Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1#ifndef _LINUX_SCHED_H
2#define _LINUX_SCHED_H
3
4#include <uapi/linux/sched.h>
5
6
7struct sched_param {
8 int sched_priority;
9};
10
11#include <asm/param.h> /* for HZ */
12
13#include <linux/capability.h>
14#include <linux/threads.h>
15#include <linux/kernel.h>
16#include <linux/types.h>
17#include <linux/timex.h>
18#include <linux/jiffies.h>
19#include <linux/rbtree.h>
20#include <linux/thread_info.h>
21#include <linux/cpumask.h>
22#include <linux/errno.h>
23#include <linux/nodemask.h>
24#include <linux/mm_types.h>
25
26#include <asm/page.h>
27#include <asm/ptrace.h>
28#include <asm/cputime.h>
29
30#include <linux/smp.h>
31#include <linux/sem.h>
32#include <linux/signal.h>
33#include <linux/compiler.h>
34#include <linux/completion.h>
35#include <linux/pid.h>
36#include <linux/percpu.h>
37#include <linux/topology.h>
38#include <linux/proportions.h>
39#include <linux/seccomp.h>
40#include <linux/rcupdate.h>
41#include <linux/rculist.h>
42#include <linux/rtmutex.h>
43
44#include <linux/time.h>
45#include <linux/param.h>
46#include <linux/resource.h>
47#include <linux/timer.h>
48#include <linux/hrtimer.h>
49#include <linux/task_io_accounting.h>
50#include <linux/latencytop.h>
51#include <linux/cred.h>
52#include <linux/llist.h>
53#include <linux/uidgid.h>
54#include <linux/gfp.h>
55
56#include <asm/processor.h>
57
58struct exec_domain;
59struct futex_pi_state;
60struct robust_list_head;
61struct bio_list;
62struct fs_struct;
63struct perf_event_context;
64struct blk_plug;
65
66/*
67 * List of flags we want to share for kernel threads,
68 * if only because they are not used by them anyway.
69 */
70#define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
71
72/*
73 * These are the constant used to fake the fixed-point load-average
74 * counting. Some notes:
75 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
76 * a load-average precision of 10 bits integer + 11 bits fractional
77 * - if you want to count load-averages more often, you need more
78 * precision, or rounding will get you. With 2-second counting freq,
79 * the EXP_n values would be 1981, 2034 and 2043 if still using only
80 * 11 bit fractions.
81 */
82extern unsigned long avenrun[]; /* Load averages */
83extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
84
85#define FSHIFT 11 /* nr of bits of precision */
86#define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
87#define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
88#define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
89#define EXP_5 2014 /* 1/exp(5sec/5min) */
90#define EXP_15 2037 /* 1/exp(5sec/15min) */
91
92#define CALC_LOAD(load,exp,n) \
93 load *= exp; \
94 load += n*(FIXED_1-exp); \
95 load >>= FSHIFT;
96
97extern unsigned long total_forks;
98extern int nr_threads;
99DECLARE_PER_CPU(unsigned long, process_counts);
100extern int nr_processes(void);
101extern unsigned long nr_running(void);
102extern unsigned long nr_iowait(void);
103extern unsigned long nr_iowait_cpu(int cpu);
104extern unsigned long this_cpu_load(void);
105
106
107extern void calc_global_load(unsigned long ticks);
108extern void update_cpu_load_nohz(void);
109
110/* Notifier for when a task gets migrated to a new CPU */
111struct task_migration_notifier {
112 struct task_struct *task;
113 int from_cpu;
114 int to_cpu;
115};
116extern void register_task_migration_notifier(struct notifier_block *n);
117
118extern unsigned long get_parent_ip(unsigned long addr);
119
120extern void dump_cpu_task(int cpu);
121
122struct seq_file;
123struct cfs_rq;
124struct task_group;
125#ifdef CONFIG_SCHED_DEBUG
126extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
127extern void proc_sched_set_task(struct task_struct *p);
128extern void
129print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
130#else
131static inline void
132proc_sched_show_task(struct task_struct *p, struct seq_file *m)
133{
134}
135static inline void proc_sched_set_task(struct task_struct *p)
136{
137}
138static inline void
139print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
140{
141}
142#endif
143
144/*
145 * Task state bitmask. NOTE! These bits are also
146 * encoded in fs/proc/array.c: get_task_state().
147 *
148 * We have two separate sets of flags: task->state
149 * is about runnability, while task->exit_state are
150 * about the task exiting. Confusing, but this way
151 * modifying one set can't modify the other one by
152 * mistake.
153 */
154#define TASK_RUNNING 0
155#define TASK_INTERRUPTIBLE 1
156#define TASK_UNINTERRUPTIBLE 2
157#define __TASK_STOPPED 4
158#define __TASK_TRACED 8
159/* in tsk->exit_state */
160#define EXIT_ZOMBIE 16
161#define EXIT_DEAD 32
162/* in tsk->state again */
163#define TASK_DEAD 64
164#define TASK_WAKEKILL 128
165#define TASK_WAKING 256
166#define TASK_PARKED 512
167#define TASK_STATE_MAX 1024
168
169#define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP"
170
171extern char ___assert_task_state[1 - 2*!!(
172 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
173
174/* Convenience macros for the sake of set_task_state */
175#define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
176#define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
177#define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
178
179/* Convenience macros for the sake of wake_up */
180#define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
181#define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
182
183/* get_task_state() */
184#define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
185 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
186 __TASK_TRACED)
187
188#define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
189#define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
190#define task_is_dead(task) ((task)->exit_state != 0)
191#define task_is_stopped_or_traced(task) \
192 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
193#define task_contributes_to_load(task) \
194 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
195 (task->flags & PF_FROZEN) == 0)
196
197#define __set_task_state(tsk, state_value) \
198 do { (tsk)->state = (state_value); } while (0)
199#define set_task_state(tsk, state_value) \
200 set_mb((tsk)->state, (state_value))
201
202/*
203 * set_current_state() includes a barrier so that the write of current->state
204 * is correctly serialised wrt the caller's subsequent test of whether to
205 * actually sleep:
206 *
207 * set_current_state(TASK_UNINTERRUPTIBLE);
208 * if (do_i_need_to_sleep())
209 * schedule();
210 *
211 * If the caller does not need such serialisation then use __set_current_state()
212 */
213#define __set_current_state(state_value) \
214 do { current->state = (state_value); } while (0)
215#define set_current_state(state_value) \
216 set_mb(current->state, (state_value))
217
218/* Task command name length */
219#define TASK_COMM_LEN 16
220
221#include <linux/spinlock.h>
222
223/*
224 * This serializes "schedule()" and also protects
225 * the run-queue from deletions/modifications (but
226 * _adding_ to the beginning of the run-queue has
227 * a separate lock).
228 */
229extern rwlock_t tasklist_lock;
230extern spinlock_t mmlist_lock;
231
232struct task_struct;
233
234#ifdef CONFIG_PROVE_RCU
235extern int lockdep_tasklist_lock_is_held(void);
236#endif /* #ifdef CONFIG_PROVE_RCU */
237
238extern void sched_init(void);
239extern void sched_init_smp(void);
240extern asmlinkage void schedule_tail(struct task_struct *prev);
241extern void init_idle(struct task_struct *idle, int cpu);
242extern void init_idle_bootup_task(struct task_struct *idle);
243
244extern int runqueue_is_locked(int cpu);
245
246#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
247extern void nohz_balance_enter_idle(int cpu);
248extern void set_cpu_sd_state_idle(void);
249extern int get_nohz_timer_target(void);
250#else
251static inline void nohz_balance_enter_idle(int cpu) { }
252static inline void set_cpu_sd_state_idle(void) { }
253#endif
254
255/*
256 * Only dump TASK_* tasks. (0 for all tasks)
257 */
258extern void show_state_filter(unsigned long state_filter);
259
260static inline void show_state(void)
261{
262 show_state_filter(0);
263}
264
265extern void show_regs(struct pt_regs *);
266
267/*
268 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
269 * task), SP is the stack pointer of the first frame that should be shown in the back
270 * trace (or NULL if the entire call-chain of the task should be shown).
271 */
272extern void show_stack(struct task_struct *task, unsigned long *sp);
273
274void io_schedule(void);
275long io_schedule_timeout(long timeout);
276
277extern void cpu_init (void);
278extern void trap_init(void);
279extern void update_process_times(int user);
280extern void scheduler_tick(void);
281
282extern void sched_show_task(struct task_struct *p);
283
284#ifdef CONFIG_LOCKUP_DETECTOR
285extern void touch_softlockup_watchdog(void);
286extern void touch_softlockup_watchdog_sync(void);
287extern void touch_all_softlockup_watchdogs(void);
288extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
289 void __user *buffer,
290 size_t *lenp, loff_t *ppos);
291extern unsigned int softlockup_panic;
292void lockup_detector_init(void);
293#else
294static inline void touch_softlockup_watchdog(void)
295{
296}
297static inline void touch_softlockup_watchdog_sync(void)
298{
299}
300static inline void touch_all_softlockup_watchdogs(void)
301{
302}
303static inline void lockup_detector_init(void)
304{
305}
306#endif
307
308/* Attach to any functions which should be ignored in wchan output. */
309#define __sched __attribute__((__section__(".sched.text")))
310
311/* Linker adds these: start and end of __sched functions */
312extern char __sched_text_start[], __sched_text_end[];
313
314/* Is this address in the __sched functions? */
315extern int in_sched_functions(unsigned long addr);
316
317#define MAX_SCHEDULE_TIMEOUT LONG_MAX
318extern signed long schedule_timeout(signed long timeout);
319extern signed long schedule_timeout_interruptible(signed long timeout);
320extern signed long schedule_timeout_killable(signed long timeout);
321extern signed long schedule_timeout_uninterruptible(signed long timeout);
322asmlinkage void schedule(void);
323extern void schedule_preempt_disabled(void);
324extern int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner);
325
326struct nsproxy;
327struct user_namespace;
328
329#include <linux/aio.h>
330
331#ifdef CONFIG_MMU
332extern void arch_pick_mmap_layout(struct mm_struct *mm);
333extern unsigned long
334arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
335 unsigned long, unsigned long);
336extern unsigned long
337arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
338 unsigned long len, unsigned long pgoff,
339 unsigned long flags);
340extern void arch_unmap_area(struct mm_struct *, unsigned long);
341extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
342#else
343static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
344#endif
345
346
347extern void set_dumpable(struct mm_struct *mm, int value);
348extern int get_dumpable(struct mm_struct *mm);
349
350/* mm flags */
351/* dumpable bits */
352#define MMF_DUMPABLE 0 /* core dump is permitted */
353#define MMF_DUMP_SECURELY 1 /* core file is readable only by root */
354
355#define MMF_DUMPABLE_BITS 2
356#define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
357
358/* coredump filter bits */
359#define MMF_DUMP_ANON_PRIVATE 2
360#define MMF_DUMP_ANON_SHARED 3
361#define MMF_DUMP_MAPPED_PRIVATE 4
362#define MMF_DUMP_MAPPED_SHARED 5
363#define MMF_DUMP_ELF_HEADERS 6
364#define MMF_DUMP_HUGETLB_PRIVATE 7
365#define MMF_DUMP_HUGETLB_SHARED 8
366
367#define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
368#define MMF_DUMP_FILTER_BITS 7
369#define MMF_DUMP_FILTER_MASK \
370 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
371#define MMF_DUMP_FILTER_DEFAULT \
372 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
373 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
374
375#ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
376# define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
377#else
378# define MMF_DUMP_MASK_DEFAULT_ELF 0
379#endif
380 /* leave room for more dump flags */
381#define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */
382#define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */
383#define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */
384
385#define MMF_HAS_UPROBES 19 /* has uprobes */
386#define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */
387
388#define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
389
390struct sighand_struct {
391 atomic_t count;
392 struct k_sigaction action[_NSIG];
393 spinlock_t siglock;
394 wait_queue_head_t signalfd_wqh;
395};
396
397struct pacct_struct {
398 int ac_flag;
399 long ac_exitcode;
400 unsigned long ac_mem;
401 cputime_t ac_utime, ac_stime;
402 unsigned long ac_minflt, ac_majflt;
403};
404
405struct cpu_itimer {
406 cputime_t expires;
407 cputime_t incr;
408 u32 error;
409 u32 incr_error;
410};
411
412/**
413 * struct cputime - snaphsot of system and user cputime
414 * @utime: time spent in user mode
415 * @stime: time spent in system mode
416 *
417 * Gathers a generic snapshot of user and system time.
418 */
419struct cputime {
420 cputime_t utime;
421 cputime_t stime;
422};
423
424/**
425 * struct task_cputime - collected CPU time counts
426 * @utime: time spent in user mode, in &cputime_t units
427 * @stime: time spent in kernel mode, in &cputime_t units
428 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
429 *
430 * This is an extension of struct cputime that includes the total runtime
431 * spent by the task from the scheduler point of view.
432 *
433 * As a result, this structure groups together three kinds of CPU time
434 * that are tracked for threads and thread groups. Most things considering
435 * CPU time want to group these counts together and treat all three
436 * of them in parallel.
437 */
438struct task_cputime {
439 cputime_t utime;
440 cputime_t stime;
441 unsigned long long sum_exec_runtime;
442};
443/* Alternate field names when used to cache expirations. */
444#define prof_exp stime
445#define virt_exp utime
446#define sched_exp sum_exec_runtime
447
448#define INIT_CPUTIME \
449 (struct task_cputime) { \
450 .utime = 0, \
451 .stime = 0, \
452 .sum_exec_runtime = 0, \
453 }
454
455/*
456 * Disable preemption until the scheduler is running.
457 * Reset by start_kernel()->sched_init()->init_idle().
458 *
459 * We include PREEMPT_ACTIVE to avoid cond_resched() from working
460 * before the scheduler is active -- see should_resched().
461 */
462#define INIT_PREEMPT_COUNT (1 + PREEMPT_ACTIVE)
463
464/**
465 * struct thread_group_cputimer - thread group interval timer counts
466 * @cputime: thread group interval timers.
467 * @running: non-zero when there are timers running and
468 * @cputime receives updates.
469 * @lock: lock for fields in this struct.
470 *
471 * This structure contains the version of task_cputime, above, that is
472 * used for thread group CPU timer calculations.
473 */
474struct thread_group_cputimer {
475 struct task_cputime cputime;
476 int running;
477 raw_spinlock_t lock;
478};
479
480#include <linux/rwsem.h>
481struct autogroup;
482
483/*
484 * NOTE! "signal_struct" does not have its own
485 * locking, because a shared signal_struct always
486 * implies a shared sighand_struct, so locking
487 * sighand_struct is always a proper superset of
488 * the locking of signal_struct.
489 */
490struct signal_struct {
491 atomic_t sigcnt;
492 atomic_t live;
493 int nr_threads;
494
495 wait_queue_head_t wait_chldexit; /* for wait4() */
496
497 /* current thread group signal load-balancing target: */
498 struct task_struct *curr_target;
499
500 /* shared signal handling: */
501 struct sigpending shared_pending;
502
503 /* thread group exit support */
504 int group_exit_code;
505 /* overloaded:
506 * - notify group_exit_task when ->count is equal to notify_count
507 * - everyone except group_exit_task is stopped during signal delivery
508 * of fatal signals, group_exit_task processes the signal.
509 */
510 int notify_count;
511 struct task_struct *group_exit_task;
512
513 /* thread group stop support, overloads group_exit_code too */
514 int group_stop_count;
515 unsigned int flags; /* see SIGNAL_* flags below */
516
517 /*
518 * PR_SET_CHILD_SUBREAPER marks a process, like a service
519 * manager, to re-parent orphan (double-forking) child processes
520 * to this process instead of 'init'. The service manager is
521 * able to receive SIGCHLD signals and is able to investigate
522 * the process until it calls wait(). All children of this
523 * process will inherit a flag if they should look for a
524 * child_subreaper process at exit.
525 */
526 unsigned int is_child_subreaper:1;
527 unsigned int has_child_subreaper:1;
528
529 /* POSIX.1b Interval Timers */
530 struct list_head posix_timers;
531
532 /* ITIMER_REAL timer for the process */
533 struct hrtimer real_timer;
534 struct pid *leader_pid;
535 ktime_t it_real_incr;
536
537 /*
538 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
539 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
540 * values are defined to 0 and 1 respectively
541 */
542 struct cpu_itimer it[2];
543
544 /*
545 * Thread group totals for process CPU timers.
546 * See thread_group_cputimer(), et al, for details.
547 */
548 struct thread_group_cputimer cputimer;
549
550 /* Earliest-expiration cache. */
551 struct task_cputime cputime_expires;
552
553 struct list_head cpu_timers[3];
554
555 struct pid *tty_old_pgrp;
556
557 /* boolean value for session group leader */
558 int leader;
559
560 struct tty_struct *tty; /* NULL if no tty */
561
562#ifdef CONFIG_SCHED_AUTOGROUP
563 struct autogroup *autogroup;
564#endif
565 /*
566 * Cumulative resource counters for dead threads in the group,
567 * and for reaped dead child processes forked by this group.
568 * Live threads maintain their own counters and add to these
569 * in __exit_signal, except for the group leader.
570 */
571 cputime_t utime, stime, cutime, cstime;
572 cputime_t gtime;
573 cputime_t cgtime;
574#ifndef CONFIG_VIRT_CPU_ACCOUNTING
575 struct cputime prev_cputime;
576#endif
577 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
578 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
579 unsigned long inblock, oublock, cinblock, coublock;
580 unsigned long maxrss, cmaxrss;
581 struct task_io_accounting ioac;
582
583 /*
584 * Cumulative ns of schedule CPU time fo dead threads in the
585 * group, not including a zombie group leader, (This only differs
586 * from jiffies_to_ns(utime + stime) if sched_clock uses something
587 * other than jiffies.)
588 */
589 unsigned long long sum_sched_runtime;
590
591 /*
592 * We don't bother to synchronize most readers of this at all,
593 * because there is no reader checking a limit that actually needs
594 * to get both rlim_cur and rlim_max atomically, and either one
595 * alone is a single word that can safely be read normally.
596 * getrlimit/setrlimit use task_lock(current->group_leader) to
597 * protect this instead of the siglock, because they really
598 * have no need to disable irqs.
599 */
600 struct rlimit rlim[RLIM_NLIMITS];
601
602#ifdef CONFIG_BSD_PROCESS_ACCT
603 struct pacct_struct pacct; /* per-process accounting information */
604#endif
605#ifdef CONFIG_TASKSTATS
606 struct taskstats *stats;
607#endif
608#ifdef CONFIG_AUDIT
609 unsigned audit_tty;
610 struct tty_audit_buf *tty_audit_buf;
611#endif
612#ifdef CONFIG_CGROUPS
613 /*
614 * group_rwsem prevents new tasks from entering the threadgroup and
615 * member tasks from exiting,a more specifically, setting of
616 * PF_EXITING. fork and exit paths are protected with this rwsem
617 * using threadgroup_change_begin/end(). Users which require
618 * threadgroup to remain stable should use threadgroup_[un]lock()
619 * which also takes care of exec path. Currently, cgroup is the
620 * only user.
621 */
622 struct rw_semaphore group_rwsem;
623#endif
624
625 oom_flags_t oom_flags;
626 short oom_score_adj; /* OOM kill score adjustment */
627 short oom_score_adj_min; /* OOM kill score adjustment min value.
628 * Only settable by CAP_SYS_RESOURCE. */
629
630 struct mutex cred_guard_mutex; /* guard against foreign influences on
631 * credential calculations
632 * (notably. ptrace) */
633};
634
635/*
636 * Bits in flags field of signal_struct.
637 */
638#define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
639#define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */
640#define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */
641/*
642 * Pending notifications to parent.
643 */
644#define SIGNAL_CLD_STOPPED 0x00000010
645#define SIGNAL_CLD_CONTINUED 0x00000020
646#define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
647
648#define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
649
650/* If true, all threads except ->group_exit_task have pending SIGKILL */
651static inline int signal_group_exit(const struct signal_struct *sig)
652{
653 return (sig->flags & SIGNAL_GROUP_EXIT) ||
654 (sig->group_exit_task != NULL);
655}
656
657/*
658 * Some day this will be a full-fledged user tracking system..
659 */
660struct user_struct {
661 atomic_t __count; /* reference count */
662 atomic_t processes; /* How many processes does this user have? */
663 atomic_t files; /* How many open files does this user have? */
664 atomic_t sigpending; /* How many pending signals does this user have? */
665#ifdef CONFIG_INOTIFY_USER
666 atomic_t inotify_watches; /* How many inotify watches does this user have? */
667 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
668#endif
669#ifdef CONFIG_FANOTIFY
670 atomic_t fanotify_listeners;
671#endif
672#ifdef CONFIG_EPOLL
673 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
674#endif
675#ifdef CONFIG_POSIX_MQUEUE
676 /* protected by mq_lock */
677 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
678#endif
679 unsigned long locked_shm; /* How many pages of mlocked shm ? */
680
681#ifdef CONFIG_KEYS
682 struct key *uid_keyring; /* UID specific keyring */
683 struct key *session_keyring; /* UID's default session keyring */
684#endif
685
686 /* Hash table maintenance information */
687 struct hlist_node uidhash_node;
688 kuid_t uid;
689
690#ifdef CONFIG_PERF_EVENTS
691 atomic_long_t locked_vm;
692#endif
693};
694
695extern int uids_sysfs_init(void);
696
697extern struct user_struct *find_user(kuid_t);
698
699extern struct user_struct root_user;
700#define INIT_USER (&root_user)
701
702
703struct backing_dev_info;
704struct reclaim_state;
705
706#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
707struct sched_info {
708 /* cumulative counters */
709 unsigned long pcount; /* # of times run on this cpu */
710 unsigned long long run_delay; /* time spent waiting on a runqueue */
711
712 /* timestamps */
713 unsigned long long last_arrival,/* when we last ran on a cpu */
714 last_queued; /* when we were last queued to run */
715};
716#endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
717
718#ifdef CONFIG_TASK_DELAY_ACCT
719struct task_delay_info {
720 spinlock_t lock;
721 unsigned int flags; /* Private per-task flags */
722
723 /* For each stat XXX, add following, aligned appropriately
724 *
725 * struct timespec XXX_start, XXX_end;
726 * u64 XXX_delay;
727 * u32 XXX_count;
728 *
729 * Atomicity of updates to XXX_delay, XXX_count protected by
730 * single lock above (split into XXX_lock if contention is an issue).
731 */
732
733 /*
734 * XXX_count is incremented on every XXX operation, the delay
735 * associated with the operation is added to XXX_delay.
736 * XXX_delay contains the accumulated delay time in nanoseconds.
737 */
738 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
739 u64 blkio_delay; /* wait for sync block io completion */
740 u64 swapin_delay; /* wait for swapin block io completion */
741 u32 blkio_count; /* total count of the number of sync block */
742 /* io operations performed */
743 u32 swapin_count; /* total count of the number of swapin block */
744 /* io operations performed */
745
746 struct timespec freepages_start, freepages_end;
747 u64 freepages_delay; /* wait for memory reclaim */
748 u32 freepages_count; /* total count of memory reclaim */
749};
750#endif /* CONFIG_TASK_DELAY_ACCT */
751
752static inline int sched_info_on(void)
753{
754#ifdef CONFIG_SCHEDSTATS
755 return 1;
756#elif defined(CONFIG_TASK_DELAY_ACCT)
757 extern int delayacct_on;
758 return delayacct_on;
759#else
760 return 0;
761#endif
762}
763
764enum cpu_idle_type {
765 CPU_IDLE,
766 CPU_NOT_IDLE,
767 CPU_NEWLY_IDLE,
768 CPU_MAX_IDLE_TYPES
769};
770
771/*
772 * Increase resolution of nice-level calculations for 64-bit architectures.
773 * The extra resolution improves shares distribution and load balancing of
774 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
775 * hierarchies, especially on larger systems. This is not a user-visible change
776 * and does not change the user-interface for setting shares/weights.
777 *
778 * We increase resolution only if we have enough bits to allow this increased
779 * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution
780 * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the
781 * increased costs.
782 */
783#if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load */
784# define SCHED_LOAD_RESOLUTION 10
785# define scale_load(w) ((w) << SCHED_LOAD_RESOLUTION)
786# define scale_load_down(w) ((w) >> SCHED_LOAD_RESOLUTION)
787#else
788# define SCHED_LOAD_RESOLUTION 0
789# define scale_load(w) (w)
790# define scale_load_down(w) (w)
791#endif
792
793#define SCHED_LOAD_SHIFT (10 + SCHED_LOAD_RESOLUTION)
794#define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
795
796/*
797 * Increase resolution of cpu_power calculations
798 */
799#define SCHED_POWER_SHIFT 10
800#define SCHED_POWER_SCALE (1L << SCHED_POWER_SHIFT)
801
802/*
803 * sched-domains (multiprocessor balancing) declarations:
804 */
805#ifdef CONFIG_SMP
806#define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */
807#define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */
808#define SD_BALANCE_EXEC 0x0004 /* Balance on exec */
809#define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */
810#define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */
811#define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */
812#define SD_SHARE_CPUPOWER 0x0080 /* Domain members share cpu power */
813#define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */
814#define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */
815#define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */
816#define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */
817#define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */
818
819extern int __weak arch_sd_sibiling_asym_packing(void);
820
821struct sched_group_power {
822 atomic_t ref;
823 /*
824 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
825 * single CPU.
826 */
827 unsigned int power, power_orig;
828 unsigned long next_update;
829 /*
830 * Number of busy cpus in this group.
831 */
832 atomic_t nr_busy_cpus;
833
834 unsigned long cpumask[0]; /* iteration mask */
835};
836
837struct sched_group {
838 struct sched_group *next; /* Must be a circular list */
839 atomic_t ref;
840
841 unsigned int group_weight;
842 struct sched_group_power *sgp;
843
844 /*
845 * The CPUs this group covers.
846 *
847 * NOTE: this field is variable length. (Allocated dynamically
848 * by attaching extra space to the end of the structure,
849 * depending on how many CPUs the kernel has booted up with)
850 */
851 unsigned long cpumask[0];
852};
853
854static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
855{
856 return to_cpumask(sg->cpumask);
857}
858
859/*
860 * cpumask masking which cpus in the group are allowed to iterate up the domain
861 * tree.
862 */
863static inline struct cpumask *sched_group_mask(struct sched_group *sg)
864{
865 return to_cpumask(sg->sgp->cpumask);
866}
867
868/**
869 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
870 * @group: The group whose first cpu is to be returned.
871 */
872static inline unsigned int group_first_cpu(struct sched_group *group)
873{
874 return cpumask_first(sched_group_cpus(group));
875}
876
877struct sched_domain_attr {
878 int relax_domain_level;
879};
880
881#define SD_ATTR_INIT (struct sched_domain_attr) { \
882 .relax_domain_level = -1, \
883}
884
885extern int sched_domain_level_max;
886
887struct sched_domain {
888 /* These fields must be setup */
889 struct sched_domain *parent; /* top domain must be null terminated */
890 struct sched_domain *child; /* bottom domain must be null terminated */
891 struct sched_group *groups; /* the balancing groups of the domain */
892 unsigned long min_interval; /* Minimum balance interval ms */
893 unsigned long max_interval; /* Maximum balance interval ms */
894 unsigned int busy_factor; /* less balancing by factor if busy */
895 unsigned int imbalance_pct; /* No balance until over watermark */
896 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
897 unsigned int busy_idx;
898 unsigned int idle_idx;
899 unsigned int newidle_idx;
900 unsigned int wake_idx;
901 unsigned int forkexec_idx;
902 unsigned int smt_gain;
903 int flags; /* See SD_* */
904 int level;
905
906 /* Runtime fields. */
907 unsigned long last_balance; /* init to jiffies. units in jiffies */
908 unsigned int balance_interval; /* initialise to 1. units in ms. */
909 unsigned int nr_balance_failed; /* initialise to 0 */
910
911 u64 last_update;
912
913#ifdef CONFIG_SCHEDSTATS
914 /* load_balance() stats */
915 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
916 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
917 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
918 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
919 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
920 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
921 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
922 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
923
924 /* Active load balancing */
925 unsigned int alb_count;
926 unsigned int alb_failed;
927 unsigned int alb_pushed;
928
929 /* SD_BALANCE_EXEC stats */
930 unsigned int sbe_count;
931 unsigned int sbe_balanced;
932 unsigned int sbe_pushed;
933
934 /* SD_BALANCE_FORK stats */
935 unsigned int sbf_count;
936 unsigned int sbf_balanced;
937 unsigned int sbf_pushed;
938
939 /* try_to_wake_up() stats */
940 unsigned int ttwu_wake_remote;
941 unsigned int ttwu_move_affine;
942 unsigned int ttwu_move_balance;
943#endif
944#ifdef CONFIG_SCHED_DEBUG
945 char *name;
946#endif
947 union {
948 void *private; /* used during construction */
949 struct rcu_head rcu; /* used during destruction */
950 };
951
952 unsigned int span_weight;
953 /*
954 * Span of all CPUs in this domain.
955 *
956 * NOTE: this field is variable length. (Allocated dynamically
957 * by attaching extra space to the end of the structure,
958 * depending on how many CPUs the kernel has booted up with)
959 */
960 unsigned long span[0];
961};
962
963static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
964{
965 return to_cpumask(sd->span);
966}
967
968extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
969 struct sched_domain_attr *dattr_new);
970
971/* Allocate an array of sched domains, for partition_sched_domains(). */
972cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
973void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
974
975/* Test a flag in parent sched domain */
976static inline int test_sd_parent(struct sched_domain *sd, int flag)
977{
978 if (sd->parent && (sd->parent->flags & flag))
979 return 1;
980
981 return 0;
982}
983
984unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu);
985unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu);
986
987bool cpus_share_cache(int this_cpu, int that_cpu);
988
989#else /* CONFIG_SMP */
990
991struct sched_domain_attr;
992
993static inline void
994partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
995 struct sched_domain_attr *dattr_new)
996{
997}
998
999static inline bool cpus_share_cache(int this_cpu, int that_cpu)
1000{
1001 return true;
1002}
1003
1004#endif /* !CONFIG_SMP */
1005
1006
1007struct io_context; /* See blkdev.h */
1008
1009
1010#ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
1011extern void prefetch_stack(struct task_struct *t);
1012#else
1013static inline void prefetch_stack(struct task_struct *t) { }
1014#endif
1015
1016struct audit_context; /* See audit.c */
1017struct mempolicy;
1018struct pipe_inode_info;
1019struct uts_namespace;
1020
1021struct rq;
1022struct sched_domain;
1023
1024/*
1025 * wake flags
1026 */
1027#define WF_SYNC 0x01 /* waker goes to sleep after wakup */
1028#define WF_FORK 0x02 /* child wakeup after fork */
1029#define WF_MIGRATED 0x04 /* internal use, task got migrated */
1030
1031#define ENQUEUE_WAKEUP 1
1032#define ENQUEUE_HEAD 2
1033#ifdef CONFIG_SMP
1034#define ENQUEUE_WAKING 4 /* sched_class::task_waking was called */
1035#else
1036#define ENQUEUE_WAKING 0
1037#endif
1038
1039#define DEQUEUE_SLEEP 1
1040
1041struct sched_class {
1042 const struct sched_class *next;
1043
1044 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1045 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1046 void (*yield_task) (struct rq *rq);
1047 bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
1048
1049 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1050
1051 struct task_struct * (*pick_next_task) (struct rq *rq);
1052 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1053
1054#ifdef CONFIG_SMP
1055 int (*select_task_rq)(struct task_struct *p, int sd_flag, int flags);
1056 void (*migrate_task_rq)(struct task_struct *p, int next_cpu);
1057
1058 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
1059 void (*post_schedule) (struct rq *this_rq);
1060 void (*task_waking) (struct task_struct *task);
1061 void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1062
1063 void (*set_cpus_allowed)(struct task_struct *p,
1064 const struct cpumask *newmask);
1065
1066 void (*rq_online)(struct rq *rq);
1067 void (*rq_offline)(struct rq *rq);
1068#endif
1069
1070 void (*set_curr_task) (struct rq *rq);
1071 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1072 void (*task_fork) (struct task_struct *p);
1073
1074 void (*switched_from) (struct rq *this_rq, struct task_struct *task);
1075 void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1076 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1077 int oldprio);
1078
1079 unsigned int (*get_rr_interval) (struct rq *rq,
1080 struct task_struct *task);
1081
1082#ifdef CONFIG_FAIR_GROUP_SCHED
1083 void (*task_move_group) (struct task_struct *p, int on_rq);
1084#endif
1085};
1086
1087struct load_weight {
1088 unsigned long weight, inv_weight;
1089};
1090
1091struct sched_avg {
1092 /*
1093 * These sums represent an infinite geometric series and so are bound
1094 * above by 1024/(1-y). Thus we only need a u32 to store them for for all
1095 * choices of y < 1-2^(-32)*1024.
1096 */
1097 u32 runnable_avg_sum, runnable_avg_period;
1098 u64 last_runnable_update;
1099 s64 decay_count;
1100 unsigned long load_avg_contrib;
1101};
1102
1103#ifdef CONFIG_SCHEDSTATS
1104struct sched_statistics {
1105 u64 wait_start;
1106 u64 wait_max;
1107 u64 wait_count;
1108 u64 wait_sum;
1109 u64 iowait_count;
1110 u64 iowait_sum;
1111
1112 u64 sleep_start;
1113 u64 sleep_max;
1114 s64 sum_sleep_runtime;
1115
1116 u64 block_start;
1117 u64 block_max;
1118 u64 exec_max;
1119 u64 slice_max;
1120
1121 u64 nr_migrations_cold;
1122 u64 nr_failed_migrations_affine;
1123 u64 nr_failed_migrations_running;
1124 u64 nr_failed_migrations_hot;
1125 u64 nr_forced_migrations;
1126
1127 u64 nr_wakeups;
1128 u64 nr_wakeups_sync;
1129 u64 nr_wakeups_migrate;
1130 u64 nr_wakeups_local;
1131 u64 nr_wakeups_remote;
1132 u64 nr_wakeups_affine;
1133 u64 nr_wakeups_affine_attempts;
1134 u64 nr_wakeups_passive;
1135 u64 nr_wakeups_idle;
1136};
1137#endif
1138
1139struct sched_entity {
1140 struct load_weight load; /* for load-balancing */
1141 struct rb_node run_node;
1142 struct list_head group_node;
1143 unsigned int on_rq;
1144
1145 u64 exec_start;
1146 u64 sum_exec_runtime;
1147 u64 vruntime;
1148 u64 prev_sum_exec_runtime;
1149
1150 u64 nr_migrations;
1151
1152#ifdef CONFIG_SCHEDSTATS
1153 struct sched_statistics statistics;
1154#endif
1155
1156#ifdef CONFIG_FAIR_GROUP_SCHED
1157 struct sched_entity *parent;
1158 /* rq on which this entity is (to be) queued: */
1159 struct cfs_rq *cfs_rq;
1160 /* rq "owned" by this entity/group: */
1161 struct cfs_rq *my_q;
1162#endif
1163
1164/*
1165 * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be
1166 * removed when useful for applications beyond shares distribution (e.g.
1167 * load-balance).
1168 */
1169#if defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)
1170 /* Per-entity load-tracking */
1171 struct sched_avg avg;
1172#endif
1173};
1174
1175struct sched_rt_entity {
1176 struct list_head run_list;
1177 unsigned long timeout;
1178 unsigned long watchdog_stamp;
1179 unsigned int time_slice;
1180
1181 struct sched_rt_entity *back;
1182#ifdef CONFIG_RT_GROUP_SCHED
1183 struct sched_rt_entity *parent;
1184 /* rq on which this entity is (to be) queued: */
1185 struct rt_rq *rt_rq;
1186 /* rq "owned" by this entity/group: */
1187 struct rt_rq *my_q;
1188#endif
1189};
1190
1191
1192struct rcu_node;
1193
1194enum perf_event_task_context {
1195 perf_invalid_context = -1,
1196 perf_hw_context = 0,
1197 perf_sw_context,
1198 perf_nr_task_contexts,
1199};
1200
1201struct task_struct {
1202 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
1203 void *stack;
1204 atomic_t usage;
1205 unsigned int flags; /* per process flags, defined below */
1206 unsigned int ptrace;
1207
1208#ifdef CONFIG_SMP
1209 struct llist_node wake_entry;
1210 int on_cpu;
1211#endif
1212 int on_rq;
1213
1214 int prio, static_prio, normal_prio;
1215 unsigned int rt_priority;
1216 const struct sched_class *sched_class;
1217 struct sched_entity se;
1218 struct sched_rt_entity rt;
1219#ifdef CONFIG_CGROUP_SCHED
1220 struct task_group *sched_task_group;
1221#endif
1222
1223#ifdef CONFIG_PREEMPT_NOTIFIERS
1224 /* list of struct preempt_notifier: */
1225 struct hlist_head preempt_notifiers;
1226#endif
1227
1228 /*
1229 * fpu_counter contains the number of consecutive context switches
1230 * that the FPU is used. If this is over a threshold, the lazy fpu
1231 * saving becomes unlazy to save the trap. This is an unsigned char
1232 * so that after 256 times the counter wraps and the behavior turns
1233 * lazy again; this to deal with bursty apps that only use FPU for
1234 * a short time
1235 */
1236 unsigned char fpu_counter;
1237#ifdef CONFIG_BLK_DEV_IO_TRACE
1238 unsigned int btrace_seq;
1239#endif
1240
1241 unsigned int policy;
1242 int nr_cpus_allowed;
1243 cpumask_t cpus_allowed;
1244
1245#ifdef CONFIG_PREEMPT_RCU
1246 int rcu_read_lock_nesting;
1247 char rcu_read_unlock_special;
1248 struct list_head rcu_node_entry;
1249#endif /* #ifdef CONFIG_PREEMPT_RCU */
1250#ifdef CONFIG_TREE_PREEMPT_RCU
1251 struct rcu_node *rcu_blocked_node;
1252#endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1253#ifdef CONFIG_RCU_BOOST
1254 struct rt_mutex *rcu_boost_mutex;
1255#endif /* #ifdef CONFIG_RCU_BOOST */
1256
1257#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1258 struct sched_info sched_info;
1259#endif
1260
1261 struct list_head tasks;
1262#ifdef CONFIG_SMP
1263 struct plist_node pushable_tasks;
1264#endif
1265
1266 struct mm_struct *mm, *active_mm;
1267#ifdef CONFIG_COMPAT_BRK
1268 unsigned brk_randomized:1;
1269#endif
1270#if defined(SPLIT_RSS_COUNTING)
1271 struct task_rss_stat rss_stat;
1272#endif
1273/* task state */
1274 int exit_state;
1275 int exit_code, exit_signal;
1276 int pdeath_signal; /* The signal sent when the parent dies */
1277 unsigned int jobctl; /* JOBCTL_*, siglock protected */
1278 /* ??? */
1279 unsigned int personality;
1280 unsigned did_exec:1;
1281 unsigned in_execve:1; /* Tell the LSMs that the process is doing an
1282 * execve */
1283 unsigned in_iowait:1;
1284
1285 /* task may not gain privileges */
1286 unsigned no_new_privs:1;
1287
1288 /* Revert to default priority/policy when forking */
1289 unsigned sched_reset_on_fork:1;
1290 unsigned sched_contributes_to_load:1;
1291
1292 pid_t pid;
1293 pid_t tgid;
1294
1295#ifdef CONFIG_CC_STACKPROTECTOR
1296 /* Canary value for the -fstack-protector gcc feature */
1297 unsigned long stack_canary;
1298#endif
1299 /*
1300 * pointers to (original) parent process, youngest child, younger sibling,
1301 * older sibling, respectively. (p->father can be replaced with
1302 * p->real_parent->pid)
1303 */
1304 struct task_struct __rcu *real_parent; /* real parent process */
1305 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
1306 /*
1307 * children/sibling forms the list of my natural children
1308 */
1309 struct list_head children; /* list of my children */
1310 struct list_head sibling; /* linkage in my parent's children list */
1311 struct task_struct *group_leader; /* threadgroup leader */
1312
1313 /*
1314 * ptraced is the list of tasks this task is using ptrace on.
1315 * This includes both natural children and PTRACE_ATTACH targets.
1316 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1317 */
1318 struct list_head ptraced;
1319 struct list_head ptrace_entry;
1320
1321 /* PID/PID hash table linkage. */
1322 struct pid_link pids[PIDTYPE_MAX];
1323 struct list_head thread_group;
1324
1325 struct completion *vfork_done; /* for vfork() */
1326 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1327 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1328
1329 cputime_t utime, stime, utimescaled, stimescaled;
1330 cputime_t gtime;
1331#ifndef CONFIG_VIRT_CPU_ACCOUNTING
1332 struct cputime prev_cputime;
1333#endif
1334#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1335 seqlock_t vtime_seqlock;
1336 unsigned long long vtime_snap;
1337 enum {
1338 VTIME_SLEEPING = 0,
1339 VTIME_USER,
1340 VTIME_SYS,
1341 } vtime_snap_whence;
1342#endif
1343 unsigned long nvcsw, nivcsw; /* context switch counts */
1344 struct timespec start_time; /* monotonic time */
1345 struct timespec real_start_time; /* boot based time */
1346/* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1347 unsigned long min_flt, maj_flt;
1348
1349 struct task_cputime cputime_expires;
1350 struct list_head cpu_timers[3];
1351
1352/* process credentials */
1353 const struct cred __rcu *real_cred; /* objective and real subjective task
1354 * credentials (COW) */
1355 const struct cred __rcu *cred; /* effective (overridable) subjective task
1356 * credentials (COW) */
1357 char comm[TASK_COMM_LEN]; /* executable name excluding path
1358 - access with [gs]et_task_comm (which lock
1359 it with task_lock())
1360 - initialized normally by setup_new_exec */
1361/* file system info */
1362 int link_count, total_link_count;
1363#ifdef CONFIG_SYSVIPC
1364/* ipc stuff */
1365 struct sysv_sem sysvsem;
1366#endif
1367#ifdef CONFIG_DETECT_HUNG_TASK
1368/* hung task detection */
1369 unsigned long last_switch_count;
1370#endif
1371/* CPU-specific state of this task */
1372 struct thread_struct thread;
1373/* filesystem information */
1374 struct fs_struct *fs;
1375/* open file information */
1376 struct files_struct *files;
1377/* namespaces */
1378 struct nsproxy *nsproxy;
1379/* signal handlers */
1380 struct signal_struct *signal;
1381 struct sighand_struct *sighand;
1382
1383 sigset_t blocked, real_blocked;
1384 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1385 struct sigpending pending;
1386
1387 unsigned long sas_ss_sp;
1388 size_t sas_ss_size;
1389 int (*notifier)(void *priv);
1390 void *notifier_data;
1391 sigset_t *notifier_mask;
1392 struct callback_head *task_works;
1393
1394 struct audit_context *audit_context;
1395#ifdef CONFIG_AUDITSYSCALL
1396 kuid_t loginuid;
1397 unsigned int sessionid;
1398#endif
1399 struct seccomp seccomp;
1400
1401/* Thread group tracking */
1402 u32 parent_exec_id;
1403 u32 self_exec_id;
1404/* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1405 * mempolicy */
1406 spinlock_t alloc_lock;
1407
1408 /* Protection of the PI data structures: */
1409 raw_spinlock_t pi_lock;
1410
1411#ifdef CONFIG_RT_MUTEXES
1412 /* PI waiters blocked on a rt_mutex held by this task */
1413 struct plist_head pi_waiters;
1414 /* Deadlock detection and priority inheritance handling */
1415 struct rt_mutex_waiter *pi_blocked_on;
1416#endif
1417
1418#ifdef CONFIG_DEBUG_MUTEXES
1419 /* mutex deadlock detection */
1420 struct mutex_waiter *blocked_on;
1421#endif
1422#ifdef CONFIG_TRACE_IRQFLAGS
1423 unsigned int irq_events;
1424 unsigned long hardirq_enable_ip;
1425 unsigned long hardirq_disable_ip;
1426 unsigned int hardirq_enable_event;
1427 unsigned int hardirq_disable_event;
1428 int hardirqs_enabled;
1429 int hardirq_context;
1430 unsigned long softirq_disable_ip;
1431 unsigned long softirq_enable_ip;
1432 unsigned int softirq_disable_event;
1433 unsigned int softirq_enable_event;
1434 int softirqs_enabled;
1435 int softirq_context;
1436#endif
1437#ifdef CONFIG_LOCKDEP
1438# define MAX_LOCK_DEPTH 48UL
1439 u64 curr_chain_key;
1440 int lockdep_depth;
1441 unsigned int lockdep_recursion;
1442 struct held_lock held_locks[MAX_LOCK_DEPTH];
1443 gfp_t lockdep_reclaim_gfp;
1444#endif
1445
1446/* journalling filesystem info */
1447 void *journal_info;
1448
1449/* stacked block device info */
1450 struct bio_list *bio_list;
1451
1452#ifdef CONFIG_BLOCK
1453/* stack plugging */
1454 struct blk_plug *plug;
1455#endif
1456
1457/* VM state */
1458 struct reclaim_state *reclaim_state;
1459
1460 struct backing_dev_info *backing_dev_info;
1461
1462 struct io_context *io_context;
1463
1464 unsigned long ptrace_message;
1465 siginfo_t *last_siginfo; /* For ptrace use. */
1466 struct task_io_accounting ioac;
1467#if defined(CONFIG_TASK_XACCT)
1468 u64 acct_rss_mem1; /* accumulated rss usage */
1469 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1470 cputime_t acct_timexpd; /* stime + utime since last update */
1471#endif
1472#ifdef CONFIG_CPUSETS
1473 nodemask_t mems_allowed; /* Protected by alloc_lock */
1474 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */
1475 int cpuset_mem_spread_rotor;
1476 int cpuset_slab_spread_rotor;
1477#endif
1478#ifdef CONFIG_CGROUPS
1479 /* Control Group info protected by css_set_lock */
1480 struct css_set __rcu *cgroups;
1481 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1482 struct list_head cg_list;
1483#endif
1484#ifdef CONFIG_FUTEX
1485 struct robust_list_head __user *robust_list;
1486#ifdef CONFIG_COMPAT
1487 struct compat_robust_list_head __user *compat_robust_list;
1488#endif
1489 struct list_head pi_state_list;
1490 struct futex_pi_state *pi_state_cache;
1491#endif
1492#ifdef CONFIG_PERF_EVENTS
1493 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1494 struct mutex perf_event_mutex;
1495 struct list_head perf_event_list;
1496#endif
1497#ifdef CONFIG_NUMA
1498 struct mempolicy *mempolicy; /* Protected by alloc_lock */
1499 short il_next;
1500 short pref_node_fork;
1501#endif
1502#ifdef CONFIG_NUMA_BALANCING
1503 int numa_scan_seq;
1504 int numa_migrate_seq;
1505 unsigned int numa_scan_period;
1506 u64 node_stamp; /* migration stamp */
1507 struct callback_head numa_work;
1508#endif /* CONFIG_NUMA_BALANCING */
1509
1510 struct rcu_head rcu;
1511
1512 /*
1513 * cache last used pipe for splice
1514 */
1515 struct pipe_inode_info *splice_pipe;
1516
1517 struct page_frag task_frag;
1518
1519#ifdef CONFIG_TASK_DELAY_ACCT
1520 struct task_delay_info *delays;
1521#endif
1522#ifdef CONFIG_FAULT_INJECTION
1523 int make_it_fail;
1524#endif
1525 /*
1526 * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1527 * balance_dirty_pages() for some dirty throttling pause
1528 */
1529 int nr_dirtied;
1530 int nr_dirtied_pause;
1531 unsigned long dirty_paused_when; /* start of a write-and-pause period */
1532
1533#ifdef CONFIG_LATENCYTOP
1534 int latency_record_count;
1535 struct latency_record latency_record[LT_SAVECOUNT];
1536#endif
1537 /*
1538 * time slack values; these are used to round up poll() and
1539 * select() etc timeout values. These are in nanoseconds.
1540 */
1541 unsigned long timer_slack_ns;
1542 unsigned long default_timer_slack_ns;
1543
1544#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1545 /* Index of current stored address in ret_stack */
1546 int curr_ret_stack;
1547 /* Stack of return addresses for return function tracing */
1548 struct ftrace_ret_stack *ret_stack;
1549 /* time stamp for last schedule */
1550 unsigned long long ftrace_timestamp;
1551 /*
1552 * Number of functions that haven't been traced
1553 * because of depth overrun.
1554 */
1555 atomic_t trace_overrun;
1556 /* Pause for the tracing */
1557 atomic_t tracing_graph_pause;
1558#endif
1559#ifdef CONFIG_TRACING
1560 /* state flags for use by tracers */
1561 unsigned long trace;
1562 /* bitmask and counter of trace recursion */
1563 unsigned long trace_recursion;
1564#endif /* CONFIG_TRACING */
1565#ifdef CONFIG_MEMCG /* memcg uses this to do batch job */
1566 struct memcg_batch_info {
1567 int do_batch; /* incremented when batch uncharge started */
1568 struct mem_cgroup *memcg; /* target memcg of uncharge */
1569 unsigned long nr_pages; /* uncharged usage */
1570 unsigned long memsw_nr_pages; /* uncharged mem+swap usage */
1571 } memcg_batch;
1572 unsigned int memcg_kmem_skip_account;
1573#endif
1574#ifdef CONFIG_HAVE_HW_BREAKPOINT
1575 atomic_t ptrace_bp_refcnt;
1576#endif
1577#ifdef CONFIG_UPROBES
1578 struct uprobe_task *utask;
1579#endif
1580};
1581
1582/* Future-safe accessor for struct task_struct's cpus_allowed. */
1583#define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
1584
1585#ifdef CONFIG_NUMA_BALANCING
1586extern void task_numa_fault(int node, int pages, bool migrated);
1587extern void set_numabalancing_state(bool enabled);
1588#else
1589static inline void task_numa_fault(int node, int pages, bool migrated)
1590{
1591}
1592static inline void set_numabalancing_state(bool enabled)
1593{
1594}
1595#endif
1596
1597static inline struct pid *task_pid(struct task_struct *task)
1598{
1599 return task->pids[PIDTYPE_PID].pid;
1600}
1601
1602static inline struct pid *task_tgid(struct task_struct *task)
1603{
1604 return task->group_leader->pids[PIDTYPE_PID].pid;
1605}
1606
1607/*
1608 * Without tasklist or rcu lock it is not safe to dereference
1609 * the result of task_pgrp/task_session even if task == current,
1610 * we can race with another thread doing sys_setsid/sys_setpgid.
1611 */
1612static inline struct pid *task_pgrp(struct task_struct *task)
1613{
1614 return task->group_leader->pids[PIDTYPE_PGID].pid;
1615}
1616
1617static inline struct pid *task_session(struct task_struct *task)
1618{
1619 return task->group_leader->pids[PIDTYPE_SID].pid;
1620}
1621
1622struct pid_namespace;
1623
1624/*
1625 * the helpers to get the task's different pids as they are seen
1626 * from various namespaces
1627 *
1628 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1629 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1630 * current.
1631 * task_xid_nr_ns() : id seen from the ns specified;
1632 *
1633 * set_task_vxid() : assigns a virtual id to a task;
1634 *
1635 * see also pid_nr() etc in include/linux/pid.h
1636 */
1637pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1638 struct pid_namespace *ns);
1639
1640static inline pid_t task_pid_nr(struct task_struct *tsk)
1641{
1642 return tsk->pid;
1643}
1644
1645static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1646 struct pid_namespace *ns)
1647{
1648 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1649}
1650
1651static inline pid_t task_pid_vnr(struct task_struct *tsk)
1652{
1653 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1654}
1655
1656
1657static inline pid_t task_tgid_nr(struct task_struct *tsk)
1658{
1659 return tsk->tgid;
1660}
1661
1662pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1663
1664static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1665{
1666 return pid_vnr(task_tgid(tsk));
1667}
1668
1669
1670static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1671 struct pid_namespace *ns)
1672{
1673 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1674}
1675
1676static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1677{
1678 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1679}
1680
1681
1682static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1683 struct pid_namespace *ns)
1684{
1685 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1686}
1687
1688static inline pid_t task_session_vnr(struct task_struct *tsk)
1689{
1690 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1691}
1692
1693/* obsolete, do not use */
1694static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1695{
1696 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1697}
1698
1699/**
1700 * pid_alive - check that a task structure is not stale
1701 * @p: Task structure to be checked.
1702 *
1703 * Test if a process is not yet dead (at most zombie state)
1704 * If pid_alive fails, then pointers within the task structure
1705 * can be stale and must not be dereferenced.
1706 */
1707static inline int pid_alive(struct task_struct *p)
1708{
1709 return p->pids[PIDTYPE_PID].pid != NULL;
1710}
1711
1712/**
1713 * is_global_init - check if a task structure is init
1714 * @tsk: Task structure to be checked.
1715 *
1716 * Check if a task structure is the first user space task the kernel created.
1717 */
1718static inline int is_global_init(struct task_struct *tsk)
1719{
1720 return tsk->pid == 1;
1721}
1722
1723extern struct pid *cad_pid;
1724
1725extern void free_task(struct task_struct *tsk);
1726#define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1727
1728extern void __put_task_struct(struct task_struct *t);
1729
1730static inline void put_task_struct(struct task_struct *t)
1731{
1732 if (atomic_dec_and_test(&t->usage))
1733 __put_task_struct(t);
1734}
1735
1736#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1737extern void task_cputime(struct task_struct *t,
1738 cputime_t *utime, cputime_t *stime);
1739extern void task_cputime_scaled(struct task_struct *t,
1740 cputime_t *utimescaled, cputime_t *stimescaled);
1741extern cputime_t task_gtime(struct task_struct *t);
1742#else
1743static inline void task_cputime(struct task_struct *t,
1744 cputime_t *utime, cputime_t *stime)
1745{
1746 if (utime)
1747 *utime = t->utime;
1748 if (stime)
1749 *stime = t->stime;
1750}
1751
1752static inline void task_cputime_scaled(struct task_struct *t,
1753 cputime_t *utimescaled,
1754 cputime_t *stimescaled)
1755{
1756 if (utimescaled)
1757 *utimescaled = t->utimescaled;
1758 if (stimescaled)
1759 *stimescaled = t->stimescaled;
1760}
1761
1762static inline cputime_t task_gtime(struct task_struct *t)
1763{
1764 return t->gtime;
1765}
1766#endif
1767extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
1768extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
1769
1770/*
1771 * Per process flags
1772 */
1773#define PF_EXITING 0x00000004 /* getting shut down */
1774#define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
1775#define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1776#define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1777#define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
1778#define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */
1779#define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
1780#define PF_DUMPCORE 0x00000200 /* dumped core */
1781#define PF_SIGNALED 0x00000400 /* killed by a signal */
1782#define PF_MEMALLOC 0x00000800 /* Allocating memory */
1783#define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */
1784#define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
1785#define PF_USED_ASYNC 0x00004000 /* used async_schedule*(), used by module init */
1786#define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
1787#define PF_FROZEN 0x00010000 /* frozen for system suspend */
1788#define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
1789#define PF_KSWAPD 0x00040000 /* I am kswapd */
1790#define PF_MEMALLOC_NOIO 0x00080000 /* Allocating memory without IO involved */
1791#define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1792#define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1793#define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
1794#define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1795#define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */
1796#define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */
1797#define PF_THREAD_BOUND 0x04000000 /* Thread bound to specific cpu */
1798#define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1799#define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */
1800#define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1801#define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
1802
1803/*
1804 * Only the _current_ task can read/write to tsk->flags, but other
1805 * tasks can access tsk->flags in readonly mode for example
1806 * with tsk_used_math (like during threaded core dumping).
1807 * There is however an exception to this rule during ptrace
1808 * or during fork: the ptracer task is allowed to write to the
1809 * child->flags of its traced child (same goes for fork, the parent
1810 * can write to the child->flags), because we're guaranteed the
1811 * child is not running and in turn not changing child->flags
1812 * at the same time the parent does it.
1813 */
1814#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1815#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1816#define clear_used_math() clear_stopped_child_used_math(current)
1817#define set_used_math() set_stopped_child_used_math(current)
1818#define conditional_stopped_child_used_math(condition, child) \
1819 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1820#define conditional_used_math(condition) \
1821 conditional_stopped_child_used_math(condition, current)
1822#define copy_to_stopped_child_used_math(child) \
1823 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1824/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1825#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1826#define used_math() tsk_used_math(current)
1827
1828/* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags */
1829static inline gfp_t memalloc_noio_flags(gfp_t flags)
1830{
1831 if (unlikely(current->flags & PF_MEMALLOC_NOIO))
1832 flags &= ~__GFP_IO;
1833 return flags;
1834}
1835
1836static inline unsigned int memalloc_noio_save(void)
1837{
1838 unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
1839 current->flags |= PF_MEMALLOC_NOIO;
1840 return flags;
1841}
1842
1843static inline void memalloc_noio_restore(unsigned int flags)
1844{
1845 current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
1846}
1847
1848/*
1849 * task->jobctl flags
1850 */
1851#define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */
1852
1853#define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */
1854#define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */
1855#define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */
1856#define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */
1857#define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */
1858#define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */
1859#define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */
1860
1861#define JOBCTL_STOP_DEQUEUED (1 << JOBCTL_STOP_DEQUEUED_BIT)
1862#define JOBCTL_STOP_PENDING (1 << JOBCTL_STOP_PENDING_BIT)
1863#define JOBCTL_STOP_CONSUME (1 << JOBCTL_STOP_CONSUME_BIT)
1864#define JOBCTL_TRAP_STOP (1 << JOBCTL_TRAP_STOP_BIT)
1865#define JOBCTL_TRAP_NOTIFY (1 << JOBCTL_TRAP_NOTIFY_BIT)
1866#define JOBCTL_TRAPPING (1 << JOBCTL_TRAPPING_BIT)
1867#define JOBCTL_LISTENING (1 << JOBCTL_LISTENING_BIT)
1868
1869#define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
1870#define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
1871
1872extern bool task_set_jobctl_pending(struct task_struct *task,
1873 unsigned int mask);
1874extern void task_clear_jobctl_trapping(struct task_struct *task);
1875extern void task_clear_jobctl_pending(struct task_struct *task,
1876 unsigned int mask);
1877
1878#ifdef CONFIG_PREEMPT_RCU
1879
1880#define RCU_READ_UNLOCK_BLOCKED (1 << 0) /* blocked while in RCU read-side. */
1881#define RCU_READ_UNLOCK_NEED_QS (1 << 1) /* RCU core needs CPU response. */
1882
1883static inline void rcu_copy_process(struct task_struct *p)
1884{
1885 p->rcu_read_lock_nesting = 0;
1886 p->rcu_read_unlock_special = 0;
1887#ifdef CONFIG_TREE_PREEMPT_RCU
1888 p->rcu_blocked_node = NULL;
1889#endif /* #ifdef CONFIG_TREE_PREEMPT_RCU */
1890#ifdef CONFIG_RCU_BOOST
1891 p->rcu_boost_mutex = NULL;
1892#endif /* #ifdef CONFIG_RCU_BOOST */
1893 INIT_LIST_HEAD(&p->rcu_node_entry);
1894}
1895
1896#else
1897
1898static inline void rcu_copy_process(struct task_struct *p)
1899{
1900}
1901
1902#endif
1903
1904static inline void tsk_restore_flags(struct task_struct *task,
1905 unsigned long orig_flags, unsigned long flags)
1906{
1907 task->flags &= ~flags;
1908 task->flags |= orig_flags & flags;
1909}
1910
1911#ifdef CONFIG_SMP
1912extern void do_set_cpus_allowed(struct task_struct *p,
1913 const struct cpumask *new_mask);
1914
1915extern int set_cpus_allowed_ptr(struct task_struct *p,
1916 const struct cpumask *new_mask);
1917#else
1918static inline void do_set_cpus_allowed(struct task_struct *p,
1919 const struct cpumask *new_mask)
1920{
1921}
1922static inline int set_cpus_allowed_ptr(struct task_struct *p,
1923 const struct cpumask *new_mask)
1924{
1925 if (!cpumask_test_cpu(0, new_mask))
1926 return -EINVAL;
1927 return 0;
1928}
1929#endif
1930
1931#ifdef CONFIG_NO_HZ
1932void calc_load_enter_idle(void);
1933void calc_load_exit_idle(void);
1934#else
1935static inline void calc_load_enter_idle(void) { }
1936static inline void calc_load_exit_idle(void) { }
1937#endif /* CONFIG_NO_HZ */
1938
1939#ifndef CONFIG_CPUMASK_OFFSTACK
1940static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1941{
1942 return set_cpus_allowed_ptr(p, &new_mask);
1943}
1944#endif
1945
1946/*
1947 * Do not use outside of architecture code which knows its limitations.
1948 *
1949 * sched_clock() has no promise of monotonicity or bounded drift between
1950 * CPUs, use (which you should not) requires disabling IRQs.
1951 *
1952 * Please use one of the three interfaces below.
1953 */
1954extern unsigned long long notrace sched_clock(void);
1955/*
1956 * See the comment in kernel/sched/clock.c
1957 */
1958extern u64 cpu_clock(int cpu);
1959extern u64 local_clock(void);
1960extern u64 sched_clock_cpu(int cpu);
1961
1962
1963extern void sched_clock_init(void);
1964
1965#ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1966static inline void sched_clock_tick(void)
1967{
1968}
1969
1970static inline void sched_clock_idle_sleep_event(void)
1971{
1972}
1973
1974static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1975{
1976}
1977#else
1978/*
1979 * Architectures can set this to 1 if they have specified
1980 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
1981 * but then during bootup it turns out that sched_clock()
1982 * is reliable after all:
1983 */
1984extern int sched_clock_stable;
1985
1986extern void sched_clock_tick(void);
1987extern void sched_clock_idle_sleep_event(void);
1988extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1989#endif
1990
1991#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1992/*
1993 * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
1994 * The reason for this explicit opt-in is not to have perf penalty with
1995 * slow sched_clocks.
1996 */
1997extern void enable_sched_clock_irqtime(void);
1998extern void disable_sched_clock_irqtime(void);
1999#else
2000static inline void enable_sched_clock_irqtime(void) {}
2001static inline void disable_sched_clock_irqtime(void) {}
2002#endif
2003
2004extern unsigned long long
2005task_sched_runtime(struct task_struct *task);
2006
2007/* sched_exec is called by processes performing an exec */
2008#ifdef CONFIG_SMP
2009extern void sched_exec(void);
2010#else
2011#define sched_exec() {}
2012#endif
2013
2014extern void sched_clock_idle_sleep_event(void);
2015extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2016
2017#ifdef CONFIG_HOTPLUG_CPU
2018extern void idle_task_exit(void);
2019#else
2020static inline void idle_task_exit(void) {}
2021#endif
2022
2023#if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
2024extern void wake_up_idle_cpu(int cpu);
2025#else
2026static inline void wake_up_idle_cpu(int cpu) { }
2027#endif
2028
2029#ifdef CONFIG_SCHED_AUTOGROUP
2030extern void sched_autogroup_create_attach(struct task_struct *p);
2031extern void sched_autogroup_detach(struct task_struct *p);
2032extern void sched_autogroup_fork(struct signal_struct *sig);
2033extern void sched_autogroup_exit(struct signal_struct *sig);
2034#ifdef CONFIG_PROC_FS
2035extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
2036extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice);
2037#endif
2038#else
2039static inline void sched_autogroup_create_attach(struct task_struct *p) { }
2040static inline void sched_autogroup_detach(struct task_struct *p) { }
2041static inline void sched_autogroup_fork(struct signal_struct *sig) { }
2042static inline void sched_autogroup_exit(struct signal_struct *sig) { }
2043#endif
2044
2045extern bool yield_to(struct task_struct *p, bool preempt);
2046extern void set_user_nice(struct task_struct *p, long nice);
2047extern int task_prio(const struct task_struct *p);
2048extern int task_nice(const struct task_struct *p);
2049extern int can_nice(const struct task_struct *p, const int nice);
2050extern int task_curr(const struct task_struct *p);
2051extern int idle_cpu(int cpu);
2052extern int sched_setscheduler(struct task_struct *, int,
2053 const struct sched_param *);
2054extern int sched_setscheduler_nocheck(struct task_struct *, int,
2055 const struct sched_param *);
2056extern struct task_struct *idle_task(int cpu);
2057/**
2058 * is_idle_task - is the specified task an idle task?
2059 * @p: the task in question.
2060 */
2061static inline bool is_idle_task(const struct task_struct *p)
2062{
2063 return p->pid == 0;
2064}
2065extern struct task_struct *curr_task(int cpu);
2066extern void set_curr_task(int cpu, struct task_struct *p);
2067
2068void yield(void);
2069
2070/*
2071 * The default (Linux) execution domain.
2072 */
2073extern struct exec_domain default_exec_domain;
2074
2075union thread_union {
2076 struct thread_info thread_info;
2077 unsigned long stack[THREAD_SIZE/sizeof(long)];
2078};
2079
2080#ifndef __HAVE_ARCH_KSTACK_END
2081static inline int kstack_end(void *addr)
2082{
2083 /* Reliable end of stack detection:
2084 * Some APM bios versions misalign the stack
2085 */
2086 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
2087}
2088#endif
2089
2090extern union thread_union init_thread_union;
2091extern struct task_struct init_task;
2092
2093extern struct mm_struct init_mm;
2094
2095extern struct pid_namespace init_pid_ns;
2096
2097/*
2098 * find a task by one of its numerical ids
2099 *
2100 * find_task_by_pid_ns():
2101 * finds a task by its pid in the specified namespace
2102 * find_task_by_vpid():
2103 * finds a task by its virtual pid
2104 *
2105 * see also find_vpid() etc in include/linux/pid.h
2106 */
2107
2108extern struct task_struct *find_task_by_vpid(pid_t nr);
2109extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2110 struct pid_namespace *ns);
2111
2112extern void __set_special_pids(struct pid *pid);
2113
2114/* per-UID process charging. */
2115extern struct user_struct * alloc_uid(kuid_t);
2116static inline struct user_struct *get_uid(struct user_struct *u)
2117{
2118 atomic_inc(&u->__count);
2119 return u;
2120}
2121extern void free_uid(struct user_struct *);
2122
2123#include <asm/current.h>
2124
2125extern void xtime_update(unsigned long ticks);
2126
2127extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2128extern int wake_up_process(struct task_struct *tsk);
2129extern void wake_up_new_task(struct task_struct *tsk);
2130#ifdef CONFIG_SMP
2131 extern void kick_process(struct task_struct *tsk);
2132#else
2133 static inline void kick_process(struct task_struct *tsk) { }
2134#endif
2135extern void sched_fork(struct task_struct *p);
2136extern void sched_dead(struct task_struct *p);
2137
2138extern void proc_caches_init(void);
2139extern void flush_signals(struct task_struct *);
2140extern void __flush_signals(struct task_struct *);
2141extern void ignore_signals(struct task_struct *);
2142extern void flush_signal_handlers(struct task_struct *, int force_default);
2143extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2144
2145static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
2146{
2147 unsigned long flags;
2148 int ret;
2149
2150 spin_lock_irqsave(&tsk->sighand->siglock, flags);
2151 ret = dequeue_signal(tsk, mask, info);
2152 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2153
2154 return ret;
2155}
2156
2157extern void block_all_signals(int (*notifier)(void *priv), void *priv,
2158 sigset_t *mask);
2159extern void unblock_all_signals(void);
2160extern void release_task(struct task_struct * p);
2161extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2162extern int force_sigsegv(int, struct task_struct *);
2163extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2164extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2165extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2166extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
2167 const struct cred *, u32);
2168extern int kill_pgrp(struct pid *pid, int sig, int priv);
2169extern int kill_pid(struct pid *pid, int sig, int priv);
2170extern int kill_proc_info(int, struct siginfo *, pid_t);
2171extern __must_check bool do_notify_parent(struct task_struct *, int);
2172extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2173extern void force_sig(int, struct task_struct *);
2174extern int send_sig(int, struct task_struct *, int);
2175extern int zap_other_threads(struct task_struct *p);
2176extern struct sigqueue *sigqueue_alloc(void);
2177extern void sigqueue_free(struct sigqueue *);
2178extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
2179extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2180
2181static inline void restore_saved_sigmask(void)
2182{
2183 if (test_and_clear_restore_sigmask())
2184 __set_current_blocked(¤t->saved_sigmask);
2185}
2186
2187static inline sigset_t *sigmask_to_save(void)
2188{
2189 sigset_t *res = ¤t->blocked;
2190 if (unlikely(test_restore_sigmask()))
2191 res = ¤t->saved_sigmask;
2192 return res;
2193}
2194
2195static inline int kill_cad_pid(int sig, int priv)
2196{
2197 return kill_pid(cad_pid, sig, priv);
2198}
2199
2200/* These can be the second arg to send_sig_info/send_group_sig_info. */
2201#define SEND_SIG_NOINFO ((struct siginfo *) 0)
2202#define SEND_SIG_PRIV ((struct siginfo *) 1)
2203#define SEND_SIG_FORCED ((struct siginfo *) 2)
2204
2205/*
2206 * True if we are on the alternate signal stack.
2207 */
2208static inline int on_sig_stack(unsigned long sp)
2209{
2210#ifdef CONFIG_STACK_GROWSUP
2211 return sp >= current->sas_ss_sp &&
2212 sp - current->sas_ss_sp < current->sas_ss_size;
2213#else
2214 return sp > current->sas_ss_sp &&
2215 sp - current->sas_ss_sp <= current->sas_ss_size;
2216#endif
2217}
2218
2219static inline int sas_ss_flags(unsigned long sp)
2220{
2221 return (current->sas_ss_size == 0 ? SS_DISABLE
2222 : on_sig_stack(sp) ? SS_ONSTACK : 0);
2223}
2224
2225static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
2226{
2227 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
2228#ifdef CONFIG_STACK_GROWSUP
2229 return current->sas_ss_sp;
2230#else
2231 return current->sas_ss_sp + current->sas_ss_size;
2232#endif
2233 return sp;
2234}
2235
2236/*
2237 * Routines for handling mm_structs
2238 */
2239extern struct mm_struct * mm_alloc(void);
2240
2241/* mmdrop drops the mm and the page tables */
2242extern void __mmdrop(struct mm_struct *);
2243static inline void mmdrop(struct mm_struct * mm)
2244{
2245 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2246 __mmdrop(mm);
2247}
2248
2249/* mmput gets rid of the mappings and all user-space */
2250extern void mmput(struct mm_struct *);
2251/* Grab a reference to a task's mm, if it is not already going away */
2252extern struct mm_struct *get_task_mm(struct task_struct *task);
2253/*
2254 * Grab a reference to a task's mm, if it is not already going away
2255 * and ptrace_may_access with the mode parameter passed to it
2256 * succeeds.
2257 */
2258extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
2259/* Remove the current tasks stale references to the old mm_struct */
2260extern void mm_release(struct task_struct *, struct mm_struct *);
2261/* Allocate a new mm structure and copy contents from tsk->mm */
2262extern struct mm_struct *dup_mm(struct task_struct *tsk);
2263
2264extern int copy_thread(unsigned long, unsigned long, unsigned long,
2265 struct task_struct *);
2266extern void flush_thread(void);
2267extern void exit_thread(void);
2268
2269extern void exit_files(struct task_struct *);
2270extern void __cleanup_sighand(struct sighand_struct *);
2271
2272extern void exit_itimers(struct signal_struct *);
2273extern void flush_itimer_signals(void);
2274
2275extern void do_group_exit(int);
2276
2277extern int allow_signal(int);
2278extern int disallow_signal(int);
2279
2280extern int do_execve(const char *,
2281 const char __user * const __user *,
2282 const char __user * const __user *);
2283extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *);
2284struct task_struct *fork_idle(int);
2285extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags);
2286
2287extern void set_task_comm(struct task_struct *tsk, char *from);
2288extern char *get_task_comm(char *to, struct task_struct *tsk);
2289
2290#ifdef CONFIG_SMP
2291void scheduler_ipi(void);
2292extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2293#else
2294static inline void scheduler_ipi(void) { }
2295static inline unsigned long wait_task_inactive(struct task_struct *p,
2296 long match_state)
2297{
2298 return 1;
2299}
2300#endif
2301
2302#define next_task(p) \
2303 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2304
2305#define for_each_process(p) \
2306 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2307
2308extern bool current_is_single_threaded(void);
2309
2310/*
2311 * Careful: do_each_thread/while_each_thread is a double loop so
2312 * 'break' will not work as expected - use goto instead.
2313 */
2314#define do_each_thread(g, t) \
2315 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2316
2317#define while_each_thread(g, t) \
2318 while ((t = next_thread(t)) != g)
2319
2320static inline int get_nr_threads(struct task_struct *tsk)
2321{
2322 return tsk->signal->nr_threads;
2323}
2324
2325static inline bool thread_group_leader(struct task_struct *p)
2326{
2327 return p->exit_signal >= 0;
2328}
2329
2330/* Do to the insanities of de_thread it is possible for a process
2331 * to have the pid of the thread group leader without actually being
2332 * the thread group leader. For iteration through the pids in proc
2333 * all we care about is that we have a task with the appropriate
2334 * pid, we don't actually care if we have the right task.
2335 */
2336static inline int has_group_leader_pid(struct task_struct *p)
2337{
2338 return p->pid == p->tgid;
2339}
2340
2341static inline
2342int same_thread_group(struct task_struct *p1, struct task_struct *p2)
2343{
2344 return p1->tgid == p2->tgid;
2345}
2346
2347static inline struct task_struct *next_thread(const struct task_struct *p)
2348{
2349 return list_entry_rcu(p->thread_group.next,
2350 struct task_struct, thread_group);
2351}
2352
2353static inline int thread_group_empty(struct task_struct *p)
2354{
2355 return list_empty(&p->thread_group);
2356}
2357
2358#define delay_group_leader(p) \
2359 (thread_group_leader(p) && !thread_group_empty(p))
2360
2361/*
2362 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2363 * subscriptions and synchronises with wait4(). Also used in procfs. Also
2364 * pins the final release of task.io_context. Also protects ->cpuset and
2365 * ->cgroup.subsys[]. And ->vfork_done.
2366 *
2367 * Nests both inside and outside of read_lock(&tasklist_lock).
2368 * It must not be nested with write_lock_irq(&tasklist_lock),
2369 * neither inside nor outside.
2370 */
2371static inline void task_lock(struct task_struct *p)
2372{
2373 spin_lock(&p->alloc_lock);
2374}
2375
2376static inline void task_unlock(struct task_struct *p)
2377{
2378 spin_unlock(&p->alloc_lock);
2379}
2380
2381extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
2382 unsigned long *flags);
2383
2384static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2385 unsigned long *flags)
2386{
2387 struct sighand_struct *ret;
2388
2389 ret = __lock_task_sighand(tsk, flags);
2390 (void)__cond_lock(&tsk->sighand->siglock, ret);
2391 return ret;
2392}
2393
2394static inline void unlock_task_sighand(struct task_struct *tsk,
2395 unsigned long *flags)
2396{
2397 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2398}
2399
2400#ifdef CONFIG_CGROUPS
2401static inline void threadgroup_change_begin(struct task_struct *tsk)
2402{
2403 down_read(&tsk->signal->group_rwsem);
2404}
2405static inline void threadgroup_change_end(struct task_struct *tsk)
2406{
2407 up_read(&tsk->signal->group_rwsem);
2408}
2409
2410/**
2411 * threadgroup_lock - lock threadgroup
2412 * @tsk: member task of the threadgroup to lock
2413 *
2414 * Lock the threadgroup @tsk belongs to. No new task is allowed to enter
2415 * and member tasks aren't allowed to exit (as indicated by PF_EXITING) or
2416 * perform exec. This is useful for cases where the threadgroup needs to
2417 * stay stable across blockable operations.
2418 *
2419 * fork and exit paths explicitly call threadgroup_change_{begin|end}() for
2420 * synchronization. While held, no new task will be added to threadgroup
2421 * and no existing live task will have its PF_EXITING set.
2422 *
2423 * During exec, a task goes and puts its thread group through unusual
2424 * changes. After de-threading, exclusive access is assumed to resources
2425 * which are usually shared by tasks in the same group - e.g. sighand may
2426 * be replaced with a new one. Also, the exec'ing task takes over group
2427 * leader role including its pid. Exclude these changes while locked by
2428 * grabbing cred_guard_mutex which is used to synchronize exec path.
2429 */
2430static inline void threadgroup_lock(struct task_struct *tsk)
2431{
2432 /*
2433 * exec uses exit for de-threading nesting group_rwsem inside
2434 * cred_guard_mutex. Grab cred_guard_mutex first.
2435 */
2436 mutex_lock(&tsk->signal->cred_guard_mutex);
2437 down_write(&tsk->signal->group_rwsem);
2438}
2439
2440/**
2441 * threadgroup_unlock - unlock threadgroup
2442 * @tsk: member task of the threadgroup to unlock
2443 *
2444 * Reverse threadgroup_lock().
2445 */
2446static inline void threadgroup_unlock(struct task_struct *tsk)
2447{
2448 up_write(&tsk->signal->group_rwsem);
2449 mutex_unlock(&tsk->signal->cred_guard_mutex);
2450}
2451#else
2452static inline void threadgroup_change_begin(struct task_struct *tsk) {}
2453static inline void threadgroup_change_end(struct task_struct *tsk) {}
2454static inline void threadgroup_lock(struct task_struct *tsk) {}
2455static inline void threadgroup_unlock(struct task_struct *tsk) {}
2456#endif
2457
2458#ifndef __HAVE_THREAD_FUNCTIONS
2459
2460#define task_thread_info(task) ((struct thread_info *)(task)->stack)
2461#define task_stack_page(task) ((task)->stack)
2462
2463static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2464{
2465 *task_thread_info(p) = *task_thread_info(org);
2466 task_thread_info(p)->task = p;
2467}
2468
2469static inline unsigned long *end_of_stack(struct task_struct *p)
2470{
2471 return (unsigned long *)(task_thread_info(p) + 1);
2472}
2473
2474#endif
2475
2476static inline int object_is_on_stack(void *obj)
2477{
2478 void *stack = task_stack_page(current);
2479
2480 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2481}
2482
2483extern void thread_info_cache_init(void);
2484
2485#ifdef CONFIG_DEBUG_STACK_USAGE
2486static inline unsigned long stack_not_used(struct task_struct *p)
2487{
2488 unsigned long *n = end_of_stack(p);
2489
2490 do { /* Skip over canary */
2491 n++;
2492 } while (!*n);
2493
2494 return (unsigned long)n - (unsigned long)end_of_stack(p);
2495}
2496#endif
2497
2498/* set thread flags in other task's structures
2499 * - see asm/thread_info.h for TIF_xxxx flags available
2500 */
2501static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2502{
2503 set_ti_thread_flag(task_thread_info(tsk), flag);
2504}
2505
2506static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2507{
2508 clear_ti_thread_flag(task_thread_info(tsk), flag);
2509}
2510
2511static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2512{
2513 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2514}
2515
2516static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2517{
2518 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2519}
2520
2521static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2522{
2523 return test_ti_thread_flag(task_thread_info(tsk), flag);
2524}
2525
2526static inline void set_tsk_need_resched(struct task_struct *tsk)
2527{
2528 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2529}
2530
2531static inline void clear_tsk_need_resched(struct task_struct *tsk)
2532{
2533 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2534}
2535
2536static inline int test_tsk_need_resched(struct task_struct *tsk)
2537{
2538 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2539}
2540
2541static inline int restart_syscall(void)
2542{
2543 set_tsk_thread_flag(current, TIF_SIGPENDING);
2544 return -ERESTARTNOINTR;
2545}
2546
2547static inline int signal_pending(struct task_struct *p)
2548{
2549 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2550}
2551
2552static inline int __fatal_signal_pending(struct task_struct *p)
2553{
2554 return unlikely(sigismember(&p->pending.signal, SIGKILL));
2555}
2556
2557static inline int fatal_signal_pending(struct task_struct *p)
2558{
2559 return signal_pending(p) && __fatal_signal_pending(p);
2560}
2561
2562static inline int signal_pending_state(long state, struct task_struct *p)
2563{
2564 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2565 return 0;
2566 if (!signal_pending(p))
2567 return 0;
2568
2569 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2570}
2571
2572static inline int need_resched(void)
2573{
2574 return unlikely(test_thread_flag(TIF_NEED_RESCHED));
2575}
2576
2577/*
2578 * cond_resched() and cond_resched_lock(): latency reduction via
2579 * explicit rescheduling in places that are safe. The return
2580 * value indicates whether a reschedule was done in fact.
2581 * cond_resched_lock() will drop the spinlock before scheduling,
2582 * cond_resched_softirq() will enable bhs before scheduling.
2583 */
2584extern int _cond_resched(void);
2585
2586#define cond_resched() ({ \
2587 __might_sleep(__FILE__, __LINE__, 0); \
2588 _cond_resched(); \
2589})
2590
2591extern int __cond_resched_lock(spinlock_t *lock);
2592
2593#ifdef CONFIG_PREEMPT_COUNT
2594#define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET
2595#else
2596#define PREEMPT_LOCK_OFFSET 0
2597#endif
2598
2599#define cond_resched_lock(lock) ({ \
2600 __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \
2601 __cond_resched_lock(lock); \
2602})
2603
2604extern int __cond_resched_softirq(void);
2605
2606#define cond_resched_softirq() ({ \
2607 __might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \
2608 __cond_resched_softirq(); \
2609})
2610
2611/*
2612 * Does a critical section need to be broken due to another
2613 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2614 * but a general need for low latency)
2615 */
2616static inline int spin_needbreak(spinlock_t *lock)
2617{
2618#ifdef CONFIG_PREEMPT
2619 return spin_is_contended(lock);
2620#else
2621 return 0;
2622#endif
2623}
2624
2625/*
2626 * Thread group CPU time accounting.
2627 */
2628void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
2629void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
2630
2631static inline void thread_group_cputime_init(struct signal_struct *sig)
2632{
2633 raw_spin_lock_init(&sig->cputimer.lock);
2634}
2635
2636/*
2637 * Reevaluate whether the task has signals pending delivery.
2638 * Wake the task if so.
2639 * This is required every time the blocked sigset_t changes.
2640 * callers must hold sighand->siglock.
2641 */
2642extern void recalc_sigpending_and_wake(struct task_struct *t);
2643extern void recalc_sigpending(void);
2644
2645extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
2646
2647static inline void signal_wake_up(struct task_struct *t, bool resume)
2648{
2649 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
2650}
2651static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
2652{
2653 signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
2654}
2655
2656/*
2657 * Wrappers for p->thread_info->cpu access. No-op on UP.
2658 */
2659#ifdef CONFIG_SMP
2660
2661static inline unsigned int task_cpu(const struct task_struct *p)
2662{
2663 return task_thread_info(p)->cpu;
2664}
2665
2666extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2667
2668#else
2669
2670static inline unsigned int task_cpu(const struct task_struct *p)
2671{
2672 return 0;
2673}
2674
2675static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2676{
2677}
2678
2679#endif /* CONFIG_SMP */
2680
2681extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2682extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2683
2684#ifdef CONFIG_CGROUP_SCHED
2685
2686extern struct task_group root_task_group;
2687
2688extern struct task_group *sched_create_group(struct task_group *parent);
2689extern void sched_online_group(struct task_group *tg,
2690 struct task_group *parent);
2691extern void sched_destroy_group(struct task_group *tg);
2692extern void sched_offline_group(struct task_group *tg);
2693extern void sched_move_task(struct task_struct *tsk);
2694#ifdef CONFIG_FAIR_GROUP_SCHED
2695extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
2696extern unsigned long sched_group_shares(struct task_group *tg);
2697#endif
2698#ifdef CONFIG_RT_GROUP_SCHED
2699extern int sched_group_set_rt_runtime(struct task_group *tg,
2700 long rt_runtime_us);
2701extern long sched_group_rt_runtime(struct task_group *tg);
2702extern int sched_group_set_rt_period(struct task_group *tg,
2703 long rt_period_us);
2704extern long sched_group_rt_period(struct task_group *tg);
2705extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
2706#endif
2707#endif /* CONFIG_CGROUP_SCHED */
2708
2709extern int task_can_switch_user(struct user_struct *up,
2710 struct task_struct *tsk);
2711
2712#ifdef CONFIG_TASK_XACCT
2713static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2714{
2715 tsk->ioac.rchar += amt;
2716}
2717
2718static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2719{
2720 tsk->ioac.wchar += amt;
2721}
2722
2723static inline void inc_syscr(struct task_struct *tsk)
2724{
2725 tsk->ioac.syscr++;
2726}
2727
2728static inline void inc_syscw(struct task_struct *tsk)
2729{
2730 tsk->ioac.syscw++;
2731}
2732#else
2733static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2734{
2735}
2736
2737static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2738{
2739}
2740
2741static inline void inc_syscr(struct task_struct *tsk)
2742{
2743}
2744
2745static inline void inc_syscw(struct task_struct *tsk)
2746{
2747}
2748#endif
2749
2750#ifndef TASK_SIZE_OF
2751#define TASK_SIZE_OF(tsk) TASK_SIZE
2752#endif
2753
2754#ifdef CONFIG_MM_OWNER
2755extern void mm_update_next_owner(struct mm_struct *mm);
2756extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2757#else
2758static inline void mm_update_next_owner(struct mm_struct *mm)
2759{
2760}
2761
2762static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2763{
2764}
2765#endif /* CONFIG_MM_OWNER */
2766
2767static inline unsigned long task_rlimit(const struct task_struct *tsk,
2768 unsigned int limit)
2769{
2770 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_cur);
2771}
2772
2773static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
2774 unsigned int limit)
2775{
2776 return ACCESS_ONCE(tsk->signal->rlim[limit].rlim_max);
2777}
2778
2779static inline unsigned long rlimit(unsigned int limit)
2780{
2781 return task_rlimit(current, limit);
2782}
2783
2784static inline unsigned long rlimit_max(unsigned int limit)
2785{
2786 return task_rlimit_max(current, limit);
2787}
2788
2789#endif