at v3.9 82 kB view raw
1#ifndef _LINUX_SCHED_H 2#define _LINUX_SCHED_H 3 4#include <uapi/linux/sched.h> 5 6 7struct sched_param { 8 int sched_priority; 9}; 10 11#include <asm/param.h> /* for HZ */ 12 13#include <linux/capability.h> 14#include <linux/threads.h> 15#include <linux/kernel.h> 16#include <linux/types.h> 17#include <linux/timex.h> 18#include <linux/jiffies.h> 19#include <linux/rbtree.h> 20#include <linux/thread_info.h> 21#include <linux/cpumask.h> 22#include <linux/errno.h> 23#include <linux/nodemask.h> 24#include <linux/mm_types.h> 25 26#include <asm/page.h> 27#include <asm/ptrace.h> 28#include <asm/cputime.h> 29 30#include <linux/smp.h> 31#include <linux/sem.h> 32#include <linux/signal.h> 33#include <linux/compiler.h> 34#include <linux/completion.h> 35#include <linux/pid.h> 36#include <linux/percpu.h> 37#include <linux/topology.h> 38#include <linux/proportions.h> 39#include <linux/seccomp.h> 40#include <linux/rcupdate.h> 41#include <linux/rculist.h> 42#include <linux/rtmutex.h> 43 44#include <linux/time.h> 45#include <linux/param.h> 46#include <linux/resource.h> 47#include <linux/timer.h> 48#include <linux/hrtimer.h> 49#include <linux/task_io_accounting.h> 50#include <linux/latencytop.h> 51#include <linux/cred.h> 52#include <linux/llist.h> 53#include <linux/uidgid.h> 54#include <linux/gfp.h> 55 56#include <asm/processor.h> 57 58struct exec_domain; 59struct futex_pi_state; 60struct robust_list_head; 61struct bio_list; 62struct fs_struct; 63struct perf_event_context; 64struct blk_plug; 65 66/* 67 * List of flags we want to share for kernel threads, 68 * if only because they are not used by them anyway. 69 */ 70#define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND) 71 72/* 73 * These are the constant used to fake the fixed-point load-average 74 * counting. Some notes: 75 * - 11 bit fractions expand to 22 bits by the multiplies: this gives 76 * a load-average precision of 10 bits integer + 11 bits fractional 77 * - if you want to count load-averages more often, you need more 78 * precision, or rounding will get you. With 2-second counting freq, 79 * the EXP_n values would be 1981, 2034 and 2043 if still using only 80 * 11 bit fractions. 81 */ 82extern unsigned long avenrun[]; /* Load averages */ 83extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift); 84 85#define FSHIFT 11 /* nr of bits of precision */ 86#define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */ 87#define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */ 88#define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */ 89#define EXP_5 2014 /* 1/exp(5sec/5min) */ 90#define EXP_15 2037 /* 1/exp(5sec/15min) */ 91 92#define CALC_LOAD(load,exp,n) \ 93 load *= exp; \ 94 load += n*(FIXED_1-exp); \ 95 load >>= FSHIFT; 96 97extern unsigned long total_forks; 98extern int nr_threads; 99DECLARE_PER_CPU(unsigned long, process_counts); 100extern int nr_processes(void); 101extern unsigned long nr_running(void); 102extern unsigned long nr_iowait(void); 103extern unsigned long nr_iowait_cpu(int cpu); 104extern unsigned long this_cpu_load(void); 105 106 107extern void calc_global_load(unsigned long ticks); 108extern void update_cpu_load_nohz(void); 109 110/* Notifier for when a task gets migrated to a new CPU */ 111struct task_migration_notifier { 112 struct task_struct *task; 113 int from_cpu; 114 int to_cpu; 115}; 116extern void register_task_migration_notifier(struct notifier_block *n); 117 118extern unsigned long get_parent_ip(unsigned long addr); 119 120extern void dump_cpu_task(int cpu); 121 122struct seq_file; 123struct cfs_rq; 124struct task_group; 125#ifdef CONFIG_SCHED_DEBUG 126extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m); 127extern void proc_sched_set_task(struct task_struct *p); 128extern void 129print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq); 130#else 131static inline void 132proc_sched_show_task(struct task_struct *p, struct seq_file *m) 133{ 134} 135static inline void proc_sched_set_task(struct task_struct *p) 136{ 137} 138static inline void 139print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq) 140{ 141} 142#endif 143 144/* 145 * Task state bitmask. NOTE! These bits are also 146 * encoded in fs/proc/array.c: get_task_state(). 147 * 148 * We have two separate sets of flags: task->state 149 * is about runnability, while task->exit_state are 150 * about the task exiting. Confusing, but this way 151 * modifying one set can't modify the other one by 152 * mistake. 153 */ 154#define TASK_RUNNING 0 155#define TASK_INTERRUPTIBLE 1 156#define TASK_UNINTERRUPTIBLE 2 157#define __TASK_STOPPED 4 158#define __TASK_TRACED 8 159/* in tsk->exit_state */ 160#define EXIT_ZOMBIE 16 161#define EXIT_DEAD 32 162/* in tsk->state again */ 163#define TASK_DEAD 64 164#define TASK_WAKEKILL 128 165#define TASK_WAKING 256 166#define TASK_PARKED 512 167#define TASK_STATE_MAX 1024 168 169#define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP" 170 171extern char ___assert_task_state[1 - 2*!!( 172 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)]; 173 174/* Convenience macros for the sake of set_task_state */ 175#define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE) 176#define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED) 177#define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED) 178 179/* Convenience macros for the sake of wake_up */ 180#define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE) 181#define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED) 182 183/* get_task_state() */ 184#define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \ 185 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \ 186 __TASK_TRACED) 187 188#define task_is_traced(task) ((task->state & __TASK_TRACED) != 0) 189#define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0) 190#define task_is_dead(task) ((task)->exit_state != 0) 191#define task_is_stopped_or_traced(task) \ 192 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0) 193#define task_contributes_to_load(task) \ 194 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \ 195 (task->flags & PF_FROZEN) == 0) 196 197#define __set_task_state(tsk, state_value) \ 198 do { (tsk)->state = (state_value); } while (0) 199#define set_task_state(tsk, state_value) \ 200 set_mb((tsk)->state, (state_value)) 201 202/* 203 * set_current_state() includes a barrier so that the write of current->state 204 * is correctly serialised wrt the caller's subsequent test of whether to 205 * actually sleep: 206 * 207 * set_current_state(TASK_UNINTERRUPTIBLE); 208 * if (do_i_need_to_sleep()) 209 * schedule(); 210 * 211 * If the caller does not need such serialisation then use __set_current_state() 212 */ 213#define __set_current_state(state_value) \ 214 do { current->state = (state_value); } while (0) 215#define set_current_state(state_value) \ 216 set_mb(current->state, (state_value)) 217 218/* Task command name length */ 219#define TASK_COMM_LEN 16 220 221#include <linux/spinlock.h> 222 223/* 224 * This serializes "schedule()" and also protects 225 * the run-queue from deletions/modifications (but 226 * _adding_ to the beginning of the run-queue has 227 * a separate lock). 228 */ 229extern rwlock_t tasklist_lock; 230extern spinlock_t mmlist_lock; 231 232struct task_struct; 233 234#ifdef CONFIG_PROVE_RCU 235extern int lockdep_tasklist_lock_is_held(void); 236#endif /* #ifdef CONFIG_PROVE_RCU */ 237 238extern void sched_init(void); 239extern void sched_init_smp(void); 240extern asmlinkage void schedule_tail(struct task_struct *prev); 241extern void init_idle(struct task_struct *idle, int cpu); 242extern void init_idle_bootup_task(struct task_struct *idle); 243 244extern int runqueue_is_locked(int cpu); 245 246#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ) 247extern void nohz_balance_enter_idle(int cpu); 248extern void set_cpu_sd_state_idle(void); 249extern int get_nohz_timer_target(void); 250#else 251static inline void nohz_balance_enter_idle(int cpu) { } 252static inline void set_cpu_sd_state_idle(void) { } 253#endif 254 255/* 256 * Only dump TASK_* tasks. (0 for all tasks) 257 */ 258extern void show_state_filter(unsigned long state_filter); 259 260static inline void show_state(void) 261{ 262 show_state_filter(0); 263} 264 265extern void show_regs(struct pt_regs *); 266 267/* 268 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current 269 * task), SP is the stack pointer of the first frame that should be shown in the back 270 * trace (or NULL if the entire call-chain of the task should be shown). 271 */ 272extern void show_stack(struct task_struct *task, unsigned long *sp); 273 274void io_schedule(void); 275long io_schedule_timeout(long timeout); 276 277extern void cpu_init (void); 278extern void trap_init(void); 279extern void update_process_times(int user); 280extern void scheduler_tick(void); 281 282extern void sched_show_task(struct task_struct *p); 283 284#ifdef CONFIG_LOCKUP_DETECTOR 285extern void touch_softlockup_watchdog(void); 286extern void touch_softlockup_watchdog_sync(void); 287extern void touch_all_softlockup_watchdogs(void); 288extern int proc_dowatchdog_thresh(struct ctl_table *table, int write, 289 void __user *buffer, 290 size_t *lenp, loff_t *ppos); 291extern unsigned int softlockup_panic; 292void lockup_detector_init(void); 293#else 294static inline void touch_softlockup_watchdog(void) 295{ 296} 297static inline void touch_softlockup_watchdog_sync(void) 298{ 299} 300static inline void touch_all_softlockup_watchdogs(void) 301{ 302} 303static inline void lockup_detector_init(void) 304{ 305} 306#endif 307 308/* Attach to any functions which should be ignored in wchan output. */ 309#define __sched __attribute__((__section__(".sched.text"))) 310 311/* Linker adds these: start and end of __sched functions */ 312extern char __sched_text_start[], __sched_text_end[]; 313 314/* Is this address in the __sched functions? */ 315extern int in_sched_functions(unsigned long addr); 316 317#define MAX_SCHEDULE_TIMEOUT LONG_MAX 318extern signed long schedule_timeout(signed long timeout); 319extern signed long schedule_timeout_interruptible(signed long timeout); 320extern signed long schedule_timeout_killable(signed long timeout); 321extern signed long schedule_timeout_uninterruptible(signed long timeout); 322asmlinkage void schedule(void); 323extern void schedule_preempt_disabled(void); 324extern int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner); 325 326struct nsproxy; 327struct user_namespace; 328 329#include <linux/aio.h> 330 331#ifdef CONFIG_MMU 332extern void arch_pick_mmap_layout(struct mm_struct *mm); 333extern unsigned long 334arch_get_unmapped_area(struct file *, unsigned long, unsigned long, 335 unsigned long, unsigned long); 336extern unsigned long 337arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 338 unsigned long len, unsigned long pgoff, 339 unsigned long flags); 340extern void arch_unmap_area(struct mm_struct *, unsigned long); 341extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long); 342#else 343static inline void arch_pick_mmap_layout(struct mm_struct *mm) {} 344#endif 345 346 347extern void set_dumpable(struct mm_struct *mm, int value); 348extern int get_dumpable(struct mm_struct *mm); 349 350/* mm flags */ 351/* dumpable bits */ 352#define MMF_DUMPABLE 0 /* core dump is permitted */ 353#define MMF_DUMP_SECURELY 1 /* core file is readable only by root */ 354 355#define MMF_DUMPABLE_BITS 2 356#define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1) 357 358/* coredump filter bits */ 359#define MMF_DUMP_ANON_PRIVATE 2 360#define MMF_DUMP_ANON_SHARED 3 361#define MMF_DUMP_MAPPED_PRIVATE 4 362#define MMF_DUMP_MAPPED_SHARED 5 363#define MMF_DUMP_ELF_HEADERS 6 364#define MMF_DUMP_HUGETLB_PRIVATE 7 365#define MMF_DUMP_HUGETLB_SHARED 8 366 367#define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS 368#define MMF_DUMP_FILTER_BITS 7 369#define MMF_DUMP_FILTER_MASK \ 370 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT) 371#define MMF_DUMP_FILTER_DEFAULT \ 372 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\ 373 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF) 374 375#ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS 376# define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS) 377#else 378# define MMF_DUMP_MASK_DEFAULT_ELF 0 379#endif 380 /* leave room for more dump flags */ 381#define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */ 382#define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */ 383#define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */ 384 385#define MMF_HAS_UPROBES 19 /* has uprobes */ 386#define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */ 387 388#define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK) 389 390struct sighand_struct { 391 atomic_t count; 392 struct k_sigaction action[_NSIG]; 393 spinlock_t siglock; 394 wait_queue_head_t signalfd_wqh; 395}; 396 397struct pacct_struct { 398 int ac_flag; 399 long ac_exitcode; 400 unsigned long ac_mem; 401 cputime_t ac_utime, ac_stime; 402 unsigned long ac_minflt, ac_majflt; 403}; 404 405struct cpu_itimer { 406 cputime_t expires; 407 cputime_t incr; 408 u32 error; 409 u32 incr_error; 410}; 411 412/** 413 * struct cputime - snaphsot of system and user cputime 414 * @utime: time spent in user mode 415 * @stime: time spent in system mode 416 * 417 * Gathers a generic snapshot of user and system time. 418 */ 419struct cputime { 420 cputime_t utime; 421 cputime_t stime; 422}; 423 424/** 425 * struct task_cputime - collected CPU time counts 426 * @utime: time spent in user mode, in &cputime_t units 427 * @stime: time spent in kernel mode, in &cputime_t units 428 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds 429 * 430 * This is an extension of struct cputime that includes the total runtime 431 * spent by the task from the scheduler point of view. 432 * 433 * As a result, this structure groups together three kinds of CPU time 434 * that are tracked for threads and thread groups. Most things considering 435 * CPU time want to group these counts together and treat all three 436 * of them in parallel. 437 */ 438struct task_cputime { 439 cputime_t utime; 440 cputime_t stime; 441 unsigned long long sum_exec_runtime; 442}; 443/* Alternate field names when used to cache expirations. */ 444#define prof_exp stime 445#define virt_exp utime 446#define sched_exp sum_exec_runtime 447 448#define INIT_CPUTIME \ 449 (struct task_cputime) { \ 450 .utime = 0, \ 451 .stime = 0, \ 452 .sum_exec_runtime = 0, \ 453 } 454 455/* 456 * Disable preemption until the scheduler is running. 457 * Reset by start_kernel()->sched_init()->init_idle(). 458 * 459 * We include PREEMPT_ACTIVE to avoid cond_resched() from working 460 * before the scheduler is active -- see should_resched(). 461 */ 462#define INIT_PREEMPT_COUNT (1 + PREEMPT_ACTIVE) 463 464/** 465 * struct thread_group_cputimer - thread group interval timer counts 466 * @cputime: thread group interval timers. 467 * @running: non-zero when there are timers running and 468 * @cputime receives updates. 469 * @lock: lock for fields in this struct. 470 * 471 * This structure contains the version of task_cputime, above, that is 472 * used for thread group CPU timer calculations. 473 */ 474struct thread_group_cputimer { 475 struct task_cputime cputime; 476 int running; 477 raw_spinlock_t lock; 478}; 479 480#include <linux/rwsem.h> 481struct autogroup; 482 483/* 484 * NOTE! "signal_struct" does not have its own 485 * locking, because a shared signal_struct always 486 * implies a shared sighand_struct, so locking 487 * sighand_struct is always a proper superset of 488 * the locking of signal_struct. 489 */ 490struct signal_struct { 491 atomic_t sigcnt; 492 atomic_t live; 493 int nr_threads; 494 495 wait_queue_head_t wait_chldexit; /* for wait4() */ 496 497 /* current thread group signal load-balancing target: */ 498 struct task_struct *curr_target; 499 500 /* shared signal handling: */ 501 struct sigpending shared_pending; 502 503 /* thread group exit support */ 504 int group_exit_code; 505 /* overloaded: 506 * - notify group_exit_task when ->count is equal to notify_count 507 * - everyone except group_exit_task is stopped during signal delivery 508 * of fatal signals, group_exit_task processes the signal. 509 */ 510 int notify_count; 511 struct task_struct *group_exit_task; 512 513 /* thread group stop support, overloads group_exit_code too */ 514 int group_stop_count; 515 unsigned int flags; /* see SIGNAL_* flags below */ 516 517 /* 518 * PR_SET_CHILD_SUBREAPER marks a process, like a service 519 * manager, to re-parent orphan (double-forking) child processes 520 * to this process instead of 'init'. The service manager is 521 * able to receive SIGCHLD signals and is able to investigate 522 * the process until it calls wait(). All children of this 523 * process will inherit a flag if they should look for a 524 * child_subreaper process at exit. 525 */ 526 unsigned int is_child_subreaper:1; 527 unsigned int has_child_subreaper:1; 528 529 /* POSIX.1b Interval Timers */ 530 struct list_head posix_timers; 531 532 /* ITIMER_REAL timer for the process */ 533 struct hrtimer real_timer; 534 struct pid *leader_pid; 535 ktime_t it_real_incr; 536 537 /* 538 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use 539 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these 540 * values are defined to 0 and 1 respectively 541 */ 542 struct cpu_itimer it[2]; 543 544 /* 545 * Thread group totals for process CPU timers. 546 * See thread_group_cputimer(), et al, for details. 547 */ 548 struct thread_group_cputimer cputimer; 549 550 /* Earliest-expiration cache. */ 551 struct task_cputime cputime_expires; 552 553 struct list_head cpu_timers[3]; 554 555 struct pid *tty_old_pgrp; 556 557 /* boolean value for session group leader */ 558 int leader; 559 560 struct tty_struct *tty; /* NULL if no tty */ 561 562#ifdef CONFIG_SCHED_AUTOGROUP 563 struct autogroup *autogroup; 564#endif 565 /* 566 * Cumulative resource counters for dead threads in the group, 567 * and for reaped dead child processes forked by this group. 568 * Live threads maintain their own counters and add to these 569 * in __exit_signal, except for the group leader. 570 */ 571 cputime_t utime, stime, cutime, cstime; 572 cputime_t gtime; 573 cputime_t cgtime; 574#ifndef CONFIG_VIRT_CPU_ACCOUNTING 575 struct cputime prev_cputime; 576#endif 577 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw; 578 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt; 579 unsigned long inblock, oublock, cinblock, coublock; 580 unsigned long maxrss, cmaxrss; 581 struct task_io_accounting ioac; 582 583 /* 584 * Cumulative ns of schedule CPU time fo dead threads in the 585 * group, not including a zombie group leader, (This only differs 586 * from jiffies_to_ns(utime + stime) if sched_clock uses something 587 * other than jiffies.) 588 */ 589 unsigned long long sum_sched_runtime; 590 591 /* 592 * We don't bother to synchronize most readers of this at all, 593 * because there is no reader checking a limit that actually needs 594 * to get both rlim_cur and rlim_max atomically, and either one 595 * alone is a single word that can safely be read normally. 596 * getrlimit/setrlimit use task_lock(current->group_leader) to 597 * protect this instead of the siglock, because they really 598 * have no need to disable irqs. 599 */ 600 struct rlimit rlim[RLIM_NLIMITS]; 601 602#ifdef CONFIG_BSD_PROCESS_ACCT 603 struct pacct_struct pacct; /* per-process accounting information */ 604#endif 605#ifdef CONFIG_TASKSTATS 606 struct taskstats *stats; 607#endif 608#ifdef CONFIG_AUDIT 609 unsigned audit_tty; 610 struct tty_audit_buf *tty_audit_buf; 611#endif 612#ifdef CONFIG_CGROUPS 613 /* 614 * group_rwsem prevents new tasks from entering the threadgroup and 615 * member tasks from exiting,a more specifically, setting of 616 * PF_EXITING. fork and exit paths are protected with this rwsem 617 * using threadgroup_change_begin/end(). Users which require 618 * threadgroup to remain stable should use threadgroup_[un]lock() 619 * which also takes care of exec path. Currently, cgroup is the 620 * only user. 621 */ 622 struct rw_semaphore group_rwsem; 623#endif 624 625 oom_flags_t oom_flags; 626 short oom_score_adj; /* OOM kill score adjustment */ 627 short oom_score_adj_min; /* OOM kill score adjustment min value. 628 * Only settable by CAP_SYS_RESOURCE. */ 629 630 struct mutex cred_guard_mutex; /* guard against foreign influences on 631 * credential calculations 632 * (notably. ptrace) */ 633}; 634 635/* 636 * Bits in flags field of signal_struct. 637 */ 638#define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */ 639#define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */ 640#define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */ 641/* 642 * Pending notifications to parent. 643 */ 644#define SIGNAL_CLD_STOPPED 0x00000010 645#define SIGNAL_CLD_CONTINUED 0x00000020 646#define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED) 647 648#define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */ 649 650/* If true, all threads except ->group_exit_task have pending SIGKILL */ 651static inline int signal_group_exit(const struct signal_struct *sig) 652{ 653 return (sig->flags & SIGNAL_GROUP_EXIT) || 654 (sig->group_exit_task != NULL); 655} 656 657/* 658 * Some day this will be a full-fledged user tracking system.. 659 */ 660struct user_struct { 661 atomic_t __count; /* reference count */ 662 atomic_t processes; /* How many processes does this user have? */ 663 atomic_t files; /* How many open files does this user have? */ 664 atomic_t sigpending; /* How many pending signals does this user have? */ 665#ifdef CONFIG_INOTIFY_USER 666 atomic_t inotify_watches; /* How many inotify watches does this user have? */ 667 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */ 668#endif 669#ifdef CONFIG_FANOTIFY 670 atomic_t fanotify_listeners; 671#endif 672#ifdef CONFIG_EPOLL 673 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */ 674#endif 675#ifdef CONFIG_POSIX_MQUEUE 676 /* protected by mq_lock */ 677 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */ 678#endif 679 unsigned long locked_shm; /* How many pages of mlocked shm ? */ 680 681#ifdef CONFIG_KEYS 682 struct key *uid_keyring; /* UID specific keyring */ 683 struct key *session_keyring; /* UID's default session keyring */ 684#endif 685 686 /* Hash table maintenance information */ 687 struct hlist_node uidhash_node; 688 kuid_t uid; 689 690#ifdef CONFIG_PERF_EVENTS 691 atomic_long_t locked_vm; 692#endif 693}; 694 695extern int uids_sysfs_init(void); 696 697extern struct user_struct *find_user(kuid_t); 698 699extern struct user_struct root_user; 700#define INIT_USER (&root_user) 701 702 703struct backing_dev_info; 704struct reclaim_state; 705 706#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 707struct sched_info { 708 /* cumulative counters */ 709 unsigned long pcount; /* # of times run on this cpu */ 710 unsigned long long run_delay; /* time spent waiting on a runqueue */ 711 712 /* timestamps */ 713 unsigned long long last_arrival,/* when we last ran on a cpu */ 714 last_queued; /* when we were last queued to run */ 715}; 716#endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */ 717 718#ifdef CONFIG_TASK_DELAY_ACCT 719struct task_delay_info { 720 spinlock_t lock; 721 unsigned int flags; /* Private per-task flags */ 722 723 /* For each stat XXX, add following, aligned appropriately 724 * 725 * struct timespec XXX_start, XXX_end; 726 * u64 XXX_delay; 727 * u32 XXX_count; 728 * 729 * Atomicity of updates to XXX_delay, XXX_count protected by 730 * single lock above (split into XXX_lock if contention is an issue). 731 */ 732 733 /* 734 * XXX_count is incremented on every XXX operation, the delay 735 * associated with the operation is added to XXX_delay. 736 * XXX_delay contains the accumulated delay time in nanoseconds. 737 */ 738 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */ 739 u64 blkio_delay; /* wait for sync block io completion */ 740 u64 swapin_delay; /* wait for swapin block io completion */ 741 u32 blkio_count; /* total count of the number of sync block */ 742 /* io operations performed */ 743 u32 swapin_count; /* total count of the number of swapin block */ 744 /* io operations performed */ 745 746 struct timespec freepages_start, freepages_end; 747 u64 freepages_delay; /* wait for memory reclaim */ 748 u32 freepages_count; /* total count of memory reclaim */ 749}; 750#endif /* CONFIG_TASK_DELAY_ACCT */ 751 752static inline int sched_info_on(void) 753{ 754#ifdef CONFIG_SCHEDSTATS 755 return 1; 756#elif defined(CONFIG_TASK_DELAY_ACCT) 757 extern int delayacct_on; 758 return delayacct_on; 759#else 760 return 0; 761#endif 762} 763 764enum cpu_idle_type { 765 CPU_IDLE, 766 CPU_NOT_IDLE, 767 CPU_NEWLY_IDLE, 768 CPU_MAX_IDLE_TYPES 769}; 770 771/* 772 * Increase resolution of nice-level calculations for 64-bit architectures. 773 * The extra resolution improves shares distribution and load balancing of 774 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup 775 * hierarchies, especially on larger systems. This is not a user-visible change 776 * and does not change the user-interface for setting shares/weights. 777 * 778 * We increase resolution only if we have enough bits to allow this increased 779 * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution 780 * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the 781 * increased costs. 782 */ 783#if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load */ 784# define SCHED_LOAD_RESOLUTION 10 785# define scale_load(w) ((w) << SCHED_LOAD_RESOLUTION) 786# define scale_load_down(w) ((w) >> SCHED_LOAD_RESOLUTION) 787#else 788# define SCHED_LOAD_RESOLUTION 0 789# define scale_load(w) (w) 790# define scale_load_down(w) (w) 791#endif 792 793#define SCHED_LOAD_SHIFT (10 + SCHED_LOAD_RESOLUTION) 794#define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT) 795 796/* 797 * Increase resolution of cpu_power calculations 798 */ 799#define SCHED_POWER_SHIFT 10 800#define SCHED_POWER_SCALE (1L << SCHED_POWER_SHIFT) 801 802/* 803 * sched-domains (multiprocessor balancing) declarations: 804 */ 805#ifdef CONFIG_SMP 806#define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */ 807#define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */ 808#define SD_BALANCE_EXEC 0x0004 /* Balance on exec */ 809#define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */ 810#define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */ 811#define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */ 812#define SD_SHARE_CPUPOWER 0x0080 /* Domain members share cpu power */ 813#define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */ 814#define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */ 815#define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */ 816#define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */ 817#define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */ 818 819extern int __weak arch_sd_sibiling_asym_packing(void); 820 821struct sched_group_power { 822 atomic_t ref; 823 /* 824 * CPU power of this group, SCHED_LOAD_SCALE being max power for a 825 * single CPU. 826 */ 827 unsigned int power, power_orig; 828 unsigned long next_update; 829 /* 830 * Number of busy cpus in this group. 831 */ 832 atomic_t nr_busy_cpus; 833 834 unsigned long cpumask[0]; /* iteration mask */ 835}; 836 837struct sched_group { 838 struct sched_group *next; /* Must be a circular list */ 839 atomic_t ref; 840 841 unsigned int group_weight; 842 struct sched_group_power *sgp; 843 844 /* 845 * The CPUs this group covers. 846 * 847 * NOTE: this field is variable length. (Allocated dynamically 848 * by attaching extra space to the end of the structure, 849 * depending on how many CPUs the kernel has booted up with) 850 */ 851 unsigned long cpumask[0]; 852}; 853 854static inline struct cpumask *sched_group_cpus(struct sched_group *sg) 855{ 856 return to_cpumask(sg->cpumask); 857} 858 859/* 860 * cpumask masking which cpus in the group are allowed to iterate up the domain 861 * tree. 862 */ 863static inline struct cpumask *sched_group_mask(struct sched_group *sg) 864{ 865 return to_cpumask(sg->sgp->cpumask); 866} 867 868/** 869 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group. 870 * @group: The group whose first cpu is to be returned. 871 */ 872static inline unsigned int group_first_cpu(struct sched_group *group) 873{ 874 return cpumask_first(sched_group_cpus(group)); 875} 876 877struct sched_domain_attr { 878 int relax_domain_level; 879}; 880 881#define SD_ATTR_INIT (struct sched_domain_attr) { \ 882 .relax_domain_level = -1, \ 883} 884 885extern int sched_domain_level_max; 886 887struct sched_domain { 888 /* These fields must be setup */ 889 struct sched_domain *parent; /* top domain must be null terminated */ 890 struct sched_domain *child; /* bottom domain must be null terminated */ 891 struct sched_group *groups; /* the balancing groups of the domain */ 892 unsigned long min_interval; /* Minimum balance interval ms */ 893 unsigned long max_interval; /* Maximum balance interval ms */ 894 unsigned int busy_factor; /* less balancing by factor if busy */ 895 unsigned int imbalance_pct; /* No balance until over watermark */ 896 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */ 897 unsigned int busy_idx; 898 unsigned int idle_idx; 899 unsigned int newidle_idx; 900 unsigned int wake_idx; 901 unsigned int forkexec_idx; 902 unsigned int smt_gain; 903 int flags; /* See SD_* */ 904 int level; 905 906 /* Runtime fields. */ 907 unsigned long last_balance; /* init to jiffies. units in jiffies */ 908 unsigned int balance_interval; /* initialise to 1. units in ms. */ 909 unsigned int nr_balance_failed; /* initialise to 0 */ 910 911 u64 last_update; 912 913#ifdef CONFIG_SCHEDSTATS 914 /* load_balance() stats */ 915 unsigned int lb_count[CPU_MAX_IDLE_TYPES]; 916 unsigned int lb_failed[CPU_MAX_IDLE_TYPES]; 917 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES]; 918 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES]; 919 unsigned int lb_gained[CPU_MAX_IDLE_TYPES]; 920 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES]; 921 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES]; 922 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES]; 923 924 /* Active load balancing */ 925 unsigned int alb_count; 926 unsigned int alb_failed; 927 unsigned int alb_pushed; 928 929 /* SD_BALANCE_EXEC stats */ 930 unsigned int sbe_count; 931 unsigned int sbe_balanced; 932 unsigned int sbe_pushed; 933 934 /* SD_BALANCE_FORK stats */ 935 unsigned int sbf_count; 936 unsigned int sbf_balanced; 937 unsigned int sbf_pushed; 938 939 /* try_to_wake_up() stats */ 940 unsigned int ttwu_wake_remote; 941 unsigned int ttwu_move_affine; 942 unsigned int ttwu_move_balance; 943#endif 944#ifdef CONFIG_SCHED_DEBUG 945 char *name; 946#endif 947 union { 948 void *private; /* used during construction */ 949 struct rcu_head rcu; /* used during destruction */ 950 }; 951 952 unsigned int span_weight; 953 /* 954 * Span of all CPUs in this domain. 955 * 956 * NOTE: this field is variable length. (Allocated dynamically 957 * by attaching extra space to the end of the structure, 958 * depending on how many CPUs the kernel has booted up with) 959 */ 960 unsigned long span[0]; 961}; 962 963static inline struct cpumask *sched_domain_span(struct sched_domain *sd) 964{ 965 return to_cpumask(sd->span); 966} 967 968extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 969 struct sched_domain_attr *dattr_new); 970 971/* Allocate an array of sched domains, for partition_sched_domains(). */ 972cpumask_var_t *alloc_sched_domains(unsigned int ndoms); 973void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms); 974 975/* Test a flag in parent sched domain */ 976static inline int test_sd_parent(struct sched_domain *sd, int flag) 977{ 978 if (sd->parent && (sd->parent->flags & flag)) 979 return 1; 980 981 return 0; 982} 983 984unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu); 985unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu); 986 987bool cpus_share_cache(int this_cpu, int that_cpu); 988 989#else /* CONFIG_SMP */ 990 991struct sched_domain_attr; 992 993static inline void 994partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], 995 struct sched_domain_attr *dattr_new) 996{ 997} 998 999static inline bool cpus_share_cache(int this_cpu, int that_cpu) 1000{ 1001 return true; 1002} 1003 1004#endif /* !CONFIG_SMP */ 1005 1006 1007struct io_context; /* See blkdev.h */ 1008 1009 1010#ifdef ARCH_HAS_PREFETCH_SWITCH_STACK 1011extern void prefetch_stack(struct task_struct *t); 1012#else 1013static inline void prefetch_stack(struct task_struct *t) { } 1014#endif 1015 1016struct audit_context; /* See audit.c */ 1017struct mempolicy; 1018struct pipe_inode_info; 1019struct uts_namespace; 1020 1021struct rq; 1022struct sched_domain; 1023 1024/* 1025 * wake flags 1026 */ 1027#define WF_SYNC 0x01 /* waker goes to sleep after wakup */ 1028#define WF_FORK 0x02 /* child wakeup after fork */ 1029#define WF_MIGRATED 0x04 /* internal use, task got migrated */ 1030 1031#define ENQUEUE_WAKEUP 1 1032#define ENQUEUE_HEAD 2 1033#ifdef CONFIG_SMP 1034#define ENQUEUE_WAKING 4 /* sched_class::task_waking was called */ 1035#else 1036#define ENQUEUE_WAKING 0 1037#endif 1038 1039#define DEQUEUE_SLEEP 1 1040 1041struct sched_class { 1042 const struct sched_class *next; 1043 1044 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags); 1045 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags); 1046 void (*yield_task) (struct rq *rq); 1047 bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt); 1048 1049 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags); 1050 1051 struct task_struct * (*pick_next_task) (struct rq *rq); 1052 void (*put_prev_task) (struct rq *rq, struct task_struct *p); 1053 1054#ifdef CONFIG_SMP 1055 int (*select_task_rq)(struct task_struct *p, int sd_flag, int flags); 1056 void (*migrate_task_rq)(struct task_struct *p, int next_cpu); 1057 1058 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task); 1059 void (*post_schedule) (struct rq *this_rq); 1060 void (*task_waking) (struct task_struct *task); 1061 void (*task_woken) (struct rq *this_rq, struct task_struct *task); 1062 1063 void (*set_cpus_allowed)(struct task_struct *p, 1064 const struct cpumask *newmask); 1065 1066 void (*rq_online)(struct rq *rq); 1067 void (*rq_offline)(struct rq *rq); 1068#endif 1069 1070 void (*set_curr_task) (struct rq *rq); 1071 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued); 1072 void (*task_fork) (struct task_struct *p); 1073 1074 void (*switched_from) (struct rq *this_rq, struct task_struct *task); 1075 void (*switched_to) (struct rq *this_rq, struct task_struct *task); 1076 void (*prio_changed) (struct rq *this_rq, struct task_struct *task, 1077 int oldprio); 1078 1079 unsigned int (*get_rr_interval) (struct rq *rq, 1080 struct task_struct *task); 1081 1082#ifdef CONFIG_FAIR_GROUP_SCHED 1083 void (*task_move_group) (struct task_struct *p, int on_rq); 1084#endif 1085}; 1086 1087struct load_weight { 1088 unsigned long weight, inv_weight; 1089}; 1090 1091struct sched_avg { 1092 /* 1093 * These sums represent an infinite geometric series and so are bound 1094 * above by 1024/(1-y). Thus we only need a u32 to store them for for all 1095 * choices of y < 1-2^(-32)*1024. 1096 */ 1097 u32 runnable_avg_sum, runnable_avg_period; 1098 u64 last_runnable_update; 1099 s64 decay_count; 1100 unsigned long load_avg_contrib; 1101}; 1102 1103#ifdef CONFIG_SCHEDSTATS 1104struct sched_statistics { 1105 u64 wait_start; 1106 u64 wait_max; 1107 u64 wait_count; 1108 u64 wait_sum; 1109 u64 iowait_count; 1110 u64 iowait_sum; 1111 1112 u64 sleep_start; 1113 u64 sleep_max; 1114 s64 sum_sleep_runtime; 1115 1116 u64 block_start; 1117 u64 block_max; 1118 u64 exec_max; 1119 u64 slice_max; 1120 1121 u64 nr_migrations_cold; 1122 u64 nr_failed_migrations_affine; 1123 u64 nr_failed_migrations_running; 1124 u64 nr_failed_migrations_hot; 1125 u64 nr_forced_migrations; 1126 1127 u64 nr_wakeups; 1128 u64 nr_wakeups_sync; 1129 u64 nr_wakeups_migrate; 1130 u64 nr_wakeups_local; 1131 u64 nr_wakeups_remote; 1132 u64 nr_wakeups_affine; 1133 u64 nr_wakeups_affine_attempts; 1134 u64 nr_wakeups_passive; 1135 u64 nr_wakeups_idle; 1136}; 1137#endif 1138 1139struct sched_entity { 1140 struct load_weight load; /* for load-balancing */ 1141 struct rb_node run_node; 1142 struct list_head group_node; 1143 unsigned int on_rq; 1144 1145 u64 exec_start; 1146 u64 sum_exec_runtime; 1147 u64 vruntime; 1148 u64 prev_sum_exec_runtime; 1149 1150 u64 nr_migrations; 1151 1152#ifdef CONFIG_SCHEDSTATS 1153 struct sched_statistics statistics; 1154#endif 1155 1156#ifdef CONFIG_FAIR_GROUP_SCHED 1157 struct sched_entity *parent; 1158 /* rq on which this entity is (to be) queued: */ 1159 struct cfs_rq *cfs_rq; 1160 /* rq "owned" by this entity/group: */ 1161 struct cfs_rq *my_q; 1162#endif 1163 1164/* 1165 * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be 1166 * removed when useful for applications beyond shares distribution (e.g. 1167 * load-balance). 1168 */ 1169#if defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED) 1170 /* Per-entity load-tracking */ 1171 struct sched_avg avg; 1172#endif 1173}; 1174 1175struct sched_rt_entity { 1176 struct list_head run_list; 1177 unsigned long timeout; 1178 unsigned long watchdog_stamp; 1179 unsigned int time_slice; 1180 1181 struct sched_rt_entity *back; 1182#ifdef CONFIG_RT_GROUP_SCHED 1183 struct sched_rt_entity *parent; 1184 /* rq on which this entity is (to be) queued: */ 1185 struct rt_rq *rt_rq; 1186 /* rq "owned" by this entity/group: */ 1187 struct rt_rq *my_q; 1188#endif 1189}; 1190 1191 1192struct rcu_node; 1193 1194enum perf_event_task_context { 1195 perf_invalid_context = -1, 1196 perf_hw_context = 0, 1197 perf_sw_context, 1198 perf_nr_task_contexts, 1199}; 1200 1201struct task_struct { 1202 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */ 1203 void *stack; 1204 atomic_t usage; 1205 unsigned int flags; /* per process flags, defined below */ 1206 unsigned int ptrace; 1207 1208#ifdef CONFIG_SMP 1209 struct llist_node wake_entry; 1210 int on_cpu; 1211#endif 1212 int on_rq; 1213 1214 int prio, static_prio, normal_prio; 1215 unsigned int rt_priority; 1216 const struct sched_class *sched_class; 1217 struct sched_entity se; 1218 struct sched_rt_entity rt; 1219#ifdef CONFIG_CGROUP_SCHED 1220 struct task_group *sched_task_group; 1221#endif 1222 1223#ifdef CONFIG_PREEMPT_NOTIFIERS 1224 /* list of struct preempt_notifier: */ 1225 struct hlist_head preempt_notifiers; 1226#endif 1227 1228 /* 1229 * fpu_counter contains the number of consecutive context switches 1230 * that the FPU is used. If this is over a threshold, the lazy fpu 1231 * saving becomes unlazy to save the trap. This is an unsigned char 1232 * so that after 256 times the counter wraps and the behavior turns 1233 * lazy again; this to deal with bursty apps that only use FPU for 1234 * a short time 1235 */ 1236 unsigned char fpu_counter; 1237#ifdef CONFIG_BLK_DEV_IO_TRACE 1238 unsigned int btrace_seq; 1239#endif 1240 1241 unsigned int policy; 1242 int nr_cpus_allowed; 1243 cpumask_t cpus_allowed; 1244 1245#ifdef CONFIG_PREEMPT_RCU 1246 int rcu_read_lock_nesting; 1247 char rcu_read_unlock_special; 1248 struct list_head rcu_node_entry; 1249#endif /* #ifdef CONFIG_PREEMPT_RCU */ 1250#ifdef CONFIG_TREE_PREEMPT_RCU 1251 struct rcu_node *rcu_blocked_node; 1252#endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */ 1253#ifdef CONFIG_RCU_BOOST 1254 struct rt_mutex *rcu_boost_mutex; 1255#endif /* #ifdef CONFIG_RCU_BOOST */ 1256 1257#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) 1258 struct sched_info sched_info; 1259#endif 1260 1261 struct list_head tasks; 1262#ifdef CONFIG_SMP 1263 struct plist_node pushable_tasks; 1264#endif 1265 1266 struct mm_struct *mm, *active_mm; 1267#ifdef CONFIG_COMPAT_BRK 1268 unsigned brk_randomized:1; 1269#endif 1270#if defined(SPLIT_RSS_COUNTING) 1271 struct task_rss_stat rss_stat; 1272#endif 1273/* task state */ 1274 int exit_state; 1275 int exit_code, exit_signal; 1276 int pdeath_signal; /* The signal sent when the parent dies */ 1277 unsigned int jobctl; /* JOBCTL_*, siglock protected */ 1278 /* ??? */ 1279 unsigned int personality; 1280 unsigned did_exec:1; 1281 unsigned in_execve:1; /* Tell the LSMs that the process is doing an 1282 * execve */ 1283 unsigned in_iowait:1; 1284 1285 /* task may not gain privileges */ 1286 unsigned no_new_privs:1; 1287 1288 /* Revert to default priority/policy when forking */ 1289 unsigned sched_reset_on_fork:1; 1290 unsigned sched_contributes_to_load:1; 1291 1292 pid_t pid; 1293 pid_t tgid; 1294 1295#ifdef CONFIG_CC_STACKPROTECTOR 1296 /* Canary value for the -fstack-protector gcc feature */ 1297 unsigned long stack_canary; 1298#endif 1299 /* 1300 * pointers to (original) parent process, youngest child, younger sibling, 1301 * older sibling, respectively. (p->father can be replaced with 1302 * p->real_parent->pid) 1303 */ 1304 struct task_struct __rcu *real_parent; /* real parent process */ 1305 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */ 1306 /* 1307 * children/sibling forms the list of my natural children 1308 */ 1309 struct list_head children; /* list of my children */ 1310 struct list_head sibling; /* linkage in my parent's children list */ 1311 struct task_struct *group_leader; /* threadgroup leader */ 1312 1313 /* 1314 * ptraced is the list of tasks this task is using ptrace on. 1315 * This includes both natural children and PTRACE_ATTACH targets. 1316 * p->ptrace_entry is p's link on the p->parent->ptraced list. 1317 */ 1318 struct list_head ptraced; 1319 struct list_head ptrace_entry; 1320 1321 /* PID/PID hash table linkage. */ 1322 struct pid_link pids[PIDTYPE_MAX]; 1323 struct list_head thread_group; 1324 1325 struct completion *vfork_done; /* for vfork() */ 1326 int __user *set_child_tid; /* CLONE_CHILD_SETTID */ 1327 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */ 1328 1329 cputime_t utime, stime, utimescaled, stimescaled; 1330 cputime_t gtime; 1331#ifndef CONFIG_VIRT_CPU_ACCOUNTING 1332 struct cputime prev_cputime; 1333#endif 1334#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 1335 seqlock_t vtime_seqlock; 1336 unsigned long long vtime_snap; 1337 enum { 1338 VTIME_SLEEPING = 0, 1339 VTIME_USER, 1340 VTIME_SYS, 1341 } vtime_snap_whence; 1342#endif 1343 unsigned long nvcsw, nivcsw; /* context switch counts */ 1344 struct timespec start_time; /* monotonic time */ 1345 struct timespec real_start_time; /* boot based time */ 1346/* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */ 1347 unsigned long min_flt, maj_flt; 1348 1349 struct task_cputime cputime_expires; 1350 struct list_head cpu_timers[3]; 1351 1352/* process credentials */ 1353 const struct cred __rcu *real_cred; /* objective and real subjective task 1354 * credentials (COW) */ 1355 const struct cred __rcu *cred; /* effective (overridable) subjective task 1356 * credentials (COW) */ 1357 char comm[TASK_COMM_LEN]; /* executable name excluding path 1358 - access with [gs]et_task_comm (which lock 1359 it with task_lock()) 1360 - initialized normally by setup_new_exec */ 1361/* file system info */ 1362 int link_count, total_link_count; 1363#ifdef CONFIG_SYSVIPC 1364/* ipc stuff */ 1365 struct sysv_sem sysvsem; 1366#endif 1367#ifdef CONFIG_DETECT_HUNG_TASK 1368/* hung task detection */ 1369 unsigned long last_switch_count; 1370#endif 1371/* CPU-specific state of this task */ 1372 struct thread_struct thread; 1373/* filesystem information */ 1374 struct fs_struct *fs; 1375/* open file information */ 1376 struct files_struct *files; 1377/* namespaces */ 1378 struct nsproxy *nsproxy; 1379/* signal handlers */ 1380 struct signal_struct *signal; 1381 struct sighand_struct *sighand; 1382 1383 sigset_t blocked, real_blocked; 1384 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */ 1385 struct sigpending pending; 1386 1387 unsigned long sas_ss_sp; 1388 size_t sas_ss_size; 1389 int (*notifier)(void *priv); 1390 void *notifier_data; 1391 sigset_t *notifier_mask; 1392 struct callback_head *task_works; 1393 1394 struct audit_context *audit_context; 1395#ifdef CONFIG_AUDITSYSCALL 1396 kuid_t loginuid; 1397 unsigned int sessionid; 1398#endif 1399 struct seccomp seccomp; 1400 1401/* Thread group tracking */ 1402 u32 parent_exec_id; 1403 u32 self_exec_id; 1404/* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, 1405 * mempolicy */ 1406 spinlock_t alloc_lock; 1407 1408 /* Protection of the PI data structures: */ 1409 raw_spinlock_t pi_lock; 1410 1411#ifdef CONFIG_RT_MUTEXES 1412 /* PI waiters blocked on a rt_mutex held by this task */ 1413 struct plist_head pi_waiters; 1414 /* Deadlock detection and priority inheritance handling */ 1415 struct rt_mutex_waiter *pi_blocked_on; 1416#endif 1417 1418#ifdef CONFIG_DEBUG_MUTEXES 1419 /* mutex deadlock detection */ 1420 struct mutex_waiter *blocked_on; 1421#endif 1422#ifdef CONFIG_TRACE_IRQFLAGS 1423 unsigned int irq_events; 1424 unsigned long hardirq_enable_ip; 1425 unsigned long hardirq_disable_ip; 1426 unsigned int hardirq_enable_event; 1427 unsigned int hardirq_disable_event; 1428 int hardirqs_enabled; 1429 int hardirq_context; 1430 unsigned long softirq_disable_ip; 1431 unsigned long softirq_enable_ip; 1432 unsigned int softirq_disable_event; 1433 unsigned int softirq_enable_event; 1434 int softirqs_enabled; 1435 int softirq_context; 1436#endif 1437#ifdef CONFIG_LOCKDEP 1438# define MAX_LOCK_DEPTH 48UL 1439 u64 curr_chain_key; 1440 int lockdep_depth; 1441 unsigned int lockdep_recursion; 1442 struct held_lock held_locks[MAX_LOCK_DEPTH]; 1443 gfp_t lockdep_reclaim_gfp; 1444#endif 1445 1446/* journalling filesystem info */ 1447 void *journal_info; 1448 1449/* stacked block device info */ 1450 struct bio_list *bio_list; 1451 1452#ifdef CONFIG_BLOCK 1453/* stack plugging */ 1454 struct blk_plug *plug; 1455#endif 1456 1457/* VM state */ 1458 struct reclaim_state *reclaim_state; 1459 1460 struct backing_dev_info *backing_dev_info; 1461 1462 struct io_context *io_context; 1463 1464 unsigned long ptrace_message; 1465 siginfo_t *last_siginfo; /* For ptrace use. */ 1466 struct task_io_accounting ioac; 1467#if defined(CONFIG_TASK_XACCT) 1468 u64 acct_rss_mem1; /* accumulated rss usage */ 1469 u64 acct_vm_mem1; /* accumulated virtual memory usage */ 1470 cputime_t acct_timexpd; /* stime + utime since last update */ 1471#endif 1472#ifdef CONFIG_CPUSETS 1473 nodemask_t mems_allowed; /* Protected by alloc_lock */ 1474 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */ 1475 int cpuset_mem_spread_rotor; 1476 int cpuset_slab_spread_rotor; 1477#endif 1478#ifdef CONFIG_CGROUPS 1479 /* Control Group info protected by css_set_lock */ 1480 struct css_set __rcu *cgroups; 1481 /* cg_list protected by css_set_lock and tsk->alloc_lock */ 1482 struct list_head cg_list; 1483#endif 1484#ifdef CONFIG_FUTEX 1485 struct robust_list_head __user *robust_list; 1486#ifdef CONFIG_COMPAT 1487 struct compat_robust_list_head __user *compat_robust_list; 1488#endif 1489 struct list_head pi_state_list; 1490 struct futex_pi_state *pi_state_cache; 1491#endif 1492#ifdef CONFIG_PERF_EVENTS 1493 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts]; 1494 struct mutex perf_event_mutex; 1495 struct list_head perf_event_list; 1496#endif 1497#ifdef CONFIG_NUMA 1498 struct mempolicy *mempolicy; /* Protected by alloc_lock */ 1499 short il_next; 1500 short pref_node_fork; 1501#endif 1502#ifdef CONFIG_NUMA_BALANCING 1503 int numa_scan_seq; 1504 int numa_migrate_seq; 1505 unsigned int numa_scan_period; 1506 u64 node_stamp; /* migration stamp */ 1507 struct callback_head numa_work; 1508#endif /* CONFIG_NUMA_BALANCING */ 1509 1510 struct rcu_head rcu; 1511 1512 /* 1513 * cache last used pipe for splice 1514 */ 1515 struct pipe_inode_info *splice_pipe; 1516 1517 struct page_frag task_frag; 1518 1519#ifdef CONFIG_TASK_DELAY_ACCT 1520 struct task_delay_info *delays; 1521#endif 1522#ifdef CONFIG_FAULT_INJECTION 1523 int make_it_fail; 1524#endif 1525 /* 1526 * when (nr_dirtied >= nr_dirtied_pause), it's time to call 1527 * balance_dirty_pages() for some dirty throttling pause 1528 */ 1529 int nr_dirtied; 1530 int nr_dirtied_pause; 1531 unsigned long dirty_paused_when; /* start of a write-and-pause period */ 1532 1533#ifdef CONFIG_LATENCYTOP 1534 int latency_record_count; 1535 struct latency_record latency_record[LT_SAVECOUNT]; 1536#endif 1537 /* 1538 * time slack values; these are used to round up poll() and 1539 * select() etc timeout values. These are in nanoseconds. 1540 */ 1541 unsigned long timer_slack_ns; 1542 unsigned long default_timer_slack_ns; 1543 1544#ifdef CONFIG_FUNCTION_GRAPH_TRACER 1545 /* Index of current stored address in ret_stack */ 1546 int curr_ret_stack; 1547 /* Stack of return addresses for return function tracing */ 1548 struct ftrace_ret_stack *ret_stack; 1549 /* time stamp for last schedule */ 1550 unsigned long long ftrace_timestamp; 1551 /* 1552 * Number of functions that haven't been traced 1553 * because of depth overrun. 1554 */ 1555 atomic_t trace_overrun; 1556 /* Pause for the tracing */ 1557 atomic_t tracing_graph_pause; 1558#endif 1559#ifdef CONFIG_TRACING 1560 /* state flags for use by tracers */ 1561 unsigned long trace; 1562 /* bitmask and counter of trace recursion */ 1563 unsigned long trace_recursion; 1564#endif /* CONFIG_TRACING */ 1565#ifdef CONFIG_MEMCG /* memcg uses this to do batch job */ 1566 struct memcg_batch_info { 1567 int do_batch; /* incremented when batch uncharge started */ 1568 struct mem_cgroup *memcg; /* target memcg of uncharge */ 1569 unsigned long nr_pages; /* uncharged usage */ 1570 unsigned long memsw_nr_pages; /* uncharged mem+swap usage */ 1571 } memcg_batch; 1572 unsigned int memcg_kmem_skip_account; 1573#endif 1574#ifdef CONFIG_HAVE_HW_BREAKPOINT 1575 atomic_t ptrace_bp_refcnt; 1576#endif 1577#ifdef CONFIG_UPROBES 1578 struct uprobe_task *utask; 1579#endif 1580}; 1581 1582/* Future-safe accessor for struct task_struct's cpus_allowed. */ 1583#define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed) 1584 1585#ifdef CONFIG_NUMA_BALANCING 1586extern void task_numa_fault(int node, int pages, bool migrated); 1587extern void set_numabalancing_state(bool enabled); 1588#else 1589static inline void task_numa_fault(int node, int pages, bool migrated) 1590{ 1591} 1592static inline void set_numabalancing_state(bool enabled) 1593{ 1594} 1595#endif 1596 1597static inline struct pid *task_pid(struct task_struct *task) 1598{ 1599 return task->pids[PIDTYPE_PID].pid; 1600} 1601 1602static inline struct pid *task_tgid(struct task_struct *task) 1603{ 1604 return task->group_leader->pids[PIDTYPE_PID].pid; 1605} 1606 1607/* 1608 * Without tasklist or rcu lock it is not safe to dereference 1609 * the result of task_pgrp/task_session even if task == current, 1610 * we can race with another thread doing sys_setsid/sys_setpgid. 1611 */ 1612static inline struct pid *task_pgrp(struct task_struct *task) 1613{ 1614 return task->group_leader->pids[PIDTYPE_PGID].pid; 1615} 1616 1617static inline struct pid *task_session(struct task_struct *task) 1618{ 1619 return task->group_leader->pids[PIDTYPE_SID].pid; 1620} 1621 1622struct pid_namespace; 1623 1624/* 1625 * the helpers to get the task's different pids as they are seen 1626 * from various namespaces 1627 * 1628 * task_xid_nr() : global id, i.e. the id seen from the init namespace; 1629 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of 1630 * current. 1631 * task_xid_nr_ns() : id seen from the ns specified; 1632 * 1633 * set_task_vxid() : assigns a virtual id to a task; 1634 * 1635 * see also pid_nr() etc in include/linux/pid.h 1636 */ 1637pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, 1638 struct pid_namespace *ns); 1639 1640static inline pid_t task_pid_nr(struct task_struct *tsk) 1641{ 1642 return tsk->pid; 1643} 1644 1645static inline pid_t task_pid_nr_ns(struct task_struct *tsk, 1646 struct pid_namespace *ns) 1647{ 1648 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns); 1649} 1650 1651static inline pid_t task_pid_vnr(struct task_struct *tsk) 1652{ 1653 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL); 1654} 1655 1656 1657static inline pid_t task_tgid_nr(struct task_struct *tsk) 1658{ 1659 return tsk->tgid; 1660} 1661 1662pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns); 1663 1664static inline pid_t task_tgid_vnr(struct task_struct *tsk) 1665{ 1666 return pid_vnr(task_tgid(tsk)); 1667} 1668 1669 1670static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, 1671 struct pid_namespace *ns) 1672{ 1673 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns); 1674} 1675 1676static inline pid_t task_pgrp_vnr(struct task_struct *tsk) 1677{ 1678 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL); 1679} 1680 1681 1682static inline pid_t task_session_nr_ns(struct task_struct *tsk, 1683 struct pid_namespace *ns) 1684{ 1685 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns); 1686} 1687 1688static inline pid_t task_session_vnr(struct task_struct *tsk) 1689{ 1690 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL); 1691} 1692 1693/* obsolete, do not use */ 1694static inline pid_t task_pgrp_nr(struct task_struct *tsk) 1695{ 1696 return task_pgrp_nr_ns(tsk, &init_pid_ns); 1697} 1698 1699/** 1700 * pid_alive - check that a task structure is not stale 1701 * @p: Task structure to be checked. 1702 * 1703 * Test if a process is not yet dead (at most zombie state) 1704 * If pid_alive fails, then pointers within the task structure 1705 * can be stale and must not be dereferenced. 1706 */ 1707static inline int pid_alive(struct task_struct *p) 1708{ 1709 return p->pids[PIDTYPE_PID].pid != NULL; 1710} 1711 1712/** 1713 * is_global_init - check if a task structure is init 1714 * @tsk: Task structure to be checked. 1715 * 1716 * Check if a task structure is the first user space task the kernel created. 1717 */ 1718static inline int is_global_init(struct task_struct *tsk) 1719{ 1720 return tsk->pid == 1; 1721} 1722 1723extern struct pid *cad_pid; 1724 1725extern void free_task(struct task_struct *tsk); 1726#define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0) 1727 1728extern void __put_task_struct(struct task_struct *t); 1729 1730static inline void put_task_struct(struct task_struct *t) 1731{ 1732 if (atomic_dec_and_test(&t->usage)) 1733 __put_task_struct(t); 1734} 1735 1736#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 1737extern void task_cputime(struct task_struct *t, 1738 cputime_t *utime, cputime_t *stime); 1739extern void task_cputime_scaled(struct task_struct *t, 1740 cputime_t *utimescaled, cputime_t *stimescaled); 1741extern cputime_t task_gtime(struct task_struct *t); 1742#else 1743static inline void task_cputime(struct task_struct *t, 1744 cputime_t *utime, cputime_t *stime) 1745{ 1746 if (utime) 1747 *utime = t->utime; 1748 if (stime) 1749 *stime = t->stime; 1750} 1751 1752static inline void task_cputime_scaled(struct task_struct *t, 1753 cputime_t *utimescaled, 1754 cputime_t *stimescaled) 1755{ 1756 if (utimescaled) 1757 *utimescaled = t->utimescaled; 1758 if (stimescaled) 1759 *stimescaled = t->stimescaled; 1760} 1761 1762static inline cputime_t task_gtime(struct task_struct *t) 1763{ 1764 return t->gtime; 1765} 1766#endif 1767extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st); 1768extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st); 1769 1770/* 1771 * Per process flags 1772 */ 1773#define PF_EXITING 0x00000004 /* getting shut down */ 1774#define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */ 1775#define PF_VCPU 0x00000010 /* I'm a virtual CPU */ 1776#define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */ 1777#define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */ 1778#define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */ 1779#define PF_SUPERPRIV 0x00000100 /* used super-user privileges */ 1780#define PF_DUMPCORE 0x00000200 /* dumped core */ 1781#define PF_SIGNALED 0x00000400 /* killed by a signal */ 1782#define PF_MEMALLOC 0x00000800 /* Allocating memory */ 1783#define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */ 1784#define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */ 1785#define PF_USED_ASYNC 0x00004000 /* used async_schedule*(), used by module init */ 1786#define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */ 1787#define PF_FROZEN 0x00010000 /* frozen for system suspend */ 1788#define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */ 1789#define PF_KSWAPD 0x00040000 /* I am kswapd */ 1790#define PF_MEMALLOC_NOIO 0x00080000 /* Allocating memory without IO involved */ 1791#define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */ 1792#define PF_KTHREAD 0x00200000 /* I am a kernel thread */ 1793#define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */ 1794#define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */ 1795#define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */ 1796#define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */ 1797#define PF_THREAD_BOUND 0x04000000 /* Thread bound to specific cpu */ 1798#define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */ 1799#define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */ 1800#define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */ 1801#define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */ 1802 1803/* 1804 * Only the _current_ task can read/write to tsk->flags, but other 1805 * tasks can access tsk->flags in readonly mode for example 1806 * with tsk_used_math (like during threaded core dumping). 1807 * There is however an exception to this rule during ptrace 1808 * or during fork: the ptracer task is allowed to write to the 1809 * child->flags of its traced child (same goes for fork, the parent 1810 * can write to the child->flags), because we're guaranteed the 1811 * child is not running and in turn not changing child->flags 1812 * at the same time the parent does it. 1813 */ 1814#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0) 1815#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0) 1816#define clear_used_math() clear_stopped_child_used_math(current) 1817#define set_used_math() set_stopped_child_used_math(current) 1818#define conditional_stopped_child_used_math(condition, child) \ 1819 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0) 1820#define conditional_used_math(condition) \ 1821 conditional_stopped_child_used_math(condition, current) 1822#define copy_to_stopped_child_used_math(child) \ 1823 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0) 1824/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */ 1825#define tsk_used_math(p) ((p)->flags & PF_USED_MATH) 1826#define used_math() tsk_used_math(current) 1827 1828/* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags */ 1829static inline gfp_t memalloc_noio_flags(gfp_t flags) 1830{ 1831 if (unlikely(current->flags & PF_MEMALLOC_NOIO)) 1832 flags &= ~__GFP_IO; 1833 return flags; 1834} 1835 1836static inline unsigned int memalloc_noio_save(void) 1837{ 1838 unsigned int flags = current->flags & PF_MEMALLOC_NOIO; 1839 current->flags |= PF_MEMALLOC_NOIO; 1840 return flags; 1841} 1842 1843static inline void memalloc_noio_restore(unsigned int flags) 1844{ 1845 current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags; 1846} 1847 1848/* 1849 * task->jobctl flags 1850 */ 1851#define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */ 1852 1853#define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */ 1854#define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */ 1855#define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */ 1856#define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */ 1857#define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */ 1858#define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */ 1859#define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */ 1860 1861#define JOBCTL_STOP_DEQUEUED (1 << JOBCTL_STOP_DEQUEUED_BIT) 1862#define JOBCTL_STOP_PENDING (1 << JOBCTL_STOP_PENDING_BIT) 1863#define JOBCTL_STOP_CONSUME (1 << JOBCTL_STOP_CONSUME_BIT) 1864#define JOBCTL_TRAP_STOP (1 << JOBCTL_TRAP_STOP_BIT) 1865#define JOBCTL_TRAP_NOTIFY (1 << JOBCTL_TRAP_NOTIFY_BIT) 1866#define JOBCTL_TRAPPING (1 << JOBCTL_TRAPPING_BIT) 1867#define JOBCTL_LISTENING (1 << JOBCTL_LISTENING_BIT) 1868 1869#define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY) 1870#define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK) 1871 1872extern bool task_set_jobctl_pending(struct task_struct *task, 1873 unsigned int mask); 1874extern void task_clear_jobctl_trapping(struct task_struct *task); 1875extern void task_clear_jobctl_pending(struct task_struct *task, 1876 unsigned int mask); 1877 1878#ifdef CONFIG_PREEMPT_RCU 1879 1880#define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */ 1881#define RCU_READ_UNLOCK_NEED_QS (1 << 1) /* RCU core needs CPU response. */ 1882 1883static inline void rcu_copy_process(struct task_struct *p) 1884{ 1885 p->rcu_read_lock_nesting = 0; 1886 p->rcu_read_unlock_special = 0; 1887#ifdef CONFIG_TREE_PREEMPT_RCU 1888 p->rcu_blocked_node = NULL; 1889#endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */ 1890#ifdef CONFIG_RCU_BOOST 1891 p->rcu_boost_mutex = NULL; 1892#endif /* #ifdef CONFIG_RCU_BOOST */ 1893 INIT_LIST_HEAD(&p->rcu_node_entry); 1894} 1895 1896#else 1897 1898static inline void rcu_copy_process(struct task_struct *p) 1899{ 1900} 1901 1902#endif 1903 1904static inline void tsk_restore_flags(struct task_struct *task, 1905 unsigned long orig_flags, unsigned long flags) 1906{ 1907 task->flags &= ~flags; 1908 task->flags |= orig_flags & flags; 1909} 1910 1911#ifdef CONFIG_SMP 1912extern void do_set_cpus_allowed(struct task_struct *p, 1913 const struct cpumask *new_mask); 1914 1915extern int set_cpus_allowed_ptr(struct task_struct *p, 1916 const struct cpumask *new_mask); 1917#else 1918static inline void do_set_cpus_allowed(struct task_struct *p, 1919 const struct cpumask *new_mask) 1920{ 1921} 1922static inline int set_cpus_allowed_ptr(struct task_struct *p, 1923 const struct cpumask *new_mask) 1924{ 1925 if (!cpumask_test_cpu(0, new_mask)) 1926 return -EINVAL; 1927 return 0; 1928} 1929#endif 1930 1931#ifdef CONFIG_NO_HZ 1932void calc_load_enter_idle(void); 1933void calc_load_exit_idle(void); 1934#else 1935static inline void calc_load_enter_idle(void) { } 1936static inline void calc_load_exit_idle(void) { } 1937#endif /* CONFIG_NO_HZ */ 1938 1939#ifndef CONFIG_CPUMASK_OFFSTACK 1940static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask) 1941{ 1942 return set_cpus_allowed_ptr(p, &new_mask); 1943} 1944#endif 1945 1946/* 1947 * Do not use outside of architecture code which knows its limitations. 1948 * 1949 * sched_clock() has no promise of monotonicity or bounded drift between 1950 * CPUs, use (which you should not) requires disabling IRQs. 1951 * 1952 * Please use one of the three interfaces below. 1953 */ 1954extern unsigned long long notrace sched_clock(void); 1955/* 1956 * See the comment in kernel/sched/clock.c 1957 */ 1958extern u64 cpu_clock(int cpu); 1959extern u64 local_clock(void); 1960extern u64 sched_clock_cpu(int cpu); 1961 1962 1963extern void sched_clock_init(void); 1964 1965#ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 1966static inline void sched_clock_tick(void) 1967{ 1968} 1969 1970static inline void sched_clock_idle_sleep_event(void) 1971{ 1972} 1973 1974static inline void sched_clock_idle_wakeup_event(u64 delta_ns) 1975{ 1976} 1977#else 1978/* 1979 * Architectures can set this to 1 if they have specified 1980 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig, 1981 * but then during bootup it turns out that sched_clock() 1982 * is reliable after all: 1983 */ 1984extern int sched_clock_stable; 1985 1986extern void sched_clock_tick(void); 1987extern void sched_clock_idle_sleep_event(void); 1988extern void sched_clock_idle_wakeup_event(u64 delta_ns); 1989#endif 1990 1991#ifdef CONFIG_IRQ_TIME_ACCOUNTING 1992/* 1993 * An i/f to runtime opt-in for irq time accounting based off of sched_clock. 1994 * The reason for this explicit opt-in is not to have perf penalty with 1995 * slow sched_clocks. 1996 */ 1997extern void enable_sched_clock_irqtime(void); 1998extern void disable_sched_clock_irqtime(void); 1999#else 2000static inline void enable_sched_clock_irqtime(void) {} 2001static inline void disable_sched_clock_irqtime(void) {} 2002#endif 2003 2004extern unsigned long long 2005task_sched_runtime(struct task_struct *task); 2006 2007/* sched_exec is called by processes performing an exec */ 2008#ifdef CONFIG_SMP 2009extern void sched_exec(void); 2010#else 2011#define sched_exec() {} 2012#endif 2013 2014extern void sched_clock_idle_sleep_event(void); 2015extern void sched_clock_idle_wakeup_event(u64 delta_ns); 2016 2017#ifdef CONFIG_HOTPLUG_CPU 2018extern void idle_task_exit(void); 2019#else 2020static inline void idle_task_exit(void) {} 2021#endif 2022 2023#if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP) 2024extern void wake_up_idle_cpu(int cpu); 2025#else 2026static inline void wake_up_idle_cpu(int cpu) { } 2027#endif 2028 2029#ifdef CONFIG_SCHED_AUTOGROUP 2030extern void sched_autogroup_create_attach(struct task_struct *p); 2031extern void sched_autogroup_detach(struct task_struct *p); 2032extern void sched_autogroup_fork(struct signal_struct *sig); 2033extern void sched_autogroup_exit(struct signal_struct *sig); 2034#ifdef CONFIG_PROC_FS 2035extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m); 2036extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice); 2037#endif 2038#else 2039static inline void sched_autogroup_create_attach(struct task_struct *p) { } 2040static inline void sched_autogroup_detach(struct task_struct *p) { } 2041static inline void sched_autogroup_fork(struct signal_struct *sig) { } 2042static inline void sched_autogroup_exit(struct signal_struct *sig) { } 2043#endif 2044 2045extern bool yield_to(struct task_struct *p, bool preempt); 2046extern void set_user_nice(struct task_struct *p, long nice); 2047extern int task_prio(const struct task_struct *p); 2048extern int task_nice(const struct task_struct *p); 2049extern int can_nice(const struct task_struct *p, const int nice); 2050extern int task_curr(const struct task_struct *p); 2051extern int idle_cpu(int cpu); 2052extern int sched_setscheduler(struct task_struct *, int, 2053 const struct sched_param *); 2054extern int sched_setscheduler_nocheck(struct task_struct *, int, 2055 const struct sched_param *); 2056extern struct task_struct *idle_task(int cpu); 2057/** 2058 * is_idle_task - is the specified task an idle task? 2059 * @p: the task in question. 2060 */ 2061static inline bool is_idle_task(const struct task_struct *p) 2062{ 2063 return p->pid == 0; 2064} 2065extern struct task_struct *curr_task(int cpu); 2066extern void set_curr_task(int cpu, struct task_struct *p); 2067 2068void yield(void); 2069 2070/* 2071 * The default (Linux) execution domain. 2072 */ 2073extern struct exec_domain default_exec_domain; 2074 2075union thread_union { 2076 struct thread_info thread_info; 2077 unsigned long stack[THREAD_SIZE/sizeof(long)]; 2078}; 2079 2080#ifndef __HAVE_ARCH_KSTACK_END 2081static inline int kstack_end(void *addr) 2082{ 2083 /* Reliable end of stack detection: 2084 * Some APM bios versions misalign the stack 2085 */ 2086 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*))); 2087} 2088#endif 2089 2090extern union thread_union init_thread_union; 2091extern struct task_struct init_task; 2092 2093extern struct mm_struct init_mm; 2094 2095extern struct pid_namespace init_pid_ns; 2096 2097/* 2098 * find a task by one of its numerical ids 2099 * 2100 * find_task_by_pid_ns(): 2101 * finds a task by its pid in the specified namespace 2102 * find_task_by_vpid(): 2103 * finds a task by its virtual pid 2104 * 2105 * see also find_vpid() etc in include/linux/pid.h 2106 */ 2107 2108extern struct task_struct *find_task_by_vpid(pid_t nr); 2109extern struct task_struct *find_task_by_pid_ns(pid_t nr, 2110 struct pid_namespace *ns); 2111 2112extern void __set_special_pids(struct pid *pid); 2113 2114/* per-UID process charging. */ 2115extern struct user_struct * alloc_uid(kuid_t); 2116static inline struct user_struct *get_uid(struct user_struct *u) 2117{ 2118 atomic_inc(&u->__count); 2119 return u; 2120} 2121extern void free_uid(struct user_struct *); 2122 2123#include <asm/current.h> 2124 2125extern void xtime_update(unsigned long ticks); 2126 2127extern int wake_up_state(struct task_struct *tsk, unsigned int state); 2128extern int wake_up_process(struct task_struct *tsk); 2129extern void wake_up_new_task(struct task_struct *tsk); 2130#ifdef CONFIG_SMP 2131 extern void kick_process(struct task_struct *tsk); 2132#else 2133 static inline void kick_process(struct task_struct *tsk) { } 2134#endif 2135extern void sched_fork(struct task_struct *p); 2136extern void sched_dead(struct task_struct *p); 2137 2138extern void proc_caches_init(void); 2139extern void flush_signals(struct task_struct *); 2140extern void __flush_signals(struct task_struct *); 2141extern void ignore_signals(struct task_struct *); 2142extern void flush_signal_handlers(struct task_struct *, int force_default); 2143extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info); 2144 2145static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info) 2146{ 2147 unsigned long flags; 2148 int ret; 2149 2150 spin_lock_irqsave(&tsk->sighand->siglock, flags); 2151 ret = dequeue_signal(tsk, mask, info); 2152 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 2153 2154 return ret; 2155} 2156 2157extern void block_all_signals(int (*notifier)(void *priv), void *priv, 2158 sigset_t *mask); 2159extern void unblock_all_signals(void); 2160extern void release_task(struct task_struct * p); 2161extern int send_sig_info(int, struct siginfo *, struct task_struct *); 2162extern int force_sigsegv(int, struct task_struct *); 2163extern int force_sig_info(int, struct siginfo *, struct task_struct *); 2164extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp); 2165extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid); 2166extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *, 2167 const struct cred *, u32); 2168extern int kill_pgrp(struct pid *pid, int sig, int priv); 2169extern int kill_pid(struct pid *pid, int sig, int priv); 2170extern int kill_proc_info(int, struct siginfo *, pid_t); 2171extern __must_check bool do_notify_parent(struct task_struct *, int); 2172extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent); 2173extern void force_sig(int, struct task_struct *); 2174extern int send_sig(int, struct task_struct *, int); 2175extern int zap_other_threads(struct task_struct *p); 2176extern struct sigqueue *sigqueue_alloc(void); 2177extern void sigqueue_free(struct sigqueue *); 2178extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group); 2179extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *); 2180 2181static inline void restore_saved_sigmask(void) 2182{ 2183 if (test_and_clear_restore_sigmask()) 2184 __set_current_blocked(&current->saved_sigmask); 2185} 2186 2187static inline sigset_t *sigmask_to_save(void) 2188{ 2189 sigset_t *res = &current->blocked; 2190 if (unlikely(test_restore_sigmask())) 2191 res = &current->saved_sigmask; 2192 return res; 2193} 2194 2195static inline int kill_cad_pid(int sig, int priv) 2196{ 2197 return kill_pid(cad_pid, sig, priv); 2198} 2199 2200/* These can be the second arg to send_sig_info/send_group_sig_info. */ 2201#define SEND_SIG_NOINFO ((struct siginfo *) 0) 2202#define SEND_SIG_PRIV ((struct siginfo *) 1) 2203#define SEND_SIG_FORCED ((struct siginfo *) 2) 2204 2205/* 2206 * True if we are on the alternate signal stack. 2207 */ 2208static inline int on_sig_stack(unsigned long sp) 2209{ 2210#ifdef CONFIG_STACK_GROWSUP 2211 return sp >= current->sas_ss_sp && 2212 sp - current->sas_ss_sp < current->sas_ss_size; 2213#else 2214 return sp > current->sas_ss_sp && 2215 sp - current->sas_ss_sp <= current->sas_ss_size; 2216#endif 2217} 2218 2219static inline int sas_ss_flags(unsigned long sp) 2220{ 2221 return (current->sas_ss_size == 0 ? SS_DISABLE 2222 : on_sig_stack(sp) ? SS_ONSTACK : 0); 2223} 2224 2225static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig) 2226{ 2227 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp)) 2228#ifdef CONFIG_STACK_GROWSUP 2229 return current->sas_ss_sp; 2230#else 2231 return current->sas_ss_sp + current->sas_ss_size; 2232#endif 2233 return sp; 2234} 2235 2236/* 2237 * Routines for handling mm_structs 2238 */ 2239extern struct mm_struct * mm_alloc(void); 2240 2241/* mmdrop drops the mm and the page tables */ 2242extern void __mmdrop(struct mm_struct *); 2243static inline void mmdrop(struct mm_struct * mm) 2244{ 2245 if (unlikely(atomic_dec_and_test(&mm->mm_count))) 2246 __mmdrop(mm); 2247} 2248 2249/* mmput gets rid of the mappings and all user-space */ 2250extern void mmput(struct mm_struct *); 2251/* Grab a reference to a task's mm, if it is not already going away */ 2252extern struct mm_struct *get_task_mm(struct task_struct *task); 2253/* 2254 * Grab a reference to a task's mm, if it is not already going away 2255 * and ptrace_may_access with the mode parameter passed to it 2256 * succeeds. 2257 */ 2258extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode); 2259/* Remove the current tasks stale references to the old mm_struct */ 2260extern void mm_release(struct task_struct *, struct mm_struct *); 2261/* Allocate a new mm structure and copy contents from tsk->mm */ 2262extern struct mm_struct *dup_mm(struct task_struct *tsk); 2263 2264extern int copy_thread(unsigned long, unsigned long, unsigned long, 2265 struct task_struct *); 2266extern void flush_thread(void); 2267extern void exit_thread(void); 2268 2269extern void exit_files(struct task_struct *); 2270extern void __cleanup_sighand(struct sighand_struct *); 2271 2272extern void exit_itimers(struct signal_struct *); 2273extern void flush_itimer_signals(void); 2274 2275extern void do_group_exit(int); 2276 2277extern int allow_signal(int); 2278extern int disallow_signal(int); 2279 2280extern int do_execve(const char *, 2281 const char __user * const __user *, 2282 const char __user * const __user *); 2283extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *); 2284struct task_struct *fork_idle(int); 2285extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags); 2286 2287extern void set_task_comm(struct task_struct *tsk, char *from); 2288extern char *get_task_comm(char *to, struct task_struct *tsk); 2289 2290#ifdef CONFIG_SMP 2291void scheduler_ipi(void); 2292extern unsigned long wait_task_inactive(struct task_struct *, long match_state); 2293#else 2294static inline void scheduler_ipi(void) { } 2295static inline unsigned long wait_task_inactive(struct task_struct *p, 2296 long match_state) 2297{ 2298 return 1; 2299} 2300#endif 2301 2302#define next_task(p) \ 2303 list_entry_rcu((p)->tasks.next, struct task_struct, tasks) 2304 2305#define for_each_process(p) \ 2306 for (p = &init_task ; (p = next_task(p)) != &init_task ; ) 2307 2308extern bool current_is_single_threaded(void); 2309 2310/* 2311 * Careful: do_each_thread/while_each_thread is a double loop so 2312 * 'break' will not work as expected - use goto instead. 2313 */ 2314#define do_each_thread(g, t) \ 2315 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do 2316 2317#define while_each_thread(g, t) \ 2318 while ((t = next_thread(t)) != g) 2319 2320static inline int get_nr_threads(struct task_struct *tsk) 2321{ 2322 return tsk->signal->nr_threads; 2323} 2324 2325static inline bool thread_group_leader(struct task_struct *p) 2326{ 2327 return p->exit_signal >= 0; 2328} 2329 2330/* Do to the insanities of de_thread it is possible for a process 2331 * to have the pid of the thread group leader without actually being 2332 * the thread group leader. For iteration through the pids in proc 2333 * all we care about is that we have a task with the appropriate 2334 * pid, we don't actually care if we have the right task. 2335 */ 2336static inline int has_group_leader_pid(struct task_struct *p) 2337{ 2338 return p->pid == p->tgid; 2339} 2340 2341static inline 2342int same_thread_group(struct task_struct *p1, struct task_struct *p2) 2343{ 2344 return p1->tgid == p2->tgid; 2345} 2346 2347static inline struct task_struct *next_thread(const struct task_struct *p) 2348{ 2349 return list_entry_rcu(p->thread_group.next, 2350 struct task_struct, thread_group); 2351} 2352 2353static inline int thread_group_empty(struct task_struct *p) 2354{ 2355 return list_empty(&p->thread_group); 2356} 2357 2358#define delay_group_leader(p) \ 2359 (thread_group_leader(p) && !thread_group_empty(p)) 2360 2361/* 2362 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring 2363 * subscriptions and synchronises with wait4(). Also used in procfs. Also 2364 * pins the final release of task.io_context. Also protects ->cpuset and 2365 * ->cgroup.subsys[]. And ->vfork_done. 2366 * 2367 * Nests both inside and outside of read_lock(&tasklist_lock). 2368 * It must not be nested with write_lock_irq(&tasklist_lock), 2369 * neither inside nor outside. 2370 */ 2371static inline void task_lock(struct task_struct *p) 2372{ 2373 spin_lock(&p->alloc_lock); 2374} 2375 2376static inline void task_unlock(struct task_struct *p) 2377{ 2378 spin_unlock(&p->alloc_lock); 2379} 2380 2381extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk, 2382 unsigned long *flags); 2383 2384static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk, 2385 unsigned long *flags) 2386{ 2387 struct sighand_struct *ret; 2388 2389 ret = __lock_task_sighand(tsk, flags); 2390 (void)__cond_lock(&tsk->sighand->siglock, ret); 2391 return ret; 2392} 2393 2394static inline void unlock_task_sighand(struct task_struct *tsk, 2395 unsigned long *flags) 2396{ 2397 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags); 2398} 2399 2400#ifdef CONFIG_CGROUPS 2401static inline void threadgroup_change_begin(struct task_struct *tsk) 2402{ 2403 down_read(&tsk->signal->group_rwsem); 2404} 2405static inline void threadgroup_change_end(struct task_struct *tsk) 2406{ 2407 up_read(&tsk->signal->group_rwsem); 2408} 2409 2410/** 2411 * threadgroup_lock - lock threadgroup 2412 * @tsk: member task of the threadgroup to lock 2413 * 2414 * Lock the threadgroup @tsk belongs to. No new task is allowed to enter 2415 * and member tasks aren't allowed to exit (as indicated by PF_EXITING) or 2416 * perform exec. This is useful for cases where the threadgroup needs to 2417 * stay stable across blockable operations. 2418 * 2419 * fork and exit paths explicitly call threadgroup_change_{begin|end}() for 2420 * synchronization. While held, no new task will be added to threadgroup 2421 * and no existing live task will have its PF_EXITING set. 2422 * 2423 * During exec, a task goes and puts its thread group through unusual 2424 * changes. After de-threading, exclusive access is assumed to resources 2425 * which are usually shared by tasks in the same group - e.g. sighand may 2426 * be replaced with a new one. Also, the exec'ing task takes over group 2427 * leader role including its pid. Exclude these changes while locked by 2428 * grabbing cred_guard_mutex which is used to synchronize exec path. 2429 */ 2430static inline void threadgroup_lock(struct task_struct *tsk) 2431{ 2432 /* 2433 * exec uses exit for de-threading nesting group_rwsem inside 2434 * cred_guard_mutex. Grab cred_guard_mutex first. 2435 */ 2436 mutex_lock(&tsk->signal->cred_guard_mutex); 2437 down_write(&tsk->signal->group_rwsem); 2438} 2439 2440/** 2441 * threadgroup_unlock - unlock threadgroup 2442 * @tsk: member task of the threadgroup to unlock 2443 * 2444 * Reverse threadgroup_lock(). 2445 */ 2446static inline void threadgroup_unlock(struct task_struct *tsk) 2447{ 2448 up_write(&tsk->signal->group_rwsem); 2449 mutex_unlock(&tsk->signal->cred_guard_mutex); 2450} 2451#else 2452static inline void threadgroup_change_begin(struct task_struct *tsk) {} 2453static inline void threadgroup_change_end(struct task_struct *tsk) {} 2454static inline void threadgroup_lock(struct task_struct *tsk) {} 2455static inline void threadgroup_unlock(struct task_struct *tsk) {} 2456#endif 2457 2458#ifndef __HAVE_THREAD_FUNCTIONS 2459 2460#define task_thread_info(task) ((struct thread_info *)(task)->stack) 2461#define task_stack_page(task) ((task)->stack) 2462 2463static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org) 2464{ 2465 *task_thread_info(p) = *task_thread_info(org); 2466 task_thread_info(p)->task = p; 2467} 2468 2469static inline unsigned long *end_of_stack(struct task_struct *p) 2470{ 2471 return (unsigned long *)(task_thread_info(p) + 1); 2472} 2473 2474#endif 2475 2476static inline int object_is_on_stack(void *obj) 2477{ 2478 void *stack = task_stack_page(current); 2479 2480 return (obj >= stack) && (obj < (stack + THREAD_SIZE)); 2481} 2482 2483extern void thread_info_cache_init(void); 2484 2485#ifdef CONFIG_DEBUG_STACK_USAGE 2486static inline unsigned long stack_not_used(struct task_struct *p) 2487{ 2488 unsigned long *n = end_of_stack(p); 2489 2490 do { /* Skip over canary */ 2491 n++; 2492 } while (!*n); 2493 2494 return (unsigned long)n - (unsigned long)end_of_stack(p); 2495} 2496#endif 2497 2498/* set thread flags in other task's structures 2499 * - see asm/thread_info.h for TIF_xxxx flags available 2500 */ 2501static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag) 2502{ 2503 set_ti_thread_flag(task_thread_info(tsk), flag); 2504} 2505 2506static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag) 2507{ 2508 clear_ti_thread_flag(task_thread_info(tsk), flag); 2509} 2510 2511static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag) 2512{ 2513 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag); 2514} 2515 2516static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag) 2517{ 2518 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag); 2519} 2520 2521static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag) 2522{ 2523 return test_ti_thread_flag(task_thread_info(tsk), flag); 2524} 2525 2526static inline void set_tsk_need_resched(struct task_struct *tsk) 2527{ 2528 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 2529} 2530 2531static inline void clear_tsk_need_resched(struct task_struct *tsk) 2532{ 2533 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 2534} 2535 2536static inline int test_tsk_need_resched(struct task_struct *tsk) 2537{ 2538 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED)); 2539} 2540 2541static inline int restart_syscall(void) 2542{ 2543 set_tsk_thread_flag(current, TIF_SIGPENDING); 2544 return -ERESTARTNOINTR; 2545} 2546 2547static inline int signal_pending(struct task_struct *p) 2548{ 2549 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING)); 2550} 2551 2552static inline int __fatal_signal_pending(struct task_struct *p) 2553{ 2554 return unlikely(sigismember(&p->pending.signal, SIGKILL)); 2555} 2556 2557static inline int fatal_signal_pending(struct task_struct *p) 2558{ 2559 return signal_pending(p) && __fatal_signal_pending(p); 2560} 2561 2562static inline int signal_pending_state(long state, struct task_struct *p) 2563{ 2564 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL))) 2565 return 0; 2566 if (!signal_pending(p)) 2567 return 0; 2568 2569 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p); 2570} 2571 2572static inline int need_resched(void) 2573{ 2574 return unlikely(test_thread_flag(TIF_NEED_RESCHED)); 2575} 2576 2577/* 2578 * cond_resched() and cond_resched_lock(): latency reduction via 2579 * explicit rescheduling in places that are safe. The return 2580 * value indicates whether a reschedule was done in fact. 2581 * cond_resched_lock() will drop the spinlock before scheduling, 2582 * cond_resched_softirq() will enable bhs before scheduling. 2583 */ 2584extern int _cond_resched(void); 2585 2586#define cond_resched() ({ \ 2587 __might_sleep(__FILE__, __LINE__, 0); \ 2588 _cond_resched(); \ 2589}) 2590 2591extern int __cond_resched_lock(spinlock_t *lock); 2592 2593#ifdef CONFIG_PREEMPT_COUNT 2594#define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET 2595#else 2596#define PREEMPT_LOCK_OFFSET 0 2597#endif 2598 2599#define cond_resched_lock(lock) ({ \ 2600 __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \ 2601 __cond_resched_lock(lock); \ 2602}) 2603 2604extern int __cond_resched_softirq(void); 2605 2606#define cond_resched_softirq() ({ \ 2607 __might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \ 2608 __cond_resched_softirq(); \ 2609}) 2610 2611/* 2612 * Does a critical section need to be broken due to another 2613 * task waiting?: (technically does not depend on CONFIG_PREEMPT, 2614 * but a general need for low latency) 2615 */ 2616static inline int spin_needbreak(spinlock_t *lock) 2617{ 2618#ifdef CONFIG_PREEMPT 2619 return spin_is_contended(lock); 2620#else 2621 return 0; 2622#endif 2623} 2624 2625/* 2626 * Thread group CPU time accounting. 2627 */ 2628void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times); 2629void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times); 2630 2631static inline void thread_group_cputime_init(struct signal_struct *sig) 2632{ 2633 raw_spin_lock_init(&sig->cputimer.lock); 2634} 2635 2636/* 2637 * Reevaluate whether the task has signals pending delivery. 2638 * Wake the task if so. 2639 * This is required every time the blocked sigset_t changes. 2640 * callers must hold sighand->siglock. 2641 */ 2642extern void recalc_sigpending_and_wake(struct task_struct *t); 2643extern void recalc_sigpending(void); 2644 2645extern void signal_wake_up_state(struct task_struct *t, unsigned int state); 2646 2647static inline void signal_wake_up(struct task_struct *t, bool resume) 2648{ 2649 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0); 2650} 2651static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume) 2652{ 2653 signal_wake_up_state(t, resume ? __TASK_TRACED : 0); 2654} 2655 2656/* 2657 * Wrappers for p->thread_info->cpu access. No-op on UP. 2658 */ 2659#ifdef CONFIG_SMP 2660 2661static inline unsigned int task_cpu(const struct task_struct *p) 2662{ 2663 return task_thread_info(p)->cpu; 2664} 2665 2666extern void set_task_cpu(struct task_struct *p, unsigned int cpu); 2667 2668#else 2669 2670static inline unsigned int task_cpu(const struct task_struct *p) 2671{ 2672 return 0; 2673} 2674 2675static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) 2676{ 2677} 2678 2679#endif /* CONFIG_SMP */ 2680 2681extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask); 2682extern long sched_getaffinity(pid_t pid, struct cpumask *mask); 2683 2684#ifdef CONFIG_CGROUP_SCHED 2685 2686extern struct task_group root_task_group; 2687 2688extern struct task_group *sched_create_group(struct task_group *parent); 2689extern void sched_online_group(struct task_group *tg, 2690 struct task_group *parent); 2691extern void sched_destroy_group(struct task_group *tg); 2692extern void sched_offline_group(struct task_group *tg); 2693extern void sched_move_task(struct task_struct *tsk); 2694#ifdef CONFIG_FAIR_GROUP_SCHED 2695extern int sched_group_set_shares(struct task_group *tg, unsigned long shares); 2696extern unsigned long sched_group_shares(struct task_group *tg); 2697#endif 2698#ifdef CONFIG_RT_GROUP_SCHED 2699extern int sched_group_set_rt_runtime(struct task_group *tg, 2700 long rt_runtime_us); 2701extern long sched_group_rt_runtime(struct task_group *tg); 2702extern int sched_group_set_rt_period(struct task_group *tg, 2703 long rt_period_us); 2704extern long sched_group_rt_period(struct task_group *tg); 2705extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk); 2706#endif 2707#endif /* CONFIG_CGROUP_SCHED */ 2708 2709extern int task_can_switch_user(struct user_struct *up, 2710 struct task_struct *tsk); 2711 2712#ifdef CONFIG_TASK_XACCT 2713static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 2714{ 2715 tsk->ioac.rchar += amt; 2716} 2717 2718static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 2719{ 2720 tsk->ioac.wchar += amt; 2721} 2722 2723static inline void inc_syscr(struct task_struct *tsk) 2724{ 2725 tsk->ioac.syscr++; 2726} 2727 2728static inline void inc_syscw(struct task_struct *tsk) 2729{ 2730 tsk->ioac.syscw++; 2731} 2732#else 2733static inline void add_rchar(struct task_struct *tsk, ssize_t amt) 2734{ 2735} 2736 2737static inline void add_wchar(struct task_struct *tsk, ssize_t amt) 2738{ 2739} 2740 2741static inline void inc_syscr(struct task_struct *tsk) 2742{ 2743} 2744 2745static inline void inc_syscw(struct task_struct *tsk) 2746{ 2747} 2748#endif 2749 2750#ifndef TASK_SIZE_OF 2751#define TASK_SIZE_OF(tsk) TASK_SIZE 2752#endif 2753 2754#ifdef CONFIG_MM_OWNER 2755extern void mm_update_next_owner(struct mm_struct *mm); 2756extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p); 2757#else 2758static inline void mm_update_next_owner(struct mm_struct *mm) 2759{ 2760} 2761 2762static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 2763{ 2764} 2765#endif /* CONFIG_MM_OWNER */ 2766 2767static inline unsigned long task_rlimit(const struct task_struct *tsk, 2768 unsigned int limit) 2769{ 2770 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur); 2771} 2772 2773static inline unsigned long task_rlimit_max(const struct task_struct *tsk, 2774 unsigned int limit) 2775{ 2776 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max); 2777} 2778 2779static inline unsigned long rlimit(unsigned int limit) 2780{ 2781 return task_rlimit(current, limit); 2782} 2783 2784static inline unsigned long rlimit_max(unsigned int limit) 2785{ 2786 return task_rlimit_max(current, limit); 2787} 2788 2789#endif