at v3.9 3173 lines 96 kB view raw
1/* 2 * RocketPort device driver for Linux 3 * 4 * Written by Theodore Ts'o, 1995, 1996, 1997, 1998, 1999, 2000. 5 * 6 * Copyright (C) 1995, 1996, 1997, 1998, 1999, 2000, 2003 by Comtrol, Inc. 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License as 10 * published by the Free Software Foundation; either version 2 of the 11 * License, or (at your option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 16 * General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 21 */ 22 23/* 24 * Kernel Synchronization: 25 * 26 * This driver has 2 kernel control paths - exception handlers (calls into the driver 27 * from user mode) and the timer bottom half (tasklet). This is a polled driver, interrupts 28 * are not used. 29 * 30 * Critical data: 31 * - rp_table[], accessed through passed "info" pointers, is a global (static) array of 32 * serial port state information and the xmit_buf circular buffer. Protected by 33 * a per port spinlock. 34 * - xmit_flags[], an array of ints indexed by line (port) number, indicating that there 35 * is data to be transmitted. Protected by atomic bit operations. 36 * - rp_num_ports, int indicating number of open ports, protected by atomic operations. 37 * 38 * rp_write() and rp_write_char() functions use a per port semaphore to protect against 39 * simultaneous access to the same port by more than one process. 40 */ 41 42/****** Defines ******/ 43#define ROCKET_PARANOIA_CHECK 44#define ROCKET_DISABLE_SIMUSAGE 45 46#undef ROCKET_SOFT_FLOW 47#undef ROCKET_DEBUG_OPEN 48#undef ROCKET_DEBUG_INTR 49#undef ROCKET_DEBUG_WRITE 50#undef ROCKET_DEBUG_FLOW 51#undef ROCKET_DEBUG_THROTTLE 52#undef ROCKET_DEBUG_WAIT_UNTIL_SENT 53#undef ROCKET_DEBUG_RECEIVE 54#undef ROCKET_DEBUG_HANGUP 55#undef REV_PCI_ORDER 56#undef ROCKET_DEBUG_IO 57 58#define POLL_PERIOD (HZ/100) /* Polling period .01 seconds (10ms) */ 59 60/****** Kernel includes ******/ 61 62#include <linux/module.h> 63#include <linux/errno.h> 64#include <linux/major.h> 65#include <linux/kernel.h> 66#include <linux/signal.h> 67#include <linux/slab.h> 68#include <linux/mm.h> 69#include <linux/sched.h> 70#include <linux/timer.h> 71#include <linux/interrupt.h> 72#include <linux/tty.h> 73#include <linux/tty_driver.h> 74#include <linux/tty_flip.h> 75#include <linux/serial.h> 76#include <linux/string.h> 77#include <linux/fcntl.h> 78#include <linux/ptrace.h> 79#include <linux/mutex.h> 80#include <linux/ioport.h> 81#include <linux/delay.h> 82#include <linux/completion.h> 83#include <linux/wait.h> 84#include <linux/pci.h> 85#include <linux/uaccess.h> 86#include <linux/atomic.h> 87#include <asm/unaligned.h> 88#include <linux/bitops.h> 89#include <linux/spinlock.h> 90#include <linux/init.h> 91 92/****** RocketPort includes ******/ 93 94#include "rocket_int.h" 95#include "rocket.h" 96 97#define ROCKET_VERSION "2.09" 98#define ROCKET_DATE "12-June-2003" 99 100/****** RocketPort Local Variables ******/ 101 102static void rp_do_poll(unsigned long dummy); 103 104static struct tty_driver *rocket_driver; 105 106static struct rocket_version driver_version = { 107 ROCKET_VERSION, ROCKET_DATE 108}; 109 110static struct r_port *rp_table[MAX_RP_PORTS]; /* The main repository of serial port state information. */ 111static unsigned int xmit_flags[NUM_BOARDS]; /* Bit significant, indicates port had data to transmit. */ 112 /* eg. Bit 0 indicates port 0 has xmit data, ... */ 113static atomic_t rp_num_ports_open; /* Number of serial ports open */ 114static DEFINE_TIMER(rocket_timer, rp_do_poll, 0, 0); 115 116static unsigned long board1; /* ISA addresses, retrieved from rocketport.conf */ 117static unsigned long board2; 118static unsigned long board3; 119static unsigned long board4; 120static unsigned long controller; 121static bool support_low_speed; 122static unsigned long modem1; 123static unsigned long modem2; 124static unsigned long modem3; 125static unsigned long modem4; 126static unsigned long pc104_1[8]; 127static unsigned long pc104_2[8]; 128static unsigned long pc104_3[8]; 129static unsigned long pc104_4[8]; 130static unsigned long *pc104[4] = { pc104_1, pc104_2, pc104_3, pc104_4 }; 131 132static int rp_baud_base[NUM_BOARDS]; /* Board config info (Someday make a per-board structure) */ 133static unsigned long rcktpt_io_addr[NUM_BOARDS]; 134static int rcktpt_type[NUM_BOARDS]; 135static int is_PCI[NUM_BOARDS]; 136static rocketModel_t rocketModel[NUM_BOARDS]; 137static int max_board; 138static const struct tty_port_operations rocket_port_ops; 139 140/* 141 * The following arrays define the interrupt bits corresponding to each AIOP. 142 * These bits are different between the ISA and regular PCI boards and the 143 * Universal PCI boards. 144 */ 145 146static Word_t aiop_intr_bits[AIOP_CTL_SIZE] = { 147 AIOP_INTR_BIT_0, 148 AIOP_INTR_BIT_1, 149 AIOP_INTR_BIT_2, 150 AIOP_INTR_BIT_3 151}; 152 153static Word_t upci_aiop_intr_bits[AIOP_CTL_SIZE] = { 154 UPCI_AIOP_INTR_BIT_0, 155 UPCI_AIOP_INTR_BIT_1, 156 UPCI_AIOP_INTR_BIT_2, 157 UPCI_AIOP_INTR_BIT_3 158}; 159 160static Byte_t RData[RDATASIZE] = { 161 0x00, 0x09, 0xf6, 0x82, 162 0x02, 0x09, 0x86, 0xfb, 163 0x04, 0x09, 0x00, 0x0a, 164 0x06, 0x09, 0x01, 0x0a, 165 0x08, 0x09, 0x8a, 0x13, 166 0x0a, 0x09, 0xc5, 0x11, 167 0x0c, 0x09, 0x86, 0x85, 168 0x0e, 0x09, 0x20, 0x0a, 169 0x10, 0x09, 0x21, 0x0a, 170 0x12, 0x09, 0x41, 0xff, 171 0x14, 0x09, 0x82, 0x00, 172 0x16, 0x09, 0x82, 0x7b, 173 0x18, 0x09, 0x8a, 0x7d, 174 0x1a, 0x09, 0x88, 0x81, 175 0x1c, 0x09, 0x86, 0x7a, 176 0x1e, 0x09, 0x84, 0x81, 177 0x20, 0x09, 0x82, 0x7c, 178 0x22, 0x09, 0x0a, 0x0a 179}; 180 181static Byte_t RRegData[RREGDATASIZE] = { 182 0x00, 0x09, 0xf6, 0x82, /* 00: Stop Rx processor */ 183 0x08, 0x09, 0x8a, 0x13, /* 04: Tx software flow control */ 184 0x0a, 0x09, 0xc5, 0x11, /* 08: XON char */ 185 0x0c, 0x09, 0x86, 0x85, /* 0c: XANY */ 186 0x12, 0x09, 0x41, 0xff, /* 10: Rx mask char */ 187 0x14, 0x09, 0x82, 0x00, /* 14: Compare/Ignore #0 */ 188 0x16, 0x09, 0x82, 0x7b, /* 18: Compare #1 */ 189 0x18, 0x09, 0x8a, 0x7d, /* 1c: Compare #2 */ 190 0x1a, 0x09, 0x88, 0x81, /* 20: Interrupt #1 */ 191 0x1c, 0x09, 0x86, 0x7a, /* 24: Ignore/Replace #1 */ 192 0x1e, 0x09, 0x84, 0x81, /* 28: Interrupt #2 */ 193 0x20, 0x09, 0x82, 0x7c, /* 2c: Ignore/Replace #2 */ 194 0x22, 0x09, 0x0a, 0x0a /* 30: Rx FIFO Enable */ 195}; 196 197static CONTROLLER_T sController[CTL_SIZE] = { 198 {-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0}, 199 {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}}, 200 {-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0}, 201 {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}}, 202 {-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0}, 203 {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}}, 204 {-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0}, 205 {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}} 206}; 207 208static Byte_t sBitMapClrTbl[8] = { 209 0xfe, 0xfd, 0xfb, 0xf7, 0xef, 0xdf, 0xbf, 0x7f 210}; 211 212static Byte_t sBitMapSetTbl[8] = { 213 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80 214}; 215 216static int sClockPrescale = 0x14; 217 218/* 219 * Line number is the ttySIx number (x), the Minor number. We 220 * assign them sequentially, starting at zero. The following 221 * array keeps track of the line number assigned to a given board/aiop/channel. 222 */ 223static unsigned char lineNumbers[MAX_RP_PORTS]; 224static unsigned long nextLineNumber; 225 226/***** RocketPort Static Prototypes *********/ 227static int __init init_ISA(int i); 228static void rp_wait_until_sent(struct tty_struct *tty, int timeout); 229static void rp_flush_buffer(struct tty_struct *tty); 230static void rmSpeakerReset(CONTROLLER_T * CtlP, unsigned long model); 231static unsigned char GetLineNumber(int ctrl, int aiop, int ch); 232static unsigned char SetLineNumber(int ctrl, int aiop, int ch); 233static void rp_start(struct tty_struct *tty); 234static int sInitChan(CONTROLLER_T * CtlP, CHANNEL_T * ChP, int AiopNum, 235 int ChanNum); 236static void sSetInterfaceMode(CHANNEL_T * ChP, Byte_t mode); 237static void sFlushRxFIFO(CHANNEL_T * ChP); 238static void sFlushTxFIFO(CHANNEL_T * ChP); 239static void sEnInterrupts(CHANNEL_T * ChP, Word_t Flags); 240static void sDisInterrupts(CHANNEL_T * ChP, Word_t Flags); 241static void sModemReset(CONTROLLER_T * CtlP, int chan, int on); 242static void sPCIModemReset(CONTROLLER_T * CtlP, int chan, int on); 243static int sWriteTxPrioByte(CHANNEL_T * ChP, Byte_t Data); 244static int sPCIInitController(CONTROLLER_T * CtlP, int CtlNum, 245 ByteIO_t * AiopIOList, int AiopIOListSize, 246 WordIO_t ConfigIO, int IRQNum, Byte_t Frequency, 247 int PeriodicOnly, int altChanRingIndicator, 248 int UPCIRingInd); 249static int sInitController(CONTROLLER_T * CtlP, int CtlNum, ByteIO_t MudbacIO, 250 ByteIO_t * AiopIOList, int AiopIOListSize, 251 int IRQNum, Byte_t Frequency, int PeriodicOnly); 252static int sReadAiopID(ByteIO_t io); 253static int sReadAiopNumChan(WordIO_t io); 254 255MODULE_AUTHOR("Theodore Ts'o"); 256MODULE_DESCRIPTION("Comtrol RocketPort driver"); 257module_param(board1, ulong, 0); 258MODULE_PARM_DESC(board1, "I/O port for (ISA) board #1"); 259module_param(board2, ulong, 0); 260MODULE_PARM_DESC(board2, "I/O port for (ISA) board #2"); 261module_param(board3, ulong, 0); 262MODULE_PARM_DESC(board3, "I/O port for (ISA) board #3"); 263module_param(board4, ulong, 0); 264MODULE_PARM_DESC(board4, "I/O port for (ISA) board #4"); 265module_param(controller, ulong, 0); 266MODULE_PARM_DESC(controller, "I/O port for (ISA) rocketport controller"); 267module_param(support_low_speed, bool, 0); 268MODULE_PARM_DESC(support_low_speed, "1 means support 50 baud, 0 means support 460400 baud"); 269module_param(modem1, ulong, 0); 270MODULE_PARM_DESC(modem1, "1 means (ISA) board #1 is a RocketModem"); 271module_param(modem2, ulong, 0); 272MODULE_PARM_DESC(modem2, "1 means (ISA) board #2 is a RocketModem"); 273module_param(modem3, ulong, 0); 274MODULE_PARM_DESC(modem3, "1 means (ISA) board #3 is a RocketModem"); 275module_param(modem4, ulong, 0); 276MODULE_PARM_DESC(modem4, "1 means (ISA) board #4 is a RocketModem"); 277module_param_array(pc104_1, ulong, NULL, 0); 278MODULE_PARM_DESC(pc104_1, "set interface types for ISA(PC104) board #1 (e.g. pc104_1=232,232,485,485,..."); 279module_param_array(pc104_2, ulong, NULL, 0); 280MODULE_PARM_DESC(pc104_2, "set interface types for ISA(PC104) board #2 (e.g. pc104_2=232,232,485,485,..."); 281module_param_array(pc104_3, ulong, NULL, 0); 282MODULE_PARM_DESC(pc104_3, "set interface types for ISA(PC104) board #3 (e.g. pc104_3=232,232,485,485,..."); 283module_param_array(pc104_4, ulong, NULL, 0); 284MODULE_PARM_DESC(pc104_4, "set interface types for ISA(PC104) board #4 (e.g. pc104_4=232,232,485,485,..."); 285 286static int rp_init(void); 287static void rp_cleanup_module(void); 288 289module_init(rp_init); 290module_exit(rp_cleanup_module); 291 292 293MODULE_LICENSE("Dual BSD/GPL"); 294 295/*************************************************************************/ 296/* Module code starts here */ 297 298static inline int rocket_paranoia_check(struct r_port *info, 299 const char *routine) 300{ 301#ifdef ROCKET_PARANOIA_CHECK 302 if (!info) 303 return 1; 304 if (info->magic != RPORT_MAGIC) { 305 printk(KERN_WARNING "Warning: bad magic number for rocketport " 306 "struct in %s\n", routine); 307 return 1; 308 } 309#endif 310 return 0; 311} 312 313 314/* Serial port receive data function. Called (from timer poll) when an AIOPIC signals 315 * that receive data is present on a serial port. Pulls data from FIFO, moves it into the 316 * tty layer. 317 */ 318static void rp_do_receive(struct r_port *info, CHANNEL_t *cp, 319 unsigned int ChanStatus) 320{ 321 unsigned int CharNStat; 322 int ToRecv, wRecv, space; 323 unsigned char *cbuf; 324 325 ToRecv = sGetRxCnt(cp); 326#ifdef ROCKET_DEBUG_INTR 327 printk(KERN_INFO "rp_do_receive(%d)...\n", ToRecv); 328#endif 329 if (ToRecv == 0) 330 return; 331 332 /* 333 * if status indicates there are errored characters in the 334 * FIFO, then enter status mode (a word in FIFO holds 335 * character and status). 336 */ 337 if (ChanStatus & (RXFOVERFL | RXBREAK | RXFRAME | RXPARITY)) { 338 if (!(ChanStatus & STATMODE)) { 339#ifdef ROCKET_DEBUG_RECEIVE 340 printk(KERN_INFO "Entering STATMODE...\n"); 341#endif 342 ChanStatus |= STATMODE; 343 sEnRxStatusMode(cp); 344 } 345 } 346 347 /* 348 * if we previously entered status mode, then read down the 349 * FIFO one word at a time, pulling apart the character and 350 * the status. Update error counters depending on status 351 */ 352 if (ChanStatus & STATMODE) { 353#ifdef ROCKET_DEBUG_RECEIVE 354 printk(KERN_INFO "Ignore %x, read %x...\n", 355 info->ignore_status_mask, info->read_status_mask); 356#endif 357 while (ToRecv) { 358 char flag; 359 360 CharNStat = sInW(sGetTxRxDataIO(cp)); 361#ifdef ROCKET_DEBUG_RECEIVE 362 printk(KERN_INFO "%x...\n", CharNStat); 363#endif 364 if (CharNStat & STMBREAKH) 365 CharNStat &= ~(STMFRAMEH | STMPARITYH); 366 if (CharNStat & info->ignore_status_mask) { 367 ToRecv--; 368 continue; 369 } 370 CharNStat &= info->read_status_mask; 371 if (CharNStat & STMBREAKH) 372 flag = TTY_BREAK; 373 else if (CharNStat & STMPARITYH) 374 flag = TTY_PARITY; 375 else if (CharNStat & STMFRAMEH) 376 flag = TTY_FRAME; 377 else if (CharNStat & STMRCVROVRH) 378 flag = TTY_OVERRUN; 379 else 380 flag = TTY_NORMAL; 381 tty_insert_flip_char(&info->port, CharNStat & 0xff, 382 flag); 383 ToRecv--; 384 } 385 386 /* 387 * after we've emptied the FIFO in status mode, turn 388 * status mode back off 389 */ 390 if (sGetRxCnt(cp) == 0) { 391#ifdef ROCKET_DEBUG_RECEIVE 392 printk(KERN_INFO "Status mode off.\n"); 393#endif 394 sDisRxStatusMode(cp); 395 } 396 } else { 397 /* 398 * we aren't in status mode, so read down the FIFO two 399 * characters at time by doing repeated word IO 400 * transfer. 401 */ 402 space = tty_prepare_flip_string(&info->port, &cbuf, ToRecv); 403 if (space < ToRecv) { 404#ifdef ROCKET_DEBUG_RECEIVE 405 printk(KERN_INFO "rp_do_receive:insufficient space ToRecv=%d space=%d\n", ToRecv, space); 406#endif 407 if (space <= 0) 408 return; 409 ToRecv = space; 410 } 411 wRecv = ToRecv >> 1; 412 if (wRecv) 413 sInStrW(sGetTxRxDataIO(cp), (unsigned short *) cbuf, wRecv); 414 if (ToRecv & 1) 415 cbuf[ToRecv - 1] = sInB(sGetTxRxDataIO(cp)); 416 } 417 /* Push the data up to the tty layer */ 418 tty_flip_buffer_push(&info->port); 419} 420 421/* 422 * Serial port transmit data function. Called from the timer polling loop as a 423 * result of a bit set in xmit_flags[], indicating data (from the tty layer) is ready 424 * to be sent out the serial port. Data is buffered in rp_table[line].xmit_buf, it is 425 * moved to the port's xmit FIFO. *info is critical data, protected by spinlocks. 426 */ 427static void rp_do_transmit(struct r_port *info) 428{ 429 int c; 430 CHANNEL_t *cp = &info->channel; 431 struct tty_struct *tty; 432 unsigned long flags; 433 434#ifdef ROCKET_DEBUG_INTR 435 printk(KERN_DEBUG "%s\n", __func__); 436#endif 437 if (!info) 438 return; 439 tty = tty_port_tty_get(&info->port); 440 441 if (tty == NULL) { 442 printk(KERN_WARNING "rp: WARNING %s called with tty==NULL\n", __func__); 443 clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]); 444 return; 445 } 446 447 spin_lock_irqsave(&info->slock, flags); 448 info->xmit_fifo_room = TXFIFO_SIZE - sGetTxCnt(cp); 449 450 /* Loop sending data to FIFO until done or FIFO full */ 451 while (1) { 452 if (tty->stopped || tty->hw_stopped) 453 break; 454 c = min(info->xmit_fifo_room, info->xmit_cnt); 455 c = min(c, XMIT_BUF_SIZE - info->xmit_tail); 456 if (c <= 0 || info->xmit_fifo_room <= 0) 457 break; 458 sOutStrW(sGetTxRxDataIO(cp), (unsigned short *) (info->xmit_buf + info->xmit_tail), c / 2); 459 if (c & 1) 460 sOutB(sGetTxRxDataIO(cp), info->xmit_buf[info->xmit_tail + c - 1]); 461 info->xmit_tail += c; 462 info->xmit_tail &= XMIT_BUF_SIZE - 1; 463 info->xmit_cnt -= c; 464 info->xmit_fifo_room -= c; 465#ifdef ROCKET_DEBUG_INTR 466 printk(KERN_INFO "tx %d chars...\n", c); 467#endif 468 } 469 470 if (info->xmit_cnt == 0) 471 clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]); 472 473 if (info->xmit_cnt < WAKEUP_CHARS) { 474 tty_wakeup(tty); 475#ifdef ROCKETPORT_HAVE_POLL_WAIT 476 wake_up_interruptible(&tty->poll_wait); 477#endif 478 } 479 480 spin_unlock_irqrestore(&info->slock, flags); 481 tty_kref_put(tty); 482 483#ifdef ROCKET_DEBUG_INTR 484 printk(KERN_DEBUG "(%d,%d,%d,%d)...\n", info->xmit_cnt, info->xmit_head, 485 info->xmit_tail, info->xmit_fifo_room); 486#endif 487} 488 489/* 490 * Called when a serial port signals it has read data in it's RX FIFO. 491 * It checks what interrupts are pending and services them, including 492 * receiving serial data. 493 */ 494static void rp_handle_port(struct r_port *info) 495{ 496 CHANNEL_t *cp; 497 unsigned int IntMask, ChanStatus; 498 499 if (!info) 500 return; 501 502 if ((info->port.flags & ASYNC_INITIALIZED) == 0) { 503 printk(KERN_WARNING "rp: WARNING: rp_handle_port called with " 504 "info->flags & NOT_INIT\n"); 505 return; 506 } 507 508 cp = &info->channel; 509 510 IntMask = sGetChanIntID(cp) & info->intmask; 511#ifdef ROCKET_DEBUG_INTR 512 printk(KERN_INFO "rp_interrupt %02x...\n", IntMask); 513#endif 514 ChanStatus = sGetChanStatus(cp); 515 if (IntMask & RXF_TRIG) { /* Rx FIFO trigger level */ 516 rp_do_receive(info, cp, ChanStatus); 517 } 518 if (IntMask & DELTA_CD) { /* CD change */ 519#if (defined(ROCKET_DEBUG_OPEN) || defined(ROCKET_DEBUG_INTR) || defined(ROCKET_DEBUG_HANGUP)) 520 printk(KERN_INFO "ttyR%d CD now %s...\n", info->line, 521 (ChanStatus & CD_ACT) ? "on" : "off"); 522#endif 523 if (!(ChanStatus & CD_ACT) && info->cd_status) { 524 struct tty_struct *tty; 525#ifdef ROCKET_DEBUG_HANGUP 526 printk(KERN_INFO "CD drop, calling hangup.\n"); 527#endif 528 tty = tty_port_tty_get(&info->port); 529 if (tty) { 530 tty_hangup(tty); 531 tty_kref_put(tty); 532 } 533 } 534 info->cd_status = (ChanStatus & CD_ACT) ? 1 : 0; 535 wake_up_interruptible(&info->port.open_wait); 536 } 537#ifdef ROCKET_DEBUG_INTR 538 if (IntMask & DELTA_CTS) { /* CTS change */ 539 printk(KERN_INFO "CTS change...\n"); 540 } 541 if (IntMask & DELTA_DSR) { /* DSR change */ 542 printk(KERN_INFO "DSR change...\n"); 543 } 544#endif 545} 546 547/* 548 * The top level polling routine. Repeats every 1/100 HZ (10ms). 549 */ 550static void rp_do_poll(unsigned long dummy) 551{ 552 CONTROLLER_t *ctlp; 553 int ctrl, aiop, ch, line; 554 unsigned int xmitmask, i; 555 unsigned int CtlMask; 556 unsigned char AiopMask; 557 Word_t bit; 558 559 /* Walk through all the boards (ctrl's) */ 560 for (ctrl = 0; ctrl < max_board; ctrl++) { 561 if (rcktpt_io_addr[ctrl] <= 0) 562 continue; 563 564 /* Get a ptr to the board's control struct */ 565 ctlp = sCtlNumToCtlPtr(ctrl); 566 567 /* Get the interrupt status from the board */ 568#ifdef CONFIG_PCI 569 if (ctlp->BusType == isPCI) 570 CtlMask = sPCIGetControllerIntStatus(ctlp); 571 else 572#endif 573 CtlMask = sGetControllerIntStatus(ctlp); 574 575 /* Check if any AIOP read bits are set */ 576 for (aiop = 0; CtlMask; aiop++) { 577 bit = ctlp->AiopIntrBits[aiop]; 578 if (CtlMask & bit) { 579 CtlMask &= ~bit; 580 AiopMask = sGetAiopIntStatus(ctlp, aiop); 581 582 /* Check if any port read bits are set */ 583 for (ch = 0; AiopMask; AiopMask >>= 1, ch++) { 584 if (AiopMask & 1) { 585 586 /* Get the line number (/dev/ttyRx number). */ 587 /* Read the data from the port. */ 588 line = GetLineNumber(ctrl, aiop, ch); 589 rp_handle_port(rp_table[line]); 590 } 591 } 592 } 593 } 594 595 xmitmask = xmit_flags[ctrl]; 596 597 /* 598 * xmit_flags contains bit-significant flags, indicating there is data 599 * to xmit on the port. Bit 0 is port 0 on this board, bit 1 is port 600 * 1, ... (32 total possible). The variable i has the aiop and ch 601 * numbers encoded in it (port 0-7 are aiop0, 8-15 are aiop1, etc). 602 */ 603 if (xmitmask) { 604 for (i = 0; i < rocketModel[ctrl].numPorts; i++) { 605 if (xmitmask & (1 << i)) { 606 aiop = (i & 0x18) >> 3; 607 ch = i & 0x07; 608 line = GetLineNumber(ctrl, aiop, ch); 609 rp_do_transmit(rp_table[line]); 610 } 611 } 612 } 613 } 614 615 /* 616 * Reset the timer so we get called at the next clock tick (10ms). 617 */ 618 if (atomic_read(&rp_num_ports_open)) 619 mod_timer(&rocket_timer, jiffies + POLL_PERIOD); 620} 621 622/* 623 * Initializes the r_port structure for a port, as well as enabling the port on 624 * the board. 625 * Inputs: board, aiop, chan numbers 626 */ 627static void init_r_port(int board, int aiop, int chan, struct pci_dev *pci_dev) 628{ 629 unsigned rocketMode; 630 struct r_port *info; 631 int line; 632 CONTROLLER_T *ctlp; 633 634 /* Get the next available line number */ 635 line = SetLineNumber(board, aiop, chan); 636 637 ctlp = sCtlNumToCtlPtr(board); 638 639 /* Get a r_port struct for the port, fill it in and save it globally, indexed by line number */ 640 info = kzalloc(sizeof (struct r_port), GFP_KERNEL); 641 if (!info) { 642 printk(KERN_ERR "Couldn't allocate info struct for line #%d\n", 643 line); 644 return; 645 } 646 647 info->magic = RPORT_MAGIC; 648 info->line = line; 649 info->ctlp = ctlp; 650 info->board = board; 651 info->aiop = aiop; 652 info->chan = chan; 653 tty_port_init(&info->port); 654 info->port.ops = &rocket_port_ops; 655 init_completion(&info->close_wait); 656 info->flags &= ~ROCKET_MODE_MASK; 657 switch (pc104[board][line]) { 658 case 422: 659 info->flags |= ROCKET_MODE_RS422; 660 break; 661 case 485: 662 info->flags |= ROCKET_MODE_RS485; 663 break; 664 case 232: 665 default: 666 info->flags |= ROCKET_MODE_RS232; 667 break; 668 } 669 670 info->intmask = RXF_TRIG | TXFIFO_MT | SRC_INT | DELTA_CD | DELTA_CTS | DELTA_DSR; 671 if (sInitChan(ctlp, &info->channel, aiop, chan) == 0) { 672 printk(KERN_ERR "RocketPort sInitChan(%d, %d, %d) failed!\n", 673 board, aiop, chan); 674 tty_port_destroy(&info->port); 675 kfree(info); 676 return; 677 } 678 679 rocketMode = info->flags & ROCKET_MODE_MASK; 680 681 if ((info->flags & ROCKET_RTS_TOGGLE) || (rocketMode == ROCKET_MODE_RS485)) 682 sEnRTSToggle(&info->channel); 683 else 684 sDisRTSToggle(&info->channel); 685 686 if (ctlp->boardType == ROCKET_TYPE_PC104) { 687 switch (rocketMode) { 688 case ROCKET_MODE_RS485: 689 sSetInterfaceMode(&info->channel, InterfaceModeRS485); 690 break; 691 case ROCKET_MODE_RS422: 692 sSetInterfaceMode(&info->channel, InterfaceModeRS422); 693 break; 694 case ROCKET_MODE_RS232: 695 default: 696 if (info->flags & ROCKET_RTS_TOGGLE) 697 sSetInterfaceMode(&info->channel, InterfaceModeRS232T); 698 else 699 sSetInterfaceMode(&info->channel, InterfaceModeRS232); 700 break; 701 } 702 } 703 spin_lock_init(&info->slock); 704 mutex_init(&info->write_mtx); 705 rp_table[line] = info; 706 tty_port_register_device(&info->port, rocket_driver, line, 707 pci_dev ? &pci_dev->dev : NULL); 708} 709 710/* 711 * Configures a rocketport port according to its termio settings. Called from 712 * user mode into the driver (exception handler). *info CD manipulation is spinlock protected. 713 */ 714static void configure_r_port(struct tty_struct *tty, struct r_port *info, 715 struct ktermios *old_termios) 716{ 717 unsigned cflag; 718 unsigned long flags; 719 unsigned rocketMode; 720 int bits, baud, divisor; 721 CHANNEL_t *cp; 722 struct ktermios *t = &tty->termios; 723 724 cp = &info->channel; 725 cflag = t->c_cflag; 726 727 /* Byte size and parity */ 728 if ((cflag & CSIZE) == CS8) { 729 sSetData8(cp); 730 bits = 10; 731 } else { 732 sSetData7(cp); 733 bits = 9; 734 } 735 if (cflag & CSTOPB) { 736 sSetStop2(cp); 737 bits++; 738 } else { 739 sSetStop1(cp); 740 } 741 742 if (cflag & PARENB) { 743 sEnParity(cp); 744 bits++; 745 if (cflag & PARODD) { 746 sSetOddParity(cp); 747 } else { 748 sSetEvenParity(cp); 749 } 750 } else { 751 sDisParity(cp); 752 } 753 754 /* baud rate */ 755 baud = tty_get_baud_rate(tty); 756 if (!baud) 757 baud = 9600; 758 divisor = ((rp_baud_base[info->board] + (baud >> 1)) / baud) - 1; 759 if ((divisor >= 8192 || divisor < 0) && old_termios) { 760 baud = tty_termios_baud_rate(old_termios); 761 if (!baud) 762 baud = 9600; 763 divisor = (rp_baud_base[info->board] / baud) - 1; 764 } 765 if (divisor >= 8192 || divisor < 0) { 766 baud = 9600; 767 divisor = (rp_baud_base[info->board] / baud) - 1; 768 } 769 info->cps = baud / bits; 770 sSetBaud(cp, divisor); 771 772 /* FIXME: Should really back compute a baud rate from the divisor */ 773 tty_encode_baud_rate(tty, baud, baud); 774 775 if (cflag & CRTSCTS) { 776 info->intmask |= DELTA_CTS; 777 sEnCTSFlowCtl(cp); 778 } else { 779 info->intmask &= ~DELTA_CTS; 780 sDisCTSFlowCtl(cp); 781 } 782 if (cflag & CLOCAL) { 783 info->intmask &= ~DELTA_CD; 784 } else { 785 spin_lock_irqsave(&info->slock, flags); 786 if (sGetChanStatus(cp) & CD_ACT) 787 info->cd_status = 1; 788 else 789 info->cd_status = 0; 790 info->intmask |= DELTA_CD; 791 spin_unlock_irqrestore(&info->slock, flags); 792 } 793 794 /* 795 * Handle software flow control in the board 796 */ 797#ifdef ROCKET_SOFT_FLOW 798 if (I_IXON(tty)) { 799 sEnTxSoftFlowCtl(cp); 800 if (I_IXANY(tty)) { 801 sEnIXANY(cp); 802 } else { 803 sDisIXANY(cp); 804 } 805 sSetTxXONChar(cp, START_CHAR(tty)); 806 sSetTxXOFFChar(cp, STOP_CHAR(tty)); 807 } else { 808 sDisTxSoftFlowCtl(cp); 809 sDisIXANY(cp); 810 sClrTxXOFF(cp); 811 } 812#endif 813 814 /* 815 * Set up ignore/read mask words 816 */ 817 info->read_status_mask = STMRCVROVRH | 0xFF; 818 if (I_INPCK(tty)) 819 info->read_status_mask |= STMFRAMEH | STMPARITYH; 820 if (I_BRKINT(tty) || I_PARMRK(tty)) 821 info->read_status_mask |= STMBREAKH; 822 823 /* 824 * Characters to ignore 825 */ 826 info->ignore_status_mask = 0; 827 if (I_IGNPAR(tty)) 828 info->ignore_status_mask |= STMFRAMEH | STMPARITYH; 829 if (I_IGNBRK(tty)) { 830 info->ignore_status_mask |= STMBREAKH; 831 /* 832 * If we're ignoring parity and break indicators, 833 * ignore overruns too. (For real raw support). 834 */ 835 if (I_IGNPAR(tty)) 836 info->ignore_status_mask |= STMRCVROVRH; 837 } 838 839 rocketMode = info->flags & ROCKET_MODE_MASK; 840 841 if ((info->flags & ROCKET_RTS_TOGGLE) 842 || (rocketMode == ROCKET_MODE_RS485)) 843 sEnRTSToggle(cp); 844 else 845 sDisRTSToggle(cp); 846 847 sSetRTS(&info->channel); 848 849 if (cp->CtlP->boardType == ROCKET_TYPE_PC104) { 850 switch (rocketMode) { 851 case ROCKET_MODE_RS485: 852 sSetInterfaceMode(cp, InterfaceModeRS485); 853 break; 854 case ROCKET_MODE_RS422: 855 sSetInterfaceMode(cp, InterfaceModeRS422); 856 break; 857 case ROCKET_MODE_RS232: 858 default: 859 if (info->flags & ROCKET_RTS_TOGGLE) 860 sSetInterfaceMode(cp, InterfaceModeRS232T); 861 else 862 sSetInterfaceMode(cp, InterfaceModeRS232); 863 break; 864 } 865 } 866} 867 868static int carrier_raised(struct tty_port *port) 869{ 870 struct r_port *info = container_of(port, struct r_port, port); 871 return (sGetChanStatusLo(&info->channel) & CD_ACT) ? 1 : 0; 872} 873 874static void dtr_rts(struct tty_port *port, int on) 875{ 876 struct r_port *info = container_of(port, struct r_port, port); 877 if (on) { 878 sSetDTR(&info->channel); 879 sSetRTS(&info->channel); 880 } else { 881 sClrDTR(&info->channel); 882 sClrRTS(&info->channel); 883 } 884} 885 886/* 887 * Exception handler that opens a serial port. Creates xmit_buf storage, fills in 888 * port's r_port struct. Initializes the port hardware. 889 */ 890static int rp_open(struct tty_struct *tty, struct file *filp) 891{ 892 struct r_port *info; 893 struct tty_port *port; 894 int retval; 895 CHANNEL_t *cp; 896 unsigned long page; 897 898 info = rp_table[tty->index]; 899 if (info == NULL) 900 return -ENXIO; 901 port = &info->port; 902 903 page = __get_free_page(GFP_KERNEL); 904 if (!page) 905 return -ENOMEM; 906 907 if (port->flags & ASYNC_CLOSING) { 908 retval = wait_for_completion_interruptible(&info->close_wait); 909 free_page(page); 910 if (retval) 911 return retval; 912 return ((port->flags & ASYNC_HUP_NOTIFY) ? -EAGAIN : -ERESTARTSYS); 913 } 914 915 /* 916 * We must not sleep from here until the port is marked fully in use. 917 */ 918 if (info->xmit_buf) 919 free_page(page); 920 else 921 info->xmit_buf = (unsigned char *) page; 922 923 tty->driver_data = info; 924 tty_port_tty_set(port, tty); 925 926 if (port->count++ == 0) { 927 atomic_inc(&rp_num_ports_open); 928 929#ifdef ROCKET_DEBUG_OPEN 930 printk(KERN_INFO "rocket mod++ = %d...\n", 931 atomic_read(&rp_num_ports_open)); 932#endif 933 } 934#ifdef ROCKET_DEBUG_OPEN 935 printk(KERN_INFO "rp_open ttyR%d, count=%d\n", info->line, info->port.count); 936#endif 937 938 /* 939 * Info->count is now 1; so it's safe to sleep now. 940 */ 941 if (!test_bit(ASYNCB_INITIALIZED, &port->flags)) { 942 cp = &info->channel; 943 sSetRxTrigger(cp, TRIG_1); 944 if (sGetChanStatus(cp) & CD_ACT) 945 info->cd_status = 1; 946 else 947 info->cd_status = 0; 948 sDisRxStatusMode(cp); 949 sFlushRxFIFO(cp); 950 sFlushTxFIFO(cp); 951 952 sEnInterrupts(cp, (TXINT_EN | MCINT_EN | RXINT_EN | SRCINT_EN | CHANINT_EN)); 953 sSetRxTrigger(cp, TRIG_1); 954 955 sGetChanStatus(cp); 956 sDisRxStatusMode(cp); 957 sClrTxXOFF(cp); 958 959 sDisCTSFlowCtl(cp); 960 sDisTxSoftFlowCtl(cp); 961 962 sEnRxFIFO(cp); 963 sEnTransmit(cp); 964 965 set_bit(ASYNCB_INITIALIZED, &info->port.flags); 966 967 /* 968 * Set up the tty->alt_speed kludge 969 */ 970 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_HI) 971 tty->alt_speed = 57600; 972 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_VHI) 973 tty->alt_speed = 115200; 974 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_SHI) 975 tty->alt_speed = 230400; 976 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_WARP) 977 tty->alt_speed = 460800; 978 979 configure_r_port(tty, info, NULL); 980 if (tty->termios.c_cflag & CBAUD) { 981 sSetDTR(cp); 982 sSetRTS(cp); 983 } 984 } 985 /* Starts (or resets) the maint polling loop */ 986 mod_timer(&rocket_timer, jiffies + POLL_PERIOD); 987 988 retval = tty_port_block_til_ready(port, tty, filp); 989 if (retval) { 990#ifdef ROCKET_DEBUG_OPEN 991 printk(KERN_INFO "rp_open returning after block_til_ready with %d\n", retval); 992#endif 993 return retval; 994 } 995 return 0; 996} 997 998/* 999 * Exception handler that closes a serial port. info->port.count is considered critical. 1000 */ 1001static void rp_close(struct tty_struct *tty, struct file *filp) 1002{ 1003 struct r_port *info = tty->driver_data; 1004 struct tty_port *port = &info->port; 1005 int timeout; 1006 CHANNEL_t *cp; 1007 1008 if (rocket_paranoia_check(info, "rp_close")) 1009 return; 1010 1011#ifdef ROCKET_DEBUG_OPEN 1012 printk(KERN_INFO "rp_close ttyR%d, count = %d\n", info->line, info->port.count); 1013#endif 1014 1015 if (tty_port_close_start(port, tty, filp) == 0) 1016 return; 1017 1018 mutex_lock(&port->mutex); 1019 cp = &info->channel; 1020 /* 1021 * Before we drop DTR, make sure the UART transmitter 1022 * has completely drained; this is especially 1023 * important if there is a transmit FIFO! 1024 */ 1025 timeout = (sGetTxCnt(cp) + 1) * HZ / info->cps; 1026 if (timeout == 0) 1027 timeout = 1; 1028 rp_wait_until_sent(tty, timeout); 1029 clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]); 1030 1031 sDisTransmit(cp); 1032 sDisInterrupts(cp, (TXINT_EN | MCINT_EN | RXINT_EN | SRCINT_EN | CHANINT_EN)); 1033 sDisCTSFlowCtl(cp); 1034 sDisTxSoftFlowCtl(cp); 1035 sClrTxXOFF(cp); 1036 sFlushRxFIFO(cp); 1037 sFlushTxFIFO(cp); 1038 sClrRTS(cp); 1039 if (C_HUPCL(tty)) 1040 sClrDTR(cp); 1041 1042 rp_flush_buffer(tty); 1043 1044 tty_ldisc_flush(tty); 1045 1046 clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]); 1047 1048 /* We can't yet use tty_port_close_end as the buffer handling in this 1049 driver is a bit different to the usual */ 1050 1051 if (port->blocked_open) { 1052 if (port->close_delay) { 1053 msleep_interruptible(jiffies_to_msecs(port->close_delay)); 1054 } 1055 wake_up_interruptible(&port->open_wait); 1056 } else { 1057 if (info->xmit_buf) { 1058 free_page((unsigned long) info->xmit_buf); 1059 info->xmit_buf = NULL; 1060 } 1061 } 1062 spin_lock_irq(&port->lock); 1063 info->port.flags &= ~(ASYNC_INITIALIZED | ASYNC_CLOSING | ASYNC_NORMAL_ACTIVE); 1064 tty->closing = 0; 1065 spin_unlock_irq(&port->lock); 1066 mutex_unlock(&port->mutex); 1067 tty_port_tty_set(port, NULL); 1068 1069 wake_up_interruptible(&port->close_wait); 1070 complete_all(&info->close_wait); 1071 atomic_dec(&rp_num_ports_open); 1072 1073#ifdef ROCKET_DEBUG_OPEN 1074 printk(KERN_INFO "rocket mod-- = %d...\n", 1075 atomic_read(&rp_num_ports_open)); 1076 printk(KERN_INFO "rp_close ttyR%d complete shutdown\n", info->line); 1077#endif 1078 1079} 1080 1081static void rp_set_termios(struct tty_struct *tty, 1082 struct ktermios *old_termios) 1083{ 1084 struct r_port *info = tty->driver_data; 1085 CHANNEL_t *cp; 1086 unsigned cflag; 1087 1088 if (rocket_paranoia_check(info, "rp_set_termios")) 1089 return; 1090 1091 cflag = tty->termios.c_cflag; 1092 1093 /* 1094 * This driver doesn't support CS5 or CS6 1095 */ 1096 if (((cflag & CSIZE) == CS5) || ((cflag & CSIZE) == CS6)) 1097 tty->termios.c_cflag = 1098 ((cflag & ~CSIZE) | (old_termios->c_cflag & CSIZE)); 1099 /* Or CMSPAR */ 1100 tty->termios.c_cflag &= ~CMSPAR; 1101 1102 configure_r_port(tty, info, old_termios); 1103 1104 cp = &info->channel; 1105 1106 /* Handle transition to B0 status */ 1107 if ((old_termios->c_cflag & CBAUD) && !(tty->termios.c_cflag & CBAUD)) { 1108 sClrDTR(cp); 1109 sClrRTS(cp); 1110 } 1111 1112 /* Handle transition away from B0 status */ 1113 if (!(old_termios->c_cflag & CBAUD) && (tty->termios.c_cflag & CBAUD)) { 1114 if (!tty->hw_stopped || !(tty->termios.c_cflag & CRTSCTS)) 1115 sSetRTS(cp); 1116 sSetDTR(cp); 1117 } 1118 1119 if ((old_termios->c_cflag & CRTSCTS) && !(tty->termios.c_cflag & CRTSCTS)) { 1120 tty->hw_stopped = 0; 1121 rp_start(tty); 1122 } 1123} 1124 1125static int rp_break(struct tty_struct *tty, int break_state) 1126{ 1127 struct r_port *info = tty->driver_data; 1128 unsigned long flags; 1129 1130 if (rocket_paranoia_check(info, "rp_break")) 1131 return -EINVAL; 1132 1133 spin_lock_irqsave(&info->slock, flags); 1134 if (break_state == -1) 1135 sSendBreak(&info->channel); 1136 else 1137 sClrBreak(&info->channel); 1138 spin_unlock_irqrestore(&info->slock, flags); 1139 return 0; 1140} 1141 1142/* 1143 * sGetChanRI used to be a macro in rocket_int.h. When the functionality for 1144 * the UPCI boards was added, it was decided to make this a function because 1145 * the macro was getting too complicated. All cases except the first one 1146 * (UPCIRingInd) are taken directly from the original macro. 1147 */ 1148static int sGetChanRI(CHANNEL_T * ChP) 1149{ 1150 CONTROLLER_t *CtlP = ChP->CtlP; 1151 int ChanNum = ChP->ChanNum; 1152 int RingInd = 0; 1153 1154 if (CtlP->UPCIRingInd) 1155 RingInd = !(sInB(CtlP->UPCIRingInd) & sBitMapSetTbl[ChanNum]); 1156 else if (CtlP->AltChanRingIndicator) 1157 RingInd = sInB((ByteIO_t) (ChP->ChanStat + 8)) & DSR_ACT; 1158 else if (CtlP->boardType == ROCKET_TYPE_PC104) 1159 RingInd = !(sInB(CtlP->AiopIO[3]) & sBitMapSetTbl[ChanNum]); 1160 1161 return RingInd; 1162} 1163 1164/********************************************************************************************/ 1165/* Here are the routines used by rp_ioctl. These are all called from exception handlers. */ 1166 1167/* 1168 * Returns the state of the serial modem control lines. These next 2 functions 1169 * are the way kernel versions > 2.5 handle modem control lines rather than IOCTLs. 1170 */ 1171static int rp_tiocmget(struct tty_struct *tty) 1172{ 1173 struct r_port *info = tty->driver_data; 1174 unsigned int control, result, ChanStatus; 1175 1176 ChanStatus = sGetChanStatusLo(&info->channel); 1177 control = info->channel.TxControl[3]; 1178 result = ((control & SET_RTS) ? TIOCM_RTS : 0) | 1179 ((control & SET_DTR) ? TIOCM_DTR : 0) | 1180 ((ChanStatus & CD_ACT) ? TIOCM_CAR : 0) | 1181 (sGetChanRI(&info->channel) ? TIOCM_RNG : 0) | 1182 ((ChanStatus & DSR_ACT) ? TIOCM_DSR : 0) | 1183 ((ChanStatus & CTS_ACT) ? TIOCM_CTS : 0); 1184 1185 return result; 1186} 1187 1188/* 1189 * Sets the modem control lines 1190 */ 1191static int rp_tiocmset(struct tty_struct *tty, 1192 unsigned int set, unsigned int clear) 1193{ 1194 struct r_port *info = tty->driver_data; 1195 1196 if (set & TIOCM_RTS) 1197 info->channel.TxControl[3] |= SET_RTS; 1198 if (set & TIOCM_DTR) 1199 info->channel.TxControl[3] |= SET_DTR; 1200 if (clear & TIOCM_RTS) 1201 info->channel.TxControl[3] &= ~SET_RTS; 1202 if (clear & TIOCM_DTR) 1203 info->channel.TxControl[3] &= ~SET_DTR; 1204 1205 out32(info->channel.IndexAddr, info->channel.TxControl); 1206 return 0; 1207} 1208 1209static int get_config(struct r_port *info, struct rocket_config __user *retinfo) 1210{ 1211 struct rocket_config tmp; 1212 1213 if (!retinfo) 1214 return -EFAULT; 1215 memset(&tmp, 0, sizeof (tmp)); 1216 mutex_lock(&info->port.mutex); 1217 tmp.line = info->line; 1218 tmp.flags = info->flags; 1219 tmp.close_delay = info->port.close_delay; 1220 tmp.closing_wait = info->port.closing_wait; 1221 tmp.port = rcktpt_io_addr[(info->line >> 5) & 3]; 1222 mutex_unlock(&info->port.mutex); 1223 1224 if (copy_to_user(retinfo, &tmp, sizeof (*retinfo))) 1225 return -EFAULT; 1226 return 0; 1227} 1228 1229static int set_config(struct tty_struct *tty, struct r_port *info, 1230 struct rocket_config __user *new_info) 1231{ 1232 struct rocket_config new_serial; 1233 1234 if (copy_from_user(&new_serial, new_info, sizeof (new_serial))) 1235 return -EFAULT; 1236 1237 mutex_lock(&info->port.mutex); 1238 if (!capable(CAP_SYS_ADMIN)) 1239 { 1240 if ((new_serial.flags & ~ROCKET_USR_MASK) != (info->flags & ~ROCKET_USR_MASK)) { 1241 mutex_unlock(&info->port.mutex); 1242 return -EPERM; 1243 } 1244 info->flags = ((info->flags & ~ROCKET_USR_MASK) | (new_serial.flags & ROCKET_USR_MASK)); 1245 configure_r_port(tty, info, NULL); 1246 mutex_unlock(&info->port.mutex); 1247 return 0; 1248 } 1249 1250 info->flags = ((info->flags & ~ROCKET_FLAGS) | (new_serial.flags & ROCKET_FLAGS)); 1251 info->port.close_delay = new_serial.close_delay; 1252 info->port.closing_wait = new_serial.closing_wait; 1253 1254 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_HI) 1255 tty->alt_speed = 57600; 1256 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_VHI) 1257 tty->alt_speed = 115200; 1258 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_SHI) 1259 tty->alt_speed = 230400; 1260 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_WARP) 1261 tty->alt_speed = 460800; 1262 mutex_unlock(&info->port.mutex); 1263 1264 configure_r_port(tty, info, NULL); 1265 return 0; 1266} 1267 1268/* 1269 * This function fills in a rocket_ports struct with information 1270 * about what boards/ports are in the system. This info is passed 1271 * to user space. See setrocket.c where the info is used to create 1272 * the /dev/ttyRx ports. 1273 */ 1274static int get_ports(struct r_port *info, struct rocket_ports __user *retports) 1275{ 1276 struct rocket_ports tmp; 1277 int board; 1278 1279 if (!retports) 1280 return -EFAULT; 1281 memset(&tmp, 0, sizeof (tmp)); 1282 tmp.tty_major = rocket_driver->major; 1283 1284 for (board = 0; board < 4; board++) { 1285 tmp.rocketModel[board].model = rocketModel[board].model; 1286 strcpy(tmp.rocketModel[board].modelString, rocketModel[board].modelString); 1287 tmp.rocketModel[board].numPorts = rocketModel[board].numPorts; 1288 tmp.rocketModel[board].loadrm2 = rocketModel[board].loadrm2; 1289 tmp.rocketModel[board].startingPortNumber = rocketModel[board].startingPortNumber; 1290 } 1291 if (copy_to_user(retports, &tmp, sizeof (*retports))) 1292 return -EFAULT; 1293 return 0; 1294} 1295 1296static int reset_rm2(struct r_port *info, void __user *arg) 1297{ 1298 int reset; 1299 1300 if (!capable(CAP_SYS_ADMIN)) 1301 return -EPERM; 1302 1303 if (copy_from_user(&reset, arg, sizeof (int))) 1304 return -EFAULT; 1305 if (reset) 1306 reset = 1; 1307 1308 if (rcktpt_type[info->board] != ROCKET_TYPE_MODEMII && 1309 rcktpt_type[info->board] != ROCKET_TYPE_MODEMIII) 1310 return -EINVAL; 1311 1312 if (info->ctlp->BusType == isISA) 1313 sModemReset(info->ctlp, info->chan, reset); 1314 else 1315 sPCIModemReset(info->ctlp, info->chan, reset); 1316 1317 return 0; 1318} 1319 1320static int get_version(struct r_port *info, struct rocket_version __user *retvers) 1321{ 1322 if (copy_to_user(retvers, &driver_version, sizeof (*retvers))) 1323 return -EFAULT; 1324 return 0; 1325} 1326 1327/* IOCTL call handler into the driver */ 1328static int rp_ioctl(struct tty_struct *tty, 1329 unsigned int cmd, unsigned long arg) 1330{ 1331 struct r_port *info = tty->driver_data; 1332 void __user *argp = (void __user *)arg; 1333 int ret = 0; 1334 1335 if (cmd != RCKP_GET_PORTS && rocket_paranoia_check(info, "rp_ioctl")) 1336 return -ENXIO; 1337 1338 switch (cmd) { 1339 case RCKP_GET_STRUCT: 1340 if (copy_to_user(argp, info, sizeof (struct r_port))) 1341 ret = -EFAULT; 1342 break; 1343 case RCKP_GET_CONFIG: 1344 ret = get_config(info, argp); 1345 break; 1346 case RCKP_SET_CONFIG: 1347 ret = set_config(tty, info, argp); 1348 break; 1349 case RCKP_GET_PORTS: 1350 ret = get_ports(info, argp); 1351 break; 1352 case RCKP_RESET_RM2: 1353 ret = reset_rm2(info, argp); 1354 break; 1355 case RCKP_GET_VERSION: 1356 ret = get_version(info, argp); 1357 break; 1358 default: 1359 ret = -ENOIOCTLCMD; 1360 } 1361 return ret; 1362} 1363 1364static void rp_send_xchar(struct tty_struct *tty, char ch) 1365{ 1366 struct r_port *info = tty->driver_data; 1367 CHANNEL_t *cp; 1368 1369 if (rocket_paranoia_check(info, "rp_send_xchar")) 1370 return; 1371 1372 cp = &info->channel; 1373 if (sGetTxCnt(cp)) 1374 sWriteTxPrioByte(cp, ch); 1375 else 1376 sWriteTxByte(sGetTxRxDataIO(cp), ch); 1377} 1378 1379static void rp_throttle(struct tty_struct *tty) 1380{ 1381 struct r_port *info = tty->driver_data; 1382 1383#ifdef ROCKET_DEBUG_THROTTLE 1384 printk(KERN_INFO "throttle %s: %d....\n", tty->name, 1385 tty->ldisc.chars_in_buffer(tty)); 1386#endif 1387 1388 if (rocket_paranoia_check(info, "rp_throttle")) 1389 return; 1390 1391 if (I_IXOFF(tty)) 1392 rp_send_xchar(tty, STOP_CHAR(tty)); 1393 1394 sClrRTS(&info->channel); 1395} 1396 1397static void rp_unthrottle(struct tty_struct *tty) 1398{ 1399 struct r_port *info = tty->driver_data; 1400#ifdef ROCKET_DEBUG_THROTTLE 1401 printk(KERN_INFO "unthrottle %s: %d....\n", tty->name, 1402 tty->ldisc.chars_in_buffer(tty)); 1403#endif 1404 1405 if (rocket_paranoia_check(info, "rp_throttle")) 1406 return; 1407 1408 if (I_IXOFF(tty)) 1409 rp_send_xchar(tty, START_CHAR(tty)); 1410 1411 sSetRTS(&info->channel); 1412} 1413 1414/* 1415 * ------------------------------------------------------------ 1416 * rp_stop() and rp_start() 1417 * 1418 * This routines are called before setting or resetting tty->stopped. 1419 * They enable or disable transmitter interrupts, as necessary. 1420 * ------------------------------------------------------------ 1421 */ 1422static void rp_stop(struct tty_struct *tty) 1423{ 1424 struct r_port *info = tty->driver_data; 1425 1426#ifdef ROCKET_DEBUG_FLOW 1427 printk(KERN_INFO "stop %s: %d %d....\n", tty->name, 1428 info->xmit_cnt, info->xmit_fifo_room); 1429#endif 1430 1431 if (rocket_paranoia_check(info, "rp_stop")) 1432 return; 1433 1434 if (sGetTxCnt(&info->channel)) 1435 sDisTransmit(&info->channel); 1436} 1437 1438static void rp_start(struct tty_struct *tty) 1439{ 1440 struct r_port *info = tty->driver_data; 1441 1442#ifdef ROCKET_DEBUG_FLOW 1443 printk(KERN_INFO "start %s: %d %d....\n", tty->name, 1444 info->xmit_cnt, info->xmit_fifo_room); 1445#endif 1446 1447 if (rocket_paranoia_check(info, "rp_stop")) 1448 return; 1449 1450 sEnTransmit(&info->channel); 1451 set_bit((info->aiop * 8) + info->chan, 1452 (void *) &xmit_flags[info->board]); 1453} 1454 1455/* 1456 * rp_wait_until_sent() --- wait until the transmitter is empty 1457 */ 1458static void rp_wait_until_sent(struct tty_struct *tty, int timeout) 1459{ 1460 struct r_port *info = tty->driver_data; 1461 CHANNEL_t *cp; 1462 unsigned long orig_jiffies; 1463 int check_time, exit_time; 1464 int txcnt; 1465 1466 if (rocket_paranoia_check(info, "rp_wait_until_sent")) 1467 return; 1468 1469 cp = &info->channel; 1470 1471 orig_jiffies = jiffies; 1472#ifdef ROCKET_DEBUG_WAIT_UNTIL_SENT 1473 printk(KERN_INFO "In RP_wait_until_sent(%d) (jiff=%lu)...\n", timeout, 1474 jiffies); 1475 printk(KERN_INFO "cps=%d...\n", info->cps); 1476#endif 1477 while (1) { 1478 txcnt = sGetTxCnt(cp); 1479 if (!txcnt) { 1480 if (sGetChanStatusLo(cp) & TXSHRMT) 1481 break; 1482 check_time = (HZ / info->cps) / 5; 1483 } else { 1484 check_time = HZ * txcnt / info->cps; 1485 } 1486 if (timeout) { 1487 exit_time = orig_jiffies + timeout - jiffies; 1488 if (exit_time <= 0) 1489 break; 1490 if (exit_time < check_time) 1491 check_time = exit_time; 1492 } 1493 if (check_time == 0) 1494 check_time = 1; 1495#ifdef ROCKET_DEBUG_WAIT_UNTIL_SENT 1496 printk(KERN_INFO "txcnt = %d (jiff=%lu,check=%d)...\n", txcnt, 1497 jiffies, check_time); 1498#endif 1499 msleep_interruptible(jiffies_to_msecs(check_time)); 1500 if (signal_pending(current)) 1501 break; 1502 } 1503 __set_current_state(TASK_RUNNING); 1504#ifdef ROCKET_DEBUG_WAIT_UNTIL_SENT 1505 printk(KERN_INFO "txcnt = %d (jiff=%lu)...done\n", txcnt, jiffies); 1506#endif 1507} 1508 1509/* 1510 * rp_hangup() --- called by tty_hangup() when a hangup is signaled. 1511 */ 1512static void rp_hangup(struct tty_struct *tty) 1513{ 1514 CHANNEL_t *cp; 1515 struct r_port *info = tty->driver_data; 1516 unsigned long flags; 1517 1518 if (rocket_paranoia_check(info, "rp_hangup")) 1519 return; 1520 1521#if (defined(ROCKET_DEBUG_OPEN) || defined(ROCKET_DEBUG_HANGUP)) 1522 printk(KERN_INFO "rp_hangup of ttyR%d...\n", info->line); 1523#endif 1524 rp_flush_buffer(tty); 1525 spin_lock_irqsave(&info->port.lock, flags); 1526 if (info->port.flags & ASYNC_CLOSING) { 1527 spin_unlock_irqrestore(&info->port.lock, flags); 1528 return; 1529 } 1530 if (info->port.count) 1531 atomic_dec(&rp_num_ports_open); 1532 clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]); 1533 spin_unlock_irqrestore(&info->port.lock, flags); 1534 1535 tty_port_hangup(&info->port); 1536 1537 cp = &info->channel; 1538 sDisRxFIFO(cp); 1539 sDisTransmit(cp); 1540 sDisInterrupts(cp, (TXINT_EN | MCINT_EN | RXINT_EN | SRCINT_EN | CHANINT_EN)); 1541 sDisCTSFlowCtl(cp); 1542 sDisTxSoftFlowCtl(cp); 1543 sClrTxXOFF(cp); 1544 clear_bit(ASYNCB_INITIALIZED, &info->port.flags); 1545 1546 wake_up_interruptible(&info->port.open_wait); 1547} 1548 1549/* 1550 * Exception handler - write char routine. The RocketPort driver uses a 1551 * double-buffering strategy, with the twist that if the in-memory CPU 1552 * buffer is empty, and there's space in the transmit FIFO, the 1553 * writing routines will write directly to transmit FIFO. 1554 * Write buffer and counters protected by spinlocks 1555 */ 1556static int rp_put_char(struct tty_struct *tty, unsigned char ch) 1557{ 1558 struct r_port *info = tty->driver_data; 1559 CHANNEL_t *cp; 1560 unsigned long flags; 1561 1562 if (rocket_paranoia_check(info, "rp_put_char")) 1563 return 0; 1564 1565 /* 1566 * Grab the port write mutex, locking out other processes that try to 1567 * write to this port 1568 */ 1569 mutex_lock(&info->write_mtx); 1570 1571#ifdef ROCKET_DEBUG_WRITE 1572 printk(KERN_INFO "rp_put_char %c...\n", ch); 1573#endif 1574 1575 spin_lock_irqsave(&info->slock, flags); 1576 cp = &info->channel; 1577 1578 if (!tty->stopped && !tty->hw_stopped && info->xmit_fifo_room == 0) 1579 info->xmit_fifo_room = TXFIFO_SIZE - sGetTxCnt(cp); 1580 1581 if (tty->stopped || tty->hw_stopped || info->xmit_fifo_room == 0 || info->xmit_cnt != 0) { 1582 info->xmit_buf[info->xmit_head++] = ch; 1583 info->xmit_head &= XMIT_BUF_SIZE - 1; 1584 info->xmit_cnt++; 1585 set_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]); 1586 } else { 1587 sOutB(sGetTxRxDataIO(cp), ch); 1588 info->xmit_fifo_room--; 1589 } 1590 spin_unlock_irqrestore(&info->slock, flags); 1591 mutex_unlock(&info->write_mtx); 1592 return 1; 1593} 1594 1595/* 1596 * Exception handler - write routine, called when user app writes to the device. 1597 * A per port write mutex is used to protect from another process writing to 1598 * this port at the same time. This other process could be running on the other CPU 1599 * or get control of the CPU if the copy_from_user() blocks due to a page fault (swapped out). 1600 * Spinlocks protect the info xmit members. 1601 */ 1602static int rp_write(struct tty_struct *tty, 1603 const unsigned char *buf, int count) 1604{ 1605 struct r_port *info = tty->driver_data; 1606 CHANNEL_t *cp; 1607 const unsigned char *b; 1608 int c, retval = 0; 1609 unsigned long flags; 1610 1611 if (count <= 0 || rocket_paranoia_check(info, "rp_write")) 1612 return 0; 1613 1614 if (mutex_lock_interruptible(&info->write_mtx)) 1615 return -ERESTARTSYS; 1616 1617#ifdef ROCKET_DEBUG_WRITE 1618 printk(KERN_INFO "rp_write %d chars...\n", count); 1619#endif 1620 cp = &info->channel; 1621 1622 if (!tty->stopped && !tty->hw_stopped && info->xmit_fifo_room < count) 1623 info->xmit_fifo_room = TXFIFO_SIZE - sGetTxCnt(cp); 1624 1625 /* 1626 * If the write queue for the port is empty, and there is FIFO space, stuff bytes 1627 * into FIFO. Use the write queue for temp storage. 1628 */ 1629 if (!tty->stopped && !tty->hw_stopped && info->xmit_cnt == 0 && info->xmit_fifo_room > 0) { 1630 c = min(count, info->xmit_fifo_room); 1631 b = buf; 1632 1633 /* Push data into FIFO, 2 bytes at a time */ 1634 sOutStrW(sGetTxRxDataIO(cp), (unsigned short *) b, c / 2); 1635 1636 /* If there is a byte remaining, write it */ 1637 if (c & 1) 1638 sOutB(sGetTxRxDataIO(cp), b[c - 1]); 1639 1640 retval += c; 1641 buf += c; 1642 count -= c; 1643 1644 spin_lock_irqsave(&info->slock, flags); 1645 info->xmit_fifo_room -= c; 1646 spin_unlock_irqrestore(&info->slock, flags); 1647 } 1648 1649 /* If count is zero, we wrote it all and are done */ 1650 if (!count) 1651 goto end; 1652 1653 /* Write remaining data into the port's xmit_buf */ 1654 while (1) { 1655 /* Hung up ? */ 1656 if (!test_bit(ASYNCB_NORMAL_ACTIVE, &info->port.flags)) 1657 goto end; 1658 c = min(count, XMIT_BUF_SIZE - info->xmit_cnt - 1); 1659 c = min(c, XMIT_BUF_SIZE - info->xmit_head); 1660 if (c <= 0) 1661 break; 1662 1663 b = buf; 1664 memcpy(info->xmit_buf + info->xmit_head, b, c); 1665 1666 spin_lock_irqsave(&info->slock, flags); 1667 info->xmit_head = 1668 (info->xmit_head + c) & (XMIT_BUF_SIZE - 1); 1669 info->xmit_cnt += c; 1670 spin_unlock_irqrestore(&info->slock, flags); 1671 1672 buf += c; 1673 count -= c; 1674 retval += c; 1675 } 1676 1677 if ((retval > 0) && !tty->stopped && !tty->hw_stopped) 1678 set_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]); 1679 1680end: 1681 if (info->xmit_cnt < WAKEUP_CHARS) { 1682 tty_wakeup(tty); 1683#ifdef ROCKETPORT_HAVE_POLL_WAIT 1684 wake_up_interruptible(&tty->poll_wait); 1685#endif 1686 } 1687 mutex_unlock(&info->write_mtx); 1688 return retval; 1689} 1690 1691/* 1692 * Return the number of characters that can be sent. We estimate 1693 * only using the in-memory transmit buffer only, and ignore the 1694 * potential space in the transmit FIFO. 1695 */ 1696static int rp_write_room(struct tty_struct *tty) 1697{ 1698 struct r_port *info = tty->driver_data; 1699 int ret; 1700 1701 if (rocket_paranoia_check(info, "rp_write_room")) 1702 return 0; 1703 1704 ret = XMIT_BUF_SIZE - info->xmit_cnt - 1; 1705 if (ret < 0) 1706 ret = 0; 1707#ifdef ROCKET_DEBUG_WRITE 1708 printk(KERN_INFO "rp_write_room returns %d...\n", ret); 1709#endif 1710 return ret; 1711} 1712 1713/* 1714 * Return the number of characters in the buffer. Again, this only 1715 * counts those characters in the in-memory transmit buffer. 1716 */ 1717static int rp_chars_in_buffer(struct tty_struct *tty) 1718{ 1719 struct r_port *info = tty->driver_data; 1720 1721 if (rocket_paranoia_check(info, "rp_chars_in_buffer")) 1722 return 0; 1723 1724#ifdef ROCKET_DEBUG_WRITE 1725 printk(KERN_INFO "rp_chars_in_buffer returns %d...\n", info->xmit_cnt); 1726#endif 1727 return info->xmit_cnt; 1728} 1729 1730/* 1731 * Flushes the TX fifo for a port, deletes data in the xmit_buf stored in the 1732 * r_port struct for the port. Note that spinlock are used to protect info members, 1733 * do not call this function if the spinlock is already held. 1734 */ 1735static void rp_flush_buffer(struct tty_struct *tty) 1736{ 1737 struct r_port *info = tty->driver_data; 1738 CHANNEL_t *cp; 1739 unsigned long flags; 1740 1741 if (rocket_paranoia_check(info, "rp_flush_buffer")) 1742 return; 1743 1744 spin_lock_irqsave(&info->slock, flags); 1745 info->xmit_cnt = info->xmit_head = info->xmit_tail = 0; 1746 spin_unlock_irqrestore(&info->slock, flags); 1747 1748#ifdef ROCKETPORT_HAVE_POLL_WAIT 1749 wake_up_interruptible(&tty->poll_wait); 1750#endif 1751 tty_wakeup(tty); 1752 1753 cp = &info->channel; 1754 sFlushTxFIFO(cp); 1755} 1756 1757#ifdef CONFIG_PCI 1758 1759static DEFINE_PCI_DEVICE_TABLE(rocket_pci_ids) = { 1760 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP4QUAD) }, 1761 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP8OCTA) }, 1762 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_URP8OCTA) }, 1763 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP8INTF) }, 1764 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_URP8INTF) }, 1765 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP8J) }, 1766 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP4J) }, 1767 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP8SNI) }, 1768 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP16SNI) }, 1769 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP16INTF) }, 1770 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_URP16INTF) }, 1771 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_CRP16INTF) }, 1772 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP32INTF) }, 1773 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_URP32INTF) }, 1774 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RPP4) }, 1775 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RPP8) }, 1776 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP2_232) }, 1777 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP2_422) }, 1778 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP6M) }, 1779 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP4M) }, 1780 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_UPCI_RM3_8PORT) }, 1781 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_UPCI_RM3_4PORT) }, 1782 { } 1783}; 1784MODULE_DEVICE_TABLE(pci, rocket_pci_ids); 1785 1786/* 1787 * Called when a PCI card is found. Retrieves and stores model information, 1788 * init's aiopic and serial port hardware. 1789 * Inputs: i is the board number (0-n) 1790 */ 1791static __init int register_PCI(int i, struct pci_dev *dev) 1792{ 1793 int num_aiops, aiop, max_num_aiops, num_chan, chan; 1794 unsigned int aiopio[MAX_AIOPS_PER_BOARD]; 1795 CONTROLLER_t *ctlp; 1796 1797 int fast_clock = 0; 1798 int altChanRingIndicator = 0; 1799 int ports_per_aiop = 8; 1800 WordIO_t ConfigIO = 0; 1801 ByteIO_t UPCIRingInd = 0; 1802 1803 if (!dev || !pci_match_id(rocket_pci_ids, dev) || 1804 pci_enable_device(dev)) 1805 return 0; 1806 1807 rcktpt_io_addr[i] = pci_resource_start(dev, 0); 1808 1809 rcktpt_type[i] = ROCKET_TYPE_NORMAL; 1810 rocketModel[i].loadrm2 = 0; 1811 rocketModel[i].startingPortNumber = nextLineNumber; 1812 1813 /* Depending on the model, set up some config variables */ 1814 switch (dev->device) { 1815 case PCI_DEVICE_ID_RP4QUAD: 1816 max_num_aiops = 1; 1817 ports_per_aiop = 4; 1818 rocketModel[i].model = MODEL_RP4QUAD; 1819 strcpy(rocketModel[i].modelString, "RocketPort 4 port w/quad cable"); 1820 rocketModel[i].numPorts = 4; 1821 break; 1822 case PCI_DEVICE_ID_RP8OCTA: 1823 max_num_aiops = 1; 1824 rocketModel[i].model = MODEL_RP8OCTA; 1825 strcpy(rocketModel[i].modelString, "RocketPort 8 port w/octa cable"); 1826 rocketModel[i].numPorts = 8; 1827 break; 1828 case PCI_DEVICE_ID_URP8OCTA: 1829 max_num_aiops = 1; 1830 rocketModel[i].model = MODEL_UPCI_RP8OCTA; 1831 strcpy(rocketModel[i].modelString, "RocketPort UPCI 8 port w/octa cable"); 1832 rocketModel[i].numPorts = 8; 1833 break; 1834 case PCI_DEVICE_ID_RP8INTF: 1835 max_num_aiops = 1; 1836 rocketModel[i].model = MODEL_RP8INTF; 1837 strcpy(rocketModel[i].modelString, "RocketPort 8 port w/external I/F"); 1838 rocketModel[i].numPorts = 8; 1839 break; 1840 case PCI_DEVICE_ID_URP8INTF: 1841 max_num_aiops = 1; 1842 rocketModel[i].model = MODEL_UPCI_RP8INTF; 1843 strcpy(rocketModel[i].modelString, "RocketPort UPCI 8 port w/external I/F"); 1844 rocketModel[i].numPorts = 8; 1845 break; 1846 case PCI_DEVICE_ID_RP8J: 1847 max_num_aiops = 1; 1848 rocketModel[i].model = MODEL_RP8J; 1849 strcpy(rocketModel[i].modelString, "RocketPort 8 port w/RJ11 connectors"); 1850 rocketModel[i].numPorts = 8; 1851 break; 1852 case PCI_DEVICE_ID_RP4J: 1853 max_num_aiops = 1; 1854 ports_per_aiop = 4; 1855 rocketModel[i].model = MODEL_RP4J; 1856 strcpy(rocketModel[i].modelString, "RocketPort 4 port w/RJ45 connectors"); 1857 rocketModel[i].numPorts = 4; 1858 break; 1859 case PCI_DEVICE_ID_RP8SNI: 1860 max_num_aiops = 1; 1861 rocketModel[i].model = MODEL_RP8SNI; 1862 strcpy(rocketModel[i].modelString, "RocketPort 8 port w/ custom DB78"); 1863 rocketModel[i].numPorts = 8; 1864 break; 1865 case PCI_DEVICE_ID_RP16SNI: 1866 max_num_aiops = 2; 1867 rocketModel[i].model = MODEL_RP16SNI; 1868 strcpy(rocketModel[i].modelString, "RocketPort 16 port w/ custom DB78"); 1869 rocketModel[i].numPorts = 16; 1870 break; 1871 case PCI_DEVICE_ID_RP16INTF: 1872 max_num_aiops = 2; 1873 rocketModel[i].model = MODEL_RP16INTF; 1874 strcpy(rocketModel[i].modelString, "RocketPort 16 port w/external I/F"); 1875 rocketModel[i].numPorts = 16; 1876 break; 1877 case PCI_DEVICE_ID_URP16INTF: 1878 max_num_aiops = 2; 1879 rocketModel[i].model = MODEL_UPCI_RP16INTF; 1880 strcpy(rocketModel[i].modelString, "RocketPort UPCI 16 port w/external I/F"); 1881 rocketModel[i].numPorts = 16; 1882 break; 1883 case PCI_DEVICE_ID_CRP16INTF: 1884 max_num_aiops = 2; 1885 rocketModel[i].model = MODEL_CPCI_RP16INTF; 1886 strcpy(rocketModel[i].modelString, "RocketPort Compact PCI 16 port w/external I/F"); 1887 rocketModel[i].numPorts = 16; 1888 break; 1889 case PCI_DEVICE_ID_RP32INTF: 1890 max_num_aiops = 4; 1891 rocketModel[i].model = MODEL_RP32INTF; 1892 strcpy(rocketModel[i].modelString, "RocketPort 32 port w/external I/F"); 1893 rocketModel[i].numPorts = 32; 1894 break; 1895 case PCI_DEVICE_ID_URP32INTF: 1896 max_num_aiops = 4; 1897 rocketModel[i].model = MODEL_UPCI_RP32INTF; 1898 strcpy(rocketModel[i].modelString, "RocketPort UPCI 32 port w/external I/F"); 1899 rocketModel[i].numPorts = 32; 1900 break; 1901 case PCI_DEVICE_ID_RPP4: 1902 max_num_aiops = 1; 1903 ports_per_aiop = 4; 1904 altChanRingIndicator++; 1905 fast_clock++; 1906 rocketModel[i].model = MODEL_RPP4; 1907 strcpy(rocketModel[i].modelString, "RocketPort Plus 4 port"); 1908 rocketModel[i].numPorts = 4; 1909 break; 1910 case PCI_DEVICE_ID_RPP8: 1911 max_num_aiops = 2; 1912 ports_per_aiop = 4; 1913 altChanRingIndicator++; 1914 fast_clock++; 1915 rocketModel[i].model = MODEL_RPP8; 1916 strcpy(rocketModel[i].modelString, "RocketPort Plus 8 port"); 1917 rocketModel[i].numPorts = 8; 1918 break; 1919 case PCI_DEVICE_ID_RP2_232: 1920 max_num_aiops = 1; 1921 ports_per_aiop = 2; 1922 altChanRingIndicator++; 1923 fast_clock++; 1924 rocketModel[i].model = MODEL_RP2_232; 1925 strcpy(rocketModel[i].modelString, "RocketPort Plus 2 port RS232"); 1926 rocketModel[i].numPorts = 2; 1927 break; 1928 case PCI_DEVICE_ID_RP2_422: 1929 max_num_aiops = 1; 1930 ports_per_aiop = 2; 1931 altChanRingIndicator++; 1932 fast_clock++; 1933 rocketModel[i].model = MODEL_RP2_422; 1934 strcpy(rocketModel[i].modelString, "RocketPort Plus 2 port RS422"); 1935 rocketModel[i].numPorts = 2; 1936 break; 1937 case PCI_DEVICE_ID_RP6M: 1938 1939 max_num_aiops = 1; 1940 ports_per_aiop = 6; 1941 1942 /* If revision is 1, the rocketmodem flash must be loaded. 1943 * If it is 2 it is a "socketed" version. */ 1944 if (dev->revision == 1) { 1945 rcktpt_type[i] = ROCKET_TYPE_MODEMII; 1946 rocketModel[i].loadrm2 = 1; 1947 } else { 1948 rcktpt_type[i] = ROCKET_TYPE_MODEM; 1949 } 1950 1951 rocketModel[i].model = MODEL_RP6M; 1952 strcpy(rocketModel[i].modelString, "RocketModem 6 port"); 1953 rocketModel[i].numPorts = 6; 1954 break; 1955 case PCI_DEVICE_ID_RP4M: 1956 max_num_aiops = 1; 1957 ports_per_aiop = 4; 1958 if (dev->revision == 1) { 1959 rcktpt_type[i] = ROCKET_TYPE_MODEMII; 1960 rocketModel[i].loadrm2 = 1; 1961 } else { 1962 rcktpt_type[i] = ROCKET_TYPE_MODEM; 1963 } 1964 1965 rocketModel[i].model = MODEL_RP4M; 1966 strcpy(rocketModel[i].modelString, "RocketModem 4 port"); 1967 rocketModel[i].numPorts = 4; 1968 break; 1969 default: 1970 max_num_aiops = 0; 1971 break; 1972 } 1973 1974 /* 1975 * Check for UPCI boards. 1976 */ 1977 1978 switch (dev->device) { 1979 case PCI_DEVICE_ID_URP32INTF: 1980 case PCI_DEVICE_ID_URP8INTF: 1981 case PCI_DEVICE_ID_URP16INTF: 1982 case PCI_DEVICE_ID_CRP16INTF: 1983 case PCI_DEVICE_ID_URP8OCTA: 1984 rcktpt_io_addr[i] = pci_resource_start(dev, 2); 1985 ConfigIO = pci_resource_start(dev, 1); 1986 if (dev->device == PCI_DEVICE_ID_URP8OCTA) { 1987 UPCIRingInd = rcktpt_io_addr[i] + _PCI_9030_RING_IND; 1988 1989 /* 1990 * Check for octa or quad cable. 1991 */ 1992 if (! 1993 (sInW(ConfigIO + _PCI_9030_GPIO_CTRL) & 1994 PCI_GPIO_CTRL_8PORT)) { 1995 ports_per_aiop = 4; 1996 rocketModel[i].numPorts = 4; 1997 } 1998 } 1999 break; 2000 case PCI_DEVICE_ID_UPCI_RM3_8PORT: 2001 max_num_aiops = 1; 2002 rocketModel[i].model = MODEL_UPCI_RM3_8PORT; 2003 strcpy(rocketModel[i].modelString, "RocketModem III 8 port"); 2004 rocketModel[i].numPorts = 8; 2005 rcktpt_io_addr[i] = pci_resource_start(dev, 2); 2006 UPCIRingInd = rcktpt_io_addr[i] + _PCI_9030_RING_IND; 2007 ConfigIO = pci_resource_start(dev, 1); 2008 rcktpt_type[i] = ROCKET_TYPE_MODEMIII; 2009 break; 2010 case PCI_DEVICE_ID_UPCI_RM3_4PORT: 2011 max_num_aiops = 1; 2012 rocketModel[i].model = MODEL_UPCI_RM3_4PORT; 2013 strcpy(rocketModel[i].modelString, "RocketModem III 4 port"); 2014 rocketModel[i].numPorts = 4; 2015 rcktpt_io_addr[i] = pci_resource_start(dev, 2); 2016 UPCIRingInd = rcktpt_io_addr[i] + _PCI_9030_RING_IND; 2017 ConfigIO = pci_resource_start(dev, 1); 2018 rcktpt_type[i] = ROCKET_TYPE_MODEMIII; 2019 break; 2020 default: 2021 break; 2022 } 2023 2024 if (fast_clock) { 2025 sClockPrescale = 0x12; /* mod 2 (divide by 3) */ 2026 rp_baud_base[i] = 921600; 2027 } else { 2028 /* 2029 * If support_low_speed is set, use the slow clock 2030 * prescale, which supports 50 bps 2031 */ 2032 if (support_low_speed) { 2033 /* mod 9 (divide by 10) prescale */ 2034 sClockPrescale = 0x19; 2035 rp_baud_base[i] = 230400; 2036 } else { 2037 /* mod 4 (divide by 5) prescale */ 2038 sClockPrescale = 0x14; 2039 rp_baud_base[i] = 460800; 2040 } 2041 } 2042 2043 for (aiop = 0; aiop < max_num_aiops; aiop++) 2044 aiopio[aiop] = rcktpt_io_addr[i] + (aiop * 0x40); 2045 ctlp = sCtlNumToCtlPtr(i); 2046 num_aiops = sPCIInitController(ctlp, i, aiopio, max_num_aiops, ConfigIO, 0, FREQ_DIS, 0, altChanRingIndicator, UPCIRingInd); 2047 for (aiop = 0; aiop < max_num_aiops; aiop++) 2048 ctlp->AiopNumChan[aiop] = ports_per_aiop; 2049 2050 dev_info(&dev->dev, "comtrol PCI controller #%d found at " 2051 "address %04lx, %d AIOP(s) (%s), creating ttyR%d - %ld\n", 2052 i, rcktpt_io_addr[i], num_aiops, rocketModel[i].modelString, 2053 rocketModel[i].startingPortNumber, 2054 rocketModel[i].startingPortNumber + rocketModel[i].numPorts-1); 2055 2056 if (num_aiops <= 0) { 2057 rcktpt_io_addr[i] = 0; 2058 return (0); 2059 } 2060 is_PCI[i] = 1; 2061 2062 /* Reset the AIOPIC, init the serial ports */ 2063 for (aiop = 0; aiop < num_aiops; aiop++) { 2064 sResetAiopByNum(ctlp, aiop); 2065 num_chan = ports_per_aiop; 2066 for (chan = 0; chan < num_chan; chan++) 2067 init_r_port(i, aiop, chan, dev); 2068 } 2069 2070 /* Rocket modems must be reset */ 2071 if ((rcktpt_type[i] == ROCKET_TYPE_MODEM) || 2072 (rcktpt_type[i] == ROCKET_TYPE_MODEMII) || 2073 (rcktpt_type[i] == ROCKET_TYPE_MODEMIII)) { 2074 num_chan = ports_per_aiop; 2075 for (chan = 0; chan < num_chan; chan++) 2076 sPCIModemReset(ctlp, chan, 1); 2077 msleep(500); 2078 for (chan = 0; chan < num_chan; chan++) 2079 sPCIModemReset(ctlp, chan, 0); 2080 msleep(500); 2081 rmSpeakerReset(ctlp, rocketModel[i].model); 2082 } 2083 return (1); 2084} 2085 2086/* 2087 * Probes for PCI cards, inits them if found 2088 * Input: board_found = number of ISA boards already found, or the 2089 * starting board number 2090 * Returns: Number of PCI boards found 2091 */ 2092static int __init init_PCI(int boards_found) 2093{ 2094 struct pci_dev *dev = NULL; 2095 int count = 0; 2096 2097 /* Work through the PCI device list, pulling out ours */ 2098 while ((dev = pci_get_device(PCI_VENDOR_ID_RP, PCI_ANY_ID, dev))) { 2099 if (register_PCI(count + boards_found, dev)) 2100 count++; 2101 } 2102 return (count); 2103} 2104 2105#endif /* CONFIG_PCI */ 2106 2107/* 2108 * Probes for ISA cards 2109 * Input: i = the board number to look for 2110 * Returns: 1 if board found, 0 else 2111 */ 2112static int __init init_ISA(int i) 2113{ 2114 int num_aiops, num_chan = 0, total_num_chan = 0; 2115 int aiop, chan; 2116 unsigned int aiopio[MAX_AIOPS_PER_BOARD]; 2117 CONTROLLER_t *ctlp; 2118 char *type_string; 2119 2120 /* If io_addr is zero, no board configured */ 2121 if (rcktpt_io_addr[i] == 0) 2122 return (0); 2123 2124 /* Reserve the IO region */ 2125 if (!request_region(rcktpt_io_addr[i], 64, "Comtrol RocketPort")) { 2126 printk(KERN_ERR "Unable to reserve IO region for configured " 2127 "ISA RocketPort at address 0x%lx, board not " 2128 "installed...\n", rcktpt_io_addr[i]); 2129 rcktpt_io_addr[i] = 0; 2130 return (0); 2131 } 2132 2133 ctlp = sCtlNumToCtlPtr(i); 2134 2135 ctlp->boardType = rcktpt_type[i]; 2136 2137 switch (rcktpt_type[i]) { 2138 case ROCKET_TYPE_PC104: 2139 type_string = "(PC104)"; 2140 break; 2141 case ROCKET_TYPE_MODEM: 2142 type_string = "(RocketModem)"; 2143 break; 2144 case ROCKET_TYPE_MODEMII: 2145 type_string = "(RocketModem II)"; 2146 break; 2147 default: 2148 type_string = ""; 2149 break; 2150 } 2151 2152 /* 2153 * If support_low_speed is set, use the slow clock prescale, 2154 * which supports 50 bps 2155 */ 2156 if (support_low_speed) { 2157 sClockPrescale = 0x19; /* mod 9 (divide by 10) prescale */ 2158 rp_baud_base[i] = 230400; 2159 } else { 2160 sClockPrescale = 0x14; /* mod 4 (divide by 5) prescale */ 2161 rp_baud_base[i] = 460800; 2162 } 2163 2164 for (aiop = 0; aiop < MAX_AIOPS_PER_BOARD; aiop++) 2165 aiopio[aiop] = rcktpt_io_addr[i] + (aiop * 0x400); 2166 2167 num_aiops = sInitController(ctlp, i, controller + (i * 0x400), aiopio, MAX_AIOPS_PER_BOARD, 0, FREQ_DIS, 0); 2168 2169 if (ctlp->boardType == ROCKET_TYPE_PC104) { 2170 sEnAiop(ctlp, 2); /* only one AIOPIC, but these */ 2171 sEnAiop(ctlp, 3); /* CSels used for other stuff */ 2172 } 2173 2174 /* If something went wrong initing the AIOP's release the ISA IO memory */ 2175 if (num_aiops <= 0) { 2176 release_region(rcktpt_io_addr[i], 64); 2177 rcktpt_io_addr[i] = 0; 2178 return (0); 2179 } 2180 2181 rocketModel[i].startingPortNumber = nextLineNumber; 2182 2183 for (aiop = 0; aiop < num_aiops; aiop++) { 2184 sResetAiopByNum(ctlp, aiop); 2185 sEnAiop(ctlp, aiop); 2186 num_chan = sGetAiopNumChan(ctlp, aiop); 2187 total_num_chan += num_chan; 2188 for (chan = 0; chan < num_chan; chan++) 2189 init_r_port(i, aiop, chan, NULL); 2190 } 2191 is_PCI[i] = 0; 2192 if ((rcktpt_type[i] == ROCKET_TYPE_MODEM) || (rcktpt_type[i] == ROCKET_TYPE_MODEMII)) { 2193 num_chan = sGetAiopNumChan(ctlp, 0); 2194 total_num_chan = num_chan; 2195 for (chan = 0; chan < num_chan; chan++) 2196 sModemReset(ctlp, chan, 1); 2197 msleep(500); 2198 for (chan = 0; chan < num_chan; chan++) 2199 sModemReset(ctlp, chan, 0); 2200 msleep(500); 2201 strcpy(rocketModel[i].modelString, "RocketModem ISA"); 2202 } else { 2203 strcpy(rocketModel[i].modelString, "RocketPort ISA"); 2204 } 2205 rocketModel[i].numPorts = total_num_chan; 2206 rocketModel[i].model = MODEL_ISA; 2207 2208 printk(KERN_INFO "RocketPort ISA card #%d found at 0x%lx - %d AIOPs %s\n", 2209 i, rcktpt_io_addr[i], num_aiops, type_string); 2210 2211 printk(KERN_INFO "Installing %s, creating /dev/ttyR%d - %ld\n", 2212 rocketModel[i].modelString, 2213 rocketModel[i].startingPortNumber, 2214 rocketModel[i].startingPortNumber + 2215 rocketModel[i].numPorts - 1); 2216 2217 return (1); 2218} 2219 2220static const struct tty_operations rocket_ops = { 2221 .open = rp_open, 2222 .close = rp_close, 2223 .write = rp_write, 2224 .put_char = rp_put_char, 2225 .write_room = rp_write_room, 2226 .chars_in_buffer = rp_chars_in_buffer, 2227 .flush_buffer = rp_flush_buffer, 2228 .ioctl = rp_ioctl, 2229 .throttle = rp_throttle, 2230 .unthrottle = rp_unthrottle, 2231 .set_termios = rp_set_termios, 2232 .stop = rp_stop, 2233 .start = rp_start, 2234 .hangup = rp_hangup, 2235 .break_ctl = rp_break, 2236 .send_xchar = rp_send_xchar, 2237 .wait_until_sent = rp_wait_until_sent, 2238 .tiocmget = rp_tiocmget, 2239 .tiocmset = rp_tiocmset, 2240}; 2241 2242static const struct tty_port_operations rocket_port_ops = { 2243 .carrier_raised = carrier_raised, 2244 .dtr_rts = dtr_rts, 2245}; 2246 2247/* 2248 * The module "startup" routine; it's run when the module is loaded. 2249 */ 2250static int __init rp_init(void) 2251{ 2252 int ret = -ENOMEM, pci_boards_found, isa_boards_found, i; 2253 2254 printk(KERN_INFO "RocketPort device driver module, version %s, %s\n", 2255 ROCKET_VERSION, ROCKET_DATE); 2256 2257 rocket_driver = alloc_tty_driver(MAX_RP_PORTS); 2258 if (!rocket_driver) 2259 goto err; 2260 2261 /* 2262 * If board 1 is non-zero, there is at least one ISA configured. If controller is 2263 * zero, use the default controller IO address of board1 + 0x40. 2264 */ 2265 if (board1) { 2266 if (controller == 0) 2267 controller = board1 + 0x40; 2268 } else { 2269 controller = 0; /* Used as a flag, meaning no ISA boards */ 2270 } 2271 2272 /* If an ISA card is configured, reserve the 4 byte IO space for the Mudbac controller */ 2273 if (controller && (!request_region(controller, 4, "Comtrol RocketPort"))) { 2274 printk(KERN_ERR "Unable to reserve IO region for first " 2275 "configured ISA RocketPort controller 0x%lx. " 2276 "Driver exiting\n", controller); 2277 ret = -EBUSY; 2278 goto err_tty; 2279 } 2280 2281 /* Store ISA variable retrieved from command line or .conf file. */ 2282 rcktpt_io_addr[0] = board1; 2283 rcktpt_io_addr[1] = board2; 2284 rcktpt_io_addr[2] = board3; 2285 rcktpt_io_addr[3] = board4; 2286 2287 rcktpt_type[0] = modem1 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL; 2288 rcktpt_type[0] = pc104_1[0] ? ROCKET_TYPE_PC104 : rcktpt_type[0]; 2289 rcktpt_type[1] = modem2 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL; 2290 rcktpt_type[1] = pc104_2[0] ? ROCKET_TYPE_PC104 : rcktpt_type[1]; 2291 rcktpt_type[2] = modem3 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL; 2292 rcktpt_type[2] = pc104_3[0] ? ROCKET_TYPE_PC104 : rcktpt_type[2]; 2293 rcktpt_type[3] = modem4 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL; 2294 rcktpt_type[3] = pc104_4[0] ? ROCKET_TYPE_PC104 : rcktpt_type[3]; 2295 2296 /* 2297 * Set up the tty driver structure and then register this 2298 * driver with the tty layer. 2299 */ 2300 2301 rocket_driver->flags = TTY_DRIVER_DYNAMIC_DEV; 2302 rocket_driver->name = "ttyR"; 2303 rocket_driver->driver_name = "Comtrol RocketPort"; 2304 rocket_driver->major = TTY_ROCKET_MAJOR; 2305 rocket_driver->minor_start = 0; 2306 rocket_driver->type = TTY_DRIVER_TYPE_SERIAL; 2307 rocket_driver->subtype = SERIAL_TYPE_NORMAL; 2308 rocket_driver->init_termios = tty_std_termios; 2309 rocket_driver->init_termios.c_cflag = 2310 B9600 | CS8 | CREAD | HUPCL | CLOCAL; 2311 rocket_driver->init_termios.c_ispeed = 9600; 2312 rocket_driver->init_termios.c_ospeed = 9600; 2313#ifdef ROCKET_SOFT_FLOW 2314 rocket_driver->flags |= TTY_DRIVER_REAL_RAW; 2315#endif 2316 tty_set_operations(rocket_driver, &rocket_ops); 2317 2318 ret = tty_register_driver(rocket_driver); 2319 if (ret < 0) { 2320 printk(KERN_ERR "Couldn't install tty RocketPort driver\n"); 2321 goto err_controller; 2322 } 2323 2324#ifdef ROCKET_DEBUG_OPEN 2325 printk(KERN_INFO "RocketPort driver is major %d\n", rocket_driver.major); 2326#endif 2327 2328 /* 2329 * OK, let's probe each of the controllers looking for boards. Any boards found 2330 * will be initialized here. 2331 */ 2332 isa_boards_found = 0; 2333 pci_boards_found = 0; 2334 2335 for (i = 0; i < NUM_BOARDS; i++) { 2336 if (init_ISA(i)) 2337 isa_boards_found++; 2338 } 2339 2340#ifdef CONFIG_PCI 2341 if (isa_boards_found < NUM_BOARDS) 2342 pci_boards_found = init_PCI(isa_boards_found); 2343#endif 2344 2345 max_board = pci_boards_found + isa_boards_found; 2346 2347 if (max_board == 0) { 2348 printk(KERN_ERR "No rocketport ports found; unloading driver\n"); 2349 ret = -ENXIO; 2350 goto err_ttyu; 2351 } 2352 2353 return 0; 2354err_ttyu: 2355 tty_unregister_driver(rocket_driver); 2356err_controller: 2357 if (controller) 2358 release_region(controller, 4); 2359err_tty: 2360 put_tty_driver(rocket_driver); 2361err: 2362 return ret; 2363} 2364 2365 2366static void rp_cleanup_module(void) 2367{ 2368 int retval; 2369 int i; 2370 2371 del_timer_sync(&rocket_timer); 2372 2373 retval = tty_unregister_driver(rocket_driver); 2374 if (retval) 2375 printk(KERN_ERR "Error %d while trying to unregister " 2376 "rocketport driver\n", -retval); 2377 2378 for (i = 0; i < MAX_RP_PORTS; i++) 2379 if (rp_table[i]) { 2380 tty_unregister_device(rocket_driver, i); 2381 tty_port_destroy(&rp_table[i]->port); 2382 kfree(rp_table[i]); 2383 } 2384 2385 put_tty_driver(rocket_driver); 2386 2387 for (i = 0; i < NUM_BOARDS; i++) { 2388 if (rcktpt_io_addr[i] <= 0 || is_PCI[i]) 2389 continue; 2390 release_region(rcktpt_io_addr[i], 64); 2391 } 2392 if (controller) 2393 release_region(controller, 4); 2394} 2395 2396/*************************************************************************** 2397Function: sInitController 2398Purpose: Initialization of controller global registers and controller 2399 structure. 2400Call: sInitController(CtlP,CtlNum,MudbacIO,AiopIOList,AiopIOListSize, 2401 IRQNum,Frequency,PeriodicOnly) 2402 CONTROLLER_T *CtlP; Ptr to controller structure 2403 int CtlNum; Controller number 2404 ByteIO_t MudbacIO; Mudbac base I/O address. 2405 ByteIO_t *AiopIOList; List of I/O addresses for each AIOP. 2406 This list must be in the order the AIOPs will be found on the 2407 controller. Once an AIOP in the list is not found, it is 2408 assumed that there are no more AIOPs on the controller. 2409 int AiopIOListSize; Number of addresses in AiopIOList 2410 int IRQNum; Interrupt Request number. Can be any of the following: 2411 0: Disable global interrupts 2412 3: IRQ 3 2413 4: IRQ 4 2414 5: IRQ 5 2415 9: IRQ 9 2416 10: IRQ 10 2417 11: IRQ 11 2418 12: IRQ 12 2419 15: IRQ 15 2420 Byte_t Frequency: A flag identifying the frequency 2421 of the periodic interrupt, can be any one of the following: 2422 FREQ_DIS - periodic interrupt disabled 2423 FREQ_137HZ - 137 Hertz 2424 FREQ_69HZ - 69 Hertz 2425 FREQ_34HZ - 34 Hertz 2426 FREQ_17HZ - 17 Hertz 2427 FREQ_9HZ - 9 Hertz 2428 FREQ_4HZ - 4 Hertz 2429 If IRQNum is set to 0 the Frequency parameter is 2430 overidden, it is forced to a value of FREQ_DIS. 2431 int PeriodicOnly: 1 if all interrupts except the periodic 2432 interrupt are to be blocked. 2433 0 is both the periodic interrupt and 2434 other channel interrupts are allowed. 2435 If IRQNum is set to 0 the PeriodicOnly parameter is 2436 overidden, it is forced to a value of 0. 2437Return: int: Number of AIOPs on the controller, or CTLID_NULL if controller 2438 initialization failed. 2439 2440Comments: 2441 If periodic interrupts are to be disabled but AIOP interrupts 2442 are allowed, set Frequency to FREQ_DIS and PeriodicOnly to 0. 2443 2444 If interrupts are to be completely disabled set IRQNum to 0. 2445 2446 Setting Frequency to FREQ_DIS and PeriodicOnly to 1 is an 2447 invalid combination. 2448 2449 This function performs initialization of global interrupt modes, 2450 but it does not actually enable global interrupts. To enable 2451 and disable global interrupts use functions sEnGlobalInt() and 2452 sDisGlobalInt(). Enabling of global interrupts is normally not 2453 done until all other initializations are complete. 2454 2455 Even if interrupts are globally enabled, they must also be 2456 individually enabled for each channel that is to generate 2457 interrupts. 2458 2459Warnings: No range checking on any of the parameters is done. 2460 2461 No context switches are allowed while executing this function. 2462 2463 After this function all AIOPs on the controller are disabled, 2464 they can be enabled with sEnAiop(). 2465*/ 2466static int sInitController(CONTROLLER_T * CtlP, int CtlNum, ByteIO_t MudbacIO, 2467 ByteIO_t * AiopIOList, int AiopIOListSize, 2468 int IRQNum, Byte_t Frequency, int PeriodicOnly) 2469{ 2470 int i; 2471 ByteIO_t io; 2472 int done; 2473 2474 CtlP->AiopIntrBits = aiop_intr_bits; 2475 CtlP->AltChanRingIndicator = 0; 2476 CtlP->CtlNum = CtlNum; 2477 CtlP->CtlID = CTLID_0001; /* controller release 1 */ 2478 CtlP->BusType = isISA; 2479 CtlP->MBaseIO = MudbacIO; 2480 CtlP->MReg1IO = MudbacIO + 1; 2481 CtlP->MReg2IO = MudbacIO + 2; 2482 CtlP->MReg3IO = MudbacIO + 3; 2483#if 1 2484 CtlP->MReg2 = 0; /* interrupt disable */ 2485 CtlP->MReg3 = 0; /* no periodic interrupts */ 2486#else 2487 if (sIRQMap[IRQNum] == 0) { /* interrupts globally disabled */ 2488 CtlP->MReg2 = 0; /* interrupt disable */ 2489 CtlP->MReg3 = 0; /* no periodic interrupts */ 2490 } else { 2491 CtlP->MReg2 = sIRQMap[IRQNum]; /* set IRQ number */ 2492 CtlP->MReg3 = Frequency; /* set frequency */ 2493 if (PeriodicOnly) { /* periodic interrupt only */ 2494 CtlP->MReg3 |= PERIODIC_ONLY; 2495 } 2496 } 2497#endif 2498 sOutB(CtlP->MReg2IO, CtlP->MReg2); 2499 sOutB(CtlP->MReg3IO, CtlP->MReg3); 2500 sControllerEOI(CtlP); /* clear EOI if warm init */ 2501 /* Init AIOPs */ 2502 CtlP->NumAiop = 0; 2503 for (i = done = 0; i < AiopIOListSize; i++) { 2504 io = AiopIOList[i]; 2505 CtlP->AiopIO[i] = (WordIO_t) io; 2506 CtlP->AiopIntChanIO[i] = io + _INT_CHAN; 2507 sOutB(CtlP->MReg2IO, CtlP->MReg2 | (i & 0x03)); /* AIOP index */ 2508 sOutB(MudbacIO, (Byte_t) (io >> 6)); /* set up AIOP I/O in MUDBAC */ 2509 if (done) 2510 continue; 2511 sEnAiop(CtlP, i); /* enable the AIOP */ 2512 CtlP->AiopID[i] = sReadAiopID(io); /* read AIOP ID */ 2513 if (CtlP->AiopID[i] == AIOPID_NULL) /* if AIOP does not exist */ 2514 done = 1; /* done looking for AIOPs */ 2515 else { 2516 CtlP->AiopNumChan[i] = sReadAiopNumChan((WordIO_t) io); /* num channels in AIOP */ 2517 sOutW((WordIO_t) io + _INDX_ADDR, _CLK_PRE); /* clock prescaler */ 2518 sOutB(io + _INDX_DATA, sClockPrescale); 2519 CtlP->NumAiop++; /* bump count of AIOPs */ 2520 } 2521 sDisAiop(CtlP, i); /* disable AIOP */ 2522 } 2523 2524 if (CtlP->NumAiop == 0) 2525 return (-1); 2526 else 2527 return (CtlP->NumAiop); 2528} 2529 2530/*************************************************************************** 2531Function: sPCIInitController 2532Purpose: Initialization of controller global registers and controller 2533 structure. 2534Call: sPCIInitController(CtlP,CtlNum,AiopIOList,AiopIOListSize, 2535 IRQNum,Frequency,PeriodicOnly) 2536 CONTROLLER_T *CtlP; Ptr to controller structure 2537 int CtlNum; Controller number 2538 ByteIO_t *AiopIOList; List of I/O addresses for each AIOP. 2539 This list must be in the order the AIOPs will be found on the 2540 controller. Once an AIOP in the list is not found, it is 2541 assumed that there are no more AIOPs on the controller. 2542 int AiopIOListSize; Number of addresses in AiopIOList 2543 int IRQNum; Interrupt Request number. Can be any of the following: 2544 0: Disable global interrupts 2545 3: IRQ 3 2546 4: IRQ 4 2547 5: IRQ 5 2548 9: IRQ 9 2549 10: IRQ 10 2550 11: IRQ 11 2551 12: IRQ 12 2552 15: IRQ 15 2553 Byte_t Frequency: A flag identifying the frequency 2554 of the periodic interrupt, can be any one of the following: 2555 FREQ_DIS - periodic interrupt disabled 2556 FREQ_137HZ - 137 Hertz 2557 FREQ_69HZ - 69 Hertz 2558 FREQ_34HZ - 34 Hertz 2559 FREQ_17HZ - 17 Hertz 2560 FREQ_9HZ - 9 Hertz 2561 FREQ_4HZ - 4 Hertz 2562 If IRQNum is set to 0 the Frequency parameter is 2563 overidden, it is forced to a value of FREQ_DIS. 2564 int PeriodicOnly: 1 if all interrupts except the periodic 2565 interrupt are to be blocked. 2566 0 is both the periodic interrupt and 2567 other channel interrupts are allowed. 2568 If IRQNum is set to 0 the PeriodicOnly parameter is 2569 overidden, it is forced to a value of 0. 2570Return: int: Number of AIOPs on the controller, or CTLID_NULL if controller 2571 initialization failed. 2572 2573Comments: 2574 If periodic interrupts are to be disabled but AIOP interrupts 2575 are allowed, set Frequency to FREQ_DIS and PeriodicOnly to 0. 2576 2577 If interrupts are to be completely disabled set IRQNum to 0. 2578 2579 Setting Frequency to FREQ_DIS and PeriodicOnly to 1 is an 2580 invalid combination. 2581 2582 This function performs initialization of global interrupt modes, 2583 but it does not actually enable global interrupts. To enable 2584 and disable global interrupts use functions sEnGlobalInt() and 2585 sDisGlobalInt(). Enabling of global interrupts is normally not 2586 done until all other initializations are complete. 2587 2588 Even if interrupts are globally enabled, they must also be 2589 individually enabled for each channel that is to generate 2590 interrupts. 2591 2592Warnings: No range checking on any of the parameters is done. 2593 2594 No context switches are allowed while executing this function. 2595 2596 After this function all AIOPs on the controller are disabled, 2597 they can be enabled with sEnAiop(). 2598*/ 2599static int sPCIInitController(CONTROLLER_T * CtlP, int CtlNum, 2600 ByteIO_t * AiopIOList, int AiopIOListSize, 2601 WordIO_t ConfigIO, int IRQNum, Byte_t Frequency, 2602 int PeriodicOnly, int altChanRingIndicator, 2603 int UPCIRingInd) 2604{ 2605 int i; 2606 ByteIO_t io; 2607 2608 CtlP->AltChanRingIndicator = altChanRingIndicator; 2609 CtlP->UPCIRingInd = UPCIRingInd; 2610 CtlP->CtlNum = CtlNum; 2611 CtlP->CtlID = CTLID_0001; /* controller release 1 */ 2612 CtlP->BusType = isPCI; /* controller release 1 */ 2613 2614 if (ConfigIO) { 2615 CtlP->isUPCI = 1; 2616 CtlP->PCIIO = ConfigIO + _PCI_9030_INT_CTRL; 2617 CtlP->PCIIO2 = ConfigIO + _PCI_9030_GPIO_CTRL; 2618 CtlP->AiopIntrBits = upci_aiop_intr_bits; 2619 } else { 2620 CtlP->isUPCI = 0; 2621 CtlP->PCIIO = 2622 (WordIO_t) ((ByteIO_t) AiopIOList[0] + _PCI_INT_FUNC); 2623 CtlP->AiopIntrBits = aiop_intr_bits; 2624 } 2625 2626 sPCIControllerEOI(CtlP); /* clear EOI if warm init */ 2627 /* Init AIOPs */ 2628 CtlP->NumAiop = 0; 2629 for (i = 0; i < AiopIOListSize; i++) { 2630 io = AiopIOList[i]; 2631 CtlP->AiopIO[i] = (WordIO_t) io; 2632 CtlP->AiopIntChanIO[i] = io + _INT_CHAN; 2633 2634 CtlP->AiopID[i] = sReadAiopID(io); /* read AIOP ID */ 2635 if (CtlP->AiopID[i] == AIOPID_NULL) /* if AIOP does not exist */ 2636 break; /* done looking for AIOPs */ 2637 2638 CtlP->AiopNumChan[i] = sReadAiopNumChan((WordIO_t) io); /* num channels in AIOP */ 2639 sOutW((WordIO_t) io + _INDX_ADDR, _CLK_PRE); /* clock prescaler */ 2640 sOutB(io + _INDX_DATA, sClockPrescale); 2641 CtlP->NumAiop++; /* bump count of AIOPs */ 2642 } 2643 2644 if (CtlP->NumAiop == 0) 2645 return (-1); 2646 else 2647 return (CtlP->NumAiop); 2648} 2649 2650/*************************************************************************** 2651Function: sReadAiopID 2652Purpose: Read the AIOP idenfication number directly from an AIOP. 2653Call: sReadAiopID(io) 2654 ByteIO_t io: AIOP base I/O address 2655Return: int: Flag AIOPID_XXXX if a valid AIOP is found, where X 2656 is replace by an identifying number. 2657 Flag AIOPID_NULL if no valid AIOP is found 2658Warnings: No context switches are allowed while executing this function. 2659 2660*/ 2661static int sReadAiopID(ByteIO_t io) 2662{ 2663 Byte_t AiopID; /* ID byte from AIOP */ 2664 2665 sOutB(io + _CMD_REG, RESET_ALL); /* reset AIOP */ 2666 sOutB(io + _CMD_REG, 0x0); 2667 AiopID = sInW(io + _CHN_STAT0) & 0x07; 2668 if (AiopID == 0x06) 2669 return (1); 2670 else /* AIOP does not exist */ 2671 return (-1); 2672} 2673 2674/*************************************************************************** 2675Function: sReadAiopNumChan 2676Purpose: Read the number of channels available in an AIOP directly from 2677 an AIOP. 2678Call: sReadAiopNumChan(io) 2679 WordIO_t io: AIOP base I/O address 2680Return: int: The number of channels available 2681Comments: The number of channels is determined by write/reads from identical 2682 offsets within the SRAM address spaces for channels 0 and 4. 2683 If the channel 4 space is mirrored to channel 0 it is a 4 channel 2684 AIOP, otherwise it is an 8 channel. 2685Warnings: No context switches are allowed while executing this function. 2686*/ 2687static int sReadAiopNumChan(WordIO_t io) 2688{ 2689 Word_t x; 2690 static Byte_t R[4] = { 0x00, 0x00, 0x34, 0x12 }; 2691 2692 /* write to chan 0 SRAM */ 2693 out32((DWordIO_t) io + _INDX_ADDR, R); 2694 sOutW(io + _INDX_ADDR, 0); /* read from SRAM, chan 0 */ 2695 x = sInW(io + _INDX_DATA); 2696 sOutW(io + _INDX_ADDR, 0x4000); /* read from SRAM, chan 4 */ 2697 if (x != sInW(io + _INDX_DATA)) /* if different must be 8 chan */ 2698 return (8); 2699 else 2700 return (4); 2701} 2702 2703/*************************************************************************** 2704Function: sInitChan 2705Purpose: Initialization of a channel and channel structure 2706Call: sInitChan(CtlP,ChP,AiopNum,ChanNum) 2707 CONTROLLER_T *CtlP; Ptr to controller structure 2708 CHANNEL_T *ChP; Ptr to channel structure 2709 int AiopNum; AIOP number within controller 2710 int ChanNum; Channel number within AIOP 2711Return: int: 1 if initialization succeeded, 0 if it fails because channel 2712 number exceeds number of channels available in AIOP. 2713Comments: This function must be called before a channel can be used. 2714Warnings: No range checking on any of the parameters is done. 2715 2716 No context switches are allowed while executing this function. 2717*/ 2718static int sInitChan(CONTROLLER_T * CtlP, CHANNEL_T * ChP, int AiopNum, 2719 int ChanNum) 2720{ 2721 int i; 2722 WordIO_t AiopIO; 2723 WordIO_t ChIOOff; 2724 Byte_t *ChR; 2725 Word_t ChOff; 2726 static Byte_t R[4]; 2727 int brd9600; 2728 2729 if (ChanNum >= CtlP->AiopNumChan[AiopNum]) 2730 return 0; /* exceeds num chans in AIOP */ 2731 2732 /* Channel, AIOP, and controller identifiers */ 2733 ChP->CtlP = CtlP; 2734 ChP->ChanID = CtlP->AiopID[AiopNum]; 2735 ChP->AiopNum = AiopNum; 2736 ChP->ChanNum = ChanNum; 2737 2738 /* Global direct addresses */ 2739 AiopIO = CtlP->AiopIO[AiopNum]; 2740 ChP->Cmd = (ByteIO_t) AiopIO + _CMD_REG; 2741 ChP->IntChan = (ByteIO_t) AiopIO + _INT_CHAN; 2742 ChP->IntMask = (ByteIO_t) AiopIO + _INT_MASK; 2743 ChP->IndexAddr = (DWordIO_t) AiopIO + _INDX_ADDR; 2744 ChP->IndexData = AiopIO + _INDX_DATA; 2745 2746 /* Channel direct addresses */ 2747 ChIOOff = AiopIO + ChP->ChanNum * 2; 2748 ChP->TxRxData = ChIOOff + _TD0; 2749 ChP->ChanStat = ChIOOff + _CHN_STAT0; 2750 ChP->TxRxCount = ChIOOff + _FIFO_CNT0; 2751 ChP->IntID = (ByteIO_t) AiopIO + ChP->ChanNum + _INT_ID0; 2752 2753 /* Initialize the channel from the RData array */ 2754 for (i = 0; i < RDATASIZE; i += 4) { 2755 R[0] = RData[i]; 2756 R[1] = RData[i + 1] + 0x10 * ChanNum; 2757 R[2] = RData[i + 2]; 2758 R[3] = RData[i + 3]; 2759 out32(ChP->IndexAddr, R); 2760 } 2761 2762 ChR = ChP->R; 2763 for (i = 0; i < RREGDATASIZE; i += 4) { 2764 ChR[i] = RRegData[i]; 2765 ChR[i + 1] = RRegData[i + 1] + 0x10 * ChanNum; 2766 ChR[i + 2] = RRegData[i + 2]; 2767 ChR[i + 3] = RRegData[i + 3]; 2768 } 2769 2770 /* Indexed registers */ 2771 ChOff = (Word_t) ChanNum *0x1000; 2772 2773 if (sClockPrescale == 0x14) 2774 brd9600 = 47; 2775 else 2776 brd9600 = 23; 2777 2778 ChP->BaudDiv[0] = (Byte_t) (ChOff + _BAUD); 2779 ChP->BaudDiv[1] = (Byte_t) ((ChOff + _BAUD) >> 8); 2780 ChP->BaudDiv[2] = (Byte_t) brd9600; 2781 ChP->BaudDiv[3] = (Byte_t) (brd9600 >> 8); 2782 out32(ChP->IndexAddr, ChP->BaudDiv); 2783 2784 ChP->TxControl[0] = (Byte_t) (ChOff + _TX_CTRL); 2785 ChP->TxControl[1] = (Byte_t) ((ChOff + _TX_CTRL) >> 8); 2786 ChP->TxControl[2] = 0; 2787 ChP->TxControl[3] = 0; 2788 out32(ChP->IndexAddr, ChP->TxControl); 2789 2790 ChP->RxControl[0] = (Byte_t) (ChOff + _RX_CTRL); 2791 ChP->RxControl[1] = (Byte_t) ((ChOff + _RX_CTRL) >> 8); 2792 ChP->RxControl[2] = 0; 2793 ChP->RxControl[3] = 0; 2794 out32(ChP->IndexAddr, ChP->RxControl); 2795 2796 ChP->TxEnables[0] = (Byte_t) (ChOff + _TX_ENBLS); 2797 ChP->TxEnables[1] = (Byte_t) ((ChOff + _TX_ENBLS) >> 8); 2798 ChP->TxEnables[2] = 0; 2799 ChP->TxEnables[3] = 0; 2800 out32(ChP->IndexAddr, ChP->TxEnables); 2801 2802 ChP->TxCompare[0] = (Byte_t) (ChOff + _TXCMP1); 2803 ChP->TxCompare[1] = (Byte_t) ((ChOff + _TXCMP1) >> 8); 2804 ChP->TxCompare[2] = 0; 2805 ChP->TxCompare[3] = 0; 2806 out32(ChP->IndexAddr, ChP->TxCompare); 2807 2808 ChP->TxReplace1[0] = (Byte_t) (ChOff + _TXREP1B1); 2809 ChP->TxReplace1[1] = (Byte_t) ((ChOff + _TXREP1B1) >> 8); 2810 ChP->TxReplace1[2] = 0; 2811 ChP->TxReplace1[3] = 0; 2812 out32(ChP->IndexAddr, ChP->TxReplace1); 2813 2814 ChP->TxReplace2[0] = (Byte_t) (ChOff + _TXREP2); 2815 ChP->TxReplace2[1] = (Byte_t) ((ChOff + _TXREP2) >> 8); 2816 ChP->TxReplace2[2] = 0; 2817 ChP->TxReplace2[3] = 0; 2818 out32(ChP->IndexAddr, ChP->TxReplace2); 2819 2820 ChP->TxFIFOPtrs = ChOff + _TXF_OUTP; 2821 ChP->TxFIFO = ChOff + _TX_FIFO; 2822 2823 sOutB(ChP->Cmd, (Byte_t) ChanNum | RESTXFCNT); /* apply reset Tx FIFO count */ 2824 sOutB(ChP->Cmd, (Byte_t) ChanNum); /* remove reset Tx FIFO count */ 2825 sOutW((WordIO_t) ChP->IndexAddr, ChP->TxFIFOPtrs); /* clear Tx in/out ptrs */ 2826 sOutW(ChP->IndexData, 0); 2827 ChP->RxFIFOPtrs = ChOff + _RXF_OUTP; 2828 ChP->RxFIFO = ChOff + _RX_FIFO; 2829 2830 sOutB(ChP->Cmd, (Byte_t) ChanNum | RESRXFCNT); /* apply reset Rx FIFO count */ 2831 sOutB(ChP->Cmd, (Byte_t) ChanNum); /* remove reset Rx FIFO count */ 2832 sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs); /* clear Rx out ptr */ 2833 sOutW(ChP->IndexData, 0); 2834 sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs + 2); /* clear Rx in ptr */ 2835 sOutW(ChP->IndexData, 0); 2836 ChP->TxPrioCnt = ChOff + _TXP_CNT; 2837 sOutW((WordIO_t) ChP->IndexAddr, ChP->TxPrioCnt); 2838 sOutB(ChP->IndexData, 0); 2839 ChP->TxPrioPtr = ChOff + _TXP_PNTR; 2840 sOutW((WordIO_t) ChP->IndexAddr, ChP->TxPrioPtr); 2841 sOutB(ChP->IndexData, 0); 2842 ChP->TxPrioBuf = ChOff + _TXP_BUF; 2843 sEnRxProcessor(ChP); /* start the Rx processor */ 2844 2845 return 1; 2846} 2847 2848/*************************************************************************** 2849Function: sStopRxProcessor 2850Purpose: Stop the receive processor from processing a channel. 2851Call: sStopRxProcessor(ChP) 2852 CHANNEL_T *ChP; Ptr to channel structure 2853 2854Comments: The receive processor can be started again with sStartRxProcessor(). 2855 This function causes the receive processor to skip over the 2856 stopped channel. It does not stop it from processing other channels. 2857 2858Warnings: No context switches are allowed while executing this function. 2859 2860 Do not leave the receive processor stopped for more than one 2861 character time. 2862 2863 After calling this function a delay of 4 uS is required to ensure 2864 that the receive processor is no longer processing this channel. 2865*/ 2866static void sStopRxProcessor(CHANNEL_T * ChP) 2867{ 2868 Byte_t R[4]; 2869 2870 R[0] = ChP->R[0]; 2871 R[1] = ChP->R[1]; 2872 R[2] = 0x0a; 2873 R[3] = ChP->R[3]; 2874 out32(ChP->IndexAddr, R); 2875} 2876 2877/*************************************************************************** 2878Function: sFlushRxFIFO 2879Purpose: Flush the Rx FIFO 2880Call: sFlushRxFIFO(ChP) 2881 CHANNEL_T *ChP; Ptr to channel structure 2882Return: void 2883Comments: To prevent data from being enqueued or dequeued in the Tx FIFO 2884 while it is being flushed the receive processor is stopped 2885 and the transmitter is disabled. After these operations a 2886 4 uS delay is done before clearing the pointers to allow 2887 the receive processor to stop. These items are handled inside 2888 this function. 2889Warnings: No context switches are allowed while executing this function. 2890*/ 2891static void sFlushRxFIFO(CHANNEL_T * ChP) 2892{ 2893 int i; 2894 Byte_t Ch; /* channel number within AIOP */ 2895 int RxFIFOEnabled; /* 1 if Rx FIFO enabled */ 2896 2897 if (sGetRxCnt(ChP) == 0) /* Rx FIFO empty */ 2898 return; /* don't need to flush */ 2899 2900 RxFIFOEnabled = 0; 2901 if (ChP->R[0x32] == 0x08) { /* Rx FIFO is enabled */ 2902 RxFIFOEnabled = 1; 2903 sDisRxFIFO(ChP); /* disable it */ 2904 for (i = 0; i < 2000 / 200; i++) /* delay 2 uS to allow proc to disable FIFO */ 2905 sInB(ChP->IntChan); /* depends on bus i/o timing */ 2906 } 2907 sGetChanStatus(ChP); /* clear any pending Rx errors in chan stat */ 2908 Ch = (Byte_t) sGetChanNum(ChP); 2909 sOutB(ChP->Cmd, Ch | RESRXFCNT); /* apply reset Rx FIFO count */ 2910 sOutB(ChP->Cmd, Ch); /* remove reset Rx FIFO count */ 2911 sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs); /* clear Rx out ptr */ 2912 sOutW(ChP->IndexData, 0); 2913 sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs + 2); /* clear Rx in ptr */ 2914 sOutW(ChP->IndexData, 0); 2915 if (RxFIFOEnabled) 2916 sEnRxFIFO(ChP); /* enable Rx FIFO */ 2917} 2918 2919/*************************************************************************** 2920Function: sFlushTxFIFO 2921Purpose: Flush the Tx FIFO 2922Call: sFlushTxFIFO(ChP) 2923 CHANNEL_T *ChP; Ptr to channel structure 2924Return: void 2925Comments: To prevent data from being enqueued or dequeued in the Tx FIFO 2926 while it is being flushed the receive processor is stopped 2927 and the transmitter is disabled. After these operations a 2928 4 uS delay is done before clearing the pointers to allow 2929 the receive processor to stop. These items are handled inside 2930 this function. 2931Warnings: No context switches are allowed while executing this function. 2932*/ 2933static void sFlushTxFIFO(CHANNEL_T * ChP) 2934{ 2935 int i; 2936 Byte_t Ch; /* channel number within AIOP */ 2937 int TxEnabled; /* 1 if transmitter enabled */ 2938 2939 if (sGetTxCnt(ChP) == 0) /* Tx FIFO empty */ 2940 return; /* don't need to flush */ 2941 2942 TxEnabled = 0; 2943 if (ChP->TxControl[3] & TX_ENABLE) { 2944 TxEnabled = 1; 2945 sDisTransmit(ChP); /* disable transmitter */ 2946 } 2947 sStopRxProcessor(ChP); /* stop Rx processor */ 2948 for (i = 0; i < 4000 / 200; i++) /* delay 4 uS to allow proc to stop */ 2949 sInB(ChP->IntChan); /* depends on bus i/o timing */ 2950 Ch = (Byte_t) sGetChanNum(ChP); 2951 sOutB(ChP->Cmd, Ch | RESTXFCNT); /* apply reset Tx FIFO count */ 2952 sOutB(ChP->Cmd, Ch); /* remove reset Tx FIFO count */ 2953 sOutW((WordIO_t) ChP->IndexAddr, ChP->TxFIFOPtrs); /* clear Tx in/out ptrs */ 2954 sOutW(ChP->IndexData, 0); 2955 if (TxEnabled) 2956 sEnTransmit(ChP); /* enable transmitter */ 2957 sStartRxProcessor(ChP); /* restart Rx processor */ 2958} 2959 2960/*************************************************************************** 2961Function: sWriteTxPrioByte 2962Purpose: Write a byte of priority transmit data to a channel 2963Call: sWriteTxPrioByte(ChP,Data) 2964 CHANNEL_T *ChP; Ptr to channel structure 2965 Byte_t Data; The transmit data byte 2966 2967Return: int: 1 if the bytes is successfully written, otherwise 0. 2968 2969Comments: The priority byte is transmitted before any data in the Tx FIFO. 2970 2971Warnings: No context switches are allowed while executing this function. 2972*/ 2973static int sWriteTxPrioByte(CHANNEL_T * ChP, Byte_t Data) 2974{ 2975 Byte_t DWBuf[4]; /* buffer for double word writes */ 2976 Word_t *WordPtr; /* must be far because Win SS != DS */ 2977 register DWordIO_t IndexAddr; 2978 2979 if (sGetTxCnt(ChP) > 1) { /* write it to Tx priority buffer */ 2980 IndexAddr = ChP->IndexAddr; 2981 sOutW((WordIO_t) IndexAddr, ChP->TxPrioCnt); /* get priority buffer status */ 2982 if (sInB((ByteIO_t) ChP->IndexData) & PRI_PEND) /* priority buffer busy */ 2983 return (0); /* nothing sent */ 2984 2985 WordPtr = (Word_t *) (&DWBuf[0]); 2986 *WordPtr = ChP->TxPrioBuf; /* data byte address */ 2987 2988 DWBuf[2] = Data; /* data byte value */ 2989 out32(IndexAddr, DWBuf); /* write it out */ 2990 2991 *WordPtr = ChP->TxPrioCnt; /* Tx priority count address */ 2992 2993 DWBuf[2] = PRI_PEND + 1; /* indicate 1 byte pending */ 2994 DWBuf[3] = 0; /* priority buffer pointer */ 2995 out32(IndexAddr, DWBuf); /* write it out */ 2996 } else { /* write it to Tx FIFO */ 2997 2998 sWriteTxByte(sGetTxRxDataIO(ChP), Data); 2999 } 3000 return (1); /* 1 byte sent */ 3001} 3002 3003/*************************************************************************** 3004Function: sEnInterrupts 3005Purpose: Enable one or more interrupts for a channel 3006Call: sEnInterrupts(ChP,Flags) 3007 CHANNEL_T *ChP; Ptr to channel structure 3008 Word_t Flags: Interrupt enable flags, can be any combination 3009 of the following flags: 3010 TXINT_EN: Interrupt on Tx FIFO empty 3011 RXINT_EN: Interrupt on Rx FIFO at trigger level (see 3012 sSetRxTrigger()) 3013 SRCINT_EN: Interrupt on SRC (Special Rx Condition) 3014 MCINT_EN: Interrupt on modem input change 3015 CHANINT_EN: Allow channel interrupt signal to the AIOP's 3016 Interrupt Channel Register. 3017Return: void 3018Comments: If an interrupt enable flag is set in Flags, that interrupt will be 3019 enabled. If an interrupt enable flag is not set in Flags, that 3020 interrupt will not be changed. Interrupts can be disabled with 3021 function sDisInterrupts(). 3022 3023 This function sets the appropriate bit for the channel in the AIOP's 3024 Interrupt Mask Register if the CHANINT_EN flag is set. This allows 3025 this channel's bit to be set in the AIOP's Interrupt Channel Register. 3026 3027 Interrupts must also be globally enabled before channel interrupts 3028 will be passed on to the host. This is done with function 3029 sEnGlobalInt(). 3030 3031 In some cases it may be desirable to disable interrupts globally but 3032 enable channel interrupts. This would allow the global interrupt 3033 status register to be used to determine which AIOPs need service. 3034*/ 3035static void sEnInterrupts(CHANNEL_T * ChP, Word_t Flags) 3036{ 3037 Byte_t Mask; /* Interrupt Mask Register */ 3038 3039 ChP->RxControl[2] |= 3040 ((Byte_t) Flags & (RXINT_EN | SRCINT_EN | MCINT_EN)); 3041 3042 out32(ChP->IndexAddr, ChP->RxControl); 3043 3044 ChP->TxControl[2] |= ((Byte_t) Flags & TXINT_EN); 3045 3046 out32(ChP->IndexAddr, ChP->TxControl); 3047 3048 if (Flags & CHANINT_EN) { 3049 Mask = sInB(ChP->IntMask) | sBitMapSetTbl[ChP->ChanNum]; 3050 sOutB(ChP->IntMask, Mask); 3051 } 3052} 3053 3054/*************************************************************************** 3055Function: sDisInterrupts 3056Purpose: Disable one or more interrupts for a channel 3057Call: sDisInterrupts(ChP,Flags) 3058 CHANNEL_T *ChP; Ptr to channel structure 3059 Word_t Flags: Interrupt flags, can be any combination 3060 of the following flags: 3061 TXINT_EN: Interrupt on Tx FIFO empty 3062 RXINT_EN: Interrupt on Rx FIFO at trigger level (see 3063 sSetRxTrigger()) 3064 SRCINT_EN: Interrupt on SRC (Special Rx Condition) 3065 MCINT_EN: Interrupt on modem input change 3066 CHANINT_EN: Disable channel interrupt signal to the 3067 AIOP's Interrupt Channel Register. 3068Return: void 3069Comments: If an interrupt flag is set in Flags, that interrupt will be 3070 disabled. If an interrupt flag is not set in Flags, that 3071 interrupt will not be changed. Interrupts can be enabled with 3072 function sEnInterrupts(). 3073 3074 This function clears the appropriate bit for the channel in the AIOP's 3075 Interrupt Mask Register if the CHANINT_EN flag is set. This blocks 3076 this channel's bit from being set in the AIOP's Interrupt Channel 3077 Register. 3078*/ 3079static void sDisInterrupts(CHANNEL_T * ChP, Word_t Flags) 3080{ 3081 Byte_t Mask; /* Interrupt Mask Register */ 3082 3083 ChP->RxControl[2] &= 3084 ~((Byte_t) Flags & (RXINT_EN | SRCINT_EN | MCINT_EN)); 3085 out32(ChP->IndexAddr, ChP->RxControl); 3086 ChP->TxControl[2] &= ~((Byte_t) Flags & TXINT_EN); 3087 out32(ChP->IndexAddr, ChP->TxControl); 3088 3089 if (Flags & CHANINT_EN) { 3090 Mask = sInB(ChP->IntMask) & sBitMapClrTbl[ChP->ChanNum]; 3091 sOutB(ChP->IntMask, Mask); 3092 } 3093} 3094 3095static void sSetInterfaceMode(CHANNEL_T * ChP, Byte_t mode) 3096{ 3097 sOutB(ChP->CtlP->AiopIO[2], (mode & 0x18) | ChP->ChanNum); 3098} 3099 3100/* 3101 * Not an official SSCI function, but how to reset RocketModems. 3102 * ISA bus version 3103 */ 3104static void sModemReset(CONTROLLER_T * CtlP, int chan, int on) 3105{ 3106 ByteIO_t addr; 3107 Byte_t val; 3108 3109 addr = CtlP->AiopIO[0] + 0x400; 3110 val = sInB(CtlP->MReg3IO); 3111 /* if AIOP[1] is not enabled, enable it */ 3112 if ((val & 2) == 0) { 3113 val = sInB(CtlP->MReg2IO); 3114 sOutB(CtlP->MReg2IO, (val & 0xfc) | (1 & 0x03)); 3115 sOutB(CtlP->MBaseIO, (unsigned char) (addr >> 6)); 3116 } 3117 3118 sEnAiop(CtlP, 1); 3119 if (!on) 3120 addr += 8; 3121 sOutB(addr + chan, 0); /* apply or remove reset */ 3122 sDisAiop(CtlP, 1); 3123} 3124 3125/* 3126 * Not an official SSCI function, but how to reset RocketModems. 3127 * PCI bus version 3128 */ 3129static void sPCIModemReset(CONTROLLER_T * CtlP, int chan, int on) 3130{ 3131 ByteIO_t addr; 3132 3133 addr = CtlP->AiopIO[0] + 0x40; /* 2nd AIOP */ 3134 if (!on) 3135 addr += 8; 3136 sOutB(addr + chan, 0); /* apply or remove reset */ 3137} 3138 3139/* Resets the speaker controller on RocketModem II and III devices */ 3140static void rmSpeakerReset(CONTROLLER_T * CtlP, unsigned long model) 3141{ 3142 ByteIO_t addr; 3143 3144 /* RocketModem II speaker control is at the 8th port location of offset 0x40 */ 3145 if ((model == MODEL_RP4M) || (model == MODEL_RP6M)) { 3146 addr = CtlP->AiopIO[0] + 0x4F; 3147 sOutB(addr, 0); 3148 } 3149 3150 /* RocketModem III speaker control is at the 1st port location of offset 0x80 */ 3151 if ((model == MODEL_UPCI_RM3_8PORT) 3152 || (model == MODEL_UPCI_RM3_4PORT)) { 3153 addr = CtlP->AiopIO[0] + 0x88; 3154 sOutB(addr, 0); 3155 } 3156} 3157 3158/* Returns the line number given the controller (board), aiop and channel number */ 3159static unsigned char GetLineNumber(int ctrl, int aiop, int ch) 3160{ 3161 return lineNumbers[(ctrl << 5) | (aiop << 3) | ch]; 3162} 3163 3164/* 3165 * Stores the line number associated with a given controller (board), aiop 3166 * and channel number. 3167 * Returns: The line number assigned 3168 */ 3169static unsigned char SetLineNumber(int ctrl, int aiop, int ch) 3170{ 3171 lineNumbers[(ctrl << 5) | (aiop << 3) | ch] = nextLineNumber++; 3172 return (nextLineNumber - 1); 3173}