned
3556 * on a failure.
3557 *
3558 * The caller must hold the rtnl_mutex.
3559 *
3560 * For a general description of rx_handler, see enum rx_handler_result.
3561 */
3562int netdev_rx_handler_register(struct net_device *dev,
3563 rx_handler_func_t *rx_handler,
3564 void *rx_handler_data)
3565{
3566 ASSERT_RTNL();
3567
3568 if (dev->rx_handler)
3569 return -EBUSY;
3570
3571 /* Note: rx_handler_data must be set before rx_handler */
3572 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3573 rcu_assign_pointer(dev->rx_handler, rx_handler);
3574
3575 return 0;
3576}
3577EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3578
3579/**
3580 * netdev_rx_handler_unregister - unregister receive handler
3581 * @dev: device to unregister a handler from
3582 *
3583 * Unregister a receive handler from a device.
3584 *
3585 * The caller must hold the rtnl_mutex.
3586 */
3587void netdev_rx_handler_unregister(struct net_device *dev)
3588{
3589
3590 ASSERT_RTNL();
3591 RCU_INIT_POINTER(dev->rx_handler, NULL);
3592 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3593 * section has a guarantee to see a non NULL rx_handler_data
3594 * as well.
3595 */
3596 synchronize_net();
3597 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3598}
3599EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3600
3601/*
3602 * Limit the use of PFMEMALLOC reserves to those protocols that implement
3603 * the special handling of PFMEMALLOC skbs.
3604 */
3605static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3606{
3607 switch (skb->protocol) {
3608 case htons(ETH_P_ARP):
3609 case htons(ETH_P_IP):
3610 case htons(ETH_P_IPV6):
3611 case htons(ETH_P_8021Q):
3612 case htons(ETH_P_8021AD):
3613 return true;
3614 default:
3615 return false;
3616 }
3617}
3618
3619static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
3620{
3621 struct packet_type *ptype, *pt_prev;
3622 rx_handler_func_t *rx_handler;
3623 struct net_device *orig_dev;
3624 bool deliver_exact = false;
3625 int ret = NET_RX_DROP;
3626 __be16 type;
3627
3628 net_timestamp_check(!netdev_tstamp_prequeue, skb);
3629
3630 trace_netif_receive_skb(skb);
3631
3632 orig_dev = skb->dev;
3633
3634 skb_reset_network_header(skb);
3635 if (!skb_transport_header_was_set(skb))
3636 skb_reset_transport_header(skb);
3637 skb_reset_mac_len(skb);
3638
3639 pt_prev = NULL;
3640
3641 rcu_read_lock();
3642
3643another_round:
3644 skb->skb_iif = skb->dev->ifindex;
3645
3646 __this_cpu_inc(softnet_data.processed);
3647
3648 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3649 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
3650 skb = skb_vlan_untag(skb);
3651 if (unlikely(!skb))
3652 goto unlock;
3653 }
3654
3655#ifdef CONFIG_NET_CLS_ACT
3656 if (skb->tc_verd & TC_NCLS) {
3657 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3658 goto ncls;
3659 }
3660#endif
3661
3662 if (pfmemalloc)
3663 goto skip_taps;
3664
3665 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3666 if (pt_prev)
3667 ret = deliver_skb(skb, pt_prev, orig_dev);
3668 pt_prev = ptype;
3669 }
3670
3671 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
3672 if (pt_prev)
3673 ret = deliver_skb(skb, pt_prev, orig_dev);
3674 pt_prev = ptype;
3675 }
3676
3677skip_taps:
3678#ifdef CONFIG_NET_CLS_ACT
3679 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3680 if (!skb)
3681 goto unlock;
3682ncls:
3683#endif
3684
3685 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
3686 goto drop;
3687
3688 if (skb_vlan_tag_present(skb)) {
3689 if (pt_prev) {
3690 ret = deliver_skb(skb, pt_prev, orig_dev);
3691 pt_prev = NULL;
3692 }
3693 if (vlan_do_receive(&skb))
3694 goto another_round;
3695 else if (unlikely(!skb))
3696 goto unlock;
3697 }
3698
3699 rx_handler = rcu_dereference(skb->dev->rx_handler);
3700 if (rx_handler) {
3701 if (pt_prev) {
3702 ret = deliver_skb(skb, pt_prev, orig_dev);
3703 pt_prev = NULL;
3704 }
3705 switch (rx_handler(&skb)) {
3706 case RX_HANDLER_CONSUMED:
3707 ret = NET_RX_SUCCESS;
3708 goto unlock;
3709 case RX_HANDLER_ANOTHER:
3710 goto another_round;
3711 case RX_HANDLER_EXACT:
3712 deliver_exact = true;
3713 case RX_HANDLER_PASS:
3714 break;
3715 default:
3716 BUG();
3717 }
3718 }
3719
3720 if (unlikely(skb_vlan_tag_present(skb))) {
3721 if (skb_vlan_tag_get_id(skb))
3722 skb->pkt_type = PACKET_OTHERHOST;
3723 /* Note: we might in the future use prio bits
3724 * and set skb->priority like in vlan_do_receive()
3725 * For the time being, just ignore Priority Code Point
3726 */
3727 skb->vlan_tci = 0;
3728 }
3729
3730 type = skb->protocol;
3731
3732 /* deliver only exact match when indicated */
3733 if (likely(!deliver_exact)) {
3734 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3735 &ptype_base[ntohs(type) &
3736 PTYPE_HASH_MASK]);
3737 }
3738
3739 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3740 &orig_dev->ptype_specific);
3741
3742 if (unlikely(skb->dev != orig_dev)) {
3743 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3744 &skb->dev->ptype_specific);
3745 }
3746
3747 if (pt_prev) {
3748 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3749 goto drop;
3750 else
3751 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3752 } else {
3753drop:
3754 atomic_long_inc(&skb->dev->rx_dropped);
3755 kfree_skb(skb);
3756 /* Jamal, now you will not able to escape explaining
3757 * me how you were going to use this. :-)
3758 */
3759 ret = NET_RX_DROP;
3760 }
3761
3762unlock:
3763 rcu_read_unlock();
3764 return ret;
3765}
3766
3767static int __netif_receive_skb(struct sk_buff *skb)
3768{
3769 int ret;
3770
3771 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3772 unsigned long pflags = current->flags;
3773
3774 /*
3775 * PFMEMALLOC skbs are special, they should
3776 * - be delivered to SOCK_MEMALLOC sockets only
3777 * - stay away from userspace
3778 * - have bounded memory usage
3779 *
3780 * Use PF_MEMALLOC as this saves us from propagating the allocation
3781 * context down to all allocation sites.
3782 */
3783 current->flags |= PF_MEMALLOC;
3784 ret = __netif_receive_skb_core(skb, true);
3785 tsk_restore_flags(current, pflags, PF_MEMALLOC);
3786 } else
3787 ret = __netif_receive_skb_core(skb, false);
3788
3789 return ret;
3790}
3791
3792static int netif_receive_skb_internal(struct sk_buff *skb)
3793{
3794 net_timestamp_check(netdev_tstamp_prequeue, skb);
3795
3796 if (skb_defer_rx_timestamp(skb))
3797 return NET_RX_SUCCESS;
3798
3799#ifdef CONFIG_RPS
3800 if (static_key_false(&rps_needed)) {
3801 struct rps_dev_flow voidflow, *rflow = &voidflow;
3802 int cpu, ret;
3803
3804 rcu_read_lock();
3805
3806 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3807
3808 if (cpu >= 0) {
3809 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3810 rcu_read_unlock();
3811 return ret;
3812 }
3813 rcu_read_unlock();
3814 }
3815#endif
3816 return __netif_receive_skb(skb);
3817}
3818
3819/**
3820 * netif_receive_skb - process receive buffer from network
3821 * @skb: buffer to process
3822 *
3823 * netif_receive_skb() is the main receive data processing function.
3824 * It always succeeds. The buffer may be dropped during processing
3825 * for congestion control or by the protocol layers.
3826 *
3827 * This function may only be called from softirq context and interrupts
3828 * should be enabled.
3829 *
3830 * Return values (usually ignored):
3831 * NET_RX_SUCCESS: no congestion
3832 * NET_RX_DROP: packet was dropped
3833 */
3834int netif_receive_skb(struct sk_buff *skb)
3835{
3836 trace_netif_receive_skb_entry(skb);
3837
3838 return netif_receive_skb_internal(skb);
3839}
3840EXPORT_SYMBOL(netif_receive_skb);
3841
3842/* Network device is going away, flush any packets still pending
3843 * Called with irqs disabled.
3844 */
3845static void flush_backlog(void *arg)
3846{
3847 struct net_device *dev = arg;
3848 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3849 struct sk_buff *skb, *tmp;
3850
3851 rps_lock(sd);
3852 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3853 if (skb->dev == dev) {
3854 __skb_unlink(skb, &sd->input_pkt_queue);
3855 kfree_skb(skb);
3856 input_queue_head_incr(sd);
3857 }
3858 }
3859 rps_unlock(sd);
3860
3861 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3862 if (skb->dev == dev) {
3863 __skb_unlink(skb, &sd->process_queue);
3864 kfree_skb(skb);
3865 input_queue_head_incr(sd);
3866 }
3867 }
3868}
3869
3870static int napi_gro_complete(struct sk_buff *skb)
3871{
3872 struct packet_offload *ptype;
3873 __be16 type = skb->protocol;
3874 struct list_head *head = &offload_base;
3875 int err = -ENOENT;
3876
3877 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
3878
3879 if (NAPI_GRO_CB(skb)->count == 1) {
3880 skb_shinfo(skb)->gso_size = 0;
3881 goto out;
3882 }
3883
3884 rcu_read_lock();
3885 list_for_each_entry_rcu(ptype, head, list) {
3886 if (ptype->type != type || !ptype->callbacks.gro_complete)
3887 continue;
3888
3889 err = ptype->callbacks.gro_complete(skb, 0);
3890 break;
3891 }
3892 rcu_read_unlock();
3893
3894 if (err) {
3895 WARN_ON(&ptype->list == head);
3896 kfree_skb(skb);
3897 return NET_RX_SUCCESS;
3898 }
3899
3900out:
3901 return netif_receive_skb_internal(skb);
3902}
3903
3904/* napi->gro_list contains packets ordered by age.
3905 * youngest packets at the head of it.
3906 * Complete skbs in reverse order to reduce latencies.
3907 */
3908void napi_gro_flush(struct napi_struct *napi, bool flush_old)
3909{
3910 struct sk_buff *skb, *prev = NULL;
3911
3912 /* scan list and build reverse chain */
3913 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
3914 skb->prev = prev;
3915 prev = skb;
3916 }
3917
3918 for (skb = prev; skb; skb = prev) {
3919 skb->next = NULL;
3920
3921 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
3922 return;
3923
3924 prev = skb->prev;
3925 napi_gro_complete(skb);
3926 napi->gro_count--;
3927 }
3928
3929 napi->gro_list = NULL;
3930}
3931EXPORT_SYMBOL(napi_gro_flush);
3932
3933static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
3934{
3935 struct sk_buff *p;
3936 unsigned int maclen = skb->dev->hard_header_len;
3937 u32 hash = skb_get_hash_raw(skb);
3938
3939 for (p = napi->gro_list; p; p = p->next) {
3940 unsigned long diffs;
3941
3942 NAPI_GRO_CB(p)->flush = 0;
3943
3944 if (hash != skb_get_hash_raw(p)) {
3945 NAPI_GRO_CB(p)->same_flow = 0;
3946 continue;
3947 }
3948
3949 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3950 diffs |= p->vlan_tci ^ skb->vlan_tci;
3951 if (maclen == ETH_HLEN)
3952 diffs |= compare_ether_header(skb_mac_header(p),
3953 skb_mac_header(skb));
3954 else if (!diffs)
3955 diffs = memcmp(skb_mac_header(p),
3956 skb_mac_header(skb),
3957 maclen);
3958 NAPI_GRO_CB(p)->same_flow = !diffs;
3959 }
3960}
3961
3962static void skb_gro_reset_offset(struct sk_buff *skb)
3963{
3964 const struct skb_shared_info *pinfo = skb_shinfo(skb);
3965 const skb_frag_t *frag0 = &pinfo->frags[0];
3966
3967 NAPI_GRO_CB(skb)->data_offset = 0;
3968 NAPI_GRO_CB(skb)->frag0 = NULL;
3969 NAPI_GRO_CB(skb)->frag0_len = 0;
3970
3971 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
3972 pinfo->nr_frags &&
3973 !PageHighMem(skb_frag_page(frag0))) {
3974 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
3975 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
3976 }
3977}
3978
3979static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
3980{
3981 struct skb_shared_info *pinfo = skb_shinfo(skb);
3982
3983 BUG_ON(skb->end - skb->tail < grow);
3984
3985 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3986
3987 skb->data_len -= grow;
3988 skb->tail += grow;
3989
3990 pinfo->frags[0].page_offset += grow;
3991 skb_frag_size_sub(&pinfo->frags[0], grow);
3992
3993 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
3994 skb_frag_unref(skb, 0);
3995 memmove(pinfo->frags, pinfo->frags + 1,
3996 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
3997 }
3998}
3999
4000static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4001{
4002 struct sk_buff **pp = NULL;
4003 struct packet_offload *ptype;
4004 __be16 type = skb->protocol;
4005 struct list_head *head = &offload_base;
4006 int same_flow;
4007 enum gro_result ret;
4008 int grow;
4009
4010 if (!(skb->dev->features & NETIF_F_GRO))
4011 goto normal;
4012
4013 if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
4014 goto normal;
4015
4016 gro_list_prepare(napi, skb);
4017
4018 rcu_read_lock();
4019 list_for_each_entry_rcu(ptype, head, list) {
4020 if (ptype->type != type || !ptype->callbacks.gro_receive)
4021 continue;
4022
4023 skb_set_network_header(skb, skb_gro_offset(skb));
4024 skb_reset_mac_len(skb);
4025 NAPI_GRO_CB(skb)->same_flow = 0;
4026 NAPI_GRO_CB(skb)->flush = 0;
4027 NAPI_GRO_CB(skb)->free = 0;
4028 NAPI_GRO_CB(skb)->udp_mark = 0;
4029 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4030
4031 /* Setup for GRO checksum validation */
4032 switch (skb->ip_summed) {
4033 case CHECKSUM_COMPLETE:
4034 NAPI_GRO_CB(skb)->csum = skb->csum;
4035 NAPI_GRO_CB(skb)->csum_valid = 1;
4036 NAPI_GRO_CB(skb)->csum_cnt = 0;
4037 break;
4038 case CHECKSUM_UNNECESSARY:
4039 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4040 NAPI_GRO_CB(skb)->csum_valid = 0;
4041 break;
4042 default:
4043 NAPI_GRO_CB(skb)->csum_cnt = 0;
4044 NAPI_GRO_CB(skb)->csum_valid = 0;
4045 }
4046
4047 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4048 break;
4049 }
4050 rcu_read_unlock();
4051
4052 if (&ptype->list == head)
4053 goto normal;
4054
4055 same_flow = NAPI_GRO_CB(skb)->same_flow;
4056 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4057
4058 if (pp) {
4059 struct sk_buff *nskb = *pp;
4060
4061 *pp = nskb->next;
4062 nskb->next = NULL;
4063 napi_gro_complete(nskb);
4064 napi->gro_count--;
4065 }
4066
4067 if (same_flow)
4068 goto ok;
4069
4070 if (NAPI_GRO_CB(skb)->flush)
4071 goto normal;
4072
4073 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4074 struct sk_buff *nskb = napi->gro_list;
4075
4076 /* locate the end of the list to select the 'oldest' flow */
4077 while (nskb->next) {
4078 pp = &nskb->next;
4079 nskb = *pp;
4080 }
4081 *pp = NULL;
4082 nskb->next = NULL;
4083 napi_gro_complete(nskb);
4084 } else {
4085 napi->gro_count++;
4086 }
4087 NAPI_GRO_CB(skb)->count = 1;
4088 NAPI_GRO_CB(skb)->age = jiffies;
4089 NAPI_GRO_CB(skb)->last = skb;
4090 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4091 skb->next = napi->gro_list;
4092 napi->gro_list = skb;
4093 ret = GRO_HELD;
4094
4095pull:
4096 grow = skb_gro_offset(skb) - skb_headlen(skb);
4097 if (grow > 0)
4098 gro_pull_from_frag0(skb, grow);
4099ok:
4100 return ret;
4101
4102normal:
4103 ret = GRO_NORMAL;
4104 goto pull;
4105}
4106
4107struct packet_offload *gro_find_receive_by_type(__be16 type)
4108{
4109 struct list_head *offload_head = &offload_base;
4110 struct packet_offload *ptype;
4111
4112 list_for_each_entry_rcu(ptype, offload_head, list) {
4113 if (ptype->type != type || !ptype->callbacks.gro_receive)
4114 continue;
4115 return ptype;
4116 }
4117 return NULL;
4118}
4119EXPORT_SYMBOL(gro_find_receive_by_type);
4120
4121struct packet_offload *gro_find_complete_by_type(__be16 type)
4122{
4123 struct list_head *offload_head = &offload_base;
4124 struct packet_offload *ptype;
4125
4126 list_for_each_entry_rcu(ptype, offload_head, list) {
4127 if (ptype->type != type || !ptype->callbacks.gro_complete)
4128 continue;
4129 return ptype;
4130 }
4131 return NULL;
4132}
4133EXPORT_SYMBOL(gro_find_complete_by_type);
4134
4135static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4136{
4137 switch (ret) {
4138 case GRO_NORMAL:
4139 if (netif_receive_skb_internal(skb))
4140 ret = GRO_DROP;
4141 break;
4142
4143 case GRO_DROP:
4144 kfree_skb(skb);
4145 break;
4146
4147 case GRO_MERGED_FREE:
4148 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4149 kmem_cache_free(skbuff_head_cache, skb);
4150 else
4151 __kfree_skb(skb);
4152 break;
4153
4154 case GRO_HELD:
4155 case GRO_MERGED:
4156 break;
4157 }
4158
4159 return ret;
4160}
4161
4162gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4163{
4164 trace_napi_gro_receive_entry(skb);
4165
4166 skb_gro_reset_offset(skb);
4167
4168 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4169}
4170EXPORT_SYMBOL(napi_gro_receive);
4171
4172static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4173{
4174 if (unlikely(skb->pfmemalloc)) {
4175 consume_skb(skb);
4176 return;
4177 }
4178 __skb_pull(skb, skb_headlen(skb));
4179 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4180 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4181 skb->vlan_tci = 0;
4182 skb->dev = napi->dev;
4183 skb->skb_iif = 0;
4184 skb->encapsulation = 0;
4185 skb_shinfo(skb)->gso_type = 0;
4186 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4187
4188 napi->skb = skb;
4189}
4190
4191struct sk_buff *napi_get_frags(struct napi_struct *napi)
4192{
4193 struct sk_buff *skb = napi->skb;
4194
4195 if (!skb) {
4196 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4197 napi->skb = skb;
4198 }
4199 return skb;
4200}
4201EXPORT_SYMBOL(napi_get_frags);
4202
4203static gro_result_t napi_frags_finish(struct napi_struct *napi,
4204 struct sk_buff *skb,
4205 gro_result_t ret)
4206{
4207 switch (ret) {
4208 case GRO_NORMAL:
4209 case GRO_HELD:
4210 __skb_push(skb, ETH_HLEN);
4211 skb->protocol = eth_type_trans(skb, skb->dev);
4212 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4213 ret = GRO_DROP;
4214 break;
4215
4216 case GRO_DROP:
4217 case GRO_MERGED_FREE:
4218 napi_reuse_skb(napi, skb);
4219 break;
4220
4221 case GRO_MERGED:
4222 break;
4223 }
4224
4225 return ret;
4226}
4227
4228/* Upper GRO stack assumes network header starts at gro_offset=0
4229 * Drivers could call both napi_gro_frags() and napi_gro_receive()
4230 * We copy ethernet header into skb->data to have a common layout.
4231 */
4232static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4233{
4234 struct sk_buff *skb = napi->skb;
4235 const struct ethhdr *eth;
4236 unsigned int hlen = sizeof(*eth);
4237
4238 napi->skb = NULL;
4239
4240 skb_reset_mac_header(skb);
4241 skb_gro_reset_offset(skb);
4242
4243 eth = skb_gro_header_fast(skb, 0);
4244 if (unlikely(skb_gro_header_hard(skb, hlen))) {
4245 eth = skb_gro_header_slow(skb, hlen, 0);
4246 if (unlikely(!eth)) {
4247 napi_reuse_skb(napi, skb);
4248 return NULL;
4249 }
4250 } else {
4251 gro_pull_from_frag0(skb, hlen);
4252 NAPI_GRO_CB(skb)->frag0 += hlen;
4253 NAPI_GRO_CB(skb)->frag0_len -= hlen;
4254 }
4255 __skb_pull(skb, hlen);
4256
4257 /*
4258 * This works because the only protocols we care about don't require
4259 * special handling.
4260 * We'll fix it up properly in napi_frags_finish()
4261 */
4262 skb->protocol = eth->h_proto;
4263
4264 return skb;
4265}
4266
4267gro_result_t napi_gro_frags(struct napi_struct *napi)
4268{
4269 struct sk_buff *skb = napi_frags_skb(napi);
4270
4271 if (!skb)
4272 return GRO_DROP;
4273
4274 trace_napi_gro_frags_entry(skb);
4275
4276 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4277}
4278EXPORT_SYMBOL(napi_gro_frags);
4279
4280/* Compute the checksum from gro_offset and return the folded value
4281 * after adding in any pseudo checksum.
4282 */
4283__sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4284{
4285 __wsum wsum;
4286 __sum16 sum;
4287
4288 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4289
4290 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4291 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4292 if (likely(!sum)) {
4293 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4294 !skb->csum_complete_sw)
4295 netdev_rx_csum_fault(skb->dev);
4296 }
4297
4298 NAPI_GRO_CB(skb)->csum = wsum;
4299 NAPI_GRO_CB(skb)->csum_valid = 1;
4300
4301 return sum;
4302}
4303EXPORT_SYMBOL(__skb_gro_checksum_complete);
4304
4305/*
4306 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4307 * Note: called with local irq disabled, but exits with local irq enabled.
4308 */
4309static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4310{
4311#ifdef CONFIG_RPS
4312 struct softnet_data *remsd = sd->rps_ipi_list;
4313
4314 if (remsd) {
4315 sd->rps_ipi_list = NULL;
4316
4317 local_irq_enable();
4318
4319 /* Send pending IPI's to kick RPS processing on remote cpus. */
4320 while (remsd) {
4321 struct softnet_data *next = remsd->rps_ipi_next;
4322
4323 if (cpu_online(remsd->cpu))
4324 smp_call_function_single_async(remsd->cpu,
4325 &remsd->csd);
4326 remsd = next;
4327 }
4328 } else
4329#endif
4330 local_irq_enable();
4331}
4332
4333static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4334{
4335#ifdef CONFIG_RPS
4336 return sd->rps_ipi_list != NULL;
4337#else
4338 return false;
4339#endif
4340}
4341
4342static int process_backlog(struct napi_struct *napi, int quota)
4343{
4344 int work = 0;
4345 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4346
4347 /* Check if we have pending ipi, its better to send them now,
4348 * not waiting net_rx_action() end.
4349 */
4350 if (sd_has_rps_ipi_waiting(sd)) {
4351 local_irq_disable();
4352 net_rps_action_and_irq_enable(sd);
4353 }
4354
4355 napi->weight = weight_p;
4356 local_irq_disable();
4357 while (1) {
4358 struct sk_buff *skb;
4359
4360 while ((skb = __skb_dequeue(&sd->process_queue))) {
4361 local_irq_enable();
4362 __netif_receive_skb(skb);
4363 local_irq_disable();
4364 input_queue_head_incr(sd);
4365 if (++work >= quota) {
4366 local_irq_enable();
4367 return work;
4368 }
4369 }
4370
4371 rps_lock(sd);
4372 if (skb_queue_empty(&sd->input_pkt_queue)) {
4373 /*
4374 * Inline a custom version of __napi_complete().
4375 * only current cpu owns and manipulates this napi,
4376 * and NAPI_STATE_SCHED is the only possible flag set
4377 * on backlog.
4378 * We can use a plain write instead of clear_bit(),
4379 * and we dont need an smp_mb() memory barrier.
4380 */
4381 napi->state = 0;
4382 rps_unlock(sd);
4383
4384 break;
4385 }
4386
4387 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4388 &sd->process_queue);
4389 rps_unlock(sd);
4390 }
4391 local_irq_enable();
4392
4393 return work;
4394}
4395
4396/**
4397 * __napi_schedule - schedule for receive
4398 * @n: entry to schedule
4399 *
4400 * The entry's receive function will be scheduled to run.
4401 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
4402 */
4403void __napi_schedule(struct napi_struct *n)
4404{
4405 unsigned long flags;
4406
4407 local_irq_save(flags);
4408 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4409 local_irq_restore(flags);
4410}
4411EXPORT_SYMBOL(__napi_schedule);
4412
4413/**
4414 * __napi_schedule_irqoff - schedule for receive
4415 * @n: entry to schedule
4416 *
4417 * Variant of __napi_schedule() assuming hard irqs are masked
4418 */
4419void __napi_schedule_irqoff(struct napi_struct *n)
4420{
4421 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4422}
4423EXPORT_SYMBOL(__napi_schedule_irqoff);
4424
4425void __napi_complete(struct napi_struct *n)
4426{
4427 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4428
4429 list_del_init(&n->poll_list);
4430 smp_mb__before_atomic();
4431 clear_bit(NAPI_STATE_SCHED, &n->state);
4432}
4433EXPORT_SYMBOL(__napi_complete);
4434
4435void napi_complete_done(struct napi_struct *n, int work_done)
4436{
4437 unsigned long flags;
4438
4439 /*
4440 * don't let napi dequeue from the cpu poll list
4441 * just in case its running on a different cpu
4442 */
4443 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4444 return;
4445
4446 if (n->gro_list) {
4447 unsigned long timeout = 0;
4448
4449 if (work_done)
4450 timeout = n->dev->gro_flush_timeout;
4451
4452 if (timeout)
4453 hrtimer_start(&n->timer, ns_to_ktime(timeout),
4454 HRTIMER_MODE_REL_PINNED);
4455 else
4456 napi_gro_flush(n, false);
4457 }
4458 if (likely(list_empty(&n->poll_list))) {
4459 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4460 } else {
4461 /* If n->poll_list is not empty, we need to mask irqs */
4462 local_irq_save(flags);
4463 __napi_complete(n);
4464 local_irq_restore(flags);
4465 }
4466}
4467EXPORT_SYMBOL(napi_complete_done);
4468
4469/* must be called under rcu_read_lock(), as we dont take a reference */
4470struct napi_struct *napi_by_id(unsigned int napi_id)
4471{
4472 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4473 struct napi_struct *napi;
4474
4475 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4476 if (napi->napi_id == napi_id)
4477 return napi;
4478
4479 return NULL;
4480}
4481EXPORT_SYMBOL_GPL(napi_by_id);
4482
4483void napi_hash_add(struct napi_struct *napi)
4484{
4485 if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) {
4486
4487 spin_lock(&napi_hash_lock);
4488
4489 /* 0 is not a valid id, we also skip an id that is taken
4490 * we expect both events to be extremely rare
4491 */
4492 napi->napi_id = 0;
4493 while (!napi->napi_id) {
4494 napi->napi_id = ++napi_gen_id;
4495 if (napi_by_id(napi->napi_id))
4496 napi->napi_id = 0;
4497 }
4498
4499 hlist_add_head_rcu(&napi->napi_hash_node,
4500 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4501
4502 spin_unlock(&napi_hash_lock);
4503 }
4504}
4505EXPORT_SYMBOL_GPL(napi_hash_add);
4506
4507/* Warning : caller is responsible to make sure rcu grace period
4508 * is respected before freeing memory containing @napi
4509 */
4510void napi_hash_del(struct napi_struct *napi)
4511{
4512 spin_lock(&napi_hash_lock);
4513
4514 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state))
4515 hlist_del_rcu(&napi->napi_hash_node);
4516
4517 spin_unlock(&napi_hash_lock);
4518}
4519EXPORT_SYMBOL_GPL(napi_hash_del);
4520
4521static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
4522{
4523 struct napi_struct *napi;
4524
4525 napi = container_of(timer, struct napi_struct, timer);
4526 if (napi->gro_list)
4527 napi_schedule(napi);
4528
4529 return HRTIMER_NORESTART;
4530}
4531
4532void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4533 int (*poll)(struct napi_struct *, int), int weight)
4534{
4535 INIT_LIST_HEAD(&napi->poll_list);
4536 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
4537 napi->timer.function = napi_watchdog;
4538 napi->gro_count = 0;
4539 napi->gro_list = NULL;
4540 napi->skb = NULL;
4541 napi->poll = poll;
4542 if (weight > NAPI_POLL_WEIGHT)
4543 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4544 weight, dev->name);
4545 napi->weight = weight;
4546 list_add(&napi->dev_list, &dev->napi_list);
4547 napi->dev = dev;
4548#ifdef CONFIG_NETPOLL
4549 spin_lock_init(&napi->poll_lock);
4550 napi->poll_owner = -1;
4551#endif
4552 set_bit(NAPI_STATE_SCHED, &napi->state);
4553}
4554EXPORT_SYMBOL(netif_napi_add);
4555
4556void napi_disable(struct napi_struct *n)
4557{
4558 might_sleep();
4559 set_bit(NAPI_STATE_DISABLE, &n->state);
4560
4561 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
4562 msleep(1);
4563
4564 hrtimer_cancel(&n->timer);
4565
4566 clear_bit(NAPI_STATE_DISABLE, &n->state);
4567}
4568EXPORT_SYMBOL(napi_disable);
4569
4570void netif_napi_del(struct napi_struct *napi)
4571{
4572 list_del_init(&napi->dev_list);
4573 napi_free_frags(napi);
4574
4575 kfree_skb_list(napi->gro_list);
4576 napi->gro_list = NULL;
4577 napi->gro_count = 0;
4578}
4579EXPORT_SYMBOL(netif_napi_del);
4580
4581static int napi_poll(struct napi_struct *n, struct list_head *repoll)
4582{
4583 void *have;
4584 int work, weight;
4585
4586 list_del_init(&n->poll_list);
4587
4588 have = netpoll_poll_lock(n);
4589
4590 weight = n->weight;
4591
4592 /* This NAPI_STATE_SCHED test is for avoiding a race
4593 * with netpoll's poll_napi(). Only the entity which
4594 * obtains the lock and sees NAPI_STATE_SCHED set will
4595 * actually make the ->poll() call. Therefore we avoid
4596 * accidentally calling ->poll() when NAPI is not scheduled.
4597 */
4598 work = 0;
4599 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4600 work = n->poll(n, weight);
4601 trace_napi_poll(n);
4602 }
4603
4604 WARN_ON_ONCE(work > weight);
4605
4606 if (likely(work < weight))
4607 goto out_unlock;
4608
4609 /* Drivers must not modify the NAPI state if they
4610 * consume the entire weight. In such cases this code
4611 * still "owns" the NAPI instance and therefore can
4612 * move the instance around on the list at-will.
4613 */
4614 if (unlikely(napi_disable_pending(n))) {
4615 napi_complete(n);
4616 goto out_unlock;
4617 }
4618
4619 if (n->gro_list) {
4620 /* flush too old packets
4621 * If HZ < 1000, flush all packets.
4622 */
4623 napi_gro_flush(n, HZ >= 1000);
4624 }
4625
4626 /* Some drivers may have called napi_schedule
4627 * prior to exhausting their budget.
4628 */
4629 if (unlikely(!list_empty(&n->poll_list))) {
4630 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
4631 n->dev ? n->dev->name : "backlog");
4632 goto out_unlock;
4633 }
4634
4635 list_add_tail(&n->poll_list, repoll);
4636
4637out_unlock:
4638 netpoll_poll_unlock(have);
4639
4640 return work;
4641}
4642
4643static void net_rx_action(struct softirq_action *h)
4644{
4645 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4646 unsigned long time_limit = jiffies + 2;
4647 int budget = netdev_budget;
4648 LIST_HEAD(list);
4649 LIST_HEAD(repoll);
4650
4651 local_irq_disable();
4652 list_splice_init(&sd->poll_list, &list);
4653 local_irq_enable();
4654
4655 for (;;) {
4656 struct napi_struct *n;
4657
4658 if (list_empty(&list)) {
4659 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
4660 return;
4661 break;
4662 }
4663
4664 n = list_first_entry(&list, struct napi_struct, poll_list);
4665 budget -= napi_poll(n, &repoll);
4666
4667 /* If softirq window is exhausted then punt.
4668 * Allow this to run for 2 jiffies since which will allow
4669 * an average latency of 1.5/HZ.
4670 */
4671 if (unlikely(budget <= 0 ||
4672 time_after_eq(jiffies, time_limit))) {
4673 sd->time_squeeze++;
4674 break;
4675 }
4676 }
4677
4678 local_irq_disable();
4679
4680 list_splice_tail_init(&sd->poll_list, &list);
4681 list_splice_tail(&repoll, &list);
4682 list_splice(&list, &sd->poll_list);
4683 if (!list_empty(&sd->poll_list))
4684 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4685
4686 net_rps_action_and_irq_enable(sd);
4687}
4688
4689struct netdev_adjacent {
4690 struct net_device *dev;
4691
4692 /* upper master flag, there can only be one master device per list */
4693 bool master;
4694
4695 /* counter for the number of times this device was added to us */
4696 u16 ref_nr;
4697
4698 /* private field for the users */
4699 void *private;
4700
4701 struct list_head list;
4702 struct rcu_head rcu;
4703};
4704
4705static struct netdev_adjacent *__netdev_find_adj(struct net_device *dev,
4706 struct net_device *adj_dev,
4707 struct list_head *adj_list)
4708{
4709 struct netdev_adjacent *adj;
4710
4711 list_for_each_entry(adj, adj_list, list) {
4712 if (adj->dev == adj_dev)
4713 return adj;
4714 }
4715 return NULL;
4716}
4717
4718/**
4719 * netdev_has_upper_dev - Check if device is linked to an upper device
4720 * @dev: device
4721 * @upper_dev: upper device to check
4722 *
4723 * Find out if a device is linked to specified upper device and return true
4724 * in case it is. Note that this checks only immediate upper device,
4725 * not through a complete stack of devices. The caller must hold the RTNL lock.
4726 */
4727bool netdev_has_upper_dev(struct net_device *dev,
4728 struct net_device *upper_dev)
4729{
4730 ASSERT_RTNL();
4731
4732 return __netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper);
4733}
4734EXPORT_SYMBOL(netdev_has_upper_dev);
4735
4736/**
4737 * netdev_has_any_upper_dev - Check if device is linked to some device
4738 * @dev: device
4739 *
4740 * Find out if a device is linked to an upper device and return true in case
4741 * it is. The caller must hold the RTNL lock.
4742 */
4743static bool netdev_has_any_upper_dev(struct net_device *dev)
4744{
4745 ASSERT_RTNL();
4746
4747 return !list_empty(&dev->all_adj_list.upper);
4748}
4749
4750/**
4751 * netdev_master_upper_dev_get - Get master upper device
4752 * @dev: device
4753 *
4754 * Find a master upper device and return pointer to it or NULL in case
4755 * it's not there. The caller must hold the RTNL lock.
4756 */
4757struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4758{
4759 struct netdev_adjacent *upper;
4760
4761 ASSERT_RTNL();
4762
4763 if (list_empty(&dev->adj_list.upper))
4764 return NULL;
4765
4766 upper = list_first_entry(&dev->adj_list.upper,
4767 struct netdev_adjacent, list);
4768 if (likely(upper->master))
4769 return upper->dev;
4770 return NULL;
4771}
4772EXPORT_SYMBOL(netdev_master_upper_dev_get);
4773
4774void *netdev_adjacent_get_private(struct list_head *adj_list)
4775{
4776 struct netdev_adjacent *adj;
4777
4778 adj = list_entry(adj_list, struct netdev_adjacent, list);
4779
4780 return adj->private;
4781}
4782EXPORT_SYMBOL(netdev_adjacent_get_private);
4783
4784/**
4785 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
4786 * @dev: device
4787 * @iter: list_head ** of the current position
4788 *
4789 * Gets the next device from the dev's upper list, starting from iter
4790 * position. The caller must hold RCU read lock.
4791 */
4792struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4793 struct list_head **iter)
4794{
4795 struct netdev_adjacent *upper;
4796
4797 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4798
4799 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4800
4801 if (&upper->list == &dev->adj_list.upper)
4802 return NULL;
4803
4804 *iter = &upper->list;
4805
4806 return upper->dev;
4807}
4808EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
4809
4810/**
4811 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
4812 * @dev: device
4813 * @iter: list_head ** of the current position
4814 *
4815 * Gets the next device from the dev's upper list, starting from iter
4816 * position. The caller must hold RCU read lock.
4817 */
4818struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4819 struct list_head **iter)
4820{
4821 struct netdev_adjacent *upper;
4822
4823 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4824
4825 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4826
4827 if (&upper->list == &dev->all_adj_list.upper)
4828 return NULL;
4829
4830 *iter = &upper->list;
4831
4832 return upper->dev;
4833}
4834EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
4835
4836/**
4837 * netdev_lower_get_next_private - Get the next ->private from the
4838 * lower neighbour list
4839 * @dev: device
4840 * @iter: list_head ** of the current position
4841 *
4842 * Gets the next netdev_adjacent->private from the dev's lower neighbour
4843 * list, starting from iter position. The caller must hold either hold the
4844 * RTNL lock or its own locking that guarantees that the neighbour lower
4845 * list will remain unchainged.
4846 */
4847void *netdev_lower_get_next_private(struct net_device *dev,
4848 struct list_head **iter)
4849{
4850 struct netdev_adjacent *lower;
4851
4852 lower = list_entry(*iter, struct netdev_adjacent, list);
4853
4854 if (&lower->list == &dev->adj_list.lower)
4855 return NULL;
4856
4857 *iter = lower->list.next;
4858
4859 return lower->private;
4860}
4861EXPORT_SYMBOL(netdev_lower_get_next_private);
4862
4863/**
4864 * netdev_lower_get_next_private_rcu - Get the next ->private from the
4865 * lower neighbour list, RCU
4866 * variant
4867 * @dev: device
4868 * @iter: list_head ** of the current position
4869 *
4870 * Gets the next netdev_adjacent->private from the dev's lower neighbour
4871 * list, starting from iter position. The caller must hold RCU read lock.
4872 */
4873void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4874 struct list_head **iter)
4875{
4876 struct netdev_adjacent *lower;
4877
4878 WARN_ON_ONCE(!rcu_read_lock_held());
4879
4880 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4881
4882 if (&lower->list == &dev->adj_list.lower)
4883 return NULL;
4884
4885 *iter = &lower->list;
4886
4887 return lower->private;
4888}
4889EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
4890
4891/**
4892 * netdev_lower_get_next - Get the next device from the lower neighbour
4893 * list
4894 * @dev: device
4895 * @iter: list_head ** of the current position
4896 *
4897 * Gets the next netdev_adjacent from the dev's lower neighbour
4898 * list, starting from iter position. The caller must hold RTNL lock or
4899 * its own locking that guarantees that the neighbour lower
4900 * list will remain unchainged.
4901 */
4902void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
4903{
4904 struct netdev_adjacent *lower;
4905
4906 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
4907
4908 if (&lower->list == &dev->adj_list.lower)
4909 return NULL;
4910
4911 *iter = &lower->list;
4912
4913 return lower->dev;
4914}
4915EXPORT_SYMBOL(netdev_lower_get_next);
4916
4917/**
4918 * netdev_lower_get_first_private_rcu - Get the first ->private from the
4919 * lower neighbour list, RCU
4920 * variant
4921 * @dev: device
4922 *
4923 * Gets the first netdev_adjacent->private from the dev's lower neighbour
4924 * list. The caller must hold RCU read lock.
4925 */
4926void *netdev_lower_get_first_private_rcu(struct net_device *dev)
4927{
4928 struct netdev_adjacent *lower;
4929
4930 lower = list_first_or_null_rcu(&dev->adj_list.lower,
4931 struct netdev_adjacent, list);
4932 if (lower)
4933 return lower->private;
4934 return NULL;
4935}
4936EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
4937
4938/**
4939 * netdev_master_upper_dev_get_rcu - Get master upper device
4940 * @dev: device
4941 *
4942 * Find a master upper device and return pointer to it or NULL in case
4943 * it's not there. The caller must hold the RCU read lock.
4944 */
4945struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
4946{
4947 struct netdev_adjacent *upper;
4948
4949 upper = list_first_or_null_rcu(&dev->adj_list.upper,
4950 struct netdev_adjacent, list);
4951 if (upper && likely(upper->master))
4952 return upper->dev;
4953 return NULL;
4954}
4955EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
4956
4957static int netdev_adjacent_sysfs_add(struct net_device *dev,
4958 struct net_device *adj_dev,
4959 struct list_head *dev_list)
4960{
4961 char linkname[IFNAMSIZ+7];
4962 sprintf(linkname, dev_list == &dev->adj_list.upper ?
4963 "upper_%s" : "lower_%s", adj_dev->name);
4964 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
4965 linkname);
4966}
4967static void netdev_adjacent_sysfs_del(struct net_device *dev,
4968 char *name,
4969 struct list_head *dev_list)
4970{
4971 char linkname[IFNAMSIZ+7];
4972 sprintf(linkname, dev_list == &dev->adj_list.upper ?
4973 "upper_%s" : "lower_%s", name);
4974 sysfs_remove_link(&(dev->dev.kobj), linkname);
4975}
4976
4977static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
4978 struct net_device *adj_dev,
4979 struct list_head *dev_list)
4980{
4981 return (dev_list == &dev->adj_list.upper ||
4982 dev_list == &dev->adj_list.lower) &&
4983 net_eq(dev_net(dev), dev_net(adj_dev));
4984}
4985
4986static int __netdev_adjacent_dev_insert(struct net_device *dev,
4987 struct net_device *adj_dev,
4988 struct list_head *dev_list,
4989 void *private, bool master)
4990{
4991 struct netdev_adjacent *adj;
4992 int ret;
4993
4994 adj = __netdev_find_adj(dev, adj_dev, dev_list);
4995
4996 if (adj) {
4997 adj->ref_nr++;
4998 return 0;
4999 }
5000
5001 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5002 if (!adj)
5003 return -ENOMEM;
5004
5005 adj->dev = adj_dev;
5006 adj->master = master;
5007 adj->ref_nr = 1;
5008 adj->private = private;
5009 dev_hold(adj_dev);
5010
5011 pr_debug("dev_hold for %s, because of link added from %s to %s\n",
5012 adj_dev->name, dev->name, adj_dev->name);
5013
5014 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
5015 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5016 if (ret)
5017 goto free_adj;
5018 }
5019
5020 /* Ensure that master link is always the first item in list. */
5021 if (master) {
5022 ret = sysfs_create_link(&(dev->dev.kobj),
5023 &(adj_dev->dev.kobj), "master");
5024 if (ret)
5025 goto remove_symlinks;
5026
5027 list_add_rcu(&adj->list, dev_list);
5028 } else {
5029 list_add_tail_rcu(&adj->list, dev_list);
5030 }
5031
5032 return 0;
5033
5034remove_symlinks:
5035 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5036 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5037free_adj:
5038 kfree(adj);
5039 dev_put(adj_dev);
5040
5041 return ret;
5042}
5043
5044static void __netdev_adjacent_dev_remove(struct net_device *dev,
5045 struct net_device *adj_dev,
5046 struct list_head *dev_list)
5047{
5048 struct netdev_adjacent *adj;
5049
5050 adj = __netdev_find_adj(dev, adj_dev, dev_list);
5051
5052 if (!adj) {
5053 pr_err("tried to remove device %s from %s\n",
5054 dev->name, adj_dev->name);
5055 BUG();
5056 }
5057
5058 if (adj->ref_nr > 1) {
5059 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
5060 adj->ref_nr-1);
5061 adj->ref_nr--;
5062 return;
5063 }
5064
5065 if (adj->master)
5066 sysfs_remove_link(&(dev->dev.kobj), "master");
5067
5068 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5069 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5070
5071 list_del_rcu(&adj->list);
5072 pr_debug("dev_put for %s, because link removed from %s to %s\n",
5073 adj_dev->name, dev->name, adj_dev->name);
5074 dev_put(adj_dev);
5075 kfree_rcu(adj, rcu);
5076}
5077
5078static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5079 struct net_device *upper_dev,
5080 struct list_head *up_list,
5081 struct list_head *down_list,
5082 void *private, bool master)
5083{
5084 int ret;
5085
5086 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
5087 master);
5088 if (ret)
5089 return ret;
5090
5091 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
5092 false);
5093 if (ret) {
5094 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5095 return ret;
5096 }
5097
5098 return 0;
5099}
5100
5101static int __netdev_adjacent_dev_link(struct net_device *dev,
5102 struct net_device *upper_dev)
5103{
5104 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5105 &dev->all_adj_list.upper,
5106 &upper_dev->all_adj_list.lower,
5107 NULL, false);
5108}
5109
5110static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5111 struct net_device *upper_dev,
5112 struct list_head *up_list,
5113 struct list_head *down_list)
5114{
5115 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5116 __netdev_adjacent_dev_remove(upper_dev, dev, down_list);
5117}
5118
5119static void __netdev_adjacent_dev_unlink(struct net_device *dev,
5120 struct net_device *upper_dev)
5121{
5122 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5123 &dev->all_adj_list.upper,
5124 &upper_dev->all_adj_list.lower);
5125}
5126
5127static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5128 struct net_device *upper_dev,
5129 void *private, bool master)
5130{
5131 int ret = __netdev_adjacent_dev_link(dev, upper_dev);
5132
5133 if (ret)
5134 return ret;
5135
5136 ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
5137 &dev->adj_list.upper,
5138 &upper_dev->adj_list.lower,
5139 private, master);
5140 if (ret) {
5141 __netdev_adjacent_dev_unlink(dev, upper_dev);
5142 return ret;
5143 }
5144
5145 return 0;
5146}
5147
5148static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5149 struct net_device *upper_dev)
5150{
5151 __netdev_adjacent_dev_unlink(dev, upper_dev);
5152 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5153 &dev->adj_list.upper,
5154 &upper_dev->adj_list.lower);
5155}
5156
5157static int __netdev_upper_dev_link(struct net_device *dev,
5158 struct net_device *upper_dev, bool master,
5159 void *private)
5160{
5161 struct netdev_adjacent *i, *j, *to_i, *to_j;
5162 int ret = 0;
5163
5164 ASSERT_RTNL();
5165
5166 if (dev == upper_dev)
5167 return -EBUSY;
5168
5169 /* To prevent loops, check if dev is not upper device to upper_dev. */
5170 if (__netdev_find_adj(upper_dev, dev, &upper_dev->all_adj_list.upper))
5171 return -EBUSY;
5172
5173 if (__netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper))
5174 return -EEXIST;
5175
5176 if (master && netdev_master_upper_dev_get(dev))
5177 return -EBUSY;
5178
5179 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private,
5180 master);
5181 if (ret)
5182 return ret;
5183
5184 /* Now that we linked these devs, make all the upper_dev's
5185 * all_adj_list.upper visible to every dev's all_adj_list.lower an
5186 * versa, and don't forget the devices itself. All of these
5187 * links are non-neighbours.
5188 */
5189 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5190 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5191 pr_debug("Interlinking %s with %s, non-neighbour\n",
5192 i->dev->name, j->dev->name);
5193 ret = __netdev_adjacent_dev_link(i->dev, j->dev);
5194 if (ret)
5195 goto rollback_mesh;
5196 }
5197 }
5198
5199 /* add dev to every upper_dev's upper device */
5200 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5201 pr_debug("linking %s's upper device %s with %s\n",
5202 upper_dev->name, i->dev->name, dev->name);
5203 ret = __netdev_adjacent_dev_link(dev, i->dev);
5204 if (ret)
5205 goto rollback_upper_mesh;
5206 }
5207
5208 /* add upper_dev to every dev's lower device */
5209 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5210 pr_debug("linking %s's lower device %s with %s\n", dev->name,
5211 i->dev->name, upper_dev->name);
5212 ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
5213 if (ret)
5214 goto rollback_lower_mesh;
5215 }
5216
5217 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
5218 return 0;
5219
5220rollback_lower_mesh:
5221 to_i = i;
5222 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5223 if (i == to_i)
5224 break;
5225 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5226 }
5227
5228 i = NULL;
5229
5230rollback_upper_mesh:
5231 to_i = i;
5232 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5233 if (i == to_i)
5234 break;
5235 __netdev_adjacent_dev_unlink(dev, i->dev);
5236 }
5237
5238 i = j = NULL;
5239
5240rollback_mesh:
5241 to_i = i;
5242 to_j = j;
5243 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5244 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5245 if (i == to_i && j == to_j)
5246 break;
5247 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5248 }
5249 if (i == to_i)
5250 break;
5251 }
5252
5253 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5254
5255 return ret;
5256}
5257
5258/**
5259 * netdev_upper_dev_link - Add a link to the upper device
5260 * @dev: device
5261 * @upper_dev: new upper device
5262 *
5263 * Adds a link to device which is upper to this one. The caller must hold
5264 * the RTNL lock. On a failure a negative errno code is returned.
5265 * On success the reference counts are adjusted and the function
5266 * returns zero.
5267 */
5268int netdev_upper_dev_link(struct net_device *dev,
5269 struct net_device *upper_dev)
5270{
5271 return __netdev_upper_dev_link(dev, upper_dev, false, NULL);
5272}
5273EXPORT_SYMBOL(netdev_upper_dev_link);
5274
5275/**
5276 * netdev_master_upper_dev_link - Add a master link to the upper device
5277 * @dev: device
5278 * @upper_dev: new upper device
5279 *
5280 * Adds a link to device which is upper to this one. In this case, only
5281 * one master upper device can be linked, although other non-master devices
5282 * might be linked as well. The caller must hold the RTNL lock.
5283 * On a failure a negative errno code is returned. On success the reference
5284 * counts are adjusted and the function returns zero.
5285 */
5286int netdev_master_upper_dev_link(struct net_device *dev,
5287 struct net_device *upper_dev)
5288{
5289 return __netdev_upper_dev_link(dev, upper_dev, true, NULL);
5290}
5291EXPORT_SYMBOL(netdev_master_upper_dev_link);
5292
5293int netdev_master_upper_dev_link_private(struct net_device *dev,
5294 struct net_device *upper_dev,
5295 void *private)
5296{
5297 return __netdev_upper_dev_link(dev, upper_dev, true, private);
5298}
5299EXPORT_SYMBOL(netdev_master_upper_dev_link_private);
5300
5301/**
5302 * netdev_upper_dev_unlink - Removes a link to upper device
5303 * @dev: device
5304 * @upper_dev: new upper device
5305 *
5306 * Removes a link to device which is upper to this one. The caller must hold
5307 * the RTNL lock.
5308 */
5309void netdev_upper_dev_unlink(struct net_device *dev,
5310 struct net_device *upper_dev)
5311{
5312 struct netdev_adjacent *i, *j;
5313 ASSERT_RTNL();
5314
5315 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5316
5317 /* Here is the tricky part. We must remove all dev's lower
5318 * devices from all upper_dev's upper devices and vice
5319 * versa, to maintain the graph relationship.
5320 */
5321 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5322 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5323 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5324
5325 /* remove also the devices itself from lower/upper device
5326 * list
5327 */
5328 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5329 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5330
5331 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5332 __netdev_adjacent_dev_unlink(dev, i->dev);
5333
5334 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
5335}
5336EXPORT_SYMBOL(netdev_upper_dev_unlink);
5337
5338/**
5339 * netdev_bonding_info_change - Dispatch event about slave change
5340 * @dev: device
5341 * @bonding_info: info to dispatch
5342 *
5343 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
5344 * The caller must hold the RTNL lock.
5345 */
5346void netdev_bonding_info_change(struct net_device *dev,
5347 struct netdev_bonding_info *bonding_info)
5348{
5349 struct netdev_notifier_bonding_info info;
5350
5351 memcpy(&info.bonding_info, bonding_info,
5352 sizeof(struct netdev_bonding_info));
5353 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
5354 &info.info);
5355}
5356EXPORT_SYMBOL(netdev_bonding_info_change);
5357
5358static void netdev_adjacent_add_links(struct net_device *dev)
5359{
5360 struct netdev_adjacent *iter;
5361
5362 struct net *net = dev_net(dev);
5363
5364 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5365 if (!net_eq(net,dev_net(iter->dev)))
5366 continue;
5367 netdev_adjacent_sysfs_add(iter->dev, dev,
5368 &iter->dev->adj_list.lower);
5369 netdev_adjacent_sysfs_add(dev, iter->dev,
5370 &dev->adj_list.upper);
5371 }
5372
5373 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5374 if (!net_eq(net,dev_net(iter->dev)))
5375 continue;
5376 netdev_adjacent_sysfs_add(iter->dev, dev,
5377 &iter->dev->adj_list.upper);
5378 netdev_adjacent_sysfs_add(dev, iter->dev,
5379 &dev->adj_list.lower);
5380 }
5381}
5382
5383static void netdev_adjacent_del_links(struct net_device *dev)
5384{
5385 struct netdev_adjacent *iter;
5386
5387 struct net *net = dev_net(dev);
5388
5389 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5390 if (!net_eq(net,dev_net(iter->dev)))
5391 continue;
5392 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5393 &iter->dev->adj_list.lower);
5394 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5395 &dev->adj_list.upper);
5396 }
5397
5398 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5399 if (!net_eq(net,dev_net(iter->dev)))
5400 continue;
5401 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5402 &iter->dev->adj_list.upper);
5403 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5404 &dev->adj_list.lower);
5405 }
5406}
5407
5408void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
5409{
5410 struct netdev_adjacent *iter;
5411
5412 struct net *net = dev_net(dev);
5413
5414 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5415 if (!net_eq(net,dev_net(iter->dev)))
5416 continue;
5417 netdev_adjacent_sysfs_del(iter->dev, oldname,
5418 &iter->dev->adj_list.lower);
5419 netdev_adjacent_sysfs_add(iter->dev, dev,
5420 &iter->dev->adj_list.lower);
5421 }
5422
5423 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5424 if (!net_eq(net,dev_net(iter->dev)))
5425 continue;
5426 netdev_adjacent_sysfs_del(iter->dev, oldname,
5427 &iter->dev->adj_list.upper);
5428 netdev_adjacent_sysfs_add(iter->dev, dev,
5429 &iter->dev->adj_list.upper);
5430 }
5431}
5432
5433void *netdev_lower_dev_get_private(struct net_device *dev,
5434 struct net_device *lower_dev)
5435{
5436 struct netdev_adjacent *lower;
5437
5438 if (!lower_dev)
5439 return NULL;
5440 lower = __netdev_find_adj(dev, lower_dev, &dev->adj_list.lower);
5441 if (!lower)
5442 return NULL;
5443
5444 return lower->private;
5445}
5446EXPORT_SYMBOL(netdev_lower_dev_get_private);
5447
5448
5449int dev_get_nest_level(struct net_device *dev,
5450 bool (*type_check)(struct net_device *dev))
5451{
5452 struct net_device *lower = NULL;
5453 struct list_head *iter;
5454 int max_nest = -1;
5455 int nest;
5456
5457 ASSERT_RTNL();
5458
5459 netdev_for_each_lower_dev(dev, lower, iter) {
5460 nest = dev_get_nest_level(lower, type_check);
5461 if (max_nest < nest)
5462 max_nest = nest;
5463 }
5464
5465 if (type_check(dev))
5466 max_nest++;
5467
5468 return max_nest;
5469}
5470EXPORT_SYMBOL(dev_get_nest_level);
5471
5472static void dev_change_rx_flags(struct net_device *dev, int flags)
5473{
5474 const struct net_device_ops *ops = dev->netdev_ops;
5475
5476 if (ops->ndo_change_rx_flags)
5477 ops->ndo_change_rx_flags(dev, flags);
5478}
5479
5480static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
5481{
5482 unsigned int old_flags = dev->flags;
5483 kuid_t uid;
5484 kgid_t gid;
5485
5486 ASSERT_RTNL();
5487
5488 dev->flags |= IFF_PROMISC;
5489 dev->promiscuity += inc;
5490 if (dev->promiscuity == 0) {
5491 /*
5492 * Avoid overflow.
5493 * If inc causes overflow, untouch promisc and return error.
5494 */
5495 if (inc < 0)
5496 dev->flags &= ~IFF_PROMISC;
5497 else {
5498 dev->promiscuity -= inc;
5499 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
5500 dev->name);
5501 return -EOVERFLOW;
5502 }
5503 }
5504 if (dev->flags != old_flags) {
5505 pr_info("device %s %s promiscuous mode\n",
5506 dev->name,
5507 dev->flags & IFF_PROMISC ? "entered" : "left");
5508 if (audit_enabled) {
5509 current_uid_gid(&uid, &gid);
5510 audit_log(current->audit_context, GFP_ATOMIC,
5511 AUDIT_ANOM_PROMISCUOUS,
5512 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
5513 dev->name, (dev->flags & IFF_PROMISC),
5514 (old_flags & IFF_PROMISC),
5515 from_kuid(&init_user_ns, audit_get_loginuid(current)),
5516 from_kuid(&init_user_ns, uid),
5517 from_kgid(&init_user_ns, gid),
5518 audit_get_sessionid(current));
5519 }
5520
5521 dev_change_rx_flags(dev, IFF_PROMISC);
5522 }
5523 if (notify)
5524 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
5525 return 0;
5526}
5527
5528/**
5529 * dev_set_promiscuity - update promiscuity count on a device
5530 * @dev: device
5531 * @inc: modifier
5532 *
5533 * Add or remove promiscuity from a device. While the count in the device
5534 * remains above zero the interface remains promiscuous. Once it hits zero
5535 * the device reverts back to normal filtering operation. A negative inc
5536 * value is used to drop promiscuity on the device.
5537 * Return 0 if successful or a negative errno code on error.
5538 */
5539int dev_set_promiscuity(struct net_device *dev, int inc)
5540{
5541 unsigned int old_flags = dev->flags;
5542 int err;
5543
5544 err = __dev_set_promiscuity(dev, inc, true);
5545 if (err < 0)
5546 return err;
5547 if (dev->flags != old_flags)
5548 dev_set_rx_mode(dev);
5549 return err;
5550}
5551EXPORT_SYMBOL(dev_set_promiscuity);
5552
5553static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
5554{
5555 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
5556
5557 ASSERT_RTNL();
5558
5559 dev->flags |= IFF_ALLMULTI;
5560 dev->allmulti += inc;
5561 if (dev->allmulti == 0) {
5562 /*
5563 * Avoid overflow.
5564 * If inc causes overflow, untouch allmulti and return error.
5565 */
5566 if (inc < 0)
5567 dev->flags &= ~IFF_ALLMULTI;
5568 else {
5569 dev->allmulti -= inc;
5570 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
5571 dev->name);
5572 return -EOVERFLOW;
5573 }
5574 }
5575 if (dev->flags ^ old_flags) {
5576 dev_change_rx_flags(dev, IFF_ALLMULTI);
5577 dev_set_rx_mode(dev);
5578 if (notify)
5579 __dev_notify_flags(dev, old_flags,
5580 dev->gflags ^ old_gflags);
5581 }
5582 return 0;
5583}
5584
5585/**
5586 * dev_set_allmulti - update allmulti count on a device
5587 * @dev: device
5588 * @inc: modifier
5589 *
5590 * Add or remove reception of all multicast frames to a device. While the
5591 * count in the device remains above zero the interface remains listening
5592 * to all interfaces. Once it hits zero the device reverts back to normal
5593 * filtering operation. A negative @inc value is used to drop the counter
5594 * when releasing a resource needing all multicasts.
5595 * Return 0 if successful or a negative errno code on error.
5596 */
5597
5598int dev_set_allmulti(struct net_device *dev, int inc)
5599{
5600 return __dev_set_allmulti(dev, inc, true);
5601}
5602EXPORT_SYMBOL(dev_set_allmulti);
5603
5604/*
5605 * Upload unicast and multicast address lists to device and
5606 * configure RX filtering. When the device doesn't support unicast
5607 * filtering it is put in promiscuous mode while unicast addresses
5608 * are present.
5609 */
5610void __dev_set_rx_mode(struct net_device *dev)
5611{
5612 const struct net_device_ops *ops = dev->netdev_ops;
5613
5614 /* dev_open will call this function so the list will stay sane. */
5615 if (!(dev->flags&IFF_UP))
5616 return;
5617
5618 if (!netif_device_present(dev))
5619 return;
5620
5621 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
5622 /* Unicast addresses changes may only happen under the rtnl,
5623 * therefore calling __dev_set_promiscuity here is safe.
5624 */
5625 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
5626 __dev_set_promiscuity(dev, 1, false);
5627 dev->uc_promisc = true;
5628 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
5629 __dev_set_promiscuity(dev, -1, false);
5630 dev->uc_promisc = false;
5631 }
5632 }
5633
5634 if (ops->ndo_set_rx_mode)
5635 ops->ndo_set_rx_mode(dev);
5636}
5637
5638void dev_set_rx_mode(struct net_device *dev)
5639{
5640 netif_addr_lock_bh(dev);
5641 __dev_set_rx_mode(dev);
5642 netif_addr_unlock_bh(dev);
5643}
5644
5645/**
5646 * dev_get_flags - get flags reported to userspace
5647 * @dev: device
5648 *
5649 * Get the combination of flag bits exported through APIs to userspace.
5650 */
5651unsigned int dev_get_flags(const struct net_device *dev)
5652{
5653 unsigned int flags;
5654
5655 flags = (dev->flags & ~(IFF_PROMISC |
5656 IFF_ALLMULTI |
5657 IFF_RUNNING |
5658 IFF_LOWER_UP |
5659 IFF_DORMANT)) |
5660 (dev->gflags & (IFF_PROMISC |
5661 IFF_ALLMULTI));
5662
5663 if (netif_running(dev)) {
5664 if (netif_oper_up(dev))
5665 flags |= IFF_RUNNING;
5666 if (netif_carrier_ok(dev))
5667 flags |= IFF_LOWER_UP;
5668 if (netif_dormant(dev))
5669 flags |= IFF_DORMANT;
5670 }
5671
5672 return flags;
5673}
5674EXPORT_SYMBOL(dev_get_flags);
5675
5676int __dev_change_flags(struct net_device *dev, unsigned int flags)
5677{
5678 unsigned int old_flags = dev->flags;
5679 int ret;
5680
5681 ASSERT_RTNL();
5682
5683 /*
5684 * Set the flags on our device.
5685 */
5686
5687 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
5688 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
5689 IFF_AUTOMEDIA)) |
5690 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
5691 IFF_ALLMULTI));
5692
5693 /*
5694 * Load in the correct multicast list now the flags have changed.
5695 */
5696
5697 if ((old_flags ^ flags) & IFF_MULTICAST)
5698 dev_change_rx_flags(dev, IFF_MULTICAST);
5699
5700 dev_set_rx_mode(dev);
5701
5702 /*
5703 * Have we downed the interface. We handle IFF_UP ourselves
5704 * according to user attempts to set it, rather than blindly
5705 * setting it.
5706 */
5707
5708 ret = 0;
5709 if ((old_flags ^ flags) & IFF_UP)
5710 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
5711
5712 if ((flags ^ dev->gflags) & IFF_PROMISC) {
5713 int inc = (flags & IFF_PROMISC) ? 1 : -1;
5714 unsigned int old_flags = dev->flags;
5715
5716 dev->gflags ^= IFF_PROMISC;
5717
5718 if (__dev_set_promiscuity(dev, inc, false) >= 0)
5719 if (dev->flags != old_flags)
5720 dev_set_rx_mode(dev);
5721 }
5722
5723 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
5724 is important. Some (broken) drivers set IFF_PROMISC, when
5725 IFF_ALLMULTI is requested not asking us and not reporting.
5726 */
5727 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
5728 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
5729
5730 dev->gflags ^= IFF_ALLMULTI;
5731 __dev_set_allmulti(dev, inc, false);
5732 }
5733
5734 return ret;
5735}
5736
5737void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
5738 unsigned int gchanges)
5739{
5740 unsigned int changes = dev->flags ^ old_flags;
5741
5742 if (gchanges)
5743 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
5744
5745 if (changes & IFF_UP) {
5746 if (dev->flags & IFF_UP)
5747 call_netdevice_notifiers(NETDEV_UP, dev);
5748 else
5749 call_netdevice_notifiers(NETDEV_DOWN, dev);
5750 }
5751
5752 if (dev->flags & IFF_UP &&
5753 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
5754 struct netdev_notifier_change_info change_info;
5755
5756 change_info.flags_changed = changes;
5757 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
5758 &change_info.info);
5759 }
5760}
5761
5762/**
5763 * dev_change_flags - change device settings
5764 * @dev: device
5765 * @flags: device state flags
5766 *
5767 * Change settings on device based state flags. The flags are
5768 * in the userspace exported format.
5769 */
5770int dev_change_flags(struct net_device *dev, unsigned int flags)
5771{
5772 int ret;
5773 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
5774
5775 ret = __dev_change_flags(dev, flags);
5776 if (ret < 0)
5777 return ret;
5778
5779 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
5780 __dev_notify_flags(dev, old_flags, changes);
5781 return ret;
5782}
5783EXPORT_SYMBOL(dev_change_flags);
5784
5785static int __dev_set_mtu(struct net_device *dev, int new_mtu)
5786{
5787 const struct net_device_ops *ops = dev->netdev_ops;
5788
5789 if (ops->ndo_change_mtu)
5790 return ops->ndo_change_mtu(dev, new_mtu);
5791
5792 dev->mtu = new_mtu;
5793 return 0;
5794}
5795
5796/**
5797 * dev_set_mtu - Change maximum transfer unit
5798 * @dev: device
5799 * @new_mtu: new transfer unit
5800 *
5801 * Change the maximum transfer size of the network device.
5802 */
5803int dev_set_mtu(struct net_device *dev, int new_mtu)
5804{
5805 int err, orig_mtu;
5806
5807 if (new_mtu == dev->mtu)
5808 return 0;
5809
5810 /* MTU must be positive. */
5811 if (new_mtu < 0)
5812 return -EINVAL;
5813
5814 if (!netif_device_present(dev))
5815 return -ENODEV;
5816
5817 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
5818 err = notifier_to_errno(err);
5819 if (err)
5820 return err;
5821
5822 orig_mtu = dev->mtu;
5823 err = __dev_set_mtu(dev, new_mtu);
5824
5825 if (!err) {
5826 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5827 err = notifier_to_errno(err);
5828 if (err) {
5829 /* setting mtu back and notifying everyone again,
5830 * so that they have a chance to revert changes.
5831 */
5832 __dev_set_mtu(dev, orig_mtu);
5833 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5834 }
5835 }
5836 return err;
5837}
5838EXPORT_SYMBOL(dev_set_mtu);
5839
5840/**
5841 * dev_set_group - Change group this device belongs to
5842 * @dev: device
5843 * @new_group: group this device should belong to
5844 */
5845void dev_set_group(struct net_device *dev, int new_group)
5846{
5847 dev->group = new_group;
5848}
5849EXPORT_SYMBOL(dev_set_group);
5850
5851/**
5852 * dev_set_mac_address - Change Media Access Control Address
5853 * @dev: device
5854 * @sa: new address
5855 *
5856 * Change the hardware (MAC) address of the device
5857 */
5858int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
5859{
5860 const struct net_device_ops *ops = dev->netdev_ops;
5861 int err;
5862
5863 if (!ops->ndo_set_mac_address)
5864 return -EOPNOTSUPP;
5865 if (sa->sa_family != dev->type)
5866 return -EINVAL;
5867 if (!netif_device_present(dev))
5868 return -ENODEV;
5869 err = ops->ndo_set_mac_address(dev, sa);
5870 if (err)
5871 return err;
5872 dev->addr_assign_type = NET_ADDR_SET;
5873 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
5874 add_device_randomness(dev->dev_addr, dev->addr_len);
5875 return 0;
5876}
5877EXPORT_SYMBOL(dev_set_mac_address);
5878
5879/**
5880 * dev_change_carrier - Change device carrier
5881 * @dev: device
5882 * @new_carrier: new value
5883 *
5884 * Change device carrier
5885 */
5886int dev_change_carrier(struct net_device *dev, bool new_carrier)
5887{
5888 const struct net_device_ops *ops = dev->netdev_ops;
5889
5890 if (!ops->ndo_change_carrier)
5891 return -EOPNOTSUPP;
5892 if (!netif_device_present(dev))
5893 return -ENODEV;
5894 return ops->ndo_change_carrier(dev, new_carrier);
5895}
5896EXPORT_SYMBOL(dev_change_carrier);
5897
5898/**
5899 * dev_get_phys_port_id - Get device physical port ID
5900 * @dev: device
5901 * @ppid: port ID
5902 *
5903 * Get device physical port ID
5904 */
5905int dev_get_phys_port_id(struct net_device *dev,
5906 struct netdev_phys_item_id *ppid)
5907{
5908 const struct net_device_ops *ops = dev->netdev_ops;
5909
5910 if (!ops->ndo_get_phys_port_id)
5911 return -EOPNOTSUPP;
5912 return ops->ndo_get_phys_port_id(dev, ppid);
5913}
5914EXPORT_SYMBOL(dev_get_phys_port_id);
5915
5916/**
5917 * dev_new_index - allocate an ifindex
5918 * @net: the applicable net namespace
5919 *
5920 * Returns a suitable unique value for a new device interface
5921 * number. The caller must hold the rtnl semaphore or the
5922 * dev_base_lock to be sure it remains unique.
5923 */
5924static int dev_new_index(struct net *net)
5925{
5926 int ifindex = net->ifindex;
5927 for (;;) {
5928 if (++ifindex <= 0)
5929 ifindex = 1;
5930 if (!__dev_get_by_index(net, ifindex))
5931 return net->ifindex = ifindex;
5932 }
5933}
5934
5935/* Delayed registration/unregisteration */
5936static LIST_HEAD(net_todo_list);
5937DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
5938
5939static void net_set_todo(struct net_device *dev)
5940{
5941 list_add_tail(&dev->todo_list, &net_todo_list);
5942 dev_net(dev)->dev_unreg_count++;
5943}
5944
5945static void rollback_registered_many(struct list_head *head)
5946{
5947 struct net_device *dev, *tmp;
5948 LIST_HEAD(close_head);
5949
5950 BUG_ON(dev_boot_phase);
5951 ASSERT_RTNL();
5952
5953 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5954 /* Some devices call without registering
5955 * for initialization unwind. Remove those
5956 * devices and proceed with the remaining.
5957 */
5958 if (dev->reg_state == NETREG_UNINITIALIZED) {
5959 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
5960 dev->name, dev);
5961
5962 WARN_ON(1);
5963 list_del(&dev->unreg_list);
5964 continue;
5965 }
5966 dev->dismantle = true;
5967 BUG_ON(dev->reg_state != NETREG_REGISTERED);
5968 }
5969
5970 /* If device is running, close it first. */
5971 list_for_each_entry(dev, head, unreg_list)
5972 list_add_tail(&dev->close_list, &close_head);
5973 dev_close_many(&close_head);
5974
5975 list_for_each_entry(dev, head, unreg_list) {
5976 /* And unlink it from device chain. */
5977 unlist_netdevice(dev);
5978
5979 dev->reg_state = NETREG_UNREGISTERING;
5980 }
5981
5982 synchronize_net();
5983
5984 list_for_each_entry(dev, head, unreg_list) {
5985 struct sk_buff *skb = NULL;
5986
5987 /* Shutdown queueing discipline. */
5988 dev_shutdown(dev);
5989
5990
5991 /* Notify protocols, that we are about to destroy
5992 this device. They should clean all the things.
5993 */
5994 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5995
5996 if (!dev->rtnl_link_ops ||
5997 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5998 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
5999 GFP_KERNEL);
6000
6001 /*
6002 * Flush the unicast and multicast chains
6003 */
6004 dev_uc_flush(dev);
6005 dev_mc_flush(dev);
6006
6007 if (dev->netdev_ops->ndo_uninit)
6008 dev->netdev_ops->ndo_uninit(dev);
6009
6010 if (skb)
6011 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
6012
6013 /* Notifier chain MUST detach us all upper devices. */
6014 WARN_ON(netdev_has_any_upper_dev(dev));
6015
6016 /* Remove entries from kobject tree */
6017 netdev_unregister_kobject(dev);
6018#ifdef CONFIG_XPS
6019 /* Remove XPS queueing entries */
6020 netif_reset_xps_queues_gt(dev, 0);
6021#endif
6022 }
6023
6024 synchronize_net();
6025
6026 list_for_each_entry(dev, head, unreg_list)
6027 dev_put(dev);
6028}
6029
6030static void rollback_registered(struct net_device *dev)
6031{
6032 LIST_HEAD(single);
6033
6034 list_add(&dev->unreg_list, &single);
6035 rollback_registered_many(&single);
6036 list_del(&single);
6037}
6038
6039static netdev_features_t netdev_fix_features(struct net_device *dev,
6040 netdev_features_t features)
6041{
6042 /* Fix illegal checksum combinations */
6043 if ((features & NETIF_F_HW_CSUM) &&
6044 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6045 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
6046 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6047 }
6048
6049 /* TSO requires that SG is present as well. */
6050 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6051 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
6052 features &= ~NETIF_F_ALL_TSO;
6053 }
6054
6055 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6056 !(features & NETIF_F_IP_CSUM)) {
6057 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6058 features &= ~NETIF_F_TSO;
6059 features &= ~NETIF_F_TSO_ECN;
6060 }
6061
6062 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6063 !(features & NETIF_F_IPV6_CSUM)) {
6064 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6065 features &= ~NETIF_F_TSO6;
6066 }
6067
6068 /* TSO ECN requires that TSO is present as well. */
6069 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6070 features &= ~NETIF_F_TSO_ECN;
6071
6072 /* Software GSO depends on SG. */
6073 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6074 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
6075 features &= ~NETIF_F_GSO;
6076 }
6077
6078 /* UFO needs SG and checksumming */
6079 if (features & NETIF_F_UFO) {
6080 /* maybe split UFO into V4 and V6? */
6081 if (!((features & NETIF_F_GEN_CSUM) ||
6082 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
6083 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6084 netdev_dbg(dev,
6085 "Dropping NETIF_F_UFO since no checksum offload features.\n");
6086 features &= ~NETIF_F_UFO;
6087 }
6088
6089 if (!(features & NETIF_F_SG)) {
6090 netdev_dbg(dev,
6091 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
6092 features &= ~NETIF_F_UFO;
6093 }
6094 }
6095
6096#ifdef CONFIG_NET_RX_BUSY_POLL
6097 if (dev->netdev_ops->ndo_busy_poll)
6098 features |= NETIF_F_BUSY_POLL;
6099 else
6100#endif
6101 features &= ~NETIF_F_BUSY_POLL;
6102
6103 return features;
6104}
6105
6106int __netdev_update_features(struct net_device *dev)
6107{
6108 netdev_features_t features;
6109 int err = 0;
6110
6111 ASSERT_RTNL();
6112
6113 features = netdev_get_wanted_features(dev);
6114
6115 if (dev->netdev_ops->ndo_fix_features)
6116 features = dev->netdev_ops->ndo_fix_features(dev, features);
6117
6118 /* driver might be less strict about feature dependencies */
6119 features = netdev_fix_features(dev, features);
6120
6121 if (dev->features == features)
6122 return 0;
6123
6124 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6125 &dev->features, &features);
6126
6127 if (dev->netdev_ops->ndo_set_features)
6128 err = dev->netdev_ops->ndo_set_features(dev, features);
6129
6130 if (unlikely(err < 0)) {
6131 netdev_err(dev,
6132 "set_features() failed (%d); wanted %pNF, left %pNF\n",
6133 err, &features, &dev->features);
6134 return -1;
6135 }
6136
6137 if (!err)
6138 dev->features = features;
6139
6140 return 1;
6141}
6142
6143/**
6144 * netdev_update_features - recalculate device features
6145 * @dev: the device to check
6146 *
6147 * Recalculate dev->features set and send notifications if it
6148 * has changed. Should be called after driver or hardware dependent
6149 * conditions might have changed that influence the features.
6150 */
6151void netdev_update_features(struct net_device *dev)
6152{
6153 if (__netdev_update_features(dev))
6154 netdev_features_change(dev);
6155}
6156EXPORT_SYMBOL(netdev_update_features);
6157
6158/**
6159 * netdev_change_features - recalculate device features
6160 * @dev: the device to check
6161 *
6162 * Recalculate dev->features set and send notifications even
6163 * if they have not changed. Should be called instead of
6164 * netdev_update_features() if also dev->vlan_features might
6165 * have changed to allow the changes to be propagated to stacked
6166 * VLAN devices.
6167 */
6168void netdev_change_features(struct net_device *dev)
6169{
6170 __netdev_update_features(dev);
6171 netdev_features_change(dev);
6172}
6173EXPORT_SYMBOL(netdev_change_features);
6174
6175/**
6176 * netif_stacked_transfer_operstate - transfer operstate
6177 * @rootdev: the root or lower level device to transfer state from
6178 * @dev: the device to transfer operstate to
6179 *
6180 * Transfer operational state from root to device. This is normally
6181 * called when a stacking relationship exists between the root
6182 * device and the device(a leaf device).
6183 */
6184void netif_stacked_transfer_operstate(const struct net_device *rootdev,
6185 struct net_device *dev)
6186{
6187 if (rootdev->operstate == IF_OPER_DORMANT)
6188 netif_dormant_on(dev);
6189 else
6190 netif_dormant_off(dev);
6191
6192 if (netif_carrier_ok(rootdev)) {
6193 if (!netif_carrier_ok(dev))
6194 netif_carrier_on(dev);
6195 } else {
6196 if (netif_carrier_ok(dev))
6197 netif_carrier_off(dev);
6198 }
6199}
6200EXPORT_SYMBOL(netif_stacked_transfer_operstate);
6201
6202#ifdef CONFIG_SYSFS
6203static int netif_alloc_rx_queues(struct net_device *dev)
6204{
6205 unsigned int i, count = dev->num_rx_queues;
6206 struct netdev_rx_queue *rx;
6207 size_t sz = count * sizeof(*rx);
6208
6209 BUG_ON(count < 1);
6210
6211 rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6212 if (!rx) {
6213 rx = vzalloc(sz);
6214 if (!rx)
6215 return -ENOMEM;
6216 }
6217 dev->_rx = rx;
6218
6219 for (i = 0; i < count; i++)
6220 rx[i].dev = dev;
6221 return 0;
6222}
6223#endif
6224
6225static void netdev_init_one_queue(struct net_device *dev,
6226 struct netdev_queue *queue, void *_unused)
6227{
6228 /* Initialize queue lock */
6229 spin_lock_init(&queue->_xmit_lock);
6230 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
6231 queue->xmit_lock_owner = -1;
6232 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
6233 queue->dev = dev;
6234#ifdef CONFIG_BQL
6235 dql_init(&queue->dql, HZ);
6236#endif
6237}
6238
6239static void netif_free_tx_queues(struct net_device *dev)
6240{
6241 kvfree(dev->_tx);
6242}
6243
6244static int netif_alloc_netdev_queues(struct net_device *dev)
6245{
6246 unsigned int count = dev->num_tx_queues;
6247 struct netdev_queue *tx;
6248 size_t sz = count * sizeof(*tx);
6249
6250 BUG_ON(count < 1 || count > 0xffff);
6251
6252 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6253 if (!tx) {
6254 tx = vzalloc(sz);
6255 if (!tx)
6256 return -ENOMEM;
6257 }
6258 dev->_tx = tx;
6259
6260 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
6261 spin_lock_init(&dev->tx_global_lock);
6262
6263 return 0;
6264}
6265
6266/**
6267 * register_netdevice - register a network device
6268 * @dev: device to register
6269 *
6270 * Take a completed network device structure and add it to the kernel
6271 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6272 * chain. 0 is returned on success. A negative errno code is returned
6273 * on a failure to set up the device, or if the name is a duplicate.
6274 *
6275 * Callers must hold the rtnl semaphore. You may want
6276 * register_netdev() instead of this.
6277 *
6278 * BUGS:
6279 * The locking appears insufficient to guarantee two parallel registers
6280 * will not get the same name.
6281 */
6282
6283int register_netdevice(struct net_device *dev)
6284{
6285 int ret;
6286 struct net *net = dev_net(dev);
6287
6288 BUG_ON(dev_boot_phase);
6289 ASSERT_RTNL();
6290
6291 might_sleep();
6292
6293 /* When net_device's are persistent, this will be fatal. */
6294 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
6295 BUG_ON(!net);
6296
6297 spin_lock_init(&dev->addr_list_lock);
6298 netdev_set_addr_lockdep_class(dev);
6299
6300 dev->iflink = -1;
6301
6302 ret = dev_get_valid_name(net, dev, dev->name);
6303 if (ret < 0)
6304 goto out;
6305
6306 /* Init, if this function is available */
6307 if (dev->netdev_ops->ndo_init) {
6308 ret = dev->netdev_ops->ndo_init(dev);
6309 if (ret) {
6310 if (ret > 0)
6311 ret = -EIO;
6312 goto out;
6313 }
6314 }
6315
6316 if (((dev->hw_features | dev->features) &
6317 NETIF_F_HW_VLAN_CTAG_FILTER) &&
6318 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
6319 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
6320 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
6321 ret = -EINVAL;
6322 goto err_uninit;
6323 }
6324
6325 ret = -EBUSY;
6326 if (!dev->ifindex)
6327 dev->ifindex = dev_new_index(net);
6328 else if (__dev_get_by_index(net, dev->ifindex))
6329 goto err_uninit;
6330
6331 if (dev->iflink == -1)
6332 dev->iflink = dev->ifindex;
6333
6334 /* Transfer changeable features to wanted_features and enable
6335 * software offloads (GSO and GRO).
6336 */
6337 dev->hw_features |= NETIF_F_SOFT_FEATURES;
6338 dev->features |= NETIF_F_SOFT_FEATURES;
6339 dev->wanted_features = dev->features & dev->hw_features;
6340
6341 if (!(dev->flags & IFF_LOOPBACK)) {
6342 dev->hw_features |= NETIF_F_NOCACHE_COPY;
6343 }
6344
6345 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
6346 */
6347 dev->vlan_features |= NETIF_F_HIGHDMA;
6348
6349 /* Make NETIF_F_SG inheritable to tunnel devices.
6350 */
6351 dev->hw_enc_features |= NETIF_F_SG;
6352
6353 /* Make NETIF_F_SG inheritable to MPLS.
6354 */
6355 dev->mpls_features |= NETIF_F_SG;
6356
6357 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
6358 ret = notifier_to_errno(ret);
6359 if (ret)
6360 goto err_uninit;
6361
6362 ret = netdev_register_kobject(dev);
6363 if (ret)
6364 goto err_uninit;
6365 dev->reg_state = NETREG_REGISTERED;
6366
6367 __netdev_update_features(dev);
6368
6369 /*
6370 * Default initial state at registry is that the
6371 * device is present.
6372 */
6373
6374 set_bit(__LINK_STATE_PRESENT, &dev->state);
6375
6376 linkwatch_init_dev(dev);
6377
6378 dev_init_scheduler(dev);
6379 dev_hold(dev);
6380 list_netdevice(dev);
6381 add_device_randomness(dev->dev_addr, dev->addr_len);
6382
6383 /* If the device has permanent device address, driver should
6384 * set dev_addr and also addr_assign_type should be set to
6385 * NET_ADDR_PERM (default value).
6386 */
6387 if (dev->addr_assign_type == NET_ADDR_PERM)
6388 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
6389
6390 /* Notify protocols, that a new device appeared. */
6391 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
6392 ret = notifier_to_errno(ret);
6393 if (ret) {
6394 rollback_registered(dev);
6395 dev->reg_state = NETREG_UNREGISTERED;
6396 }
6397 /*
6398 * Prevent userspace races by waiting until the network
6399 * device is fully setup before sending notifications.
6400 */
6401 if (!dev->rtnl_link_ops ||
6402 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6403 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6404
6405out:
6406 return ret;
6407
6408err_uninit:
6409 if (dev->netdev_ops->ndo_uninit)
6410 dev->netdev_ops->ndo_uninit(dev);
6411 goto out;
6412}
6413EXPORT_SYMBOL(register_netdevice);
6414
6415/**
6416 * init_dummy_netdev - init a dummy network device for NAPI
6417 * @dev: device to init
6418 *
6419 * This takes a network device structure and initialize the minimum
6420 * amount of fields so it can be used to schedule NAPI polls without
6421 * registering a full blown interface. This is to be used by drivers
6422 * that need to tie several hardware interfaces to a single NAPI
6423 * poll scheduler due to HW limitations.
6424 */
6425int init_dummy_netdev(struct net_device *dev)
6426{
6427 /* Clear everything. Note we don't initialize spinlocks
6428 * are they aren't supposed to be taken by any of the
6429 * NAPI code and this dummy netdev is supposed to be
6430 * only ever used for NAPI polls
6431 */
6432 memset(dev, 0, sizeof(struct net_device));
6433
6434 /* make sure we BUG if trying to hit standard
6435 * register/unregister code path
6436 */
6437 dev->reg_state = NETREG_DUMMY;
6438
6439 /* NAPI wants this */
6440 INIT_LIST_HEAD(&dev->napi_list);
6441
6442 /* a dummy interface is started by default */
6443 set_bit(__LINK_STATE_PRESENT, &dev->state);
6444 set_bit(__LINK_STATE_START, &dev->state);
6445
6446 /* Note : We dont allocate pcpu_refcnt for dummy devices,
6447 * because users of this 'device' dont need to change
6448 * its refcount.
6449 */
6450
6451 return 0;
6452}
6453EXPORT_SYMBOL_GPL(init_dummy_netdev);
6454
6455
6456/**
6457 * register_netdev - register a network device
6458 * @dev: device to register
6459 *
6460 * Take a completed network device structure and add it to the kernel
6461 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6462 * chain. 0 is returned on success. A negative errno code is returned
6463 * on a failure to set up the device, or if the name is a duplicate.
6464 *
6465 * This is a wrapper around register_netdevice that takes the rtnl semaphore
6466 * and expands the device name if you passed a format string to
6467 * alloc_netdev.
6468 */
6469int register_netdev(struct net_device *dev)
6470{
6471 int err;
6472
6473 rtnl_lock();
6474 err = register_netdevice(dev);
6475 rtnl_unlock();
6476 return err;
6477}
6478EXPORT_SYMBOL(register_netdev);
6479
6480int netdev_refcnt_read(const struct net_device *dev)
6481{
6482 int i, refcnt = 0;
6483
6484 for_each_possible_cpu(i)
6485 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
6486 return refcnt;
6487}
6488EXPORT_SYMBOL(netdev_refcnt_read);
6489
6490/**
6491 * netdev_wait_allrefs - wait until all references are gone.
6492 * @dev: target net_device
6493 *
6494 * This is called when unregistering network devices.
6495 *
6496 * Any protocol or device that holds a reference should register
6497 * for netdevice notification, and cleanup and put back the
6498 * reference if they receive an UNREGISTER event.
6499 * We can get stuck here if buggy protocols don't correctly
6500 * call dev_put.
6501 */
6502static void netdev_wait_allrefs(struct net_device *dev)
6503{
6504 unsigned long rebroadcast_time, warning_time;
6505 int refcnt;
6506
6507 linkwatch_forget_dev(dev);
6508
6509 rebroadcast_time = warning_time = jiffies;
6510 refcnt = netdev_refcnt_read(dev);
6511
6512 while (refcnt != 0) {
6513 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6514 rtnl_lock();
6515
6516 /* Rebroadcast unregister notification */
6517 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6518
6519 __rtnl_unlock();
6520 rcu_barrier();
6521 rtnl_lock();
6522
6523 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6524 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
6525 &dev->state)) {
6526 /* We must not have linkwatch events
6527 * pending on unregister. If this
6528 * happens, we simply run the queue
6529 * unscheduled, resulting in a noop
6530 * for this device.
6531 */
6532 linkwatch_run_queue();
6533 }
6534
6535 __rtnl_unlock();
6536
6537 rebroadcast_time = jiffies;
6538 }
6539
6540 msleep(250);
6541
6542 refcnt = netdev_refcnt_read(dev);
6543
6544 if (time_after(jiffies, warning_time + 10 * HZ)) {
6545 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
6546 dev->name, refcnt);
6547 warning_time = jiffies;
6548 }
6549 }
6550}
6551
6552/* The sequence is:
6553 *
6554 * rtnl_lock();
6555 * ...
6556 * register_netdevice(x1);
6557 * register_netdevice(x2);
6558 * ...
6559 * unregister_netdevice(y1);
6560 * unregister_netdevice(y2);
6561 * ...
6562 * rtnl_unlock();
6563 * free_netdev(y1);
6564 * free_netdev(y2);
6565 *
6566 * We are invoked by rtnl_unlock().
6567 * This allows us to deal with problems:
6568 * 1) We can delete sysfs objects which invoke hotplug
6569 * without deadlocking with linkwatch via keventd.
6570 * 2) Since we run with the RTNL semaphore not held, we can sleep
6571 * safely in order to wait for the netdev refcnt to drop to zero.
6572 *
6573 * We must not return until all unregister events added during
6574 * the interval the lock was held have been completed.
6575 */
6576void netdev_run_todo(void)
6577{
6578 struct list_head list;
6579
6580 /* Snapshot list, allow later requests */
6581 list_replace_init(&net_todo_list, &list);
6582
6583 __rtnl_unlock();
6584
6585
6586 /* Wait for rcu callbacks to finish before next phase */
6587 if (!list_empty(&list))
6588 rcu_barrier();
6589
6590 while (!list_empty(&list)) {
6591 struct net_device *dev
6592 = list_first_entry(&list, struct net_device, todo_list);
6593 list_del(&dev->todo_list);
6594
6595 rtnl_lock();
6596 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6597 __rtnl_unlock();
6598
6599 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
6600 pr_err("network todo '%s' but state %d\n",
6601 dev->name, dev->reg_state);
6602 dump_stack();
6603 continue;
6604 }
6605
6606 dev->reg_state = NETREG_UNREGISTERED;
6607
6608 on_each_cpu(flush_backlog, dev, 1);
6609
6610 netdev_wait_allrefs(dev);
6611
6612 /* paranoia */
6613 BUG_ON(netdev_refcnt_read(dev));
6614 BUG_ON(!list_empty(&dev->ptype_all));
6615 BUG_ON(!list_empty(&dev->ptype_specific));
6616 WARN_ON(rcu_access_pointer(dev->ip_ptr));
6617 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
6618 WARN_ON(dev->dn_ptr);
6619
6620 if (dev->destructor)
6621 dev->destructor(dev);
6622
6623 /* Report a network device has been unregistered */
6624 rtnl_lock();
6625 dev_net(dev)->dev_unreg_count--;
6626 __rtnl_unlock();
6627 wake_up(&netdev_unregistering_wq);
6628
6629 /* Free network device */
6630 kobject_put(&dev->dev.kobj);
6631 }
6632}
6633
6634/* Convert net_device_stats to rtnl_link_stats64. They have the same
6635 * fields in the same order, with only the type differing.
6636 */
6637void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
6638 const struct net_device_stats *netdev_stats)
6639{
6640#if BITS_PER_LONG == 64
6641 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
6642 memcpy(stats64, netdev_stats, sizeof(*stats64));
6643#else
6644 size_t i, n = sizeof(*stats64) / sizeof(u64);
6645 const unsigned long *src = (const unsigned long *)netdev_stats;
6646 u64 *dst = (u64 *)stats64;
6647
6648 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
6649 sizeof(*stats64) / sizeof(u64));
6650 for (i = 0; i < n; i++)
6651 dst[i] = src[i];
6652#endif
6653}
6654EXPORT_SYMBOL(netdev_stats_to_stats64);
6655
6656/**
6657 * dev_get_stats - get network device statistics
6658 * @dev: device to get statistics from
6659 * @storage: place to store stats
6660 *
6661 * Get network statistics from device. Return @storage.
6662 * The device driver may provide its own method by setting
6663 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
6664 * otherwise the internal statistics structure is used.
6665 */
6666struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
6667 struct rtnl_link_stats64 *storage)
6668{
6669 const struct net_device_ops *ops = dev->netdev_ops;
6670
6671 if (ops->ndo_get_stats64) {
6672 memset(storage, 0, sizeof(*storage));
6673 ops->ndo_get_stats64(dev, storage);
6674 } else if (ops->ndo_get_stats) {
6675 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
6676 } else {
6677 netdev_stats_to_stats64(storage, &dev->stats);
6678 }
6679 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
6680 storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
6681 return storage;
6682}
6683EXPORT_SYMBOL(dev_get_stats);
6684
6685struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
6686{
6687 struct netdev_queue *queue = dev_ingress_queue(dev);
6688
6689#ifdef CONFIG_NET_CLS_ACT
6690 if (queue)
6691 return queue;
6692 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
6693 if (!queue)
6694 return NULL;
6695 netdev_init_one_queue(dev, queue, NULL);
6696 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
6697 queue->qdisc_sleeping = &noop_qdisc;
6698 rcu_assign_pointer(dev->ingress_queue, queue);
6699#endif
6700 return queue;
6701}
6702
6703static const struct ethtool_ops default_ethtool_ops;
6704
6705void netdev_set_default_ethtool_ops(struct net_device *dev,
6706 const struct ethtool_ops *ops)
6707{
6708 if (dev->ethtool_ops == &default_ethtool_ops)
6709 dev->ethtool_ops = ops;
6710}
6711EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
6712
6713void netdev_freemem(struct net_device *dev)
6714{
6715 char *addr = (char *)dev - dev->padded;
6716
6717 kvfree(addr);
6718}
6719
6720/**
6721 * alloc_netdev_mqs - allocate network device
6722 * @sizeof_priv: size of private data to allocate space for
6723 * @name: device name format string
6724 * @name_assign_type: origin of device name
6725 * @setup: callback to initialize device
6726 * @txqs: the number of TX subqueues to allocate
6727 * @rxqs: the number of RX subqueues to allocate
6728 *
6729 * Allocates a struct net_device with private data area for driver use
6730 * and performs basic initialization. Also allocates subqueue structs
6731 * for each queue on the device.
6732 */
6733struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
6734 unsigned char name_assign_type,
6735 void (*setup)(struct net_device *),
6736 unsigned int txqs, unsigned int rxqs)
6737{
6738 struct net_device *dev;
6739 size_t alloc_size;
6740 struct net_device *p;
6741
6742 BUG_ON(strlen(name) >= sizeof(dev->name));
6743
6744 if (txqs < 1) {
6745 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
6746 return NULL;
6747 }
6748
6749#ifdef CONFIG_SYSFS
6750 if (rxqs < 1) {
6751 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
6752 return NULL;
6753 }
6754#endif
6755
6756 alloc_size = sizeof(struct net_device);
6757 if (sizeof_priv) {
6758 /* ensure 32-byte alignment of private area */
6759 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
6760 alloc_size += sizeof_priv;
6761 }
6762 /* ensure 32-byte alignment of whole construct */
6763 alloc_size += NETDEV_ALIGN - 1;
6764
6765 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6766 if (!p)
6767 p = vzalloc(alloc_size);
6768 if (!p)
6769 return NULL;
6770
6771 dev = PTR_ALIGN(p, NETDEV_ALIGN);
6772 dev->padded = (char *)dev - (char *)p;
6773
6774 dev->pcpu_refcnt = alloc_percpu(int);
6775 if (!dev->pcpu_refcnt)
6776 goto free_dev;
6777
6778 if (dev_addr_init(dev))
6779 goto free_pcpu;
6780
6781 dev_mc_init(dev);
6782 dev_uc_init(dev);
6783
6784 dev_net_set(dev, &init_net);
6785
6786 dev->gso_max_size = GSO_MAX_SIZE;
6787 dev->gso_max_segs = GSO_MAX_SEGS;
6788 dev->gso_min_segs = 0;
6789
6790 INIT_LIST_HEAD(&dev->napi_list);
6791 INIT_LIST_HEAD(&dev->unreg_list);
6792 INIT_LIST_HEAD(&dev->close_list);
6793 INIT_LIST_HEAD(&dev->link_watch_list);
6794 INIT_LIST_HEAD(&dev->adj_list.upper);
6795 INIT_LIST_HEAD(&dev->adj_list.lower);
6796 INIT_LIST_HEAD(&dev->all_adj_list.upper);
6797 INIT_LIST_HEAD(&dev->all_adj_list.lower);
6798 INIT_LIST_HEAD(&dev->ptype_all);
6799 INIT_LIST_HEAD(&dev->ptype_specific);
6800 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
6801 setup(dev);
6802
6803 dev->num_tx_queues = txqs;
6804 dev->real_num_tx_queues = txqs;
6805 if (netif_alloc_netdev_queues(dev))
6806 goto free_all;
6807
6808#ifdef CONFIG_SYSFS
6809 dev->num_rx_queues = rxqs;
6810 dev->real_num_rx_queues = rxqs;
6811 if (netif_alloc_rx_queues(dev))
6812 goto free_all;
6813#endif
6814
6815 strcpy(dev->name, name);
6816 dev->name_assign_type = name_assign_type;
6817 dev->group = INIT_NETDEV_GROUP;
6818 if (!dev->ethtool_ops)
6819 dev->ethtool_ops = &default_ethtool_ops;
6820 return dev;
6821
6822free_all:
6823 free_netdev(dev);
6824 return NULL;
6825
6826free_pcpu:
6827 free_percpu(dev->pcpu_refcnt);
6828free_dev:
6829 netdev_freemem(dev);
6830 return NULL;
6831}
6832EXPORT_SYMBOL(alloc_netdev_mqs);
6833
6834/**
6835 * free_netdev - free network device
6836 * @dev: device
6837 *
6838 * This function does the last stage of destroying an allocated device
6839 * interface. The reference to the device object is released.
6840 * If this is the last reference then it will be freed.
6841 */
6842void free_netdev(struct net_device *dev)
6843{
6844 struct napi_struct *p, *n;
6845
6846 release_net(dev_net(dev));
6847
6848 netif_free_tx_queues(dev);
6849#ifdef CONFIG_SYSFS
6850 kvfree(dev->_rx);
6851#endif
6852
6853 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
6854
6855 /* Flush device addresses */
6856 dev_addr_flush(dev);
6857
6858 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
6859 netif_napi_del(p);
6860
6861 free_percpu(dev->pcpu_refcnt);
6862 dev->pcpu_refcnt = NULL;
6863
6864 /* Compatibility with error handling in drivers */
6865 if (dev->reg_state == NETREG_UNINITIALIZED) {
6866 netdev_freemem(dev);
6867 return;
6868 }
6869
6870 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6871 dev->reg_state = NETREG_RELEASED;
6872
6873 /* will free via device release */
6874 put_device(&dev->dev);
6875}
6876EXPORT_SYMBOL(free_netdev);
6877
6878/**
6879 * synchronize_net - Synchronize with packet receive processing
6880 *
6881 * Wait for packets currently being received to be done.
6882 * Does not block later packets from starting.
6883 */
6884void synchronize_net(void)
6885{
6886 might_sleep();
6887 if (rtnl_is_locked())
6888 synchronize_rcu_expedited();
6889 else
6890 synchronize_rcu();
6891}
6892EXPORT_SYMBOL(synchronize_net);
6893
6894/**
6895 * unregister_netdevice_queue - remove device from the kernel
6896 * @dev: device
6897 * @head: list
6898 *
6899 * This function shuts down a device interface and removes it
6900 * from the kernel tables.
6901 * If head not NULL, device is queued to be unregistered later.
6902 *
6903 * Callers must hold the rtnl semaphore. You may want
6904 * unregister_netdev() instead of this.
6905 */
6906
6907void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
6908{
6909 ASSERT_RTNL();
6910
6911 if (head) {
6912 list_move_tail(&dev->unreg_list, head);
6913 } else {
6914 rollback_registered(dev);
6915 /* Finish processing unregister after unlock */
6916 net_set_todo(dev);
6917 }
6918}
6919EXPORT_SYMBOL(unregister_netdevice_queue);
6920
6921/**
6922 * unregister_netdevice_many - unregister many devices
6923 * @head: list of devices
6924 *
6925 * Note: As most callers use a stack allocated list_head,
6926 * we force a list_del() to make sure stack wont be corrupted later.
6927 */
6928void unregister_netdevice_many(struct list_head *head)
6929{
6930 struct net_device *dev;
6931
6932 if (!list_empty(head)) {
6933 rollback_registered_many(head);
6934 list_for_each_entry(dev, head, unreg_list)
6935 net_set_todo(dev);
6936 list_del(head);
6937 }
6938}
6939EXPORT_SYMBOL(unregister_netdevice_many);
6940
6941/**
6942 * unregister_netdev - remove device from the kernel
6943 * @dev: device
6944 *
6945 * This function shuts down a device interface and removes it
6946 * from the kernel tables.
6947 *
6948 * This is just a wrapper for unregister_netdevice that takes
6949 * the rtnl semaphore. In general you want to use this and not
6950 * unregister_netdevice.
6951 */
6952void unregister_netdev(struct net_device *dev)
6953{
6954 rtnl_lock();
6955 unregister_netdevice(dev);
6956 rtnl_unlock();
6957}
6958EXPORT_SYMBOL(unregister_netdev);
6959
6960/**
6961 * dev_change_net_namespace - move device to different nethost namespace
6962 * @dev: device
6963 * @net: network namespace
6964 * @pat: If not NULL name pattern to try if the current device name
6965 * is already taken in the destination network namespace.
6966 *
6967 * This function shuts down a device interface and moves it
6968 * to a new network namespace. On success 0 is returned, on
6969 * a failure a netagive errno code is returned.
6970 *
6971 * Callers must hold the rtnl semaphore.
6972 */
6973
6974int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6975{
6976 int err;
6977
6978 ASSERT_RTNL();
6979
6980 /* Don't allow namespace local devices to be moved. */
6981 err = -EINVAL;
6982 if (dev->features & NETIF_F_NETNS_LOCAL)
6983 goto out;
6984
6985 /* Ensure the device has been registrered */
6986 if (dev->reg_state != NETREG_REGISTERED)
6987 goto out;
6988
6989 /* Get out if there is nothing todo */
6990 err = 0;
6991 if (net_eq(dev_net(dev), net))
6992 goto out;
6993
6994 /* Pick the destination device name, and ensure
6995 * we can use it in the destination network namespace.
6996 */
6997 err = -EEXIST;
6998 if (__dev_get_by_name(net, dev->name)) {
6999 /* We get here if we can't use the current device name */
7000 if (!pat)
7001 goto out;
7002 if (dev_get_valid_name(net, dev, pat) < 0)
7003 goto out;
7004 }
7005
7006 /*
7007 * And now a mini version of register_netdevice unregister_netdevice.
7008 */
7009
7010 /* If device is running close it first. */
7011 dev_close(dev);
7012
7013 /* And unlink it from device chain */
7014 err = -ENODEV;
7015 unlist_netdevice(dev);
7016
7017 synchronize_net();
7018
7019 /* Shutdown queueing discipline. */
7020 dev_shutdown(dev);
7021
7022 /* Notify protocols, that we are about to destroy
7023 this device. They should clean all the things.
7024
7025 Note that dev->reg_state stays at NETREG_REGISTERED.
7026 This is wanted because this way 8021q and macvlan know
7027 the device is just moving and can keep their slaves up.
7028 */
7029 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7030 rcu_barrier();
7031 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7032 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
7033
7034 /*
7035 * Flush the unicast and multicast chains
7036 */
7037 dev_uc_flush(dev);
7038 dev_mc_flush(dev);
7039
7040 /* Send a netdev-removed uevent to the old namespace */
7041 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
7042 netdev_adjacent_del_links(dev);
7043
7044 /* Actually switch the network namespace */
7045 dev_net_set(dev, net);
7046
7047 /* If there is an ifindex conflict assign a new one */
7048 if (__dev_get_by_index(net, dev->ifindex)) {
7049 int iflink = (dev->iflink == dev->ifindex);
7050 dev->ifindex = dev_new_index(net);
7051 if (iflink)
7052 dev->iflink = dev->ifindex;
7053 }
7054
7055 /* Send a netdev-add uevent to the new namespace */
7056 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
7057 netdev_adjacent_add_links(dev);
7058
7059 /* Fixup kobjects */
7060 err = device_rename(&dev->dev, dev->name);
7061 WARN_ON(err);
7062
7063 /* Add the device back in the hashes */
7064 list_netdevice(dev);
7065
7066 /* Notify protocols, that a new device appeared. */
7067 call_netdevice_notifiers(NETDEV_REGISTER, dev);
7068
7069 /*
7070 * Prevent userspace races by waiting until the network
7071 * device is fully setup before sending notifications.
7072 */
7073 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7074
7075 synchronize_net();
7076 err = 0;
7077out:
7078 return err;
7079}
7080EXPORT_SYMBOL_GPL(dev_change_net_namespace);
7081
7082static int dev_cpu_callback(struct notifier_block *nfb,
7083 unsigned long action,
7084 void *ocpu)
7085{
7086 struct sk_buff **list_skb;
7087 struct sk_buff *skb;
7088 unsigned int cpu, oldcpu = (unsigned long)ocpu;
7089 struct softnet_data *sd, *oldsd;
7090
7091 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
7092 return NOTIFY_OK;
7093
7094 local_irq_disable();
7095 cpu = smp_processor_id();
7096 sd = &per_cpu(softnet_data, cpu);
7097 oldsd = &per_cpu(softnet_data, oldcpu);
7098
7099 /* Find end of our completion_queue. */
7100 list_skb = &sd->completion_queue;
7101 while (*list_skb)
7102 list_skb = &(*list_skb)->next;
7103 /* Append completion queue from offline CPU. */
7104 *list_skb = oldsd->completion_queue;
7105 oldsd->completion_queue = NULL;
7106
7107 /* Append output queue from offline CPU. */
7108 if (oldsd->output_queue) {
7109 *sd->output_queue_tailp = oldsd->output_queue;
7110 sd->output_queue_tailp = oldsd->output_queue_tailp;
7111 oldsd->output_queue = NULL;
7112 oldsd->output_queue_tailp = &oldsd->output_queue;
7113 }
7114 /* Append NAPI poll list from offline CPU, with one exception :
7115 * process_backlog() must be called by cpu owning percpu backlog.
7116 * We properly handle process_queue & input_pkt_queue later.
7117 */
7118 while (!list_empty(&oldsd->poll_list)) {
7119 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
7120 struct napi_struct,
7121 poll_list);
7122
7123 list_del_init(&napi->poll_list);
7124 if (napi->poll == process_backlog)
7125 napi->state = 0;
7126 else
7127 ____napi_schedule(sd, napi);
7128 }
7129
7130 raise_softirq_irqoff(NET_TX_SOFTIRQ);
7131 local_irq_enable();
7132
7133 /* Process offline CPU's input_pkt_queue */
7134 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
7135 netif_rx_ni(skb);
7136 input_queue_head_incr(oldsd);
7137 }
7138 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
7139 netif_rx_ni(skb);
7140 input_queue_head_incr(oldsd);
7141 }
7142
7143 return NOTIFY_OK;
7144}
7145
7146
7147/**
7148 * netdev_increment_features - increment feature set by one
7149 * @all: current feature set
7150 * @one: new feature set
7151 * @mask: mask feature set
7152 *
7153 * Computes a new feature set after adding a device with feature set
7154 * @one to the master device with current feature set @all. Will not
7155 * enable anything that is off in @mask. Returns the new feature set.
7156 */
7157netdev_features_t netdev_increment_features(netdev_features_t all,
7158 netdev_features_t one, netdev_features_t mask)
7159{
7160 if (mask & NETIF_F_GEN_CSUM)
7161 mask |= NETIF_F_ALL_CSUM;
7162 mask |= NETIF_F_VLAN_CHALLENGED;
7163
7164 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
7165 all &= one | ~NETIF_F_ALL_FOR_ALL;
7166
7167 /* If one device supports hw checksumming, set for all. */
7168 if (all & NETIF_F_GEN_CSUM)
7169 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
7170
7171 return all;
7172}
7173EXPORT_SYMBOL(netdev_increment_features);
7174
7175static struct hlist_head * __net_init netdev_create_hash(void)
7176{
7177 int i;
7178 struct hlist_head *hash;
7179
7180 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
7181 if (hash != NULL)
7182 for (i = 0; i < NETDEV_HASHENTRIES; i++)
7183 INIT_HLIST_HEAD(&hash[i]);
7184
7185 return hash;
7186}
7187
7188/* Initialize per network namespace state */
7189static int __net_init netdev_init(struct net *net)
7190{
7191 if (net != &init_net)
7192 INIT_LIST_HEAD(&net->dev_base_head);
7193
7194 net->dev_name_head = netdev_create_hash();
7195 if (net->dev_name_head == NULL)
7196 goto err_name;
7197
7198 net->dev_index_head = netdev_create_hash();
7199 if (net->dev_index_head == NULL)
7200 goto err_idx;
7201
7202 return 0;
7203
7204err_idx:
7205 kfree(net->dev_name_head);
7206err_name:
7207 return -ENOMEM;
7208}
7209
7210/**
7211 * netdev_drivername - network driver for the device
7212 * @dev: network device
7213 *
7214 * Determine network driver for device.
7215 */
7216const char *netdev_drivername(const struct net_device *dev)
7217{
7218 const struct device_driver *driver;
7219 const struct device *parent;
7220 const char *empty = "";
7221
7222 parent = dev->dev.parent;
7223 if (!parent)
7224 return empty;
7225
7226 driver = parent->driver;
7227 if (driver && driver->name)
7228 return driver->name;
7229 return empty;
7230}
7231
7232static void __netdev_printk(const char *level, const struct net_device *dev,
7233 struct va_format *vaf)
7234{
7235 if (dev && dev->dev.parent) {
7236 dev_printk_emit(level[1] - '0',
7237 dev->dev.parent,
7238 "%s %s %s%s: %pV",
7239 dev_driver_string(dev->dev.parent),
7240 dev_name(dev->dev.parent),
7241 netdev_name(dev), netdev_reg_state(dev),
7242 vaf);
7243 } else if (dev) {
7244 printk("%s%s%s: %pV",
7245 level, netdev_name(dev), netdev_reg_state(dev), vaf);
7246 } else {
7247 printk("%s(NULL net_device): %pV", level, vaf);
7248 }
7249}
7250
7251void netdev_printk(const char *level, const struct net_device *dev,
7252 const char *format, ...)
7253{
7254 struct va_format vaf;
7255 va_list args;
7256
7257 va_start(args, format);
7258
7259 vaf.fmt = format;
7260 vaf.va = &args;
7261
7262 __netdev_printk(level, dev, &vaf);
7263
7264 va_end(args);
7265}
7266EXPORT_SYMBOL(netdev_printk);
7267
7268#define define_netdev_printk_level(func, level) \
7269void func(const struct net_device *dev, const char *fmt, ...) \
7270{ \
7271 struct va_format vaf; \
7272 va_list args; \
7273 \
7274 va_start(args, fmt); \
7275 \
7276 vaf.fmt = fmt; \
7277 vaf.va = &args; \
7278 \
7279 __netdev_printk(level, dev, &vaf); \
7280 \
7281 va_end(args); \
7282} \
7283EXPORT_SYMBOL(func);
7284
7285define_netdev_printk_level(netdev_emerg, KERN_EMERG);
7286define_netdev_printk_level(netdev_alert, KERN_ALERT);
7287define_netdev_printk_level(netdev_crit, KERN_CRIT);
7288define_netdev_printk_level(netdev_err, KERN_ERR);
7289define_netdev_printk_level(netdev_warn, KERN_WARNING);
7290define_netdev_printk_level(netdev_notice, KERN_NOTICE);
7291define_netdev_printk_level(netdev_info, KERN_INFO);
7292
7293static void __net_exit netdev_exit(struct net *net)
7294{
7295 kfree(net->dev_name_head);
7296 kfree(net->dev_index_head);
7297}
7298
7299static struct pernet_operations __net_initdata netdev_net_ops = {
7300 .init = netdev_init,
7301 .exit = netdev_exit,
7302};
7303
7304static void __net_exit default_device_exit(struct net *net)
7305{
7306 struct net_device *dev, *aux;
7307 /*
7308 * Push all migratable network devices back to the
7309 * initial network namespace
7310 */
7311 rtnl_lock();
7312 for_each_netdev_safe(net, dev, aux) {
7313 int err;
7314 char fb_name[IFNAMSIZ];
7315
7316 /* Ignore unmoveable devices (i.e. loopback) */
7317 if (dev->features & NETIF_F_NETNS_LOCAL)
7318 continue;
7319
7320 /* Leave virtual devices for the generic cleanup */
7321 if (dev->rtnl_link_ops)
7322 continue;
7323
7324 /* Push remaining network devices to init_net */
7325 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
7326 err = dev_change_net_namespace(dev, &init_net, fb_name);
7327 if (err) {
7328 pr_emerg("%s: failed to move %s to init_net: %d\n",
7329 __func__, dev->name, err);
7330 BUG();
7331 }
7332 }
7333 rtnl_unlock();
7334}
7335
7336static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
7337{
7338 /* Return with the rtnl_lock held when there are no network
7339 * devices unregistering in any network namespace in net_list.
7340 */
7341 struct net *net;
7342 bool unregistering;
7343 DEFINE_WAIT_FUNC(wait, woken_wake_function);
7344
7345 add_wait_queue(&netdev_unregistering_wq, &wait);
7346 for (;;) {
7347 unregistering = false;
7348 rtnl_lock();
7349 list_for_each_entry(net, net_list, exit_list) {
7350 if (net->dev_unreg_count > 0) {
7351 unregistering = true;
7352 break;
7353 }
7354 }
7355 if (!unregistering)
7356 break;
7357 __rtnl_unlock();
7358
7359 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
7360 }
7361 remove_wait_queue(&netdev_unregistering_wq, &wait);
7362}
7363
7364static void __net_exit default_device_exit_batch(struct list_head *net_list)
7365{
7366 /* At exit all network devices most be removed from a network
7367 * namespace. Do this in the reverse order of registration.
7368 * Do this across as many network namespaces as possible to
7369 * improve batching efficiency.
7370 */
7371 struct net_device *dev;
7372 struct net *net;
7373 LIST_HEAD(dev_kill_list);
7374
7375 /* To prevent network device cleanup code from dereferencing
7376 * loopback devices or network devices that have been freed
7377 * wait here for all pending unregistrations to complete,
7378 * before unregistring the loopback device and allowing the
7379 * network namespace be freed.
7380 *
7381 * The netdev todo list containing all network devices
7382 * unregistrations that happen in default_device_exit_batch
7383 * will run in the rtnl_unlock() at the end of
7384 * default_device_exit_batch.
7385 */
7386 rtnl_lock_unregistering(net_list);
7387 list_for_each_entry(net, net_list, exit_list) {
7388 for_each_netdev_reverse(net, dev) {
7389 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
7390 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
7391 else
7392 unregister_netdevice_queue(dev, &dev_kill_list);
7393 }
7394 }
7395 unregister_netdevice_many(&dev_kill_list);
7396 rtnl_unlock();
7397}
7398
7399static struct pernet_operations __net_initdata default_device_ops = {
7400 .exit = default_device_exit,
7401 .exit_batch = default_device_exit_batch,
7402};
7403
7404/*
7405 * Initialize the DEV module. At boot time this walks the device list and
7406 * unhooks any devices that fail to initialise (normally hardware not
7407 * present) and leaves us with a valid list of present and active devices.
7408 *
7409 */
7410
7411/*
7412 * This is called single threaded during boot, so no need
7413 * to take the rtnl semaphore.
7414 */
7415static int __init net_dev_init(void)
7416{
7417 int i, rc = -ENOMEM;
7418
7419 BUG_ON(!dev_boot_phase);
7420
7421 if (dev_proc_init())
7422 goto out;
7423
7424 if (netdev_kobject_init())
7425 goto out;
7426
7427 INIT_LIST_HEAD(&ptype_all);
7428 for (i = 0; i < PTYPE_HASH_SIZE; i++)
7429 INIT_LIST_HEAD(&ptype_base[i]);
7430
7431 INIT_LIST_HEAD(&offload_base);
7432
7433 if (register_pernet_subsys(&netdev_net_ops))
7434 goto out;
7435
7436 /*
7437 * Initialise the packet receive queues.
7438 */
7439
7440 for_each_possible_cpu(i) {
7441 struct softnet_data *sd = &per_cpu(softnet_data, i);
7442
7443 skb_queue_head_init(&sd->input_pkt_queue);
7444 skb_queue_head_init(&sd->process_queue);
7445 INIT_LIST_HEAD(&sd->poll_list);
7446 sd->output_queue_tailp = &sd->output_queue;
7447#ifdef CONFIG_RPS
7448 sd->csd.func = rps_trigger_softirq;
7449 sd->csd.info = sd;
7450 sd->cpu = i;
7451#endif
7452
7453 sd->backlog.poll = process_backlog;
7454 sd->backlog.weight = weight_p;
7455 }
7456
7457 dev_boot_phase = 0;
7458
7459 /* The loopback device is special if any other network devices
7460 * is present in a network namespace the loopback device must
7461 * be present. Since we now dynamically allocate and free the
7462 * loopback device ensure this invariant is maintained by
7463 * keeping the loopback device as the first device on the
7464 * list of network devices. Ensuring the loopback devices
7465 * is the first device that appears and the last network device
7466 * that disappears.
7467 */
7468 if (register_pernet_device(&loopback_net_ops))
7469 goto out;
7470
7471 if (register_pernet_device(&default_device_ops))
7472 goto out;
7473
7474 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
7475 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
7476
7477 hotcpu_notifier(dev_cpu_callback, 0);
7478 dst_init();
7479 rc = 0;
7480out:
7481 return rc;
7482}
7483
7484subsys_initcall(net_dev_init);