at v3.9 15 kB view raw
1/* 2 * Written by Mark Hemment, 1996 (markhe@nextd.demon.co.uk). 3 * 4 * (C) SGI 2006, Christoph Lameter 5 * Cleaned up and restructured to ease the addition of alternative 6 * implementations of SLAB allocators. 7 */ 8 9#ifndef _LINUX_SLAB_H 10#define _LINUX_SLAB_H 11 12#include <linux/gfp.h> 13#include <linux/types.h> 14#include <linux/workqueue.h> 15 16 17/* 18 * Flags to pass to kmem_cache_create(). 19 * The ones marked DEBUG are only valid if CONFIG_SLAB_DEBUG is set. 20 */ 21#define SLAB_DEBUG_FREE 0x00000100UL /* DEBUG: Perform (expensive) checks on free */ 22#define SLAB_RED_ZONE 0x00000400UL /* DEBUG: Red zone objs in a cache */ 23#define SLAB_POISON 0x00000800UL /* DEBUG: Poison objects */ 24#define SLAB_HWCACHE_ALIGN 0x00002000UL /* Align objs on cache lines */ 25#define SLAB_CACHE_DMA 0x00004000UL /* Use GFP_DMA memory */ 26#define SLAB_STORE_USER 0x00010000UL /* DEBUG: Store the last owner for bug hunting */ 27#define SLAB_PANIC 0x00040000UL /* Panic if kmem_cache_create() fails */ 28/* 29 * SLAB_DESTROY_BY_RCU - **WARNING** READ THIS! 30 * 31 * This delays freeing the SLAB page by a grace period, it does _NOT_ 32 * delay object freeing. This means that if you do kmem_cache_free() 33 * that memory location is free to be reused at any time. Thus it may 34 * be possible to see another object there in the same RCU grace period. 35 * 36 * This feature only ensures the memory location backing the object 37 * stays valid, the trick to using this is relying on an independent 38 * object validation pass. Something like: 39 * 40 * rcu_read_lock() 41 * again: 42 * obj = lockless_lookup(key); 43 * if (obj) { 44 * if (!try_get_ref(obj)) // might fail for free objects 45 * goto again; 46 * 47 * if (obj->key != key) { // not the object we expected 48 * put_ref(obj); 49 * goto again; 50 * } 51 * } 52 * rcu_read_unlock(); 53 * 54 * See also the comment on struct slab_rcu in mm/slab.c. 55 */ 56#define SLAB_DESTROY_BY_RCU 0x00080000UL /* Defer freeing slabs to RCU */ 57#define SLAB_MEM_SPREAD 0x00100000UL /* Spread some memory over cpuset */ 58#define SLAB_TRACE 0x00200000UL /* Trace allocations and frees */ 59 60/* Flag to prevent checks on free */ 61#ifdef CONFIG_DEBUG_OBJECTS 62# define SLAB_DEBUG_OBJECTS 0x00400000UL 63#else 64# define SLAB_DEBUG_OBJECTS 0x00000000UL 65#endif 66 67#define SLAB_NOLEAKTRACE 0x00800000UL /* Avoid kmemleak tracing */ 68 69/* Don't track use of uninitialized memory */ 70#ifdef CONFIG_KMEMCHECK 71# define SLAB_NOTRACK 0x01000000UL 72#else 73# define SLAB_NOTRACK 0x00000000UL 74#endif 75#ifdef CONFIG_FAILSLAB 76# define SLAB_FAILSLAB 0x02000000UL /* Fault injection mark */ 77#else 78# define SLAB_FAILSLAB 0x00000000UL 79#endif 80 81/* The following flags affect the page allocator grouping pages by mobility */ 82#define SLAB_RECLAIM_ACCOUNT 0x00020000UL /* Objects are reclaimable */ 83#define SLAB_TEMPORARY SLAB_RECLAIM_ACCOUNT /* Objects are short-lived */ 84/* 85 * ZERO_SIZE_PTR will be returned for zero sized kmalloc requests. 86 * 87 * Dereferencing ZERO_SIZE_PTR will lead to a distinct access fault. 88 * 89 * ZERO_SIZE_PTR can be passed to kfree though in the same way that NULL can. 90 * Both make kfree a no-op. 91 */ 92#define ZERO_SIZE_PTR ((void *)16) 93 94#define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \ 95 (unsigned long)ZERO_SIZE_PTR) 96 97/* 98 * Common fields provided in kmem_cache by all slab allocators 99 * This struct is either used directly by the allocator (SLOB) 100 * or the allocator must include definitions for all fields 101 * provided in kmem_cache_common in their definition of kmem_cache. 102 * 103 * Once we can do anonymous structs (C11 standard) we could put a 104 * anonymous struct definition in these allocators so that the 105 * separate allocations in the kmem_cache structure of SLAB and 106 * SLUB is no longer needed. 107 */ 108#ifdef CONFIG_SLOB 109struct kmem_cache { 110 unsigned int object_size;/* The original size of the object */ 111 unsigned int size; /* The aligned/padded/added on size */ 112 unsigned int align; /* Alignment as calculated */ 113 unsigned long flags; /* Active flags on the slab */ 114 const char *name; /* Slab name for sysfs */ 115 int refcount; /* Use counter */ 116 void (*ctor)(void *); /* Called on object slot creation */ 117 struct list_head list; /* List of all slab caches on the system */ 118}; 119#endif 120 121struct mem_cgroup; 122/* 123 * struct kmem_cache related prototypes 124 */ 125void __init kmem_cache_init(void); 126int slab_is_available(void); 127 128struct kmem_cache *kmem_cache_create(const char *, size_t, size_t, 129 unsigned long, 130 void (*)(void *)); 131struct kmem_cache * 132kmem_cache_create_memcg(struct mem_cgroup *, const char *, size_t, size_t, 133 unsigned long, void (*)(void *), struct kmem_cache *); 134void kmem_cache_destroy(struct kmem_cache *); 135int kmem_cache_shrink(struct kmem_cache *); 136void kmem_cache_free(struct kmem_cache *, void *); 137 138/* 139 * Please use this macro to create slab caches. Simply specify the 140 * name of the structure and maybe some flags that are listed above. 141 * 142 * The alignment of the struct determines object alignment. If you 143 * f.e. add ____cacheline_aligned_in_smp to the struct declaration 144 * then the objects will be properly aligned in SMP configurations. 145 */ 146#define KMEM_CACHE(__struct, __flags) kmem_cache_create(#__struct,\ 147 sizeof(struct __struct), __alignof__(struct __struct),\ 148 (__flags), NULL) 149 150/* 151 * The largest kmalloc size supported by the slab allocators is 152 * 32 megabyte (2^25) or the maximum allocatable page order if that is 153 * less than 32 MB. 154 * 155 * WARNING: Its not easy to increase this value since the allocators have 156 * to do various tricks to work around compiler limitations in order to 157 * ensure proper constant folding. 158 */ 159#define KMALLOC_SHIFT_HIGH ((MAX_ORDER + PAGE_SHIFT - 1) <= 25 ? \ 160 (MAX_ORDER + PAGE_SHIFT - 1) : 25) 161 162#define KMALLOC_MAX_SIZE (1UL << KMALLOC_SHIFT_HIGH) 163#define KMALLOC_MAX_ORDER (KMALLOC_SHIFT_HIGH - PAGE_SHIFT) 164 165/* 166 * Some archs want to perform DMA into kmalloc caches and need a guaranteed 167 * alignment larger than the alignment of a 64-bit integer. 168 * Setting ARCH_KMALLOC_MINALIGN in arch headers allows that. 169 */ 170#ifdef ARCH_DMA_MINALIGN 171#define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIGN 172#else 173#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long) 174#endif 175 176/* 177 * Setting ARCH_SLAB_MINALIGN in arch headers allows a different alignment. 178 * Intended for arches that get misalignment faults even for 64 bit integer 179 * aligned buffers. 180 */ 181#ifndef ARCH_SLAB_MINALIGN 182#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long) 183#endif 184/* 185 * This is the main placeholder for memcg-related information in kmem caches. 186 * struct kmem_cache will hold a pointer to it, so the memory cost while 187 * disabled is 1 pointer. The runtime cost while enabled, gets bigger than it 188 * would otherwise be if that would be bundled in kmem_cache: we'll need an 189 * extra pointer chase. But the trade off clearly lays in favor of not 190 * penalizing non-users. 191 * 192 * Both the root cache and the child caches will have it. For the root cache, 193 * this will hold a dynamically allocated array large enough to hold 194 * information about the currently limited memcgs in the system. 195 * 196 * Child caches will hold extra metadata needed for its operation. Fields are: 197 * 198 * @memcg: pointer to the memcg this cache belongs to 199 * @list: list_head for the list of all caches in this memcg 200 * @root_cache: pointer to the global, root cache, this cache was derived from 201 * @dead: set to true after the memcg dies; the cache may still be around. 202 * @nr_pages: number of pages that belongs to this cache. 203 * @destroy: worker to be called whenever we are ready, or believe we may be 204 * ready, to destroy this cache. 205 */ 206struct memcg_cache_params { 207 bool is_root_cache; 208 union { 209 struct kmem_cache *memcg_caches[0]; 210 struct { 211 struct mem_cgroup *memcg; 212 struct list_head list; 213 struct kmem_cache *root_cache; 214 bool dead; 215 atomic_t nr_pages; 216 struct work_struct destroy; 217 }; 218 }; 219}; 220 221int memcg_update_all_caches(int num_memcgs); 222 223struct seq_file; 224int cache_show(struct kmem_cache *s, struct seq_file *m); 225void print_slabinfo_header(struct seq_file *m); 226 227/* 228 * Common kmalloc functions provided by all allocators 229 */ 230void * __must_check __krealloc(const void *, size_t, gfp_t); 231void * __must_check krealloc(const void *, size_t, gfp_t); 232void kfree(const void *); 233void kzfree(const void *); 234size_t ksize(const void *); 235 236/* 237 * Allocator specific definitions. These are mainly used to establish optimized 238 * ways to convert kmalloc() calls to kmem_cache_alloc() invocations by 239 * selecting the appropriate general cache at compile time. 240 * 241 * Allocators must define at least: 242 * 243 * kmem_cache_alloc() 244 * __kmalloc() 245 * kmalloc() 246 * 247 * Those wishing to support NUMA must also define: 248 * 249 * kmem_cache_alloc_node() 250 * kmalloc_node() 251 * 252 * See each allocator definition file for additional comments and 253 * implementation notes. 254 */ 255#ifdef CONFIG_SLUB 256#include <linux/slub_def.h> 257#elif defined(CONFIG_SLOB) 258#include <linux/slob_def.h> 259#else 260#include <linux/slab_def.h> 261#endif 262 263/** 264 * kmalloc_array - allocate memory for an array. 265 * @n: number of elements. 266 * @size: element size. 267 * @flags: the type of memory to allocate. 268 * 269 * The @flags argument may be one of: 270 * 271 * %GFP_USER - Allocate memory on behalf of user. May sleep. 272 * 273 * %GFP_KERNEL - Allocate normal kernel ram. May sleep. 274 * 275 * %GFP_ATOMIC - Allocation will not sleep. May use emergency pools. 276 * For example, use this inside interrupt handlers. 277 * 278 * %GFP_HIGHUSER - Allocate pages from high memory. 279 * 280 * %GFP_NOIO - Do not do any I/O at all while trying to get memory. 281 * 282 * %GFP_NOFS - Do not make any fs calls while trying to get memory. 283 * 284 * %GFP_NOWAIT - Allocation will not sleep. 285 * 286 * %GFP_THISNODE - Allocate node-local memory only. 287 * 288 * %GFP_DMA - Allocation suitable for DMA. 289 * Should only be used for kmalloc() caches. Otherwise, use a 290 * slab created with SLAB_DMA. 291 * 292 * Also it is possible to set different flags by OR'ing 293 * in one or more of the following additional @flags: 294 * 295 * %__GFP_COLD - Request cache-cold pages instead of 296 * trying to return cache-warm pages. 297 * 298 * %__GFP_HIGH - This allocation has high priority and may use emergency pools. 299 * 300 * %__GFP_NOFAIL - Indicate that this allocation is in no way allowed to fail 301 * (think twice before using). 302 * 303 * %__GFP_NORETRY - If memory is not immediately available, 304 * then give up at once. 305 * 306 * %__GFP_NOWARN - If allocation fails, don't issue any warnings. 307 * 308 * %__GFP_REPEAT - If allocation fails initially, try once more before failing. 309 * 310 * There are other flags available as well, but these are not intended 311 * for general use, and so are not documented here. For a full list of 312 * potential flags, always refer to linux/gfp.h. 313 */ 314static inline void *kmalloc_array(size_t n, size_t size, gfp_t flags) 315{ 316 if (size != 0 && n > SIZE_MAX / size) 317 return NULL; 318 return __kmalloc(n * size, flags); 319} 320 321/** 322 * kcalloc - allocate memory for an array. The memory is set to zero. 323 * @n: number of elements. 324 * @size: element size. 325 * @flags: the type of memory to allocate (see kmalloc). 326 */ 327static inline void *kcalloc(size_t n, size_t size, gfp_t flags) 328{ 329 return kmalloc_array(n, size, flags | __GFP_ZERO); 330} 331 332#if !defined(CONFIG_NUMA) && !defined(CONFIG_SLOB) 333/** 334 * kmalloc_node - allocate memory from a specific node 335 * @size: how many bytes of memory are required. 336 * @flags: the type of memory to allocate (see kcalloc). 337 * @node: node to allocate from. 338 * 339 * kmalloc() for non-local nodes, used to allocate from a specific node 340 * if available. Equivalent to kmalloc() in the non-NUMA single-node 341 * case. 342 */ 343static inline void *kmalloc_node(size_t size, gfp_t flags, int node) 344{ 345 return kmalloc(size, flags); 346} 347 348static inline void *__kmalloc_node(size_t size, gfp_t flags, int node) 349{ 350 return __kmalloc(size, flags); 351} 352 353void *kmem_cache_alloc(struct kmem_cache *, gfp_t); 354 355static inline void *kmem_cache_alloc_node(struct kmem_cache *cachep, 356 gfp_t flags, int node) 357{ 358 return kmem_cache_alloc(cachep, flags); 359} 360#endif /* !CONFIG_NUMA && !CONFIG_SLOB */ 361 362/* 363 * kmalloc_track_caller is a special version of kmalloc that records the 364 * calling function of the routine calling it for slab leak tracking instead 365 * of just the calling function (confusing, eh?). 366 * It's useful when the call to kmalloc comes from a widely-used standard 367 * allocator where we care about the real place the memory allocation 368 * request comes from. 369 */ 370#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB) || \ 371 (defined(CONFIG_SLAB) && defined(CONFIG_TRACING)) || \ 372 (defined(CONFIG_SLOB) && defined(CONFIG_TRACING)) 373extern void *__kmalloc_track_caller(size_t, gfp_t, unsigned long); 374#define kmalloc_track_caller(size, flags) \ 375 __kmalloc_track_caller(size, flags, _RET_IP_) 376#else 377#define kmalloc_track_caller(size, flags) \ 378 __kmalloc(size, flags) 379#endif /* DEBUG_SLAB */ 380 381#ifdef CONFIG_NUMA 382/* 383 * kmalloc_node_track_caller is a special version of kmalloc_node that 384 * records the calling function of the routine calling it for slab leak 385 * tracking instead of just the calling function (confusing, eh?). 386 * It's useful when the call to kmalloc_node comes from a widely-used 387 * standard allocator where we care about the real place the memory 388 * allocation request comes from. 389 */ 390#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB) || \ 391 (defined(CONFIG_SLAB) && defined(CONFIG_TRACING)) || \ 392 (defined(CONFIG_SLOB) && defined(CONFIG_TRACING)) 393extern void *__kmalloc_node_track_caller(size_t, gfp_t, int, unsigned long); 394#define kmalloc_node_track_caller(size, flags, node) \ 395 __kmalloc_node_track_caller(size, flags, node, \ 396 _RET_IP_) 397#else 398#define kmalloc_node_track_caller(size, flags, node) \ 399 __kmalloc_node(size, flags, node) 400#endif 401 402#else /* CONFIG_NUMA */ 403 404#define kmalloc_node_track_caller(size, flags, node) \ 405 kmalloc_track_caller(size, flags) 406 407#endif /* CONFIG_NUMA */ 408 409/* 410 * Shortcuts 411 */ 412static inline void *kmem_cache_zalloc(struct kmem_cache *k, gfp_t flags) 413{ 414 return kmem_cache_alloc(k, flags | __GFP_ZERO); 415} 416 417/** 418 * kzalloc - allocate memory. The memory is set to zero. 419 * @size: how many bytes of memory are required. 420 * @flags: the type of memory to allocate (see kmalloc). 421 */ 422static inline void *kzalloc(size_t size, gfp_t flags) 423{ 424 return kmalloc(size, flags | __GFP_ZERO); 425} 426 427/** 428 * kzalloc_node - allocate zeroed memory from a particular memory node. 429 * @size: how many bytes of memory are required. 430 * @flags: the type of memory to allocate (see kmalloc). 431 * @node: memory node from which to allocate 432 */ 433static inline void *kzalloc_node(size_t size, gfp_t flags, int node) 434{ 435 return kmalloc_node(size, flags | __GFP_ZERO, node); 436} 437 438/* 439 * Determine the size of a slab object 440 */ 441static inline unsigned int kmem_cache_size(struct kmem_cache *s) 442{ 443 return s->object_size; 444} 445 446void __init kmem_cache_init_late(void); 447 448#endif /* _LINUX_SLAB_H */