at v4.0-rc7 123 kB view raw
1/* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Definitions for the Interfaces handler. 7 * 8 * Version: @(#)dev.h 1.0.10 08/12/93 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov> 14 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 15 * Bjorn Ekwall. <bj0rn@blox.se> 16 * Pekka Riikonen <priikone@poseidon.pspt.fi> 17 * 18 * This program is free software; you can redistribute it and/or 19 * modify it under the terms of the GNU General Public License 20 * as published by the Free Software Foundation; either version 21 * 2 of the License, or (at your option) any later version. 22 * 23 * Moved to /usr/include/linux for NET3 24 */ 25#ifndef _LINUX_NETDEVICE_H 26#define _LINUX_NETDEVICE_H 27 28#include <linux/pm_qos.h> 29#include <linux/timer.h> 30#include <linux/bug.h> 31#include <linux/delay.h> 32#include <linux/atomic.h> 33#include <linux/prefetch.h> 34#include <asm/cache.h> 35#include <asm/byteorder.h> 36 37#include <linux/percpu.h> 38#include <linux/rculist.h> 39#include <linux/dmaengine.h> 40#include <linux/workqueue.h> 41#include <linux/dynamic_queue_limits.h> 42 43#include <linux/ethtool.h> 44#include <net/net_namespace.h> 45#include <net/dsa.h> 46#ifdef CONFIG_DCB 47#include <net/dcbnl.h> 48#endif 49#include <net/netprio_cgroup.h> 50 51#include <linux/netdev_features.h> 52#include <linux/neighbour.h> 53#include <uapi/linux/netdevice.h> 54#include <uapi/linux/if_bonding.h> 55 56struct netpoll_info; 57struct device; 58struct phy_device; 59/* 802.11 specific */ 60struct wireless_dev; 61/* 802.15.4 specific */ 62struct wpan_dev; 63 64void netdev_set_default_ethtool_ops(struct net_device *dev, 65 const struct ethtool_ops *ops); 66 67/* Backlog congestion levels */ 68#define NET_RX_SUCCESS 0 /* keep 'em coming, baby */ 69#define NET_RX_DROP 1 /* packet dropped */ 70 71/* 72 * Transmit return codes: transmit return codes originate from three different 73 * namespaces: 74 * 75 * - qdisc return codes 76 * - driver transmit return codes 77 * - errno values 78 * 79 * Drivers are allowed to return any one of those in their hard_start_xmit() 80 * function. Real network devices commonly used with qdiscs should only return 81 * the driver transmit return codes though - when qdiscs are used, the actual 82 * transmission happens asynchronously, so the value is not propagated to 83 * higher layers. Virtual network devices transmit synchronously, in this case 84 * the driver transmit return codes are consumed by dev_queue_xmit(), all 85 * others are propagated to higher layers. 86 */ 87 88/* qdisc ->enqueue() return codes. */ 89#define NET_XMIT_SUCCESS 0x00 90#define NET_XMIT_DROP 0x01 /* skb dropped */ 91#define NET_XMIT_CN 0x02 /* congestion notification */ 92#define NET_XMIT_POLICED 0x03 /* skb is shot by police */ 93#define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */ 94 95/* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It 96 * indicates that the device will soon be dropping packets, or already drops 97 * some packets of the same priority; prompting us to send less aggressively. */ 98#define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e)) 99#define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0) 100 101/* Driver transmit return codes */ 102#define NETDEV_TX_MASK 0xf0 103 104enum netdev_tx { 105 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */ 106 NETDEV_TX_OK = 0x00, /* driver took care of packet */ 107 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/ 108 NETDEV_TX_LOCKED = 0x20, /* driver tx lock was already taken */ 109}; 110typedef enum netdev_tx netdev_tx_t; 111 112/* 113 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant; 114 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed. 115 */ 116static inline bool dev_xmit_complete(int rc) 117{ 118 /* 119 * Positive cases with an skb consumed by a driver: 120 * - successful transmission (rc == NETDEV_TX_OK) 121 * - error while transmitting (rc < 0) 122 * - error while queueing to a different device (rc & NET_XMIT_MASK) 123 */ 124 if (likely(rc < NET_XMIT_MASK)) 125 return true; 126 127 return false; 128} 129 130/* 131 * Compute the worst case header length according to the protocols 132 * used. 133 */ 134 135#if defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25) 136# if defined(CONFIG_MAC80211_MESH) 137# define LL_MAX_HEADER 128 138# else 139# define LL_MAX_HEADER 96 140# endif 141#else 142# define LL_MAX_HEADER 32 143#endif 144 145#if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \ 146 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL) 147#define MAX_HEADER LL_MAX_HEADER 148#else 149#define MAX_HEADER (LL_MAX_HEADER + 48) 150#endif 151 152/* 153 * Old network device statistics. Fields are native words 154 * (unsigned long) so they can be read and written atomically. 155 */ 156 157struct net_device_stats { 158 unsigned long rx_packets; 159 unsigned long tx_packets; 160 unsigned long rx_bytes; 161 unsigned long tx_bytes; 162 unsigned long rx_errors; 163 unsigned long tx_errors; 164 unsigned long rx_dropped; 165 unsigned long tx_dropped; 166 unsigned long multicast; 167 unsigned long collisions; 168 unsigned long rx_length_errors; 169 unsigned long rx_over_errors; 170 unsigned long rx_crc_errors; 171 unsigned long rx_frame_errors; 172 unsigned long rx_fifo_errors; 173 unsigned long rx_missed_errors; 174 unsigned long tx_aborted_errors; 175 unsigned long tx_carrier_errors; 176 unsigned long tx_fifo_errors; 177 unsigned long tx_heartbeat_errors; 178 unsigned long tx_window_errors; 179 unsigned long rx_compressed; 180 unsigned long tx_compressed; 181}; 182 183 184#include <linux/cache.h> 185#include <linux/skbuff.h> 186 187#ifdef CONFIG_RPS 188#include <linux/static_key.h> 189extern struct static_key rps_needed; 190#endif 191 192struct neighbour; 193struct neigh_parms; 194struct sk_buff; 195 196struct netdev_hw_addr { 197 struct list_head list; 198 unsigned char addr[MAX_ADDR_LEN]; 199 unsigned char type; 200#define NETDEV_HW_ADDR_T_LAN 1 201#define NETDEV_HW_ADDR_T_SAN 2 202#define NETDEV_HW_ADDR_T_SLAVE 3 203#define NETDEV_HW_ADDR_T_UNICAST 4 204#define NETDEV_HW_ADDR_T_MULTICAST 5 205 bool global_use; 206 int sync_cnt; 207 int refcount; 208 int synced; 209 struct rcu_head rcu_head; 210}; 211 212struct netdev_hw_addr_list { 213 struct list_head list; 214 int count; 215}; 216 217#define netdev_hw_addr_list_count(l) ((l)->count) 218#define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0) 219#define netdev_hw_addr_list_for_each(ha, l) \ 220 list_for_each_entry(ha, &(l)->list, list) 221 222#define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc) 223#define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc) 224#define netdev_for_each_uc_addr(ha, dev) \ 225 netdev_hw_addr_list_for_each(ha, &(dev)->uc) 226 227#define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc) 228#define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc) 229#define netdev_for_each_mc_addr(ha, dev) \ 230 netdev_hw_addr_list_for_each(ha, &(dev)->mc) 231 232struct hh_cache { 233 u16 hh_len; 234 u16 __pad; 235 seqlock_t hh_lock; 236 237 /* cached hardware header; allow for machine alignment needs. */ 238#define HH_DATA_MOD 16 239#define HH_DATA_OFF(__len) \ 240 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1)) 241#define HH_DATA_ALIGN(__len) \ 242 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1)) 243 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)]; 244}; 245 246/* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much. 247 * Alternative is: 248 * dev->hard_header_len ? (dev->hard_header_len + 249 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0 250 * 251 * We could use other alignment values, but we must maintain the 252 * relationship HH alignment <= LL alignment. 253 */ 254#define LL_RESERVED_SPACE(dev) \ 255 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 256#define LL_RESERVED_SPACE_EXTRA(dev,extra) \ 257 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 258 259struct header_ops { 260 int (*create) (struct sk_buff *skb, struct net_device *dev, 261 unsigned short type, const void *daddr, 262 const void *saddr, unsigned int len); 263 int (*parse)(const struct sk_buff *skb, unsigned char *haddr); 264 int (*rebuild)(struct sk_buff *skb); 265 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type); 266 void (*cache_update)(struct hh_cache *hh, 267 const struct net_device *dev, 268 const unsigned char *haddr); 269}; 270 271/* These flag bits are private to the generic network queueing 272 * layer, they may not be explicitly referenced by any other 273 * code. 274 */ 275 276enum netdev_state_t { 277 __LINK_STATE_START, 278 __LINK_STATE_PRESENT, 279 __LINK_STATE_NOCARRIER, 280 __LINK_STATE_LINKWATCH_PENDING, 281 __LINK_STATE_DORMANT, 282}; 283 284 285/* 286 * This structure holds at boot time configured netdevice settings. They 287 * are then used in the device probing. 288 */ 289struct netdev_boot_setup { 290 char name[IFNAMSIZ]; 291 struct ifmap map; 292}; 293#define NETDEV_BOOT_SETUP_MAX 8 294 295int __init netdev_boot_setup(char *str); 296 297/* 298 * Structure for NAPI scheduling similar to tasklet but with weighting 299 */ 300struct napi_struct { 301 /* The poll_list must only be managed by the entity which 302 * changes the state of the NAPI_STATE_SCHED bit. This means 303 * whoever atomically sets that bit can add this napi_struct 304 * to the per-cpu poll_list, and whoever clears that bit 305 * can remove from the list right before clearing the bit. 306 */ 307 struct list_head poll_list; 308 309 unsigned long state; 310 int weight; 311 unsigned int gro_count; 312 int (*poll)(struct napi_struct *, int); 313#ifdef CONFIG_NETPOLL 314 spinlock_t poll_lock; 315 int poll_owner; 316#endif 317 struct net_device *dev; 318 struct sk_buff *gro_list; 319 struct sk_buff *skb; 320 struct hrtimer timer; 321 struct list_head dev_list; 322 struct hlist_node napi_hash_node; 323 unsigned int napi_id; 324}; 325 326enum { 327 NAPI_STATE_SCHED, /* Poll is scheduled */ 328 NAPI_STATE_DISABLE, /* Disable pending */ 329 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */ 330 NAPI_STATE_HASHED, /* In NAPI hash */ 331}; 332 333enum gro_result { 334 GRO_MERGED, 335 GRO_MERGED_FREE, 336 GRO_HELD, 337 GRO_NORMAL, 338 GRO_DROP, 339}; 340typedef enum gro_result gro_result_t; 341 342/* 343 * enum rx_handler_result - Possible return values for rx_handlers. 344 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it 345 * further. 346 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in 347 * case skb->dev was changed by rx_handler. 348 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard. 349 * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called. 350 * 351 * rx_handlers are functions called from inside __netif_receive_skb(), to do 352 * special processing of the skb, prior to delivery to protocol handlers. 353 * 354 * Currently, a net_device can only have a single rx_handler registered. Trying 355 * to register a second rx_handler will return -EBUSY. 356 * 357 * To register a rx_handler on a net_device, use netdev_rx_handler_register(). 358 * To unregister a rx_handler on a net_device, use 359 * netdev_rx_handler_unregister(). 360 * 361 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to 362 * do with the skb. 363 * 364 * If the rx_handler consumed to skb in some way, it should return 365 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for 366 * the skb to be delivered in some other ways. 367 * 368 * If the rx_handler changed skb->dev, to divert the skb to another 369 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the 370 * new device will be called if it exists. 371 * 372 * If the rx_handler consider the skb should be ignored, it should return 373 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that 374 * are registered on exact device (ptype->dev == skb->dev). 375 * 376 * If the rx_handler didn't changed skb->dev, but want the skb to be normally 377 * delivered, it should return RX_HANDLER_PASS. 378 * 379 * A device without a registered rx_handler will behave as if rx_handler 380 * returned RX_HANDLER_PASS. 381 */ 382 383enum rx_handler_result { 384 RX_HANDLER_CONSUMED, 385 RX_HANDLER_ANOTHER, 386 RX_HANDLER_EXACT, 387 RX_HANDLER_PASS, 388}; 389typedef enum rx_handler_result rx_handler_result_t; 390typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb); 391 392void __napi_schedule(struct napi_struct *n); 393void __napi_schedule_irqoff(struct napi_struct *n); 394 395static inline bool napi_disable_pending(struct napi_struct *n) 396{ 397 return test_bit(NAPI_STATE_DISABLE, &n->state); 398} 399 400/** 401 * napi_schedule_prep - check if napi can be scheduled 402 * @n: napi context 403 * 404 * Test if NAPI routine is already running, and if not mark 405 * it as running. This is used as a condition variable 406 * insure only one NAPI poll instance runs. We also make 407 * sure there is no pending NAPI disable. 408 */ 409static inline bool napi_schedule_prep(struct napi_struct *n) 410{ 411 return !napi_disable_pending(n) && 412 !test_and_set_bit(NAPI_STATE_SCHED, &n->state); 413} 414 415/** 416 * napi_schedule - schedule NAPI poll 417 * @n: napi context 418 * 419 * Schedule NAPI poll routine to be called if it is not already 420 * running. 421 */ 422static inline void napi_schedule(struct napi_struct *n) 423{ 424 if (napi_schedule_prep(n)) 425 __napi_schedule(n); 426} 427 428/** 429 * napi_schedule_irqoff - schedule NAPI poll 430 * @n: napi context 431 * 432 * Variant of napi_schedule(), assuming hard irqs are masked. 433 */ 434static inline void napi_schedule_irqoff(struct napi_struct *n) 435{ 436 if (napi_schedule_prep(n)) 437 __napi_schedule_irqoff(n); 438} 439 440/* Try to reschedule poll. Called by dev->poll() after napi_complete(). */ 441static inline bool napi_reschedule(struct napi_struct *napi) 442{ 443 if (napi_schedule_prep(napi)) { 444 __napi_schedule(napi); 445 return true; 446 } 447 return false; 448} 449 450void __napi_complete(struct napi_struct *n); 451void napi_complete_done(struct napi_struct *n, int work_done); 452/** 453 * napi_complete - NAPI processing complete 454 * @n: napi context 455 * 456 * Mark NAPI processing as complete. 457 * Consider using napi_complete_done() instead. 458 */ 459static inline void napi_complete(struct napi_struct *n) 460{ 461 return napi_complete_done(n, 0); 462} 463 464/** 465 * napi_by_id - lookup a NAPI by napi_id 466 * @napi_id: hashed napi_id 467 * 468 * lookup @napi_id in napi_hash table 469 * must be called under rcu_read_lock() 470 */ 471struct napi_struct *napi_by_id(unsigned int napi_id); 472 473/** 474 * napi_hash_add - add a NAPI to global hashtable 475 * @napi: napi context 476 * 477 * generate a new napi_id and store a @napi under it in napi_hash 478 */ 479void napi_hash_add(struct napi_struct *napi); 480 481/** 482 * napi_hash_del - remove a NAPI from global table 483 * @napi: napi context 484 * 485 * Warning: caller must observe rcu grace period 486 * before freeing memory containing @napi 487 */ 488void napi_hash_del(struct napi_struct *napi); 489 490/** 491 * napi_disable - prevent NAPI from scheduling 492 * @n: napi context 493 * 494 * Stop NAPI from being scheduled on this context. 495 * Waits till any outstanding processing completes. 496 */ 497void napi_disable(struct napi_struct *n); 498 499/** 500 * napi_enable - enable NAPI scheduling 501 * @n: napi context 502 * 503 * Resume NAPI from being scheduled on this context. 504 * Must be paired with napi_disable. 505 */ 506static inline void napi_enable(struct napi_struct *n) 507{ 508 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 509 smp_mb__before_atomic(); 510 clear_bit(NAPI_STATE_SCHED, &n->state); 511} 512 513#ifdef CONFIG_SMP 514/** 515 * napi_synchronize - wait until NAPI is not running 516 * @n: napi context 517 * 518 * Wait until NAPI is done being scheduled on this context. 519 * Waits till any outstanding processing completes but 520 * does not disable future activations. 521 */ 522static inline void napi_synchronize(const struct napi_struct *n) 523{ 524 while (test_bit(NAPI_STATE_SCHED, &n->state)) 525 msleep(1); 526} 527#else 528# define napi_synchronize(n) barrier() 529#endif 530 531enum netdev_queue_state_t { 532 __QUEUE_STATE_DRV_XOFF, 533 __QUEUE_STATE_STACK_XOFF, 534 __QUEUE_STATE_FROZEN, 535}; 536 537#define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF) 538#define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF) 539#define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN) 540 541#define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF) 542#define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \ 543 QUEUE_STATE_FROZEN) 544#define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \ 545 QUEUE_STATE_FROZEN) 546 547/* 548 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The 549 * netif_tx_* functions below are used to manipulate this flag. The 550 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit 551 * queue independently. The netif_xmit_*stopped functions below are called 552 * to check if the queue has been stopped by the driver or stack (either 553 * of the XOFF bits are set in the state). Drivers should not need to call 554 * netif_xmit*stopped functions, they should only be using netif_tx_*. 555 */ 556 557struct netdev_queue { 558/* 559 * read mostly part 560 */ 561 struct net_device *dev; 562 struct Qdisc __rcu *qdisc; 563 struct Qdisc *qdisc_sleeping; 564#ifdef CONFIG_SYSFS 565 struct kobject kobj; 566#endif 567#if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 568 int numa_node; 569#endif 570/* 571 * write mostly part 572 */ 573 spinlock_t _xmit_lock ____cacheline_aligned_in_smp; 574 int xmit_lock_owner; 575 /* 576 * please use this field instead of dev->trans_start 577 */ 578 unsigned long trans_start; 579 580 /* 581 * Number of TX timeouts for this queue 582 * (/sys/class/net/DEV/Q/trans_timeout) 583 */ 584 unsigned long trans_timeout; 585 586 unsigned long state; 587 588#ifdef CONFIG_BQL 589 struct dql dql; 590#endif 591} ____cacheline_aligned_in_smp; 592 593static inline int netdev_queue_numa_node_read(const struct netdev_queue *q) 594{ 595#if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 596 return q->numa_node; 597#else 598 return NUMA_NO_NODE; 599#endif 600} 601 602static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node) 603{ 604#if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 605 q->numa_node = node; 606#endif 607} 608 609#ifdef CONFIG_RPS 610/* 611 * This structure holds an RPS map which can be of variable length. The 612 * map is an array of CPUs. 613 */ 614struct rps_map { 615 unsigned int len; 616 struct rcu_head rcu; 617 u16 cpus[0]; 618}; 619#define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16))) 620 621/* 622 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the 623 * tail pointer for that CPU's input queue at the time of last enqueue, and 624 * a hardware filter index. 625 */ 626struct rps_dev_flow { 627 u16 cpu; 628 u16 filter; 629 unsigned int last_qtail; 630}; 631#define RPS_NO_FILTER 0xffff 632 633/* 634 * The rps_dev_flow_table structure contains a table of flow mappings. 635 */ 636struct rps_dev_flow_table { 637 unsigned int mask; 638 struct rcu_head rcu; 639 struct rps_dev_flow flows[0]; 640}; 641#define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \ 642 ((_num) * sizeof(struct rps_dev_flow))) 643 644/* 645 * The rps_sock_flow_table contains mappings of flows to the last CPU 646 * on which they were processed by the application (set in recvmsg). 647 * Each entry is a 32bit value. Upper part is the high order bits 648 * of flow hash, lower part is cpu number. 649 * rps_cpu_mask is used to partition the space, depending on number of 650 * possible cpus : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1 651 * For example, if 64 cpus are possible, rps_cpu_mask = 0x3f, 652 * meaning we use 32-6=26 bits for the hash. 653 */ 654struct rps_sock_flow_table { 655 u32 mask; 656 657 u32 ents[0] ____cacheline_aligned_in_smp; 658}; 659#define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num])) 660 661#define RPS_NO_CPU 0xffff 662 663extern u32 rps_cpu_mask; 664extern struct rps_sock_flow_table __rcu *rps_sock_flow_table; 665 666static inline void rps_record_sock_flow(struct rps_sock_flow_table *table, 667 u32 hash) 668{ 669 if (table && hash) { 670 unsigned int index = hash & table->mask; 671 u32 val = hash & ~rps_cpu_mask; 672 673 /* We only give a hint, preemption can change cpu under us */ 674 val |= raw_smp_processor_id(); 675 676 if (table->ents[index] != val) 677 table->ents[index] = val; 678 } 679} 680 681#ifdef CONFIG_RFS_ACCEL 682bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id, 683 u16 filter_id); 684#endif 685#endif /* CONFIG_RPS */ 686 687/* This structure contains an instance of an RX queue. */ 688struct netdev_rx_queue { 689#ifdef CONFIG_RPS 690 struct rps_map __rcu *rps_map; 691 struct rps_dev_flow_table __rcu *rps_flow_table; 692#endif 693 struct kobject kobj; 694 struct net_device *dev; 695} ____cacheline_aligned_in_smp; 696 697/* 698 * RX queue sysfs structures and functions. 699 */ 700struct rx_queue_attribute { 701 struct attribute attr; 702 ssize_t (*show)(struct netdev_rx_queue *queue, 703 struct rx_queue_attribute *attr, char *buf); 704 ssize_t (*store)(struct netdev_rx_queue *queue, 705 struct rx_queue_attribute *attr, const char *buf, size_t len); 706}; 707 708#ifdef CONFIG_XPS 709/* 710 * This structure holds an XPS map which can be of variable length. The 711 * map is an array of queues. 712 */ 713struct xps_map { 714 unsigned int len; 715 unsigned int alloc_len; 716 struct rcu_head rcu; 717 u16 queues[0]; 718}; 719#define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16))) 720#define XPS_MIN_MAP_ALLOC ((L1_CACHE_BYTES - sizeof(struct xps_map)) \ 721 / sizeof(u16)) 722 723/* 724 * This structure holds all XPS maps for device. Maps are indexed by CPU. 725 */ 726struct xps_dev_maps { 727 struct rcu_head rcu; 728 struct xps_map __rcu *cpu_map[0]; 729}; 730#define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) + \ 731 (nr_cpu_ids * sizeof(struct xps_map *))) 732#endif /* CONFIG_XPS */ 733 734#define TC_MAX_QUEUE 16 735#define TC_BITMASK 15 736/* HW offloaded queuing disciplines txq count and offset maps */ 737struct netdev_tc_txq { 738 u16 count; 739 u16 offset; 740}; 741 742#if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE) 743/* 744 * This structure is to hold information about the device 745 * configured to run FCoE protocol stack. 746 */ 747struct netdev_fcoe_hbainfo { 748 char manufacturer[64]; 749 char serial_number[64]; 750 char hardware_version[64]; 751 char driver_version[64]; 752 char optionrom_version[64]; 753 char firmware_version[64]; 754 char model[256]; 755 char model_description[256]; 756}; 757#endif 758 759#define MAX_PHYS_ITEM_ID_LEN 32 760 761/* This structure holds a unique identifier to identify some 762 * physical item (port for example) used by a netdevice. 763 */ 764struct netdev_phys_item_id { 765 unsigned char id[MAX_PHYS_ITEM_ID_LEN]; 766 unsigned char id_len; 767}; 768 769typedef u16 (*select_queue_fallback_t)(struct net_device *dev, 770 struct sk_buff *skb); 771 772/* 773 * This structure defines the management hooks for network devices. 774 * The following hooks can be defined; unless noted otherwise, they are 775 * optional and can be filled with a null pointer. 776 * 777 * int (*ndo_init)(struct net_device *dev); 778 * This function is called once when network device is registered. 779 * The network device can use this to any late stage initializaton 780 * or semantic validattion. It can fail with an error code which will 781 * be propogated back to register_netdev 782 * 783 * void (*ndo_uninit)(struct net_device *dev); 784 * This function is called when device is unregistered or when registration 785 * fails. It is not called if init fails. 786 * 787 * int (*ndo_open)(struct net_device *dev); 788 * This function is called when network device transistions to the up 789 * state. 790 * 791 * int (*ndo_stop)(struct net_device *dev); 792 * This function is called when network device transistions to the down 793 * state. 794 * 795 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 796 * struct net_device *dev); 797 * Called when a packet needs to be transmitted. 798 * Must return NETDEV_TX_OK , NETDEV_TX_BUSY. 799 * (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX) 800 * Required can not be NULL. 801 * 802 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb, 803 * void *accel_priv, select_queue_fallback_t fallback); 804 * Called to decide which queue to when device supports multiple 805 * transmit queues. 806 * 807 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags); 808 * This function is called to allow device receiver to make 809 * changes to configuration when multicast or promiscious is enabled. 810 * 811 * void (*ndo_set_rx_mode)(struct net_device *dev); 812 * This function is called device changes address list filtering. 813 * If driver handles unicast address filtering, it should set 814 * IFF_UNICAST_FLT to its priv_flags. 815 * 816 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr); 817 * This function is called when the Media Access Control address 818 * needs to be changed. If this interface is not defined, the 819 * mac address can not be changed. 820 * 821 * int (*ndo_validate_addr)(struct net_device *dev); 822 * Test if Media Access Control address is valid for the device. 823 * 824 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 825 * Called when a user request an ioctl which can't be handled by 826 * the generic interface code. If not defined ioctl's return 827 * not supported error code. 828 * 829 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map); 830 * Used to set network devices bus interface parameters. This interface 831 * is retained for legacy reason, new devices should use the bus 832 * interface (PCI) for low level management. 833 * 834 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu); 835 * Called when a user wants to change the Maximum Transfer Unit 836 * of a device. If not defined, any request to change MTU will 837 * will return an error. 838 * 839 * void (*ndo_tx_timeout)(struct net_device *dev); 840 * Callback uses when the transmitter has not made any progress 841 * for dev->watchdog ticks. 842 * 843 * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev, 844 * struct rtnl_link_stats64 *storage); 845 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 846 * Called when a user wants to get the network device usage 847 * statistics. Drivers must do one of the following: 848 * 1. Define @ndo_get_stats64 to fill in a zero-initialised 849 * rtnl_link_stats64 structure passed by the caller. 850 * 2. Define @ndo_get_stats to update a net_device_stats structure 851 * (which should normally be dev->stats) and return a pointer to 852 * it. The structure may be changed asynchronously only if each 853 * field is written atomically. 854 * 3. Update dev->stats asynchronously and atomically, and define 855 * neither operation. 856 * 857 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid); 858 * If device support VLAN filtering this function is called when a 859 * VLAN id is registered. 860 * 861 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid); 862 * If device support VLAN filtering this function is called when a 863 * VLAN id is unregistered. 864 * 865 * void (*ndo_poll_controller)(struct net_device *dev); 866 * 867 * SR-IOV management functions. 868 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac); 869 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos); 870 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate, 871 * int max_tx_rate); 872 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting); 873 * int (*ndo_get_vf_config)(struct net_device *dev, 874 * int vf, struct ifla_vf_info *ivf); 875 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state); 876 * int (*ndo_set_vf_port)(struct net_device *dev, int vf, 877 * struct nlattr *port[]); 878 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb); 879 * int (*ndo_setup_tc)(struct net_device *dev, u8 tc) 880 * Called to setup 'tc' number of traffic classes in the net device. This 881 * is always called from the stack with the rtnl lock held and netif tx 882 * queues stopped. This allows the netdevice to perform queue management 883 * safely. 884 * 885 * Fiber Channel over Ethernet (FCoE) offload functions. 886 * int (*ndo_fcoe_enable)(struct net_device *dev); 887 * Called when the FCoE protocol stack wants to start using LLD for FCoE 888 * so the underlying device can perform whatever needed configuration or 889 * initialization to support acceleration of FCoE traffic. 890 * 891 * int (*ndo_fcoe_disable)(struct net_device *dev); 892 * Called when the FCoE protocol stack wants to stop using LLD for FCoE 893 * so the underlying device can perform whatever needed clean-ups to 894 * stop supporting acceleration of FCoE traffic. 895 * 896 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid, 897 * struct scatterlist *sgl, unsigned int sgc); 898 * Called when the FCoE Initiator wants to initialize an I/O that 899 * is a possible candidate for Direct Data Placement (DDP). The LLD can 900 * perform necessary setup and returns 1 to indicate the device is set up 901 * successfully to perform DDP on this I/O, otherwise this returns 0. 902 * 903 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid); 904 * Called when the FCoE Initiator/Target is done with the DDPed I/O as 905 * indicated by the FC exchange id 'xid', so the underlying device can 906 * clean up and reuse resources for later DDP requests. 907 * 908 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid, 909 * struct scatterlist *sgl, unsigned int sgc); 910 * Called when the FCoE Target wants to initialize an I/O that 911 * is a possible candidate for Direct Data Placement (DDP). The LLD can 912 * perform necessary setup and returns 1 to indicate the device is set up 913 * successfully to perform DDP on this I/O, otherwise this returns 0. 914 * 915 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 916 * struct netdev_fcoe_hbainfo *hbainfo); 917 * Called when the FCoE Protocol stack wants information on the underlying 918 * device. This information is utilized by the FCoE protocol stack to 919 * register attributes with Fiber Channel management service as per the 920 * FC-GS Fabric Device Management Information(FDMI) specification. 921 * 922 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type); 923 * Called when the underlying device wants to override default World Wide 924 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own 925 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE 926 * protocol stack to use. 927 * 928 * RFS acceleration. 929 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb, 930 * u16 rxq_index, u32 flow_id); 931 * Set hardware filter for RFS. rxq_index is the target queue index; 932 * flow_id is a flow ID to be passed to rps_may_expire_flow() later. 933 * Return the filter ID on success, or a negative error code. 934 * 935 * Slave management functions (for bridge, bonding, etc). 936 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev); 937 * Called to make another netdev an underling. 938 * 939 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev); 940 * Called to release previously enslaved netdev. 941 * 942 * Feature/offload setting functions. 943 * netdev_features_t (*ndo_fix_features)(struct net_device *dev, 944 * netdev_features_t features); 945 * Adjusts the requested feature flags according to device-specific 946 * constraints, and returns the resulting flags. Must not modify 947 * the device state. 948 * 949 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features); 950 * Called to update device configuration to new features. Passed 951 * feature set might be less than what was returned by ndo_fix_features()). 952 * Must return >0 or -errno if it changed dev->features itself. 953 * 954 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[], 955 * struct net_device *dev, 956 * const unsigned char *addr, u16 vid, u16 flags) 957 * Adds an FDB entry to dev for addr. 958 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[], 959 * struct net_device *dev, 960 * const unsigned char *addr, u16 vid) 961 * Deletes the FDB entry from dev coresponding to addr. 962 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb, 963 * struct net_device *dev, struct net_device *filter_dev, 964 * int idx) 965 * Used to add FDB entries to dump requests. Implementers should add 966 * entries to skb and update idx with the number of entries. 967 * 968 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh, 969 * u16 flags) 970 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq, 971 * struct net_device *dev, u32 filter_mask) 972 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh, 973 * u16 flags); 974 * 975 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier); 976 * Called to change device carrier. Soft-devices (like dummy, team, etc) 977 * which do not represent real hardware may define this to allow their 978 * userspace components to manage their virtual carrier state. Devices 979 * that determine carrier state from physical hardware properties (eg 980 * network cables) or protocol-dependent mechanisms (eg 981 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function. 982 * 983 * int (*ndo_get_phys_port_id)(struct net_device *dev, 984 * struct netdev_phys_item_id *ppid); 985 * Called to get ID of physical port of this device. If driver does 986 * not implement this, it is assumed that the hw is not able to have 987 * multiple net devices on single physical port. 988 * 989 * void (*ndo_add_vxlan_port)(struct net_device *dev, 990 * sa_family_t sa_family, __be16 port); 991 * Called by vxlan to notiy a driver about the UDP port and socket 992 * address family that vxlan is listnening to. It is called only when 993 * a new port starts listening. The operation is protected by the 994 * vxlan_net->sock_lock. 995 * 996 * void (*ndo_del_vxlan_port)(struct net_device *dev, 997 * sa_family_t sa_family, __be16 port); 998 * Called by vxlan to notify the driver about a UDP port and socket 999 * address family that vxlan is not listening to anymore. The operation 1000 * is protected by the vxlan_net->sock_lock. 1001 * 1002 * void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1003 * struct net_device *dev) 1004 * Called by upper layer devices to accelerate switching or other 1005 * station functionality into hardware. 'pdev is the lowerdev 1006 * to use for the offload and 'dev' is the net device that will 1007 * back the offload. Returns a pointer to the private structure 1008 * the upper layer will maintain. 1009 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv) 1010 * Called by upper layer device to delete the station created 1011 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing 1012 * the station and priv is the structure returned by the add 1013 * operation. 1014 * netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff *skb, 1015 * struct net_device *dev, 1016 * void *priv); 1017 * Callback to use for xmit over the accelerated station. This 1018 * is used in place of ndo_start_xmit on accelerated net 1019 * devices. 1020 * netdev_features_t (*ndo_features_check) (struct sk_buff *skb, 1021 * struct net_device *dev 1022 * netdev_features_t features); 1023 * Called by core transmit path to determine if device is capable of 1024 * performing offload operations on a given packet. This is to give 1025 * the device an opportunity to implement any restrictions that cannot 1026 * be otherwise expressed by feature flags. The check is called with 1027 * the set of features that the stack has calculated and it returns 1028 * those the driver believes to be appropriate. 1029 * 1030 * int (*ndo_switch_parent_id_get)(struct net_device *dev, 1031 * struct netdev_phys_item_id *psid); 1032 * Called to get an ID of the switch chip this port is part of. 1033 * If driver implements this, it indicates that it represents a port 1034 * of a switch chip. 1035 * int (*ndo_switch_port_stp_update)(struct net_device *dev, u8 state); 1036 * Called to notify switch device port of bridge port STP 1037 * state change. 1038 */ 1039struct net_device_ops { 1040 int (*ndo_init)(struct net_device *dev); 1041 void (*ndo_uninit)(struct net_device *dev); 1042 int (*ndo_open)(struct net_device *dev); 1043 int (*ndo_stop)(struct net_device *dev); 1044 netdev_tx_t (*ndo_start_xmit) (struct sk_buff *skb, 1045 struct net_device *dev); 1046 u16 (*ndo_select_queue)(struct net_device *dev, 1047 struct sk_buff *skb, 1048 void *accel_priv, 1049 select_queue_fallback_t fallback); 1050 void (*ndo_change_rx_flags)(struct net_device *dev, 1051 int flags); 1052 void (*ndo_set_rx_mode)(struct net_device *dev); 1053 int (*ndo_set_mac_address)(struct net_device *dev, 1054 void *addr); 1055 int (*ndo_validate_addr)(struct net_device *dev); 1056 int (*ndo_do_ioctl)(struct net_device *dev, 1057 struct ifreq *ifr, int cmd); 1058 int (*ndo_set_config)(struct net_device *dev, 1059 struct ifmap *map); 1060 int (*ndo_change_mtu)(struct net_device *dev, 1061 int new_mtu); 1062 int (*ndo_neigh_setup)(struct net_device *dev, 1063 struct neigh_parms *); 1064 void (*ndo_tx_timeout) (struct net_device *dev); 1065 1066 struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev, 1067 struct rtnl_link_stats64 *storage); 1068 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 1069 1070 int (*ndo_vlan_rx_add_vid)(struct net_device *dev, 1071 __be16 proto, u16 vid); 1072 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, 1073 __be16 proto, u16 vid); 1074#ifdef CONFIG_NET_POLL_CONTROLLER 1075 void (*ndo_poll_controller)(struct net_device *dev); 1076 int (*ndo_netpoll_setup)(struct net_device *dev, 1077 struct netpoll_info *info); 1078 void (*ndo_netpoll_cleanup)(struct net_device *dev); 1079#endif 1080#ifdef CONFIG_NET_RX_BUSY_POLL 1081 int (*ndo_busy_poll)(struct napi_struct *dev); 1082#endif 1083 int (*ndo_set_vf_mac)(struct net_device *dev, 1084 int queue, u8 *mac); 1085 int (*ndo_set_vf_vlan)(struct net_device *dev, 1086 int queue, u16 vlan, u8 qos); 1087 int (*ndo_set_vf_rate)(struct net_device *dev, 1088 int vf, int min_tx_rate, 1089 int max_tx_rate); 1090 int (*ndo_set_vf_spoofchk)(struct net_device *dev, 1091 int vf, bool setting); 1092 int (*ndo_get_vf_config)(struct net_device *dev, 1093 int vf, 1094 struct ifla_vf_info *ivf); 1095 int (*ndo_set_vf_link_state)(struct net_device *dev, 1096 int vf, int link_state); 1097 int (*ndo_set_vf_port)(struct net_device *dev, 1098 int vf, 1099 struct nlattr *port[]); 1100 int (*ndo_get_vf_port)(struct net_device *dev, 1101 int vf, struct sk_buff *skb); 1102 int (*ndo_setup_tc)(struct net_device *dev, u8 tc); 1103#if IS_ENABLED(CONFIG_FCOE) 1104 int (*ndo_fcoe_enable)(struct net_device *dev); 1105 int (*ndo_fcoe_disable)(struct net_device *dev); 1106 int (*ndo_fcoe_ddp_setup)(struct net_device *dev, 1107 u16 xid, 1108 struct scatterlist *sgl, 1109 unsigned int sgc); 1110 int (*ndo_fcoe_ddp_done)(struct net_device *dev, 1111 u16 xid); 1112 int (*ndo_fcoe_ddp_target)(struct net_device *dev, 1113 u16 xid, 1114 struct scatterlist *sgl, 1115 unsigned int sgc); 1116 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 1117 struct netdev_fcoe_hbainfo *hbainfo); 1118#endif 1119 1120#if IS_ENABLED(CONFIG_LIBFCOE) 1121#define NETDEV_FCOE_WWNN 0 1122#define NETDEV_FCOE_WWPN 1 1123 int (*ndo_fcoe_get_wwn)(struct net_device *dev, 1124 u64 *wwn, int type); 1125#endif 1126 1127#ifdef CONFIG_RFS_ACCEL 1128 int (*ndo_rx_flow_steer)(struct net_device *dev, 1129 const struct sk_buff *skb, 1130 u16 rxq_index, 1131 u32 flow_id); 1132#endif 1133 int (*ndo_add_slave)(struct net_device *dev, 1134 struct net_device *slave_dev); 1135 int (*ndo_del_slave)(struct net_device *dev, 1136 struct net_device *slave_dev); 1137 netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1138 netdev_features_t features); 1139 int (*ndo_set_features)(struct net_device *dev, 1140 netdev_features_t features); 1141 int (*ndo_neigh_construct)(struct neighbour *n); 1142 void (*ndo_neigh_destroy)(struct neighbour *n); 1143 1144 int (*ndo_fdb_add)(struct ndmsg *ndm, 1145 struct nlattr *tb[], 1146 struct net_device *dev, 1147 const unsigned char *addr, 1148 u16 vid, 1149 u16 flags); 1150 int (*ndo_fdb_del)(struct ndmsg *ndm, 1151 struct nlattr *tb[], 1152 struct net_device *dev, 1153 const unsigned char *addr, 1154 u16 vid); 1155 int (*ndo_fdb_dump)(struct sk_buff *skb, 1156 struct netlink_callback *cb, 1157 struct net_device *dev, 1158 struct net_device *filter_dev, 1159 int idx); 1160 1161 int (*ndo_bridge_setlink)(struct net_device *dev, 1162 struct nlmsghdr *nlh, 1163 u16 flags); 1164 int (*ndo_bridge_getlink)(struct sk_buff *skb, 1165 u32 pid, u32 seq, 1166 struct net_device *dev, 1167 u32 filter_mask); 1168 int (*ndo_bridge_dellink)(struct net_device *dev, 1169 struct nlmsghdr *nlh, 1170 u16 flags); 1171 int (*ndo_change_carrier)(struct net_device *dev, 1172 bool new_carrier); 1173 int (*ndo_get_phys_port_id)(struct net_device *dev, 1174 struct netdev_phys_item_id *ppid); 1175 void (*ndo_add_vxlan_port)(struct net_device *dev, 1176 sa_family_t sa_family, 1177 __be16 port); 1178 void (*ndo_del_vxlan_port)(struct net_device *dev, 1179 sa_family_t sa_family, 1180 __be16 port); 1181 1182 void* (*ndo_dfwd_add_station)(struct net_device *pdev, 1183 struct net_device *dev); 1184 void (*ndo_dfwd_del_station)(struct net_device *pdev, 1185 void *priv); 1186 1187 netdev_tx_t (*ndo_dfwd_start_xmit) (struct sk_buff *skb, 1188 struct net_device *dev, 1189 void *priv); 1190 int (*ndo_get_lock_subclass)(struct net_device *dev); 1191 netdev_features_t (*ndo_features_check) (struct sk_buff *skb, 1192 struct net_device *dev, 1193 netdev_features_t features); 1194#ifdef CONFIG_NET_SWITCHDEV 1195 int (*ndo_switch_parent_id_get)(struct net_device *dev, 1196 struct netdev_phys_item_id *psid); 1197 int (*ndo_switch_port_stp_update)(struct net_device *dev, 1198 u8 state); 1199#endif 1200}; 1201 1202/** 1203 * enum net_device_priv_flags - &struct net_device priv_flags 1204 * 1205 * These are the &struct net_device, they are only set internally 1206 * by drivers and used in the kernel. These flags are invisible to 1207 * userspace, this means that the order of these flags can change 1208 * during any kernel release. 1209 * 1210 * You should have a pretty good reason to be extending these flags. 1211 * 1212 * @IFF_802_1Q_VLAN: 802.1Q VLAN device 1213 * @IFF_EBRIDGE: Ethernet bridging device 1214 * @IFF_SLAVE_INACTIVE: bonding slave not the curr. active 1215 * @IFF_MASTER_8023AD: bonding master, 802.3ad 1216 * @IFF_MASTER_ALB: bonding master, balance-alb 1217 * @IFF_BONDING: bonding master or slave 1218 * @IFF_SLAVE_NEEDARP: need ARPs for validation 1219 * @IFF_ISATAP: ISATAP interface (RFC4214) 1220 * @IFF_MASTER_ARPMON: bonding master, ARP mon in use 1221 * @IFF_WAN_HDLC: WAN HDLC device 1222 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to 1223 * release skb->dst 1224 * @IFF_DONT_BRIDGE: disallow bridging this ether dev 1225 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time 1226 * @IFF_MACVLAN_PORT: device used as macvlan port 1227 * @IFF_BRIDGE_PORT: device used as bridge port 1228 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port 1229 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit 1230 * @IFF_UNICAST_FLT: Supports unicast filtering 1231 * @IFF_TEAM_PORT: device used as team port 1232 * @IFF_SUPP_NOFCS: device supports sending custom FCS 1233 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address 1234 * change when it's running 1235 * @IFF_MACVLAN: Macvlan device 1236 */ 1237enum netdev_priv_flags { 1238 IFF_802_1Q_VLAN = 1<<0, 1239 IFF_EBRIDGE = 1<<1, 1240 IFF_SLAVE_INACTIVE = 1<<2, 1241 IFF_MASTER_8023AD = 1<<3, 1242 IFF_MASTER_ALB = 1<<4, 1243 IFF_BONDING = 1<<5, 1244 IFF_SLAVE_NEEDARP = 1<<6, 1245 IFF_ISATAP = 1<<7, 1246 IFF_MASTER_ARPMON = 1<<8, 1247 IFF_WAN_HDLC = 1<<9, 1248 IFF_XMIT_DST_RELEASE = 1<<10, 1249 IFF_DONT_BRIDGE = 1<<11, 1250 IFF_DISABLE_NETPOLL = 1<<12, 1251 IFF_MACVLAN_PORT = 1<<13, 1252 IFF_BRIDGE_PORT = 1<<14, 1253 IFF_OVS_DATAPATH = 1<<15, 1254 IFF_TX_SKB_SHARING = 1<<16, 1255 IFF_UNICAST_FLT = 1<<17, 1256 IFF_TEAM_PORT = 1<<18, 1257 IFF_SUPP_NOFCS = 1<<19, 1258 IFF_LIVE_ADDR_CHANGE = 1<<20, 1259 IFF_MACVLAN = 1<<21, 1260 IFF_XMIT_DST_RELEASE_PERM = 1<<22, 1261 IFF_IPVLAN_MASTER = 1<<23, 1262 IFF_IPVLAN_SLAVE = 1<<24, 1263}; 1264 1265#define IFF_802_1Q_VLAN IFF_802_1Q_VLAN 1266#define IFF_EBRIDGE IFF_EBRIDGE 1267#define IFF_SLAVE_INACTIVE IFF_SLAVE_INACTIVE 1268#define IFF_MASTER_8023AD IFF_MASTER_8023AD 1269#define IFF_MASTER_ALB IFF_MASTER_ALB 1270#define IFF_BONDING IFF_BONDING 1271#define IFF_SLAVE_NEEDARP IFF_SLAVE_NEEDARP 1272#define IFF_ISATAP IFF_ISATAP 1273#define IFF_MASTER_ARPMON IFF_MASTER_ARPMON 1274#define IFF_WAN_HDLC IFF_WAN_HDLC 1275#define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE 1276#define IFF_DONT_BRIDGE IFF_DONT_BRIDGE 1277#define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL 1278#define IFF_MACVLAN_PORT IFF_MACVLAN_PORT 1279#define IFF_BRIDGE_PORT IFF_BRIDGE_PORT 1280#define IFF_OVS_DATAPATH IFF_OVS_DATAPATH 1281#define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING 1282#define IFF_UNICAST_FLT IFF_UNICAST_FLT 1283#define IFF_TEAM_PORT IFF_TEAM_PORT 1284#define IFF_SUPP_NOFCS IFF_SUPP_NOFCS 1285#define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE 1286#define IFF_MACVLAN IFF_MACVLAN 1287#define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM 1288#define IFF_IPVLAN_MASTER IFF_IPVLAN_MASTER 1289#define IFF_IPVLAN_SLAVE IFF_IPVLAN_SLAVE 1290 1291/** 1292 * struct net_device - The DEVICE structure. 1293 * Actually, this whole structure is a big mistake. It mixes I/O 1294 * data with strictly "high-level" data, and it has to know about 1295 * almost every data structure used in the INET module. 1296 * 1297 * @name: This is the first field of the "visible" part of this structure 1298 * (i.e. as seen by users in the "Space.c" file). It is the name 1299 * of the interface. 1300 * 1301 * @name_hlist: Device name hash chain, please keep it close to name[] 1302 * @ifalias: SNMP alias 1303 * @mem_end: Shared memory end 1304 * @mem_start: Shared memory start 1305 * @base_addr: Device I/O address 1306 * @irq: Device IRQ number 1307 * 1308 * @state: Generic network queuing layer state, see netdev_state_t 1309 * @dev_list: The global list of network devices 1310 * @napi_list: List entry, that is used for polling napi devices 1311 * @unreg_list: List entry, that is used, when we are unregistering the 1312 * device, see the function unregister_netdev 1313 * @close_list: List entry, that is used, when we are closing the device 1314 * 1315 * @adj_list: Directly linked devices, like slaves for bonding 1316 * @all_adj_list: All linked devices, *including* neighbours 1317 * @features: Currently active device features 1318 * @hw_features: User-changeable features 1319 * 1320 * @wanted_features: User-requested features 1321 * @vlan_features: Mask of features inheritable by VLAN devices 1322 * 1323 * @hw_enc_features: Mask of features inherited by encapsulating devices 1324 * This field indicates what encapsulation 1325 * offloads the hardware is capable of doing, 1326 * and drivers will need to set them appropriately. 1327 * 1328 * @mpls_features: Mask of features inheritable by MPLS 1329 * 1330 * @ifindex: interface index 1331 * @iflink: unique device identifier 1332 * 1333 * @stats: Statistics struct, which was left as a legacy, use 1334 * rtnl_link_stats64 instead 1335 * 1336 * @rx_dropped: Dropped packets by core network, 1337 * do not use this in drivers 1338 * @tx_dropped: Dropped packets by core network, 1339 * do not use this in drivers 1340 * 1341 * @carrier_changes: Stats to monitor carrier on<->off transitions 1342 * 1343 * @wireless_handlers: List of functions to handle Wireless Extensions, 1344 * instead of ioctl, 1345 * see <net/iw_handler.h> for details. 1346 * @wireless_data: Instance data managed by the core of wireless extensions 1347 * 1348 * @netdev_ops: Includes several pointers to callbacks, 1349 * if one wants to override the ndo_*() functions 1350 * @ethtool_ops: Management operations 1351 * @fwd_ops: Management operations 1352 * @header_ops: Includes callbacks for creating,parsing,rebuilding,etc 1353 * of Layer 2 headers. 1354 * 1355 * @flags: Interface flags (a la BSD) 1356 * @priv_flags: Like 'flags' but invisible to userspace, 1357 * see if.h for the definitions 1358 * @gflags: Global flags ( kept as legacy ) 1359 * @padded: How much padding added by alloc_netdev() 1360 * @operstate: RFC2863 operstate 1361 * @link_mode: Mapping policy to operstate 1362 * @if_port: Selectable AUI, TP, ... 1363 * @dma: DMA channel 1364 * @mtu: Interface MTU value 1365 * @type: Interface hardware type 1366 * @hard_header_len: Hardware header length 1367 * 1368 * @needed_headroom: Extra headroom the hardware may need, but not in all 1369 * cases can this be guaranteed 1370 * @needed_tailroom: Extra tailroom the hardware may need, but not in all 1371 * cases can this be guaranteed. Some cases also use 1372 * LL_MAX_HEADER instead to allocate the skb 1373 * 1374 * interface address info: 1375 * 1376 * @perm_addr: Permanent hw address 1377 * @addr_assign_type: Hw address assignment type 1378 * @addr_len: Hardware address length 1379 * @neigh_priv_len; Used in neigh_alloc(), 1380 * initialized only in atm/clip.c 1381 * @dev_id: Used to differentiate devices that share 1382 * the same link layer address 1383 * @dev_port: Used to differentiate devices that share 1384 * the same function 1385 * @addr_list_lock: XXX: need comments on this one 1386 * @uc: unicast mac addresses 1387 * @mc: multicast mac addresses 1388 * @dev_addrs: list of device hw addresses 1389 * @queues_kset: Group of all Kobjects in the Tx and RX queues 1390 * @uc_promisc: Counter, that indicates, that promiscuous mode 1391 * has been enabled due to the need to listen to 1392 * additional unicast addresses in a device that 1393 * does not implement ndo_set_rx_mode() 1394 * @promiscuity: Number of times, the NIC is told to work in 1395 * Promiscuous mode, if it becomes 0 the NIC will 1396 * exit from working in Promiscuous mode 1397 * @allmulti: Counter, enables or disables allmulticast mode 1398 * 1399 * @vlan_info: VLAN info 1400 * @dsa_ptr: dsa specific data 1401 * @tipc_ptr: TIPC specific data 1402 * @atalk_ptr: AppleTalk link 1403 * @ip_ptr: IPv4 specific data 1404 * @dn_ptr: DECnet specific data 1405 * @ip6_ptr: IPv6 specific data 1406 * @ax25_ptr: AX.25 specific data 1407 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering 1408 * 1409 * @last_rx: Time of last Rx 1410 * @dev_addr: Hw address (before bcast, 1411 * because most packets are unicast) 1412 * 1413 * @_rx: Array of RX queues 1414 * @num_rx_queues: Number of RX queues 1415 * allocated at register_netdev() time 1416 * @real_num_rx_queues: Number of RX queues currently active in device 1417 * 1418 * @rx_handler: handler for received packets 1419 * @rx_handler_data: XXX: need comments on this one 1420 * @ingress_queue: XXX: need comments on this one 1421 * @broadcast: hw bcast address 1422 * 1423 * @_tx: Array of TX queues 1424 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time 1425 * @real_num_tx_queues: Number of TX queues currently active in device 1426 * @qdisc: Root qdisc from userspace point of view 1427 * @tx_queue_len: Max frames per queue allowed 1428 * @tx_global_lock: XXX: need comments on this one 1429 * 1430 * @xps_maps: XXX: need comments on this one 1431 * 1432 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts, 1433 * indexed by RX queue number. Assigned by driver. 1434 * This must only be set if the ndo_rx_flow_steer 1435 * operation is defined 1436 * 1437 * @trans_start: Time (in jiffies) of last Tx 1438 * @watchdog_timeo: Represents the timeout that is used by 1439 * the watchdog ( see dev_watchdog() ) 1440 * @watchdog_timer: List of timers 1441 * 1442 * @pcpu_refcnt: Number of references to this device 1443 * @todo_list: Delayed register/unregister 1444 * @index_hlist: Device index hash chain 1445 * @link_watch_list: XXX: need comments on this one 1446 * 1447 * @reg_state: Register/unregister state machine 1448 * @dismantle: Device is going to be freed 1449 * @rtnl_link_state: This enum represents the phases of creating 1450 * a new link 1451 * 1452 * @destructor: Called from unregister, 1453 * can be used to call free_netdev 1454 * @npinfo: XXX: need comments on this one 1455 * @nd_net: Network namespace this network device is inside 1456 * 1457 * @ml_priv: Mid-layer private 1458 * @lstats: Loopback statistics 1459 * @tstats: Tunnel statistics 1460 * @dstats: Dummy statistics 1461 * @vstats: Virtual ethernet statistics 1462 * 1463 * @garp_port: GARP 1464 * @mrp_port: MRP 1465 * 1466 * @dev: Class/net/name entry 1467 * @sysfs_groups: Space for optional device, statistics and wireless 1468 * sysfs groups 1469 * 1470 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes 1471 * @rtnl_link_ops: Rtnl_link_ops 1472 * 1473 * @gso_max_size: Maximum size of generic segmentation offload 1474 * @gso_max_segs: Maximum number of segments that can be passed to the 1475 * NIC for GSO 1476 * @gso_min_segs: Minimum number of segments that can be passed to the 1477 * NIC for GSO 1478 * 1479 * @dcbnl_ops: Data Center Bridging netlink ops 1480 * @num_tc: Number of traffic classes in the net device 1481 * @tc_to_txq: XXX: need comments on this one 1482 * @prio_tc_map XXX: need comments on this one 1483 * 1484 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp 1485 * 1486 * @priomap: XXX: need comments on this one 1487 * @phydev: Physical device may attach itself 1488 * for hardware timestamping 1489 * 1490 * @qdisc_tx_busylock: XXX: need comments on this one 1491 * 1492 * @group: The group, that the device belongs to 1493 * @pm_qos_req: Power Management QoS object 1494 * 1495 * FIXME: cleanup struct net_device such that network protocol info 1496 * moves out. 1497 */ 1498 1499struct net_device { 1500 char name[IFNAMSIZ]; 1501 struct hlist_node name_hlist; 1502 char *ifalias; 1503 /* 1504 * I/O specific fields 1505 * FIXME: Merge these and struct ifmap into one 1506 */ 1507 unsigned long mem_end; 1508 unsigned long mem_start; 1509 unsigned long base_addr; 1510 int irq; 1511 1512 /* 1513 * Some hardware also needs these fields (state,dev_list, 1514 * napi_list,unreg_list,close_list) but they are not 1515 * part of the usual set specified in Space.c. 1516 */ 1517 1518 unsigned long state; 1519 1520 struct list_head dev_list; 1521 struct list_head napi_list; 1522 struct list_head unreg_list; 1523 struct list_head close_list; 1524 struct list_head ptype_all; 1525 struct list_head ptype_specific; 1526 1527 struct { 1528 struct list_head upper; 1529 struct list_head lower; 1530 } adj_list; 1531 1532 struct { 1533 struct list_head upper; 1534 struct list_head lower; 1535 } all_adj_list; 1536 1537 netdev_features_t features; 1538 netdev_features_t hw_features; 1539 netdev_features_t wanted_features; 1540 netdev_features_t vlan_features; 1541 netdev_features_t hw_enc_features; 1542 netdev_features_t mpls_features; 1543 1544 int ifindex; 1545 int iflink; 1546 1547 struct net_device_stats stats; 1548 1549 atomic_long_t rx_dropped; 1550 atomic_long_t tx_dropped; 1551 1552 atomic_t carrier_changes; 1553 1554#ifdef CONFIG_WIRELESS_EXT 1555 const struct iw_handler_def * wireless_handlers; 1556 struct iw_public_data * wireless_data; 1557#endif 1558 const struct net_device_ops *netdev_ops; 1559 const struct ethtool_ops *ethtool_ops; 1560 const struct forwarding_accel_ops *fwd_ops; 1561 1562 const struct header_ops *header_ops; 1563 1564 unsigned int flags; 1565 unsigned int priv_flags; 1566 1567 unsigned short gflags; 1568 unsigned short padded; 1569 1570 unsigned char operstate; 1571 unsigned char link_mode; 1572 1573 unsigned char if_port; 1574 unsigned char dma; 1575 1576 unsigned int mtu; 1577 unsigned short type; 1578 unsigned short hard_header_len; 1579 1580 unsigned short needed_headroom; 1581 unsigned short needed_tailroom; 1582 1583 /* Interface address info. */ 1584 unsigned char perm_addr[MAX_ADDR_LEN]; 1585 unsigned char addr_assign_type; 1586 unsigned char addr_len; 1587 unsigned short neigh_priv_len; 1588 unsigned short dev_id; 1589 unsigned short dev_port; 1590 spinlock_t addr_list_lock; 1591 struct netdev_hw_addr_list uc; 1592 struct netdev_hw_addr_list mc; 1593 struct netdev_hw_addr_list dev_addrs; 1594 1595#ifdef CONFIG_SYSFS 1596 struct kset *queues_kset; 1597#endif 1598 1599 unsigned char name_assign_type; 1600 1601 bool uc_promisc; 1602 unsigned int promiscuity; 1603 unsigned int allmulti; 1604 1605 1606 /* Protocol specific pointers */ 1607 1608#if IS_ENABLED(CONFIG_VLAN_8021Q) 1609 struct vlan_info __rcu *vlan_info; 1610#endif 1611#if IS_ENABLED(CONFIG_NET_DSA) 1612 struct dsa_switch_tree *dsa_ptr; 1613#endif 1614#if IS_ENABLED(CONFIG_TIPC) 1615 struct tipc_bearer __rcu *tipc_ptr; 1616#endif 1617 void *atalk_ptr; 1618 struct in_device __rcu *ip_ptr; 1619 struct dn_dev __rcu *dn_ptr; 1620 struct inet6_dev __rcu *ip6_ptr; 1621 void *ax25_ptr; 1622 struct wireless_dev *ieee80211_ptr; 1623 struct wpan_dev *ieee802154_ptr; 1624 1625/* 1626 * Cache lines mostly used on receive path (including eth_type_trans()) 1627 */ 1628 unsigned long last_rx; 1629 1630 /* Interface address info used in eth_type_trans() */ 1631 unsigned char *dev_addr; 1632 1633 1634#ifdef CONFIG_SYSFS 1635 struct netdev_rx_queue *_rx; 1636 1637 unsigned int num_rx_queues; 1638 unsigned int real_num_rx_queues; 1639 1640#endif 1641 1642 unsigned long gro_flush_timeout; 1643 rx_handler_func_t __rcu *rx_handler; 1644 void __rcu *rx_handler_data; 1645 1646 struct netdev_queue __rcu *ingress_queue; 1647 unsigned char broadcast[MAX_ADDR_LEN]; 1648 1649 1650/* 1651 * Cache lines mostly used on transmit path 1652 */ 1653 struct netdev_queue *_tx ____cacheline_aligned_in_smp; 1654 unsigned int num_tx_queues; 1655 unsigned int real_num_tx_queues; 1656 struct Qdisc *qdisc; 1657 unsigned long tx_queue_len; 1658 spinlock_t tx_global_lock; 1659 1660#ifdef CONFIG_XPS 1661 struct xps_dev_maps __rcu *xps_maps; 1662#endif 1663#ifdef CONFIG_RFS_ACCEL 1664 struct cpu_rmap *rx_cpu_rmap; 1665#endif 1666 1667 /* These may be needed for future network-power-down code. */ 1668 1669 /* 1670 * trans_start here is expensive for high speed devices on SMP, 1671 * please use netdev_queue->trans_start instead. 1672 */ 1673 unsigned long trans_start; 1674 1675 int watchdog_timeo; 1676 struct timer_list watchdog_timer; 1677 1678 int __percpu *pcpu_refcnt; 1679 struct list_head todo_list; 1680 1681 struct hlist_node index_hlist; 1682 struct list_head link_watch_list; 1683 1684 enum { NETREG_UNINITIALIZED=0, 1685 NETREG_REGISTERED, /* completed register_netdevice */ 1686 NETREG_UNREGISTERING, /* called unregister_netdevice */ 1687 NETREG_UNREGISTERED, /* completed unregister todo */ 1688 NETREG_RELEASED, /* called free_netdev */ 1689 NETREG_DUMMY, /* dummy device for NAPI poll */ 1690 } reg_state:8; 1691 1692 bool dismantle; 1693 1694 enum { 1695 RTNL_LINK_INITIALIZED, 1696 RTNL_LINK_INITIALIZING, 1697 } rtnl_link_state:16; 1698 1699 void (*destructor)(struct net_device *dev); 1700 1701#ifdef CONFIG_NETPOLL 1702 struct netpoll_info __rcu *npinfo; 1703#endif 1704 1705#ifdef CONFIG_NET_NS 1706 struct net *nd_net; 1707#endif 1708 1709 /* mid-layer private */ 1710 union { 1711 void *ml_priv; 1712 struct pcpu_lstats __percpu *lstats; 1713 struct pcpu_sw_netstats __percpu *tstats; 1714 struct pcpu_dstats __percpu *dstats; 1715 struct pcpu_vstats __percpu *vstats; 1716 }; 1717 1718 struct garp_port __rcu *garp_port; 1719 struct mrp_port __rcu *mrp_port; 1720 1721 struct device dev; 1722 const struct attribute_group *sysfs_groups[4]; 1723 const struct attribute_group *sysfs_rx_queue_group; 1724 1725 const struct rtnl_link_ops *rtnl_link_ops; 1726 1727 /* for setting kernel sock attribute on TCP connection setup */ 1728#define GSO_MAX_SIZE 65536 1729 unsigned int gso_max_size; 1730#define GSO_MAX_SEGS 65535 1731 u16 gso_max_segs; 1732 u16 gso_min_segs; 1733#ifdef CONFIG_DCB 1734 const struct dcbnl_rtnl_ops *dcbnl_ops; 1735#endif 1736 u8 num_tc; 1737 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE]; 1738 u8 prio_tc_map[TC_BITMASK + 1]; 1739 1740#if IS_ENABLED(CONFIG_FCOE) 1741 unsigned int fcoe_ddp_xid; 1742#endif 1743#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 1744 struct netprio_map __rcu *priomap; 1745#endif 1746 struct phy_device *phydev; 1747 struct lock_class_key *qdisc_tx_busylock; 1748 int group; 1749 struct pm_qos_request pm_qos_req; 1750}; 1751#define to_net_dev(d) container_of(d, struct net_device, dev) 1752 1753#define NETDEV_ALIGN 32 1754 1755static inline 1756int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio) 1757{ 1758 return dev->prio_tc_map[prio & TC_BITMASK]; 1759} 1760 1761static inline 1762int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc) 1763{ 1764 if (tc >= dev->num_tc) 1765 return -EINVAL; 1766 1767 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK; 1768 return 0; 1769} 1770 1771static inline 1772void netdev_reset_tc(struct net_device *dev) 1773{ 1774 dev->num_tc = 0; 1775 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 1776 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 1777} 1778 1779static inline 1780int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 1781{ 1782 if (tc >= dev->num_tc) 1783 return -EINVAL; 1784 1785 dev->tc_to_txq[tc].count = count; 1786 dev->tc_to_txq[tc].offset = offset; 1787 return 0; 1788} 1789 1790static inline 1791int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 1792{ 1793 if (num_tc > TC_MAX_QUEUE) 1794 return -EINVAL; 1795 1796 dev->num_tc = num_tc; 1797 return 0; 1798} 1799 1800static inline 1801int netdev_get_num_tc(struct net_device *dev) 1802{ 1803 return dev->num_tc; 1804} 1805 1806static inline 1807struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev, 1808 unsigned int index) 1809{ 1810 return &dev->_tx[index]; 1811} 1812 1813static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev, 1814 const struct sk_buff *skb) 1815{ 1816 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb)); 1817} 1818 1819static inline void netdev_for_each_tx_queue(struct net_device *dev, 1820 void (*f)(struct net_device *, 1821 struct netdev_queue *, 1822 void *), 1823 void *arg) 1824{ 1825 unsigned int i; 1826 1827 for (i = 0; i < dev->num_tx_queues; i++) 1828 f(dev, &dev->_tx[i], arg); 1829} 1830 1831struct netdev_queue *netdev_pick_tx(struct net_device *dev, 1832 struct sk_buff *skb, 1833 void *accel_priv); 1834 1835/* 1836 * Net namespace inlines 1837 */ 1838static inline 1839struct net *dev_net(const struct net_device *dev) 1840{ 1841 return read_pnet(&dev->nd_net); 1842} 1843 1844static inline 1845void dev_net_set(struct net_device *dev, struct net *net) 1846{ 1847#ifdef CONFIG_NET_NS 1848 release_net(dev->nd_net); 1849 dev->nd_net = hold_net(net); 1850#endif 1851} 1852 1853static inline bool netdev_uses_dsa(struct net_device *dev) 1854{ 1855#if IS_ENABLED(CONFIG_NET_DSA) 1856 if (dev->dsa_ptr != NULL) 1857 return dsa_uses_tagged_protocol(dev->dsa_ptr); 1858#endif 1859 return false; 1860} 1861 1862/** 1863 * netdev_priv - access network device private data 1864 * @dev: network device 1865 * 1866 * Get network device private data 1867 */ 1868static inline void *netdev_priv(const struct net_device *dev) 1869{ 1870 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN); 1871} 1872 1873/* Set the sysfs physical device reference for the network logical device 1874 * if set prior to registration will cause a symlink during initialization. 1875 */ 1876#define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev)) 1877 1878/* Set the sysfs device type for the network logical device to allow 1879 * fine-grained identification of different network device types. For 1880 * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc. 1881 */ 1882#define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype)) 1883 1884/* Default NAPI poll() weight 1885 * Device drivers are strongly advised to not use bigger value 1886 */ 1887#define NAPI_POLL_WEIGHT 64 1888 1889/** 1890 * netif_napi_add - initialize a napi context 1891 * @dev: network device 1892 * @napi: napi context 1893 * @poll: polling function 1894 * @weight: default weight 1895 * 1896 * netif_napi_add() must be used to initialize a napi context prior to calling 1897 * *any* of the other napi related functions. 1898 */ 1899void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 1900 int (*poll)(struct napi_struct *, int), int weight); 1901 1902/** 1903 * netif_napi_del - remove a napi context 1904 * @napi: napi context 1905 * 1906 * netif_napi_del() removes a napi context from the network device napi list 1907 */ 1908void netif_napi_del(struct napi_struct *napi); 1909 1910struct napi_gro_cb { 1911 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */ 1912 void *frag0; 1913 1914 /* Length of frag0. */ 1915 unsigned int frag0_len; 1916 1917 /* This indicates where we are processing relative to skb->data. */ 1918 int data_offset; 1919 1920 /* This is non-zero if the packet cannot be merged with the new skb. */ 1921 u16 flush; 1922 1923 /* Save the IP ID here and check when we get to the transport layer */ 1924 u16 flush_id; 1925 1926 /* Number of segments aggregated. */ 1927 u16 count; 1928 1929 /* Start offset for remote checksum offload */ 1930 u16 gro_remcsum_start; 1931 1932 /* jiffies when first packet was created/queued */ 1933 unsigned long age; 1934 1935 /* Used in ipv6_gro_receive() and foo-over-udp */ 1936 u16 proto; 1937 1938 /* This is non-zero if the packet may be of the same flow. */ 1939 u8 same_flow:1; 1940 1941 /* Used in udp_gro_receive */ 1942 u8 udp_mark:1; 1943 1944 /* GRO checksum is valid */ 1945 u8 csum_valid:1; 1946 1947 /* Number of checksums via CHECKSUM_UNNECESSARY */ 1948 u8 csum_cnt:3; 1949 1950 /* Free the skb? */ 1951 u8 free:2; 1952#define NAPI_GRO_FREE 1 1953#define NAPI_GRO_FREE_STOLEN_HEAD 2 1954 1955 /* Used in foo-over-udp, set in udp[46]_gro_receive */ 1956 u8 is_ipv6:1; 1957 1958 /* 7 bit hole */ 1959 1960 /* used to support CHECKSUM_COMPLETE for tunneling protocols */ 1961 __wsum csum; 1962 1963 /* used in skb_gro_receive() slow path */ 1964 struct sk_buff *last; 1965}; 1966 1967#define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb) 1968 1969struct packet_type { 1970 __be16 type; /* This is really htons(ether_type). */ 1971 struct net_device *dev; /* NULL is wildcarded here */ 1972 int (*func) (struct sk_buff *, 1973 struct net_device *, 1974 struct packet_type *, 1975 struct net_device *); 1976 bool (*id_match)(struct packet_type *ptype, 1977 struct sock *sk); 1978 void *af_packet_priv; 1979 struct list_head list; 1980}; 1981 1982struct offload_callbacks { 1983 struct sk_buff *(*gso_segment)(struct sk_buff *skb, 1984 netdev_features_t features); 1985 struct sk_buff **(*gro_receive)(struct sk_buff **head, 1986 struct sk_buff *skb); 1987 int (*gro_complete)(struct sk_buff *skb, int nhoff); 1988}; 1989 1990struct packet_offload { 1991 __be16 type; /* This is really htons(ether_type). */ 1992 struct offload_callbacks callbacks; 1993 struct list_head list; 1994}; 1995 1996struct udp_offload; 1997 1998struct udp_offload_callbacks { 1999 struct sk_buff **(*gro_receive)(struct sk_buff **head, 2000 struct sk_buff *skb, 2001 struct udp_offload *uoff); 2002 int (*gro_complete)(struct sk_buff *skb, 2003 int nhoff, 2004 struct udp_offload *uoff); 2005}; 2006 2007struct udp_offload { 2008 __be16 port; 2009 u8 ipproto; 2010 struct udp_offload_callbacks callbacks; 2011}; 2012 2013/* often modified stats are per cpu, other are shared (netdev->stats) */ 2014struct pcpu_sw_netstats { 2015 u64 rx_packets; 2016 u64 rx_bytes; 2017 u64 tx_packets; 2018 u64 tx_bytes; 2019 struct u64_stats_sync syncp; 2020}; 2021 2022#define netdev_alloc_pcpu_stats(type) \ 2023({ \ 2024 typeof(type) __percpu *pcpu_stats = alloc_percpu(type); \ 2025 if (pcpu_stats) { \ 2026 int i; \ 2027 for_each_possible_cpu(i) { \ 2028 typeof(type) *stat; \ 2029 stat = per_cpu_ptr(pcpu_stats, i); \ 2030 u64_stats_init(&stat->syncp); \ 2031 } \ 2032 } \ 2033 pcpu_stats; \ 2034}) 2035 2036#include <linux/notifier.h> 2037 2038/* netdevice notifier chain. Please remember to update the rtnetlink 2039 * notification exclusion list in rtnetlink_event() when adding new 2040 * types. 2041 */ 2042#define NETDEV_UP 0x0001 /* For now you can't veto a device up/down */ 2043#define NETDEV_DOWN 0x0002 2044#define NETDEV_REBOOT 0x0003 /* Tell a protocol stack a network interface 2045 detected a hardware crash and restarted 2046 - we can use this eg to kick tcp sessions 2047 once done */ 2048#define NETDEV_CHANGE 0x0004 /* Notify device state change */ 2049#define NETDEV_REGISTER 0x0005 2050#define NETDEV_UNREGISTER 0x0006 2051#define NETDEV_CHANGEMTU 0x0007 /* notify after mtu change happened */ 2052#define NETDEV_CHANGEADDR 0x0008 2053#define NETDEV_GOING_DOWN 0x0009 2054#define NETDEV_CHANGENAME 0x000A 2055#define NETDEV_FEAT_CHANGE 0x000B 2056#define NETDEV_BONDING_FAILOVER 0x000C 2057#define NETDEV_PRE_UP 0x000D 2058#define NETDEV_PRE_TYPE_CHANGE 0x000E 2059#define NETDEV_POST_TYPE_CHANGE 0x000F 2060#define NETDEV_POST_INIT 0x0010 2061#define NETDEV_UNREGISTER_FINAL 0x0011 2062#define NETDEV_RELEASE 0x0012 2063#define NETDEV_NOTIFY_PEERS 0x0013 2064#define NETDEV_JOIN 0x0014 2065#define NETDEV_CHANGEUPPER 0x0015 2066#define NETDEV_RESEND_IGMP 0x0016 2067#define NETDEV_PRECHANGEMTU 0x0017 /* notify before mtu change happened */ 2068#define NETDEV_CHANGEINFODATA 0x0018 2069#define NETDEV_BONDING_INFO 0x0019 2070 2071int register_netdevice_notifier(struct notifier_block *nb); 2072int unregister_netdevice_notifier(struct notifier_block *nb); 2073 2074struct netdev_notifier_info { 2075 struct net_device *dev; 2076}; 2077 2078struct netdev_notifier_change_info { 2079 struct netdev_notifier_info info; /* must be first */ 2080 unsigned int flags_changed; 2081}; 2082 2083static inline void netdev_notifier_info_init(struct netdev_notifier_info *info, 2084 struct net_device *dev) 2085{ 2086 info->dev = dev; 2087} 2088 2089static inline struct net_device * 2090netdev_notifier_info_to_dev(const struct netdev_notifier_info *info) 2091{ 2092 return info->dev; 2093} 2094 2095int call_netdevice_notifiers(unsigned long val, struct net_device *dev); 2096 2097 2098extern rwlock_t dev_base_lock; /* Device list lock */ 2099 2100#define for_each_netdev(net, d) \ 2101 list_for_each_entry(d, &(net)->dev_base_head, dev_list) 2102#define for_each_netdev_reverse(net, d) \ 2103 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list) 2104#define for_each_netdev_rcu(net, d) \ 2105 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list) 2106#define for_each_netdev_safe(net, d, n) \ 2107 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list) 2108#define for_each_netdev_continue(net, d) \ 2109 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list) 2110#define for_each_netdev_continue_rcu(net, d) \ 2111 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list) 2112#define for_each_netdev_in_bond_rcu(bond, slave) \ 2113 for_each_netdev_rcu(&init_net, slave) \ 2114 if (netdev_master_upper_dev_get_rcu(slave) == (bond)) 2115#define net_device_entry(lh) list_entry(lh, struct net_device, dev_list) 2116 2117static inline struct net_device *next_net_device(struct net_device *dev) 2118{ 2119 struct list_head *lh; 2120 struct net *net; 2121 2122 net = dev_net(dev); 2123 lh = dev->dev_list.next; 2124 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2125} 2126 2127static inline struct net_device *next_net_device_rcu(struct net_device *dev) 2128{ 2129 struct list_head *lh; 2130 struct net *net; 2131 2132 net = dev_net(dev); 2133 lh = rcu_dereference(list_next_rcu(&dev->dev_list)); 2134 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2135} 2136 2137static inline struct net_device *first_net_device(struct net *net) 2138{ 2139 return list_empty(&net->dev_base_head) ? NULL : 2140 net_device_entry(net->dev_base_head.next); 2141} 2142 2143static inline struct net_device *first_net_device_rcu(struct net *net) 2144{ 2145 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head)); 2146 2147 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 2148} 2149 2150int netdev_boot_setup_check(struct net_device *dev); 2151unsigned long netdev_boot_base(const char *prefix, int unit); 2152struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 2153 const char *hwaddr); 2154struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type); 2155struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type); 2156void dev_add_pack(struct packet_type *pt); 2157void dev_remove_pack(struct packet_type *pt); 2158void __dev_remove_pack(struct packet_type *pt); 2159void dev_add_offload(struct packet_offload *po); 2160void dev_remove_offload(struct packet_offload *po); 2161 2162struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags, 2163 unsigned short mask); 2164struct net_device *dev_get_by_name(struct net *net, const char *name); 2165struct net_device *dev_get_by_name_rcu(struct net *net, const char *name); 2166struct net_device *__dev_get_by_name(struct net *net, const char *name); 2167int dev_alloc_name(struct net_device *dev, const char *name); 2168int dev_open(struct net_device *dev); 2169int dev_close(struct net_device *dev); 2170void dev_disable_lro(struct net_device *dev); 2171int dev_loopback_xmit(struct sk_buff *newskb); 2172int dev_queue_xmit(struct sk_buff *skb); 2173int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv); 2174int register_netdevice(struct net_device *dev); 2175void unregister_netdevice_queue(struct net_device *dev, struct list_head *head); 2176void unregister_netdevice_many(struct list_head *head); 2177static inline void unregister_netdevice(struct net_device *dev) 2178{ 2179 unregister_netdevice_queue(dev, NULL); 2180} 2181 2182int netdev_refcnt_read(const struct net_device *dev); 2183void free_netdev(struct net_device *dev); 2184void netdev_freemem(struct net_device *dev); 2185void synchronize_net(void); 2186int init_dummy_netdev(struct net_device *dev); 2187 2188DECLARE_PER_CPU(int, xmit_recursion); 2189static inline int dev_recursion_level(void) 2190{ 2191 return this_cpu_read(xmit_recursion); 2192} 2193 2194struct net_device *dev_get_by_index(struct net *net, int ifindex); 2195struct net_device *__dev_get_by_index(struct net *net, int ifindex); 2196struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex); 2197int netdev_get_name(struct net *net, char *name, int ifindex); 2198int dev_restart(struct net_device *dev); 2199int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb); 2200 2201static inline unsigned int skb_gro_offset(const struct sk_buff *skb) 2202{ 2203 return NAPI_GRO_CB(skb)->data_offset; 2204} 2205 2206static inline unsigned int skb_gro_len(const struct sk_buff *skb) 2207{ 2208 return skb->len - NAPI_GRO_CB(skb)->data_offset; 2209} 2210 2211static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len) 2212{ 2213 NAPI_GRO_CB(skb)->data_offset += len; 2214} 2215 2216static inline void *skb_gro_header_fast(struct sk_buff *skb, 2217 unsigned int offset) 2218{ 2219 return NAPI_GRO_CB(skb)->frag0 + offset; 2220} 2221 2222static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen) 2223{ 2224 return NAPI_GRO_CB(skb)->frag0_len < hlen; 2225} 2226 2227static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen, 2228 unsigned int offset) 2229{ 2230 if (!pskb_may_pull(skb, hlen)) 2231 return NULL; 2232 2233 NAPI_GRO_CB(skb)->frag0 = NULL; 2234 NAPI_GRO_CB(skb)->frag0_len = 0; 2235 return skb->data + offset; 2236} 2237 2238static inline void *skb_gro_network_header(struct sk_buff *skb) 2239{ 2240 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) + 2241 skb_network_offset(skb); 2242} 2243 2244static inline void skb_gro_postpull_rcsum(struct sk_buff *skb, 2245 const void *start, unsigned int len) 2246{ 2247 if (NAPI_GRO_CB(skb)->csum_valid) 2248 NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum, 2249 csum_partial(start, len, 0)); 2250} 2251 2252/* GRO checksum functions. These are logical equivalents of the normal 2253 * checksum functions (in skbuff.h) except that they operate on the GRO 2254 * offsets and fields in sk_buff. 2255 */ 2256 2257__sum16 __skb_gro_checksum_complete(struct sk_buff *skb); 2258 2259static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb) 2260{ 2261 return (NAPI_GRO_CB(skb)->gro_remcsum_start - skb_headroom(skb) == 2262 skb_gro_offset(skb)); 2263} 2264 2265static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb, 2266 bool zero_okay, 2267 __sum16 check) 2268{ 2269 return ((skb->ip_summed != CHECKSUM_PARTIAL || 2270 skb_checksum_start_offset(skb) < 2271 skb_gro_offset(skb)) && 2272 !skb_at_gro_remcsum_start(skb) && 2273 NAPI_GRO_CB(skb)->csum_cnt == 0 && 2274 (!zero_okay || check)); 2275} 2276 2277static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb, 2278 __wsum psum) 2279{ 2280 if (NAPI_GRO_CB(skb)->csum_valid && 2281 !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum))) 2282 return 0; 2283 2284 NAPI_GRO_CB(skb)->csum = psum; 2285 2286 return __skb_gro_checksum_complete(skb); 2287} 2288 2289static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb) 2290{ 2291 if (NAPI_GRO_CB(skb)->csum_cnt > 0) { 2292 /* Consume a checksum from CHECKSUM_UNNECESSARY */ 2293 NAPI_GRO_CB(skb)->csum_cnt--; 2294 } else { 2295 /* Update skb for CHECKSUM_UNNECESSARY and csum_level when we 2296 * verified a new top level checksum or an encapsulated one 2297 * during GRO. This saves work if we fallback to normal path. 2298 */ 2299 __skb_incr_checksum_unnecessary(skb); 2300 } 2301} 2302 2303#define __skb_gro_checksum_validate(skb, proto, zero_okay, check, \ 2304 compute_pseudo) \ 2305({ \ 2306 __sum16 __ret = 0; \ 2307 if (__skb_gro_checksum_validate_needed(skb, zero_okay, check)) \ 2308 __ret = __skb_gro_checksum_validate_complete(skb, \ 2309 compute_pseudo(skb, proto)); \ 2310 if (__ret) \ 2311 __skb_mark_checksum_bad(skb); \ 2312 else \ 2313 skb_gro_incr_csum_unnecessary(skb); \ 2314 __ret; \ 2315}) 2316 2317#define skb_gro_checksum_validate(skb, proto, compute_pseudo) \ 2318 __skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo) 2319 2320#define skb_gro_checksum_validate_zero_check(skb, proto, check, \ 2321 compute_pseudo) \ 2322 __skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo) 2323 2324#define skb_gro_checksum_simple_validate(skb) \ 2325 __skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo) 2326 2327static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb) 2328{ 2329 return (NAPI_GRO_CB(skb)->csum_cnt == 0 && 2330 !NAPI_GRO_CB(skb)->csum_valid); 2331} 2332 2333static inline void __skb_gro_checksum_convert(struct sk_buff *skb, 2334 __sum16 check, __wsum pseudo) 2335{ 2336 NAPI_GRO_CB(skb)->csum = ~pseudo; 2337 NAPI_GRO_CB(skb)->csum_valid = 1; 2338} 2339 2340#define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo) \ 2341do { \ 2342 if (__skb_gro_checksum_convert_check(skb)) \ 2343 __skb_gro_checksum_convert(skb, check, \ 2344 compute_pseudo(skb, proto)); \ 2345} while (0) 2346 2347struct gro_remcsum { 2348 int offset; 2349 __wsum delta; 2350}; 2351 2352static inline void skb_gro_remcsum_init(struct gro_remcsum *grc) 2353{ 2354 grc->offset = 0; 2355 grc->delta = 0; 2356} 2357 2358static inline void skb_gro_remcsum_process(struct sk_buff *skb, void *ptr, 2359 int start, int offset, 2360 struct gro_remcsum *grc, 2361 bool nopartial) 2362{ 2363 __wsum delta; 2364 2365 BUG_ON(!NAPI_GRO_CB(skb)->csum_valid); 2366 2367 if (!nopartial) { 2368 NAPI_GRO_CB(skb)->gro_remcsum_start = 2369 ((unsigned char *)ptr + start) - skb->head; 2370 return; 2371 } 2372 2373 delta = remcsum_adjust(ptr, NAPI_GRO_CB(skb)->csum, start, offset); 2374 2375 /* Adjust skb->csum since we changed the packet */ 2376 NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta); 2377 2378 grc->offset = (ptr + offset) - (void *)skb->head; 2379 grc->delta = delta; 2380} 2381 2382static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb, 2383 struct gro_remcsum *grc) 2384{ 2385 if (!grc->delta) 2386 return; 2387 2388 remcsum_unadjust((__sum16 *)(skb->head + grc->offset), grc->delta); 2389} 2390 2391static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev, 2392 unsigned short type, 2393 const void *daddr, const void *saddr, 2394 unsigned int len) 2395{ 2396 if (!dev->header_ops || !dev->header_ops->create) 2397 return 0; 2398 2399 return dev->header_ops->create(skb, dev, type, daddr, saddr, len); 2400} 2401 2402static inline int dev_parse_header(const struct sk_buff *skb, 2403 unsigned char *haddr) 2404{ 2405 const struct net_device *dev = skb->dev; 2406 2407 if (!dev->header_ops || !dev->header_ops->parse) 2408 return 0; 2409 return dev->header_ops->parse(skb, haddr); 2410} 2411 2412static inline int dev_rebuild_header(struct sk_buff *skb) 2413{ 2414 const struct net_device *dev = skb->dev; 2415 2416 if (!dev->header_ops || !dev->header_ops->rebuild) 2417 return 0; 2418 return dev->header_ops->rebuild(skb); 2419} 2420 2421typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len); 2422int register_gifconf(unsigned int family, gifconf_func_t *gifconf); 2423static inline int unregister_gifconf(unsigned int family) 2424{ 2425 return register_gifconf(family, NULL); 2426} 2427 2428#ifdef CONFIG_NET_FLOW_LIMIT 2429#define FLOW_LIMIT_HISTORY (1 << 7) /* must be ^2 and !overflow buckets */ 2430struct sd_flow_limit { 2431 u64 count; 2432 unsigned int num_buckets; 2433 unsigned int history_head; 2434 u16 history[FLOW_LIMIT_HISTORY]; 2435 u8 buckets[]; 2436}; 2437 2438extern int netdev_flow_limit_table_len; 2439#endif /* CONFIG_NET_FLOW_LIMIT */ 2440 2441/* 2442 * Incoming packets are placed on per-cpu queues 2443 */ 2444struct softnet_data { 2445 struct list_head poll_list; 2446 struct sk_buff_head process_queue; 2447 2448 /* stats */ 2449 unsigned int processed; 2450 unsigned int time_squeeze; 2451 unsigned int cpu_collision; 2452 unsigned int received_rps; 2453#ifdef CONFIG_RPS 2454 struct softnet_data *rps_ipi_list; 2455#endif 2456#ifdef CONFIG_NET_FLOW_LIMIT 2457 struct sd_flow_limit __rcu *flow_limit; 2458#endif 2459 struct Qdisc *output_queue; 2460 struct Qdisc **output_queue_tailp; 2461 struct sk_buff *completion_queue; 2462 2463#ifdef CONFIG_RPS 2464 /* Elements below can be accessed between CPUs for RPS */ 2465 struct call_single_data csd ____cacheline_aligned_in_smp; 2466 struct softnet_data *rps_ipi_next; 2467 unsigned int cpu; 2468 unsigned int input_queue_head; 2469 unsigned int input_queue_tail; 2470#endif 2471 unsigned int dropped; 2472 struct sk_buff_head input_pkt_queue; 2473 struct napi_struct backlog; 2474 2475}; 2476 2477static inline void input_queue_head_incr(struct softnet_data *sd) 2478{ 2479#ifdef CONFIG_RPS 2480 sd->input_queue_head++; 2481#endif 2482} 2483 2484static inline void input_queue_tail_incr_save(struct softnet_data *sd, 2485 unsigned int *qtail) 2486{ 2487#ifdef CONFIG_RPS 2488 *qtail = ++sd->input_queue_tail; 2489#endif 2490} 2491 2492DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 2493 2494void __netif_schedule(struct Qdisc *q); 2495void netif_schedule_queue(struct netdev_queue *txq); 2496 2497static inline void netif_tx_schedule_all(struct net_device *dev) 2498{ 2499 unsigned int i; 2500 2501 for (i = 0; i < dev->num_tx_queues; i++) 2502 netif_schedule_queue(netdev_get_tx_queue(dev, i)); 2503} 2504 2505static inline void netif_tx_start_queue(struct netdev_queue *dev_queue) 2506{ 2507 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 2508} 2509 2510/** 2511 * netif_start_queue - allow transmit 2512 * @dev: network device 2513 * 2514 * Allow upper layers to call the device hard_start_xmit routine. 2515 */ 2516static inline void netif_start_queue(struct net_device *dev) 2517{ 2518 netif_tx_start_queue(netdev_get_tx_queue(dev, 0)); 2519} 2520 2521static inline void netif_tx_start_all_queues(struct net_device *dev) 2522{ 2523 unsigned int i; 2524 2525 for (i = 0; i < dev->num_tx_queues; i++) { 2526 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2527 netif_tx_start_queue(txq); 2528 } 2529} 2530 2531void netif_tx_wake_queue(struct netdev_queue *dev_queue); 2532 2533/** 2534 * netif_wake_queue - restart transmit 2535 * @dev: network device 2536 * 2537 * Allow upper layers to call the device hard_start_xmit routine. 2538 * Used for flow control when transmit resources are available. 2539 */ 2540static inline void netif_wake_queue(struct net_device *dev) 2541{ 2542 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0)); 2543} 2544 2545static inline void netif_tx_wake_all_queues(struct net_device *dev) 2546{ 2547 unsigned int i; 2548 2549 for (i = 0; i < dev->num_tx_queues; i++) { 2550 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2551 netif_tx_wake_queue(txq); 2552 } 2553} 2554 2555static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue) 2556{ 2557 if (WARN_ON(!dev_queue)) { 2558 pr_info("netif_stop_queue() cannot be called before register_netdev()\n"); 2559 return; 2560 } 2561 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 2562} 2563 2564/** 2565 * netif_stop_queue - stop transmitted packets 2566 * @dev: network device 2567 * 2568 * Stop upper layers calling the device hard_start_xmit routine. 2569 * Used for flow control when transmit resources are unavailable. 2570 */ 2571static inline void netif_stop_queue(struct net_device *dev) 2572{ 2573 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0)); 2574} 2575 2576static inline void netif_tx_stop_all_queues(struct net_device *dev) 2577{ 2578 unsigned int i; 2579 2580 for (i = 0; i < dev->num_tx_queues; i++) { 2581 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2582 netif_tx_stop_queue(txq); 2583 } 2584} 2585 2586static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue) 2587{ 2588 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 2589} 2590 2591/** 2592 * netif_queue_stopped - test if transmit queue is flowblocked 2593 * @dev: network device 2594 * 2595 * Test if transmit queue on device is currently unable to send. 2596 */ 2597static inline bool netif_queue_stopped(const struct net_device *dev) 2598{ 2599 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0)); 2600} 2601 2602static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue) 2603{ 2604 return dev_queue->state & QUEUE_STATE_ANY_XOFF; 2605} 2606 2607static inline bool 2608netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue) 2609{ 2610 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN; 2611} 2612 2613static inline bool 2614netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue) 2615{ 2616 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN; 2617} 2618 2619/** 2620 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write 2621 * @dev_queue: pointer to transmit queue 2622 * 2623 * BQL enabled drivers might use this helper in their ndo_start_xmit(), 2624 * to give appropriate hint to the cpu. 2625 */ 2626static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue) 2627{ 2628#ifdef CONFIG_BQL 2629 prefetchw(&dev_queue->dql.num_queued); 2630#endif 2631} 2632 2633/** 2634 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write 2635 * @dev_queue: pointer to transmit queue 2636 * 2637 * BQL enabled drivers might use this helper in their TX completion path, 2638 * to give appropriate hint to the cpu. 2639 */ 2640static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue) 2641{ 2642#ifdef CONFIG_BQL 2643 prefetchw(&dev_queue->dql.limit); 2644#endif 2645} 2646 2647static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue, 2648 unsigned int bytes) 2649{ 2650#ifdef CONFIG_BQL 2651 dql_queued(&dev_queue->dql, bytes); 2652 2653 if (likely(dql_avail(&dev_queue->dql) >= 0)) 2654 return; 2655 2656 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 2657 2658 /* 2659 * The XOFF flag must be set before checking the dql_avail below, 2660 * because in netdev_tx_completed_queue we update the dql_completed 2661 * before checking the XOFF flag. 2662 */ 2663 smp_mb(); 2664 2665 /* check again in case another CPU has just made room avail */ 2666 if (unlikely(dql_avail(&dev_queue->dql) >= 0)) 2667 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 2668#endif 2669} 2670 2671/** 2672 * netdev_sent_queue - report the number of bytes queued to hardware 2673 * @dev: network device 2674 * @bytes: number of bytes queued to the hardware device queue 2675 * 2676 * Report the number of bytes queued for sending/completion to the network 2677 * device hardware queue. @bytes should be a good approximation and should 2678 * exactly match netdev_completed_queue() @bytes 2679 */ 2680static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes) 2681{ 2682 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes); 2683} 2684 2685static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue, 2686 unsigned int pkts, unsigned int bytes) 2687{ 2688#ifdef CONFIG_BQL 2689 if (unlikely(!bytes)) 2690 return; 2691 2692 dql_completed(&dev_queue->dql, bytes); 2693 2694 /* 2695 * Without the memory barrier there is a small possiblity that 2696 * netdev_tx_sent_queue will miss the update and cause the queue to 2697 * be stopped forever 2698 */ 2699 smp_mb(); 2700 2701 if (dql_avail(&dev_queue->dql) < 0) 2702 return; 2703 2704 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state)) 2705 netif_schedule_queue(dev_queue); 2706#endif 2707} 2708 2709/** 2710 * netdev_completed_queue - report bytes and packets completed by device 2711 * @dev: network device 2712 * @pkts: actual number of packets sent over the medium 2713 * @bytes: actual number of bytes sent over the medium 2714 * 2715 * Report the number of bytes and packets transmitted by the network device 2716 * hardware queue over the physical medium, @bytes must exactly match the 2717 * @bytes amount passed to netdev_sent_queue() 2718 */ 2719static inline void netdev_completed_queue(struct net_device *dev, 2720 unsigned int pkts, unsigned int bytes) 2721{ 2722 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes); 2723} 2724 2725static inline void netdev_tx_reset_queue(struct netdev_queue *q) 2726{ 2727#ifdef CONFIG_BQL 2728 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state); 2729 dql_reset(&q->dql); 2730#endif 2731} 2732 2733/** 2734 * netdev_reset_queue - reset the packets and bytes count of a network device 2735 * @dev_queue: network device 2736 * 2737 * Reset the bytes and packet count of a network device and clear the 2738 * software flow control OFF bit for this network device 2739 */ 2740static inline void netdev_reset_queue(struct net_device *dev_queue) 2741{ 2742 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0)); 2743} 2744 2745/** 2746 * netdev_cap_txqueue - check if selected tx queue exceeds device queues 2747 * @dev: network device 2748 * @queue_index: given tx queue index 2749 * 2750 * Returns 0 if given tx queue index >= number of device tx queues, 2751 * otherwise returns the originally passed tx queue index. 2752 */ 2753static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index) 2754{ 2755 if (unlikely(queue_index >= dev->real_num_tx_queues)) { 2756 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n", 2757 dev->name, queue_index, 2758 dev->real_num_tx_queues); 2759 return 0; 2760 } 2761 2762 return queue_index; 2763} 2764 2765/** 2766 * netif_running - test if up 2767 * @dev: network device 2768 * 2769 * Test if the device has been brought up. 2770 */ 2771static inline bool netif_running(const struct net_device *dev) 2772{ 2773 return test_bit(__LINK_STATE_START, &dev->state); 2774} 2775 2776/* 2777 * Routines to manage the subqueues on a device. We only need start 2778 * stop, and a check if it's stopped. All other device management is 2779 * done at the overall netdevice level. 2780 * Also test the device if we're multiqueue. 2781 */ 2782 2783/** 2784 * netif_start_subqueue - allow sending packets on subqueue 2785 * @dev: network device 2786 * @queue_index: sub queue index 2787 * 2788 * Start individual transmit queue of a device with multiple transmit queues. 2789 */ 2790static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index) 2791{ 2792 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 2793 2794 netif_tx_start_queue(txq); 2795} 2796 2797/** 2798 * netif_stop_subqueue - stop sending packets on subqueue 2799 * @dev: network device 2800 * @queue_index: sub queue index 2801 * 2802 * Stop individual transmit queue of a device with multiple transmit queues. 2803 */ 2804static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index) 2805{ 2806 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 2807 netif_tx_stop_queue(txq); 2808} 2809 2810/** 2811 * netif_subqueue_stopped - test status of subqueue 2812 * @dev: network device 2813 * @queue_index: sub queue index 2814 * 2815 * Check individual transmit queue of a device with multiple transmit queues. 2816 */ 2817static inline bool __netif_subqueue_stopped(const struct net_device *dev, 2818 u16 queue_index) 2819{ 2820 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 2821 2822 return netif_tx_queue_stopped(txq); 2823} 2824 2825static inline bool netif_subqueue_stopped(const struct net_device *dev, 2826 struct sk_buff *skb) 2827{ 2828 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb)); 2829} 2830 2831void netif_wake_subqueue(struct net_device *dev, u16 queue_index); 2832 2833#ifdef CONFIG_XPS 2834int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 2835 u16 index); 2836#else 2837static inline int netif_set_xps_queue(struct net_device *dev, 2838 const struct cpumask *mask, 2839 u16 index) 2840{ 2841 return 0; 2842} 2843#endif 2844 2845/* 2846 * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used 2847 * as a distribution range limit for the returned value. 2848 */ 2849static inline u16 skb_tx_hash(const struct net_device *dev, 2850 struct sk_buff *skb) 2851{ 2852 return __skb_tx_hash(dev, skb, dev->real_num_tx_queues); 2853} 2854 2855/** 2856 * netif_is_multiqueue - test if device has multiple transmit queues 2857 * @dev: network device 2858 * 2859 * Check if device has multiple transmit queues 2860 */ 2861static inline bool netif_is_multiqueue(const struct net_device *dev) 2862{ 2863 return dev->num_tx_queues > 1; 2864} 2865 2866int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq); 2867 2868#ifdef CONFIG_SYSFS 2869int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq); 2870#else 2871static inline int netif_set_real_num_rx_queues(struct net_device *dev, 2872 unsigned int rxq) 2873{ 2874 return 0; 2875} 2876#endif 2877 2878#ifdef CONFIG_SYSFS 2879static inline unsigned int get_netdev_rx_queue_index( 2880 struct netdev_rx_queue *queue) 2881{ 2882 struct net_device *dev = queue->dev; 2883 int index = queue - dev->_rx; 2884 2885 BUG_ON(index >= dev->num_rx_queues); 2886 return index; 2887} 2888#endif 2889 2890#define DEFAULT_MAX_NUM_RSS_QUEUES (8) 2891int netif_get_num_default_rss_queues(void); 2892 2893enum skb_free_reason { 2894 SKB_REASON_CONSUMED, 2895 SKB_REASON_DROPPED, 2896}; 2897 2898void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason); 2899void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason); 2900 2901/* 2902 * It is not allowed to call kfree_skb() or consume_skb() from hardware 2903 * interrupt context or with hardware interrupts being disabled. 2904 * (in_irq() || irqs_disabled()) 2905 * 2906 * We provide four helpers that can be used in following contexts : 2907 * 2908 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context, 2909 * replacing kfree_skb(skb) 2910 * 2911 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context. 2912 * Typically used in place of consume_skb(skb) in TX completion path 2913 * 2914 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context, 2915 * replacing kfree_skb(skb) 2916 * 2917 * dev_consume_skb_any(skb) when caller doesn't know its current irq context, 2918 * and consumed a packet. Used in place of consume_skb(skb) 2919 */ 2920static inline void dev_kfree_skb_irq(struct sk_buff *skb) 2921{ 2922 __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED); 2923} 2924 2925static inline void dev_consume_skb_irq(struct sk_buff *skb) 2926{ 2927 __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED); 2928} 2929 2930static inline void dev_kfree_skb_any(struct sk_buff *skb) 2931{ 2932 __dev_kfree_skb_any(skb, SKB_REASON_DROPPED); 2933} 2934 2935static inline void dev_consume_skb_any(struct sk_buff *skb) 2936{ 2937 __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED); 2938} 2939 2940int netif_rx(struct sk_buff *skb); 2941int netif_rx_ni(struct sk_buff *skb); 2942int netif_receive_skb(struct sk_buff *skb); 2943gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb); 2944void napi_gro_flush(struct napi_struct *napi, bool flush_old); 2945struct sk_buff *napi_get_frags(struct napi_struct *napi); 2946gro_result_t napi_gro_frags(struct napi_struct *napi); 2947struct packet_offload *gro_find_receive_by_type(__be16 type); 2948struct packet_offload *gro_find_complete_by_type(__be16 type); 2949 2950static inline void napi_free_frags(struct napi_struct *napi) 2951{ 2952 kfree_skb(napi->skb); 2953 napi->skb = NULL; 2954} 2955 2956int netdev_rx_handler_register(struct net_device *dev, 2957 rx_handler_func_t *rx_handler, 2958 void *rx_handler_data); 2959void netdev_rx_handler_unregister(struct net_device *dev); 2960 2961bool dev_valid_name(const char *name); 2962int dev_ioctl(struct net *net, unsigned int cmd, void __user *); 2963int dev_ethtool(struct net *net, struct ifreq *); 2964unsigned int dev_get_flags(const struct net_device *); 2965int __dev_change_flags(struct net_device *, unsigned int flags); 2966int dev_change_flags(struct net_device *, unsigned int); 2967void __dev_notify_flags(struct net_device *, unsigned int old_flags, 2968 unsigned int gchanges); 2969int dev_change_name(struct net_device *, const char *); 2970int dev_set_alias(struct net_device *, const char *, size_t); 2971int dev_change_net_namespace(struct net_device *, struct net *, const char *); 2972int dev_set_mtu(struct net_device *, int); 2973void dev_set_group(struct net_device *, int); 2974int dev_set_mac_address(struct net_device *, struct sockaddr *); 2975int dev_change_carrier(struct net_device *, bool new_carrier); 2976int dev_get_phys_port_id(struct net_device *dev, 2977 struct netdev_phys_item_id *ppid); 2978struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev); 2979struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 2980 struct netdev_queue *txq, int *ret); 2981int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 2982int dev_forward_skb(struct net_device *dev, struct sk_buff *skb); 2983bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb); 2984 2985extern int netdev_budget; 2986 2987/* Called by rtnetlink.c:rtnl_unlock() */ 2988void netdev_run_todo(void); 2989 2990/** 2991 * dev_put - release reference to device 2992 * @dev: network device 2993 * 2994 * Release reference to device to allow it to be freed. 2995 */ 2996static inline void dev_put(struct net_device *dev) 2997{ 2998 this_cpu_dec(*dev->pcpu_refcnt); 2999} 3000 3001/** 3002 * dev_hold - get reference to device 3003 * @dev: network device 3004 * 3005 * Hold reference to device to keep it from being freed. 3006 */ 3007static inline void dev_hold(struct net_device *dev) 3008{ 3009 this_cpu_inc(*dev->pcpu_refcnt); 3010} 3011 3012/* Carrier loss detection, dial on demand. The functions netif_carrier_on 3013 * and _off may be called from IRQ context, but it is caller 3014 * who is responsible for serialization of these calls. 3015 * 3016 * The name carrier is inappropriate, these functions should really be 3017 * called netif_lowerlayer_*() because they represent the state of any 3018 * kind of lower layer not just hardware media. 3019 */ 3020 3021void linkwatch_init_dev(struct net_device *dev); 3022void linkwatch_fire_event(struct net_device *dev); 3023void linkwatch_forget_dev(struct net_device *dev); 3024 3025/** 3026 * netif_carrier_ok - test if carrier present 3027 * @dev: network device 3028 * 3029 * Check if carrier is present on device 3030 */ 3031static inline bool netif_carrier_ok(const struct net_device *dev) 3032{ 3033 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state); 3034} 3035 3036unsigned long dev_trans_start(struct net_device *dev); 3037 3038void __netdev_watchdog_up(struct net_device *dev); 3039 3040void netif_carrier_on(struct net_device *dev); 3041 3042void netif_carrier_off(struct net_device *dev); 3043 3044/** 3045 * netif_dormant_on - mark device as dormant. 3046 * @dev: network device 3047 * 3048 * Mark device as dormant (as per RFC2863). 3049 * 3050 * The dormant state indicates that the relevant interface is not 3051 * actually in a condition to pass packets (i.e., it is not 'up') but is 3052 * in a "pending" state, waiting for some external event. For "on- 3053 * demand" interfaces, this new state identifies the situation where the 3054 * interface is waiting for events to place it in the up state. 3055 * 3056 */ 3057static inline void netif_dormant_on(struct net_device *dev) 3058{ 3059 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state)) 3060 linkwatch_fire_event(dev); 3061} 3062 3063/** 3064 * netif_dormant_off - set device as not dormant. 3065 * @dev: network device 3066 * 3067 * Device is not in dormant state. 3068 */ 3069static inline void netif_dormant_off(struct net_device *dev) 3070{ 3071 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state)) 3072 linkwatch_fire_event(dev); 3073} 3074 3075/** 3076 * netif_dormant - test if carrier present 3077 * @dev: network device 3078 * 3079 * Check if carrier is present on device 3080 */ 3081static inline bool netif_dormant(const struct net_device *dev) 3082{ 3083 return test_bit(__LINK_STATE_DORMANT, &dev->state); 3084} 3085 3086 3087/** 3088 * netif_oper_up - test if device is operational 3089 * @dev: network device 3090 * 3091 * Check if carrier is operational 3092 */ 3093static inline bool netif_oper_up(const struct net_device *dev) 3094{ 3095 return (dev->operstate == IF_OPER_UP || 3096 dev->operstate == IF_OPER_UNKNOWN /* backward compat */); 3097} 3098 3099/** 3100 * netif_device_present - is device available or removed 3101 * @dev: network device 3102 * 3103 * Check if device has not been removed from system. 3104 */ 3105static inline bool netif_device_present(struct net_device *dev) 3106{ 3107 return test_bit(__LINK_STATE_PRESENT, &dev->state); 3108} 3109 3110void netif_device_detach(struct net_device *dev); 3111 3112void netif_device_attach(struct net_device *dev); 3113 3114/* 3115 * Network interface message level settings 3116 */ 3117 3118enum { 3119 NETIF_MSG_DRV = 0x0001, 3120 NETIF_MSG_PROBE = 0x0002, 3121 NETIF_MSG_LINK = 0x0004, 3122 NETIF_MSG_TIMER = 0x0008, 3123 NETIF_MSG_IFDOWN = 0x0010, 3124 NETIF_MSG_IFUP = 0x0020, 3125 NETIF_MSG_RX_ERR = 0x0040, 3126 NETIF_MSG_TX_ERR = 0x0080, 3127 NETIF_MSG_TX_QUEUED = 0x0100, 3128 NETIF_MSG_INTR = 0x0200, 3129 NETIF_MSG_TX_DONE = 0x0400, 3130 NETIF_MSG_RX_STATUS = 0x0800, 3131 NETIF_MSG_PKTDATA = 0x1000, 3132 NETIF_MSG_HW = 0x2000, 3133 NETIF_MSG_WOL = 0x4000, 3134}; 3135 3136#define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV) 3137#define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE) 3138#define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK) 3139#define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER) 3140#define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN) 3141#define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP) 3142#define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR) 3143#define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR) 3144#define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED) 3145#define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR) 3146#define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE) 3147#define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS) 3148#define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA) 3149#define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW) 3150#define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL) 3151 3152static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits) 3153{ 3154 /* use default */ 3155 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8)) 3156 return default_msg_enable_bits; 3157 if (debug_value == 0) /* no output */ 3158 return 0; 3159 /* set low N bits */ 3160 return (1 << debug_value) - 1; 3161} 3162 3163static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu) 3164{ 3165 spin_lock(&txq->_xmit_lock); 3166 txq->xmit_lock_owner = cpu; 3167} 3168 3169static inline void __netif_tx_lock_bh(struct netdev_queue *txq) 3170{ 3171 spin_lock_bh(&txq->_xmit_lock); 3172 txq->xmit_lock_owner = smp_processor_id(); 3173} 3174 3175static inline bool __netif_tx_trylock(struct netdev_queue *txq) 3176{ 3177 bool ok = spin_trylock(&txq->_xmit_lock); 3178 if (likely(ok)) 3179 txq->xmit_lock_owner = smp_processor_id(); 3180 return ok; 3181} 3182 3183static inline void __netif_tx_unlock(struct netdev_queue *txq) 3184{ 3185 txq->xmit_lock_owner = -1; 3186 spin_unlock(&txq->_xmit_lock); 3187} 3188 3189static inline void __netif_tx_unlock_bh(struct netdev_queue *txq) 3190{ 3191 txq->xmit_lock_owner = -1; 3192 spin_unlock_bh(&txq->_xmit_lock); 3193} 3194 3195static inline void txq_trans_update(struct netdev_queue *txq) 3196{ 3197 if (txq->xmit_lock_owner != -1) 3198 txq->trans_start = jiffies; 3199} 3200 3201/** 3202 * netif_tx_lock - grab network device transmit lock 3203 * @dev: network device 3204 * 3205 * Get network device transmit lock 3206 */ 3207static inline void netif_tx_lock(struct net_device *dev) 3208{ 3209 unsigned int i; 3210 int cpu; 3211 3212 spin_lock(&dev->tx_global_lock); 3213 cpu = smp_processor_id(); 3214 for (i = 0; i < dev->num_tx_queues; i++) { 3215 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3216 3217 /* We are the only thread of execution doing a 3218 * freeze, but we have to grab the _xmit_lock in 3219 * order to synchronize with threads which are in 3220 * the ->hard_start_xmit() handler and already 3221 * checked the frozen bit. 3222 */ 3223 __netif_tx_lock(txq, cpu); 3224 set_bit(__QUEUE_STATE_FROZEN, &txq->state); 3225 __netif_tx_unlock(txq); 3226 } 3227} 3228 3229static inline void netif_tx_lock_bh(struct net_device *dev) 3230{ 3231 local_bh_disable(); 3232 netif_tx_lock(dev); 3233} 3234 3235static inline void netif_tx_unlock(struct net_device *dev) 3236{ 3237 unsigned int i; 3238 3239 for (i = 0; i < dev->num_tx_queues; i++) { 3240 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3241 3242 /* No need to grab the _xmit_lock here. If the 3243 * queue is not stopped for another reason, we 3244 * force a schedule. 3245 */ 3246 clear_bit(__QUEUE_STATE_FROZEN, &txq->state); 3247 netif_schedule_queue(txq); 3248 } 3249 spin_unlock(&dev->tx_global_lock); 3250} 3251 3252static inline void netif_tx_unlock_bh(struct net_device *dev) 3253{ 3254 netif_tx_unlock(dev); 3255 local_bh_enable(); 3256} 3257 3258#define HARD_TX_LOCK(dev, txq, cpu) { \ 3259 if ((dev->features & NETIF_F_LLTX) == 0) { \ 3260 __netif_tx_lock(txq, cpu); \ 3261 } \ 3262} 3263 3264#define HARD_TX_TRYLOCK(dev, txq) \ 3265 (((dev->features & NETIF_F_LLTX) == 0) ? \ 3266 __netif_tx_trylock(txq) : \ 3267 true ) 3268 3269#define HARD_TX_UNLOCK(dev, txq) { \ 3270 if ((dev->features & NETIF_F_LLTX) == 0) { \ 3271 __netif_tx_unlock(txq); \ 3272 } \ 3273} 3274 3275static inline void netif_tx_disable(struct net_device *dev) 3276{ 3277 unsigned int i; 3278 int cpu; 3279 3280 local_bh_disable(); 3281 cpu = smp_processor_id(); 3282 for (i = 0; i < dev->num_tx_queues; i++) { 3283 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 3284 3285 __netif_tx_lock(txq, cpu); 3286 netif_tx_stop_queue(txq); 3287 __netif_tx_unlock(txq); 3288 } 3289 local_bh_enable(); 3290} 3291 3292static inline void netif_addr_lock(struct net_device *dev) 3293{ 3294 spin_lock(&dev->addr_list_lock); 3295} 3296 3297static inline void netif_addr_lock_nested(struct net_device *dev) 3298{ 3299 int subclass = SINGLE_DEPTH_NESTING; 3300 3301 if (dev->netdev_ops->ndo_get_lock_subclass) 3302 subclass = dev->netdev_ops->ndo_get_lock_subclass(dev); 3303 3304 spin_lock_nested(&dev->addr_list_lock, subclass); 3305} 3306 3307static inline void netif_addr_lock_bh(struct net_device *dev) 3308{ 3309 spin_lock_bh(&dev->addr_list_lock); 3310} 3311 3312static inline void netif_addr_unlock(struct net_device *dev) 3313{ 3314 spin_unlock(&dev->addr_list_lock); 3315} 3316 3317static inline void netif_addr_unlock_bh(struct net_device *dev) 3318{ 3319 spin_unlock_bh(&dev->addr_list_lock); 3320} 3321 3322/* 3323 * dev_addrs walker. Should be used only for read access. Call with 3324 * rcu_read_lock held. 3325 */ 3326#define for_each_dev_addr(dev, ha) \ 3327 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list) 3328 3329/* These functions live elsewhere (drivers/net/net_init.c, but related) */ 3330 3331void ether_setup(struct net_device *dev); 3332 3333/* Support for loadable net-drivers */ 3334struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 3335 unsigned char name_assign_type, 3336 void (*setup)(struct net_device *), 3337 unsigned int txqs, unsigned int rxqs); 3338#define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \ 3339 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1) 3340 3341#define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \ 3342 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \ 3343 count) 3344 3345int register_netdev(struct net_device *dev); 3346void unregister_netdev(struct net_device *dev); 3347 3348/* General hardware address lists handling functions */ 3349int __hw_addr_sync(struct netdev_hw_addr_list *to_list, 3350 struct netdev_hw_addr_list *from_list, int addr_len); 3351void __hw_addr_unsync(struct netdev_hw_addr_list *to_list, 3352 struct netdev_hw_addr_list *from_list, int addr_len); 3353int __hw_addr_sync_dev(struct netdev_hw_addr_list *list, 3354 struct net_device *dev, 3355 int (*sync)(struct net_device *, const unsigned char *), 3356 int (*unsync)(struct net_device *, 3357 const unsigned char *)); 3358void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list, 3359 struct net_device *dev, 3360 int (*unsync)(struct net_device *, 3361 const unsigned char *)); 3362void __hw_addr_init(struct netdev_hw_addr_list *list); 3363 3364/* Functions used for device addresses handling */ 3365int dev_addr_add(struct net_device *dev, const unsigned char *addr, 3366 unsigned char addr_type); 3367int dev_addr_del(struct net_device *dev, const unsigned char *addr, 3368 unsigned char addr_type); 3369void dev_addr_flush(struct net_device *dev); 3370int dev_addr_init(struct net_device *dev); 3371 3372/* Functions used for unicast addresses handling */ 3373int dev_uc_add(struct net_device *dev, const unsigned char *addr); 3374int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr); 3375int dev_uc_del(struct net_device *dev, const unsigned char *addr); 3376int dev_uc_sync(struct net_device *to, struct net_device *from); 3377int dev_uc_sync_multiple(struct net_device *to, struct net_device *from); 3378void dev_uc_unsync(struct net_device *to, struct net_device *from); 3379void dev_uc_flush(struct net_device *dev); 3380void dev_uc_init(struct net_device *dev); 3381 3382/** 3383 * __dev_uc_sync - Synchonize device's unicast list 3384 * @dev: device to sync 3385 * @sync: function to call if address should be added 3386 * @unsync: function to call if address should be removed 3387 * 3388 * Add newly added addresses to the interface, and release 3389 * addresses that have been deleted. 3390 **/ 3391static inline int __dev_uc_sync(struct net_device *dev, 3392 int (*sync)(struct net_device *, 3393 const unsigned char *), 3394 int (*unsync)(struct net_device *, 3395 const unsigned char *)) 3396{ 3397 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync); 3398} 3399 3400/** 3401 * __dev_uc_unsync - Remove synchronized addresses from device 3402 * @dev: device to sync 3403 * @unsync: function to call if address should be removed 3404 * 3405 * Remove all addresses that were added to the device by dev_uc_sync(). 3406 **/ 3407static inline void __dev_uc_unsync(struct net_device *dev, 3408 int (*unsync)(struct net_device *, 3409 const unsigned char *)) 3410{ 3411 __hw_addr_unsync_dev(&dev->uc, dev, unsync); 3412} 3413 3414/* Functions used for multicast addresses handling */ 3415int dev_mc_add(struct net_device *dev, const unsigned char *addr); 3416int dev_mc_add_global(struct net_device *dev, const unsigned char *addr); 3417int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr); 3418int dev_mc_del(struct net_device *dev, const unsigned char *addr); 3419int dev_mc_del_global(struct net_device *dev, const unsigned char *addr); 3420int dev_mc_sync(struct net_device *to, struct net_device *from); 3421int dev_mc_sync_multiple(struct net_device *to, struct net_device *from); 3422void dev_mc_unsync(struct net_device *to, struct net_device *from); 3423void dev_mc_flush(struct net_device *dev); 3424void dev_mc_init(struct net_device *dev); 3425 3426/** 3427 * __dev_mc_sync - Synchonize device's multicast list 3428 * @dev: device to sync 3429 * @sync: function to call if address should be added 3430 * @unsync: function to call if address should be removed 3431 * 3432 * Add newly added addresses to the interface, and release 3433 * addresses that have been deleted. 3434 **/ 3435static inline int __dev_mc_sync(struct net_device *dev, 3436 int (*sync)(struct net_device *, 3437 const unsigned char *), 3438 int (*unsync)(struct net_device *, 3439 const unsigned char *)) 3440{ 3441 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync); 3442} 3443 3444/** 3445 * __dev_mc_unsync - Remove synchronized addresses from device 3446 * @dev: device to sync 3447 * @unsync: function to call if address should be removed 3448 * 3449 * Remove all addresses that were added to the device by dev_mc_sync(). 3450 **/ 3451static inline void __dev_mc_unsync(struct net_device *dev, 3452 int (*unsync)(struct net_device *, 3453 const unsigned char *)) 3454{ 3455 __hw_addr_unsync_dev(&dev->mc, dev, unsync); 3456} 3457 3458/* Functions used for secondary unicast and multicast support */ 3459void dev_set_rx_mode(struct net_device *dev); 3460void __dev_set_rx_mode(struct net_device *dev); 3461int dev_set_promiscuity(struct net_device *dev, int inc); 3462int dev_set_allmulti(struct net_device *dev, int inc); 3463void netdev_state_change(struct net_device *dev); 3464void netdev_notify_peers(struct net_device *dev); 3465void netdev_features_change(struct net_device *dev); 3466/* Load a device via the kmod */ 3467void dev_load(struct net *net, const char *name); 3468struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 3469 struct rtnl_link_stats64 *storage); 3470void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 3471 const struct net_device_stats *netdev_stats); 3472 3473extern int netdev_max_backlog; 3474extern int netdev_tstamp_prequeue; 3475extern int weight_p; 3476extern int bpf_jit_enable; 3477 3478bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev); 3479struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 3480 struct list_head **iter); 3481struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev, 3482 struct list_head **iter); 3483 3484/* iterate through upper list, must be called under RCU read lock */ 3485#define netdev_for_each_upper_dev_rcu(dev, updev, iter) \ 3486 for (iter = &(dev)->adj_list.upper, \ 3487 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \ 3488 updev; \ 3489 updev = netdev_upper_get_next_dev_rcu(dev, &(iter))) 3490 3491/* iterate through upper list, must be called under RCU read lock */ 3492#define netdev_for_each_all_upper_dev_rcu(dev, updev, iter) \ 3493 for (iter = &(dev)->all_adj_list.upper, \ 3494 updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)); \ 3495 updev; \ 3496 updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter))) 3497 3498void *netdev_lower_get_next_private(struct net_device *dev, 3499 struct list_head **iter); 3500void *netdev_lower_get_next_private_rcu(struct net_device *dev, 3501 struct list_head **iter); 3502 3503#define netdev_for_each_lower_private(dev, priv, iter) \ 3504 for (iter = (dev)->adj_list.lower.next, \ 3505 priv = netdev_lower_get_next_private(dev, &(iter)); \ 3506 priv; \ 3507 priv = netdev_lower_get_next_private(dev, &(iter))) 3508 3509#define netdev_for_each_lower_private_rcu(dev, priv, iter) \ 3510 for (iter = &(dev)->adj_list.lower, \ 3511 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \ 3512 priv; \ 3513 priv = netdev_lower_get_next_private_rcu(dev, &(iter))) 3514 3515void *netdev_lower_get_next(struct net_device *dev, 3516 struct list_head **iter); 3517#define netdev_for_each_lower_dev(dev, ldev, iter) \ 3518 for (iter = &(dev)->adj_list.lower, \ 3519 ldev = netdev_lower_get_next(dev, &(iter)); \ 3520 ldev; \ 3521 ldev = netdev_lower_get_next(dev, &(iter))) 3522 3523void *netdev_adjacent_get_private(struct list_head *adj_list); 3524void *netdev_lower_get_first_private_rcu(struct net_device *dev); 3525struct net_device *netdev_master_upper_dev_get(struct net_device *dev); 3526struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev); 3527int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev); 3528int netdev_master_upper_dev_link(struct net_device *dev, 3529 struct net_device *upper_dev); 3530int netdev_master_upper_dev_link_private(struct net_device *dev, 3531 struct net_device *upper_dev, 3532 void *private); 3533void netdev_upper_dev_unlink(struct net_device *dev, 3534 struct net_device *upper_dev); 3535void netdev_adjacent_rename_links(struct net_device *dev, char *oldname); 3536void *netdev_lower_dev_get_private(struct net_device *dev, 3537 struct net_device *lower_dev); 3538 3539/* RSS keys are 40 or 52 bytes long */ 3540#define NETDEV_RSS_KEY_LEN 52 3541extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN]; 3542void netdev_rss_key_fill(void *buffer, size_t len); 3543 3544int dev_get_nest_level(struct net_device *dev, 3545 bool (*type_check)(struct net_device *dev)); 3546int skb_checksum_help(struct sk_buff *skb); 3547struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 3548 netdev_features_t features, bool tx_path); 3549struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 3550 netdev_features_t features); 3551 3552struct netdev_bonding_info { 3553 ifslave slave; 3554 ifbond master; 3555}; 3556 3557struct netdev_notifier_bonding_info { 3558 struct netdev_notifier_info info; /* must be first */ 3559 struct netdev_bonding_info bonding_info; 3560}; 3561 3562void netdev_bonding_info_change(struct net_device *dev, 3563 struct netdev_bonding_info *bonding_info); 3564 3565static inline 3566struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features) 3567{ 3568 return __skb_gso_segment(skb, features, true); 3569} 3570__be16 skb_network_protocol(struct sk_buff *skb, int *depth); 3571 3572static inline bool can_checksum_protocol(netdev_features_t features, 3573 __be16 protocol) 3574{ 3575 return ((features & NETIF_F_GEN_CSUM) || 3576 ((features & NETIF_F_V4_CSUM) && 3577 protocol == htons(ETH_P_IP)) || 3578 ((features & NETIF_F_V6_CSUM) && 3579 protocol == htons(ETH_P_IPV6)) || 3580 ((features & NETIF_F_FCOE_CRC) && 3581 protocol == htons(ETH_P_FCOE))); 3582} 3583 3584#ifdef CONFIG_BUG 3585void netdev_rx_csum_fault(struct net_device *dev); 3586#else 3587static inline void netdev_rx_csum_fault(struct net_device *dev) 3588{ 3589} 3590#endif 3591/* rx skb timestamps */ 3592void net_enable_timestamp(void); 3593void net_disable_timestamp(void); 3594 3595#ifdef CONFIG_PROC_FS 3596int __init dev_proc_init(void); 3597#else 3598#define dev_proc_init() 0 3599#endif 3600 3601static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops, 3602 struct sk_buff *skb, struct net_device *dev, 3603 bool more) 3604{ 3605 skb->xmit_more = more ? 1 : 0; 3606 return ops->ndo_start_xmit(skb, dev); 3607} 3608 3609static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev, 3610 struct netdev_queue *txq, bool more) 3611{ 3612 const struct net_device_ops *ops = dev->netdev_ops; 3613 int rc; 3614 3615 rc = __netdev_start_xmit(ops, skb, dev, more); 3616 if (rc == NETDEV_TX_OK) 3617 txq_trans_update(txq); 3618 3619 return rc; 3620} 3621 3622int netdev_class_create_file_ns(struct class_attribute *class_attr, 3623 const void *ns); 3624void netdev_class_remove_file_ns(struct class_attribute *class_attr, 3625 const void *ns); 3626 3627static inline int netdev_class_create_file(struct class_attribute *class_attr) 3628{ 3629 return netdev_class_create_file_ns(class_attr, NULL); 3630} 3631 3632static inline void netdev_class_remove_file(struct class_attribute *class_attr) 3633{ 3634 netdev_class_remove_file_ns(class_attr, NULL); 3635} 3636 3637extern struct kobj_ns_type_operations net_ns_type_operations; 3638 3639const char *netdev_drivername(const struct net_device *dev); 3640 3641void linkwatch_run_queue(void); 3642 3643static inline netdev_features_t netdev_intersect_features(netdev_features_t f1, 3644 netdev_features_t f2) 3645{ 3646 if (f1 & NETIF_F_GEN_CSUM) 3647 f1 |= (NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM); 3648 if (f2 & NETIF_F_GEN_CSUM) 3649 f2 |= (NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM); 3650 f1 &= f2; 3651 if (f1 & NETIF_F_GEN_CSUM) 3652 f1 &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM); 3653 3654 return f1; 3655} 3656 3657static inline netdev_features_t netdev_get_wanted_features( 3658 struct net_device *dev) 3659{ 3660 return (dev->features & ~dev->hw_features) | dev->wanted_features; 3661} 3662netdev_features_t netdev_increment_features(netdev_features_t all, 3663 netdev_features_t one, netdev_features_t mask); 3664 3665/* Allow TSO being used on stacked device : 3666 * Performing the GSO segmentation before last device 3667 * is a performance improvement. 3668 */ 3669static inline netdev_features_t netdev_add_tso_features(netdev_features_t features, 3670 netdev_features_t mask) 3671{ 3672 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask); 3673} 3674 3675int __netdev_update_features(struct net_device *dev); 3676void netdev_update_features(struct net_device *dev); 3677void netdev_change_features(struct net_device *dev); 3678 3679void netif_stacked_transfer_operstate(const struct net_device *rootdev, 3680 struct net_device *dev); 3681 3682netdev_features_t netif_skb_features(struct sk_buff *skb); 3683 3684static inline bool net_gso_ok(netdev_features_t features, int gso_type) 3685{ 3686 netdev_features_t feature = gso_type << NETIF_F_GSO_SHIFT; 3687 3688 /* check flags correspondence */ 3689 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT)); 3690 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT)); 3691 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT)); 3692 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT)); 3693 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT)); 3694 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT)); 3695 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT)); 3696 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT)); 3697 BUILD_BUG_ON(SKB_GSO_IPIP != (NETIF_F_GSO_IPIP >> NETIF_F_GSO_SHIFT)); 3698 BUILD_BUG_ON(SKB_GSO_SIT != (NETIF_F_GSO_SIT >> NETIF_F_GSO_SHIFT)); 3699 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT)); 3700 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT)); 3701 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT)); 3702 3703 return (features & feature) == feature; 3704} 3705 3706static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features) 3707{ 3708 return net_gso_ok(features, skb_shinfo(skb)->gso_type) && 3709 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST)); 3710} 3711 3712static inline bool netif_needs_gso(struct net_device *dev, struct sk_buff *skb, 3713 netdev_features_t features) 3714{ 3715 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) || 3716 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) && 3717 (skb->ip_summed != CHECKSUM_UNNECESSARY))); 3718} 3719 3720static inline void netif_set_gso_max_size(struct net_device *dev, 3721 unsigned int size) 3722{ 3723 dev->gso_max_size = size; 3724} 3725 3726static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol, 3727 int pulled_hlen, u16 mac_offset, 3728 int mac_len) 3729{ 3730 skb->protocol = protocol; 3731 skb->encapsulation = 1; 3732 skb_push(skb, pulled_hlen); 3733 skb_reset_transport_header(skb); 3734 skb->mac_header = mac_offset; 3735 skb->network_header = skb->mac_header + mac_len; 3736 skb->mac_len = mac_len; 3737} 3738 3739static inline bool netif_is_macvlan(struct net_device *dev) 3740{ 3741 return dev->priv_flags & IFF_MACVLAN; 3742} 3743 3744static inline bool netif_is_macvlan_port(struct net_device *dev) 3745{ 3746 return dev->priv_flags & IFF_MACVLAN_PORT; 3747} 3748 3749static inline bool netif_is_ipvlan(struct net_device *dev) 3750{ 3751 return dev->priv_flags & IFF_IPVLAN_SLAVE; 3752} 3753 3754static inline bool netif_is_ipvlan_port(struct net_device *dev) 3755{ 3756 return dev->priv_flags & IFF_IPVLAN_MASTER; 3757} 3758 3759static inline bool netif_is_bond_master(struct net_device *dev) 3760{ 3761 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING; 3762} 3763 3764static inline bool netif_is_bond_slave(struct net_device *dev) 3765{ 3766 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING; 3767} 3768 3769static inline bool netif_supports_nofcs(struct net_device *dev) 3770{ 3771 return dev->priv_flags & IFF_SUPP_NOFCS; 3772} 3773 3774/* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */ 3775static inline void netif_keep_dst(struct net_device *dev) 3776{ 3777 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM); 3778} 3779 3780extern struct pernet_operations __net_initdata loopback_net_ops; 3781 3782/* Logging, debugging and troubleshooting/diagnostic helpers. */ 3783 3784/* netdev_printk helpers, similar to dev_printk */ 3785 3786static inline const char *netdev_name(const struct net_device *dev) 3787{ 3788 if (!dev->name[0] || strchr(dev->name, '%')) 3789 return "(unnamed net_device)"; 3790 return dev->name; 3791} 3792 3793static inline const char *netdev_reg_state(const struct net_device *dev) 3794{ 3795 switch (dev->reg_state) { 3796 case NETREG_UNINITIALIZED: return " (uninitialized)"; 3797 case NETREG_REGISTERED: return ""; 3798 case NETREG_UNREGISTERING: return " (unregistering)"; 3799 case NETREG_UNREGISTERED: return " (unregistered)"; 3800 case NETREG_RELEASED: return " (released)"; 3801 case NETREG_DUMMY: return " (dummy)"; 3802 } 3803 3804 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state); 3805 return " (unknown)"; 3806} 3807 3808__printf(3, 4) 3809void netdev_printk(const char *level, const struct net_device *dev, 3810 const char *format, ...); 3811__printf(2, 3) 3812void netdev_emerg(const struct net_device *dev, const char *format, ...); 3813__printf(2, 3) 3814void netdev_alert(const struct net_device *dev, const char *format, ...); 3815__printf(2, 3) 3816void netdev_crit(const struct net_device *dev, const char *format, ...); 3817__printf(2, 3) 3818void netdev_err(const struct net_device *dev, const char *format, ...); 3819__printf(2, 3) 3820void netdev_warn(const struct net_device *dev, const char *format, ...); 3821__printf(2, 3) 3822void netdev_notice(const struct net_device *dev, const char *format, ...); 3823__printf(2, 3) 3824void netdev_info(const struct net_device *dev, const char *format, ...); 3825 3826#define MODULE_ALIAS_NETDEV(device) \ 3827 MODULE_ALIAS("netdev-" device) 3828 3829#if defined(CONFIG_DYNAMIC_DEBUG) 3830#define netdev_dbg(__dev, format, args...) \ 3831do { \ 3832 dynamic_netdev_dbg(__dev, format, ##args); \ 3833} while (0) 3834#elif defined(DEBUG) 3835#define netdev_dbg(__dev, format, args...) \ 3836 netdev_printk(KERN_DEBUG, __dev, format, ##args) 3837#else 3838#define netdev_dbg(__dev, format, args...) \ 3839({ \ 3840 if (0) \ 3841 netdev_printk(KERN_DEBUG, __dev, format, ##args); \ 3842}) 3843#endif 3844 3845#if defined(VERBOSE_DEBUG) 3846#define netdev_vdbg netdev_dbg 3847#else 3848 3849#define netdev_vdbg(dev, format, args...) \ 3850({ \ 3851 if (0) \ 3852 netdev_printk(KERN_DEBUG, dev, format, ##args); \ 3853 0; \ 3854}) 3855#endif 3856 3857/* 3858 * netdev_WARN() acts like dev_printk(), but with the key difference 3859 * of using a WARN/WARN_ON to get the message out, including the 3860 * file/line information and a backtrace. 3861 */ 3862#define netdev_WARN(dev, format, args...) \ 3863 WARN(1, "netdevice: %s%s\n" format, netdev_name(dev), \ 3864 netdev_reg_state(dev), ##args) 3865 3866/* netif printk helpers, similar to netdev_printk */ 3867 3868#define netif_printk(priv, type, level, dev, fmt, args...) \ 3869do { \ 3870 if (netif_msg_##type(priv)) \ 3871 netdev_printk(level, (dev), fmt, ##args); \ 3872} while (0) 3873 3874#define netif_level(level, priv, type, dev, fmt, args...) \ 3875do { \ 3876 if (netif_msg_##type(priv)) \ 3877 netdev_##level(dev, fmt, ##args); \ 3878} while (0) 3879 3880#define netif_emerg(priv, type, dev, fmt, args...) \ 3881 netif_level(emerg, priv, type, dev, fmt, ##args) 3882#define netif_alert(priv, type, dev, fmt, args...) \ 3883 netif_level(alert, priv, type, dev, fmt, ##args) 3884#define netif_crit(priv, type, dev, fmt, args...) \ 3885 netif_level(crit, priv, type, dev, fmt, ##args) 3886#define netif_err(priv, type, dev, fmt, args...) \ 3887 netif_level(err, priv, type, dev, fmt, ##args) 3888#define netif_warn(priv, type, dev, fmt, args...) \ 3889 netif_level(warn, priv, type, dev, fmt, ##args) 3890#define netif_notice(priv, type, dev, fmt, args...) \ 3891 netif_level(notice, priv, type, dev, fmt, ##args) 3892#define netif_info(priv, type, dev, fmt, args...) \ 3893 netif_level(info, priv, type, dev, fmt, ##args) 3894 3895#if defined(CONFIG_DYNAMIC_DEBUG) 3896#define netif_dbg(priv, type, netdev, format, args...) \ 3897do { \ 3898 if (netif_msg_##type(priv)) \ 3899 dynamic_netdev_dbg(netdev, format, ##args); \ 3900} while (0) 3901#elif defined(DEBUG) 3902#define netif_dbg(priv, type, dev, format, args...) \ 3903 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args) 3904#else 3905#define netif_dbg(priv, type, dev, format, args...) \ 3906({ \ 3907 if (0) \ 3908 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 3909 0; \ 3910}) 3911#endif 3912 3913#if defined(VERBOSE_DEBUG) 3914#define netif_vdbg netif_dbg 3915#else 3916#define netif_vdbg(priv, type, dev, format, args...) \ 3917({ \ 3918 if (0) \ 3919 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 3920 0; \ 3921}) 3922#endif 3923 3924/* 3925 * The list of packet types we will receive (as opposed to discard) 3926 * and the routines to invoke. 3927 * 3928 * Why 16. Because with 16 the only overlap we get on a hash of the 3929 * low nibble of the protocol value is RARP/SNAP/X.25. 3930 * 3931 * NOTE: That is no longer true with the addition of VLAN tags. Not 3932 * sure which should go first, but I bet it won't make much 3933 * difference if we are running VLANs. The good news is that 3934 * this protocol won't be in the list unless compiled in, so 3935 * the average user (w/out VLANs) will not be adversely affected. 3936 * --BLG 3937 * 3938 * 0800 IP 3939 * 8100 802.1Q VLAN 3940 * 0001 802.3 3941 * 0002 AX.25 3942 * 0004 802.2 3943 * 8035 RARP 3944 * 0005 SNAP 3945 * 0805 X.25 3946 * 0806 ARP 3947 * 8137 IPX 3948 * 0009 Localtalk 3949 * 86DD IPv6 3950 */ 3951#define PTYPE_HASH_SIZE (16) 3952#define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 3953 3954#endif /* _LINUX_NETDEVICE_H */