Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * Memory subsystem support
3 *
4 * Written by Matt Tolentino <matthew.e.tolentino@intel.com>
5 * Dave Hansen <haveblue@us.ibm.com>
6 *
7 * This file provides the necessary infrastructure to represent
8 * a SPARSEMEM-memory-model system's physical memory in /sysfs.
9 * All arch-independent code that assumes MEMORY_HOTPLUG requires
10 * SPARSEMEM should be contained here, or in mm/memory_hotplug.c.
11 */
12
13#include <linux/module.h>
14#include <linux/init.h>
15#include <linux/topology.h>
16#include <linux/capability.h>
17#include <linux/device.h>
18#include <linux/memory.h>
19#include <linux/kobject.h>
20#include <linux/memory_hotplug.h>
21#include <linux/mm.h>
22#include <linux/mutex.h>
23#include <linux/stat.h>
24#include <linux/slab.h>
25
26#include <linux/atomic.h>
27#include <asm/uaccess.h>
28
29static DEFINE_MUTEX(mem_sysfs_mutex);
30
31#define MEMORY_CLASS_NAME "memory"
32
33static int sections_per_block;
34
35static inline int base_memory_block_id(int section_nr)
36{
37 return section_nr / sections_per_block;
38}
39
40static struct bus_type memory_subsys = {
41 .name = MEMORY_CLASS_NAME,
42 .dev_name = MEMORY_CLASS_NAME,
43};
44
45static BLOCKING_NOTIFIER_HEAD(memory_chain);
46
47int register_memory_notifier(struct notifier_block *nb)
48{
49 return blocking_notifier_chain_register(&memory_chain, nb);
50}
51EXPORT_SYMBOL(register_memory_notifier);
52
53void unregister_memory_notifier(struct notifier_block *nb)
54{
55 blocking_notifier_chain_unregister(&memory_chain, nb);
56}
57EXPORT_SYMBOL(unregister_memory_notifier);
58
59static ATOMIC_NOTIFIER_HEAD(memory_isolate_chain);
60
61int register_memory_isolate_notifier(struct notifier_block *nb)
62{
63 return atomic_notifier_chain_register(&memory_isolate_chain, nb);
64}
65EXPORT_SYMBOL(register_memory_isolate_notifier);
66
67void unregister_memory_isolate_notifier(struct notifier_block *nb)
68{
69 atomic_notifier_chain_unregister(&memory_isolate_chain, nb);
70}
71EXPORT_SYMBOL(unregister_memory_isolate_notifier);
72
73static void memory_block_release(struct device *dev)
74{
75 struct memory_block *mem = container_of(dev, struct memory_block, dev);
76
77 kfree(mem);
78}
79
80/*
81 * register_memory - Setup a sysfs device for a memory block
82 */
83static
84int register_memory(struct memory_block *memory)
85{
86 int error;
87
88 memory->dev.bus = &memory_subsys;
89 memory->dev.id = memory->start_section_nr / sections_per_block;
90 memory->dev.release = memory_block_release;
91
92 error = device_register(&memory->dev);
93 return error;
94}
95
96static void
97unregister_memory(struct memory_block *memory)
98{
99 BUG_ON(memory->dev.bus != &memory_subsys);
100
101 /* drop the ref. we got in remove_memory_block() */
102 kobject_put(&memory->dev.kobj);
103 device_unregister(&memory->dev);
104}
105
106unsigned long __weak memory_block_size_bytes(void)
107{
108 return MIN_MEMORY_BLOCK_SIZE;
109}
110
111static unsigned long get_memory_block_size(void)
112{
113 unsigned long block_sz;
114
115 block_sz = memory_block_size_bytes();
116
117 /* Validate blk_sz is a power of 2 and not less than section size */
118 if ((block_sz & (block_sz - 1)) || (block_sz < MIN_MEMORY_BLOCK_SIZE)) {
119 WARN_ON(1);
120 block_sz = MIN_MEMORY_BLOCK_SIZE;
121 }
122
123 return block_sz;
124}
125
126/*
127 * use this as the physical section index that this memsection
128 * uses.
129 */
130
131static ssize_t show_mem_start_phys_index(struct device *dev,
132 struct device_attribute *attr, char *buf)
133{
134 struct memory_block *mem =
135 container_of(dev, struct memory_block, dev);
136 unsigned long phys_index;
137
138 phys_index = mem->start_section_nr / sections_per_block;
139 return sprintf(buf, "%08lx\n", phys_index);
140}
141
142static ssize_t show_mem_end_phys_index(struct device *dev,
143 struct device_attribute *attr, char *buf)
144{
145 struct memory_block *mem =
146 container_of(dev, struct memory_block, dev);
147 unsigned long phys_index;
148
149 phys_index = mem->end_section_nr / sections_per_block;
150 return sprintf(buf, "%08lx\n", phys_index);
151}
152
153/*
154 * Show whether the section of memory is likely to be hot-removable
155 */
156static ssize_t show_mem_removable(struct device *dev,
157 struct device_attribute *attr, char *buf)
158{
159 unsigned long i, pfn;
160 int ret = 1;
161 struct memory_block *mem =
162 container_of(dev, struct memory_block, dev);
163
164 for (i = 0; i < sections_per_block; i++) {
165 pfn = section_nr_to_pfn(mem->start_section_nr + i);
166 ret &= is_mem_section_removable(pfn, PAGES_PER_SECTION);
167 }
168
169 return sprintf(buf, "%d\n", ret);
170}
171
172/*
173 * online, offline, going offline, etc.
174 */
175static ssize_t show_mem_state(struct device *dev,
176 struct device_attribute *attr, char *buf)
177{
178 struct memory_block *mem =
179 container_of(dev, struct memory_block, dev);
180 ssize_t len = 0;
181
182 /*
183 * We can probably put these states in a nice little array
184 * so that they're not open-coded
185 */
186 switch (mem->state) {
187 case MEM_ONLINE:
188 len = sprintf(buf, "online\n");
189 break;
190 case MEM_OFFLINE:
191 len = sprintf(buf, "offline\n");
192 break;
193 case MEM_GOING_OFFLINE:
194 len = sprintf(buf, "going-offline\n");
195 break;
196 default:
197 len = sprintf(buf, "ERROR-UNKNOWN-%ld\n",
198 mem->state);
199 WARN_ON(1);
200 break;
201 }
202
203 return len;
204}
205
206int memory_notify(unsigned long val, void *v)
207{
208 return blocking_notifier_call_chain(&memory_chain, val, v);
209}
210
211int memory_isolate_notify(unsigned long val, void *v)
212{
213 return atomic_notifier_call_chain(&memory_isolate_chain, val, v);
214}
215
216/*
217 * The probe routines leave the pages reserved, just as the bootmem code does.
218 * Make sure they're still that way.
219 */
220static bool pages_correctly_reserved(unsigned long start_pfn,
221 unsigned long nr_pages)
222{
223 int i, j;
224 struct page *page;
225 unsigned long pfn = start_pfn;
226
227 /*
228 * memmap between sections is not contiguous except with
229 * SPARSEMEM_VMEMMAP. We lookup the page once per section
230 * and assume memmap is contiguous within each section
231 */
232 for (i = 0; i < sections_per_block; i++, pfn += PAGES_PER_SECTION) {
233 if (WARN_ON_ONCE(!pfn_valid(pfn)))
234 return false;
235 page = pfn_to_page(pfn);
236
237 for (j = 0; j < PAGES_PER_SECTION; j++) {
238 if (PageReserved(page + j))
239 continue;
240
241 printk(KERN_WARNING "section number %ld page number %d "
242 "not reserved, was it already online?\n",
243 pfn_to_section_nr(pfn), j);
244
245 return false;
246 }
247 }
248
249 return true;
250}
251
252/*
253 * MEMORY_HOTPLUG depends on SPARSEMEM in mm/Kconfig, so it is
254 * OK to have direct references to sparsemem variables in here.
255 */
256static int
257memory_block_action(unsigned long phys_index, unsigned long action, int online_type)
258{
259 unsigned long start_pfn;
260 unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
261 struct page *first_page;
262 int ret;
263
264 first_page = pfn_to_page(phys_index << PFN_SECTION_SHIFT);
265 start_pfn = page_to_pfn(first_page);
266
267 switch (action) {
268 case MEM_ONLINE:
269 if (!pages_correctly_reserved(start_pfn, nr_pages))
270 return -EBUSY;
271
272 ret = online_pages(start_pfn, nr_pages, online_type);
273 break;
274 case MEM_OFFLINE:
275 ret = offline_pages(start_pfn, nr_pages);
276 break;
277 default:
278 WARN(1, KERN_WARNING "%s(%ld, %ld) unknown action: "
279 "%ld\n", __func__, phys_index, action, action);
280 ret = -EINVAL;
281 }
282
283 return ret;
284}
285
286static int __memory_block_change_state(struct memory_block *mem,
287 unsigned long to_state, unsigned long from_state_req,
288 int online_type)
289{
290 int ret = 0;
291
292 if (mem->state != from_state_req) {
293 ret = -EINVAL;
294 goto out;
295 }
296
297 if (to_state == MEM_OFFLINE)
298 mem->state = MEM_GOING_OFFLINE;
299
300 ret = memory_block_action(mem->start_section_nr, to_state, online_type);
301
302 if (ret) {
303 mem->state = from_state_req;
304 goto out;
305 }
306
307 mem->state = to_state;
308 switch (mem->state) {
309 case MEM_OFFLINE:
310 kobject_uevent(&mem->dev.kobj, KOBJ_OFFLINE);
311 break;
312 case MEM_ONLINE:
313 kobject_uevent(&mem->dev.kobj, KOBJ_ONLINE);
314 break;
315 default:
316 break;
317 }
318out:
319 return ret;
320}
321
322static int memory_block_change_state(struct memory_block *mem,
323 unsigned long to_state, unsigned long from_state_req,
324 int online_type)
325{
326 int ret;
327
328 mutex_lock(&mem->state_mutex);
329 ret = __memory_block_change_state(mem, to_state, from_state_req,
330 online_type);
331 mutex_unlock(&mem->state_mutex);
332
333 return ret;
334}
335static ssize_t
336store_mem_state(struct device *dev,
337 struct device_attribute *attr, const char *buf, size_t count)
338{
339 struct memory_block *mem;
340 int ret = -EINVAL;
341
342 mem = container_of(dev, struct memory_block, dev);
343
344 if (!strncmp(buf, "online_kernel", min_t(int, count, 13)))
345 ret = memory_block_change_state(mem, MEM_ONLINE,
346 MEM_OFFLINE, ONLINE_KERNEL);
347 else if (!strncmp(buf, "online_movable", min_t(int, count, 14)))
348 ret = memory_block_change_state(mem, MEM_ONLINE,
349 MEM_OFFLINE, ONLINE_MOVABLE);
350 else if (!strncmp(buf, "online", min_t(int, count, 6)))
351 ret = memory_block_change_state(mem, MEM_ONLINE,
352 MEM_OFFLINE, ONLINE_KEEP);
353 else if(!strncmp(buf, "offline", min_t(int, count, 7)))
354 ret = memory_block_change_state(mem, MEM_OFFLINE,
355 MEM_ONLINE, -1);
356
357 if (ret)
358 return ret;
359 return count;
360}
361
362/*
363 * phys_device is a bad name for this. What I really want
364 * is a way to differentiate between memory ranges that
365 * are part of physical devices that constitute
366 * a complete removable unit or fru.
367 * i.e. do these ranges belong to the same physical device,
368 * s.t. if I offline all of these sections I can then
369 * remove the physical device?
370 */
371static ssize_t show_phys_device(struct device *dev,
372 struct device_attribute *attr, char *buf)
373{
374 struct memory_block *mem =
375 container_of(dev, struct memory_block, dev);
376 return sprintf(buf, "%d\n", mem->phys_device);
377}
378
379static DEVICE_ATTR(phys_index, 0444, show_mem_start_phys_index, NULL);
380static DEVICE_ATTR(end_phys_index, 0444, show_mem_end_phys_index, NULL);
381static DEVICE_ATTR(state, 0644, show_mem_state, store_mem_state);
382static DEVICE_ATTR(phys_device, 0444, show_phys_device, NULL);
383static DEVICE_ATTR(removable, 0444, show_mem_removable, NULL);
384
385#define mem_create_simple_file(mem, attr_name) \
386 device_create_file(&mem->dev, &dev_attr_##attr_name)
387#define mem_remove_simple_file(mem, attr_name) \
388 device_remove_file(&mem->dev, &dev_attr_##attr_name)
389
390/*
391 * Block size attribute stuff
392 */
393static ssize_t
394print_block_size(struct device *dev, struct device_attribute *attr,
395 char *buf)
396{
397 return sprintf(buf, "%lx\n", get_memory_block_size());
398}
399
400static DEVICE_ATTR(block_size_bytes, 0444, print_block_size, NULL);
401
402static int block_size_init(void)
403{
404 return device_create_file(memory_subsys.dev_root,
405 &dev_attr_block_size_bytes);
406}
407
408/*
409 * Some architectures will have custom drivers to do this, and
410 * will not need to do it from userspace. The fake hot-add code
411 * as well as ppc64 will do all of their discovery in userspace
412 * and will require this interface.
413 */
414#ifdef CONFIG_ARCH_MEMORY_PROBE
415static ssize_t
416memory_probe_store(struct device *dev, struct device_attribute *attr,
417 const char *buf, size_t count)
418{
419 u64 phys_addr;
420 int nid;
421 int i, ret;
422 unsigned long pages_per_block = PAGES_PER_SECTION * sections_per_block;
423
424 phys_addr = simple_strtoull(buf, NULL, 0);
425
426 if (phys_addr & ((pages_per_block << PAGE_SHIFT) - 1))
427 return -EINVAL;
428
429 for (i = 0; i < sections_per_block; i++) {
430 nid = memory_add_physaddr_to_nid(phys_addr);
431 ret = add_memory(nid, phys_addr,
432 PAGES_PER_SECTION << PAGE_SHIFT);
433 if (ret)
434 goto out;
435
436 phys_addr += MIN_MEMORY_BLOCK_SIZE;
437 }
438
439 ret = count;
440out:
441 return ret;
442}
443static DEVICE_ATTR(probe, S_IWUSR, NULL, memory_probe_store);
444
445static int memory_probe_init(void)
446{
447 return device_create_file(memory_subsys.dev_root, &dev_attr_probe);
448}
449#else
450static inline int memory_probe_init(void)
451{
452 return 0;
453}
454#endif
455
456#ifdef CONFIG_MEMORY_FAILURE
457/*
458 * Support for offlining pages of memory
459 */
460
461/* Soft offline a page */
462static ssize_t
463store_soft_offline_page(struct device *dev,
464 struct device_attribute *attr,
465 const char *buf, size_t count)
466{
467 int ret;
468 u64 pfn;
469 if (!capable(CAP_SYS_ADMIN))
470 return -EPERM;
471 if (strict_strtoull(buf, 0, &pfn) < 0)
472 return -EINVAL;
473 pfn >>= PAGE_SHIFT;
474 if (!pfn_valid(pfn))
475 return -ENXIO;
476 ret = soft_offline_page(pfn_to_page(pfn), 0);
477 return ret == 0 ? count : ret;
478}
479
480/* Forcibly offline a page, including killing processes. */
481static ssize_t
482store_hard_offline_page(struct device *dev,
483 struct device_attribute *attr,
484 const char *buf, size_t count)
485{
486 int ret;
487 u64 pfn;
488 if (!capable(CAP_SYS_ADMIN))
489 return -EPERM;
490 if (strict_strtoull(buf, 0, &pfn) < 0)
491 return -EINVAL;
492 pfn >>= PAGE_SHIFT;
493 ret = memory_failure(pfn, 0, 0);
494 return ret ? ret : count;
495}
496
497static DEVICE_ATTR(soft_offline_page, S_IWUSR, NULL, store_soft_offline_page);
498static DEVICE_ATTR(hard_offline_page, S_IWUSR, NULL, store_hard_offline_page);
499
500static __init int memory_fail_init(void)
501{
502 int err;
503
504 err = device_create_file(memory_subsys.dev_root,
505 &dev_attr_soft_offline_page);
506 if (!err)
507 err = device_create_file(memory_subsys.dev_root,
508 &dev_attr_hard_offline_page);
509 return err;
510}
511#else
512static inline int memory_fail_init(void)
513{
514 return 0;
515}
516#endif
517
518/*
519 * Note that phys_device is optional. It is here to allow for
520 * differentiation between which *physical* devices each
521 * section belongs to...
522 */
523int __weak arch_get_memory_phys_device(unsigned long start_pfn)
524{
525 return 0;
526}
527
528/*
529 * A reference for the returned object is held and the reference for the
530 * hinted object is released.
531 */
532struct memory_block *find_memory_block_hinted(struct mem_section *section,
533 struct memory_block *hint)
534{
535 int block_id = base_memory_block_id(__section_nr(section));
536 struct device *hintdev = hint ? &hint->dev : NULL;
537 struct device *dev;
538
539 dev = subsys_find_device_by_id(&memory_subsys, block_id, hintdev);
540 if (hint)
541 put_device(&hint->dev);
542 if (!dev)
543 return NULL;
544 return container_of(dev, struct memory_block, dev);
545}
546
547/*
548 * For now, we have a linear search to go find the appropriate
549 * memory_block corresponding to a particular phys_index. If
550 * this gets to be a real problem, we can always use a radix
551 * tree or something here.
552 *
553 * This could be made generic for all device subsystems.
554 */
555struct memory_block *find_memory_block(struct mem_section *section)
556{
557 return find_memory_block_hinted(section, NULL);
558}
559
560static int init_memory_block(struct memory_block **memory,
561 struct mem_section *section, unsigned long state)
562{
563 struct memory_block *mem;
564 unsigned long start_pfn;
565 int scn_nr;
566 int ret = 0;
567
568 mem = kzalloc(sizeof(*mem), GFP_KERNEL);
569 if (!mem)
570 return -ENOMEM;
571
572 scn_nr = __section_nr(section);
573 mem->start_section_nr =
574 base_memory_block_id(scn_nr) * sections_per_block;
575 mem->end_section_nr = mem->start_section_nr + sections_per_block - 1;
576 mem->state = state;
577 mem->section_count++;
578 mutex_init(&mem->state_mutex);
579 start_pfn = section_nr_to_pfn(mem->start_section_nr);
580 mem->phys_device = arch_get_memory_phys_device(start_pfn);
581
582 ret = register_memory(mem);
583 if (!ret)
584 ret = mem_create_simple_file(mem, phys_index);
585 if (!ret)
586 ret = mem_create_simple_file(mem, end_phys_index);
587 if (!ret)
588 ret = mem_create_simple_file(mem, state);
589 if (!ret)
590 ret = mem_create_simple_file(mem, phys_device);
591 if (!ret)
592 ret = mem_create_simple_file(mem, removable);
593
594 *memory = mem;
595 return ret;
596}
597
598static int add_memory_section(int nid, struct mem_section *section,
599 struct memory_block **mem_p,
600 unsigned long state, enum mem_add_context context)
601{
602 struct memory_block *mem = NULL;
603 int scn_nr = __section_nr(section);
604 int ret = 0;
605
606 mutex_lock(&mem_sysfs_mutex);
607
608 if (context == BOOT) {
609 /* same memory block ? */
610 if (mem_p && *mem_p)
611 if (scn_nr >= (*mem_p)->start_section_nr &&
612 scn_nr <= (*mem_p)->end_section_nr) {
613 mem = *mem_p;
614 kobject_get(&mem->dev.kobj);
615 }
616 } else
617 mem = find_memory_block(section);
618
619 if (mem) {
620 mem->section_count++;
621 kobject_put(&mem->dev.kobj);
622 } else {
623 ret = init_memory_block(&mem, section, state);
624 /* store memory_block pointer for next loop */
625 if (!ret && context == BOOT)
626 if (mem_p)
627 *mem_p = mem;
628 }
629
630 if (!ret) {
631 if (context == HOTPLUG &&
632 mem->section_count == sections_per_block)
633 ret = register_mem_sect_under_node(mem, nid);
634 }
635
636 mutex_unlock(&mem_sysfs_mutex);
637 return ret;
638}
639
640int remove_memory_block(unsigned long node_id, struct mem_section *section,
641 int phys_device)
642{
643 struct memory_block *mem;
644
645 mutex_lock(&mem_sysfs_mutex);
646 mem = find_memory_block(section);
647 unregister_mem_sect_under_nodes(mem, __section_nr(section));
648
649 mem->section_count--;
650 if (mem->section_count == 0) {
651 mem_remove_simple_file(mem, phys_index);
652 mem_remove_simple_file(mem, end_phys_index);
653 mem_remove_simple_file(mem, state);
654 mem_remove_simple_file(mem, phys_device);
655 mem_remove_simple_file(mem, removable);
656 unregister_memory(mem);
657 } else
658 kobject_put(&mem->dev.kobj);
659
660 mutex_unlock(&mem_sysfs_mutex);
661 return 0;
662}
663
664/*
665 * need an interface for the VM to add new memory regions,
666 * but without onlining it.
667 */
668int register_new_memory(int nid, struct mem_section *section)
669{
670 return add_memory_section(nid, section, NULL, MEM_OFFLINE, HOTPLUG);
671}
672
673int unregister_memory_section(struct mem_section *section)
674{
675 if (!present_section(section))
676 return -EINVAL;
677
678 return remove_memory_block(0, section, 0);
679}
680
681/*
682 * offline one memory block. If the memory block has been offlined, do nothing.
683 */
684int offline_memory_block(struct memory_block *mem)
685{
686 int ret = 0;
687
688 mutex_lock(&mem->state_mutex);
689 if (mem->state != MEM_OFFLINE)
690 ret = __memory_block_change_state(mem, MEM_OFFLINE, MEM_ONLINE, -1);
691 mutex_unlock(&mem->state_mutex);
692
693 return ret;
694}
695
696/* return true if the memory block is offlined, otherwise, return false */
697bool is_memblock_offlined(struct memory_block *mem)
698{
699 return mem->state == MEM_OFFLINE;
700}
701
702/*
703 * Initialize the sysfs support for memory devices...
704 */
705int __init memory_dev_init(void)
706{
707 unsigned int i;
708 int ret;
709 int err;
710 unsigned long block_sz;
711 struct memory_block *mem = NULL;
712
713 ret = subsys_system_register(&memory_subsys, NULL);
714 if (ret)
715 goto out;
716
717 block_sz = get_memory_block_size();
718 sections_per_block = block_sz / MIN_MEMORY_BLOCK_SIZE;
719
720 /*
721 * Create entries for memory sections that were found
722 * during boot and have been initialized
723 */
724 for (i = 0; i < NR_MEM_SECTIONS; i++) {
725 if (!present_section_nr(i))
726 continue;
727 /* don't need to reuse memory_block if only one per block */
728 err = add_memory_section(0, __nr_to_section(i),
729 (sections_per_block == 1) ? NULL : &mem,
730 MEM_ONLINE,
731 BOOT);
732 if (!ret)
733 ret = err;
734 }
735
736 err = memory_probe_init();
737 if (!ret)
738 ret = err;
739 err = memory_fail_init();
740 if (!ret)
741 ret = err;
742 err = block_size_init();
743 if (!ret)
744 ret = err;
745out:
746 if (ret)
747 printk(KERN_ERR "%s() failed: %d\n", __func__, ret);
748 return ret;
749}