at v3.9 59 kB view raw
1#ifndef _LINUX_MM_H 2#define _LINUX_MM_H 3 4#include <linux/errno.h> 5 6#ifdef __KERNEL__ 7 8#include <linux/gfp.h> 9#include <linux/bug.h> 10#include <linux/list.h> 11#include <linux/mmzone.h> 12#include <linux/rbtree.h> 13#include <linux/atomic.h> 14#include <linux/debug_locks.h> 15#include <linux/mm_types.h> 16#include <linux/range.h> 17#include <linux/pfn.h> 18#include <linux/bit_spinlock.h> 19#include <linux/shrinker.h> 20 21struct mempolicy; 22struct anon_vma; 23struct anon_vma_chain; 24struct file_ra_state; 25struct user_struct; 26struct writeback_control; 27 28#ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */ 29extern unsigned long max_mapnr; 30#endif 31 32extern unsigned long num_physpages; 33extern unsigned long totalram_pages; 34extern void * high_memory; 35extern int page_cluster; 36 37#ifdef CONFIG_SYSCTL 38extern int sysctl_legacy_va_layout; 39#else 40#define sysctl_legacy_va_layout 0 41#endif 42 43#include <asm/page.h> 44#include <asm/pgtable.h> 45#include <asm/processor.h> 46 47#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 48 49/* to align the pointer to the (next) page boundary */ 50#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 51 52/* 53 * Linux kernel virtual memory manager primitives. 54 * The idea being to have a "virtual" mm in the same way 55 * we have a virtual fs - giving a cleaner interface to the 56 * mm details, and allowing different kinds of memory mappings 57 * (from shared memory to executable loading to arbitrary 58 * mmap() functions). 59 */ 60 61extern struct kmem_cache *vm_area_cachep; 62 63#ifndef CONFIG_MMU 64extern struct rb_root nommu_region_tree; 65extern struct rw_semaphore nommu_region_sem; 66 67extern unsigned int kobjsize(const void *objp); 68#endif 69 70/* 71 * vm_flags in vm_area_struct, see mm_types.h. 72 */ 73#define VM_NONE 0x00000000 74 75#define VM_READ 0x00000001 /* currently active flags */ 76#define VM_WRITE 0x00000002 77#define VM_EXEC 0x00000004 78#define VM_SHARED 0x00000008 79 80/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 81#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 82#define VM_MAYWRITE 0x00000020 83#define VM_MAYEXEC 0x00000040 84#define VM_MAYSHARE 0x00000080 85 86#define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 87#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 88#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 89 90#define VM_LOCKED 0x00002000 91#define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 92 93 /* Used by sys_madvise() */ 94#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 95#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 96 97#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 98#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 99#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 100#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 101#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 102#define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */ 103#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 104#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 105 106#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 107#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 108#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 109#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 110 111#if defined(CONFIG_X86) 112# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 113#elif defined(CONFIG_PPC) 114# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 115#elif defined(CONFIG_PARISC) 116# define VM_GROWSUP VM_ARCH_1 117#elif defined(CONFIG_METAG) 118# define VM_GROWSUP VM_ARCH_1 119#elif defined(CONFIG_IA64) 120# define VM_GROWSUP VM_ARCH_1 121#elif !defined(CONFIG_MMU) 122# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 123#endif 124 125#ifndef VM_GROWSUP 126# define VM_GROWSUP VM_NONE 127#endif 128 129/* Bits set in the VMA until the stack is in its final location */ 130#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) 131 132#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 133#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 134#endif 135 136#ifdef CONFIG_STACK_GROWSUP 137#define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 138#else 139#define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 140#endif 141 142#define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ) 143#define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK 144#define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK)) 145#define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ) 146#define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ) 147 148/* 149 * Special vmas that are non-mergable, non-mlock()able. 150 * Note: mm/huge_memory.c VM_NO_THP depends on this definition. 151 */ 152#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP) 153 154/* 155 * mapping from the currently active vm_flags protection bits (the 156 * low four bits) to a page protection mask.. 157 */ 158extern pgprot_t protection_map[16]; 159 160#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */ 161#define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */ 162#define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */ 163#define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */ 164#define FAULT_FLAG_RETRY_NOWAIT 0x10 /* Don't drop mmap_sem and wait when retrying */ 165#define FAULT_FLAG_KILLABLE 0x20 /* The fault task is in SIGKILL killable region */ 166#define FAULT_FLAG_TRIED 0x40 /* second try */ 167 168/* 169 * vm_fault is filled by the the pagefault handler and passed to the vma's 170 * ->fault function. The vma's ->fault is responsible for returning a bitmask 171 * of VM_FAULT_xxx flags that give details about how the fault was handled. 172 * 173 * pgoff should be used in favour of virtual_address, if possible. If pgoff 174 * is used, one may implement ->remap_pages to get nonlinear mapping support. 175 */ 176struct vm_fault { 177 unsigned int flags; /* FAULT_FLAG_xxx flags */ 178 pgoff_t pgoff; /* Logical page offset based on vma */ 179 void __user *virtual_address; /* Faulting virtual address */ 180 181 struct page *page; /* ->fault handlers should return a 182 * page here, unless VM_FAULT_NOPAGE 183 * is set (which is also implied by 184 * VM_FAULT_ERROR). 185 */ 186}; 187 188/* 189 * These are the virtual MM functions - opening of an area, closing and 190 * unmapping it (needed to keep files on disk up-to-date etc), pointer 191 * to the functions called when a no-page or a wp-page exception occurs. 192 */ 193struct vm_operations_struct { 194 void (*open)(struct vm_area_struct * area); 195 void (*close)(struct vm_area_struct * area); 196 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf); 197 198 /* notification that a previously read-only page is about to become 199 * writable, if an error is returned it will cause a SIGBUS */ 200 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf); 201 202 /* called by access_process_vm when get_user_pages() fails, typically 203 * for use by special VMAs that can switch between memory and hardware 204 */ 205 int (*access)(struct vm_area_struct *vma, unsigned long addr, 206 void *buf, int len, int write); 207#ifdef CONFIG_NUMA 208 /* 209 * set_policy() op must add a reference to any non-NULL @new mempolicy 210 * to hold the policy upon return. Caller should pass NULL @new to 211 * remove a policy and fall back to surrounding context--i.e. do not 212 * install a MPOL_DEFAULT policy, nor the task or system default 213 * mempolicy. 214 */ 215 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 216 217 /* 218 * get_policy() op must add reference [mpol_get()] to any policy at 219 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 220 * in mm/mempolicy.c will do this automatically. 221 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 222 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem. 223 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 224 * must return NULL--i.e., do not "fallback" to task or system default 225 * policy. 226 */ 227 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 228 unsigned long addr); 229 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from, 230 const nodemask_t *to, unsigned long flags); 231#endif 232 /* called by sys_remap_file_pages() to populate non-linear mapping */ 233 int (*remap_pages)(struct vm_area_struct *vma, unsigned long addr, 234 unsigned long size, pgoff_t pgoff); 235}; 236 237struct mmu_gather; 238struct inode; 239 240#define page_private(page) ((page)->private) 241#define set_page_private(page, v) ((page)->private = (v)) 242 243/* It's valid only if the page is free path or free_list */ 244static inline void set_freepage_migratetype(struct page *page, int migratetype) 245{ 246 page->index = migratetype; 247} 248 249/* It's valid only if the page is free path or free_list */ 250static inline int get_freepage_migratetype(struct page *page) 251{ 252 return page->index; 253} 254 255/* 256 * FIXME: take this include out, include page-flags.h in 257 * files which need it (119 of them) 258 */ 259#include <linux/page-flags.h> 260#include <linux/huge_mm.h> 261 262/* 263 * Methods to modify the page usage count. 264 * 265 * What counts for a page usage: 266 * - cache mapping (page->mapping) 267 * - private data (page->private) 268 * - page mapped in a task's page tables, each mapping 269 * is counted separately 270 * 271 * Also, many kernel routines increase the page count before a critical 272 * routine so they can be sure the page doesn't go away from under them. 273 */ 274 275/* 276 * Drop a ref, return true if the refcount fell to zero (the page has no users) 277 */ 278static inline int put_page_testzero(struct page *page) 279{ 280 VM_BUG_ON(atomic_read(&page->_count) == 0); 281 return atomic_dec_and_test(&page->_count); 282} 283 284/* 285 * Try to grab a ref unless the page has a refcount of zero, return false if 286 * that is the case. 287 */ 288static inline int get_page_unless_zero(struct page *page) 289{ 290 return atomic_inc_not_zero(&page->_count); 291} 292 293extern int page_is_ram(unsigned long pfn); 294 295/* Support for virtually mapped pages */ 296struct page *vmalloc_to_page(const void *addr); 297unsigned long vmalloc_to_pfn(const void *addr); 298 299/* 300 * Determine if an address is within the vmalloc range 301 * 302 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 303 * is no special casing required. 304 */ 305static inline int is_vmalloc_addr(const void *x) 306{ 307#ifdef CONFIG_MMU 308 unsigned long addr = (unsigned long)x; 309 310 return addr >= VMALLOC_START && addr < VMALLOC_END; 311#else 312 return 0; 313#endif 314} 315#ifdef CONFIG_MMU 316extern int is_vmalloc_or_module_addr(const void *x); 317#else 318static inline int is_vmalloc_or_module_addr(const void *x) 319{ 320 return 0; 321} 322#endif 323 324static inline void compound_lock(struct page *page) 325{ 326#ifdef CONFIG_TRANSPARENT_HUGEPAGE 327 VM_BUG_ON(PageSlab(page)); 328 bit_spin_lock(PG_compound_lock, &page->flags); 329#endif 330} 331 332static inline void compound_unlock(struct page *page) 333{ 334#ifdef CONFIG_TRANSPARENT_HUGEPAGE 335 VM_BUG_ON(PageSlab(page)); 336 bit_spin_unlock(PG_compound_lock, &page->flags); 337#endif 338} 339 340static inline unsigned long compound_lock_irqsave(struct page *page) 341{ 342 unsigned long uninitialized_var(flags); 343#ifdef CONFIG_TRANSPARENT_HUGEPAGE 344 local_irq_save(flags); 345 compound_lock(page); 346#endif 347 return flags; 348} 349 350static inline void compound_unlock_irqrestore(struct page *page, 351 unsigned long flags) 352{ 353#ifdef CONFIG_TRANSPARENT_HUGEPAGE 354 compound_unlock(page); 355 local_irq_restore(flags); 356#endif 357} 358 359static inline struct page *compound_head(struct page *page) 360{ 361 if (unlikely(PageTail(page))) 362 return page->first_page; 363 return page; 364} 365 366/* 367 * The atomic page->_mapcount, starts from -1: so that transitions 368 * both from it and to it can be tracked, using atomic_inc_and_test 369 * and atomic_add_negative(-1). 370 */ 371static inline void page_mapcount_reset(struct page *page) 372{ 373 atomic_set(&(page)->_mapcount, -1); 374} 375 376static inline int page_mapcount(struct page *page) 377{ 378 return atomic_read(&(page)->_mapcount) + 1; 379} 380 381static inline int page_count(struct page *page) 382{ 383 return atomic_read(&compound_head(page)->_count); 384} 385 386static inline void get_huge_page_tail(struct page *page) 387{ 388 /* 389 * __split_huge_page_refcount() cannot run 390 * from under us. 391 */ 392 VM_BUG_ON(page_mapcount(page) < 0); 393 VM_BUG_ON(atomic_read(&page->_count) != 0); 394 atomic_inc(&page->_mapcount); 395} 396 397extern bool __get_page_tail(struct page *page); 398 399static inline void get_page(struct page *page) 400{ 401 if (unlikely(PageTail(page))) 402 if (likely(__get_page_tail(page))) 403 return; 404 /* 405 * Getting a normal page or the head of a compound page 406 * requires to already have an elevated page->_count. 407 */ 408 VM_BUG_ON(atomic_read(&page->_count) <= 0); 409 atomic_inc(&page->_count); 410} 411 412static inline struct page *virt_to_head_page(const void *x) 413{ 414 struct page *page = virt_to_page(x); 415 return compound_head(page); 416} 417 418/* 419 * Setup the page count before being freed into the page allocator for 420 * the first time (boot or memory hotplug) 421 */ 422static inline void init_page_count(struct page *page) 423{ 424 atomic_set(&page->_count, 1); 425} 426 427/* 428 * PageBuddy() indicate that the page is free and in the buddy system 429 * (see mm/page_alloc.c). 430 * 431 * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to 432 * -2 so that an underflow of the page_mapcount() won't be mistaken 433 * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very 434 * efficiently by most CPU architectures. 435 */ 436#define PAGE_BUDDY_MAPCOUNT_VALUE (-128) 437 438static inline int PageBuddy(struct page *page) 439{ 440 return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE; 441} 442 443static inline void __SetPageBuddy(struct page *page) 444{ 445 VM_BUG_ON(atomic_read(&page->_mapcount) != -1); 446 atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE); 447} 448 449static inline void __ClearPageBuddy(struct page *page) 450{ 451 VM_BUG_ON(!PageBuddy(page)); 452 atomic_set(&page->_mapcount, -1); 453} 454 455void put_page(struct page *page); 456void put_pages_list(struct list_head *pages); 457 458void split_page(struct page *page, unsigned int order); 459int split_free_page(struct page *page); 460 461/* 462 * Compound pages have a destructor function. Provide a 463 * prototype for that function and accessor functions. 464 * These are _only_ valid on the head of a PG_compound page. 465 */ 466typedef void compound_page_dtor(struct page *); 467 468static inline void set_compound_page_dtor(struct page *page, 469 compound_page_dtor *dtor) 470{ 471 page[1].lru.next = (void *)dtor; 472} 473 474static inline compound_page_dtor *get_compound_page_dtor(struct page *page) 475{ 476 return (compound_page_dtor *)page[1].lru.next; 477} 478 479static inline int compound_order(struct page *page) 480{ 481 if (!PageHead(page)) 482 return 0; 483 return (unsigned long)page[1].lru.prev; 484} 485 486static inline int compound_trans_order(struct page *page) 487{ 488 int order; 489 unsigned long flags; 490 491 if (!PageHead(page)) 492 return 0; 493 494 flags = compound_lock_irqsave(page); 495 order = compound_order(page); 496 compound_unlock_irqrestore(page, flags); 497 return order; 498} 499 500static inline void set_compound_order(struct page *page, unsigned long order) 501{ 502 page[1].lru.prev = (void *)order; 503} 504 505#ifdef CONFIG_MMU 506/* 507 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 508 * servicing faults for write access. In the normal case, do always want 509 * pte_mkwrite. But get_user_pages can cause write faults for mappings 510 * that do not have writing enabled, when used by access_process_vm. 511 */ 512static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 513{ 514 if (likely(vma->vm_flags & VM_WRITE)) 515 pte = pte_mkwrite(pte); 516 return pte; 517} 518#endif 519 520/* 521 * Multiple processes may "see" the same page. E.g. for untouched 522 * mappings of /dev/null, all processes see the same page full of 523 * zeroes, and text pages of executables and shared libraries have 524 * only one copy in memory, at most, normally. 525 * 526 * For the non-reserved pages, page_count(page) denotes a reference count. 527 * page_count() == 0 means the page is free. page->lru is then used for 528 * freelist management in the buddy allocator. 529 * page_count() > 0 means the page has been allocated. 530 * 531 * Pages are allocated by the slab allocator in order to provide memory 532 * to kmalloc and kmem_cache_alloc. In this case, the management of the 533 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 534 * unless a particular usage is carefully commented. (the responsibility of 535 * freeing the kmalloc memory is the caller's, of course). 536 * 537 * A page may be used by anyone else who does a __get_free_page(). 538 * In this case, page_count still tracks the references, and should only 539 * be used through the normal accessor functions. The top bits of page->flags 540 * and page->virtual store page management information, but all other fields 541 * are unused and could be used privately, carefully. The management of this 542 * page is the responsibility of the one who allocated it, and those who have 543 * subsequently been given references to it. 544 * 545 * The other pages (we may call them "pagecache pages") are completely 546 * managed by the Linux memory manager: I/O, buffers, swapping etc. 547 * The following discussion applies only to them. 548 * 549 * A pagecache page contains an opaque `private' member, which belongs to the 550 * page's address_space. Usually, this is the address of a circular list of 551 * the page's disk buffers. PG_private must be set to tell the VM to call 552 * into the filesystem to release these pages. 553 * 554 * A page may belong to an inode's memory mapping. In this case, page->mapping 555 * is the pointer to the inode, and page->index is the file offset of the page, 556 * in units of PAGE_CACHE_SIZE. 557 * 558 * If pagecache pages are not associated with an inode, they are said to be 559 * anonymous pages. These may become associated with the swapcache, and in that 560 * case PG_swapcache is set, and page->private is an offset into the swapcache. 561 * 562 * In either case (swapcache or inode backed), the pagecache itself holds one 563 * reference to the page. Setting PG_private should also increment the 564 * refcount. The each user mapping also has a reference to the page. 565 * 566 * The pagecache pages are stored in a per-mapping radix tree, which is 567 * rooted at mapping->page_tree, and indexed by offset. 568 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 569 * lists, we instead now tag pages as dirty/writeback in the radix tree. 570 * 571 * All pagecache pages may be subject to I/O: 572 * - inode pages may need to be read from disk, 573 * - inode pages which have been modified and are MAP_SHARED may need 574 * to be written back to the inode on disk, 575 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 576 * modified may need to be swapped out to swap space and (later) to be read 577 * back into memory. 578 */ 579 580/* 581 * The zone field is never updated after free_area_init_core() 582 * sets it, so none of the operations on it need to be atomic. 583 */ 584 585/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_NID] | ... | FLAGS | */ 586#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 587#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 588#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 589#define LAST_NID_PGOFF (ZONES_PGOFF - LAST_NID_WIDTH) 590 591/* 592 * Define the bit shifts to access each section. For non-existent 593 * sections we define the shift as 0; that plus a 0 mask ensures 594 * the compiler will optimise away reference to them. 595 */ 596#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 597#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 598#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 599#define LAST_NID_PGSHIFT (LAST_NID_PGOFF * (LAST_NID_WIDTH != 0)) 600 601/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 602#ifdef NODE_NOT_IN_PAGE_FLAGS 603#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 604#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ 605 SECTIONS_PGOFF : ZONES_PGOFF) 606#else 607#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 608#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ 609 NODES_PGOFF : ZONES_PGOFF) 610#endif 611 612#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 613 614#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 615#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 616#endif 617 618#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 619#define NODES_MASK ((1UL << NODES_WIDTH) - 1) 620#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 621#define LAST_NID_MASK ((1UL << LAST_NID_WIDTH) - 1) 622#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 623 624static inline enum zone_type page_zonenum(const struct page *page) 625{ 626 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 627} 628 629#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 630#define SECTION_IN_PAGE_FLAGS 631#endif 632 633/* 634 * The identification function is only used by the buddy allocator for 635 * determining if two pages could be buddies. We are not really 636 * identifying a zone since we could be using a the section number 637 * id if we have not node id available in page flags. 638 * We guarantee only that it will return the same value for two 639 * combinable pages in a zone. 640 */ 641static inline int page_zone_id(struct page *page) 642{ 643 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 644} 645 646static inline int zone_to_nid(struct zone *zone) 647{ 648#ifdef CONFIG_NUMA 649 return zone->node; 650#else 651 return 0; 652#endif 653} 654 655#ifdef NODE_NOT_IN_PAGE_FLAGS 656extern int page_to_nid(const struct page *page); 657#else 658static inline int page_to_nid(const struct page *page) 659{ 660 return (page->flags >> NODES_PGSHIFT) & NODES_MASK; 661} 662#endif 663 664#ifdef CONFIG_NUMA_BALANCING 665#ifdef LAST_NID_NOT_IN_PAGE_FLAGS 666static inline int page_nid_xchg_last(struct page *page, int nid) 667{ 668 return xchg(&page->_last_nid, nid); 669} 670 671static inline int page_nid_last(struct page *page) 672{ 673 return page->_last_nid; 674} 675static inline void page_nid_reset_last(struct page *page) 676{ 677 page->_last_nid = -1; 678} 679#else 680static inline int page_nid_last(struct page *page) 681{ 682 return (page->flags >> LAST_NID_PGSHIFT) & LAST_NID_MASK; 683} 684 685extern int page_nid_xchg_last(struct page *page, int nid); 686 687static inline void page_nid_reset_last(struct page *page) 688{ 689 int nid = (1 << LAST_NID_SHIFT) - 1; 690 691 page->flags &= ~(LAST_NID_MASK << LAST_NID_PGSHIFT); 692 page->flags |= (nid & LAST_NID_MASK) << LAST_NID_PGSHIFT; 693} 694#endif /* LAST_NID_NOT_IN_PAGE_FLAGS */ 695#else 696static inline int page_nid_xchg_last(struct page *page, int nid) 697{ 698 return page_to_nid(page); 699} 700 701static inline int page_nid_last(struct page *page) 702{ 703 return page_to_nid(page); 704} 705 706static inline void page_nid_reset_last(struct page *page) 707{ 708} 709#endif 710 711static inline struct zone *page_zone(const struct page *page) 712{ 713 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 714} 715 716#ifdef SECTION_IN_PAGE_FLAGS 717static inline void set_page_section(struct page *page, unsigned long section) 718{ 719 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 720 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 721} 722 723static inline unsigned long page_to_section(const struct page *page) 724{ 725 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 726} 727#endif 728 729static inline void set_page_zone(struct page *page, enum zone_type zone) 730{ 731 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 732 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 733} 734 735static inline void set_page_node(struct page *page, unsigned long node) 736{ 737 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 738 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 739} 740 741static inline void set_page_links(struct page *page, enum zone_type zone, 742 unsigned long node, unsigned long pfn) 743{ 744 set_page_zone(page, zone); 745 set_page_node(page, node); 746#ifdef SECTION_IN_PAGE_FLAGS 747 set_page_section(page, pfn_to_section_nr(pfn)); 748#endif 749} 750 751/* 752 * Some inline functions in vmstat.h depend on page_zone() 753 */ 754#include <linux/vmstat.h> 755 756static __always_inline void *lowmem_page_address(const struct page *page) 757{ 758 return __va(PFN_PHYS(page_to_pfn(page))); 759} 760 761#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 762#define HASHED_PAGE_VIRTUAL 763#endif 764 765#if defined(WANT_PAGE_VIRTUAL) 766#define page_address(page) ((page)->virtual) 767#define set_page_address(page, address) \ 768 do { \ 769 (page)->virtual = (address); \ 770 } while(0) 771#define page_address_init() do { } while(0) 772#endif 773 774#if defined(HASHED_PAGE_VIRTUAL) 775void *page_address(const struct page *page); 776void set_page_address(struct page *page, void *virtual); 777void page_address_init(void); 778#endif 779 780#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 781#define page_address(page) lowmem_page_address(page) 782#define set_page_address(page, address) do { } while(0) 783#define page_address_init() do { } while(0) 784#endif 785 786/* 787 * On an anonymous page mapped into a user virtual memory area, 788 * page->mapping points to its anon_vma, not to a struct address_space; 789 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h. 790 * 791 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled, 792 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit; 793 * and then page->mapping points, not to an anon_vma, but to a private 794 * structure which KSM associates with that merged page. See ksm.h. 795 * 796 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used. 797 * 798 * Please note that, confusingly, "page_mapping" refers to the inode 799 * address_space which maps the page from disk; whereas "page_mapped" 800 * refers to user virtual address space into which the page is mapped. 801 */ 802#define PAGE_MAPPING_ANON 1 803#define PAGE_MAPPING_KSM 2 804#define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM) 805 806extern struct address_space *page_mapping(struct page *page); 807 808/* Neutral page->mapping pointer to address_space or anon_vma or other */ 809static inline void *page_rmapping(struct page *page) 810{ 811 return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS); 812} 813 814extern struct address_space *__page_file_mapping(struct page *); 815 816static inline 817struct address_space *page_file_mapping(struct page *page) 818{ 819 if (unlikely(PageSwapCache(page))) 820 return __page_file_mapping(page); 821 822 return page->mapping; 823} 824 825static inline int PageAnon(struct page *page) 826{ 827 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0; 828} 829 830/* 831 * Return the pagecache index of the passed page. Regular pagecache pages 832 * use ->index whereas swapcache pages use ->private 833 */ 834static inline pgoff_t page_index(struct page *page) 835{ 836 if (unlikely(PageSwapCache(page))) 837 return page_private(page); 838 return page->index; 839} 840 841extern pgoff_t __page_file_index(struct page *page); 842 843/* 844 * Return the file index of the page. Regular pagecache pages use ->index 845 * whereas swapcache pages use swp_offset(->private) 846 */ 847static inline pgoff_t page_file_index(struct page *page) 848{ 849 if (unlikely(PageSwapCache(page))) 850 return __page_file_index(page); 851 852 return page->index; 853} 854 855/* 856 * Return true if this page is mapped into pagetables. 857 */ 858static inline int page_mapped(struct page *page) 859{ 860 return atomic_read(&(page)->_mapcount) >= 0; 861} 862 863/* 864 * Different kinds of faults, as returned by handle_mm_fault(). 865 * Used to decide whether a process gets delivered SIGBUS or 866 * just gets major/minor fault counters bumped up. 867 */ 868 869#define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */ 870 871#define VM_FAULT_OOM 0x0001 872#define VM_FAULT_SIGBUS 0x0002 873#define VM_FAULT_MAJOR 0x0004 874#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */ 875#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */ 876#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */ 877 878#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */ 879#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */ 880#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */ 881 882#define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */ 883 884#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \ 885 VM_FAULT_HWPOISON_LARGE) 886 887/* Encode hstate index for a hwpoisoned large page */ 888#define VM_FAULT_SET_HINDEX(x) ((x) << 12) 889#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf) 890 891/* 892 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 893 */ 894extern void pagefault_out_of_memory(void); 895 896#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 897 898/* 899 * Flags passed to show_mem() and show_free_areas() to suppress output in 900 * various contexts. 901 */ 902#define SHOW_MEM_FILTER_NODES (0x0001u) /* filter disallowed nodes */ 903 904extern void show_free_areas(unsigned int flags); 905extern bool skip_free_areas_node(unsigned int flags, int nid); 906 907int shmem_zero_setup(struct vm_area_struct *); 908 909extern int can_do_mlock(void); 910extern int user_shm_lock(size_t, struct user_struct *); 911extern void user_shm_unlock(size_t, struct user_struct *); 912 913/* 914 * Parameter block passed down to zap_pte_range in exceptional cases. 915 */ 916struct zap_details { 917 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */ 918 struct address_space *check_mapping; /* Check page->mapping if set */ 919 pgoff_t first_index; /* Lowest page->index to unmap */ 920 pgoff_t last_index; /* Highest page->index to unmap */ 921}; 922 923struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 924 pte_t pte); 925 926int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 927 unsigned long size); 928void zap_page_range(struct vm_area_struct *vma, unsigned long address, 929 unsigned long size, struct zap_details *); 930void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma, 931 unsigned long start, unsigned long end); 932 933/** 934 * mm_walk - callbacks for walk_page_range 935 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry 936 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry 937 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry 938 * this handler is required to be able to handle 939 * pmd_trans_huge() pmds. They may simply choose to 940 * split_huge_page() instead of handling it explicitly. 941 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry 942 * @pte_hole: if set, called for each hole at all levels 943 * @hugetlb_entry: if set, called for each hugetlb entry 944 * *Caution*: The caller must hold mmap_sem() if @hugetlb_entry 945 * is used. 946 * 947 * (see walk_page_range for more details) 948 */ 949struct mm_walk { 950 int (*pgd_entry)(pgd_t *, unsigned long, unsigned long, struct mm_walk *); 951 int (*pud_entry)(pud_t *, unsigned long, unsigned long, struct mm_walk *); 952 int (*pmd_entry)(pmd_t *, unsigned long, unsigned long, struct mm_walk *); 953 int (*pte_entry)(pte_t *, unsigned long, unsigned long, struct mm_walk *); 954 int (*pte_hole)(unsigned long, unsigned long, struct mm_walk *); 955 int (*hugetlb_entry)(pte_t *, unsigned long, 956 unsigned long, unsigned long, struct mm_walk *); 957 struct mm_struct *mm; 958 void *private; 959}; 960 961int walk_page_range(unsigned long addr, unsigned long end, 962 struct mm_walk *walk); 963void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 964 unsigned long end, unsigned long floor, unsigned long ceiling); 965int copy_page_range(struct mm_struct *dst, struct mm_struct *src, 966 struct vm_area_struct *vma); 967void unmap_mapping_range(struct address_space *mapping, 968 loff_t const holebegin, loff_t const holelen, int even_cows); 969int follow_pfn(struct vm_area_struct *vma, unsigned long address, 970 unsigned long *pfn); 971int follow_phys(struct vm_area_struct *vma, unsigned long address, 972 unsigned int flags, unsigned long *prot, resource_size_t *phys); 973int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 974 void *buf, int len, int write); 975 976static inline void unmap_shared_mapping_range(struct address_space *mapping, 977 loff_t const holebegin, loff_t const holelen) 978{ 979 unmap_mapping_range(mapping, holebegin, holelen, 0); 980} 981 982extern void truncate_pagecache(struct inode *inode, loff_t old, loff_t new); 983extern void truncate_setsize(struct inode *inode, loff_t newsize); 984void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 985int truncate_inode_page(struct address_space *mapping, struct page *page); 986int generic_error_remove_page(struct address_space *mapping, struct page *page); 987int invalidate_inode_page(struct page *page); 988 989#ifdef CONFIG_MMU 990extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 991 unsigned long address, unsigned int flags); 992extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, 993 unsigned long address, unsigned int fault_flags); 994#else 995static inline int handle_mm_fault(struct mm_struct *mm, 996 struct vm_area_struct *vma, unsigned long address, 997 unsigned int flags) 998{ 999 /* should never happen if there's no MMU */ 1000 BUG(); 1001 return VM_FAULT_SIGBUS; 1002} 1003static inline int fixup_user_fault(struct task_struct *tsk, 1004 struct mm_struct *mm, unsigned long address, 1005 unsigned int fault_flags) 1006{ 1007 /* should never happen if there's no MMU */ 1008 BUG(); 1009 return -EFAULT; 1010} 1011#endif 1012 1013extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write); 1014extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1015 void *buf, int len, int write); 1016 1017long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1018 unsigned long start, unsigned long nr_pages, 1019 unsigned int foll_flags, struct page **pages, 1020 struct vm_area_struct **vmas, int *nonblocking); 1021long get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1022 unsigned long start, unsigned long nr_pages, 1023 int write, int force, struct page **pages, 1024 struct vm_area_struct **vmas); 1025int get_user_pages_fast(unsigned long start, int nr_pages, int write, 1026 struct page **pages); 1027struct kvec; 1028int get_kernel_pages(const struct kvec *iov, int nr_pages, int write, 1029 struct page **pages); 1030int get_kernel_page(unsigned long start, int write, struct page **pages); 1031struct page *get_dump_page(unsigned long addr); 1032 1033extern int try_to_release_page(struct page * page, gfp_t gfp_mask); 1034extern void do_invalidatepage(struct page *page, unsigned long offset); 1035 1036int __set_page_dirty_nobuffers(struct page *page); 1037int __set_page_dirty_no_writeback(struct page *page); 1038int redirty_page_for_writepage(struct writeback_control *wbc, 1039 struct page *page); 1040void account_page_dirtied(struct page *page, struct address_space *mapping); 1041void account_page_writeback(struct page *page); 1042int set_page_dirty(struct page *page); 1043int set_page_dirty_lock(struct page *page); 1044int clear_page_dirty_for_io(struct page *page); 1045 1046/* Is the vma a continuation of the stack vma above it? */ 1047static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr) 1048{ 1049 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN); 1050} 1051 1052static inline int stack_guard_page_start(struct vm_area_struct *vma, 1053 unsigned long addr) 1054{ 1055 return (vma->vm_flags & VM_GROWSDOWN) && 1056 (vma->vm_start == addr) && 1057 !vma_growsdown(vma->vm_prev, addr); 1058} 1059 1060/* Is the vma a continuation of the stack vma below it? */ 1061static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr) 1062{ 1063 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP); 1064} 1065 1066static inline int stack_guard_page_end(struct vm_area_struct *vma, 1067 unsigned long addr) 1068{ 1069 return (vma->vm_flags & VM_GROWSUP) && 1070 (vma->vm_end == addr) && 1071 !vma_growsup(vma->vm_next, addr); 1072} 1073 1074extern pid_t 1075vm_is_stack(struct task_struct *task, struct vm_area_struct *vma, int in_group); 1076 1077extern unsigned long move_page_tables(struct vm_area_struct *vma, 1078 unsigned long old_addr, struct vm_area_struct *new_vma, 1079 unsigned long new_addr, unsigned long len, 1080 bool need_rmap_locks); 1081extern unsigned long do_mremap(unsigned long addr, 1082 unsigned long old_len, unsigned long new_len, 1083 unsigned long flags, unsigned long new_addr); 1084extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start, 1085 unsigned long end, pgprot_t newprot, 1086 int dirty_accountable, int prot_numa); 1087extern int mprotect_fixup(struct vm_area_struct *vma, 1088 struct vm_area_struct **pprev, unsigned long start, 1089 unsigned long end, unsigned long newflags); 1090 1091/* 1092 * doesn't attempt to fault and will return short. 1093 */ 1094int __get_user_pages_fast(unsigned long start, int nr_pages, int write, 1095 struct page **pages); 1096/* 1097 * per-process(per-mm_struct) statistics. 1098 */ 1099static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 1100{ 1101 long val = atomic_long_read(&mm->rss_stat.count[member]); 1102 1103#ifdef SPLIT_RSS_COUNTING 1104 /* 1105 * counter is updated in asynchronous manner and may go to minus. 1106 * But it's never be expected number for users. 1107 */ 1108 if (val < 0) 1109 val = 0; 1110#endif 1111 return (unsigned long)val; 1112} 1113 1114static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 1115{ 1116 atomic_long_add(value, &mm->rss_stat.count[member]); 1117} 1118 1119static inline void inc_mm_counter(struct mm_struct *mm, int member) 1120{ 1121 atomic_long_inc(&mm->rss_stat.count[member]); 1122} 1123 1124static inline void dec_mm_counter(struct mm_struct *mm, int member) 1125{ 1126 atomic_long_dec(&mm->rss_stat.count[member]); 1127} 1128 1129static inline unsigned long get_mm_rss(struct mm_struct *mm) 1130{ 1131 return get_mm_counter(mm, MM_FILEPAGES) + 1132 get_mm_counter(mm, MM_ANONPAGES); 1133} 1134 1135static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 1136{ 1137 return max(mm->hiwater_rss, get_mm_rss(mm)); 1138} 1139 1140static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 1141{ 1142 return max(mm->hiwater_vm, mm->total_vm); 1143} 1144 1145static inline void update_hiwater_rss(struct mm_struct *mm) 1146{ 1147 unsigned long _rss = get_mm_rss(mm); 1148 1149 if ((mm)->hiwater_rss < _rss) 1150 (mm)->hiwater_rss = _rss; 1151} 1152 1153static inline void update_hiwater_vm(struct mm_struct *mm) 1154{ 1155 if (mm->hiwater_vm < mm->total_vm) 1156 mm->hiwater_vm = mm->total_vm; 1157} 1158 1159static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 1160 struct mm_struct *mm) 1161{ 1162 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 1163 1164 if (*maxrss < hiwater_rss) 1165 *maxrss = hiwater_rss; 1166} 1167 1168#if defined(SPLIT_RSS_COUNTING) 1169void sync_mm_rss(struct mm_struct *mm); 1170#else 1171static inline void sync_mm_rss(struct mm_struct *mm) 1172{ 1173} 1174#endif 1175 1176int vma_wants_writenotify(struct vm_area_struct *vma); 1177 1178extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1179 spinlock_t **ptl); 1180static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 1181 spinlock_t **ptl) 1182{ 1183 pte_t *ptep; 1184 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 1185 return ptep; 1186} 1187 1188#ifdef __PAGETABLE_PUD_FOLDED 1189static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, 1190 unsigned long address) 1191{ 1192 return 0; 1193} 1194#else 1195int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 1196#endif 1197 1198#ifdef __PAGETABLE_PMD_FOLDED 1199static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 1200 unsigned long address) 1201{ 1202 return 0; 1203} 1204#else 1205int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 1206#endif 1207 1208int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, 1209 pmd_t *pmd, unsigned long address); 1210int __pte_alloc_kernel(pmd_t *pmd, unsigned long address); 1211 1212/* 1213 * The following ifdef needed to get the 4level-fixup.h header to work. 1214 * Remove it when 4level-fixup.h has been removed. 1215 */ 1216#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK) 1217static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 1218{ 1219 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))? 1220 NULL: pud_offset(pgd, address); 1221} 1222 1223static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 1224{ 1225 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 1226 NULL: pmd_offset(pud, address); 1227} 1228#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */ 1229 1230#if USE_SPLIT_PTLOCKS 1231/* 1232 * We tuck a spinlock to guard each pagetable page into its struct page, 1233 * at page->private, with BUILD_BUG_ON to make sure that this will not 1234 * overflow into the next struct page (as it might with DEBUG_SPINLOCK). 1235 * When freeing, reset page->mapping so free_pages_check won't complain. 1236 */ 1237#define __pte_lockptr(page) &((page)->ptl) 1238#define pte_lock_init(_page) do { \ 1239 spin_lock_init(__pte_lockptr(_page)); \ 1240} while (0) 1241#define pte_lock_deinit(page) ((page)->mapping = NULL) 1242#define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));}) 1243#else /* !USE_SPLIT_PTLOCKS */ 1244/* 1245 * We use mm->page_table_lock to guard all pagetable pages of the mm. 1246 */ 1247#define pte_lock_init(page) do {} while (0) 1248#define pte_lock_deinit(page) do {} while (0) 1249#define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;}) 1250#endif /* USE_SPLIT_PTLOCKS */ 1251 1252static inline void pgtable_page_ctor(struct page *page) 1253{ 1254 pte_lock_init(page); 1255 inc_zone_page_state(page, NR_PAGETABLE); 1256} 1257 1258static inline void pgtable_page_dtor(struct page *page) 1259{ 1260 pte_lock_deinit(page); 1261 dec_zone_page_state(page, NR_PAGETABLE); 1262} 1263 1264#define pte_offset_map_lock(mm, pmd, address, ptlp) \ 1265({ \ 1266 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 1267 pte_t *__pte = pte_offset_map(pmd, address); \ 1268 *(ptlp) = __ptl; \ 1269 spin_lock(__ptl); \ 1270 __pte; \ 1271}) 1272 1273#define pte_unmap_unlock(pte, ptl) do { \ 1274 spin_unlock(ptl); \ 1275 pte_unmap(pte); \ 1276} while (0) 1277 1278#define pte_alloc_map(mm, vma, pmd, address) \ 1279 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \ 1280 pmd, address))? \ 1281 NULL: pte_offset_map(pmd, address)) 1282 1283#define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 1284 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \ 1285 pmd, address))? \ 1286 NULL: pte_offset_map_lock(mm, pmd, address, ptlp)) 1287 1288#define pte_alloc_kernel(pmd, address) \ 1289 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \ 1290 NULL: pte_offset_kernel(pmd, address)) 1291 1292extern void free_area_init(unsigned long * zones_size); 1293extern void free_area_init_node(int nid, unsigned long * zones_size, 1294 unsigned long zone_start_pfn, unsigned long *zholes_size); 1295extern void free_initmem(void); 1296 1297#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 1298/* 1299 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its 1300 * zones, allocate the backing mem_map and account for memory holes in a more 1301 * architecture independent manner. This is a substitute for creating the 1302 * zone_sizes[] and zholes_size[] arrays and passing them to 1303 * free_area_init_node() 1304 * 1305 * An architecture is expected to register range of page frames backed by 1306 * physical memory with memblock_add[_node]() before calling 1307 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic 1308 * usage, an architecture is expected to do something like 1309 * 1310 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 1311 * max_highmem_pfn}; 1312 * for_each_valid_physical_page_range() 1313 * memblock_add_node(base, size, nid) 1314 * free_area_init_nodes(max_zone_pfns); 1315 * 1316 * free_bootmem_with_active_regions() calls free_bootmem_node() for each 1317 * registered physical page range. Similarly 1318 * sparse_memory_present_with_active_regions() calls memory_present() for 1319 * each range when SPARSEMEM is enabled. 1320 * 1321 * See mm/page_alloc.c for more information on each function exposed by 1322 * CONFIG_HAVE_MEMBLOCK_NODE_MAP. 1323 */ 1324extern void free_area_init_nodes(unsigned long *max_zone_pfn); 1325unsigned long node_map_pfn_alignment(void); 1326unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, 1327 unsigned long end_pfn); 1328extern unsigned long absent_pages_in_range(unsigned long start_pfn, 1329 unsigned long end_pfn); 1330extern void get_pfn_range_for_nid(unsigned int nid, 1331 unsigned long *start_pfn, unsigned long *end_pfn); 1332extern unsigned long find_min_pfn_with_active_regions(void); 1333extern void free_bootmem_with_active_regions(int nid, 1334 unsigned long max_low_pfn); 1335extern void sparse_memory_present_with_active_regions(int nid); 1336 1337#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 1338 1339#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \ 1340 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) 1341static inline int __early_pfn_to_nid(unsigned long pfn) 1342{ 1343 return 0; 1344} 1345#else 1346/* please see mm/page_alloc.c */ 1347extern int __meminit early_pfn_to_nid(unsigned long pfn); 1348#ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 1349/* there is a per-arch backend function. */ 1350extern int __meminit __early_pfn_to_nid(unsigned long pfn); 1351#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 1352#endif 1353 1354extern void set_dma_reserve(unsigned long new_dma_reserve); 1355extern void memmap_init_zone(unsigned long, int, unsigned long, 1356 unsigned long, enum memmap_context); 1357extern void setup_per_zone_wmarks(void); 1358extern int __meminit init_per_zone_wmark_min(void); 1359extern void mem_init(void); 1360extern void __init mmap_init(void); 1361extern void show_mem(unsigned int flags); 1362extern void si_meminfo(struct sysinfo * val); 1363extern void si_meminfo_node(struct sysinfo *val, int nid); 1364 1365extern __printf(3, 4) 1366void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...); 1367 1368extern void setup_per_cpu_pageset(void); 1369 1370extern void zone_pcp_update(struct zone *zone); 1371extern void zone_pcp_reset(struct zone *zone); 1372 1373/* page_alloc.c */ 1374extern int min_free_kbytes; 1375 1376/* nommu.c */ 1377extern atomic_long_t mmap_pages_allocated; 1378extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 1379 1380/* interval_tree.c */ 1381void vma_interval_tree_insert(struct vm_area_struct *node, 1382 struct rb_root *root); 1383void vma_interval_tree_insert_after(struct vm_area_struct *node, 1384 struct vm_area_struct *prev, 1385 struct rb_root *root); 1386void vma_interval_tree_remove(struct vm_area_struct *node, 1387 struct rb_root *root); 1388struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root, 1389 unsigned long start, unsigned long last); 1390struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 1391 unsigned long start, unsigned long last); 1392 1393#define vma_interval_tree_foreach(vma, root, start, last) \ 1394 for (vma = vma_interval_tree_iter_first(root, start, last); \ 1395 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 1396 1397static inline void vma_nonlinear_insert(struct vm_area_struct *vma, 1398 struct list_head *list) 1399{ 1400 list_add_tail(&vma->shared.nonlinear, list); 1401} 1402 1403void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 1404 struct rb_root *root); 1405void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 1406 struct rb_root *root); 1407struct anon_vma_chain *anon_vma_interval_tree_iter_first( 1408 struct rb_root *root, unsigned long start, unsigned long last); 1409struct anon_vma_chain *anon_vma_interval_tree_iter_next( 1410 struct anon_vma_chain *node, unsigned long start, unsigned long last); 1411#ifdef CONFIG_DEBUG_VM_RB 1412void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 1413#endif 1414 1415#define anon_vma_interval_tree_foreach(avc, root, start, last) \ 1416 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 1417 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 1418 1419/* mmap.c */ 1420extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 1421extern int vma_adjust(struct vm_area_struct *vma, unsigned long start, 1422 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert); 1423extern struct vm_area_struct *vma_merge(struct mm_struct *, 1424 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 1425 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 1426 struct mempolicy *); 1427extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 1428extern int split_vma(struct mm_struct *, 1429 struct vm_area_struct *, unsigned long addr, int new_below); 1430extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 1431extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 1432 struct rb_node **, struct rb_node *); 1433extern void unlink_file_vma(struct vm_area_struct *); 1434extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 1435 unsigned long addr, unsigned long len, pgoff_t pgoff, 1436 bool *need_rmap_locks); 1437extern void exit_mmap(struct mm_struct *); 1438 1439extern int mm_take_all_locks(struct mm_struct *mm); 1440extern void mm_drop_all_locks(struct mm_struct *mm); 1441 1442extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 1443extern struct file *get_mm_exe_file(struct mm_struct *mm); 1444 1445extern int may_expand_vm(struct mm_struct *mm, unsigned long npages); 1446extern int install_special_mapping(struct mm_struct *mm, 1447 unsigned long addr, unsigned long len, 1448 unsigned long flags, struct page **pages); 1449 1450extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 1451 1452extern unsigned long mmap_region(struct file *file, unsigned long addr, 1453 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff); 1454extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr, 1455 unsigned long len, unsigned long prot, unsigned long flags, 1456 unsigned long pgoff, unsigned long *populate); 1457extern int do_munmap(struct mm_struct *, unsigned long, size_t); 1458 1459#ifdef CONFIG_MMU 1460extern int __mm_populate(unsigned long addr, unsigned long len, 1461 int ignore_errors); 1462static inline void mm_populate(unsigned long addr, unsigned long len) 1463{ 1464 /* Ignore errors */ 1465 (void) __mm_populate(addr, len, 1); 1466} 1467#else 1468static inline void mm_populate(unsigned long addr, unsigned long len) {} 1469#endif 1470 1471/* These take the mm semaphore themselves */ 1472extern unsigned long vm_brk(unsigned long, unsigned long); 1473extern int vm_munmap(unsigned long, size_t); 1474extern unsigned long vm_mmap(struct file *, unsigned long, 1475 unsigned long, unsigned long, 1476 unsigned long, unsigned long); 1477 1478struct vm_unmapped_area_info { 1479#define VM_UNMAPPED_AREA_TOPDOWN 1 1480 unsigned long flags; 1481 unsigned long length; 1482 unsigned long low_limit; 1483 unsigned long high_limit; 1484 unsigned long align_mask; 1485 unsigned long align_offset; 1486}; 1487 1488extern unsigned long unmapped_area(struct vm_unmapped_area_info *info); 1489extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info); 1490 1491/* 1492 * Search for an unmapped address range. 1493 * 1494 * We are looking for a range that: 1495 * - does not intersect with any VMA; 1496 * - is contained within the [low_limit, high_limit) interval; 1497 * - is at least the desired size. 1498 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask) 1499 */ 1500static inline unsigned long 1501vm_unmapped_area(struct vm_unmapped_area_info *info) 1502{ 1503 if (!(info->flags & VM_UNMAPPED_AREA_TOPDOWN)) 1504 return unmapped_area(info); 1505 else 1506 return unmapped_area_topdown(info); 1507} 1508 1509/* truncate.c */ 1510extern void truncate_inode_pages(struct address_space *, loff_t); 1511extern void truncate_inode_pages_range(struct address_space *, 1512 loff_t lstart, loff_t lend); 1513 1514/* generic vm_area_ops exported for stackable file systems */ 1515extern int filemap_fault(struct vm_area_struct *, struct vm_fault *); 1516extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf); 1517 1518/* mm/page-writeback.c */ 1519int write_one_page(struct page *page, int wait); 1520void task_dirty_inc(struct task_struct *tsk); 1521 1522/* readahead.c */ 1523#define VM_MAX_READAHEAD 128 /* kbytes */ 1524#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */ 1525 1526int force_page_cache_readahead(struct address_space *mapping, struct file *filp, 1527 pgoff_t offset, unsigned long nr_to_read); 1528 1529void page_cache_sync_readahead(struct address_space *mapping, 1530 struct file_ra_state *ra, 1531 struct file *filp, 1532 pgoff_t offset, 1533 unsigned long size); 1534 1535void page_cache_async_readahead(struct address_space *mapping, 1536 struct file_ra_state *ra, 1537 struct file *filp, 1538 struct page *pg, 1539 pgoff_t offset, 1540 unsigned long size); 1541 1542unsigned long max_sane_readahead(unsigned long nr); 1543unsigned long ra_submit(struct file_ra_state *ra, 1544 struct address_space *mapping, 1545 struct file *filp); 1546 1547/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 1548extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 1549 1550/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */ 1551extern int expand_downwards(struct vm_area_struct *vma, 1552 unsigned long address); 1553#if VM_GROWSUP 1554extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 1555#else 1556 #define expand_upwards(vma, address) do { } while (0) 1557#endif 1558 1559/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 1560extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 1561extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 1562 struct vm_area_struct **pprev); 1563 1564/* Look up the first VMA which intersects the interval start_addr..end_addr-1, 1565 NULL if none. Assume start_addr < end_addr. */ 1566static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) 1567{ 1568 struct vm_area_struct * vma = find_vma(mm,start_addr); 1569 1570 if (vma && end_addr <= vma->vm_start) 1571 vma = NULL; 1572 return vma; 1573} 1574 1575static inline unsigned long vma_pages(struct vm_area_struct *vma) 1576{ 1577 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 1578} 1579 1580/* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 1581static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 1582 unsigned long vm_start, unsigned long vm_end) 1583{ 1584 struct vm_area_struct *vma = find_vma(mm, vm_start); 1585 1586 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 1587 vma = NULL; 1588 1589 return vma; 1590} 1591 1592#ifdef CONFIG_MMU 1593pgprot_t vm_get_page_prot(unsigned long vm_flags); 1594#else 1595static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 1596{ 1597 return __pgprot(0); 1598} 1599#endif 1600 1601#ifdef CONFIG_ARCH_USES_NUMA_PROT_NONE 1602unsigned long change_prot_numa(struct vm_area_struct *vma, 1603 unsigned long start, unsigned long end); 1604#endif 1605 1606struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 1607int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 1608 unsigned long pfn, unsigned long size, pgprot_t); 1609int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 1610int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1611 unsigned long pfn); 1612int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 1613 unsigned long pfn); 1614int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 1615 1616 1617struct page *follow_page_mask(struct vm_area_struct *vma, 1618 unsigned long address, unsigned int foll_flags, 1619 unsigned int *page_mask); 1620 1621static inline struct page *follow_page(struct vm_area_struct *vma, 1622 unsigned long address, unsigned int foll_flags) 1623{ 1624 unsigned int unused_page_mask; 1625 return follow_page_mask(vma, address, foll_flags, &unused_page_mask); 1626} 1627 1628#define FOLL_WRITE 0x01 /* check pte is writable */ 1629#define FOLL_TOUCH 0x02 /* mark page accessed */ 1630#define FOLL_GET 0x04 /* do get_page on page */ 1631#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */ 1632#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */ 1633#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO 1634 * and return without waiting upon it */ 1635#define FOLL_MLOCK 0x40 /* mark page as mlocked */ 1636#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */ 1637#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */ 1638#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */ 1639#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */ 1640 1641typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr, 1642 void *data); 1643extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 1644 unsigned long size, pte_fn_t fn, void *data); 1645 1646#ifdef CONFIG_PROC_FS 1647void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long); 1648#else 1649static inline void vm_stat_account(struct mm_struct *mm, 1650 unsigned long flags, struct file *file, long pages) 1651{ 1652 mm->total_vm += pages; 1653} 1654#endif /* CONFIG_PROC_FS */ 1655 1656#ifdef CONFIG_DEBUG_PAGEALLOC 1657extern void kernel_map_pages(struct page *page, int numpages, int enable); 1658#ifdef CONFIG_HIBERNATION 1659extern bool kernel_page_present(struct page *page); 1660#endif /* CONFIG_HIBERNATION */ 1661#else 1662static inline void 1663kernel_map_pages(struct page *page, int numpages, int enable) {} 1664#ifdef CONFIG_HIBERNATION 1665static inline bool kernel_page_present(struct page *page) { return true; } 1666#endif /* CONFIG_HIBERNATION */ 1667#endif 1668 1669extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 1670#ifdef __HAVE_ARCH_GATE_AREA 1671int in_gate_area_no_mm(unsigned long addr); 1672int in_gate_area(struct mm_struct *mm, unsigned long addr); 1673#else 1674int in_gate_area_no_mm(unsigned long addr); 1675#define in_gate_area(mm, addr) ({(void)mm; in_gate_area_no_mm(addr);}) 1676#endif /* __HAVE_ARCH_GATE_AREA */ 1677 1678int drop_caches_sysctl_handler(struct ctl_table *, int, 1679 void __user *, size_t *, loff_t *); 1680unsigned long shrink_slab(struct shrink_control *shrink, 1681 unsigned long nr_pages_scanned, 1682 unsigned long lru_pages); 1683 1684#ifndef CONFIG_MMU 1685#define randomize_va_space 0 1686#else 1687extern int randomize_va_space; 1688#endif 1689 1690const char * arch_vma_name(struct vm_area_struct *vma); 1691void print_vma_addr(char *prefix, unsigned long rip); 1692 1693void sparse_mem_maps_populate_node(struct page **map_map, 1694 unsigned long pnum_begin, 1695 unsigned long pnum_end, 1696 unsigned long map_count, 1697 int nodeid); 1698 1699struct page *sparse_mem_map_populate(unsigned long pnum, int nid); 1700pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 1701pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node); 1702pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 1703pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node); 1704void *vmemmap_alloc_block(unsigned long size, int node); 1705void *vmemmap_alloc_block_buf(unsigned long size, int node); 1706void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 1707int vmemmap_populate_basepages(struct page *start_page, 1708 unsigned long pages, int node); 1709int vmemmap_populate(struct page *start_page, unsigned long pages, int node); 1710void vmemmap_populate_print_last(void); 1711#ifdef CONFIG_MEMORY_HOTPLUG 1712void vmemmap_free(struct page *memmap, unsigned long nr_pages); 1713#endif 1714void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, 1715 unsigned long size); 1716 1717enum mf_flags { 1718 MF_COUNT_INCREASED = 1 << 0, 1719 MF_ACTION_REQUIRED = 1 << 1, 1720 MF_MUST_KILL = 1 << 2, 1721}; 1722extern int memory_failure(unsigned long pfn, int trapno, int flags); 1723extern void memory_failure_queue(unsigned long pfn, int trapno, int flags); 1724extern int unpoison_memory(unsigned long pfn); 1725extern int sysctl_memory_failure_early_kill; 1726extern int sysctl_memory_failure_recovery; 1727extern void shake_page(struct page *p, int access); 1728extern atomic_long_t num_poisoned_pages; 1729extern int soft_offline_page(struct page *page, int flags); 1730 1731extern void dump_page(struct page *page); 1732 1733#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 1734extern void clear_huge_page(struct page *page, 1735 unsigned long addr, 1736 unsigned int pages_per_huge_page); 1737extern void copy_user_huge_page(struct page *dst, struct page *src, 1738 unsigned long addr, struct vm_area_struct *vma, 1739 unsigned int pages_per_huge_page); 1740#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 1741 1742#ifdef CONFIG_DEBUG_PAGEALLOC 1743extern unsigned int _debug_guardpage_minorder; 1744 1745static inline unsigned int debug_guardpage_minorder(void) 1746{ 1747 return _debug_guardpage_minorder; 1748} 1749 1750static inline bool page_is_guard(struct page *page) 1751{ 1752 return test_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags); 1753} 1754#else 1755static inline unsigned int debug_guardpage_minorder(void) { return 0; } 1756static inline bool page_is_guard(struct page *page) { return false; } 1757#endif /* CONFIG_DEBUG_PAGEALLOC */ 1758 1759#endif /* __KERNEL__ */ 1760#endif /* _LINUX_MM_H */