Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * SuperH on-chip serial module support. (SCI with no FIFO / with FIFO)
3 *
4 * Copyright (C) 2002 - 2011 Paul Mundt
5 * Modified to support SH7720 SCIF. Markus Brunner, Mark Jonas (Jul 2007).
6 *
7 * based off of the old drivers/char/sh-sci.c by:
8 *
9 * Copyright (C) 1999, 2000 Niibe Yutaka
10 * Copyright (C) 2000 Sugioka Toshinobu
11 * Modified to support multiple serial ports. Stuart Menefy (May 2000).
12 * Modified to support SecureEdge. David McCullough (2002)
13 * Modified to support SH7300 SCIF. Takashi Kusuda (Jun 2003).
14 * Removed SH7300 support (Jul 2007).
15 *
16 * This file is subject to the terms and conditions of the GNU General Public
17 * License. See the file "COPYING" in the main directory of this archive
18 * for more details.
19 */
20#if defined(CONFIG_SERIAL_SH_SCI_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
21#define SUPPORT_SYSRQ
22#endif
23
24#undef DEBUG
25
26#include <linux/clk.h>
27#include <linux/console.h>
28#include <linux/ctype.h>
29#include <linux/cpufreq.h>
30#include <linux/delay.h>
31#include <linux/dmaengine.h>
32#include <linux/dma-mapping.h>
33#include <linux/err.h>
34#include <linux/errno.h>
35#include <linux/init.h>
36#include <linux/interrupt.h>
37#include <linux/ioport.h>
38#include <linux/major.h>
39#include <linux/module.h>
40#include <linux/mm.h>
41#include <linux/notifier.h>
42#include <linux/of.h>
43#include <linux/platform_device.h>
44#include <linux/pm_runtime.h>
45#include <linux/scatterlist.h>
46#include <linux/serial.h>
47#include <linux/serial_sci.h>
48#include <linux/sh_dma.h>
49#include <linux/slab.h>
50#include <linux/string.h>
51#include <linux/sysrq.h>
52#include <linux/timer.h>
53#include <linux/tty.h>
54#include <linux/tty_flip.h>
55
56#ifdef CONFIG_SUPERH
57#include <asm/sh_bios.h>
58#endif
59
60#include "sh-sci.h"
61
62/* Offsets into the sci_port->irqs array */
63enum {
64 SCIx_ERI_IRQ,
65 SCIx_RXI_IRQ,
66 SCIx_TXI_IRQ,
67 SCIx_BRI_IRQ,
68 SCIx_NR_IRQS,
69
70 SCIx_MUX_IRQ = SCIx_NR_IRQS, /* special case */
71};
72
73#define SCIx_IRQ_IS_MUXED(port) \
74 ((port)->irqs[SCIx_ERI_IRQ] == \
75 (port)->irqs[SCIx_RXI_IRQ]) || \
76 ((port)->irqs[SCIx_ERI_IRQ] && \
77 ((port)->irqs[SCIx_RXI_IRQ] < 0))
78
79struct sci_port {
80 struct uart_port port;
81
82 /* Platform configuration */
83 struct plat_sci_port *cfg;
84 int overrun_bit;
85 unsigned int error_mask;
86 unsigned int sampling_rate;
87
88
89 /* Break timer */
90 struct timer_list break_timer;
91 int break_flag;
92
93 /* Interface clock */
94 struct clk *iclk;
95 /* Function clock */
96 struct clk *fclk;
97
98 int irqs[SCIx_NR_IRQS];
99 char *irqstr[SCIx_NR_IRQS];
100
101 struct dma_chan *chan_tx;
102 struct dma_chan *chan_rx;
103
104#ifdef CONFIG_SERIAL_SH_SCI_DMA
105 struct dma_async_tx_descriptor *desc_tx;
106 struct dma_async_tx_descriptor *desc_rx[2];
107 dma_cookie_t cookie_tx;
108 dma_cookie_t cookie_rx[2];
109 dma_cookie_t active_rx;
110 struct scatterlist sg_tx;
111 unsigned int sg_len_tx;
112 struct scatterlist sg_rx[2];
113 size_t buf_len_rx;
114 struct sh_dmae_slave param_tx;
115 struct sh_dmae_slave param_rx;
116 struct work_struct work_tx;
117 struct work_struct work_rx;
118 struct timer_list rx_timer;
119 unsigned int rx_timeout;
120#endif
121
122 struct notifier_block freq_transition;
123};
124
125/* Function prototypes */
126static void sci_start_tx(struct uart_port *port);
127static void sci_stop_tx(struct uart_port *port);
128static void sci_start_rx(struct uart_port *port);
129
130#define SCI_NPORTS CONFIG_SERIAL_SH_SCI_NR_UARTS
131
132static struct sci_port sci_ports[SCI_NPORTS];
133static struct uart_driver sci_uart_driver;
134
135static inline struct sci_port *
136to_sci_port(struct uart_port *uart)
137{
138 return container_of(uart, struct sci_port, port);
139}
140
141struct plat_sci_reg {
142 u8 offset, size;
143};
144
145/* Helper for invalidating specific entries of an inherited map. */
146#define sci_reg_invalid { .offset = 0, .size = 0 }
147
148static struct plat_sci_reg sci_regmap[SCIx_NR_REGTYPES][SCIx_NR_REGS] = {
149 [SCIx_PROBE_REGTYPE] = {
150 [0 ... SCIx_NR_REGS - 1] = sci_reg_invalid,
151 },
152
153 /*
154 * Common SCI definitions, dependent on the port's regshift
155 * value.
156 */
157 [SCIx_SCI_REGTYPE] = {
158 [SCSMR] = { 0x00, 8 },
159 [SCBRR] = { 0x01, 8 },
160 [SCSCR] = { 0x02, 8 },
161 [SCxTDR] = { 0x03, 8 },
162 [SCxSR] = { 0x04, 8 },
163 [SCxRDR] = { 0x05, 8 },
164 [SCFCR] = sci_reg_invalid,
165 [SCFDR] = sci_reg_invalid,
166 [SCTFDR] = sci_reg_invalid,
167 [SCRFDR] = sci_reg_invalid,
168 [SCSPTR] = sci_reg_invalid,
169 [SCLSR] = sci_reg_invalid,
170 [HSSRR] = sci_reg_invalid,
171 },
172
173 /*
174 * Common definitions for legacy IrDA ports, dependent on
175 * regshift value.
176 */
177 [SCIx_IRDA_REGTYPE] = {
178 [SCSMR] = { 0x00, 8 },
179 [SCBRR] = { 0x01, 8 },
180 [SCSCR] = { 0x02, 8 },
181 [SCxTDR] = { 0x03, 8 },
182 [SCxSR] = { 0x04, 8 },
183 [SCxRDR] = { 0x05, 8 },
184 [SCFCR] = { 0x06, 8 },
185 [SCFDR] = { 0x07, 16 },
186 [SCTFDR] = sci_reg_invalid,
187 [SCRFDR] = sci_reg_invalid,
188 [SCSPTR] = sci_reg_invalid,
189 [SCLSR] = sci_reg_invalid,
190 [HSSRR] = sci_reg_invalid,
191 },
192
193 /*
194 * Common SCIFA definitions.
195 */
196 [SCIx_SCIFA_REGTYPE] = {
197 [SCSMR] = { 0x00, 16 },
198 [SCBRR] = { 0x04, 8 },
199 [SCSCR] = { 0x08, 16 },
200 [SCxTDR] = { 0x20, 8 },
201 [SCxSR] = { 0x14, 16 },
202 [SCxRDR] = { 0x24, 8 },
203 [SCFCR] = { 0x18, 16 },
204 [SCFDR] = { 0x1c, 16 },
205 [SCTFDR] = sci_reg_invalid,
206 [SCRFDR] = sci_reg_invalid,
207 [SCSPTR] = sci_reg_invalid,
208 [SCLSR] = sci_reg_invalid,
209 [HSSRR] = sci_reg_invalid,
210 },
211
212 /*
213 * Common SCIFB definitions.
214 */
215 [SCIx_SCIFB_REGTYPE] = {
216 [SCSMR] = { 0x00, 16 },
217 [SCBRR] = { 0x04, 8 },
218 [SCSCR] = { 0x08, 16 },
219 [SCxTDR] = { 0x40, 8 },
220 [SCxSR] = { 0x14, 16 },
221 [SCxRDR] = { 0x60, 8 },
222 [SCFCR] = { 0x18, 16 },
223 [SCFDR] = sci_reg_invalid,
224 [SCTFDR] = { 0x38, 16 },
225 [SCRFDR] = { 0x3c, 16 },
226 [SCSPTR] = sci_reg_invalid,
227 [SCLSR] = sci_reg_invalid,
228 [HSSRR] = sci_reg_invalid,
229 },
230
231 /*
232 * Common SH-2(A) SCIF definitions for ports with FIFO data
233 * count registers.
234 */
235 [SCIx_SH2_SCIF_FIFODATA_REGTYPE] = {
236 [SCSMR] = { 0x00, 16 },
237 [SCBRR] = { 0x04, 8 },
238 [SCSCR] = { 0x08, 16 },
239 [SCxTDR] = { 0x0c, 8 },
240 [SCxSR] = { 0x10, 16 },
241 [SCxRDR] = { 0x14, 8 },
242 [SCFCR] = { 0x18, 16 },
243 [SCFDR] = { 0x1c, 16 },
244 [SCTFDR] = sci_reg_invalid,
245 [SCRFDR] = sci_reg_invalid,
246 [SCSPTR] = { 0x20, 16 },
247 [SCLSR] = { 0x24, 16 },
248 [HSSRR] = sci_reg_invalid,
249 },
250
251 /*
252 * Common SH-3 SCIF definitions.
253 */
254 [SCIx_SH3_SCIF_REGTYPE] = {
255 [SCSMR] = { 0x00, 8 },
256 [SCBRR] = { 0x02, 8 },
257 [SCSCR] = { 0x04, 8 },
258 [SCxTDR] = { 0x06, 8 },
259 [SCxSR] = { 0x08, 16 },
260 [SCxRDR] = { 0x0a, 8 },
261 [SCFCR] = { 0x0c, 8 },
262 [SCFDR] = { 0x0e, 16 },
263 [SCTFDR] = sci_reg_invalid,
264 [SCRFDR] = sci_reg_invalid,
265 [SCSPTR] = sci_reg_invalid,
266 [SCLSR] = sci_reg_invalid,
267 [HSSRR] = sci_reg_invalid,
268 },
269
270 /*
271 * Common SH-4(A) SCIF(B) definitions.
272 */
273 [SCIx_SH4_SCIF_REGTYPE] = {
274 [SCSMR] = { 0x00, 16 },
275 [SCBRR] = { 0x04, 8 },
276 [SCSCR] = { 0x08, 16 },
277 [SCxTDR] = { 0x0c, 8 },
278 [SCxSR] = { 0x10, 16 },
279 [SCxRDR] = { 0x14, 8 },
280 [SCFCR] = { 0x18, 16 },
281 [SCFDR] = { 0x1c, 16 },
282 [SCTFDR] = sci_reg_invalid,
283 [SCRFDR] = sci_reg_invalid,
284 [SCSPTR] = { 0x20, 16 },
285 [SCLSR] = { 0x24, 16 },
286 [HSSRR] = sci_reg_invalid,
287 },
288
289 /*
290 * Common HSCIF definitions.
291 */
292 [SCIx_HSCIF_REGTYPE] = {
293 [SCSMR] = { 0x00, 16 },
294 [SCBRR] = { 0x04, 8 },
295 [SCSCR] = { 0x08, 16 },
296 [SCxTDR] = { 0x0c, 8 },
297 [SCxSR] = { 0x10, 16 },
298 [SCxRDR] = { 0x14, 8 },
299 [SCFCR] = { 0x18, 16 },
300 [SCFDR] = { 0x1c, 16 },
301 [SCTFDR] = sci_reg_invalid,
302 [SCRFDR] = sci_reg_invalid,
303 [SCSPTR] = { 0x20, 16 },
304 [SCLSR] = { 0x24, 16 },
305 [HSSRR] = { 0x40, 16 },
306 },
307
308 /*
309 * Common SH-4(A) SCIF(B) definitions for ports without an SCSPTR
310 * register.
311 */
312 [SCIx_SH4_SCIF_NO_SCSPTR_REGTYPE] = {
313 [SCSMR] = { 0x00, 16 },
314 [SCBRR] = { 0x04, 8 },
315 [SCSCR] = { 0x08, 16 },
316 [SCxTDR] = { 0x0c, 8 },
317 [SCxSR] = { 0x10, 16 },
318 [SCxRDR] = { 0x14, 8 },
319 [SCFCR] = { 0x18, 16 },
320 [SCFDR] = { 0x1c, 16 },
321 [SCTFDR] = sci_reg_invalid,
322 [SCRFDR] = sci_reg_invalid,
323 [SCSPTR] = sci_reg_invalid,
324 [SCLSR] = { 0x24, 16 },
325 [HSSRR] = sci_reg_invalid,
326 },
327
328 /*
329 * Common SH-4(A) SCIF(B) definitions for ports with FIFO data
330 * count registers.
331 */
332 [SCIx_SH4_SCIF_FIFODATA_REGTYPE] = {
333 [SCSMR] = { 0x00, 16 },
334 [SCBRR] = { 0x04, 8 },
335 [SCSCR] = { 0x08, 16 },
336 [SCxTDR] = { 0x0c, 8 },
337 [SCxSR] = { 0x10, 16 },
338 [SCxRDR] = { 0x14, 8 },
339 [SCFCR] = { 0x18, 16 },
340 [SCFDR] = { 0x1c, 16 },
341 [SCTFDR] = { 0x1c, 16 }, /* aliased to SCFDR */
342 [SCRFDR] = { 0x20, 16 },
343 [SCSPTR] = { 0x24, 16 },
344 [SCLSR] = { 0x28, 16 },
345 [HSSRR] = sci_reg_invalid,
346 },
347
348 /*
349 * SH7705-style SCIF(B) ports, lacking both SCSPTR and SCLSR
350 * registers.
351 */
352 [SCIx_SH7705_SCIF_REGTYPE] = {
353 [SCSMR] = { 0x00, 16 },
354 [SCBRR] = { 0x04, 8 },
355 [SCSCR] = { 0x08, 16 },
356 [SCxTDR] = { 0x20, 8 },
357 [SCxSR] = { 0x14, 16 },
358 [SCxRDR] = { 0x24, 8 },
359 [SCFCR] = { 0x18, 16 },
360 [SCFDR] = { 0x1c, 16 },
361 [SCTFDR] = sci_reg_invalid,
362 [SCRFDR] = sci_reg_invalid,
363 [SCSPTR] = sci_reg_invalid,
364 [SCLSR] = sci_reg_invalid,
365 [HSSRR] = sci_reg_invalid,
366 },
367};
368
369#define sci_getreg(up, offset) (sci_regmap[to_sci_port(up)->cfg->regtype] + offset)
370
371/*
372 * The "offset" here is rather misleading, in that it refers to an enum
373 * value relative to the port mapping rather than the fixed offset
374 * itself, which needs to be manually retrieved from the platform's
375 * register map for the given port.
376 */
377static unsigned int sci_serial_in(struct uart_port *p, int offset)
378{
379 struct plat_sci_reg *reg = sci_getreg(p, offset);
380
381 if (reg->size == 8)
382 return ioread8(p->membase + (reg->offset << p->regshift));
383 else if (reg->size == 16)
384 return ioread16(p->membase + (reg->offset << p->regshift));
385 else
386 WARN(1, "Invalid register access\n");
387
388 return 0;
389}
390
391static void sci_serial_out(struct uart_port *p, int offset, int value)
392{
393 struct plat_sci_reg *reg = sci_getreg(p, offset);
394
395 if (reg->size == 8)
396 iowrite8(value, p->membase + (reg->offset << p->regshift));
397 else if (reg->size == 16)
398 iowrite16(value, p->membase + (reg->offset << p->regshift));
399 else
400 WARN(1, "Invalid register access\n");
401}
402
403static int sci_probe_regmap(struct plat_sci_port *cfg)
404{
405 switch (cfg->type) {
406 case PORT_SCI:
407 cfg->regtype = SCIx_SCI_REGTYPE;
408 break;
409 case PORT_IRDA:
410 cfg->regtype = SCIx_IRDA_REGTYPE;
411 break;
412 case PORT_SCIFA:
413 cfg->regtype = SCIx_SCIFA_REGTYPE;
414 break;
415 case PORT_SCIFB:
416 cfg->regtype = SCIx_SCIFB_REGTYPE;
417 break;
418 case PORT_SCIF:
419 /*
420 * The SH-4 is a bit of a misnomer here, although that's
421 * where this particular port layout originated. This
422 * configuration (or some slight variation thereof)
423 * remains the dominant model for all SCIFs.
424 */
425 cfg->regtype = SCIx_SH4_SCIF_REGTYPE;
426 break;
427 case PORT_HSCIF:
428 cfg->regtype = SCIx_HSCIF_REGTYPE;
429 break;
430 default:
431 pr_err("Can't probe register map for given port\n");
432 return -EINVAL;
433 }
434
435 return 0;
436}
437
438static void sci_port_enable(struct sci_port *sci_port)
439{
440 if (!sci_port->port.dev)
441 return;
442
443 pm_runtime_get_sync(sci_port->port.dev);
444
445 clk_prepare_enable(sci_port->iclk);
446 sci_port->port.uartclk = clk_get_rate(sci_port->iclk);
447 clk_prepare_enable(sci_port->fclk);
448}
449
450static void sci_port_disable(struct sci_port *sci_port)
451{
452 if (!sci_port->port.dev)
453 return;
454
455 /* Cancel the break timer to ensure that the timer handler will not try
456 * to access the hardware with clocks and power disabled. Reset the
457 * break flag to make the break debouncing state machine ready for the
458 * next break.
459 */
460 del_timer_sync(&sci_port->break_timer);
461 sci_port->break_flag = 0;
462
463 clk_disable_unprepare(sci_port->fclk);
464 clk_disable_unprepare(sci_port->iclk);
465
466 pm_runtime_put_sync(sci_port->port.dev);
467}
468
469#if defined(CONFIG_CONSOLE_POLL) || defined(CONFIG_SERIAL_SH_SCI_CONSOLE)
470
471#ifdef CONFIG_CONSOLE_POLL
472static int sci_poll_get_char(struct uart_port *port)
473{
474 unsigned short status;
475 int c;
476
477 do {
478 status = serial_port_in(port, SCxSR);
479 if (status & SCxSR_ERRORS(port)) {
480 serial_port_out(port, SCxSR, SCxSR_ERROR_CLEAR(port));
481 continue;
482 }
483 break;
484 } while (1);
485
486 if (!(status & SCxSR_RDxF(port)))
487 return NO_POLL_CHAR;
488
489 c = serial_port_in(port, SCxRDR);
490
491 /* Dummy read */
492 serial_port_in(port, SCxSR);
493 serial_port_out(port, SCxSR, SCxSR_RDxF_CLEAR(port));
494
495 return c;
496}
497#endif
498
499static void sci_poll_put_char(struct uart_port *port, unsigned char c)
500{
501 unsigned short status;
502
503 do {
504 status = serial_port_in(port, SCxSR);
505 } while (!(status & SCxSR_TDxE(port)));
506
507 serial_port_out(port, SCxTDR, c);
508 serial_port_out(port, SCxSR, SCxSR_TDxE_CLEAR(port) & ~SCxSR_TEND(port));
509}
510#endif /* CONFIG_CONSOLE_POLL || CONFIG_SERIAL_SH_SCI_CONSOLE */
511
512static void sci_init_pins(struct uart_port *port, unsigned int cflag)
513{
514 struct sci_port *s = to_sci_port(port);
515 struct plat_sci_reg *reg = sci_regmap[s->cfg->regtype] + SCSPTR;
516
517 /*
518 * Use port-specific handler if provided.
519 */
520 if (s->cfg->ops && s->cfg->ops->init_pins) {
521 s->cfg->ops->init_pins(port, cflag);
522 return;
523 }
524
525 /*
526 * For the generic path SCSPTR is necessary. Bail out if that's
527 * unavailable, too.
528 */
529 if (!reg->size)
530 return;
531
532 if ((s->cfg->capabilities & SCIx_HAVE_RTSCTS) &&
533 ((!(cflag & CRTSCTS)))) {
534 unsigned short status;
535
536 status = serial_port_in(port, SCSPTR);
537 status &= ~SCSPTR_CTSIO;
538 status |= SCSPTR_RTSIO;
539 serial_port_out(port, SCSPTR, status); /* Set RTS = 1 */
540 }
541}
542
543static int sci_txfill(struct uart_port *port)
544{
545 struct plat_sci_reg *reg;
546
547 reg = sci_getreg(port, SCTFDR);
548 if (reg->size)
549 return serial_port_in(port, SCTFDR) & ((port->fifosize << 1) - 1);
550
551 reg = sci_getreg(port, SCFDR);
552 if (reg->size)
553 return serial_port_in(port, SCFDR) >> 8;
554
555 return !(serial_port_in(port, SCxSR) & SCI_TDRE);
556}
557
558static int sci_txroom(struct uart_port *port)
559{
560 return port->fifosize - sci_txfill(port);
561}
562
563static int sci_rxfill(struct uart_port *port)
564{
565 struct plat_sci_reg *reg;
566
567 reg = sci_getreg(port, SCRFDR);
568 if (reg->size)
569 return serial_port_in(port, SCRFDR) & ((port->fifosize << 1) - 1);
570
571 reg = sci_getreg(port, SCFDR);
572 if (reg->size)
573 return serial_port_in(port, SCFDR) & ((port->fifosize << 1) - 1);
574
575 return (serial_port_in(port, SCxSR) & SCxSR_RDxF(port)) != 0;
576}
577
578/*
579 * SCI helper for checking the state of the muxed port/RXD pins.
580 */
581static inline int sci_rxd_in(struct uart_port *port)
582{
583 struct sci_port *s = to_sci_port(port);
584
585 if (s->cfg->port_reg <= 0)
586 return 1;
587
588 /* Cast for ARM damage */
589 return !!__raw_readb((void __iomem *)(uintptr_t)s->cfg->port_reg);
590}
591
592/* ********************************************************************** *
593 * the interrupt related routines *
594 * ********************************************************************** */
595
596static void sci_transmit_chars(struct uart_port *port)
597{
598 struct circ_buf *xmit = &port->state->xmit;
599 unsigned int stopped = uart_tx_stopped(port);
600 unsigned short status;
601 unsigned short ctrl;
602 int count;
603
604 status = serial_port_in(port, SCxSR);
605 if (!(status & SCxSR_TDxE(port))) {
606 ctrl = serial_port_in(port, SCSCR);
607 if (uart_circ_empty(xmit))
608 ctrl &= ~SCSCR_TIE;
609 else
610 ctrl |= SCSCR_TIE;
611 serial_port_out(port, SCSCR, ctrl);
612 return;
613 }
614
615 count = sci_txroom(port);
616
617 do {
618 unsigned char c;
619
620 if (port->x_char) {
621 c = port->x_char;
622 port->x_char = 0;
623 } else if (!uart_circ_empty(xmit) && !stopped) {
624 c = xmit->buf[xmit->tail];
625 xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
626 } else {
627 break;
628 }
629
630 serial_port_out(port, SCxTDR, c);
631
632 port->icount.tx++;
633 } while (--count > 0);
634
635 serial_port_out(port, SCxSR, SCxSR_TDxE_CLEAR(port));
636
637 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
638 uart_write_wakeup(port);
639 if (uart_circ_empty(xmit)) {
640 sci_stop_tx(port);
641 } else {
642 ctrl = serial_port_in(port, SCSCR);
643
644 if (port->type != PORT_SCI) {
645 serial_port_in(port, SCxSR); /* Dummy read */
646 serial_port_out(port, SCxSR, SCxSR_TDxE_CLEAR(port));
647 }
648
649 ctrl |= SCSCR_TIE;
650 serial_port_out(port, SCSCR, ctrl);
651 }
652}
653
654/* On SH3, SCIF may read end-of-break as a space->mark char */
655#define STEPFN(c) ({int __c = (c); (((__c-1)|(__c)) == -1); })
656
657static void sci_receive_chars(struct uart_port *port)
658{
659 struct sci_port *sci_port = to_sci_port(port);
660 struct tty_port *tport = &port->state->port;
661 int i, count, copied = 0;
662 unsigned short status;
663 unsigned char flag;
664
665 status = serial_port_in(port, SCxSR);
666 if (!(status & SCxSR_RDxF(port)))
667 return;
668
669 while (1) {
670 /* Don't copy more bytes than there is room for in the buffer */
671 count = tty_buffer_request_room(tport, sci_rxfill(port));
672
673 /* If for any reason we can't copy more data, we're done! */
674 if (count == 0)
675 break;
676
677 if (port->type == PORT_SCI) {
678 char c = serial_port_in(port, SCxRDR);
679 if (uart_handle_sysrq_char(port, c) ||
680 sci_port->break_flag)
681 count = 0;
682 else
683 tty_insert_flip_char(tport, c, TTY_NORMAL);
684 } else {
685 for (i = 0; i < count; i++) {
686 char c = serial_port_in(port, SCxRDR);
687
688 status = serial_port_in(port, SCxSR);
689#if defined(CONFIG_CPU_SH3)
690 /* Skip "chars" during break */
691 if (sci_port->break_flag) {
692 if ((c == 0) &&
693 (status & SCxSR_FER(port))) {
694 count--; i--;
695 continue;
696 }
697
698 /* Nonzero => end-of-break */
699 dev_dbg(port->dev, "debounce<%02x>\n", c);
700 sci_port->break_flag = 0;
701
702 if (STEPFN(c)) {
703 count--; i--;
704 continue;
705 }
706 }
707#endif /* CONFIG_CPU_SH3 */
708 if (uart_handle_sysrq_char(port, c)) {
709 count--; i--;
710 continue;
711 }
712
713 /* Store data and status */
714 if (status & SCxSR_FER(port)) {
715 flag = TTY_FRAME;
716 port->icount.frame++;
717 dev_notice(port->dev, "frame error\n");
718 } else if (status & SCxSR_PER(port)) {
719 flag = TTY_PARITY;
720 port->icount.parity++;
721 dev_notice(port->dev, "parity error\n");
722 } else
723 flag = TTY_NORMAL;
724
725 tty_insert_flip_char(tport, c, flag);
726 }
727 }
728
729 serial_port_in(port, SCxSR); /* dummy read */
730 serial_port_out(port, SCxSR, SCxSR_RDxF_CLEAR(port));
731
732 copied += count;
733 port->icount.rx += count;
734 }
735
736 if (copied) {
737 /* Tell the rest of the system the news. New characters! */
738 tty_flip_buffer_push(tport);
739 } else {
740 serial_port_in(port, SCxSR); /* dummy read */
741 serial_port_out(port, SCxSR, SCxSR_RDxF_CLEAR(port));
742 }
743}
744
745#define SCI_BREAK_JIFFIES (HZ/20)
746
747/*
748 * The sci generates interrupts during the break,
749 * 1 per millisecond or so during the break period, for 9600 baud.
750 * So dont bother disabling interrupts.
751 * But dont want more than 1 break event.
752 * Use a kernel timer to periodically poll the rx line until
753 * the break is finished.
754 */
755static inline void sci_schedule_break_timer(struct sci_port *port)
756{
757 mod_timer(&port->break_timer, jiffies + SCI_BREAK_JIFFIES);
758}
759
760/* Ensure that two consecutive samples find the break over. */
761static void sci_break_timer(unsigned long data)
762{
763 struct sci_port *port = (struct sci_port *)data;
764
765 if (sci_rxd_in(&port->port) == 0) {
766 port->break_flag = 1;
767 sci_schedule_break_timer(port);
768 } else if (port->break_flag == 1) {
769 /* break is over. */
770 port->break_flag = 2;
771 sci_schedule_break_timer(port);
772 } else
773 port->break_flag = 0;
774}
775
776static int sci_handle_errors(struct uart_port *port)
777{
778 int copied = 0;
779 unsigned short status = serial_port_in(port, SCxSR);
780 struct tty_port *tport = &port->state->port;
781 struct sci_port *s = to_sci_port(port);
782
783 /* Handle overruns */
784 if (status & (1 << s->overrun_bit)) {
785 port->icount.overrun++;
786
787 /* overrun error */
788 if (tty_insert_flip_char(tport, 0, TTY_OVERRUN))
789 copied++;
790
791 dev_notice(port->dev, "overrun error\n");
792 }
793
794 if (status & SCxSR_FER(port)) {
795 if (sci_rxd_in(port) == 0) {
796 /* Notify of BREAK */
797 struct sci_port *sci_port = to_sci_port(port);
798
799 if (!sci_port->break_flag) {
800 port->icount.brk++;
801
802 sci_port->break_flag = 1;
803 sci_schedule_break_timer(sci_port);
804
805 /* Do sysrq handling. */
806 if (uart_handle_break(port))
807 return 0;
808
809 dev_dbg(port->dev, "BREAK detected\n");
810
811 if (tty_insert_flip_char(tport, 0, TTY_BREAK))
812 copied++;
813 }
814
815 } else {
816 /* frame error */
817 port->icount.frame++;
818
819 if (tty_insert_flip_char(tport, 0, TTY_FRAME))
820 copied++;
821
822 dev_notice(port->dev, "frame error\n");
823 }
824 }
825
826 if (status & SCxSR_PER(port)) {
827 /* parity error */
828 port->icount.parity++;
829
830 if (tty_insert_flip_char(tport, 0, TTY_PARITY))
831 copied++;
832
833 dev_notice(port->dev, "parity error\n");
834 }
835
836 if (copied)
837 tty_flip_buffer_push(tport);
838
839 return copied;
840}
841
842static int sci_handle_fifo_overrun(struct uart_port *port)
843{
844 struct tty_port *tport = &port->state->port;
845 struct sci_port *s = to_sci_port(port);
846 struct plat_sci_reg *reg;
847 int copied = 0;
848
849 reg = sci_getreg(port, SCLSR);
850 if (!reg->size)
851 return 0;
852
853 if ((serial_port_in(port, SCLSR) & (1 << s->overrun_bit))) {
854 serial_port_out(port, SCLSR, 0);
855
856 port->icount.overrun++;
857
858 tty_insert_flip_char(tport, 0, TTY_OVERRUN);
859 tty_flip_buffer_push(tport);
860
861 dev_dbg(port->dev, "overrun error\n");
862 copied++;
863 }
864
865 return copied;
866}
867
868static int sci_handle_breaks(struct uart_port *port)
869{
870 int copied = 0;
871 unsigned short status = serial_port_in(port, SCxSR);
872 struct tty_port *tport = &port->state->port;
873 struct sci_port *s = to_sci_port(port);
874
875 if (uart_handle_break(port))
876 return 0;
877
878 if (!s->break_flag && status & SCxSR_BRK(port)) {
879#if defined(CONFIG_CPU_SH3)
880 /* Debounce break */
881 s->break_flag = 1;
882#endif
883
884 port->icount.brk++;
885
886 /* Notify of BREAK */
887 if (tty_insert_flip_char(tport, 0, TTY_BREAK))
888 copied++;
889
890 dev_dbg(port->dev, "BREAK detected\n");
891 }
892
893 if (copied)
894 tty_flip_buffer_push(tport);
895
896 copied += sci_handle_fifo_overrun(port);
897
898 return copied;
899}
900
901static irqreturn_t sci_rx_interrupt(int irq, void *ptr)
902{
903#ifdef CONFIG_SERIAL_SH_SCI_DMA
904 struct uart_port *port = ptr;
905 struct sci_port *s = to_sci_port(port);
906
907 if (s->chan_rx) {
908 u16 scr = serial_port_in(port, SCSCR);
909 u16 ssr = serial_port_in(port, SCxSR);
910
911 /* Disable future Rx interrupts */
912 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
913 disable_irq_nosync(irq);
914 scr |= SCSCR_RDRQE;
915 } else {
916 scr &= ~SCSCR_RIE;
917 }
918 serial_port_out(port, SCSCR, scr);
919 /* Clear current interrupt */
920 serial_port_out(port, SCxSR, ssr & ~(1 | SCxSR_RDxF(port)));
921 dev_dbg(port->dev, "Rx IRQ %lu: setup t-out in %u jiffies\n",
922 jiffies, s->rx_timeout);
923 mod_timer(&s->rx_timer, jiffies + s->rx_timeout);
924
925 return IRQ_HANDLED;
926 }
927#endif
928
929 /* I think sci_receive_chars has to be called irrespective
930 * of whether the I_IXOFF is set, otherwise, how is the interrupt
931 * to be disabled?
932 */
933 sci_receive_chars(ptr);
934
935 return IRQ_HANDLED;
936}
937
938static irqreturn_t sci_tx_interrupt(int irq, void *ptr)
939{
940 struct uart_port *port = ptr;
941 unsigned long flags;
942
943 spin_lock_irqsave(&port->lock, flags);
944 sci_transmit_chars(port);
945 spin_unlock_irqrestore(&port->lock, flags);
946
947 return IRQ_HANDLED;
948}
949
950static irqreturn_t sci_er_interrupt(int irq, void *ptr)
951{
952 struct uart_port *port = ptr;
953
954 /* Handle errors */
955 if (port->type == PORT_SCI) {
956 if (sci_handle_errors(port)) {
957 /* discard character in rx buffer */
958 serial_port_in(port, SCxSR);
959 serial_port_out(port, SCxSR, SCxSR_RDxF_CLEAR(port));
960 }
961 } else {
962 sci_handle_fifo_overrun(port);
963 sci_rx_interrupt(irq, ptr);
964 }
965
966 serial_port_out(port, SCxSR, SCxSR_ERROR_CLEAR(port));
967
968 /* Kick the transmission */
969 sci_tx_interrupt(irq, ptr);
970
971 return IRQ_HANDLED;
972}
973
974static irqreturn_t sci_br_interrupt(int irq, void *ptr)
975{
976 struct uart_port *port = ptr;
977
978 /* Handle BREAKs */
979 sci_handle_breaks(port);
980 serial_port_out(port, SCxSR, SCxSR_BREAK_CLEAR(port));
981
982 return IRQ_HANDLED;
983}
984
985static inline unsigned long port_rx_irq_mask(struct uart_port *port)
986{
987 /*
988 * Not all ports (such as SCIFA) will support REIE. Rather than
989 * special-casing the port type, we check the port initialization
990 * IRQ enable mask to see whether the IRQ is desired at all. If
991 * it's unset, it's logically inferred that there's no point in
992 * testing for it.
993 */
994 return SCSCR_RIE | (to_sci_port(port)->cfg->scscr & SCSCR_REIE);
995}
996
997static irqreturn_t sci_mpxed_interrupt(int irq, void *ptr)
998{
999 unsigned short ssr_status, scr_status, err_enabled;
1000 unsigned short slr_status = 0;
1001 struct uart_port *port = ptr;
1002 struct sci_port *s = to_sci_port(port);
1003 irqreturn_t ret = IRQ_NONE;
1004
1005 ssr_status = serial_port_in(port, SCxSR);
1006 scr_status = serial_port_in(port, SCSCR);
1007 if (port->type == PORT_SCIF || port->type == PORT_HSCIF)
1008 slr_status = serial_port_in(port, SCLSR);
1009 err_enabled = scr_status & port_rx_irq_mask(port);
1010
1011 /* Tx Interrupt */
1012 if ((ssr_status & SCxSR_TDxE(port)) && (scr_status & SCSCR_TIE) &&
1013 !s->chan_tx)
1014 ret = sci_tx_interrupt(irq, ptr);
1015
1016 /*
1017 * Rx Interrupt: if we're using DMA, the DMA controller clears RDF /
1018 * DR flags
1019 */
1020 if (((ssr_status & SCxSR_RDxF(port)) || s->chan_rx) &&
1021 (scr_status & SCSCR_RIE)) {
1022 if (port->type == PORT_SCIF || port->type == PORT_HSCIF)
1023 sci_handle_fifo_overrun(port);
1024 ret = sci_rx_interrupt(irq, ptr);
1025 }
1026
1027 /* Error Interrupt */
1028 if ((ssr_status & SCxSR_ERRORS(port)) && err_enabled)
1029 ret = sci_er_interrupt(irq, ptr);
1030
1031 /* Break Interrupt */
1032 if ((ssr_status & SCxSR_BRK(port)) && err_enabled)
1033 ret = sci_br_interrupt(irq, ptr);
1034
1035 /* Overrun Interrupt */
1036 if (port->type == PORT_SCIF || port->type == PORT_HSCIF) {
1037 if (slr_status & 0x01)
1038 sci_handle_fifo_overrun(port);
1039 }
1040
1041 return ret;
1042}
1043
1044/*
1045 * Here we define a transition notifier so that we can update all of our
1046 * ports' baud rate when the peripheral clock changes.
1047 */
1048static int sci_notifier(struct notifier_block *self,
1049 unsigned long phase, void *p)
1050{
1051 struct sci_port *sci_port;
1052 unsigned long flags;
1053
1054 sci_port = container_of(self, struct sci_port, freq_transition);
1055
1056 if (phase == CPUFREQ_POSTCHANGE) {
1057 struct uart_port *port = &sci_port->port;
1058
1059 spin_lock_irqsave(&port->lock, flags);
1060 port->uartclk = clk_get_rate(sci_port->iclk);
1061 spin_unlock_irqrestore(&port->lock, flags);
1062 }
1063
1064 return NOTIFY_OK;
1065}
1066
1067static struct sci_irq_desc {
1068 const char *desc;
1069 irq_handler_t handler;
1070} sci_irq_desc[] = {
1071 /*
1072 * Split out handlers, the default case.
1073 */
1074 [SCIx_ERI_IRQ] = {
1075 .desc = "rx err",
1076 .handler = sci_er_interrupt,
1077 },
1078
1079 [SCIx_RXI_IRQ] = {
1080 .desc = "rx full",
1081 .handler = sci_rx_interrupt,
1082 },
1083
1084 [SCIx_TXI_IRQ] = {
1085 .desc = "tx empty",
1086 .handler = sci_tx_interrupt,
1087 },
1088
1089 [SCIx_BRI_IRQ] = {
1090 .desc = "break",
1091 .handler = sci_br_interrupt,
1092 },
1093
1094 /*
1095 * Special muxed handler.
1096 */
1097 [SCIx_MUX_IRQ] = {
1098 .desc = "mux",
1099 .handler = sci_mpxed_interrupt,
1100 },
1101};
1102
1103static int sci_request_irq(struct sci_port *port)
1104{
1105 struct uart_port *up = &port->port;
1106 int i, j, ret = 0;
1107
1108 for (i = j = 0; i < SCIx_NR_IRQS; i++, j++) {
1109 struct sci_irq_desc *desc;
1110 int irq;
1111
1112 if (SCIx_IRQ_IS_MUXED(port)) {
1113 i = SCIx_MUX_IRQ;
1114 irq = up->irq;
1115 } else {
1116 irq = port->irqs[i];
1117
1118 /*
1119 * Certain port types won't support all of the
1120 * available interrupt sources.
1121 */
1122 if (unlikely(irq < 0))
1123 continue;
1124 }
1125
1126 desc = sci_irq_desc + i;
1127 port->irqstr[j] = kasprintf(GFP_KERNEL, "%s:%s",
1128 dev_name(up->dev), desc->desc);
1129 if (!port->irqstr[j]) {
1130 dev_err(up->dev, "Failed to allocate %s IRQ string\n",
1131 desc->desc);
1132 goto out_nomem;
1133 }
1134
1135 ret = request_irq(irq, desc->handler, up->irqflags,
1136 port->irqstr[j], port);
1137 if (unlikely(ret)) {
1138 dev_err(up->dev, "Can't allocate %s IRQ\n", desc->desc);
1139 goto out_noirq;
1140 }
1141 }
1142
1143 return 0;
1144
1145out_noirq:
1146 while (--i >= 0)
1147 free_irq(port->irqs[i], port);
1148
1149out_nomem:
1150 while (--j >= 0)
1151 kfree(port->irqstr[j]);
1152
1153 return ret;
1154}
1155
1156static void sci_free_irq(struct sci_port *port)
1157{
1158 int i;
1159
1160 /*
1161 * Intentionally in reverse order so we iterate over the muxed
1162 * IRQ first.
1163 */
1164 for (i = 0; i < SCIx_NR_IRQS; i++) {
1165 int irq = port->irqs[i];
1166
1167 /*
1168 * Certain port types won't support all of the available
1169 * interrupt sources.
1170 */
1171 if (unlikely(irq < 0))
1172 continue;
1173
1174 free_irq(port->irqs[i], port);
1175 kfree(port->irqstr[i]);
1176
1177 if (SCIx_IRQ_IS_MUXED(port)) {
1178 /* If there's only one IRQ, we're done. */
1179 return;
1180 }
1181 }
1182}
1183
1184static unsigned int sci_tx_empty(struct uart_port *port)
1185{
1186 unsigned short status = serial_port_in(port, SCxSR);
1187 unsigned short in_tx_fifo = sci_txfill(port);
1188
1189 return (status & SCxSR_TEND(port)) && !in_tx_fifo ? TIOCSER_TEMT : 0;
1190}
1191
1192/*
1193 * Modem control is a bit of a mixed bag for SCI(F) ports. Generally
1194 * CTS/RTS is supported in hardware by at least one port and controlled
1195 * via SCSPTR (SCxPCR for SCIFA/B parts), or external pins (presently
1196 * handled via the ->init_pins() op, which is a bit of a one-way street,
1197 * lacking any ability to defer pin control -- this will later be
1198 * converted over to the GPIO framework).
1199 *
1200 * Other modes (such as loopback) are supported generically on certain
1201 * port types, but not others. For these it's sufficient to test for the
1202 * existence of the support register and simply ignore the port type.
1203 */
1204static void sci_set_mctrl(struct uart_port *port, unsigned int mctrl)
1205{
1206 if (mctrl & TIOCM_LOOP) {
1207 struct plat_sci_reg *reg;
1208
1209 /*
1210 * Standard loopback mode for SCFCR ports.
1211 */
1212 reg = sci_getreg(port, SCFCR);
1213 if (reg->size)
1214 serial_port_out(port, SCFCR,
1215 serial_port_in(port, SCFCR) |
1216 SCFCR_LOOP);
1217 }
1218}
1219
1220static unsigned int sci_get_mctrl(struct uart_port *port)
1221{
1222 /*
1223 * CTS/RTS is handled in hardware when supported, while nothing
1224 * else is wired up. Keep it simple and simply assert DSR/CAR.
1225 */
1226 return TIOCM_DSR | TIOCM_CAR;
1227}
1228
1229#ifdef CONFIG_SERIAL_SH_SCI_DMA
1230static void sci_dma_tx_complete(void *arg)
1231{
1232 struct sci_port *s = arg;
1233 struct uart_port *port = &s->port;
1234 struct circ_buf *xmit = &port->state->xmit;
1235 unsigned long flags;
1236
1237 dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
1238
1239 spin_lock_irqsave(&port->lock, flags);
1240
1241 xmit->tail += sg_dma_len(&s->sg_tx);
1242 xmit->tail &= UART_XMIT_SIZE - 1;
1243
1244 port->icount.tx += sg_dma_len(&s->sg_tx);
1245
1246 async_tx_ack(s->desc_tx);
1247 s->desc_tx = NULL;
1248
1249 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1250 uart_write_wakeup(port);
1251
1252 if (!uart_circ_empty(xmit)) {
1253 s->cookie_tx = 0;
1254 schedule_work(&s->work_tx);
1255 } else {
1256 s->cookie_tx = -EINVAL;
1257 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1258 u16 ctrl = serial_port_in(port, SCSCR);
1259 serial_port_out(port, SCSCR, ctrl & ~SCSCR_TIE);
1260 }
1261 }
1262
1263 spin_unlock_irqrestore(&port->lock, flags);
1264}
1265
1266/* Locking: called with port lock held */
1267static int sci_dma_rx_push(struct sci_port *s, size_t count)
1268{
1269 struct uart_port *port = &s->port;
1270 struct tty_port *tport = &port->state->port;
1271 int i, active, room;
1272
1273 room = tty_buffer_request_room(tport, count);
1274
1275 if (s->active_rx == s->cookie_rx[0]) {
1276 active = 0;
1277 } else if (s->active_rx == s->cookie_rx[1]) {
1278 active = 1;
1279 } else {
1280 dev_err(port->dev, "cookie %d not found!\n", s->active_rx);
1281 return 0;
1282 }
1283
1284 if (room < count)
1285 dev_warn(port->dev, "Rx overrun: dropping %zu bytes\n",
1286 count - room);
1287 if (!room)
1288 return room;
1289
1290 for (i = 0; i < room; i++)
1291 tty_insert_flip_char(tport, ((u8 *)sg_virt(&s->sg_rx[active]))[i],
1292 TTY_NORMAL);
1293
1294 port->icount.rx += room;
1295
1296 return room;
1297}
1298
1299static void sci_dma_rx_complete(void *arg)
1300{
1301 struct sci_port *s = arg;
1302 struct uart_port *port = &s->port;
1303 unsigned long flags;
1304 int count;
1305
1306 dev_dbg(port->dev, "%s(%d) active #%d\n",
1307 __func__, port->line, s->active_rx);
1308
1309 spin_lock_irqsave(&port->lock, flags);
1310
1311 count = sci_dma_rx_push(s, s->buf_len_rx);
1312
1313 mod_timer(&s->rx_timer, jiffies + s->rx_timeout);
1314
1315 spin_unlock_irqrestore(&port->lock, flags);
1316
1317 if (count)
1318 tty_flip_buffer_push(&port->state->port);
1319
1320 schedule_work(&s->work_rx);
1321}
1322
1323static void sci_rx_dma_release(struct sci_port *s, bool enable_pio)
1324{
1325 struct dma_chan *chan = s->chan_rx;
1326 struct uart_port *port = &s->port;
1327
1328 s->chan_rx = NULL;
1329 s->cookie_rx[0] = s->cookie_rx[1] = -EINVAL;
1330 dma_release_channel(chan);
1331 if (sg_dma_address(&s->sg_rx[0]))
1332 dma_free_coherent(port->dev, s->buf_len_rx * 2,
1333 sg_virt(&s->sg_rx[0]), sg_dma_address(&s->sg_rx[0]));
1334 if (enable_pio)
1335 sci_start_rx(port);
1336}
1337
1338static void sci_tx_dma_release(struct sci_port *s, bool enable_pio)
1339{
1340 struct dma_chan *chan = s->chan_tx;
1341 struct uart_port *port = &s->port;
1342
1343 s->chan_tx = NULL;
1344 s->cookie_tx = -EINVAL;
1345 dma_release_channel(chan);
1346 if (enable_pio)
1347 sci_start_tx(port);
1348}
1349
1350static void sci_submit_rx(struct sci_port *s)
1351{
1352 struct dma_chan *chan = s->chan_rx;
1353 int i;
1354
1355 for (i = 0; i < 2; i++) {
1356 struct scatterlist *sg = &s->sg_rx[i];
1357 struct dma_async_tx_descriptor *desc;
1358
1359 desc = dmaengine_prep_slave_sg(chan,
1360 sg, 1, DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT);
1361
1362 if (desc) {
1363 s->desc_rx[i] = desc;
1364 desc->callback = sci_dma_rx_complete;
1365 desc->callback_param = s;
1366 s->cookie_rx[i] = desc->tx_submit(desc);
1367 }
1368
1369 if (!desc || s->cookie_rx[i] < 0) {
1370 if (i) {
1371 async_tx_ack(s->desc_rx[0]);
1372 s->cookie_rx[0] = -EINVAL;
1373 }
1374 if (desc) {
1375 async_tx_ack(desc);
1376 s->cookie_rx[i] = -EINVAL;
1377 }
1378 dev_warn(s->port.dev,
1379 "failed to re-start DMA, using PIO\n");
1380 sci_rx_dma_release(s, true);
1381 return;
1382 }
1383 dev_dbg(s->port.dev, "%s(): cookie %d to #%d\n",
1384 __func__, s->cookie_rx[i], i);
1385 }
1386
1387 s->active_rx = s->cookie_rx[0];
1388
1389 dma_async_issue_pending(chan);
1390}
1391
1392static void work_fn_rx(struct work_struct *work)
1393{
1394 struct sci_port *s = container_of(work, struct sci_port, work_rx);
1395 struct uart_port *port = &s->port;
1396 struct dma_async_tx_descriptor *desc;
1397 int new;
1398
1399 if (s->active_rx == s->cookie_rx[0]) {
1400 new = 0;
1401 } else if (s->active_rx == s->cookie_rx[1]) {
1402 new = 1;
1403 } else {
1404 dev_err(port->dev, "cookie %d not found!\n", s->active_rx);
1405 return;
1406 }
1407 desc = s->desc_rx[new];
1408
1409 if (dma_async_is_tx_complete(s->chan_rx, s->active_rx, NULL, NULL) !=
1410 DMA_COMPLETE) {
1411 /* Handle incomplete DMA receive */
1412 struct dma_chan *chan = s->chan_rx;
1413 struct shdma_desc *sh_desc = container_of(desc,
1414 struct shdma_desc, async_tx);
1415 unsigned long flags;
1416 int count;
1417
1418 dmaengine_terminate_all(chan);
1419 dev_dbg(port->dev, "Read %zu bytes with cookie %d\n",
1420 sh_desc->partial, sh_desc->cookie);
1421
1422 spin_lock_irqsave(&port->lock, flags);
1423 count = sci_dma_rx_push(s, sh_desc->partial);
1424 spin_unlock_irqrestore(&port->lock, flags);
1425
1426 if (count)
1427 tty_flip_buffer_push(&port->state->port);
1428
1429 sci_submit_rx(s);
1430
1431 return;
1432 }
1433
1434 s->cookie_rx[new] = desc->tx_submit(desc);
1435 if (s->cookie_rx[new] < 0) {
1436 dev_warn(port->dev, "Failed submitting Rx DMA descriptor\n");
1437 sci_rx_dma_release(s, true);
1438 return;
1439 }
1440
1441 s->active_rx = s->cookie_rx[!new];
1442
1443 dev_dbg(port->dev, "%s: cookie %d #%d, new active #%d\n",
1444 __func__, s->cookie_rx[new], new, s->active_rx);
1445}
1446
1447static void work_fn_tx(struct work_struct *work)
1448{
1449 struct sci_port *s = container_of(work, struct sci_port, work_tx);
1450 struct dma_async_tx_descriptor *desc;
1451 struct dma_chan *chan = s->chan_tx;
1452 struct uart_port *port = &s->port;
1453 struct circ_buf *xmit = &port->state->xmit;
1454 struct scatterlist *sg = &s->sg_tx;
1455
1456 /*
1457 * DMA is idle now.
1458 * Port xmit buffer is already mapped, and it is one page... Just adjust
1459 * offsets and lengths. Since it is a circular buffer, we have to
1460 * transmit till the end, and then the rest. Take the port lock to get a
1461 * consistent xmit buffer state.
1462 */
1463 spin_lock_irq(&port->lock);
1464 sg->offset = xmit->tail & (UART_XMIT_SIZE - 1);
1465 sg_dma_address(sg) = (sg_dma_address(sg) & ~(UART_XMIT_SIZE - 1)) +
1466 sg->offset;
1467 sg_dma_len(sg) = min((int)CIRC_CNT(xmit->head, xmit->tail, UART_XMIT_SIZE),
1468 CIRC_CNT_TO_END(xmit->head, xmit->tail, UART_XMIT_SIZE));
1469 spin_unlock_irq(&port->lock);
1470
1471 BUG_ON(!sg_dma_len(sg));
1472
1473 desc = dmaengine_prep_slave_sg(chan,
1474 sg, s->sg_len_tx, DMA_MEM_TO_DEV,
1475 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1476 if (!desc) {
1477 /* switch to PIO */
1478 sci_tx_dma_release(s, true);
1479 return;
1480 }
1481
1482 dma_sync_sg_for_device(port->dev, sg, 1, DMA_TO_DEVICE);
1483
1484 spin_lock_irq(&port->lock);
1485 s->desc_tx = desc;
1486 desc->callback = sci_dma_tx_complete;
1487 desc->callback_param = s;
1488 spin_unlock_irq(&port->lock);
1489 s->cookie_tx = desc->tx_submit(desc);
1490 if (s->cookie_tx < 0) {
1491 dev_warn(port->dev, "Failed submitting Tx DMA descriptor\n");
1492 /* switch to PIO */
1493 sci_tx_dma_release(s, true);
1494 return;
1495 }
1496
1497 dev_dbg(port->dev, "%s: %p: %d...%d, cookie %d\n",
1498 __func__, xmit->buf, xmit->tail, xmit->head, s->cookie_tx);
1499
1500 dma_async_issue_pending(chan);
1501}
1502#endif
1503
1504static void sci_start_tx(struct uart_port *port)
1505{
1506 struct sci_port *s = to_sci_port(port);
1507 unsigned short ctrl;
1508
1509#ifdef CONFIG_SERIAL_SH_SCI_DMA
1510 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1511 u16 new, scr = serial_port_in(port, SCSCR);
1512 if (s->chan_tx)
1513 new = scr | SCSCR_TDRQE;
1514 else
1515 new = scr & ~SCSCR_TDRQE;
1516 if (new != scr)
1517 serial_port_out(port, SCSCR, new);
1518 }
1519
1520 if (s->chan_tx && !uart_circ_empty(&s->port.state->xmit) &&
1521 s->cookie_tx < 0) {
1522 s->cookie_tx = 0;
1523 schedule_work(&s->work_tx);
1524 }
1525#endif
1526
1527 if (!s->chan_tx || port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1528 /* Set TIE (Transmit Interrupt Enable) bit in SCSCR */
1529 ctrl = serial_port_in(port, SCSCR);
1530 serial_port_out(port, SCSCR, ctrl | SCSCR_TIE);
1531 }
1532}
1533
1534static void sci_stop_tx(struct uart_port *port)
1535{
1536 unsigned short ctrl;
1537
1538 /* Clear TIE (Transmit Interrupt Enable) bit in SCSCR */
1539 ctrl = serial_port_in(port, SCSCR);
1540
1541 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1542 ctrl &= ~SCSCR_TDRQE;
1543
1544 ctrl &= ~SCSCR_TIE;
1545
1546 serial_port_out(port, SCSCR, ctrl);
1547}
1548
1549static void sci_start_rx(struct uart_port *port)
1550{
1551 unsigned short ctrl;
1552
1553 ctrl = serial_port_in(port, SCSCR) | port_rx_irq_mask(port);
1554
1555 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1556 ctrl &= ~SCSCR_RDRQE;
1557
1558 serial_port_out(port, SCSCR, ctrl);
1559}
1560
1561static void sci_stop_rx(struct uart_port *port)
1562{
1563 unsigned short ctrl;
1564
1565 ctrl = serial_port_in(port, SCSCR);
1566
1567 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1568 ctrl &= ~SCSCR_RDRQE;
1569
1570 ctrl &= ~port_rx_irq_mask(port);
1571
1572 serial_port_out(port, SCSCR, ctrl);
1573}
1574
1575static void sci_break_ctl(struct uart_port *port, int break_state)
1576{
1577 struct sci_port *s = to_sci_port(port);
1578 struct plat_sci_reg *reg = sci_regmap[s->cfg->regtype] + SCSPTR;
1579 unsigned short scscr, scsptr;
1580
1581 /* check wheter the port has SCSPTR */
1582 if (!reg->size) {
1583 /*
1584 * Not supported by hardware. Most parts couple break and rx
1585 * interrupts together, with break detection always enabled.
1586 */
1587 return;
1588 }
1589
1590 scsptr = serial_port_in(port, SCSPTR);
1591 scscr = serial_port_in(port, SCSCR);
1592
1593 if (break_state == -1) {
1594 scsptr = (scsptr | SCSPTR_SPB2IO) & ~SCSPTR_SPB2DT;
1595 scscr &= ~SCSCR_TE;
1596 } else {
1597 scsptr = (scsptr | SCSPTR_SPB2DT) & ~SCSPTR_SPB2IO;
1598 scscr |= SCSCR_TE;
1599 }
1600
1601 serial_port_out(port, SCSPTR, scsptr);
1602 serial_port_out(port, SCSCR, scscr);
1603}
1604
1605#ifdef CONFIG_SERIAL_SH_SCI_DMA
1606static bool filter(struct dma_chan *chan, void *slave)
1607{
1608 struct sh_dmae_slave *param = slave;
1609
1610 dev_dbg(chan->device->dev, "%s: slave ID %d\n",
1611 __func__, param->shdma_slave.slave_id);
1612
1613 chan->private = ¶m->shdma_slave;
1614 return true;
1615}
1616
1617static void rx_timer_fn(unsigned long arg)
1618{
1619 struct sci_port *s = (struct sci_port *)arg;
1620 struct uart_port *port = &s->port;
1621 u16 scr = serial_port_in(port, SCSCR);
1622
1623 if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1624 scr &= ~SCSCR_RDRQE;
1625 enable_irq(s->irqs[SCIx_RXI_IRQ]);
1626 }
1627 serial_port_out(port, SCSCR, scr | SCSCR_RIE);
1628 dev_dbg(port->dev, "DMA Rx timed out\n");
1629 schedule_work(&s->work_rx);
1630}
1631
1632static void sci_request_dma(struct uart_port *port)
1633{
1634 struct sci_port *s = to_sci_port(port);
1635 struct sh_dmae_slave *param;
1636 struct dma_chan *chan;
1637 dma_cap_mask_t mask;
1638 int nent;
1639
1640 dev_dbg(port->dev, "%s: port %d\n", __func__, port->line);
1641
1642 if (s->cfg->dma_slave_tx <= 0 || s->cfg->dma_slave_rx <= 0)
1643 return;
1644
1645 dma_cap_zero(mask);
1646 dma_cap_set(DMA_SLAVE, mask);
1647
1648 param = &s->param_tx;
1649
1650 /* Slave ID, e.g., SHDMA_SLAVE_SCIF0_TX */
1651 param->shdma_slave.slave_id = s->cfg->dma_slave_tx;
1652
1653 s->cookie_tx = -EINVAL;
1654 chan = dma_request_channel(mask, filter, param);
1655 dev_dbg(port->dev, "%s: TX: got channel %p\n", __func__, chan);
1656 if (chan) {
1657 s->chan_tx = chan;
1658 sg_init_table(&s->sg_tx, 1);
1659 /* UART circular tx buffer is an aligned page. */
1660 BUG_ON((uintptr_t)port->state->xmit.buf & ~PAGE_MASK);
1661 sg_set_page(&s->sg_tx, virt_to_page(port->state->xmit.buf),
1662 UART_XMIT_SIZE,
1663 (uintptr_t)port->state->xmit.buf & ~PAGE_MASK);
1664 nent = dma_map_sg(port->dev, &s->sg_tx, 1, DMA_TO_DEVICE);
1665 if (!nent)
1666 sci_tx_dma_release(s, false);
1667 else
1668 dev_dbg(port->dev, "%s: mapped %d@%p to %pad\n",
1669 __func__,
1670 sg_dma_len(&s->sg_tx), port->state->xmit.buf,
1671 &sg_dma_address(&s->sg_tx));
1672
1673 s->sg_len_tx = nent;
1674
1675 INIT_WORK(&s->work_tx, work_fn_tx);
1676 }
1677
1678 param = &s->param_rx;
1679
1680 /* Slave ID, e.g., SHDMA_SLAVE_SCIF0_RX */
1681 param->shdma_slave.slave_id = s->cfg->dma_slave_rx;
1682
1683 chan = dma_request_channel(mask, filter, param);
1684 dev_dbg(port->dev, "%s: RX: got channel %p\n", __func__, chan);
1685 if (chan) {
1686 dma_addr_t dma[2];
1687 void *buf[2];
1688 int i;
1689
1690 s->chan_rx = chan;
1691
1692 s->buf_len_rx = 2 * max(16, (int)port->fifosize);
1693 buf[0] = dma_alloc_coherent(port->dev, s->buf_len_rx * 2,
1694 &dma[0], GFP_KERNEL);
1695
1696 if (!buf[0]) {
1697 dev_warn(port->dev,
1698 "failed to allocate dma buffer, using PIO\n");
1699 sci_rx_dma_release(s, true);
1700 return;
1701 }
1702
1703 buf[1] = buf[0] + s->buf_len_rx;
1704 dma[1] = dma[0] + s->buf_len_rx;
1705
1706 for (i = 0; i < 2; i++) {
1707 struct scatterlist *sg = &s->sg_rx[i];
1708
1709 sg_init_table(sg, 1);
1710 sg_set_page(sg, virt_to_page(buf[i]), s->buf_len_rx,
1711 (uintptr_t)buf[i] & ~PAGE_MASK);
1712 sg_dma_address(sg) = dma[i];
1713 }
1714
1715 INIT_WORK(&s->work_rx, work_fn_rx);
1716 setup_timer(&s->rx_timer, rx_timer_fn, (unsigned long)s);
1717
1718 sci_submit_rx(s);
1719 }
1720}
1721
1722static void sci_free_dma(struct uart_port *port)
1723{
1724 struct sci_port *s = to_sci_port(port);
1725
1726 if (s->chan_tx)
1727 sci_tx_dma_release(s, false);
1728 if (s->chan_rx)
1729 sci_rx_dma_release(s, false);
1730}
1731#else
1732static inline void sci_request_dma(struct uart_port *port)
1733{
1734}
1735
1736static inline void sci_free_dma(struct uart_port *port)
1737{
1738}
1739#endif
1740
1741static int sci_startup(struct uart_port *port)
1742{
1743 struct sci_port *s = to_sci_port(port);
1744 unsigned long flags;
1745 int ret;
1746
1747 dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
1748
1749 ret = sci_request_irq(s);
1750 if (unlikely(ret < 0))
1751 return ret;
1752
1753 sci_request_dma(port);
1754
1755 spin_lock_irqsave(&port->lock, flags);
1756 sci_start_tx(port);
1757 sci_start_rx(port);
1758 spin_unlock_irqrestore(&port->lock, flags);
1759
1760 return 0;
1761}
1762
1763static void sci_shutdown(struct uart_port *port)
1764{
1765 struct sci_port *s = to_sci_port(port);
1766 unsigned long flags;
1767
1768 dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
1769
1770 spin_lock_irqsave(&port->lock, flags);
1771 sci_stop_rx(port);
1772 sci_stop_tx(port);
1773 spin_unlock_irqrestore(&port->lock, flags);
1774
1775 sci_free_dma(port);
1776 sci_free_irq(s);
1777}
1778
1779static unsigned int sci_scbrr_calc(struct sci_port *s, unsigned int bps,
1780 unsigned long freq)
1781{
1782 if (s->sampling_rate)
1783 return DIV_ROUND_CLOSEST(freq, s->sampling_rate * bps) - 1;
1784
1785 /* Warn, but use a safe default */
1786 WARN_ON(1);
1787
1788 return ((freq + 16 * bps) / (32 * bps) - 1);
1789}
1790
1791/* calculate frame length from SMR */
1792static int sci_baud_calc_frame_len(unsigned int smr_val)
1793{
1794 int len = 10;
1795
1796 if (smr_val & SCSMR_CHR)
1797 len--;
1798 if (smr_val & SCSMR_PE)
1799 len++;
1800 if (smr_val & SCSMR_STOP)
1801 len++;
1802
1803 return len;
1804}
1805
1806
1807/* calculate sample rate, BRR, and clock select for HSCIF */
1808static void sci_baud_calc_hscif(unsigned int bps, unsigned long freq,
1809 int *brr, unsigned int *srr,
1810 unsigned int *cks, int frame_len)
1811{
1812 int sr, c, br, err, recv_margin;
1813 int min_err = 1000; /* 100% */
1814 int recv_max_margin = 0;
1815
1816 /* Find the combination of sample rate and clock select with the
1817 smallest deviation from the desired baud rate. */
1818 for (sr = 8; sr <= 32; sr++) {
1819 for (c = 0; c <= 3; c++) {
1820 /* integerized formulas from HSCIF documentation */
1821 br = DIV_ROUND_CLOSEST(freq, (sr *
1822 (1 << (2 * c + 1)) * bps)) - 1;
1823 br = clamp(br, 0, 255);
1824 err = DIV_ROUND_CLOSEST(freq, ((br + 1) * bps * sr *
1825 (1 << (2 * c + 1)) / 1000)) -
1826 1000;
1827 /* Calc recv margin
1828 * M: Receive margin (%)
1829 * N: Ratio of bit rate to clock (N = sampling rate)
1830 * D: Clock duty (D = 0 to 1.0)
1831 * L: Frame length (L = 9 to 12)
1832 * F: Absolute value of clock frequency deviation
1833 *
1834 * M = |(0.5 - 1 / 2 * N) - ((L - 0.5) * F) -
1835 * (|D - 0.5| / N * (1 + F))|
1836 * NOTE: Usually, treat D for 0.5, F is 0 by this
1837 * calculation.
1838 */
1839 recv_margin = abs((500 -
1840 DIV_ROUND_CLOSEST(1000, sr << 1)) / 10);
1841 if (abs(min_err) > abs(err)) {
1842 min_err = err;
1843 recv_max_margin = recv_margin;
1844 } else if ((min_err == err) &&
1845 (recv_margin > recv_max_margin))
1846 recv_max_margin = recv_margin;
1847 else
1848 continue;
1849
1850 *brr = br;
1851 *srr = sr - 1;
1852 *cks = c;
1853 }
1854 }
1855
1856 if (min_err == 1000) {
1857 WARN_ON(1);
1858 /* use defaults */
1859 *brr = 255;
1860 *srr = 15;
1861 *cks = 0;
1862 }
1863}
1864
1865static void sci_reset(struct uart_port *port)
1866{
1867 struct plat_sci_reg *reg;
1868 unsigned int status;
1869
1870 do {
1871 status = serial_port_in(port, SCxSR);
1872 } while (!(status & SCxSR_TEND(port)));
1873
1874 serial_port_out(port, SCSCR, 0x00); /* TE=0, RE=0, CKE1=0 */
1875
1876 reg = sci_getreg(port, SCFCR);
1877 if (reg->size)
1878 serial_port_out(port, SCFCR, SCFCR_RFRST | SCFCR_TFRST);
1879}
1880
1881static void sci_set_termios(struct uart_port *port, struct ktermios *termios,
1882 struct ktermios *old)
1883{
1884 struct sci_port *s = to_sci_port(port);
1885 struct plat_sci_reg *reg;
1886 unsigned int baud, smr_val = 0, max_baud, cks = 0;
1887 int t = -1;
1888 unsigned int srr = 15;
1889
1890 if ((termios->c_cflag & CSIZE) == CS7)
1891 smr_val |= SCSMR_CHR;
1892 if (termios->c_cflag & PARENB)
1893 smr_val |= SCSMR_PE;
1894 if (termios->c_cflag & PARODD)
1895 smr_val |= SCSMR_PE | SCSMR_ODD;
1896 if (termios->c_cflag & CSTOPB)
1897 smr_val |= SCSMR_STOP;
1898
1899 /*
1900 * earlyprintk comes here early on with port->uartclk set to zero.
1901 * the clock framework is not up and running at this point so here
1902 * we assume that 115200 is the maximum baud rate. please note that
1903 * the baud rate is not programmed during earlyprintk - it is assumed
1904 * that the previous boot loader has enabled required clocks and
1905 * setup the baud rate generator hardware for us already.
1906 */
1907 max_baud = port->uartclk ? port->uartclk / 16 : 115200;
1908
1909 baud = uart_get_baud_rate(port, termios, old, 0, max_baud);
1910 if (likely(baud && port->uartclk)) {
1911 if (s->cfg->type == PORT_HSCIF) {
1912 int frame_len = sci_baud_calc_frame_len(smr_val);
1913 sci_baud_calc_hscif(baud, port->uartclk, &t, &srr,
1914 &cks, frame_len);
1915 } else {
1916 t = sci_scbrr_calc(s, baud, port->uartclk);
1917 for (cks = 0; t >= 256 && cks <= 3; cks++)
1918 t >>= 2;
1919 }
1920 }
1921
1922 sci_port_enable(s);
1923
1924 sci_reset(port);
1925
1926 smr_val |= serial_port_in(port, SCSMR) & 3;
1927
1928 uart_update_timeout(port, termios->c_cflag, baud);
1929
1930 dev_dbg(port->dev, "%s: SMR %x, cks %x, t %x, SCSCR %x\n",
1931 __func__, smr_val, cks, t, s->cfg->scscr);
1932
1933 if (t >= 0) {
1934 serial_port_out(port, SCSMR, (smr_val & ~SCSMR_CKS) | cks);
1935 serial_port_out(port, SCBRR, t);
1936 reg = sci_getreg(port, HSSRR);
1937 if (reg->size)
1938 serial_port_out(port, HSSRR, srr | HSCIF_SRE);
1939 udelay((1000000+(baud-1)) / baud); /* Wait one bit interval */
1940 } else
1941 serial_port_out(port, SCSMR, smr_val);
1942
1943 sci_init_pins(port, termios->c_cflag);
1944
1945 reg = sci_getreg(port, SCFCR);
1946 if (reg->size) {
1947 unsigned short ctrl = serial_port_in(port, SCFCR);
1948
1949 if (s->cfg->capabilities & SCIx_HAVE_RTSCTS) {
1950 if (termios->c_cflag & CRTSCTS)
1951 ctrl |= SCFCR_MCE;
1952 else
1953 ctrl &= ~SCFCR_MCE;
1954 }
1955
1956 /*
1957 * As we've done a sci_reset() above, ensure we don't
1958 * interfere with the FIFOs while toggling MCE. As the
1959 * reset values could still be set, simply mask them out.
1960 */
1961 ctrl &= ~(SCFCR_RFRST | SCFCR_TFRST);
1962
1963 serial_port_out(port, SCFCR, ctrl);
1964 }
1965
1966 serial_port_out(port, SCSCR, s->cfg->scscr);
1967
1968#ifdef CONFIG_SERIAL_SH_SCI_DMA
1969 /*
1970 * Calculate delay for 1.5 DMA buffers: see
1971 * drivers/serial/serial_core.c::uart_update_timeout(). With 10 bits
1972 * (CS8), 250Hz, 115200 baud and 64 bytes FIFO, the above function
1973 * calculates 1 jiffie for the data plus 5 jiffies for the "slop(e)."
1974 * Then below we calculate 3 jiffies (12ms) for 1.5 DMA buffers (3 FIFO
1975 * sizes), but it has been found out experimentally, that this is not
1976 * enough: the driver too often needlessly runs on a DMA timeout. 20ms
1977 * as a minimum seem to work perfectly.
1978 */
1979 if (s->chan_rx) {
1980 s->rx_timeout = (port->timeout - HZ / 50) * s->buf_len_rx * 3 /
1981 port->fifosize / 2;
1982 dev_dbg(port->dev, "DMA Rx t-out %ums, tty t-out %u jiffies\n",
1983 s->rx_timeout * 1000 / HZ, port->timeout);
1984 if (s->rx_timeout < msecs_to_jiffies(20))
1985 s->rx_timeout = msecs_to_jiffies(20);
1986 }
1987#endif
1988
1989 if ((termios->c_cflag & CREAD) != 0)
1990 sci_start_rx(port);
1991
1992 sci_port_disable(s);
1993}
1994
1995static void sci_pm(struct uart_port *port, unsigned int state,
1996 unsigned int oldstate)
1997{
1998 struct sci_port *sci_port = to_sci_port(port);
1999
2000 switch (state) {
2001 case UART_PM_STATE_OFF:
2002 sci_port_disable(sci_port);
2003 break;
2004 default:
2005 sci_port_enable(sci_port);
2006 break;
2007 }
2008}
2009
2010static const char *sci_type(struct uart_port *port)
2011{
2012 switch (port->type) {
2013 case PORT_IRDA:
2014 return "irda";
2015 case PORT_SCI:
2016 return "sci";
2017 case PORT_SCIF:
2018 return "scif";
2019 case PORT_SCIFA:
2020 return "scifa";
2021 case PORT_SCIFB:
2022 return "scifb";
2023 case PORT_HSCIF:
2024 return "hscif";
2025 }
2026
2027 return NULL;
2028}
2029
2030static inline unsigned long sci_port_size(struct uart_port *port)
2031{
2032 /*
2033 * Pick an arbitrary size that encapsulates all of the base
2034 * registers by default. This can be optimized later, or derived
2035 * from platform resource data at such a time that ports begin to
2036 * behave more erratically.
2037 */
2038 if (port->type == PORT_HSCIF)
2039 return 96;
2040 else
2041 return 64;
2042}
2043
2044static int sci_remap_port(struct uart_port *port)
2045{
2046 unsigned long size = sci_port_size(port);
2047
2048 /*
2049 * Nothing to do if there's already an established membase.
2050 */
2051 if (port->membase)
2052 return 0;
2053
2054 if (port->flags & UPF_IOREMAP) {
2055 port->membase = ioremap_nocache(port->mapbase, size);
2056 if (unlikely(!port->membase)) {
2057 dev_err(port->dev, "can't remap port#%d\n", port->line);
2058 return -ENXIO;
2059 }
2060 } else {
2061 /*
2062 * For the simple (and majority of) cases where we don't
2063 * need to do any remapping, just cast the cookie
2064 * directly.
2065 */
2066 port->membase = (void __iomem *)(uintptr_t)port->mapbase;
2067 }
2068
2069 return 0;
2070}
2071
2072static void sci_release_port(struct uart_port *port)
2073{
2074 if (port->flags & UPF_IOREMAP) {
2075 iounmap(port->membase);
2076 port->membase = NULL;
2077 }
2078
2079 release_mem_region(port->mapbase, sci_port_size(port));
2080}
2081
2082static int sci_request_port(struct uart_port *port)
2083{
2084 unsigned long size = sci_port_size(port);
2085 struct resource *res;
2086 int ret;
2087
2088 res = request_mem_region(port->mapbase, size, dev_name(port->dev));
2089 if (unlikely(res == NULL))
2090 return -EBUSY;
2091
2092 ret = sci_remap_port(port);
2093 if (unlikely(ret != 0)) {
2094 release_resource(res);
2095 return ret;
2096 }
2097
2098 return 0;
2099}
2100
2101static void sci_config_port(struct uart_port *port, int flags)
2102{
2103 if (flags & UART_CONFIG_TYPE) {
2104 struct sci_port *sport = to_sci_port(port);
2105
2106 port->type = sport->cfg->type;
2107 sci_request_port(port);
2108 }
2109}
2110
2111static int sci_verify_port(struct uart_port *port, struct serial_struct *ser)
2112{
2113 if (ser->baud_base < 2400)
2114 /* No paper tape reader for Mitch.. */
2115 return -EINVAL;
2116
2117 return 0;
2118}
2119
2120static struct uart_ops sci_uart_ops = {
2121 .tx_empty = sci_tx_empty,
2122 .set_mctrl = sci_set_mctrl,
2123 .get_mctrl = sci_get_mctrl,
2124 .start_tx = sci_start_tx,
2125 .stop_tx = sci_stop_tx,
2126 .stop_rx = sci_stop_rx,
2127 .break_ctl = sci_break_ctl,
2128 .startup = sci_startup,
2129 .shutdown = sci_shutdown,
2130 .set_termios = sci_set_termios,
2131 .pm = sci_pm,
2132 .type = sci_type,
2133 .release_port = sci_release_port,
2134 .request_port = sci_request_port,
2135 .config_port = sci_config_port,
2136 .verify_port = sci_verify_port,
2137#ifdef CONFIG_CONSOLE_POLL
2138 .poll_get_char = sci_poll_get_char,
2139 .poll_put_char = sci_poll_put_char,
2140#endif
2141};
2142
2143static int sci_init_single(struct platform_device *dev,
2144 struct sci_port *sci_port, unsigned int index,
2145 struct plat_sci_port *p, bool early)
2146{
2147 struct uart_port *port = &sci_port->port;
2148 const struct resource *res;
2149 unsigned int sampling_rate;
2150 unsigned int i;
2151 int ret;
2152
2153 sci_port->cfg = p;
2154
2155 port->ops = &sci_uart_ops;
2156 port->iotype = UPIO_MEM;
2157 port->line = index;
2158
2159 res = platform_get_resource(dev, IORESOURCE_MEM, 0);
2160 if (res == NULL)
2161 return -ENOMEM;
2162
2163 port->mapbase = res->start;
2164
2165 for (i = 0; i < ARRAY_SIZE(sci_port->irqs); ++i)
2166 sci_port->irqs[i] = platform_get_irq(dev, i);
2167
2168 /* The SCI generates several interrupts. They can be muxed together or
2169 * connected to different interrupt lines. In the muxed case only one
2170 * interrupt resource is specified. In the non-muxed case three or four
2171 * interrupt resources are specified, as the BRI interrupt is optional.
2172 */
2173 if (sci_port->irqs[0] < 0)
2174 return -ENXIO;
2175
2176 if (sci_port->irqs[1] < 0) {
2177 sci_port->irqs[1] = sci_port->irqs[0];
2178 sci_port->irqs[2] = sci_port->irqs[0];
2179 sci_port->irqs[3] = sci_port->irqs[0];
2180 }
2181
2182 if (p->regtype == SCIx_PROBE_REGTYPE) {
2183 ret = sci_probe_regmap(p);
2184 if (unlikely(ret))
2185 return ret;
2186 }
2187
2188 switch (p->type) {
2189 case PORT_SCIFB:
2190 port->fifosize = 256;
2191 sci_port->overrun_bit = 9;
2192 sampling_rate = 16;
2193 break;
2194 case PORT_HSCIF:
2195 port->fifosize = 128;
2196 sampling_rate = 0;
2197 sci_port->overrun_bit = 0;
2198 break;
2199 case PORT_SCIFA:
2200 port->fifosize = 64;
2201 sci_port->overrun_bit = 9;
2202 sampling_rate = 16;
2203 break;
2204 case PORT_SCIF:
2205 port->fifosize = 16;
2206 if (p->regtype == SCIx_SH7705_SCIF_REGTYPE) {
2207 sci_port->overrun_bit = 9;
2208 sampling_rate = 16;
2209 } else {
2210 sci_port->overrun_bit = 0;
2211 sampling_rate = 32;
2212 }
2213 break;
2214 default:
2215 port->fifosize = 1;
2216 sci_port->overrun_bit = 5;
2217 sampling_rate = 32;
2218 break;
2219 }
2220
2221 /* SCIFA on sh7723 and sh7724 need a custom sampling rate that doesn't
2222 * match the SoC datasheet, this should be investigated. Let platform
2223 * data override the sampling rate for now.
2224 */
2225 sci_port->sampling_rate = p->sampling_rate ? p->sampling_rate
2226 : sampling_rate;
2227
2228 if (!early) {
2229 sci_port->iclk = clk_get(&dev->dev, "sci_ick");
2230 if (IS_ERR(sci_port->iclk)) {
2231 sci_port->iclk = clk_get(&dev->dev, "peripheral_clk");
2232 if (IS_ERR(sci_port->iclk)) {
2233 dev_err(&dev->dev, "can't get iclk\n");
2234 return PTR_ERR(sci_port->iclk);
2235 }
2236 }
2237
2238 /*
2239 * The function clock is optional, ignore it if we can't
2240 * find it.
2241 */
2242 sci_port->fclk = clk_get(&dev->dev, "sci_fck");
2243 if (IS_ERR(sci_port->fclk))
2244 sci_port->fclk = NULL;
2245
2246 port->dev = &dev->dev;
2247
2248 pm_runtime_enable(&dev->dev);
2249 }
2250
2251 sci_port->break_timer.data = (unsigned long)sci_port;
2252 sci_port->break_timer.function = sci_break_timer;
2253 init_timer(&sci_port->break_timer);
2254
2255 /*
2256 * Establish some sensible defaults for the error detection.
2257 */
2258 sci_port->error_mask = (p->type == PORT_SCI) ?
2259 SCI_DEFAULT_ERROR_MASK : SCIF_DEFAULT_ERROR_MASK;
2260
2261 /*
2262 * Establish sensible defaults for the overrun detection, unless
2263 * the part has explicitly disabled support for it.
2264 */
2265
2266 /*
2267 * Make the error mask inclusive of overrun detection, if
2268 * supported.
2269 */
2270 sci_port->error_mask |= 1 << sci_port->overrun_bit;
2271
2272 port->type = p->type;
2273 port->flags = UPF_FIXED_PORT | p->flags;
2274 port->regshift = p->regshift;
2275
2276 /*
2277 * The UART port needs an IRQ value, so we peg this to the RX IRQ
2278 * for the multi-IRQ ports, which is where we are primarily
2279 * concerned with the shutdown path synchronization.
2280 *
2281 * For the muxed case there's nothing more to do.
2282 */
2283 port->irq = sci_port->irqs[SCIx_RXI_IRQ];
2284 port->irqflags = 0;
2285
2286 port->serial_in = sci_serial_in;
2287 port->serial_out = sci_serial_out;
2288
2289 if (p->dma_slave_tx > 0 && p->dma_slave_rx > 0)
2290 dev_dbg(port->dev, "DMA tx %d, rx %d\n",
2291 p->dma_slave_tx, p->dma_slave_rx);
2292
2293 return 0;
2294}
2295
2296static void sci_cleanup_single(struct sci_port *port)
2297{
2298 clk_put(port->iclk);
2299 clk_put(port->fclk);
2300
2301 pm_runtime_disable(port->port.dev);
2302}
2303
2304#ifdef CONFIG_SERIAL_SH_SCI_CONSOLE
2305static void serial_console_putchar(struct uart_port *port, int ch)
2306{
2307 sci_poll_put_char(port, ch);
2308}
2309
2310/*
2311 * Print a string to the serial port trying not to disturb
2312 * any possible real use of the port...
2313 */
2314static void serial_console_write(struct console *co, const char *s,
2315 unsigned count)
2316{
2317 struct sci_port *sci_port = &sci_ports[co->index];
2318 struct uart_port *port = &sci_port->port;
2319 unsigned short bits, ctrl;
2320 unsigned long flags;
2321 int locked = 1;
2322
2323 local_irq_save(flags);
2324 if (port->sysrq)
2325 locked = 0;
2326 else if (oops_in_progress)
2327 locked = spin_trylock(&port->lock);
2328 else
2329 spin_lock(&port->lock);
2330
2331 /* first save the SCSCR then disable the interrupts */
2332 ctrl = serial_port_in(port, SCSCR);
2333 serial_port_out(port, SCSCR, sci_port->cfg->scscr);
2334
2335 uart_console_write(port, s, count, serial_console_putchar);
2336
2337 /* wait until fifo is empty and last bit has been transmitted */
2338 bits = SCxSR_TDxE(port) | SCxSR_TEND(port);
2339 while ((serial_port_in(port, SCxSR) & bits) != bits)
2340 cpu_relax();
2341
2342 /* restore the SCSCR */
2343 serial_port_out(port, SCSCR, ctrl);
2344
2345 if (locked)
2346 spin_unlock(&port->lock);
2347 local_irq_restore(flags);
2348}
2349
2350static int serial_console_setup(struct console *co, char *options)
2351{
2352 struct sci_port *sci_port;
2353 struct uart_port *port;
2354 int baud = 115200;
2355 int bits = 8;
2356 int parity = 'n';
2357 int flow = 'n';
2358 int ret;
2359
2360 /*
2361 * Refuse to handle any bogus ports.
2362 */
2363 if (co->index < 0 || co->index >= SCI_NPORTS)
2364 return -ENODEV;
2365
2366 sci_port = &sci_ports[co->index];
2367 port = &sci_port->port;
2368
2369 /*
2370 * Refuse to handle uninitialized ports.
2371 */
2372 if (!port->ops)
2373 return -ENODEV;
2374
2375 ret = sci_remap_port(port);
2376 if (unlikely(ret != 0))
2377 return ret;
2378
2379 if (options)
2380 uart_parse_options(options, &baud, &parity, &bits, &flow);
2381
2382 return uart_set_options(port, co, baud, parity, bits, flow);
2383}
2384
2385static struct console serial_console = {
2386 .name = "ttySC",
2387 .device = uart_console_device,
2388 .write = serial_console_write,
2389 .setup = serial_console_setup,
2390 .flags = CON_PRINTBUFFER,
2391 .index = -1,
2392 .data = &sci_uart_driver,
2393};
2394
2395static struct console early_serial_console = {
2396 .name = "early_ttySC",
2397 .write = serial_console_write,
2398 .flags = CON_PRINTBUFFER,
2399 .index = -1,
2400};
2401
2402static char early_serial_buf[32];
2403
2404static int sci_probe_earlyprintk(struct platform_device *pdev)
2405{
2406 struct plat_sci_port *cfg = dev_get_platdata(&pdev->dev);
2407
2408 if (early_serial_console.data)
2409 return -EEXIST;
2410
2411 early_serial_console.index = pdev->id;
2412
2413 sci_init_single(pdev, &sci_ports[pdev->id], pdev->id, cfg, true);
2414
2415 serial_console_setup(&early_serial_console, early_serial_buf);
2416
2417 if (!strstr(early_serial_buf, "keep"))
2418 early_serial_console.flags |= CON_BOOT;
2419
2420 register_console(&early_serial_console);
2421 return 0;
2422}
2423
2424#define SCI_CONSOLE (&serial_console)
2425
2426#else
2427static inline int sci_probe_earlyprintk(struct platform_device *pdev)
2428{
2429 return -EINVAL;
2430}
2431
2432#define SCI_CONSOLE NULL
2433
2434#endif /* CONFIG_SERIAL_SH_SCI_CONSOLE */
2435
2436static const char banner[] __initconst = "SuperH (H)SCI(F) driver initialized";
2437
2438static struct uart_driver sci_uart_driver = {
2439 .owner = THIS_MODULE,
2440 .driver_name = "sci",
2441 .dev_name = "ttySC",
2442 .major = SCI_MAJOR,
2443 .minor = SCI_MINOR_START,
2444 .nr = SCI_NPORTS,
2445 .cons = SCI_CONSOLE,
2446};
2447
2448static int sci_remove(struct platform_device *dev)
2449{
2450 struct sci_port *port = platform_get_drvdata(dev);
2451
2452 cpufreq_unregister_notifier(&port->freq_transition,
2453 CPUFREQ_TRANSITION_NOTIFIER);
2454
2455 uart_remove_one_port(&sci_uart_driver, &port->port);
2456
2457 sci_cleanup_single(port);
2458
2459 return 0;
2460}
2461
2462struct sci_port_info {
2463 unsigned int type;
2464 unsigned int regtype;
2465};
2466
2467static const struct of_device_id of_sci_match[] = {
2468 {
2469 .compatible = "renesas,scif",
2470 .data = &(const struct sci_port_info) {
2471 .type = PORT_SCIF,
2472 .regtype = SCIx_SH4_SCIF_REGTYPE,
2473 },
2474 }, {
2475 .compatible = "renesas,scifa",
2476 .data = &(const struct sci_port_info) {
2477 .type = PORT_SCIFA,
2478 .regtype = SCIx_SCIFA_REGTYPE,
2479 },
2480 }, {
2481 .compatible = "renesas,scifb",
2482 .data = &(const struct sci_port_info) {
2483 .type = PORT_SCIFB,
2484 .regtype = SCIx_SCIFB_REGTYPE,
2485 },
2486 }, {
2487 .compatible = "renesas,hscif",
2488 .data = &(const struct sci_port_info) {
2489 .type = PORT_HSCIF,
2490 .regtype = SCIx_HSCIF_REGTYPE,
2491 },
2492 }, {
2493 /* Terminator */
2494 },
2495};
2496MODULE_DEVICE_TABLE(of, of_sci_match);
2497
2498static struct plat_sci_port *
2499sci_parse_dt(struct platform_device *pdev, unsigned int *dev_id)
2500{
2501 struct device_node *np = pdev->dev.of_node;
2502 const struct of_device_id *match;
2503 const struct sci_port_info *info;
2504 struct plat_sci_port *p;
2505 int id;
2506
2507 if (!IS_ENABLED(CONFIG_OF) || !np)
2508 return NULL;
2509
2510 match = of_match_node(of_sci_match, pdev->dev.of_node);
2511 if (!match)
2512 return NULL;
2513
2514 info = match->data;
2515
2516 p = devm_kzalloc(&pdev->dev, sizeof(struct plat_sci_port), GFP_KERNEL);
2517 if (!p) {
2518 dev_err(&pdev->dev, "failed to allocate DT config data\n");
2519 return NULL;
2520 }
2521
2522 /* Get the line number for the aliases node. */
2523 id = of_alias_get_id(np, "serial");
2524 if (id < 0) {
2525 dev_err(&pdev->dev, "failed to get alias id (%d)\n", id);
2526 return NULL;
2527 }
2528
2529 *dev_id = id;
2530
2531 p->flags = UPF_IOREMAP | UPF_BOOT_AUTOCONF;
2532 p->type = info->type;
2533 p->regtype = info->regtype;
2534 p->scscr = SCSCR_RE | SCSCR_TE;
2535
2536 return p;
2537}
2538
2539static int sci_probe_single(struct platform_device *dev,
2540 unsigned int index,
2541 struct plat_sci_port *p,
2542 struct sci_port *sciport)
2543{
2544 int ret;
2545
2546 /* Sanity check */
2547 if (unlikely(index >= SCI_NPORTS)) {
2548 dev_notice(&dev->dev, "Attempting to register port %d when only %d are available\n",
2549 index+1, SCI_NPORTS);
2550 dev_notice(&dev->dev, "Consider bumping CONFIG_SERIAL_SH_SCI_NR_UARTS!\n");
2551 return -EINVAL;
2552 }
2553
2554 ret = sci_init_single(dev, sciport, index, p, false);
2555 if (ret)
2556 return ret;
2557
2558 ret = uart_add_one_port(&sci_uart_driver, &sciport->port);
2559 if (ret) {
2560 sci_cleanup_single(sciport);
2561 return ret;
2562 }
2563
2564 return 0;
2565}
2566
2567static int sci_probe(struct platform_device *dev)
2568{
2569 struct plat_sci_port *p;
2570 struct sci_port *sp;
2571 unsigned int dev_id;
2572 int ret;
2573
2574 /*
2575 * If we've come here via earlyprintk initialization, head off to
2576 * the special early probe. We don't have sufficient device state
2577 * to make it beyond this yet.
2578 */
2579 if (is_early_platform_device(dev))
2580 return sci_probe_earlyprintk(dev);
2581
2582 if (dev->dev.of_node) {
2583 p = sci_parse_dt(dev, &dev_id);
2584 if (p == NULL)
2585 return -EINVAL;
2586 } else {
2587 p = dev->dev.platform_data;
2588 if (p == NULL) {
2589 dev_err(&dev->dev, "no platform data supplied\n");
2590 return -EINVAL;
2591 }
2592
2593 dev_id = dev->id;
2594 }
2595
2596 sp = &sci_ports[dev_id];
2597 platform_set_drvdata(dev, sp);
2598
2599 ret = sci_probe_single(dev, dev_id, p, sp);
2600 if (ret)
2601 return ret;
2602
2603 sp->freq_transition.notifier_call = sci_notifier;
2604
2605 ret = cpufreq_register_notifier(&sp->freq_transition,
2606 CPUFREQ_TRANSITION_NOTIFIER);
2607 if (unlikely(ret < 0)) {
2608 uart_remove_one_port(&sci_uart_driver, &sp->port);
2609 sci_cleanup_single(sp);
2610 return ret;
2611 }
2612
2613#ifdef CONFIG_SH_STANDARD_BIOS
2614 sh_bios_gdb_detach();
2615#endif
2616
2617 return 0;
2618}
2619
2620static __maybe_unused int sci_suspend(struct device *dev)
2621{
2622 struct sci_port *sport = dev_get_drvdata(dev);
2623
2624 if (sport)
2625 uart_suspend_port(&sci_uart_driver, &sport->port);
2626
2627 return 0;
2628}
2629
2630static __maybe_unused int sci_resume(struct device *dev)
2631{
2632 struct sci_port *sport = dev_get_drvdata(dev);
2633
2634 if (sport)
2635 uart_resume_port(&sci_uart_driver, &sport->port);
2636
2637 return 0;
2638}
2639
2640static SIMPLE_DEV_PM_OPS(sci_dev_pm_ops, sci_suspend, sci_resume);
2641
2642static struct platform_driver sci_driver = {
2643 .probe = sci_probe,
2644 .remove = sci_remove,
2645 .driver = {
2646 .name = "sh-sci",
2647 .pm = &sci_dev_pm_ops,
2648 .of_match_table = of_match_ptr(of_sci_match),
2649 },
2650};
2651
2652static int __init sci_init(void)
2653{
2654 int ret;
2655
2656 pr_info("%s\n", banner);
2657
2658 ret = uart_register_driver(&sci_uart_driver);
2659 if (likely(ret == 0)) {
2660 ret = platform_driver_register(&sci_driver);
2661 if (unlikely(ret))
2662 uart_unregister_driver(&sci_uart_driver);
2663 }
2664
2665 return ret;
2666}
2667
2668static void __exit sci_exit(void)
2669{
2670 platform_driver_unregister(&sci_driver);
2671 uart_unregister_driver(&sci_uart_driver);
2672}
2673
2674#ifdef CONFIG_SERIAL_SH_SCI_CONSOLE
2675early_platform_init_buffer("earlyprintk", &sci_driver,
2676 early_serial_buf, ARRAY_SIZE(early_serial_buf));
2677#endif
2678module_init(sci_init);
2679module_exit(sci_exit);
2680
2681MODULE_LICENSE("GPL");
2682MODULE_ALIAS("platform:sh-sci");
2683MODULE_AUTHOR("Paul Mundt");
2684MODULE_DESCRIPTION("SuperH (H)SCI(F) serial driver");