at v3.9-rc6 6272 lines 158 kB view raw
1/* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75#include <asm/uaccess.h> 76#include <linux/bitops.h> 77#include <linux/capability.h> 78#include <linux/cpu.h> 79#include <linux/types.h> 80#include <linux/kernel.h> 81#include <linux/hash.h> 82#include <linux/slab.h> 83#include <linux/sched.h> 84#include <linux/mutex.h> 85#include <linux/string.h> 86#include <linux/mm.h> 87#include <linux/socket.h> 88#include <linux/sockios.h> 89#include <linux/errno.h> 90#include <linux/interrupt.h> 91#include <linux/if_ether.h> 92#include <linux/netdevice.h> 93#include <linux/etherdevice.h> 94#include <linux/ethtool.h> 95#include <linux/notifier.h> 96#include <linux/skbuff.h> 97#include <net/net_namespace.h> 98#include <net/sock.h> 99#include <linux/rtnetlink.h> 100#include <linux/stat.h> 101#include <net/dst.h> 102#include <net/pkt_sched.h> 103#include <net/checksum.h> 104#include <net/xfrm.h> 105#include <linux/highmem.h> 106#include <linux/init.h> 107#include <linux/module.h> 108#include <linux/netpoll.h> 109#include <linux/rcupdate.h> 110#include <linux/delay.h> 111#include <net/iw_handler.h> 112#include <asm/current.h> 113#include <linux/audit.h> 114#include <linux/dmaengine.h> 115#include <linux/err.h> 116#include <linux/ctype.h> 117#include <linux/if_arp.h> 118#include <linux/if_vlan.h> 119#include <linux/ip.h> 120#include <net/ip.h> 121#include <linux/ipv6.h> 122#include <linux/in.h> 123#include <linux/jhash.h> 124#include <linux/random.h> 125#include <trace/events/napi.h> 126#include <trace/events/net.h> 127#include <trace/events/skb.h> 128#include <linux/pci.h> 129#include <linux/inetdevice.h> 130#include <linux/cpu_rmap.h> 131#include <linux/static_key.h> 132 133#include "net-sysfs.h" 134 135/* Instead of increasing this, you should create a hash table. */ 136#define MAX_GRO_SKBS 8 137 138/* This should be increased if a protocol with a bigger head is added. */ 139#define GRO_MAX_HEAD (MAX_HEADER + 128) 140 141static DEFINE_SPINLOCK(ptype_lock); 142static DEFINE_SPINLOCK(offload_lock); 143struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 144struct list_head ptype_all __read_mostly; /* Taps */ 145static struct list_head offload_base __read_mostly; 146 147/* 148 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 149 * semaphore. 150 * 151 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 152 * 153 * Writers must hold the rtnl semaphore while they loop through the 154 * dev_base_head list, and hold dev_base_lock for writing when they do the 155 * actual updates. This allows pure readers to access the list even 156 * while a writer is preparing to update it. 157 * 158 * To put it another way, dev_base_lock is held for writing only to 159 * protect against pure readers; the rtnl semaphore provides the 160 * protection against other writers. 161 * 162 * See, for example usages, register_netdevice() and 163 * unregister_netdevice(), which must be called with the rtnl 164 * semaphore held. 165 */ 166DEFINE_RWLOCK(dev_base_lock); 167EXPORT_SYMBOL(dev_base_lock); 168 169seqcount_t devnet_rename_seq; 170 171static inline void dev_base_seq_inc(struct net *net) 172{ 173 while (++net->dev_base_seq == 0); 174} 175 176static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 177{ 178 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ)); 179 180 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 181} 182 183static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 184{ 185 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 186} 187 188static inline void rps_lock(struct softnet_data *sd) 189{ 190#ifdef CONFIG_RPS 191 spin_lock(&sd->input_pkt_queue.lock); 192#endif 193} 194 195static inline void rps_unlock(struct softnet_data *sd) 196{ 197#ifdef CONFIG_RPS 198 spin_unlock(&sd->input_pkt_queue.lock); 199#endif 200} 201 202/* Device list insertion */ 203static int list_netdevice(struct net_device *dev) 204{ 205 struct net *net = dev_net(dev); 206 207 ASSERT_RTNL(); 208 209 write_lock_bh(&dev_base_lock); 210 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 211 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 212 hlist_add_head_rcu(&dev->index_hlist, 213 dev_index_hash(net, dev->ifindex)); 214 write_unlock_bh(&dev_base_lock); 215 216 dev_base_seq_inc(net); 217 218 return 0; 219} 220 221/* Device list removal 222 * caller must respect a RCU grace period before freeing/reusing dev 223 */ 224static void unlist_netdevice(struct net_device *dev) 225{ 226 ASSERT_RTNL(); 227 228 /* Unlink dev from the device chain */ 229 write_lock_bh(&dev_base_lock); 230 list_del_rcu(&dev->dev_list); 231 hlist_del_rcu(&dev->name_hlist); 232 hlist_del_rcu(&dev->index_hlist); 233 write_unlock_bh(&dev_base_lock); 234 235 dev_base_seq_inc(dev_net(dev)); 236} 237 238/* 239 * Our notifier list 240 */ 241 242static RAW_NOTIFIER_HEAD(netdev_chain); 243 244/* 245 * Device drivers call our routines to queue packets here. We empty the 246 * queue in the local softnet handler. 247 */ 248 249DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 250EXPORT_PER_CPU_SYMBOL(softnet_data); 251 252#ifdef CONFIG_LOCKDEP 253/* 254 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 255 * according to dev->type 256 */ 257static const unsigned short netdev_lock_type[] = 258 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 259 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 260 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 261 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 262 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 263 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 264 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 265 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 266 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 267 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 268 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 269 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 270 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 271 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 272 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 273 274static const char *const netdev_lock_name[] = 275 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 276 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 277 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 278 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 279 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 280 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 281 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 282 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 283 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 284 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 285 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 286 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 287 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 288 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 289 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 290 291static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 292static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 293 294static inline unsigned short netdev_lock_pos(unsigned short dev_type) 295{ 296 int i; 297 298 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 299 if (netdev_lock_type[i] == dev_type) 300 return i; 301 /* the last key is used by default */ 302 return ARRAY_SIZE(netdev_lock_type) - 1; 303} 304 305static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 306 unsigned short dev_type) 307{ 308 int i; 309 310 i = netdev_lock_pos(dev_type); 311 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 312 netdev_lock_name[i]); 313} 314 315static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 316{ 317 int i; 318 319 i = netdev_lock_pos(dev->type); 320 lockdep_set_class_and_name(&dev->addr_list_lock, 321 &netdev_addr_lock_key[i], 322 netdev_lock_name[i]); 323} 324#else 325static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 326 unsigned short dev_type) 327{ 328} 329static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 330{ 331} 332#endif 333 334/******************************************************************************* 335 336 Protocol management and registration routines 337 338*******************************************************************************/ 339 340/* 341 * Add a protocol ID to the list. Now that the input handler is 342 * smarter we can dispense with all the messy stuff that used to be 343 * here. 344 * 345 * BEWARE!!! Protocol handlers, mangling input packets, 346 * MUST BE last in hash buckets and checking protocol handlers 347 * MUST start from promiscuous ptype_all chain in net_bh. 348 * It is true now, do not change it. 349 * Explanation follows: if protocol handler, mangling packet, will 350 * be the first on list, it is not able to sense, that packet 351 * is cloned and should be copied-on-write, so that it will 352 * change it and subsequent readers will get broken packet. 353 * --ANK (980803) 354 */ 355 356static inline struct list_head *ptype_head(const struct packet_type *pt) 357{ 358 if (pt->type == htons(ETH_P_ALL)) 359 return &ptype_all; 360 else 361 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 362} 363 364/** 365 * dev_add_pack - add packet handler 366 * @pt: packet type declaration 367 * 368 * Add a protocol handler to the networking stack. The passed &packet_type 369 * is linked into kernel lists and may not be freed until it has been 370 * removed from the kernel lists. 371 * 372 * This call does not sleep therefore it can not 373 * guarantee all CPU's that are in middle of receiving packets 374 * will see the new packet type (until the next received packet). 375 */ 376 377void dev_add_pack(struct packet_type *pt) 378{ 379 struct list_head *head = ptype_head(pt); 380 381 spin_lock(&ptype_lock); 382 list_add_rcu(&pt->list, head); 383 spin_unlock(&ptype_lock); 384} 385EXPORT_SYMBOL(dev_add_pack); 386 387/** 388 * __dev_remove_pack - remove packet handler 389 * @pt: packet type declaration 390 * 391 * Remove a protocol handler that was previously added to the kernel 392 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 393 * from the kernel lists and can be freed or reused once this function 394 * returns. 395 * 396 * The packet type might still be in use by receivers 397 * and must not be freed until after all the CPU's have gone 398 * through a quiescent state. 399 */ 400void __dev_remove_pack(struct packet_type *pt) 401{ 402 struct list_head *head = ptype_head(pt); 403 struct packet_type *pt1; 404 405 spin_lock(&ptype_lock); 406 407 list_for_each_entry(pt1, head, list) { 408 if (pt == pt1) { 409 list_del_rcu(&pt->list); 410 goto out; 411 } 412 } 413 414 pr_warn("dev_remove_pack: %p not found\n", pt); 415out: 416 spin_unlock(&ptype_lock); 417} 418EXPORT_SYMBOL(__dev_remove_pack); 419 420/** 421 * dev_remove_pack - remove packet handler 422 * @pt: packet type declaration 423 * 424 * Remove a protocol handler that was previously added to the kernel 425 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 426 * from the kernel lists and can be freed or reused once this function 427 * returns. 428 * 429 * This call sleeps to guarantee that no CPU is looking at the packet 430 * type after return. 431 */ 432void dev_remove_pack(struct packet_type *pt) 433{ 434 __dev_remove_pack(pt); 435 436 synchronize_net(); 437} 438EXPORT_SYMBOL(dev_remove_pack); 439 440 441/** 442 * dev_add_offload - register offload handlers 443 * @po: protocol offload declaration 444 * 445 * Add protocol offload handlers to the networking stack. The passed 446 * &proto_offload is linked into kernel lists and may not be freed until 447 * it has been removed from the kernel lists. 448 * 449 * This call does not sleep therefore it can not 450 * guarantee all CPU's that are in middle of receiving packets 451 * will see the new offload handlers (until the next received packet). 452 */ 453void dev_add_offload(struct packet_offload *po) 454{ 455 struct list_head *head = &offload_base; 456 457 spin_lock(&offload_lock); 458 list_add_rcu(&po->list, head); 459 spin_unlock(&offload_lock); 460} 461EXPORT_SYMBOL(dev_add_offload); 462 463/** 464 * __dev_remove_offload - remove offload handler 465 * @po: packet offload declaration 466 * 467 * Remove a protocol offload handler that was previously added to the 468 * kernel offload handlers by dev_add_offload(). The passed &offload_type 469 * is removed from the kernel lists and can be freed or reused once this 470 * function returns. 471 * 472 * The packet type might still be in use by receivers 473 * and must not be freed until after all the CPU's have gone 474 * through a quiescent state. 475 */ 476void __dev_remove_offload(struct packet_offload *po) 477{ 478 struct list_head *head = &offload_base; 479 struct packet_offload *po1; 480 481 spin_lock(&offload_lock); 482 483 list_for_each_entry(po1, head, list) { 484 if (po == po1) { 485 list_del_rcu(&po->list); 486 goto out; 487 } 488 } 489 490 pr_warn("dev_remove_offload: %p not found\n", po); 491out: 492 spin_unlock(&offload_lock); 493} 494EXPORT_SYMBOL(__dev_remove_offload); 495 496/** 497 * dev_remove_offload - remove packet offload handler 498 * @po: packet offload declaration 499 * 500 * Remove a packet offload handler that was previously added to the kernel 501 * offload handlers by dev_add_offload(). The passed &offload_type is 502 * removed from the kernel lists and can be freed or reused once this 503 * function returns. 504 * 505 * This call sleeps to guarantee that no CPU is looking at the packet 506 * type after return. 507 */ 508void dev_remove_offload(struct packet_offload *po) 509{ 510 __dev_remove_offload(po); 511 512 synchronize_net(); 513} 514EXPORT_SYMBOL(dev_remove_offload); 515 516/****************************************************************************** 517 518 Device Boot-time Settings Routines 519 520*******************************************************************************/ 521 522/* Boot time configuration table */ 523static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 524 525/** 526 * netdev_boot_setup_add - add new setup entry 527 * @name: name of the device 528 * @map: configured settings for the device 529 * 530 * Adds new setup entry to the dev_boot_setup list. The function 531 * returns 0 on error and 1 on success. This is a generic routine to 532 * all netdevices. 533 */ 534static int netdev_boot_setup_add(char *name, struct ifmap *map) 535{ 536 struct netdev_boot_setup *s; 537 int i; 538 539 s = dev_boot_setup; 540 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 541 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 542 memset(s[i].name, 0, sizeof(s[i].name)); 543 strlcpy(s[i].name, name, IFNAMSIZ); 544 memcpy(&s[i].map, map, sizeof(s[i].map)); 545 break; 546 } 547 } 548 549 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 550} 551 552/** 553 * netdev_boot_setup_check - check boot time settings 554 * @dev: the netdevice 555 * 556 * Check boot time settings for the device. 557 * The found settings are set for the device to be used 558 * later in the device probing. 559 * Returns 0 if no settings found, 1 if they are. 560 */ 561int netdev_boot_setup_check(struct net_device *dev) 562{ 563 struct netdev_boot_setup *s = dev_boot_setup; 564 int i; 565 566 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 567 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 568 !strcmp(dev->name, s[i].name)) { 569 dev->irq = s[i].map.irq; 570 dev->base_addr = s[i].map.base_addr; 571 dev->mem_start = s[i].map.mem_start; 572 dev->mem_end = s[i].map.mem_end; 573 return 1; 574 } 575 } 576 return 0; 577} 578EXPORT_SYMBOL(netdev_boot_setup_check); 579 580 581/** 582 * netdev_boot_base - get address from boot time settings 583 * @prefix: prefix for network device 584 * @unit: id for network device 585 * 586 * Check boot time settings for the base address of device. 587 * The found settings are set for the device to be used 588 * later in the device probing. 589 * Returns 0 if no settings found. 590 */ 591unsigned long netdev_boot_base(const char *prefix, int unit) 592{ 593 const struct netdev_boot_setup *s = dev_boot_setup; 594 char name[IFNAMSIZ]; 595 int i; 596 597 sprintf(name, "%s%d", prefix, unit); 598 599 /* 600 * If device already registered then return base of 1 601 * to indicate not to probe for this interface 602 */ 603 if (__dev_get_by_name(&init_net, name)) 604 return 1; 605 606 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 607 if (!strcmp(name, s[i].name)) 608 return s[i].map.base_addr; 609 return 0; 610} 611 612/* 613 * Saves at boot time configured settings for any netdevice. 614 */ 615int __init netdev_boot_setup(char *str) 616{ 617 int ints[5]; 618 struct ifmap map; 619 620 str = get_options(str, ARRAY_SIZE(ints), ints); 621 if (!str || !*str) 622 return 0; 623 624 /* Save settings */ 625 memset(&map, 0, sizeof(map)); 626 if (ints[0] > 0) 627 map.irq = ints[1]; 628 if (ints[0] > 1) 629 map.base_addr = ints[2]; 630 if (ints[0] > 2) 631 map.mem_start = ints[3]; 632 if (ints[0] > 3) 633 map.mem_end = ints[4]; 634 635 /* Add new entry to the list */ 636 return netdev_boot_setup_add(str, &map); 637} 638 639__setup("netdev=", netdev_boot_setup); 640 641/******************************************************************************* 642 643 Device Interface Subroutines 644 645*******************************************************************************/ 646 647/** 648 * __dev_get_by_name - find a device by its name 649 * @net: the applicable net namespace 650 * @name: name to find 651 * 652 * Find an interface by name. Must be called under RTNL semaphore 653 * or @dev_base_lock. If the name is found a pointer to the device 654 * is returned. If the name is not found then %NULL is returned. The 655 * reference counters are not incremented so the caller must be 656 * careful with locks. 657 */ 658 659struct net_device *__dev_get_by_name(struct net *net, const char *name) 660{ 661 struct net_device *dev; 662 struct hlist_head *head = dev_name_hash(net, name); 663 664 hlist_for_each_entry(dev, head, name_hlist) 665 if (!strncmp(dev->name, name, IFNAMSIZ)) 666 return dev; 667 668 return NULL; 669} 670EXPORT_SYMBOL(__dev_get_by_name); 671 672/** 673 * dev_get_by_name_rcu - find a device by its name 674 * @net: the applicable net namespace 675 * @name: name to find 676 * 677 * Find an interface by name. 678 * If the name is found a pointer to the device is returned. 679 * If the name is not found then %NULL is returned. 680 * The reference counters are not incremented so the caller must be 681 * careful with locks. The caller must hold RCU lock. 682 */ 683 684struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 685{ 686 struct net_device *dev; 687 struct hlist_head *head = dev_name_hash(net, name); 688 689 hlist_for_each_entry_rcu(dev, head, name_hlist) 690 if (!strncmp(dev->name, name, IFNAMSIZ)) 691 return dev; 692 693 return NULL; 694} 695EXPORT_SYMBOL(dev_get_by_name_rcu); 696 697/** 698 * dev_get_by_name - find a device by its name 699 * @net: the applicable net namespace 700 * @name: name to find 701 * 702 * Find an interface by name. This can be called from any 703 * context and does its own locking. The returned handle has 704 * the usage count incremented and the caller must use dev_put() to 705 * release it when it is no longer needed. %NULL is returned if no 706 * matching device is found. 707 */ 708 709struct net_device *dev_get_by_name(struct net *net, const char *name) 710{ 711 struct net_device *dev; 712 713 rcu_read_lock(); 714 dev = dev_get_by_name_rcu(net, name); 715 if (dev) 716 dev_hold(dev); 717 rcu_read_unlock(); 718 return dev; 719} 720EXPORT_SYMBOL(dev_get_by_name); 721 722/** 723 * __dev_get_by_index - find a device by its ifindex 724 * @net: the applicable net namespace 725 * @ifindex: index of device 726 * 727 * Search for an interface by index. Returns %NULL if the device 728 * is not found or a pointer to the device. The device has not 729 * had its reference counter increased so the caller must be careful 730 * about locking. The caller must hold either the RTNL semaphore 731 * or @dev_base_lock. 732 */ 733 734struct net_device *__dev_get_by_index(struct net *net, int ifindex) 735{ 736 struct net_device *dev; 737 struct hlist_head *head = dev_index_hash(net, ifindex); 738 739 hlist_for_each_entry(dev, head, index_hlist) 740 if (dev->ifindex == ifindex) 741 return dev; 742 743 return NULL; 744} 745EXPORT_SYMBOL(__dev_get_by_index); 746 747/** 748 * dev_get_by_index_rcu - find a device by its ifindex 749 * @net: the applicable net namespace 750 * @ifindex: index of device 751 * 752 * Search for an interface by index. Returns %NULL if the device 753 * is not found or a pointer to the device. The device has not 754 * had its reference counter increased so the caller must be careful 755 * about locking. The caller must hold RCU lock. 756 */ 757 758struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 759{ 760 struct net_device *dev; 761 struct hlist_head *head = dev_index_hash(net, ifindex); 762 763 hlist_for_each_entry_rcu(dev, head, index_hlist) 764 if (dev->ifindex == ifindex) 765 return dev; 766 767 return NULL; 768} 769EXPORT_SYMBOL(dev_get_by_index_rcu); 770 771 772/** 773 * dev_get_by_index - find a device by its ifindex 774 * @net: the applicable net namespace 775 * @ifindex: index of device 776 * 777 * Search for an interface by index. Returns NULL if the device 778 * is not found or a pointer to the device. The device returned has 779 * had a reference added and the pointer is safe until the user calls 780 * dev_put to indicate they have finished with it. 781 */ 782 783struct net_device *dev_get_by_index(struct net *net, int ifindex) 784{ 785 struct net_device *dev; 786 787 rcu_read_lock(); 788 dev = dev_get_by_index_rcu(net, ifindex); 789 if (dev) 790 dev_hold(dev); 791 rcu_read_unlock(); 792 return dev; 793} 794EXPORT_SYMBOL(dev_get_by_index); 795 796/** 797 * dev_getbyhwaddr_rcu - find a device by its hardware address 798 * @net: the applicable net namespace 799 * @type: media type of device 800 * @ha: hardware address 801 * 802 * Search for an interface by MAC address. Returns NULL if the device 803 * is not found or a pointer to the device. 804 * The caller must hold RCU or RTNL. 805 * The returned device has not had its ref count increased 806 * and the caller must therefore be careful about locking 807 * 808 */ 809 810struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 811 const char *ha) 812{ 813 struct net_device *dev; 814 815 for_each_netdev_rcu(net, dev) 816 if (dev->type == type && 817 !memcmp(dev->dev_addr, ha, dev->addr_len)) 818 return dev; 819 820 return NULL; 821} 822EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 823 824struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 825{ 826 struct net_device *dev; 827 828 ASSERT_RTNL(); 829 for_each_netdev(net, dev) 830 if (dev->type == type) 831 return dev; 832 833 return NULL; 834} 835EXPORT_SYMBOL(__dev_getfirstbyhwtype); 836 837struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 838{ 839 struct net_device *dev, *ret = NULL; 840 841 rcu_read_lock(); 842 for_each_netdev_rcu(net, dev) 843 if (dev->type == type) { 844 dev_hold(dev); 845 ret = dev; 846 break; 847 } 848 rcu_read_unlock(); 849 return ret; 850} 851EXPORT_SYMBOL(dev_getfirstbyhwtype); 852 853/** 854 * dev_get_by_flags_rcu - find any device with given flags 855 * @net: the applicable net namespace 856 * @if_flags: IFF_* values 857 * @mask: bitmask of bits in if_flags to check 858 * 859 * Search for any interface with the given flags. Returns NULL if a device 860 * is not found or a pointer to the device. Must be called inside 861 * rcu_read_lock(), and result refcount is unchanged. 862 */ 863 864struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags, 865 unsigned short mask) 866{ 867 struct net_device *dev, *ret; 868 869 ret = NULL; 870 for_each_netdev_rcu(net, dev) { 871 if (((dev->flags ^ if_flags) & mask) == 0) { 872 ret = dev; 873 break; 874 } 875 } 876 return ret; 877} 878EXPORT_SYMBOL(dev_get_by_flags_rcu); 879 880/** 881 * dev_valid_name - check if name is okay for network device 882 * @name: name string 883 * 884 * Network device names need to be valid file names to 885 * to allow sysfs to work. We also disallow any kind of 886 * whitespace. 887 */ 888bool dev_valid_name(const char *name) 889{ 890 if (*name == '\0') 891 return false; 892 if (strlen(name) >= IFNAMSIZ) 893 return false; 894 if (!strcmp(name, ".") || !strcmp(name, "..")) 895 return false; 896 897 while (*name) { 898 if (*name == '/' || isspace(*name)) 899 return false; 900 name++; 901 } 902 return true; 903} 904EXPORT_SYMBOL(dev_valid_name); 905 906/** 907 * __dev_alloc_name - allocate a name for a device 908 * @net: network namespace to allocate the device name in 909 * @name: name format string 910 * @buf: scratch buffer and result name string 911 * 912 * Passed a format string - eg "lt%d" it will try and find a suitable 913 * id. It scans list of devices to build up a free map, then chooses 914 * the first empty slot. The caller must hold the dev_base or rtnl lock 915 * while allocating the name and adding the device in order to avoid 916 * duplicates. 917 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 918 * Returns the number of the unit assigned or a negative errno code. 919 */ 920 921static int __dev_alloc_name(struct net *net, const char *name, char *buf) 922{ 923 int i = 0; 924 const char *p; 925 const int max_netdevices = 8*PAGE_SIZE; 926 unsigned long *inuse; 927 struct net_device *d; 928 929 p = strnchr(name, IFNAMSIZ-1, '%'); 930 if (p) { 931 /* 932 * Verify the string as this thing may have come from 933 * the user. There must be either one "%d" and no other "%" 934 * characters. 935 */ 936 if (p[1] != 'd' || strchr(p + 2, '%')) 937 return -EINVAL; 938 939 /* Use one page as a bit array of possible slots */ 940 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 941 if (!inuse) 942 return -ENOMEM; 943 944 for_each_netdev(net, d) { 945 if (!sscanf(d->name, name, &i)) 946 continue; 947 if (i < 0 || i >= max_netdevices) 948 continue; 949 950 /* avoid cases where sscanf is not exact inverse of printf */ 951 snprintf(buf, IFNAMSIZ, name, i); 952 if (!strncmp(buf, d->name, IFNAMSIZ)) 953 set_bit(i, inuse); 954 } 955 956 i = find_first_zero_bit(inuse, max_netdevices); 957 free_page((unsigned long) inuse); 958 } 959 960 if (buf != name) 961 snprintf(buf, IFNAMSIZ, name, i); 962 if (!__dev_get_by_name(net, buf)) 963 return i; 964 965 /* It is possible to run out of possible slots 966 * when the name is long and there isn't enough space left 967 * for the digits, or if all bits are used. 968 */ 969 return -ENFILE; 970} 971 972/** 973 * dev_alloc_name - allocate a name for a device 974 * @dev: device 975 * @name: name format string 976 * 977 * Passed a format string - eg "lt%d" it will try and find a suitable 978 * id. It scans list of devices to build up a free map, then chooses 979 * the first empty slot. The caller must hold the dev_base or rtnl lock 980 * while allocating the name and adding the device in order to avoid 981 * duplicates. 982 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 983 * Returns the number of the unit assigned or a negative errno code. 984 */ 985 986int dev_alloc_name(struct net_device *dev, const char *name) 987{ 988 char buf[IFNAMSIZ]; 989 struct net *net; 990 int ret; 991 992 BUG_ON(!dev_net(dev)); 993 net = dev_net(dev); 994 ret = __dev_alloc_name(net, name, buf); 995 if (ret >= 0) 996 strlcpy(dev->name, buf, IFNAMSIZ); 997 return ret; 998} 999EXPORT_SYMBOL(dev_alloc_name); 1000 1001static int dev_alloc_name_ns(struct net *net, 1002 struct net_device *dev, 1003 const char *name) 1004{ 1005 char buf[IFNAMSIZ]; 1006 int ret; 1007 1008 ret = __dev_alloc_name(net, name, buf); 1009 if (ret >= 0) 1010 strlcpy(dev->name, buf, IFNAMSIZ); 1011 return ret; 1012} 1013 1014static int dev_get_valid_name(struct net *net, 1015 struct net_device *dev, 1016 const char *name) 1017{ 1018 BUG_ON(!net); 1019 1020 if (!dev_valid_name(name)) 1021 return -EINVAL; 1022 1023 if (strchr(name, '%')) 1024 return dev_alloc_name_ns(net, dev, name); 1025 else if (__dev_get_by_name(net, name)) 1026 return -EEXIST; 1027 else if (dev->name != name) 1028 strlcpy(dev->name, name, IFNAMSIZ); 1029 1030 return 0; 1031} 1032 1033/** 1034 * dev_change_name - change name of a device 1035 * @dev: device 1036 * @newname: name (or format string) must be at least IFNAMSIZ 1037 * 1038 * Change name of a device, can pass format strings "eth%d". 1039 * for wildcarding. 1040 */ 1041int dev_change_name(struct net_device *dev, const char *newname) 1042{ 1043 char oldname[IFNAMSIZ]; 1044 int err = 0; 1045 int ret; 1046 struct net *net; 1047 1048 ASSERT_RTNL(); 1049 BUG_ON(!dev_net(dev)); 1050 1051 net = dev_net(dev); 1052 if (dev->flags & IFF_UP) 1053 return -EBUSY; 1054 1055 write_seqcount_begin(&devnet_rename_seq); 1056 1057 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) { 1058 write_seqcount_end(&devnet_rename_seq); 1059 return 0; 1060 } 1061 1062 memcpy(oldname, dev->name, IFNAMSIZ); 1063 1064 err = dev_get_valid_name(net, dev, newname); 1065 if (err < 0) { 1066 write_seqcount_end(&devnet_rename_seq); 1067 return err; 1068 } 1069 1070rollback: 1071 ret = device_rename(&dev->dev, dev->name); 1072 if (ret) { 1073 memcpy(dev->name, oldname, IFNAMSIZ); 1074 write_seqcount_end(&devnet_rename_seq); 1075 return ret; 1076 } 1077 1078 write_seqcount_end(&devnet_rename_seq); 1079 1080 write_lock_bh(&dev_base_lock); 1081 hlist_del_rcu(&dev->name_hlist); 1082 write_unlock_bh(&dev_base_lock); 1083 1084 synchronize_rcu(); 1085 1086 write_lock_bh(&dev_base_lock); 1087 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 1088 write_unlock_bh(&dev_base_lock); 1089 1090 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1091 ret = notifier_to_errno(ret); 1092 1093 if (ret) { 1094 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1095 if (err >= 0) { 1096 err = ret; 1097 write_seqcount_begin(&devnet_rename_seq); 1098 memcpy(dev->name, oldname, IFNAMSIZ); 1099 goto rollback; 1100 } else { 1101 pr_err("%s: name change rollback failed: %d\n", 1102 dev->name, ret); 1103 } 1104 } 1105 1106 return err; 1107} 1108 1109/** 1110 * dev_set_alias - change ifalias of a device 1111 * @dev: device 1112 * @alias: name up to IFALIASZ 1113 * @len: limit of bytes to copy from info 1114 * 1115 * Set ifalias for a device, 1116 */ 1117int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1118{ 1119 char *new_ifalias; 1120 1121 ASSERT_RTNL(); 1122 1123 if (len >= IFALIASZ) 1124 return -EINVAL; 1125 1126 if (!len) { 1127 kfree(dev->ifalias); 1128 dev->ifalias = NULL; 1129 return 0; 1130 } 1131 1132 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL); 1133 if (!new_ifalias) 1134 return -ENOMEM; 1135 dev->ifalias = new_ifalias; 1136 1137 strlcpy(dev->ifalias, alias, len+1); 1138 return len; 1139} 1140 1141 1142/** 1143 * netdev_features_change - device changes features 1144 * @dev: device to cause notification 1145 * 1146 * Called to indicate a device has changed features. 1147 */ 1148void netdev_features_change(struct net_device *dev) 1149{ 1150 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1151} 1152EXPORT_SYMBOL(netdev_features_change); 1153 1154/** 1155 * netdev_state_change - device changes state 1156 * @dev: device to cause notification 1157 * 1158 * Called to indicate a device has changed state. This function calls 1159 * the notifier chains for netdev_chain and sends a NEWLINK message 1160 * to the routing socket. 1161 */ 1162void netdev_state_change(struct net_device *dev) 1163{ 1164 if (dev->flags & IFF_UP) { 1165 call_netdevice_notifiers(NETDEV_CHANGE, dev); 1166 rtmsg_ifinfo(RTM_NEWLINK, dev, 0); 1167 } 1168} 1169EXPORT_SYMBOL(netdev_state_change); 1170 1171/** 1172 * netdev_notify_peers - notify network peers about existence of @dev 1173 * @dev: network device 1174 * 1175 * Generate traffic such that interested network peers are aware of 1176 * @dev, such as by generating a gratuitous ARP. This may be used when 1177 * a device wants to inform the rest of the network about some sort of 1178 * reconfiguration such as a failover event or virtual machine 1179 * migration. 1180 */ 1181void netdev_notify_peers(struct net_device *dev) 1182{ 1183 rtnl_lock(); 1184 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1185 rtnl_unlock(); 1186} 1187EXPORT_SYMBOL(netdev_notify_peers); 1188 1189static int __dev_open(struct net_device *dev) 1190{ 1191 const struct net_device_ops *ops = dev->netdev_ops; 1192 int ret; 1193 1194 ASSERT_RTNL(); 1195 1196 if (!netif_device_present(dev)) 1197 return -ENODEV; 1198 1199 /* Block netpoll from trying to do any rx path servicing. 1200 * If we don't do this there is a chance ndo_poll_controller 1201 * or ndo_poll may be running while we open the device 1202 */ 1203 ret = netpoll_rx_disable(dev); 1204 if (ret) 1205 return ret; 1206 1207 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev); 1208 ret = notifier_to_errno(ret); 1209 if (ret) 1210 return ret; 1211 1212 set_bit(__LINK_STATE_START, &dev->state); 1213 1214 if (ops->ndo_validate_addr) 1215 ret = ops->ndo_validate_addr(dev); 1216 1217 if (!ret && ops->ndo_open) 1218 ret = ops->ndo_open(dev); 1219 1220 netpoll_rx_enable(dev); 1221 1222 if (ret) 1223 clear_bit(__LINK_STATE_START, &dev->state); 1224 else { 1225 dev->flags |= IFF_UP; 1226 net_dmaengine_get(); 1227 dev_set_rx_mode(dev); 1228 dev_activate(dev); 1229 add_device_randomness(dev->dev_addr, dev->addr_len); 1230 } 1231 1232 return ret; 1233} 1234 1235/** 1236 * dev_open - prepare an interface for use. 1237 * @dev: device to open 1238 * 1239 * Takes a device from down to up state. The device's private open 1240 * function is invoked and then the multicast lists are loaded. Finally 1241 * the device is moved into the up state and a %NETDEV_UP message is 1242 * sent to the netdev notifier chain. 1243 * 1244 * Calling this function on an active interface is a nop. On a failure 1245 * a negative errno code is returned. 1246 */ 1247int dev_open(struct net_device *dev) 1248{ 1249 int ret; 1250 1251 if (dev->flags & IFF_UP) 1252 return 0; 1253 1254 ret = __dev_open(dev); 1255 if (ret < 0) 1256 return ret; 1257 1258 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING); 1259 call_netdevice_notifiers(NETDEV_UP, dev); 1260 1261 return ret; 1262} 1263EXPORT_SYMBOL(dev_open); 1264 1265static int __dev_close_many(struct list_head *head) 1266{ 1267 struct net_device *dev; 1268 1269 ASSERT_RTNL(); 1270 might_sleep(); 1271 1272 list_for_each_entry(dev, head, unreg_list) { 1273 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1274 1275 clear_bit(__LINK_STATE_START, &dev->state); 1276 1277 /* Synchronize to scheduled poll. We cannot touch poll list, it 1278 * can be even on different cpu. So just clear netif_running(). 1279 * 1280 * dev->stop() will invoke napi_disable() on all of it's 1281 * napi_struct instances on this device. 1282 */ 1283 smp_mb__after_clear_bit(); /* Commit netif_running(). */ 1284 } 1285 1286 dev_deactivate_many(head); 1287 1288 list_for_each_entry(dev, head, unreg_list) { 1289 const struct net_device_ops *ops = dev->netdev_ops; 1290 1291 /* 1292 * Call the device specific close. This cannot fail. 1293 * Only if device is UP 1294 * 1295 * We allow it to be called even after a DETACH hot-plug 1296 * event. 1297 */ 1298 if (ops->ndo_stop) 1299 ops->ndo_stop(dev); 1300 1301 dev->flags &= ~IFF_UP; 1302 net_dmaengine_put(); 1303 } 1304 1305 return 0; 1306} 1307 1308static int __dev_close(struct net_device *dev) 1309{ 1310 int retval; 1311 LIST_HEAD(single); 1312 1313 /* Temporarily disable netpoll until the interface is down */ 1314 retval = netpoll_rx_disable(dev); 1315 if (retval) 1316 return retval; 1317 1318 list_add(&dev->unreg_list, &single); 1319 retval = __dev_close_many(&single); 1320 list_del(&single); 1321 1322 netpoll_rx_enable(dev); 1323 return retval; 1324} 1325 1326static int dev_close_many(struct list_head *head) 1327{ 1328 struct net_device *dev, *tmp; 1329 LIST_HEAD(tmp_list); 1330 1331 list_for_each_entry_safe(dev, tmp, head, unreg_list) 1332 if (!(dev->flags & IFF_UP)) 1333 list_move(&dev->unreg_list, &tmp_list); 1334 1335 __dev_close_many(head); 1336 1337 list_for_each_entry(dev, head, unreg_list) { 1338 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING); 1339 call_netdevice_notifiers(NETDEV_DOWN, dev); 1340 } 1341 1342 /* rollback_registered_many needs the complete original list */ 1343 list_splice(&tmp_list, head); 1344 return 0; 1345} 1346 1347/** 1348 * dev_close - shutdown an interface. 1349 * @dev: device to shutdown 1350 * 1351 * This function moves an active device into down state. A 1352 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1353 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1354 * chain. 1355 */ 1356int dev_close(struct net_device *dev) 1357{ 1358 int ret = 0; 1359 if (dev->flags & IFF_UP) { 1360 LIST_HEAD(single); 1361 1362 /* Block netpoll rx while the interface is going down */ 1363 ret = netpoll_rx_disable(dev); 1364 if (ret) 1365 return ret; 1366 1367 list_add(&dev->unreg_list, &single); 1368 dev_close_many(&single); 1369 list_del(&single); 1370 1371 netpoll_rx_enable(dev); 1372 } 1373 return ret; 1374} 1375EXPORT_SYMBOL(dev_close); 1376 1377 1378/** 1379 * dev_disable_lro - disable Large Receive Offload on a device 1380 * @dev: device 1381 * 1382 * Disable Large Receive Offload (LRO) on a net device. Must be 1383 * called under RTNL. This is needed if received packets may be 1384 * forwarded to another interface. 1385 */ 1386void dev_disable_lro(struct net_device *dev) 1387{ 1388 /* 1389 * If we're trying to disable lro on a vlan device 1390 * use the underlying physical device instead 1391 */ 1392 if (is_vlan_dev(dev)) 1393 dev = vlan_dev_real_dev(dev); 1394 1395 dev->wanted_features &= ~NETIF_F_LRO; 1396 netdev_update_features(dev); 1397 1398 if (unlikely(dev->features & NETIF_F_LRO)) 1399 netdev_WARN(dev, "failed to disable LRO!\n"); 1400} 1401EXPORT_SYMBOL(dev_disable_lro); 1402 1403 1404static int dev_boot_phase = 1; 1405 1406/** 1407 * register_netdevice_notifier - register a network notifier block 1408 * @nb: notifier 1409 * 1410 * Register a notifier to be called when network device events occur. 1411 * The notifier passed is linked into the kernel structures and must 1412 * not be reused until it has been unregistered. A negative errno code 1413 * is returned on a failure. 1414 * 1415 * When registered all registration and up events are replayed 1416 * to the new notifier to allow device to have a race free 1417 * view of the network device list. 1418 */ 1419 1420int register_netdevice_notifier(struct notifier_block *nb) 1421{ 1422 struct net_device *dev; 1423 struct net_device *last; 1424 struct net *net; 1425 int err; 1426 1427 rtnl_lock(); 1428 err = raw_notifier_chain_register(&netdev_chain, nb); 1429 if (err) 1430 goto unlock; 1431 if (dev_boot_phase) 1432 goto unlock; 1433 for_each_net(net) { 1434 for_each_netdev(net, dev) { 1435 err = nb->notifier_call(nb, NETDEV_REGISTER, dev); 1436 err = notifier_to_errno(err); 1437 if (err) 1438 goto rollback; 1439 1440 if (!(dev->flags & IFF_UP)) 1441 continue; 1442 1443 nb->notifier_call(nb, NETDEV_UP, dev); 1444 } 1445 } 1446 1447unlock: 1448 rtnl_unlock(); 1449 return err; 1450 1451rollback: 1452 last = dev; 1453 for_each_net(net) { 1454 for_each_netdev(net, dev) { 1455 if (dev == last) 1456 goto outroll; 1457 1458 if (dev->flags & IFF_UP) { 1459 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev); 1460 nb->notifier_call(nb, NETDEV_DOWN, dev); 1461 } 1462 nb->notifier_call(nb, NETDEV_UNREGISTER, dev); 1463 } 1464 } 1465 1466outroll: 1467 raw_notifier_chain_unregister(&netdev_chain, nb); 1468 goto unlock; 1469} 1470EXPORT_SYMBOL(register_netdevice_notifier); 1471 1472/** 1473 * unregister_netdevice_notifier - unregister a network notifier block 1474 * @nb: notifier 1475 * 1476 * Unregister a notifier previously registered by 1477 * register_netdevice_notifier(). The notifier is unlinked into the 1478 * kernel structures and may then be reused. A negative errno code 1479 * is returned on a failure. 1480 * 1481 * After unregistering unregister and down device events are synthesized 1482 * for all devices on the device list to the removed notifier to remove 1483 * the need for special case cleanup code. 1484 */ 1485 1486int unregister_netdevice_notifier(struct notifier_block *nb) 1487{ 1488 struct net_device *dev; 1489 struct net *net; 1490 int err; 1491 1492 rtnl_lock(); 1493 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1494 if (err) 1495 goto unlock; 1496 1497 for_each_net(net) { 1498 for_each_netdev(net, dev) { 1499 if (dev->flags & IFF_UP) { 1500 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev); 1501 nb->notifier_call(nb, NETDEV_DOWN, dev); 1502 } 1503 nb->notifier_call(nb, NETDEV_UNREGISTER, dev); 1504 } 1505 } 1506unlock: 1507 rtnl_unlock(); 1508 return err; 1509} 1510EXPORT_SYMBOL(unregister_netdevice_notifier); 1511 1512/** 1513 * call_netdevice_notifiers - call all network notifier blocks 1514 * @val: value passed unmodified to notifier function 1515 * @dev: net_device pointer passed unmodified to notifier function 1516 * 1517 * Call all network notifier blocks. Parameters and return value 1518 * are as for raw_notifier_call_chain(). 1519 */ 1520 1521int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1522{ 1523 ASSERT_RTNL(); 1524 return raw_notifier_call_chain(&netdev_chain, val, dev); 1525} 1526EXPORT_SYMBOL(call_netdevice_notifiers); 1527 1528static struct static_key netstamp_needed __read_mostly; 1529#ifdef HAVE_JUMP_LABEL 1530/* We are not allowed to call static_key_slow_dec() from irq context 1531 * If net_disable_timestamp() is called from irq context, defer the 1532 * static_key_slow_dec() calls. 1533 */ 1534static atomic_t netstamp_needed_deferred; 1535#endif 1536 1537void net_enable_timestamp(void) 1538{ 1539#ifdef HAVE_JUMP_LABEL 1540 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 1541 1542 if (deferred) { 1543 while (--deferred) 1544 static_key_slow_dec(&netstamp_needed); 1545 return; 1546 } 1547#endif 1548 static_key_slow_inc(&netstamp_needed); 1549} 1550EXPORT_SYMBOL(net_enable_timestamp); 1551 1552void net_disable_timestamp(void) 1553{ 1554#ifdef HAVE_JUMP_LABEL 1555 if (in_interrupt()) { 1556 atomic_inc(&netstamp_needed_deferred); 1557 return; 1558 } 1559#endif 1560 static_key_slow_dec(&netstamp_needed); 1561} 1562EXPORT_SYMBOL(net_disable_timestamp); 1563 1564static inline void net_timestamp_set(struct sk_buff *skb) 1565{ 1566 skb->tstamp.tv64 = 0; 1567 if (static_key_false(&netstamp_needed)) 1568 __net_timestamp(skb); 1569} 1570 1571#define net_timestamp_check(COND, SKB) \ 1572 if (static_key_false(&netstamp_needed)) { \ 1573 if ((COND) && !(SKB)->tstamp.tv64) \ 1574 __net_timestamp(SKB); \ 1575 } \ 1576 1577static inline bool is_skb_forwardable(struct net_device *dev, 1578 struct sk_buff *skb) 1579{ 1580 unsigned int len; 1581 1582 if (!(dev->flags & IFF_UP)) 1583 return false; 1584 1585 len = dev->mtu + dev->hard_header_len + VLAN_HLEN; 1586 if (skb->len <= len) 1587 return true; 1588 1589 /* if TSO is enabled, we don't care about the length as the packet 1590 * could be forwarded without being segmented before 1591 */ 1592 if (skb_is_gso(skb)) 1593 return true; 1594 1595 return false; 1596} 1597 1598/** 1599 * dev_forward_skb - loopback an skb to another netif 1600 * 1601 * @dev: destination network device 1602 * @skb: buffer to forward 1603 * 1604 * return values: 1605 * NET_RX_SUCCESS (no congestion) 1606 * NET_RX_DROP (packet was dropped, but freed) 1607 * 1608 * dev_forward_skb can be used for injecting an skb from the 1609 * start_xmit function of one device into the receive queue 1610 * of another device. 1611 * 1612 * The receiving device may be in another namespace, so 1613 * we have to clear all information in the skb that could 1614 * impact namespace isolation. 1615 */ 1616int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1617{ 1618 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) { 1619 if (skb_copy_ubufs(skb, GFP_ATOMIC)) { 1620 atomic_long_inc(&dev->rx_dropped); 1621 kfree_skb(skb); 1622 return NET_RX_DROP; 1623 } 1624 } 1625 1626 skb_orphan(skb); 1627 1628 if (unlikely(!is_skb_forwardable(dev, skb))) { 1629 atomic_long_inc(&dev->rx_dropped); 1630 kfree_skb(skb); 1631 return NET_RX_DROP; 1632 } 1633 skb->skb_iif = 0; 1634 skb->dev = dev; 1635 skb_dst_drop(skb); 1636 skb->tstamp.tv64 = 0; 1637 skb->pkt_type = PACKET_HOST; 1638 skb->protocol = eth_type_trans(skb, dev); 1639 skb->mark = 0; 1640 secpath_reset(skb); 1641 nf_reset(skb); 1642 nf_reset_trace(skb); 1643 return netif_rx(skb); 1644} 1645EXPORT_SYMBOL_GPL(dev_forward_skb); 1646 1647static inline int deliver_skb(struct sk_buff *skb, 1648 struct packet_type *pt_prev, 1649 struct net_device *orig_dev) 1650{ 1651 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC))) 1652 return -ENOMEM; 1653 atomic_inc(&skb->users); 1654 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1655} 1656 1657static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 1658{ 1659 if (!ptype->af_packet_priv || !skb->sk) 1660 return false; 1661 1662 if (ptype->id_match) 1663 return ptype->id_match(ptype, skb->sk); 1664 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 1665 return true; 1666 1667 return false; 1668} 1669 1670/* 1671 * Support routine. Sends outgoing frames to any network 1672 * taps currently in use. 1673 */ 1674 1675static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1676{ 1677 struct packet_type *ptype; 1678 struct sk_buff *skb2 = NULL; 1679 struct packet_type *pt_prev = NULL; 1680 1681 rcu_read_lock(); 1682 list_for_each_entry_rcu(ptype, &ptype_all, list) { 1683 /* Never send packets back to the socket 1684 * they originated from - MvS (miquels@drinkel.ow.org) 1685 */ 1686 if ((ptype->dev == dev || !ptype->dev) && 1687 (!skb_loop_sk(ptype, skb))) { 1688 if (pt_prev) { 1689 deliver_skb(skb2, pt_prev, skb->dev); 1690 pt_prev = ptype; 1691 continue; 1692 } 1693 1694 skb2 = skb_clone(skb, GFP_ATOMIC); 1695 if (!skb2) 1696 break; 1697 1698 net_timestamp_set(skb2); 1699 1700 /* skb->nh should be correctly 1701 set by sender, so that the second statement is 1702 just protection against buggy protocols. 1703 */ 1704 skb_reset_mac_header(skb2); 1705 1706 if (skb_network_header(skb2) < skb2->data || 1707 skb2->network_header > skb2->tail) { 1708 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 1709 ntohs(skb2->protocol), 1710 dev->name); 1711 skb_reset_network_header(skb2); 1712 } 1713 1714 skb2->transport_header = skb2->network_header; 1715 skb2->pkt_type = PACKET_OUTGOING; 1716 pt_prev = ptype; 1717 } 1718 } 1719 if (pt_prev) 1720 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 1721 rcu_read_unlock(); 1722} 1723 1724/** 1725 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 1726 * @dev: Network device 1727 * @txq: number of queues available 1728 * 1729 * If real_num_tx_queues is changed the tc mappings may no longer be 1730 * valid. To resolve this verify the tc mapping remains valid and if 1731 * not NULL the mapping. With no priorities mapping to this 1732 * offset/count pair it will no longer be used. In the worst case TC0 1733 * is invalid nothing can be done so disable priority mappings. If is 1734 * expected that drivers will fix this mapping if they can before 1735 * calling netif_set_real_num_tx_queues. 1736 */ 1737static void netif_setup_tc(struct net_device *dev, unsigned int txq) 1738{ 1739 int i; 1740 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 1741 1742 /* If TC0 is invalidated disable TC mapping */ 1743 if (tc->offset + tc->count > txq) { 1744 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 1745 dev->num_tc = 0; 1746 return; 1747 } 1748 1749 /* Invalidated prio to tc mappings set to TC0 */ 1750 for (i = 1; i < TC_BITMASK + 1; i++) { 1751 int q = netdev_get_prio_tc_map(dev, i); 1752 1753 tc = &dev->tc_to_txq[q]; 1754 if (tc->offset + tc->count > txq) { 1755 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 1756 i, q); 1757 netdev_set_prio_tc_map(dev, i, 0); 1758 } 1759 } 1760} 1761 1762#ifdef CONFIG_XPS 1763static DEFINE_MUTEX(xps_map_mutex); 1764#define xmap_dereference(P) \ 1765 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 1766 1767static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps, 1768 int cpu, u16 index) 1769{ 1770 struct xps_map *map = NULL; 1771 int pos; 1772 1773 if (dev_maps) 1774 map = xmap_dereference(dev_maps->cpu_map[cpu]); 1775 1776 for (pos = 0; map && pos < map->len; pos++) { 1777 if (map->queues[pos] == index) { 1778 if (map->len > 1) { 1779 map->queues[pos] = map->queues[--map->len]; 1780 } else { 1781 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL); 1782 kfree_rcu(map, rcu); 1783 map = NULL; 1784 } 1785 break; 1786 } 1787 } 1788 1789 return map; 1790} 1791 1792static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 1793{ 1794 struct xps_dev_maps *dev_maps; 1795 int cpu, i; 1796 bool active = false; 1797 1798 mutex_lock(&xps_map_mutex); 1799 dev_maps = xmap_dereference(dev->xps_maps); 1800 1801 if (!dev_maps) 1802 goto out_no_maps; 1803 1804 for_each_possible_cpu(cpu) { 1805 for (i = index; i < dev->num_tx_queues; i++) { 1806 if (!remove_xps_queue(dev_maps, cpu, i)) 1807 break; 1808 } 1809 if (i == dev->num_tx_queues) 1810 active = true; 1811 } 1812 1813 if (!active) { 1814 RCU_INIT_POINTER(dev->xps_maps, NULL); 1815 kfree_rcu(dev_maps, rcu); 1816 } 1817 1818 for (i = index; i < dev->num_tx_queues; i++) 1819 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i), 1820 NUMA_NO_NODE); 1821 1822out_no_maps: 1823 mutex_unlock(&xps_map_mutex); 1824} 1825 1826static struct xps_map *expand_xps_map(struct xps_map *map, 1827 int cpu, u16 index) 1828{ 1829 struct xps_map *new_map; 1830 int alloc_len = XPS_MIN_MAP_ALLOC; 1831 int i, pos; 1832 1833 for (pos = 0; map && pos < map->len; pos++) { 1834 if (map->queues[pos] != index) 1835 continue; 1836 return map; 1837 } 1838 1839 /* Need to add queue to this CPU's existing map */ 1840 if (map) { 1841 if (pos < map->alloc_len) 1842 return map; 1843 1844 alloc_len = map->alloc_len * 2; 1845 } 1846 1847 /* Need to allocate new map to store queue on this CPU's map */ 1848 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 1849 cpu_to_node(cpu)); 1850 if (!new_map) 1851 return NULL; 1852 1853 for (i = 0; i < pos; i++) 1854 new_map->queues[i] = map->queues[i]; 1855 new_map->alloc_len = alloc_len; 1856 new_map->len = pos; 1857 1858 return new_map; 1859} 1860 1861int netif_set_xps_queue(struct net_device *dev, struct cpumask *mask, u16 index) 1862{ 1863 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL; 1864 struct xps_map *map, *new_map; 1865 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES); 1866 int cpu, numa_node_id = -2; 1867 bool active = false; 1868 1869 mutex_lock(&xps_map_mutex); 1870 1871 dev_maps = xmap_dereference(dev->xps_maps); 1872 1873 /* allocate memory for queue storage */ 1874 for_each_online_cpu(cpu) { 1875 if (!cpumask_test_cpu(cpu, mask)) 1876 continue; 1877 1878 if (!new_dev_maps) 1879 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 1880 if (!new_dev_maps) { 1881 mutex_unlock(&xps_map_mutex); 1882 return -ENOMEM; 1883 } 1884 1885 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) : 1886 NULL; 1887 1888 map = expand_xps_map(map, cpu, index); 1889 if (!map) 1890 goto error; 1891 1892 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map); 1893 } 1894 1895 if (!new_dev_maps) 1896 goto out_no_new_maps; 1897 1898 for_each_possible_cpu(cpu) { 1899 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) { 1900 /* add queue to CPU maps */ 1901 int pos = 0; 1902 1903 map = xmap_dereference(new_dev_maps->cpu_map[cpu]); 1904 while ((pos < map->len) && (map->queues[pos] != index)) 1905 pos++; 1906 1907 if (pos == map->len) 1908 map->queues[map->len++] = index; 1909#ifdef CONFIG_NUMA 1910 if (numa_node_id == -2) 1911 numa_node_id = cpu_to_node(cpu); 1912 else if (numa_node_id != cpu_to_node(cpu)) 1913 numa_node_id = -1; 1914#endif 1915 } else if (dev_maps) { 1916 /* fill in the new device map from the old device map */ 1917 map = xmap_dereference(dev_maps->cpu_map[cpu]); 1918 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map); 1919 } 1920 1921 } 1922 1923 rcu_assign_pointer(dev->xps_maps, new_dev_maps); 1924 1925 /* Cleanup old maps */ 1926 if (dev_maps) { 1927 for_each_possible_cpu(cpu) { 1928 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]); 1929 map = xmap_dereference(dev_maps->cpu_map[cpu]); 1930 if (map && map != new_map) 1931 kfree_rcu(map, rcu); 1932 } 1933 1934 kfree_rcu(dev_maps, rcu); 1935 } 1936 1937 dev_maps = new_dev_maps; 1938 active = true; 1939 1940out_no_new_maps: 1941 /* update Tx queue numa node */ 1942 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 1943 (numa_node_id >= 0) ? numa_node_id : 1944 NUMA_NO_NODE); 1945 1946 if (!dev_maps) 1947 goto out_no_maps; 1948 1949 /* removes queue from unused CPUs */ 1950 for_each_possible_cpu(cpu) { 1951 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) 1952 continue; 1953 1954 if (remove_xps_queue(dev_maps, cpu, index)) 1955 active = true; 1956 } 1957 1958 /* free map if not active */ 1959 if (!active) { 1960 RCU_INIT_POINTER(dev->xps_maps, NULL); 1961 kfree_rcu(dev_maps, rcu); 1962 } 1963 1964out_no_maps: 1965 mutex_unlock(&xps_map_mutex); 1966 1967 return 0; 1968error: 1969 /* remove any maps that we added */ 1970 for_each_possible_cpu(cpu) { 1971 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]); 1972 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) : 1973 NULL; 1974 if (new_map && new_map != map) 1975 kfree(new_map); 1976 } 1977 1978 mutex_unlock(&xps_map_mutex); 1979 1980 kfree(new_dev_maps); 1981 return -ENOMEM; 1982} 1983EXPORT_SYMBOL(netif_set_xps_queue); 1984 1985#endif 1986/* 1987 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 1988 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed. 1989 */ 1990int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 1991{ 1992 int rc; 1993 1994 if (txq < 1 || txq > dev->num_tx_queues) 1995 return -EINVAL; 1996 1997 if (dev->reg_state == NETREG_REGISTERED || 1998 dev->reg_state == NETREG_UNREGISTERING) { 1999 ASSERT_RTNL(); 2000 2001 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 2002 txq); 2003 if (rc) 2004 return rc; 2005 2006 if (dev->num_tc) 2007 netif_setup_tc(dev, txq); 2008 2009 if (txq < dev->real_num_tx_queues) { 2010 qdisc_reset_all_tx_gt(dev, txq); 2011#ifdef CONFIG_XPS 2012 netif_reset_xps_queues_gt(dev, txq); 2013#endif 2014 } 2015 } 2016 2017 dev->real_num_tx_queues = txq; 2018 return 0; 2019} 2020EXPORT_SYMBOL(netif_set_real_num_tx_queues); 2021 2022#ifdef CONFIG_RPS 2023/** 2024 * netif_set_real_num_rx_queues - set actual number of RX queues used 2025 * @dev: Network device 2026 * @rxq: Actual number of RX queues 2027 * 2028 * This must be called either with the rtnl_lock held or before 2029 * registration of the net device. Returns 0 on success, or a 2030 * negative error code. If called before registration, it always 2031 * succeeds. 2032 */ 2033int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 2034{ 2035 int rc; 2036 2037 if (rxq < 1 || rxq > dev->num_rx_queues) 2038 return -EINVAL; 2039 2040 if (dev->reg_state == NETREG_REGISTERED) { 2041 ASSERT_RTNL(); 2042 2043 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 2044 rxq); 2045 if (rc) 2046 return rc; 2047 } 2048 2049 dev->real_num_rx_queues = rxq; 2050 return 0; 2051} 2052EXPORT_SYMBOL(netif_set_real_num_rx_queues); 2053#endif 2054 2055/** 2056 * netif_get_num_default_rss_queues - default number of RSS queues 2057 * 2058 * This routine should set an upper limit on the number of RSS queues 2059 * used by default by multiqueue devices. 2060 */ 2061int netif_get_num_default_rss_queues(void) 2062{ 2063 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus()); 2064} 2065EXPORT_SYMBOL(netif_get_num_default_rss_queues); 2066 2067static inline void __netif_reschedule(struct Qdisc *q) 2068{ 2069 struct softnet_data *sd; 2070 unsigned long flags; 2071 2072 local_irq_save(flags); 2073 sd = &__get_cpu_var(softnet_data); 2074 q->next_sched = NULL; 2075 *sd->output_queue_tailp = q; 2076 sd->output_queue_tailp = &q->next_sched; 2077 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2078 local_irq_restore(flags); 2079} 2080 2081void __netif_schedule(struct Qdisc *q) 2082{ 2083 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 2084 __netif_reschedule(q); 2085} 2086EXPORT_SYMBOL(__netif_schedule); 2087 2088void dev_kfree_skb_irq(struct sk_buff *skb) 2089{ 2090 if (atomic_dec_and_test(&skb->users)) { 2091 struct softnet_data *sd; 2092 unsigned long flags; 2093 2094 local_irq_save(flags); 2095 sd = &__get_cpu_var(softnet_data); 2096 skb->next = sd->completion_queue; 2097 sd->completion_queue = skb; 2098 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2099 local_irq_restore(flags); 2100 } 2101} 2102EXPORT_SYMBOL(dev_kfree_skb_irq); 2103 2104void dev_kfree_skb_any(struct sk_buff *skb) 2105{ 2106 if (in_irq() || irqs_disabled()) 2107 dev_kfree_skb_irq(skb); 2108 else 2109 dev_kfree_skb(skb); 2110} 2111EXPORT_SYMBOL(dev_kfree_skb_any); 2112 2113 2114/** 2115 * netif_device_detach - mark device as removed 2116 * @dev: network device 2117 * 2118 * Mark device as removed from system and therefore no longer available. 2119 */ 2120void netif_device_detach(struct net_device *dev) 2121{ 2122 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 2123 netif_running(dev)) { 2124 netif_tx_stop_all_queues(dev); 2125 } 2126} 2127EXPORT_SYMBOL(netif_device_detach); 2128 2129/** 2130 * netif_device_attach - mark device as attached 2131 * @dev: network device 2132 * 2133 * Mark device as attached from system and restart if needed. 2134 */ 2135void netif_device_attach(struct net_device *dev) 2136{ 2137 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 2138 netif_running(dev)) { 2139 netif_tx_wake_all_queues(dev); 2140 __netdev_watchdog_up(dev); 2141 } 2142} 2143EXPORT_SYMBOL(netif_device_attach); 2144 2145static void skb_warn_bad_offload(const struct sk_buff *skb) 2146{ 2147 static const netdev_features_t null_features = 0; 2148 struct net_device *dev = skb->dev; 2149 const char *driver = ""; 2150 2151 if (dev && dev->dev.parent) 2152 driver = dev_driver_string(dev->dev.parent); 2153 2154 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d " 2155 "gso_type=%d ip_summed=%d\n", 2156 driver, dev ? &dev->features : &null_features, 2157 skb->sk ? &skb->sk->sk_route_caps : &null_features, 2158 skb->len, skb->data_len, skb_shinfo(skb)->gso_size, 2159 skb_shinfo(skb)->gso_type, skb->ip_summed); 2160} 2161 2162/* 2163 * Invalidate hardware checksum when packet is to be mangled, and 2164 * complete checksum manually on outgoing path. 2165 */ 2166int skb_checksum_help(struct sk_buff *skb) 2167{ 2168 __wsum csum; 2169 int ret = 0, offset; 2170 2171 if (skb->ip_summed == CHECKSUM_COMPLETE) 2172 goto out_set_summed; 2173 2174 if (unlikely(skb_shinfo(skb)->gso_size)) { 2175 skb_warn_bad_offload(skb); 2176 return -EINVAL; 2177 } 2178 2179 /* Before computing a checksum, we should make sure no frag could 2180 * be modified by an external entity : checksum could be wrong. 2181 */ 2182 if (skb_has_shared_frag(skb)) { 2183 ret = __skb_linearize(skb); 2184 if (ret) 2185 goto out; 2186 } 2187 2188 offset = skb_checksum_start_offset(skb); 2189 BUG_ON(offset >= skb_headlen(skb)); 2190 csum = skb_checksum(skb, offset, skb->len - offset, 0); 2191 2192 offset += skb->csum_offset; 2193 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 2194 2195 if (skb_cloned(skb) && 2196 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 2197 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2198 if (ret) 2199 goto out; 2200 } 2201 2202 *(__sum16 *)(skb->data + offset) = csum_fold(csum); 2203out_set_summed: 2204 skb->ip_summed = CHECKSUM_NONE; 2205out: 2206 return ret; 2207} 2208EXPORT_SYMBOL(skb_checksum_help); 2209 2210/** 2211 * skb_mac_gso_segment - mac layer segmentation handler. 2212 * @skb: buffer to segment 2213 * @features: features for the output path (see dev->features) 2214 */ 2215struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 2216 netdev_features_t features) 2217{ 2218 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 2219 struct packet_offload *ptype; 2220 __be16 type = skb->protocol; 2221 int vlan_depth = ETH_HLEN; 2222 2223 while (type == htons(ETH_P_8021Q)) { 2224 struct vlan_hdr *vh; 2225 2226 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN))) 2227 return ERR_PTR(-EINVAL); 2228 2229 vh = (struct vlan_hdr *)(skb->data + vlan_depth); 2230 type = vh->h_vlan_encapsulated_proto; 2231 vlan_depth += VLAN_HLEN; 2232 } 2233 2234 __skb_pull(skb, skb->mac_len); 2235 2236 rcu_read_lock(); 2237 list_for_each_entry_rcu(ptype, &offload_base, list) { 2238 if (ptype->type == type && ptype->callbacks.gso_segment) { 2239 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 2240 int err; 2241 2242 err = ptype->callbacks.gso_send_check(skb); 2243 segs = ERR_PTR(err); 2244 if (err || skb_gso_ok(skb, features)) 2245 break; 2246 __skb_push(skb, (skb->data - 2247 skb_network_header(skb))); 2248 } 2249 segs = ptype->callbacks.gso_segment(skb, features); 2250 break; 2251 } 2252 } 2253 rcu_read_unlock(); 2254 2255 __skb_push(skb, skb->data - skb_mac_header(skb)); 2256 2257 return segs; 2258} 2259EXPORT_SYMBOL(skb_mac_gso_segment); 2260 2261 2262/* openvswitch calls this on rx path, so we need a different check. 2263 */ 2264static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path) 2265{ 2266 if (tx_path) 2267 return skb->ip_summed != CHECKSUM_PARTIAL; 2268 else 2269 return skb->ip_summed == CHECKSUM_NONE; 2270} 2271 2272/** 2273 * __skb_gso_segment - Perform segmentation on skb. 2274 * @skb: buffer to segment 2275 * @features: features for the output path (see dev->features) 2276 * @tx_path: whether it is called in TX path 2277 * 2278 * This function segments the given skb and returns a list of segments. 2279 * 2280 * It may return NULL if the skb requires no segmentation. This is 2281 * only possible when GSO is used for verifying header integrity. 2282 */ 2283struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 2284 netdev_features_t features, bool tx_path) 2285{ 2286 if (unlikely(skb_needs_check(skb, tx_path))) { 2287 int err; 2288 2289 skb_warn_bad_offload(skb); 2290 2291 if (skb_header_cloned(skb) && 2292 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))) 2293 return ERR_PTR(err); 2294 } 2295 2296 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb); 2297 skb_reset_mac_header(skb); 2298 skb_reset_mac_len(skb); 2299 2300 return skb_mac_gso_segment(skb, features); 2301} 2302EXPORT_SYMBOL(__skb_gso_segment); 2303 2304/* Take action when hardware reception checksum errors are detected. */ 2305#ifdef CONFIG_BUG 2306void netdev_rx_csum_fault(struct net_device *dev) 2307{ 2308 if (net_ratelimit()) { 2309 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>"); 2310 dump_stack(); 2311 } 2312} 2313EXPORT_SYMBOL(netdev_rx_csum_fault); 2314#endif 2315 2316/* Actually, we should eliminate this check as soon as we know, that: 2317 * 1. IOMMU is present and allows to map all the memory. 2318 * 2. No high memory really exists on this machine. 2319 */ 2320 2321static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 2322{ 2323#ifdef CONFIG_HIGHMEM 2324 int i; 2325 if (!(dev->features & NETIF_F_HIGHDMA)) { 2326 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2327 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2328 if (PageHighMem(skb_frag_page(frag))) 2329 return 1; 2330 } 2331 } 2332 2333 if (PCI_DMA_BUS_IS_PHYS) { 2334 struct device *pdev = dev->dev.parent; 2335 2336 if (!pdev) 2337 return 0; 2338 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2339 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2340 dma_addr_t addr = page_to_phys(skb_frag_page(frag)); 2341 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask) 2342 return 1; 2343 } 2344 } 2345#endif 2346 return 0; 2347} 2348 2349struct dev_gso_cb { 2350 void (*destructor)(struct sk_buff *skb); 2351}; 2352 2353#define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb) 2354 2355static void dev_gso_skb_destructor(struct sk_buff *skb) 2356{ 2357 struct dev_gso_cb *cb; 2358 2359 do { 2360 struct sk_buff *nskb = skb->next; 2361 2362 skb->next = nskb->next; 2363 nskb->next = NULL; 2364 kfree_skb(nskb); 2365 } while (skb->next); 2366 2367 cb = DEV_GSO_CB(skb); 2368 if (cb->destructor) 2369 cb->destructor(skb); 2370} 2371 2372/** 2373 * dev_gso_segment - Perform emulated hardware segmentation on skb. 2374 * @skb: buffer to segment 2375 * @features: device features as applicable to this skb 2376 * 2377 * This function segments the given skb and stores the list of segments 2378 * in skb->next. 2379 */ 2380static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features) 2381{ 2382 struct sk_buff *segs; 2383 2384 segs = skb_gso_segment(skb, features); 2385 2386 /* Verifying header integrity only. */ 2387 if (!segs) 2388 return 0; 2389 2390 if (IS_ERR(segs)) 2391 return PTR_ERR(segs); 2392 2393 skb->next = segs; 2394 DEV_GSO_CB(skb)->destructor = skb->destructor; 2395 skb->destructor = dev_gso_skb_destructor; 2396 2397 return 0; 2398} 2399 2400static bool can_checksum_protocol(netdev_features_t features, __be16 protocol) 2401{ 2402 return ((features & NETIF_F_GEN_CSUM) || 2403 ((features & NETIF_F_V4_CSUM) && 2404 protocol == htons(ETH_P_IP)) || 2405 ((features & NETIF_F_V6_CSUM) && 2406 protocol == htons(ETH_P_IPV6)) || 2407 ((features & NETIF_F_FCOE_CRC) && 2408 protocol == htons(ETH_P_FCOE))); 2409} 2410 2411static netdev_features_t harmonize_features(struct sk_buff *skb, 2412 __be16 protocol, netdev_features_t features) 2413{ 2414 if (skb->ip_summed != CHECKSUM_NONE && 2415 !can_checksum_protocol(features, protocol)) { 2416 features &= ~NETIF_F_ALL_CSUM; 2417 features &= ~NETIF_F_SG; 2418 } else if (illegal_highdma(skb->dev, skb)) { 2419 features &= ~NETIF_F_SG; 2420 } 2421 2422 return features; 2423} 2424 2425netdev_features_t netif_skb_features(struct sk_buff *skb) 2426{ 2427 __be16 protocol = skb->protocol; 2428 netdev_features_t features = skb->dev->features; 2429 2430 if (skb_shinfo(skb)->gso_segs > skb->dev->gso_max_segs) 2431 features &= ~NETIF_F_GSO_MASK; 2432 2433 if (protocol == htons(ETH_P_8021Q)) { 2434 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data; 2435 protocol = veh->h_vlan_encapsulated_proto; 2436 } else if (!vlan_tx_tag_present(skb)) { 2437 return harmonize_features(skb, protocol, features); 2438 } 2439 2440 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_TX); 2441 2442 if (protocol != htons(ETH_P_8021Q)) { 2443 return harmonize_features(skb, protocol, features); 2444 } else { 2445 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST | 2446 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_TX; 2447 return harmonize_features(skb, protocol, features); 2448 } 2449} 2450EXPORT_SYMBOL(netif_skb_features); 2451 2452/* 2453 * Returns true if either: 2454 * 1. skb has frag_list and the device doesn't support FRAGLIST, or 2455 * 2. skb is fragmented and the device does not support SG. 2456 */ 2457static inline int skb_needs_linearize(struct sk_buff *skb, 2458 int features) 2459{ 2460 return skb_is_nonlinear(skb) && 2461 ((skb_has_frag_list(skb) && 2462 !(features & NETIF_F_FRAGLIST)) || 2463 (skb_shinfo(skb)->nr_frags && 2464 !(features & NETIF_F_SG))); 2465} 2466 2467int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 2468 struct netdev_queue *txq) 2469{ 2470 const struct net_device_ops *ops = dev->netdev_ops; 2471 int rc = NETDEV_TX_OK; 2472 unsigned int skb_len; 2473 2474 if (likely(!skb->next)) { 2475 netdev_features_t features; 2476 2477 /* 2478 * If device doesn't need skb->dst, release it right now while 2479 * its hot in this cpu cache 2480 */ 2481 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 2482 skb_dst_drop(skb); 2483 2484 features = netif_skb_features(skb); 2485 2486 if (vlan_tx_tag_present(skb) && 2487 !(features & NETIF_F_HW_VLAN_TX)) { 2488 skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb)); 2489 if (unlikely(!skb)) 2490 goto out; 2491 2492 skb->vlan_tci = 0; 2493 } 2494 2495 /* If encapsulation offload request, verify we are testing 2496 * hardware encapsulation features instead of standard 2497 * features for the netdev 2498 */ 2499 if (skb->encapsulation) 2500 features &= dev->hw_enc_features; 2501 2502 if (netif_needs_gso(skb, features)) { 2503 if (unlikely(dev_gso_segment(skb, features))) 2504 goto out_kfree_skb; 2505 if (skb->next) 2506 goto gso; 2507 } else { 2508 if (skb_needs_linearize(skb, features) && 2509 __skb_linearize(skb)) 2510 goto out_kfree_skb; 2511 2512 /* If packet is not checksummed and device does not 2513 * support checksumming for this protocol, complete 2514 * checksumming here. 2515 */ 2516 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2517 if (skb->encapsulation) 2518 skb_set_inner_transport_header(skb, 2519 skb_checksum_start_offset(skb)); 2520 else 2521 skb_set_transport_header(skb, 2522 skb_checksum_start_offset(skb)); 2523 if (!(features & NETIF_F_ALL_CSUM) && 2524 skb_checksum_help(skb)) 2525 goto out_kfree_skb; 2526 } 2527 } 2528 2529 if (!list_empty(&ptype_all)) 2530 dev_queue_xmit_nit(skb, dev); 2531 2532 skb_len = skb->len; 2533 rc = ops->ndo_start_xmit(skb, dev); 2534 trace_net_dev_xmit(skb, rc, dev, skb_len); 2535 if (rc == NETDEV_TX_OK) 2536 txq_trans_update(txq); 2537 return rc; 2538 } 2539 2540gso: 2541 do { 2542 struct sk_buff *nskb = skb->next; 2543 2544 skb->next = nskb->next; 2545 nskb->next = NULL; 2546 2547 /* 2548 * If device doesn't need nskb->dst, release it right now while 2549 * its hot in this cpu cache 2550 */ 2551 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 2552 skb_dst_drop(nskb); 2553 2554 if (!list_empty(&ptype_all)) 2555 dev_queue_xmit_nit(nskb, dev); 2556 2557 skb_len = nskb->len; 2558 rc = ops->ndo_start_xmit(nskb, dev); 2559 trace_net_dev_xmit(nskb, rc, dev, skb_len); 2560 if (unlikely(rc != NETDEV_TX_OK)) { 2561 if (rc & ~NETDEV_TX_MASK) 2562 goto out_kfree_gso_skb; 2563 nskb->next = skb->next; 2564 skb->next = nskb; 2565 return rc; 2566 } 2567 txq_trans_update(txq); 2568 if (unlikely(netif_xmit_stopped(txq) && skb->next)) 2569 return NETDEV_TX_BUSY; 2570 } while (skb->next); 2571 2572out_kfree_gso_skb: 2573 if (likely(skb->next == NULL)) 2574 skb->destructor = DEV_GSO_CB(skb)->destructor; 2575out_kfree_skb: 2576 kfree_skb(skb); 2577out: 2578 return rc; 2579} 2580 2581static void qdisc_pkt_len_init(struct sk_buff *skb) 2582{ 2583 const struct skb_shared_info *shinfo = skb_shinfo(skb); 2584 2585 qdisc_skb_cb(skb)->pkt_len = skb->len; 2586 2587 /* To get more precise estimation of bytes sent on wire, 2588 * we add to pkt_len the headers size of all segments 2589 */ 2590 if (shinfo->gso_size) { 2591 unsigned int hdr_len; 2592 2593 /* mac layer + network layer */ 2594 hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 2595 2596 /* + transport layer */ 2597 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) 2598 hdr_len += tcp_hdrlen(skb); 2599 else 2600 hdr_len += sizeof(struct udphdr); 2601 qdisc_skb_cb(skb)->pkt_len += (shinfo->gso_segs - 1) * hdr_len; 2602 } 2603} 2604 2605static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 2606 struct net_device *dev, 2607 struct netdev_queue *txq) 2608{ 2609 spinlock_t *root_lock = qdisc_lock(q); 2610 bool contended; 2611 int rc; 2612 2613 qdisc_pkt_len_init(skb); 2614 qdisc_calculate_pkt_len(skb, q); 2615 /* 2616 * Heuristic to force contended enqueues to serialize on a 2617 * separate lock before trying to get qdisc main lock. 2618 * This permits __QDISC_STATE_RUNNING owner to get the lock more often 2619 * and dequeue packets faster. 2620 */ 2621 contended = qdisc_is_running(q); 2622 if (unlikely(contended)) 2623 spin_lock(&q->busylock); 2624 2625 spin_lock(root_lock); 2626 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 2627 kfree_skb(skb); 2628 rc = NET_XMIT_DROP; 2629 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 2630 qdisc_run_begin(q)) { 2631 /* 2632 * This is a work-conserving queue; there are no old skbs 2633 * waiting to be sent out; and the qdisc is not running - 2634 * xmit the skb directly. 2635 */ 2636 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE)) 2637 skb_dst_force(skb); 2638 2639 qdisc_bstats_update(q, skb); 2640 2641 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) { 2642 if (unlikely(contended)) { 2643 spin_unlock(&q->busylock); 2644 contended = false; 2645 } 2646 __qdisc_run(q); 2647 } else 2648 qdisc_run_end(q); 2649 2650 rc = NET_XMIT_SUCCESS; 2651 } else { 2652 skb_dst_force(skb); 2653 rc = q->enqueue(skb, q) & NET_XMIT_MASK; 2654 if (qdisc_run_begin(q)) { 2655 if (unlikely(contended)) { 2656 spin_unlock(&q->busylock); 2657 contended = false; 2658 } 2659 __qdisc_run(q); 2660 } 2661 } 2662 spin_unlock(root_lock); 2663 if (unlikely(contended)) 2664 spin_unlock(&q->busylock); 2665 return rc; 2666} 2667 2668#if IS_ENABLED(CONFIG_NETPRIO_CGROUP) 2669static void skb_update_prio(struct sk_buff *skb) 2670{ 2671 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap); 2672 2673 if (!skb->priority && skb->sk && map) { 2674 unsigned int prioidx = skb->sk->sk_cgrp_prioidx; 2675 2676 if (prioidx < map->priomap_len) 2677 skb->priority = map->priomap[prioidx]; 2678 } 2679} 2680#else 2681#define skb_update_prio(skb) 2682#endif 2683 2684static DEFINE_PER_CPU(int, xmit_recursion); 2685#define RECURSION_LIMIT 10 2686 2687/** 2688 * dev_loopback_xmit - loop back @skb 2689 * @skb: buffer to transmit 2690 */ 2691int dev_loopback_xmit(struct sk_buff *skb) 2692{ 2693 skb_reset_mac_header(skb); 2694 __skb_pull(skb, skb_network_offset(skb)); 2695 skb->pkt_type = PACKET_LOOPBACK; 2696 skb->ip_summed = CHECKSUM_UNNECESSARY; 2697 WARN_ON(!skb_dst(skb)); 2698 skb_dst_force(skb); 2699 netif_rx_ni(skb); 2700 return 0; 2701} 2702EXPORT_SYMBOL(dev_loopback_xmit); 2703 2704/** 2705 * dev_queue_xmit - transmit a buffer 2706 * @skb: buffer to transmit 2707 * 2708 * Queue a buffer for transmission to a network device. The caller must 2709 * have set the device and priority and built the buffer before calling 2710 * this function. The function can be called from an interrupt. 2711 * 2712 * A negative errno code is returned on a failure. A success does not 2713 * guarantee the frame will be transmitted as it may be dropped due 2714 * to congestion or traffic shaping. 2715 * 2716 * ----------------------------------------------------------------------------------- 2717 * I notice this method can also return errors from the queue disciplines, 2718 * including NET_XMIT_DROP, which is a positive value. So, errors can also 2719 * be positive. 2720 * 2721 * Regardless of the return value, the skb is consumed, so it is currently 2722 * difficult to retry a send to this method. (You can bump the ref count 2723 * before sending to hold a reference for retry if you are careful.) 2724 * 2725 * When calling this method, interrupts MUST be enabled. This is because 2726 * the BH enable code must have IRQs enabled so that it will not deadlock. 2727 * --BLG 2728 */ 2729int dev_queue_xmit(struct sk_buff *skb) 2730{ 2731 struct net_device *dev = skb->dev; 2732 struct netdev_queue *txq; 2733 struct Qdisc *q; 2734 int rc = -ENOMEM; 2735 2736 skb_reset_mac_header(skb); 2737 2738 /* Disable soft irqs for various locks below. Also 2739 * stops preemption for RCU. 2740 */ 2741 rcu_read_lock_bh(); 2742 2743 skb_update_prio(skb); 2744 2745 txq = netdev_pick_tx(dev, skb); 2746 q = rcu_dereference_bh(txq->qdisc); 2747 2748#ifdef CONFIG_NET_CLS_ACT 2749 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS); 2750#endif 2751 trace_net_dev_queue(skb); 2752 if (q->enqueue) { 2753 rc = __dev_xmit_skb(skb, q, dev, txq); 2754 goto out; 2755 } 2756 2757 /* The device has no queue. Common case for software devices: 2758 loopback, all the sorts of tunnels... 2759 2760 Really, it is unlikely that netif_tx_lock protection is necessary 2761 here. (f.e. loopback and IP tunnels are clean ignoring statistics 2762 counters.) 2763 However, it is possible, that they rely on protection 2764 made by us here. 2765 2766 Check this and shot the lock. It is not prone from deadlocks. 2767 Either shot noqueue qdisc, it is even simpler 8) 2768 */ 2769 if (dev->flags & IFF_UP) { 2770 int cpu = smp_processor_id(); /* ok because BHs are off */ 2771 2772 if (txq->xmit_lock_owner != cpu) { 2773 2774 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT) 2775 goto recursion_alert; 2776 2777 HARD_TX_LOCK(dev, txq, cpu); 2778 2779 if (!netif_xmit_stopped(txq)) { 2780 __this_cpu_inc(xmit_recursion); 2781 rc = dev_hard_start_xmit(skb, dev, txq); 2782 __this_cpu_dec(xmit_recursion); 2783 if (dev_xmit_complete(rc)) { 2784 HARD_TX_UNLOCK(dev, txq); 2785 goto out; 2786 } 2787 } 2788 HARD_TX_UNLOCK(dev, txq); 2789 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 2790 dev->name); 2791 } else { 2792 /* Recursion is detected! It is possible, 2793 * unfortunately 2794 */ 2795recursion_alert: 2796 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 2797 dev->name); 2798 } 2799 } 2800 2801 rc = -ENETDOWN; 2802 rcu_read_unlock_bh(); 2803 2804 kfree_skb(skb); 2805 return rc; 2806out: 2807 rcu_read_unlock_bh(); 2808 return rc; 2809} 2810EXPORT_SYMBOL(dev_queue_xmit); 2811 2812 2813/*======================================================================= 2814 Receiver routines 2815 =======================================================================*/ 2816 2817int netdev_max_backlog __read_mostly = 1000; 2818EXPORT_SYMBOL(netdev_max_backlog); 2819 2820int netdev_tstamp_prequeue __read_mostly = 1; 2821int netdev_budget __read_mostly = 300; 2822int weight_p __read_mostly = 64; /* old backlog weight */ 2823 2824/* Called with irq disabled */ 2825static inline void ____napi_schedule(struct softnet_data *sd, 2826 struct napi_struct *napi) 2827{ 2828 list_add_tail(&napi->poll_list, &sd->poll_list); 2829 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2830} 2831 2832#ifdef CONFIG_RPS 2833 2834/* One global table that all flow-based protocols share. */ 2835struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 2836EXPORT_SYMBOL(rps_sock_flow_table); 2837 2838struct static_key rps_needed __read_mostly; 2839 2840static struct rps_dev_flow * 2841set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 2842 struct rps_dev_flow *rflow, u16 next_cpu) 2843{ 2844 if (next_cpu != RPS_NO_CPU) { 2845#ifdef CONFIG_RFS_ACCEL 2846 struct netdev_rx_queue *rxqueue; 2847 struct rps_dev_flow_table *flow_table; 2848 struct rps_dev_flow *old_rflow; 2849 u32 flow_id; 2850 u16 rxq_index; 2851 int rc; 2852 2853 /* Should we steer this flow to a different hardware queue? */ 2854 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 2855 !(dev->features & NETIF_F_NTUPLE)) 2856 goto out; 2857 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 2858 if (rxq_index == skb_get_rx_queue(skb)) 2859 goto out; 2860 2861 rxqueue = dev->_rx + rxq_index; 2862 flow_table = rcu_dereference(rxqueue->rps_flow_table); 2863 if (!flow_table) 2864 goto out; 2865 flow_id = skb->rxhash & flow_table->mask; 2866 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 2867 rxq_index, flow_id); 2868 if (rc < 0) 2869 goto out; 2870 old_rflow = rflow; 2871 rflow = &flow_table->flows[flow_id]; 2872 rflow->filter = rc; 2873 if (old_rflow->filter == rflow->filter) 2874 old_rflow->filter = RPS_NO_FILTER; 2875 out: 2876#endif 2877 rflow->last_qtail = 2878 per_cpu(softnet_data, next_cpu).input_queue_head; 2879 } 2880 2881 rflow->cpu = next_cpu; 2882 return rflow; 2883} 2884 2885/* 2886 * get_rps_cpu is called from netif_receive_skb and returns the target 2887 * CPU from the RPS map of the receiving queue for a given skb. 2888 * rcu_read_lock must be held on entry. 2889 */ 2890static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 2891 struct rps_dev_flow **rflowp) 2892{ 2893 struct netdev_rx_queue *rxqueue; 2894 struct rps_map *map; 2895 struct rps_dev_flow_table *flow_table; 2896 struct rps_sock_flow_table *sock_flow_table; 2897 int cpu = -1; 2898 u16 tcpu; 2899 2900 if (skb_rx_queue_recorded(skb)) { 2901 u16 index = skb_get_rx_queue(skb); 2902 if (unlikely(index >= dev->real_num_rx_queues)) { 2903 WARN_ONCE(dev->real_num_rx_queues > 1, 2904 "%s received packet on queue %u, but number " 2905 "of RX queues is %u\n", 2906 dev->name, index, dev->real_num_rx_queues); 2907 goto done; 2908 } 2909 rxqueue = dev->_rx + index; 2910 } else 2911 rxqueue = dev->_rx; 2912 2913 map = rcu_dereference(rxqueue->rps_map); 2914 if (map) { 2915 if (map->len == 1 && 2916 !rcu_access_pointer(rxqueue->rps_flow_table)) { 2917 tcpu = map->cpus[0]; 2918 if (cpu_online(tcpu)) 2919 cpu = tcpu; 2920 goto done; 2921 } 2922 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) { 2923 goto done; 2924 } 2925 2926 skb_reset_network_header(skb); 2927 if (!skb_get_rxhash(skb)) 2928 goto done; 2929 2930 flow_table = rcu_dereference(rxqueue->rps_flow_table); 2931 sock_flow_table = rcu_dereference(rps_sock_flow_table); 2932 if (flow_table && sock_flow_table) { 2933 u16 next_cpu; 2934 struct rps_dev_flow *rflow; 2935 2936 rflow = &flow_table->flows[skb->rxhash & flow_table->mask]; 2937 tcpu = rflow->cpu; 2938 2939 next_cpu = sock_flow_table->ents[skb->rxhash & 2940 sock_flow_table->mask]; 2941 2942 /* 2943 * If the desired CPU (where last recvmsg was done) is 2944 * different from current CPU (one in the rx-queue flow 2945 * table entry), switch if one of the following holds: 2946 * - Current CPU is unset (equal to RPS_NO_CPU). 2947 * - Current CPU is offline. 2948 * - The current CPU's queue tail has advanced beyond the 2949 * last packet that was enqueued using this table entry. 2950 * This guarantees that all previous packets for the flow 2951 * have been dequeued, thus preserving in order delivery. 2952 */ 2953 if (unlikely(tcpu != next_cpu) && 2954 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) || 2955 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 2956 rflow->last_qtail)) >= 0)) { 2957 tcpu = next_cpu; 2958 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 2959 } 2960 2961 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) { 2962 *rflowp = rflow; 2963 cpu = tcpu; 2964 goto done; 2965 } 2966 } 2967 2968 if (map) { 2969 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32]; 2970 2971 if (cpu_online(tcpu)) { 2972 cpu = tcpu; 2973 goto done; 2974 } 2975 } 2976 2977done: 2978 return cpu; 2979} 2980 2981#ifdef CONFIG_RFS_ACCEL 2982 2983/** 2984 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 2985 * @dev: Device on which the filter was set 2986 * @rxq_index: RX queue index 2987 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 2988 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 2989 * 2990 * Drivers that implement ndo_rx_flow_steer() should periodically call 2991 * this function for each installed filter and remove the filters for 2992 * which it returns %true. 2993 */ 2994bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 2995 u32 flow_id, u16 filter_id) 2996{ 2997 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 2998 struct rps_dev_flow_table *flow_table; 2999 struct rps_dev_flow *rflow; 3000 bool expire = true; 3001 int cpu; 3002 3003 rcu_read_lock(); 3004 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3005 if (flow_table && flow_id <= flow_table->mask) { 3006 rflow = &flow_table->flows[flow_id]; 3007 cpu = ACCESS_ONCE(rflow->cpu); 3008 if (rflow->filter == filter_id && cpu != RPS_NO_CPU && 3009 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 3010 rflow->last_qtail) < 3011 (int)(10 * flow_table->mask))) 3012 expire = false; 3013 } 3014 rcu_read_unlock(); 3015 return expire; 3016} 3017EXPORT_SYMBOL(rps_may_expire_flow); 3018 3019#endif /* CONFIG_RFS_ACCEL */ 3020 3021/* Called from hardirq (IPI) context */ 3022static void rps_trigger_softirq(void *data) 3023{ 3024 struct softnet_data *sd = data; 3025 3026 ____napi_schedule(sd, &sd->backlog); 3027 sd->received_rps++; 3028} 3029 3030#endif /* CONFIG_RPS */ 3031 3032/* 3033 * Check if this softnet_data structure is another cpu one 3034 * If yes, queue it to our IPI list and return 1 3035 * If no, return 0 3036 */ 3037static int rps_ipi_queued(struct softnet_data *sd) 3038{ 3039#ifdef CONFIG_RPS 3040 struct softnet_data *mysd = &__get_cpu_var(softnet_data); 3041 3042 if (sd != mysd) { 3043 sd->rps_ipi_next = mysd->rps_ipi_list; 3044 mysd->rps_ipi_list = sd; 3045 3046 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3047 return 1; 3048 } 3049#endif /* CONFIG_RPS */ 3050 return 0; 3051} 3052 3053/* 3054 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 3055 * queue (may be a remote CPU queue). 3056 */ 3057static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 3058 unsigned int *qtail) 3059{ 3060 struct softnet_data *sd; 3061 unsigned long flags; 3062 3063 sd = &per_cpu(softnet_data, cpu); 3064 3065 local_irq_save(flags); 3066 3067 rps_lock(sd); 3068 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) { 3069 if (skb_queue_len(&sd->input_pkt_queue)) { 3070enqueue: 3071 __skb_queue_tail(&sd->input_pkt_queue, skb); 3072 input_queue_tail_incr_save(sd, qtail); 3073 rps_unlock(sd); 3074 local_irq_restore(flags); 3075 return NET_RX_SUCCESS; 3076 } 3077 3078 /* Schedule NAPI for backlog device 3079 * We can use non atomic operation since we own the queue lock 3080 */ 3081 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 3082 if (!rps_ipi_queued(sd)) 3083 ____napi_schedule(sd, &sd->backlog); 3084 } 3085 goto enqueue; 3086 } 3087 3088 sd->dropped++; 3089 rps_unlock(sd); 3090 3091 local_irq_restore(flags); 3092 3093 atomic_long_inc(&skb->dev->rx_dropped); 3094 kfree_skb(skb); 3095 return NET_RX_DROP; 3096} 3097 3098/** 3099 * netif_rx - post buffer to the network code 3100 * @skb: buffer to post 3101 * 3102 * This function receives a packet from a device driver and queues it for 3103 * the upper (protocol) levels to process. It always succeeds. The buffer 3104 * may be dropped during processing for congestion control or by the 3105 * protocol layers. 3106 * 3107 * return values: 3108 * NET_RX_SUCCESS (no congestion) 3109 * NET_RX_DROP (packet was dropped) 3110 * 3111 */ 3112 3113int netif_rx(struct sk_buff *skb) 3114{ 3115 int ret; 3116 3117 /* if netpoll wants it, pretend we never saw it */ 3118 if (netpoll_rx(skb)) 3119 return NET_RX_DROP; 3120 3121 net_timestamp_check(netdev_tstamp_prequeue, skb); 3122 3123 trace_netif_rx(skb); 3124#ifdef CONFIG_RPS 3125 if (static_key_false(&rps_needed)) { 3126 struct rps_dev_flow voidflow, *rflow = &voidflow; 3127 int cpu; 3128 3129 preempt_disable(); 3130 rcu_read_lock(); 3131 3132 cpu = get_rps_cpu(skb->dev, skb, &rflow); 3133 if (cpu < 0) 3134 cpu = smp_processor_id(); 3135 3136 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 3137 3138 rcu_read_unlock(); 3139 preempt_enable(); 3140 } else 3141#endif 3142 { 3143 unsigned int qtail; 3144 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 3145 put_cpu(); 3146 } 3147 return ret; 3148} 3149EXPORT_SYMBOL(netif_rx); 3150 3151int netif_rx_ni(struct sk_buff *skb) 3152{ 3153 int err; 3154 3155 preempt_disable(); 3156 err = netif_rx(skb); 3157 if (local_softirq_pending()) 3158 do_softirq(); 3159 preempt_enable(); 3160 3161 return err; 3162} 3163EXPORT_SYMBOL(netif_rx_ni); 3164 3165static void net_tx_action(struct softirq_action *h) 3166{ 3167 struct softnet_data *sd = &__get_cpu_var(softnet_data); 3168 3169 if (sd->completion_queue) { 3170 struct sk_buff *clist; 3171 3172 local_irq_disable(); 3173 clist = sd->completion_queue; 3174 sd->completion_queue = NULL; 3175 local_irq_enable(); 3176 3177 while (clist) { 3178 struct sk_buff *skb = clist; 3179 clist = clist->next; 3180 3181 WARN_ON(atomic_read(&skb->users)); 3182 trace_kfree_skb(skb, net_tx_action); 3183 __kfree_skb(skb); 3184 } 3185 } 3186 3187 if (sd->output_queue) { 3188 struct Qdisc *head; 3189 3190 local_irq_disable(); 3191 head = sd->output_queue; 3192 sd->output_queue = NULL; 3193 sd->output_queue_tailp = &sd->output_queue; 3194 local_irq_enable(); 3195 3196 while (head) { 3197 struct Qdisc *q = head; 3198 spinlock_t *root_lock; 3199 3200 head = head->next_sched; 3201 3202 root_lock = qdisc_lock(q); 3203 if (spin_trylock(root_lock)) { 3204 smp_mb__before_clear_bit(); 3205 clear_bit(__QDISC_STATE_SCHED, 3206 &q->state); 3207 qdisc_run(q); 3208 spin_unlock(root_lock); 3209 } else { 3210 if (!test_bit(__QDISC_STATE_DEACTIVATED, 3211 &q->state)) { 3212 __netif_reschedule(q); 3213 } else { 3214 smp_mb__before_clear_bit(); 3215 clear_bit(__QDISC_STATE_SCHED, 3216 &q->state); 3217 } 3218 } 3219 } 3220 } 3221} 3222 3223#if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \ 3224 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE)) 3225/* This hook is defined here for ATM LANE */ 3226int (*br_fdb_test_addr_hook)(struct net_device *dev, 3227 unsigned char *addr) __read_mostly; 3228EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 3229#endif 3230 3231#ifdef CONFIG_NET_CLS_ACT 3232/* TODO: Maybe we should just force sch_ingress to be compiled in 3233 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions 3234 * a compare and 2 stores extra right now if we dont have it on 3235 * but have CONFIG_NET_CLS_ACT 3236 * NOTE: This doesn't stop any functionality; if you dont have 3237 * the ingress scheduler, you just can't add policies on ingress. 3238 * 3239 */ 3240static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq) 3241{ 3242 struct net_device *dev = skb->dev; 3243 u32 ttl = G_TC_RTTL(skb->tc_verd); 3244 int result = TC_ACT_OK; 3245 struct Qdisc *q; 3246 3247 if (unlikely(MAX_RED_LOOP < ttl++)) { 3248 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n", 3249 skb->skb_iif, dev->ifindex); 3250 return TC_ACT_SHOT; 3251 } 3252 3253 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl); 3254 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS); 3255 3256 q = rxq->qdisc; 3257 if (q != &noop_qdisc) { 3258 spin_lock(qdisc_lock(q)); 3259 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) 3260 result = qdisc_enqueue_root(skb, q); 3261 spin_unlock(qdisc_lock(q)); 3262 } 3263 3264 return result; 3265} 3266 3267static inline struct sk_buff *handle_ing(struct sk_buff *skb, 3268 struct packet_type **pt_prev, 3269 int *ret, struct net_device *orig_dev) 3270{ 3271 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue); 3272 3273 if (!rxq || rxq->qdisc == &noop_qdisc) 3274 goto out; 3275 3276 if (*pt_prev) { 3277 *ret = deliver_skb(skb, *pt_prev, orig_dev); 3278 *pt_prev = NULL; 3279 } 3280 3281 switch (ing_filter(skb, rxq)) { 3282 case TC_ACT_SHOT: 3283 case TC_ACT_STOLEN: 3284 kfree_skb(skb); 3285 return NULL; 3286 } 3287 3288out: 3289 skb->tc_verd = 0; 3290 return skb; 3291} 3292#endif 3293 3294/** 3295 * netdev_rx_handler_register - register receive handler 3296 * @dev: device to register a handler for 3297 * @rx_handler: receive handler to register 3298 * @rx_handler_data: data pointer that is used by rx handler 3299 * 3300 * Register a receive hander for a device. This handler will then be 3301 * called from __netif_receive_skb. A negative errno code is returned 3302 * on a failure. 3303 * 3304 * The caller must hold the rtnl_mutex. 3305 * 3306 * For a general description of rx_handler, see enum rx_handler_result. 3307 */ 3308int netdev_rx_handler_register(struct net_device *dev, 3309 rx_handler_func_t *rx_handler, 3310 void *rx_handler_data) 3311{ 3312 ASSERT_RTNL(); 3313 3314 if (dev->rx_handler) 3315 return -EBUSY; 3316 3317 /* Note: rx_handler_data must be set before rx_handler */ 3318 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 3319 rcu_assign_pointer(dev->rx_handler, rx_handler); 3320 3321 return 0; 3322} 3323EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 3324 3325/** 3326 * netdev_rx_handler_unregister - unregister receive handler 3327 * @dev: device to unregister a handler from 3328 * 3329 * Unregister a receive hander from a device. 3330 * 3331 * The caller must hold the rtnl_mutex. 3332 */ 3333void netdev_rx_handler_unregister(struct net_device *dev) 3334{ 3335 3336 ASSERT_RTNL(); 3337 RCU_INIT_POINTER(dev->rx_handler, NULL); 3338 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 3339 * section has a guarantee to see a non NULL rx_handler_data 3340 * as well. 3341 */ 3342 synchronize_net(); 3343 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 3344} 3345EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 3346 3347/* 3348 * Limit the use of PFMEMALLOC reserves to those protocols that implement 3349 * the special handling of PFMEMALLOC skbs. 3350 */ 3351static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 3352{ 3353 switch (skb->protocol) { 3354 case __constant_htons(ETH_P_ARP): 3355 case __constant_htons(ETH_P_IP): 3356 case __constant_htons(ETH_P_IPV6): 3357 case __constant_htons(ETH_P_8021Q): 3358 return true; 3359 default: 3360 return false; 3361 } 3362} 3363 3364static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc) 3365{ 3366 struct packet_type *ptype, *pt_prev; 3367 rx_handler_func_t *rx_handler; 3368 struct net_device *orig_dev; 3369 struct net_device *null_or_dev; 3370 bool deliver_exact = false; 3371 int ret = NET_RX_DROP; 3372 __be16 type; 3373 3374 net_timestamp_check(!netdev_tstamp_prequeue, skb); 3375 3376 trace_netif_receive_skb(skb); 3377 3378 /* if we've gotten here through NAPI, check netpoll */ 3379 if (netpoll_receive_skb(skb)) 3380 goto out; 3381 3382 orig_dev = skb->dev; 3383 3384 skb_reset_network_header(skb); 3385 if (!skb_transport_header_was_set(skb)) 3386 skb_reset_transport_header(skb); 3387 skb_reset_mac_len(skb); 3388 3389 pt_prev = NULL; 3390 3391 rcu_read_lock(); 3392 3393another_round: 3394 skb->skb_iif = skb->dev->ifindex; 3395 3396 __this_cpu_inc(softnet_data.processed); 3397 3398 if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) { 3399 skb = vlan_untag(skb); 3400 if (unlikely(!skb)) 3401 goto unlock; 3402 } 3403 3404#ifdef CONFIG_NET_CLS_ACT 3405 if (skb->tc_verd & TC_NCLS) { 3406 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd); 3407 goto ncls; 3408 } 3409#endif 3410 3411 if (pfmemalloc) 3412 goto skip_taps; 3413 3414 list_for_each_entry_rcu(ptype, &ptype_all, list) { 3415 if (!ptype->dev || ptype->dev == skb->dev) { 3416 if (pt_prev) 3417 ret = deliver_skb(skb, pt_prev, orig_dev); 3418 pt_prev = ptype; 3419 } 3420 } 3421 3422skip_taps: 3423#ifdef CONFIG_NET_CLS_ACT 3424 skb = handle_ing(skb, &pt_prev, &ret, orig_dev); 3425 if (!skb) 3426 goto unlock; 3427ncls: 3428#endif 3429 3430 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) 3431 goto drop; 3432 3433 if (vlan_tx_tag_present(skb)) { 3434 if (pt_prev) { 3435 ret = deliver_skb(skb, pt_prev, orig_dev); 3436 pt_prev = NULL; 3437 } 3438 if (vlan_do_receive(&skb)) 3439 goto another_round; 3440 else if (unlikely(!skb)) 3441 goto unlock; 3442 } 3443 3444 rx_handler = rcu_dereference(skb->dev->rx_handler); 3445 if (rx_handler) { 3446 if (pt_prev) { 3447 ret = deliver_skb(skb, pt_prev, orig_dev); 3448 pt_prev = NULL; 3449 } 3450 switch (rx_handler(&skb)) { 3451 case RX_HANDLER_CONSUMED: 3452 ret = NET_RX_SUCCESS; 3453 goto unlock; 3454 case RX_HANDLER_ANOTHER: 3455 goto another_round; 3456 case RX_HANDLER_EXACT: 3457 deliver_exact = true; 3458 case RX_HANDLER_PASS: 3459 break; 3460 default: 3461 BUG(); 3462 } 3463 } 3464 3465 if (vlan_tx_nonzero_tag_present(skb)) 3466 skb->pkt_type = PACKET_OTHERHOST; 3467 3468 /* deliver only exact match when indicated */ 3469 null_or_dev = deliver_exact ? skb->dev : NULL; 3470 3471 type = skb->protocol; 3472 list_for_each_entry_rcu(ptype, 3473 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 3474 if (ptype->type == type && 3475 (ptype->dev == null_or_dev || ptype->dev == skb->dev || 3476 ptype->dev == orig_dev)) { 3477 if (pt_prev) 3478 ret = deliver_skb(skb, pt_prev, orig_dev); 3479 pt_prev = ptype; 3480 } 3481 } 3482 3483 if (pt_prev) { 3484 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC))) 3485 goto drop; 3486 else 3487 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 3488 } else { 3489drop: 3490 atomic_long_inc(&skb->dev->rx_dropped); 3491 kfree_skb(skb); 3492 /* Jamal, now you will not able to escape explaining 3493 * me how you were going to use this. :-) 3494 */ 3495 ret = NET_RX_DROP; 3496 } 3497 3498unlock: 3499 rcu_read_unlock(); 3500out: 3501 return ret; 3502} 3503 3504static int __netif_receive_skb(struct sk_buff *skb) 3505{ 3506 int ret; 3507 3508 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 3509 unsigned long pflags = current->flags; 3510 3511 /* 3512 * PFMEMALLOC skbs are special, they should 3513 * - be delivered to SOCK_MEMALLOC sockets only 3514 * - stay away from userspace 3515 * - have bounded memory usage 3516 * 3517 * Use PF_MEMALLOC as this saves us from propagating the allocation 3518 * context down to all allocation sites. 3519 */ 3520 current->flags |= PF_MEMALLOC; 3521 ret = __netif_receive_skb_core(skb, true); 3522 tsk_restore_flags(current, pflags, PF_MEMALLOC); 3523 } else 3524 ret = __netif_receive_skb_core(skb, false); 3525 3526 return ret; 3527} 3528 3529/** 3530 * netif_receive_skb - process receive buffer from network 3531 * @skb: buffer to process 3532 * 3533 * netif_receive_skb() is the main receive data processing function. 3534 * It always succeeds. The buffer may be dropped during processing 3535 * for congestion control or by the protocol layers. 3536 * 3537 * This function may only be called from softirq context and interrupts 3538 * should be enabled. 3539 * 3540 * Return values (usually ignored): 3541 * NET_RX_SUCCESS: no congestion 3542 * NET_RX_DROP: packet was dropped 3543 */ 3544int netif_receive_skb(struct sk_buff *skb) 3545{ 3546 net_timestamp_check(netdev_tstamp_prequeue, skb); 3547 3548 if (skb_defer_rx_timestamp(skb)) 3549 return NET_RX_SUCCESS; 3550 3551#ifdef CONFIG_RPS 3552 if (static_key_false(&rps_needed)) { 3553 struct rps_dev_flow voidflow, *rflow = &voidflow; 3554 int cpu, ret; 3555 3556 rcu_read_lock(); 3557 3558 cpu = get_rps_cpu(skb->dev, skb, &rflow); 3559 3560 if (cpu >= 0) { 3561 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 3562 rcu_read_unlock(); 3563 return ret; 3564 } 3565 rcu_read_unlock(); 3566 } 3567#endif 3568 return __netif_receive_skb(skb); 3569} 3570EXPORT_SYMBOL(netif_receive_skb); 3571 3572/* Network device is going away, flush any packets still pending 3573 * Called with irqs disabled. 3574 */ 3575static void flush_backlog(void *arg) 3576{ 3577 struct net_device *dev = arg; 3578 struct softnet_data *sd = &__get_cpu_var(softnet_data); 3579 struct sk_buff *skb, *tmp; 3580 3581 rps_lock(sd); 3582 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 3583 if (skb->dev == dev) { 3584 __skb_unlink(skb, &sd->input_pkt_queue); 3585 kfree_skb(skb); 3586 input_queue_head_incr(sd); 3587 } 3588 } 3589 rps_unlock(sd); 3590 3591 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 3592 if (skb->dev == dev) { 3593 __skb_unlink(skb, &sd->process_queue); 3594 kfree_skb(skb); 3595 input_queue_head_incr(sd); 3596 } 3597 } 3598} 3599 3600static int napi_gro_complete(struct sk_buff *skb) 3601{ 3602 struct packet_offload *ptype; 3603 __be16 type = skb->protocol; 3604 struct list_head *head = &offload_base; 3605 int err = -ENOENT; 3606 3607 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb)); 3608 3609 if (NAPI_GRO_CB(skb)->count == 1) { 3610 skb_shinfo(skb)->gso_size = 0; 3611 goto out; 3612 } 3613 3614 rcu_read_lock(); 3615 list_for_each_entry_rcu(ptype, head, list) { 3616 if (ptype->type != type || !ptype->callbacks.gro_complete) 3617 continue; 3618 3619 err = ptype->callbacks.gro_complete(skb); 3620 break; 3621 } 3622 rcu_read_unlock(); 3623 3624 if (err) { 3625 WARN_ON(&ptype->list == head); 3626 kfree_skb(skb); 3627 return NET_RX_SUCCESS; 3628 } 3629 3630out: 3631 return netif_receive_skb(skb); 3632} 3633 3634/* napi->gro_list contains packets ordered by age. 3635 * youngest packets at the head of it. 3636 * Complete skbs in reverse order to reduce latencies. 3637 */ 3638void napi_gro_flush(struct napi_struct *napi, bool flush_old) 3639{ 3640 struct sk_buff *skb, *prev = NULL; 3641 3642 /* scan list and build reverse chain */ 3643 for (skb = napi->gro_list; skb != NULL; skb = skb->next) { 3644 skb->prev = prev; 3645 prev = skb; 3646 } 3647 3648 for (skb = prev; skb; skb = prev) { 3649 skb->next = NULL; 3650 3651 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies) 3652 return; 3653 3654 prev = skb->prev; 3655 napi_gro_complete(skb); 3656 napi->gro_count--; 3657 } 3658 3659 napi->gro_list = NULL; 3660} 3661EXPORT_SYMBOL(napi_gro_flush); 3662 3663static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb) 3664{ 3665 struct sk_buff *p; 3666 unsigned int maclen = skb->dev->hard_header_len; 3667 3668 for (p = napi->gro_list; p; p = p->next) { 3669 unsigned long diffs; 3670 3671 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; 3672 diffs |= p->vlan_tci ^ skb->vlan_tci; 3673 if (maclen == ETH_HLEN) 3674 diffs |= compare_ether_header(skb_mac_header(p), 3675 skb_gro_mac_header(skb)); 3676 else if (!diffs) 3677 diffs = memcmp(skb_mac_header(p), 3678 skb_gro_mac_header(skb), 3679 maclen); 3680 NAPI_GRO_CB(p)->same_flow = !diffs; 3681 NAPI_GRO_CB(p)->flush = 0; 3682 } 3683} 3684 3685static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3686{ 3687 struct sk_buff **pp = NULL; 3688 struct packet_offload *ptype; 3689 __be16 type = skb->protocol; 3690 struct list_head *head = &offload_base; 3691 int same_flow; 3692 enum gro_result ret; 3693 3694 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb)) 3695 goto normal; 3696 3697 if (skb_is_gso(skb) || skb_has_frag_list(skb)) 3698 goto normal; 3699 3700 gro_list_prepare(napi, skb); 3701 3702 rcu_read_lock(); 3703 list_for_each_entry_rcu(ptype, head, list) { 3704 if (ptype->type != type || !ptype->callbacks.gro_receive) 3705 continue; 3706 3707 skb_set_network_header(skb, skb_gro_offset(skb)); 3708 skb_reset_mac_len(skb); 3709 NAPI_GRO_CB(skb)->same_flow = 0; 3710 NAPI_GRO_CB(skb)->flush = 0; 3711 NAPI_GRO_CB(skb)->free = 0; 3712 3713 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb); 3714 break; 3715 } 3716 rcu_read_unlock(); 3717 3718 if (&ptype->list == head) 3719 goto normal; 3720 3721 same_flow = NAPI_GRO_CB(skb)->same_flow; 3722 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 3723 3724 if (pp) { 3725 struct sk_buff *nskb = *pp; 3726 3727 *pp = nskb->next; 3728 nskb->next = NULL; 3729 napi_gro_complete(nskb); 3730 napi->gro_count--; 3731 } 3732 3733 if (same_flow) 3734 goto ok; 3735 3736 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS) 3737 goto normal; 3738 3739 napi->gro_count++; 3740 NAPI_GRO_CB(skb)->count = 1; 3741 NAPI_GRO_CB(skb)->age = jiffies; 3742 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 3743 skb->next = napi->gro_list; 3744 napi->gro_list = skb; 3745 ret = GRO_HELD; 3746 3747pull: 3748 if (skb_headlen(skb) < skb_gro_offset(skb)) { 3749 int grow = skb_gro_offset(skb) - skb_headlen(skb); 3750 3751 BUG_ON(skb->end - skb->tail < grow); 3752 3753 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 3754 3755 skb->tail += grow; 3756 skb->data_len -= grow; 3757 3758 skb_shinfo(skb)->frags[0].page_offset += grow; 3759 skb_frag_size_sub(&skb_shinfo(skb)->frags[0], grow); 3760 3761 if (unlikely(!skb_frag_size(&skb_shinfo(skb)->frags[0]))) { 3762 skb_frag_unref(skb, 0); 3763 memmove(skb_shinfo(skb)->frags, 3764 skb_shinfo(skb)->frags + 1, 3765 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t)); 3766 } 3767 } 3768 3769ok: 3770 return ret; 3771 3772normal: 3773 ret = GRO_NORMAL; 3774 goto pull; 3775} 3776 3777 3778static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb) 3779{ 3780 switch (ret) { 3781 case GRO_NORMAL: 3782 if (netif_receive_skb(skb)) 3783 ret = GRO_DROP; 3784 break; 3785 3786 case GRO_DROP: 3787 kfree_skb(skb); 3788 break; 3789 3790 case GRO_MERGED_FREE: 3791 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 3792 kmem_cache_free(skbuff_head_cache, skb); 3793 else 3794 __kfree_skb(skb); 3795 break; 3796 3797 case GRO_HELD: 3798 case GRO_MERGED: 3799 break; 3800 } 3801 3802 return ret; 3803} 3804 3805static void skb_gro_reset_offset(struct sk_buff *skb) 3806{ 3807 const struct skb_shared_info *pinfo = skb_shinfo(skb); 3808 const skb_frag_t *frag0 = &pinfo->frags[0]; 3809 3810 NAPI_GRO_CB(skb)->data_offset = 0; 3811 NAPI_GRO_CB(skb)->frag0 = NULL; 3812 NAPI_GRO_CB(skb)->frag0_len = 0; 3813 3814 if (skb->mac_header == skb->tail && 3815 pinfo->nr_frags && 3816 !PageHighMem(skb_frag_page(frag0))) { 3817 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0); 3818 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0); 3819 } 3820} 3821 3822gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3823{ 3824 skb_gro_reset_offset(skb); 3825 3826 return napi_skb_finish(dev_gro_receive(napi, skb), skb); 3827} 3828EXPORT_SYMBOL(napi_gro_receive); 3829 3830static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 3831{ 3832 __skb_pull(skb, skb_headlen(skb)); 3833 /* restore the reserve we had after netdev_alloc_skb_ip_align() */ 3834 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb)); 3835 skb->vlan_tci = 0; 3836 skb->dev = napi->dev; 3837 skb->skb_iif = 0; 3838 3839 napi->skb = skb; 3840} 3841 3842struct sk_buff *napi_get_frags(struct napi_struct *napi) 3843{ 3844 struct sk_buff *skb = napi->skb; 3845 3846 if (!skb) { 3847 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD); 3848 if (skb) 3849 napi->skb = skb; 3850 } 3851 return skb; 3852} 3853EXPORT_SYMBOL(napi_get_frags); 3854 3855static gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb, 3856 gro_result_t ret) 3857{ 3858 switch (ret) { 3859 case GRO_NORMAL: 3860 case GRO_HELD: 3861 skb->protocol = eth_type_trans(skb, skb->dev); 3862 3863 if (ret == GRO_HELD) 3864 skb_gro_pull(skb, -ETH_HLEN); 3865 else if (netif_receive_skb(skb)) 3866 ret = GRO_DROP; 3867 break; 3868 3869 case GRO_DROP: 3870 case GRO_MERGED_FREE: 3871 napi_reuse_skb(napi, skb); 3872 break; 3873 3874 case GRO_MERGED: 3875 break; 3876 } 3877 3878 return ret; 3879} 3880 3881static struct sk_buff *napi_frags_skb(struct napi_struct *napi) 3882{ 3883 struct sk_buff *skb = napi->skb; 3884 struct ethhdr *eth; 3885 unsigned int hlen; 3886 unsigned int off; 3887 3888 napi->skb = NULL; 3889 3890 skb_reset_mac_header(skb); 3891 skb_gro_reset_offset(skb); 3892 3893 off = skb_gro_offset(skb); 3894 hlen = off + sizeof(*eth); 3895 eth = skb_gro_header_fast(skb, off); 3896 if (skb_gro_header_hard(skb, hlen)) { 3897 eth = skb_gro_header_slow(skb, hlen, off); 3898 if (unlikely(!eth)) { 3899 napi_reuse_skb(napi, skb); 3900 skb = NULL; 3901 goto out; 3902 } 3903 } 3904 3905 skb_gro_pull(skb, sizeof(*eth)); 3906 3907 /* 3908 * This works because the only protocols we care about don't require 3909 * special handling. We'll fix it up properly at the end. 3910 */ 3911 skb->protocol = eth->h_proto; 3912 3913out: 3914 return skb; 3915} 3916 3917gro_result_t napi_gro_frags(struct napi_struct *napi) 3918{ 3919 struct sk_buff *skb = napi_frags_skb(napi); 3920 3921 if (!skb) 3922 return GRO_DROP; 3923 3924 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb)); 3925} 3926EXPORT_SYMBOL(napi_gro_frags); 3927 3928/* 3929 * net_rps_action sends any pending IPI's for rps. 3930 * Note: called with local irq disabled, but exits with local irq enabled. 3931 */ 3932static void net_rps_action_and_irq_enable(struct softnet_data *sd) 3933{ 3934#ifdef CONFIG_RPS 3935 struct softnet_data *remsd = sd->rps_ipi_list; 3936 3937 if (remsd) { 3938 sd->rps_ipi_list = NULL; 3939 3940 local_irq_enable(); 3941 3942 /* Send pending IPI's to kick RPS processing on remote cpus. */ 3943 while (remsd) { 3944 struct softnet_data *next = remsd->rps_ipi_next; 3945 3946 if (cpu_online(remsd->cpu)) 3947 __smp_call_function_single(remsd->cpu, 3948 &remsd->csd, 0); 3949 remsd = next; 3950 } 3951 } else 3952#endif 3953 local_irq_enable(); 3954} 3955 3956static int process_backlog(struct napi_struct *napi, int quota) 3957{ 3958 int work = 0; 3959 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 3960 3961#ifdef CONFIG_RPS 3962 /* Check if we have pending ipi, its better to send them now, 3963 * not waiting net_rx_action() end. 3964 */ 3965 if (sd->rps_ipi_list) { 3966 local_irq_disable(); 3967 net_rps_action_and_irq_enable(sd); 3968 } 3969#endif 3970 napi->weight = weight_p; 3971 local_irq_disable(); 3972 while (work < quota) { 3973 struct sk_buff *skb; 3974 unsigned int qlen; 3975 3976 while ((skb = __skb_dequeue(&sd->process_queue))) { 3977 local_irq_enable(); 3978 __netif_receive_skb(skb); 3979 local_irq_disable(); 3980 input_queue_head_incr(sd); 3981 if (++work >= quota) { 3982 local_irq_enable(); 3983 return work; 3984 } 3985 } 3986 3987 rps_lock(sd); 3988 qlen = skb_queue_len(&sd->input_pkt_queue); 3989 if (qlen) 3990 skb_queue_splice_tail_init(&sd->input_pkt_queue, 3991 &sd->process_queue); 3992 3993 if (qlen < quota - work) { 3994 /* 3995 * Inline a custom version of __napi_complete(). 3996 * only current cpu owns and manipulates this napi, 3997 * and NAPI_STATE_SCHED is the only possible flag set on backlog. 3998 * we can use a plain write instead of clear_bit(), 3999 * and we dont need an smp_mb() memory barrier. 4000 */ 4001 list_del(&napi->poll_list); 4002 napi->state = 0; 4003 4004 quota = work + qlen; 4005 } 4006 rps_unlock(sd); 4007 } 4008 local_irq_enable(); 4009 4010 return work; 4011} 4012 4013/** 4014 * __napi_schedule - schedule for receive 4015 * @n: entry to schedule 4016 * 4017 * The entry's receive function will be scheduled to run 4018 */ 4019void __napi_schedule(struct napi_struct *n) 4020{ 4021 unsigned long flags; 4022 4023 local_irq_save(flags); 4024 ____napi_schedule(&__get_cpu_var(softnet_data), n); 4025 local_irq_restore(flags); 4026} 4027EXPORT_SYMBOL(__napi_schedule); 4028 4029void __napi_complete(struct napi_struct *n) 4030{ 4031 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 4032 BUG_ON(n->gro_list); 4033 4034 list_del(&n->poll_list); 4035 smp_mb__before_clear_bit(); 4036 clear_bit(NAPI_STATE_SCHED, &n->state); 4037} 4038EXPORT_SYMBOL(__napi_complete); 4039 4040void napi_complete(struct napi_struct *n) 4041{ 4042 unsigned long flags; 4043 4044 /* 4045 * don't let napi dequeue from the cpu poll list 4046 * just in case its running on a different cpu 4047 */ 4048 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state))) 4049 return; 4050 4051 napi_gro_flush(n, false); 4052 local_irq_save(flags); 4053 __napi_complete(n); 4054 local_irq_restore(flags); 4055} 4056EXPORT_SYMBOL(napi_complete); 4057 4058void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 4059 int (*poll)(struct napi_struct *, int), int weight) 4060{ 4061 INIT_LIST_HEAD(&napi->poll_list); 4062 napi->gro_count = 0; 4063 napi->gro_list = NULL; 4064 napi->skb = NULL; 4065 napi->poll = poll; 4066 napi->weight = weight; 4067 list_add(&napi->dev_list, &dev->napi_list); 4068 napi->dev = dev; 4069#ifdef CONFIG_NETPOLL 4070 spin_lock_init(&napi->poll_lock); 4071 napi->poll_owner = -1; 4072#endif 4073 set_bit(NAPI_STATE_SCHED, &napi->state); 4074} 4075EXPORT_SYMBOL(netif_napi_add); 4076 4077void netif_napi_del(struct napi_struct *napi) 4078{ 4079 struct sk_buff *skb, *next; 4080 4081 list_del_init(&napi->dev_list); 4082 napi_free_frags(napi); 4083 4084 for (skb = napi->gro_list; skb; skb = next) { 4085 next = skb->next; 4086 skb->next = NULL; 4087 kfree_skb(skb); 4088 } 4089 4090 napi->gro_list = NULL; 4091 napi->gro_count = 0; 4092} 4093EXPORT_SYMBOL(netif_napi_del); 4094 4095static void net_rx_action(struct softirq_action *h) 4096{ 4097 struct softnet_data *sd = &__get_cpu_var(softnet_data); 4098 unsigned long time_limit = jiffies + 2; 4099 int budget = netdev_budget; 4100 void *have; 4101 4102 local_irq_disable(); 4103 4104 while (!list_empty(&sd->poll_list)) { 4105 struct napi_struct *n; 4106 int work, weight; 4107 4108 /* If softirq window is exhuasted then punt. 4109 * Allow this to run for 2 jiffies since which will allow 4110 * an average latency of 1.5/HZ. 4111 */ 4112 if (unlikely(budget <= 0 || time_after_eq(jiffies, time_limit))) 4113 goto softnet_break; 4114 4115 local_irq_enable(); 4116 4117 /* Even though interrupts have been re-enabled, this 4118 * access is safe because interrupts can only add new 4119 * entries to the tail of this list, and only ->poll() 4120 * calls can remove this head entry from the list. 4121 */ 4122 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list); 4123 4124 have = netpoll_poll_lock(n); 4125 4126 weight = n->weight; 4127 4128 /* This NAPI_STATE_SCHED test is for avoiding a race 4129 * with netpoll's poll_napi(). Only the entity which 4130 * obtains the lock and sees NAPI_STATE_SCHED set will 4131 * actually make the ->poll() call. Therefore we avoid 4132 * accidentally calling ->poll() when NAPI is not scheduled. 4133 */ 4134 work = 0; 4135 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 4136 work = n->poll(n, weight); 4137 trace_napi_poll(n); 4138 } 4139 4140 WARN_ON_ONCE(work > weight); 4141 4142 budget -= work; 4143 4144 local_irq_disable(); 4145 4146 /* Drivers must not modify the NAPI state if they 4147 * consume the entire weight. In such cases this code 4148 * still "owns" the NAPI instance and therefore can 4149 * move the instance around on the list at-will. 4150 */ 4151 if (unlikely(work == weight)) { 4152 if (unlikely(napi_disable_pending(n))) { 4153 local_irq_enable(); 4154 napi_complete(n); 4155 local_irq_disable(); 4156 } else { 4157 if (n->gro_list) { 4158 /* flush too old packets 4159 * If HZ < 1000, flush all packets. 4160 */ 4161 local_irq_enable(); 4162 napi_gro_flush(n, HZ >= 1000); 4163 local_irq_disable(); 4164 } 4165 list_move_tail(&n->poll_list, &sd->poll_list); 4166 } 4167 } 4168 4169 netpoll_poll_unlock(have); 4170 } 4171out: 4172 net_rps_action_and_irq_enable(sd); 4173 4174#ifdef CONFIG_NET_DMA 4175 /* 4176 * There may not be any more sk_buffs coming right now, so push 4177 * any pending DMA copies to hardware 4178 */ 4179 dma_issue_pending_all(); 4180#endif 4181 4182 return; 4183 4184softnet_break: 4185 sd->time_squeeze++; 4186 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4187 goto out; 4188} 4189 4190struct netdev_upper { 4191 struct net_device *dev; 4192 bool master; 4193 struct list_head list; 4194 struct rcu_head rcu; 4195 struct list_head search_list; 4196}; 4197 4198static void __append_search_uppers(struct list_head *search_list, 4199 struct net_device *dev) 4200{ 4201 struct netdev_upper *upper; 4202 4203 list_for_each_entry(upper, &dev->upper_dev_list, list) { 4204 /* check if this upper is not already in search list */ 4205 if (list_empty(&upper->search_list)) 4206 list_add_tail(&upper->search_list, search_list); 4207 } 4208} 4209 4210static bool __netdev_search_upper_dev(struct net_device *dev, 4211 struct net_device *upper_dev) 4212{ 4213 LIST_HEAD(search_list); 4214 struct netdev_upper *upper; 4215 struct netdev_upper *tmp; 4216 bool ret = false; 4217 4218 __append_search_uppers(&search_list, dev); 4219 list_for_each_entry(upper, &search_list, search_list) { 4220 if (upper->dev == upper_dev) { 4221 ret = true; 4222 break; 4223 } 4224 __append_search_uppers(&search_list, upper->dev); 4225 } 4226 list_for_each_entry_safe(upper, tmp, &search_list, search_list) 4227 INIT_LIST_HEAD(&upper->search_list); 4228 return ret; 4229} 4230 4231static struct netdev_upper *__netdev_find_upper(struct net_device *dev, 4232 struct net_device *upper_dev) 4233{ 4234 struct netdev_upper *upper; 4235 4236 list_for_each_entry(upper, &dev->upper_dev_list, list) { 4237 if (upper->dev == upper_dev) 4238 return upper; 4239 } 4240 return NULL; 4241} 4242 4243/** 4244 * netdev_has_upper_dev - Check if device is linked to an upper device 4245 * @dev: device 4246 * @upper_dev: upper device to check 4247 * 4248 * Find out if a device is linked to specified upper device and return true 4249 * in case it is. Note that this checks only immediate upper device, 4250 * not through a complete stack of devices. The caller must hold the RTNL lock. 4251 */ 4252bool netdev_has_upper_dev(struct net_device *dev, 4253 struct net_device *upper_dev) 4254{ 4255 ASSERT_RTNL(); 4256 4257 return __netdev_find_upper(dev, upper_dev); 4258} 4259EXPORT_SYMBOL(netdev_has_upper_dev); 4260 4261/** 4262 * netdev_has_any_upper_dev - Check if device is linked to some device 4263 * @dev: device 4264 * 4265 * Find out if a device is linked to an upper device and return true in case 4266 * it is. The caller must hold the RTNL lock. 4267 */ 4268bool netdev_has_any_upper_dev(struct net_device *dev) 4269{ 4270 ASSERT_RTNL(); 4271 4272 return !list_empty(&dev->upper_dev_list); 4273} 4274EXPORT_SYMBOL(netdev_has_any_upper_dev); 4275 4276/** 4277 * netdev_master_upper_dev_get - Get master upper device 4278 * @dev: device 4279 * 4280 * Find a master upper device and return pointer to it or NULL in case 4281 * it's not there. The caller must hold the RTNL lock. 4282 */ 4283struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 4284{ 4285 struct netdev_upper *upper; 4286 4287 ASSERT_RTNL(); 4288 4289 if (list_empty(&dev->upper_dev_list)) 4290 return NULL; 4291 4292 upper = list_first_entry(&dev->upper_dev_list, 4293 struct netdev_upper, list); 4294 if (likely(upper->master)) 4295 return upper->dev; 4296 return NULL; 4297} 4298EXPORT_SYMBOL(netdev_master_upper_dev_get); 4299 4300/** 4301 * netdev_master_upper_dev_get_rcu - Get master upper device 4302 * @dev: device 4303 * 4304 * Find a master upper device and return pointer to it or NULL in case 4305 * it's not there. The caller must hold the RCU read lock. 4306 */ 4307struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 4308{ 4309 struct netdev_upper *upper; 4310 4311 upper = list_first_or_null_rcu(&dev->upper_dev_list, 4312 struct netdev_upper, list); 4313 if (upper && likely(upper->master)) 4314 return upper->dev; 4315 return NULL; 4316} 4317EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 4318 4319static int __netdev_upper_dev_link(struct net_device *dev, 4320 struct net_device *upper_dev, bool master) 4321{ 4322 struct netdev_upper *upper; 4323 4324 ASSERT_RTNL(); 4325 4326 if (dev == upper_dev) 4327 return -EBUSY; 4328 4329 /* To prevent loops, check if dev is not upper device to upper_dev. */ 4330 if (__netdev_search_upper_dev(upper_dev, dev)) 4331 return -EBUSY; 4332 4333 if (__netdev_find_upper(dev, upper_dev)) 4334 return -EEXIST; 4335 4336 if (master && netdev_master_upper_dev_get(dev)) 4337 return -EBUSY; 4338 4339 upper = kmalloc(sizeof(*upper), GFP_KERNEL); 4340 if (!upper) 4341 return -ENOMEM; 4342 4343 upper->dev = upper_dev; 4344 upper->master = master; 4345 INIT_LIST_HEAD(&upper->search_list); 4346 4347 /* Ensure that master upper link is always the first item in list. */ 4348 if (master) 4349 list_add_rcu(&upper->list, &dev->upper_dev_list); 4350 else 4351 list_add_tail_rcu(&upper->list, &dev->upper_dev_list); 4352 dev_hold(upper_dev); 4353 4354 return 0; 4355} 4356 4357/** 4358 * netdev_upper_dev_link - Add a link to the upper device 4359 * @dev: device 4360 * @upper_dev: new upper device 4361 * 4362 * Adds a link to device which is upper to this one. The caller must hold 4363 * the RTNL lock. On a failure a negative errno code is returned. 4364 * On success the reference counts are adjusted and the function 4365 * returns zero. 4366 */ 4367int netdev_upper_dev_link(struct net_device *dev, 4368 struct net_device *upper_dev) 4369{ 4370 return __netdev_upper_dev_link(dev, upper_dev, false); 4371} 4372EXPORT_SYMBOL(netdev_upper_dev_link); 4373 4374/** 4375 * netdev_master_upper_dev_link - Add a master link to the upper device 4376 * @dev: device 4377 * @upper_dev: new upper device 4378 * 4379 * Adds a link to device which is upper to this one. In this case, only 4380 * one master upper device can be linked, although other non-master devices 4381 * might be linked as well. The caller must hold the RTNL lock. 4382 * On a failure a negative errno code is returned. On success the reference 4383 * counts are adjusted and the function returns zero. 4384 */ 4385int netdev_master_upper_dev_link(struct net_device *dev, 4386 struct net_device *upper_dev) 4387{ 4388 return __netdev_upper_dev_link(dev, upper_dev, true); 4389} 4390EXPORT_SYMBOL(netdev_master_upper_dev_link); 4391 4392/** 4393 * netdev_upper_dev_unlink - Removes a link to upper device 4394 * @dev: device 4395 * @upper_dev: new upper device 4396 * 4397 * Removes a link to device which is upper to this one. The caller must hold 4398 * the RTNL lock. 4399 */ 4400void netdev_upper_dev_unlink(struct net_device *dev, 4401 struct net_device *upper_dev) 4402{ 4403 struct netdev_upper *upper; 4404 4405 ASSERT_RTNL(); 4406 4407 upper = __netdev_find_upper(dev, upper_dev); 4408 if (!upper) 4409 return; 4410 list_del_rcu(&upper->list); 4411 dev_put(upper_dev); 4412 kfree_rcu(upper, rcu); 4413} 4414EXPORT_SYMBOL(netdev_upper_dev_unlink); 4415 4416static void dev_change_rx_flags(struct net_device *dev, int flags) 4417{ 4418 const struct net_device_ops *ops = dev->netdev_ops; 4419 4420 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags) 4421 ops->ndo_change_rx_flags(dev, flags); 4422} 4423 4424static int __dev_set_promiscuity(struct net_device *dev, int inc) 4425{ 4426 unsigned int old_flags = dev->flags; 4427 kuid_t uid; 4428 kgid_t gid; 4429 4430 ASSERT_RTNL(); 4431 4432 dev->flags |= IFF_PROMISC; 4433 dev->promiscuity += inc; 4434 if (dev->promiscuity == 0) { 4435 /* 4436 * Avoid overflow. 4437 * If inc causes overflow, untouch promisc and return error. 4438 */ 4439 if (inc < 0) 4440 dev->flags &= ~IFF_PROMISC; 4441 else { 4442 dev->promiscuity -= inc; 4443 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n", 4444 dev->name); 4445 return -EOVERFLOW; 4446 } 4447 } 4448 if (dev->flags != old_flags) { 4449 pr_info("device %s %s promiscuous mode\n", 4450 dev->name, 4451 dev->flags & IFF_PROMISC ? "entered" : "left"); 4452 if (audit_enabled) { 4453 current_uid_gid(&uid, &gid); 4454 audit_log(current->audit_context, GFP_ATOMIC, 4455 AUDIT_ANOM_PROMISCUOUS, 4456 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 4457 dev->name, (dev->flags & IFF_PROMISC), 4458 (old_flags & IFF_PROMISC), 4459 from_kuid(&init_user_ns, audit_get_loginuid(current)), 4460 from_kuid(&init_user_ns, uid), 4461 from_kgid(&init_user_ns, gid), 4462 audit_get_sessionid(current)); 4463 } 4464 4465 dev_change_rx_flags(dev, IFF_PROMISC); 4466 } 4467 return 0; 4468} 4469 4470/** 4471 * dev_set_promiscuity - update promiscuity count on a device 4472 * @dev: device 4473 * @inc: modifier 4474 * 4475 * Add or remove promiscuity from a device. While the count in the device 4476 * remains above zero the interface remains promiscuous. Once it hits zero 4477 * the device reverts back to normal filtering operation. A negative inc 4478 * value is used to drop promiscuity on the device. 4479 * Return 0 if successful or a negative errno code on error. 4480 */ 4481int dev_set_promiscuity(struct net_device *dev, int inc) 4482{ 4483 unsigned int old_flags = dev->flags; 4484 int err; 4485 4486 err = __dev_set_promiscuity(dev, inc); 4487 if (err < 0) 4488 return err; 4489 if (dev->flags != old_flags) 4490 dev_set_rx_mode(dev); 4491 return err; 4492} 4493EXPORT_SYMBOL(dev_set_promiscuity); 4494 4495/** 4496 * dev_set_allmulti - update allmulti count on a device 4497 * @dev: device 4498 * @inc: modifier 4499 * 4500 * Add or remove reception of all multicast frames to a device. While the 4501 * count in the device remains above zero the interface remains listening 4502 * to all interfaces. Once it hits zero the device reverts back to normal 4503 * filtering operation. A negative @inc value is used to drop the counter 4504 * when releasing a resource needing all multicasts. 4505 * Return 0 if successful or a negative errno code on error. 4506 */ 4507 4508int dev_set_allmulti(struct net_device *dev, int inc) 4509{ 4510 unsigned int old_flags = dev->flags; 4511 4512 ASSERT_RTNL(); 4513 4514 dev->flags |= IFF_ALLMULTI; 4515 dev->allmulti += inc; 4516 if (dev->allmulti == 0) { 4517 /* 4518 * Avoid overflow. 4519 * If inc causes overflow, untouch allmulti and return error. 4520 */ 4521 if (inc < 0) 4522 dev->flags &= ~IFF_ALLMULTI; 4523 else { 4524 dev->allmulti -= inc; 4525 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n", 4526 dev->name); 4527 return -EOVERFLOW; 4528 } 4529 } 4530 if (dev->flags ^ old_flags) { 4531 dev_change_rx_flags(dev, IFF_ALLMULTI); 4532 dev_set_rx_mode(dev); 4533 } 4534 return 0; 4535} 4536EXPORT_SYMBOL(dev_set_allmulti); 4537 4538/* 4539 * Upload unicast and multicast address lists to device and 4540 * configure RX filtering. When the device doesn't support unicast 4541 * filtering it is put in promiscuous mode while unicast addresses 4542 * are present. 4543 */ 4544void __dev_set_rx_mode(struct net_device *dev) 4545{ 4546 const struct net_device_ops *ops = dev->netdev_ops; 4547 4548 /* dev_open will call this function so the list will stay sane. */ 4549 if (!(dev->flags&IFF_UP)) 4550 return; 4551 4552 if (!netif_device_present(dev)) 4553 return; 4554 4555 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 4556 /* Unicast addresses changes may only happen under the rtnl, 4557 * therefore calling __dev_set_promiscuity here is safe. 4558 */ 4559 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 4560 __dev_set_promiscuity(dev, 1); 4561 dev->uc_promisc = true; 4562 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 4563 __dev_set_promiscuity(dev, -1); 4564 dev->uc_promisc = false; 4565 } 4566 } 4567 4568 if (ops->ndo_set_rx_mode) 4569 ops->ndo_set_rx_mode(dev); 4570} 4571 4572void dev_set_rx_mode(struct net_device *dev) 4573{ 4574 netif_addr_lock_bh(dev); 4575 __dev_set_rx_mode(dev); 4576 netif_addr_unlock_bh(dev); 4577} 4578 4579/** 4580 * dev_get_flags - get flags reported to userspace 4581 * @dev: device 4582 * 4583 * Get the combination of flag bits exported through APIs to userspace. 4584 */ 4585unsigned int dev_get_flags(const struct net_device *dev) 4586{ 4587 unsigned int flags; 4588 4589 flags = (dev->flags & ~(IFF_PROMISC | 4590 IFF_ALLMULTI | 4591 IFF_RUNNING | 4592 IFF_LOWER_UP | 4593 IFF_DORMANT)) | 4594 (dev->gflags & (IFF_PROMISC | 4595 IFF_ALLMULTI)); 4596 4597 if (netif_running(dev)) { 4598 if (netif_oper_up(dev)) 4599 flags |= IFF_RUNNING; 4600 if (netif_carrier_ok(dev)) 4601 flags |= IFF_LOWER_UP; 4602 if (netif_dormant(dev)) 4603 flags |= IFF_DORMANT; 4604 } 4605 4606 return flags; 4607} 4608EXPORT_SYMBOL(dev_get_flags); 4609 4610int __dev_change_flags(struct net_device *dev, unsigned int flags) 4611{ 4612 unsigned int old_flags = dev->flags; 4613 int ret; 4614 4615 ASSERT_RTNL(); 4616 4617 /* 4618 * Set the flags on our device. 4619 */ 4620 4621 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 4622 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 4623 IFF_AUTOMEDIA)) | 4624 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 4625 IFF_ALLMULTI)); 4626 4627 /* 4628 * Load in the correct multicast list now the flags have changed. 4629 */ 4630 4631 if ((old_flags ^ flags) & IFF_MULTICAST) 4632 dev_change_rx_flags(dev, IFF_MULTICAST); 4633 4634 dev_set_rx_mode(dev); 4635 4636 /* 4637 * Have we downed the interface. We handle IFF_UP ourselves 4638 * according to user attempts to set it, rather than blindly 4639 * setting it. 4640 */ 4641 4642 ret = 0; 4643 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */ 4644 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev); 4645 4646 if (!ret) 4647 dev_set_rx_mode(dev); 4648 } 4649 4650 if ((flags ^ dev->gflags) & IFF_PROMISC) { 4651 int inc = (flags & IFF_PROMISC) ? 1 : -1; 4652 4653 dev->gflags ^= IFF_PROMISC; 4654 dev_set_promiscuity(dev, inc); 4655 } 4656 4657 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 4658 is important. Some (broken) drivers set IFF_PROMISC, when 4659 IFF_ALLMULTI is requested not asking us and not reporting. 4660 */ 4661 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 4662 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 4663 4664 dev->gflags ^= IFF_ALLMULTI; 4665 dev_set_allmulti(dev, inc); 4666 } 4667 4668 return ret; 4669} 4670 4671void __dev_notify_flags(struct net_device *dev, unsigned int old_flags) 4672{ 4673 unsigned int changes = dev->flags ^ old_flags; 4674 4675 if (changes & IFF_UP) { 4676 if (dev->flags & IFF_UP) 4677 call_netdevice_notifiers(NETDEV_UP, dev); 4678 else 4679 call_netdevice_notifiers(NETDEV_DOWN, dev); 4680 } 4681 4682 if (dev->flags & IFF_UP && 4683 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) 4684 call_netdevice_notifiers(NETDEV_CHANGE, dev); 4685} 4686 4687/** 4688 * dev_change_flags - change device settings 4689 * @dev: device 4690 * @flags: device state flags 4691 * 4692 * Change settings on device based state flags. The flags are 4693 * in the userspace exported format. 4694 */ 4695int dev_change_flags(struct net_device *dev, unsigned int flags) 4696{ 4697 int ret; 4698 unsigned int changes, old_flags = dev->flags; 4699 4700 ret = __dev_change_flags(dev, flags); 4701 if (ret < 0) 4702 return ret; 4703 4704 changes = old_flags ^ dev->flags; 4705 if (changes) 4706 rtmsg_ifinfo(RTM_NEWLINK, dev, changes); 4707 4708 __dev_notify_flags(dev, old_flags); 4709 return ret; 4710} 4711EXPORT_SYMBOL(dev_change_flags); 4712 4713/** 4714 * dev_set_mtu - Change maximum transfer unit 4715 * @dev: device 4716 * @new_mtu: new transfer unit 4717 * 4718 * Change the maximum transfer size of the network device. 4719 */ 4720int dev_set_mtu(struct net_device *dev, int new_mtu) 4721{ 4722 const struct net_device_ops *ops = dev->netdev_ops; 4723 int err; 4724 4725 if (new_mtu == dev->mtu) 4726 return 0; 4727 4728 /* MTU must be positive. */ 4729 if (new_mtu < 0) 4730 return -EINVAL; 4731 4732 if (!netif_device_present(dev)) 4733 return -ENODEV; 4734 4735 err = 0; 4736 if (ops->ndo_change_mtu) 4737 err = ops->ndo_change_mtu(dev, new_mtu); 4738 else 4739 dev->mtu = new_mtu; 4740 4741 if (!err) 4742 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 4743 return err; 4744} 4745EXPORT_SYMBOL(dev_set_mtu); 4746 4747/** 4748 * dev_set_group - Change group this device belongs to 4749 * @dev: device 4750 * @new_group: group this device should belong to 4751 */ 4752void dev_set_group(struct net_device *dev, int new_group) 4753{ 4754 dev->group = new_group; 4755} 4756EXPORT_SYMBOL(dev_set_group); 4757 4758/** 4759 * dev_set_mac_address - Change Media Access Control Address 4760 * @dev: device 4761 * @sa: new address 4762 * 4763 * Change the hardware (MAC) address of the device 4764 */ 4765int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 4766{ 4767 const struct net_device_ops *ops = dev->netdev_ops; 4768 int err; 4769 4770 if (!ops->ndo_set_mac_address) 4771 return -EOPNOTSUPP; 4772 if (sa->sa_family != dev->type) 4773 return -EINVAL; 4774 if (!netif_device_present(dev)) 4775 return -ENODEV; 4776 err = ops->ndo_set_mac_address(dev, sa); 4777 if (err) 4778 return err; 4779 dev->addr_assign_type = NET_ADDR_SET; 4780 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 4781 add_device_randomness(dev->dev_addr, dev->addr_len); 4782 return 0; 4783} 4784EXPORT_SYMBOL(dev_set_mac_address); 4785 4786/** 4787 * dev_change_carrier - Change device carrier 4788 * @dev: device 4789 * @new_carrier: new value 4790 * 4791 * Change device carrier 4792 */ 4793int dev_change_carrier(struct net_device *dev, bool new_carrier) 4794{ 4795 const struct net_device_ops *ops = dev->netdev_ops; 4796 4797 if (!ops->ndo_change_carrier) 4798 return -EOPNOTSUPP; 4799 if (!netif_device_present(dev)) 4800 return -ENODEV; 4801 return ops->ndo_change_carrier(dev, new_carrier); 4802} 4803EXPORT_SYMBOL(dev_change_carrier); 4804 4805/** 4806 * dev_new_index - allocate an ifindex 4807 * @net: the applicable net namespace 4808 * 4809 * Returns a suitable unique value for a new device interface 4810 * number. The caller must hold the rtnl semaphore or the 4811 * dev_base_lock to be sure it remains unique. 4812 */ 4813static int dev_new_index(struct net *net) 4814{ 4815 int ifindex = net->ifindex; 4816 for (;;) { 4817 if (++ifindex <= 0) 4818 ifindex = 1; 4819 if (!__dev_get_by_index(net, ifindex)) 4820 return net->ifindex = ifindex; 4821 } 4822} 4823 4824/* Delayed registration/unregisteration */ 4825static LIST_HEAD(net_todo_list); 4826 4827static void net_set_todo(struct net_device *dev) 4828{ 4829 list_add_tail(&dev->todo_list, &net_todo_list); 4830} 4831 4832static void rollback_registered_many(struct list_head *head) 4833{ 4834 struct net_device *dev, *tmp; 4835 4836 BUG_ON(dev_boot_phase); 4837 ASSERT_RTNL(); 4838 4839 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 4840 /* Some devices call without registering 4841 * for initialization unwind. Remove those 4842 * devices and proceed with the remaining. 4843 */ 4844 if (dev->reg_state == NETREG_UNINITIALIZED) { 4845 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 4846 dev->name, dev); 4847 4848 WARN_ON(1); 4849 list_del(&dev->unreg_list); 4850 continue; 4851 } 4852 dev->dismantle = true; 4853 BUG_ON(dev->reg_state != NETREG_REGISTERED); 4854 } 4855 4856 /* If device is running, close it first. */ 4857 dev_close_many(head); 4858 4859 list_for_each_entry(dev, head, unreg_list) { 4860 /* And unlink it from device chain. */ 4861 unlist_netdevice(dev); 4862 4863 dev->reg_state = NETREG_UNREGISTERING; 4864 } 4865 4866 synchronize_net(); 4867 4868 list_for_each_entry(dev, head, unreg_list) { 4869 /* Shutdown queueing discipline. */ 4870 dev_shutdown(dev); 4871 4872 4873 /* Notify protocols, that we are about to destroy 4874 this device. They should clean all the things. 4875 */ 4876 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 4877 4878 if (!dev->rtnl_link_ops || 4879 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 4880 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U); 4881 4882 /* 4883 * Flush the unicast and multicast chains 4884 */ 4885 dev_uc_flush(dev); 4886 dev_mc_flush(dev); 4887 4888 if (dev->netdev_ops->ndo_uninit) 4889 dev->netdev_ops->ndo_uninit(dev); 4890 4891 /* Notifier chain MUST detach us all upper devices. */ 4892 WARN_ON(netdev_has_any_upper_dev(dev)); 4893 4894 /* Remove entries from kobject tree */ 4895 netdev_unregister_kobject(dev); 4896#ifdef CONFIG_XPS 4897 /* Remove XPS queueing entries */ 4898 netif_reset_xps_queues_gt(dev, 0); 4899#endif 4900 } 4901 4902 synchronize_net(); 4903 4904 list_for_each_entry(dev, head, unreg_list) 4905 dev_put(dev); 4906} 4907 4908static void rollback_registered(struct net_device *dev) 4909{ 4910 LIST_HEAD(single); 4911 4912 list_add(&dev->unreg_list, &single); 4913 rollback_registered_many(&single); 4914 list_del(&single); 4915} 4916 4917static netdev_features_t netdev_fix_features(struct net_device *dev, 4918 netdev_features_t features) 4919{ 4920 /* Fix illegal checksum combinations */ 4921 if ((features & NETIF_F_HW_CSUM) && 4922 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 4923 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 4924 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4925 } 4926 4927 /* Fix illegal SG+CSUM combinations. */ 4928 if ((features & NETIF_F_SG) && 4929 !(features & NETIF_F_ALL_CSUM)) { 4930 netdev_dbg(dev, 4931 "Dropping NETIF_F_SG since no checksum feature.\n"); 4932 features &= ~NETIF_F_SG; 4933 } 4934 4935 /* TSO requires that SG is present as well. */ 4936 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 4937 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 4938 features &= ~NETIF_F_ALL_TSO; 4939 } 4940 4941 /* TSO ECN requires that TSO is present as well. */ 4942 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 4943 features &= ~NETIF_F_TSO_ECN; 4944 4945 /* Software GSO depends on SG. */ 4946 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 4947 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 4948 features &= ~NETIF_F_GSO; 4949 } 4950 4951 /* UFO needs SG and checksumming */ 4952 if (features & NETIF_F_UFO) { 4953 /* maybe split UFO into V4 and V6? */ 4954 if (!((features & NETIF_F_GEN_CSUM) || 4955 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM)) 4956 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 4957 netdev_dbg(dev, 4958 "Dropping NETIF_F_UFO since no checksum offload features.\n"); 4959 features &= ~NETIF_F_UFO; 4960 } 4961 4962 if (!(features & NETIF_F_SG)) { 4963 netdev_dbg(dev, 4964 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n"); 4965 features &= ~NETIF_F_UFO; 4966 } 4967 } 4968 4969 return features; 4970} 4971 4972int __netdev_update_features(struct net_device *dev) 4973{ 4974 netdev_features_t features; 4975 int err = 0; 4976 4977 ASSERT_RTNL(); 4978 4979 features = netdev_get_wanted_features(dev); 4980 4981 if (dev->netdev_ops->ndo_fix_features) 4982 features = dev->netdev_ops->ndo_fix_features(dev, features); 4983 4984 /* driver might be less strict about feature dependencies */ 4985 features = netdev_fix_features(dev, features); 4986 4987 if (dev->features == features) 4988 return 0; 4989 4990 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 4991 &dev->features, &features); 4992 4993 if (dev->netdev_ops->ndo_set_features) 4994 err = dev->netdev_ops->ndo_set_features(dev, features); 4995 4996 if (unlikely(err < 0)) { 4997 netdev_err(dev, 4998 "set_features() failed (%d); wanted %pNF, left %pNF\n", 4999 err, &features, &dev->features); 5000 return -1; 5001 } 5002 5003 if (!err) 5004 dev->features = features; 5005 5006 return 1; 5007} 5008 5009/** 5010 * netdev_update_features - recalculate device features 5011 * @dev: the device to check 5012 * 5013 * Recalculate dev->features set and send notifications if it 5014 * has changed. Should be called after driver or hardware dependent 5015 * conditions might have changed that influence the features. 5016 */ 5017void netdev_update_features(struct net_device *dev) 5018{ 5019 if (__netdev_update_features(dev)) 5020 netdev_features_change(dev); 5021} 5022EXPORT_SYMBOL(netdev_update_features); 5023 5024/** 5025 * netdev_change_features - recalculate device features 5026 * @dev: the device to check 5027 * 5028 * Recalculate dev->features set and send notifications even 5029 * if they have not changed. Should be called instead of 5030 * netdev_update_features() if also dev->vlan_features might 5031 * have changed to allow the changes to be propagated to stacked 5032 * VLAN devices. 5033 */ 5034void netdev_change_features(struct net_device *dev) 5035{ 5036 __netdev_update_features(dev); 5037 netdev_features_change(dev); 5038} 5039EXPORT_SYMBOL(netdev_change_features); 5040 5041/** 5042 * netif_stacked_transfer_operstate - transfer operstate 5043 * @rootdev: the root or lower level device to transfer state from 5044 * @dev: the device to transfer operstate to 5045 * 5046 * Transfer operational state from root to device. This is normally 5047 * called when a stacking relationship exists between the root 5048 * device and the device(a leaf device). 5049 */ 5050void netif_stacked_transfer_operstate(const struct net_device *rootdev, 5051 struct net_device *dev) 5052{ 5053 if (rootdev->operstate == IF_OPER_DORMANT) 5054 netif_dormant_on(dev); 5055 else 5056 netif_dormant_off(dev); 5057 5058 if (netif_carrier_ok(rootdev)) { 5059 if (!netif_carrier_ok(dev)) 5060 netif_carrier_on(dev); 5061 } else { 5062 if (netif_carrier_ok(dev)) 5063 netif_carrier_off(dev); 5064 } 5065} 5066EXPORT_SYMBOL(netif_stacked_transfer_operstate); 5067 5068#ifdef CONFIG_RPS 5069static int netif_alloc_rx_queues(struct net_device *dev) 5070{ 5071 unsigned int i, count = dev->num_rx_queues; 5072 struct netdev_rx_queue *rx; 5073 5074 BUG_ON(count < 1); 5075 5076 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL); 5077 if (!rx) 5078 return -ENOMEM; 5079 5080 dev->_rx = rx; 5081 5082 for (i = 0; i < count; i++) 5083 rx[i].dev = dev; 5084 return 0; 5085} 5086#endif 5087 5088static void netdev_init_one_queue(struct net_device *dev, 5089 struct netdev_queue *queue, void *_unused) 5090{ 5091 /* Initialize queue lock */ 5092 spin_lock_init(&queue->_xmit_lock); 5093 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 5094 queue->xmit_lock_owner = -1; 5095 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 5096 queue->dev = dev; 5097#ifdef CONFIG_BQL 5098 dql_init(&queue->dql, HZ); 5099#endif 5100} 5101 5102static int netif_alloc_netdev_queues(struct net_device *dev) 5103{ 5104 unsigned int count = dev->num_tx_queues; 5105 struct netdev_queue *tx; 5106 5107 BUG_ON(count < 1); 5108 5109 tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL); 5110 if (!tx) 5111 return -ENOMEM; 5112 5113 dev->_tx = tx; 5114 5115 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 5116 spin_lock_init(&dev->tx_global_lock); 5117 5118 return 0; 5119} 5120 5121/** 5122 * register_netdevice - register a network device 5123 * @dev: device to register 5124 * 5125 * Take a completed network device structure and add it to the kernel 5126 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 5127 * chain. 0 is returned on success. A negative errno code is returned 5128 * on a failure to set up the device, or if the name is a duplicate. 5129 * 5130 * Callers must hold the rtnl semaphore. You may want 5131 * register_netdev() instead of this. 5132 * 5133 * BUGS: 5134 * The locking appears insufficient to guarantee two parallel registers 5135 * will not get the same name. 5136 */ 5137 5138int register_netdevice(struct net_device *dev) 5139{ 5140 int ret; 5141 struct net *net = dev_net(dev); 5142 5143 BUG_ON(dev_boot_phase); 5144 ASSERT_RTNL(); 5145 5146 might_sleep(); 5147 5148 /* When net_device's are persistent, this will be fatal. */ 5149 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 5150 BUG_ON(!net); 5151 5152 spin_lock_init(&dev->addr_list_lock); 5153 netdev_set_addr_lockdep_class(dev); 5154 5155 dev->iflink = -1; 5156 5157 ret = dev_get_valid_name(net, dev, dev->name); 5158 if (ret < 0) 5159 goto out; 5160 5161 /* Init, if this function is available */ 5162 if (dev->netdev_ops->ndo_init) { 5163 ret = dev->netdev_ops->ndo_init(dev); 5164 if (ret) { 5165 if (ret > 0) 5166 ret = -EIO; 5167 goto out; 5168 } 5169 } 5170 5171 if (((dev->hw_features | dev->features) & NETIF_F_HW_VLAN_FILTER) && 5172 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 5173 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 5174 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 5175 ret = -EINVAL; 5176 goto err_uninit; 5177 } 5178 5179 ret = -EBUSY; 5180 if (!dev->ifindex) 5181 dev->ifindex = dev_new_index(net); 5182 else if (__dev_get_by_index(net, dev->ifindex)) 5183 goto err_uninit; 5184 5185 if (dev->iflink == -1) 5186 dev->iflink = dev->ifindex; 5187 5188 /* Transfer changeable features to wanted_features and enable 5189 * software offloads (GSO and GRO). 5190 */ 5191 dev->hw_features |= NETIF_F_SOFT_FEATURES; 5192 dev->features |= NETIF_F_SOFT_FEATURES; 5193 dev->wanted_features = dev->features & dev->hw_features; 5194 5195 /* Turn on no cache copy if HW is doing checksum */ 5196 if (!(dev->flags & IFF_LOOPBACK)) { 5197 dev->hw_features |= NETIF_F_NOCACHE_COPY; 5198 if (dev->features & NETIF_F_ALL_CSUM) { 5199 dev->wanted_features |= NETIF_F_NOCACHE_COPY; 5200 dev->features |= NETIF_F_NOCACHE_COPY; 5201 } 5202 } 5203 5204 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 5205 */ 5206 dev->vlan_features |= NETIF_F_HIGHDMA; 5207 5208 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 5209 ret = notifier_to_errno(ret); 5210 if (ret) 5211 goto err_uninit; 5212 5213 ret = netdev_register_kobject(dev); 5214 if (ret) 5215 goto err_uninit; 5216 dev->reg_state = NETREG_REGISTERED; 5217 5218 __netdev_update_features(dev); 5219 5220 /* 5221 * Default initial state at registry is that the 5222 * device is present. 5223 */ 5224 5225 set_bit(__LINK_STATE_PRESENT, &dev->state); 5226 5227 linkwatch_init_dev(dev); 5228 5229 dev_init_scheduler(dev); 5230 dev_hold(dev); 5231 list_netdevice(dev); 5232 add_device_randomness(dev->dev_addr, dev->addr_len); 5233 5234 /* If the device has permanent device address, driver should 5235 * set dev_addr and also addr_assign_type should be set to 5236 * NET_ADDR_PERM (default value). 5237 */ 5238 if (dev->addr_assign_type == NET_ADDR_PERM) 5239 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 5240 5241 /* Notify protocols, that a new device appeared. */ 5242 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 5243 ret = notifier_to_errno(ret); 5244 if (ret) { 5245 rollback_registered(dev); 5246 dev->reg_state = NETREG_UNREGISTERED; 5247 } 5248 /* 5249 * Prevent userspace races by waiting until the network 5250 * device is fully setup before sending notifications. 5251 */ 5252 if (!dev->rtnl_link_ops || 5253 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 5254 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U); 5255 5256out: 5257 return ret; 5258 5259err_uninit: 5260 if (dev->netdev_ops->ndo_uninit) 5261 dev->netdev_ops->ndo_uninit(dev); 5262 goto out; 5263} 5264EXPORT_SYMBOL(register_netdevice); 5265 5266/** 5267 * init_dummy_netdev - init a dummy network device for NAPI 5268 * @dev: device to init 5269 * 5270 * This takes a network device structure and initialize the minimum 5271 * amount of fields so it can be used to schedule NAPI polls without 5272 * registering a full blown interface. This is to be used by drivers 5273 * that need to tie several hardware interfaces to a single NAPI 5274 * poll scheduler due to HW limitations. 5275 */ 5276int init_dummy_netdev(struct net_device *dev) 5277{ 5278 /* Clear everything. Note we don't initialize spinlocks 5279 * are they aren't supposed to be taken by any of the 5280 * NAPI code and this dummy netdev is supposed to be 5281 * only ever used for NAPI polls 5282 */ 5283 memset(dev, 0, sizeof(struct net_device)); 5284 5285 /* make sure we BUG if trying to hit standard 5286 * register/unregister code path 5287 */ 5288 dev->reg_state = NETREG_DUMMY; 5289 5290 /* NAPI wants this */ 5291 INIT_LIST_HEAD(&dev->napi_list); 5292 5293 /* a dummy interface is started by default */ 5294 set_bit(__LINK_STATE_PRESENT, &dev->state); 5295 set_bit(__LINK_STATE_START, &dev->state); 5296 5297 /* Note : We dont allocate pcpu_refcnt for dummy devices, 5298 * because users of this 'device' dont need to change 5299 * its refcount. 5300 */ 5301 5302 return 0; 5303} 5304EXPORT_SYMBOL_GPL(init_dummy_netdev); 5305 5306 5307/** 5308 * register_netdev - register a network device 5309 * @dev: device to register 5310 * 5311 * Take a completed network device structure and add it to the kernel 5312 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 5313 * chain. 0 is returned on success. A negative errno code is returned 5314 * on a failure to set up the device, or if the name is a duplicate. 5315 * 5316 * This is a wrapper around register_netdevice that takes the rtnl semaphore 5317 * and expands the device name if you passed a format string to 5318 * alloc_netdev. 5319 */ 5320int register_netdev(struct net_device *dev) 5321{ 5322 int err; 5323 5324 rtnl_lock(); 5325 err = register_netdevice(dev); 5326 rtnl_unlock(); 5327 return err; 5328} 5329EXPORT_SYMBOL(register_netdev); 5330 5331int netdev_refcnt_read(const struct net_device *dev) 5332{ 5333 int i, refcnt = 0; 5334 5335 for_each_possible_cpu(i) 5336 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 5337 return refcnt; 5338} 5339EXPORT_SYMBOL(netdev_refcnt_read); 5340 5341/** 5342 * netdev_wait_allrefs - wait until all references are gone. 5343 * @dev: target net_device 5344 * 5345 * This is called when unregistering network devices. 5346 * 5347 * Any protocol or device that holds a reference should register 5348 * for netdevice notification, and cleanup and put back the 5349 * reference if they receive an UNREGISTER event. 5350 * We can get stuck here if buggy protocols don't correctly 5351 * call dev_put. 5352 */ 5353static void netdev_wait_allrefs(struct net_device *dev) 5354{ 5355 unsigned long rebroadcast_time, warning_time; 5356 int refcnt; 5357 5358 linkwatch_forget_dev(dev); 5359 5360 rebroadcast_time = warning_time = jiffies; 5361 refcnt = netdev_refcnt_read(dev); 5362 5363 while (refcnt != 0) { 5364 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 5365 rtnl_lock(); 5366 5367 /* Rebroadcast unregister notification */ 5368 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 5369 5370 __rtnl_unlock(); 5371 rcu_barrier(); 5372 rtnl_lock(); 5373 5374 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 5375 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 5376 &dev->state)) { 5377 /* We must not have linkwatch events 5378 * pending on unregister. If this 5379 * happens, we simply run the queue 5380 * unscheduled, resulting in a noop 5381 * for this device. 5382 */ 5383 linkwatch_run_queue(); 5384 } 5385 5386 __rtnl_unlock(); 5387 5388 rebroadcast_time = jiffies; 5389 } 5390 5391 msleep(250); 5392 5393 refcnt = netdev_refcnt_read(dev); 5394 5395 if (time_after(jiffies, warning_time + 10 * HZ)) { 5396 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 5397 dev->name, refcnt); 5398 warning_time = jiffies; 5399 } 5400 } 5401} 5402 5403/* The sequence is: 5404 * 5405 * rtnl_lock(); 5406 * ... 5407 * register_netdevice(x1); 5408 * register_netdevice(x2); 5409 * ... 5410 * unregister_netdevice(y1); 5411 * unregister_netdevice(y2); 5412 * ... 5413 * rtnl_unlock(); 5414 * free_netdev(y1); 5415 * free_netdev(y2); 5416 * 5417 * We are invoked by rtnl_unlock(). 5418 * This allows us to deal with problems: 5419 * 1) We can delete sysfs objects which invoke hotplug 5420 * without deadlocking with linkwatch via keventd. 5421 * 2) Since we run with the RTNL semaphore not held, we can sleep 5422 * safely in order to wait for the netdev refcnt to drop to zero. 5423 * 5424 * We must not return until all unregister events added during 5425 * the interval the lock was held have been completed. 5426 */ 5427void netdev_run_todo(void) 5428{ 5429 struct list_head list; 5430 5431 /* Snapshot list, allow later requests */ 5432 list_replace_init(&net_todo_list, &list); 5433 5434 __rtnl_unlock(); 5435 5436 5437 /* Wait for rcu callbacks to finish before next phase */ 5438 if (!list_empty(&list)) 5439 rcu_barrier(); 5440 5441 while (!list_empty(&list)) { 5442 struct net_device *dev 5443 = list_first_entry(&list, struct net_device, todo_list); 5444 list_del(&dev->todo_list); 5445 5446 rtnl_lock(); 5447 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 5448 __rtnl_unlock(); 5449 5450 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 5451 pr_err("network todo '%s' but state %d\n", 5452 dev->name, dev->reg_state); 5453 dump_stack(); 5454 continue; 5455 } 5456 5457 dev->reg_state = NETREG_UNREGISTERED; 5458 5459 on_each_cpu(flush_backlog, dev, 1); 5460 5461 netdev_wait_allrefs(dev); 5462 5463 /* paranoia */ 5464 BUG_ON(netdev_refcnt_read(dev)); 5465 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 5466 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 5467 WARN_ON(dev->dn_ptr); 5468 5469 if (dev->destructor) 5470 dev->destructor(dev); 5471 5472 /* Free network device */ 5473 kobject_put(&dev->dev.kobj); 5474 } 5475} 5476 5477/* Convert net_device_stats to rtnl_link_stats64. They have the same 5478 * fields in the same order, with only the type differing. 5479 */ 5480void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 5481 const struct net_device_stats *netdev_stats) 5482{ 5483#if BITS_PER_LONG == 64 5484 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats)); 5485 memcpy(stats64, netdev_stats, sizeof(*stats64)); 5486#else 5487 size_t i, n = sizeof(*stats64) / sizeof(u64); 5488 const unsigned long *src = (const unsigned long *)netdev_stats; 5489 u64 *dst = (u64 *)stats64; 5490 5491 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) != 5492 sizeof(*stats64) / sizeof(u64)); 5493 for (i = 0; i < n; i++) 5494 dst[i] = src[i]; 5495#endif 5496} 5497EXPORT_SYMBOL(netdev_stats_to_stats64); 5498 5499/** 5500 * dev_get_stats - get network device statistics 5501 * @dev: device to get statistics from 5502 * @storage: place to store stats 5503 * 5504 * Get network statistics from device. Return @storage. 5505 * The device driver may provide its own method by setting 5506 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 5507 * otherwise the internal statistics structure is used. 5508 */ 5509struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 5510 struct rtnl_link_stats64 *storage) 5511{ 5512 const struct net_device_ops *ops = dev->netdev_ops; 5513 5514 if (ops->ndo_get_stats64) { 5515 memset(storage, 0, sizeof(*storage)); 5516 ops->ndo_get_stats64(dev, storage); 5517 } else if (ops->ndo_get_stats) { 5518 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 5519 } else { 5520 netdev_stats_to_stats64(storage, &dev->stats); 5521 } 5522 storage->rx_dropped += atomic_long_read(&dev->rx_dropped); 5523 return storage; 5524} 5525EXPORT_SYMBOL(dev_get_stats); 5526 5527struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 5528{ 5529 struct netdev_queue *queue = dev_ingress_queue(dev); 5530 5531#ifdef CONFIG_NET_CLS_ACT 5532 if (queue) 5533 return queue; 5534 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 5535 if (!queue) 5536 return NULL; 5537 netdev_init_one_queue(dev, queue, NULL); 5538 queue->qdisc = &noop_qdisc; 5539 queue->qdisc_sleeping = &noop_qdisc; 5540 rcu_assign_pointer(dev->ingress_queue, queue); 5541#endif 5542 return queue; 5543} 5544 5545static const struct ethtool_ops default_ethtool_ops; 5546 5547void netdev_set_default_ethtool_ops(struct net_device *dev, 5548 const struct ethtool_ops *ops) 5549{ 5550 if (dev->ethtool_ops == &default_ethtool_ops) 5551 dev->ethtool_ops = ops; 5552} 5553EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 5554 5555/** 5556 * alloc_netdev_mqs - allocate network device 5557 * @sizeof_priv: size of private data to allocate space for 5558 * @name: device name format string 5559 * @setup: callback to initialize device 5560 * @txqs: the number of TX subqueues to allocate 5561 * @rxqs: the number of RX subqueues to allocate 5562 * 5563 * Allocates a struct net_device with private data area for driver use 5564 * and performs basic initialization. Also allocates subquue structs 5565 * for each queue on the device. 5566 */ 5567struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 5568 void (*setup)(struct net_device *), 5569 unsigned int txqs, unsigned int rxqs) 5570{ 5571 struct net_device *dev; 5572 size_t alloc_size; 5573 struct net_device *p; 5574 5575 BUG_ON(strlen(name) >= sizeof(dev->name)); 5576 5577 if (txqs < 1) { 5578 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 5579 return NULL; 5580 } 5581 5582#ifdef CONFIG_RPS 5583 if (rxqs < 1) { 5584 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 5585 return NULL; 5586 } 5587#endif 5588 5589 alloc_size = sizeof(struct net_device); 5590 if (sizeof_priv) { 5591 /* ensure 32-byte alignment of private area */ 5592 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 5593 alloc_size += sizeof_priv; 5594 } 5595 /* ensure 32-byte alignment of whole construct */ 5596 alloc_size += NETDEV_ALIGN - 1; 5597 5598 p = kzalloc(alloc_size, GFP_KERNEL); 5599 if (!p) 5600 return NULL; 5601 5602 dev = PTR_ALIGN(p, NETDEV_ALIGN); 5603 dev->padded = (char *)dev - (char *)p; 5604 5605 dev->pcpu_refcnt = alloc_percpu(int); 5606 if (!dev->pcpu_refcnt) 5607 goto free_p; 5608 5609 if (dev_addr_init(dev)) 5610 goto free_pcpu; 5611 5612 dev_mc_init(dev); 5613 dev_uc_init(dev); 5614 5615 dev_net_set(dev, &init_net); 5616 5617 dev->gso_max_size = GSO_MAX_SIZE; 5618 dev->gso_max_segs = GSO_MAX_SEGS; 5619 5620 INIT_LIST_HEAD(&dev->napi_list); 5621 INIT_LIST_HEAD(&dev->unreg_list); 5622 INIT_LIST_HEAD(&dev->link_watch_list); 5623 INIT_LIST_HEAD(&dev->upper_dev_list); 5624 dev->priv_flags = IFF_XMIT_DST_RELEASE; 5625 setup(dev); 5626 5627 dev->num_tx_queues = txqs; 5628 dev->real_num_tx_queues = txqs; 5629 if (netif_alloc_netdev_queues(dev)) 5630 goto free_all; 5631 5632#ifdef CONFIG_RPS 5633 dev->num_rx_queues = rxqs; 5634 dev->real_num_rx_queues = rxqs; 5635 if (netif_alloc_rx_queues(dev)) 5636 goto free_all; 5637#endif 5638 5639 strcpy(dev->name, name); 5640 dev->group = INIT_NETDEV_GROUP; 5641 if (!dev->ethtool_ops) 5642 dev->ethtool_ops = &default_ethtool_ops; 5643 return dev; 5644 5645free_all: 5646 free_netdev(dev); 5647 return NULL; 5648 5649free_pcpu: 5650 free_percpu(dev->pcpu_refcnt); 5651 kfree(dev->_tx); 5652#ifdef CONFIG_RPS 5653 kfree(dev->_rx); 5654#endif 5655 5656free_p: 5657 kfree(p); 5658 return NULL; 5659} 5660EXPORT_SYMBOL(alloc_netdev_mqs); 5661 5662/** 5663 * free_netdev - free network device 5664 * @dev: device 5665 * 5666 * This function does the last stage of destroying an allocated device 5667 * interface. The reference to the device object is released. 5668 * If this is the last reference then it will be freed. 5669 */ 5670void free_netdev(struct net_device *dev) 5671{ 5672 struct napi_struct *p, *n; 5673 5674 release_net(dev_net(dev)); 5675 5676 kfree(dev->_tx); 5677#ifdef CONFIG_RPS 5678 kfree(dev->_rx); 5679#endif 5680 5681 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 5682 5683 /* Flush device addresses */ 5684 dev_addr_flush(dev); 5685 5686 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 5687 netif_napi_del(p); 5688 5689 free_percpu(dev->pcpu_refcnt); 5690 dev->pcpu_refcnt = NULL; 5691 5692 /* Compatibility with error handling in drivers */ 5693 if (dev->reg_state == NETREG_UNINITIALIZED) { 5694 kfree((char *)dev - dev->padded); 5695 return; 5696 } 5697 5698 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 5699 dev->reg_state = NETREG_RELEASED; 5700 5701 /* will free via device release */ 5702 put_device(&dev->dev); 5703} 5704EXPORT_SYMBOL(free_netdev); 5705 5706/** 5707 * synchronize_net - Synchronize with packet receive processing 5708 * 5709 * Wait for packets currently being received to be done. 5710 * Does not block later packets from starting. 5711 */ 5712void synchronize_net(void) 5713{ 5714 might_sleep(); 5715 if (rtnl_is_locked()) 5716 synchronize_rcu_expedited(); 5717 else 5718 synchronize_rcu(); 5719} 5720EXPORT_SYMBOL(synchronize_net); 5721 5722/** 5723 * unregister_netdevice_queue - remove device from the kernel 5724 * @dev: device 5725 * @head: list 5726 * 5727 * This function shuts down a device interface and removes it 5728 * from the kernel tables. 5729 * If head not NULL, device is queued to be unregistered later. 5730 * 5731 * Callers must hold the rtnl semaphore. You may want 5732 * unregister_netdev() instead of this. 5733 */ 5734 5735void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 5736{ 5737 ASSERT_RTNL(); 5738 5739 if (head) { 5740 list_move_tail(&dev->unreg_list, head); 5741 } else { 5742 rollback_registered(dev); 5743 /* Finish processing unregister after unlock */ 5744 net_set_todo(dev); 5745 } 5746} 5747EXPORT_SYMBOL(unregister_netdevice_queue); 5748 5749/** 5750 * unregister_netdevice_many - unregister many devices 5751 * @head: list of devices 5752 */ 5753void unregister_netdevice_many(struct list_head *head) 5754{ 5755 struct net_device *dev; 5756 5757 if (!list_empty(head)) { 5758 rollback_registered_many(head); 5759 list_for_each_entry(dev, head, unreg_list) 5760 net_set_todo(dev); 5761 } 5762} 5763EXPORT_SYMBOL(unregister_netdevice_many); 5764 5765/** 5766 * unregister_netdev - remove device from the kernel 5767 * @dev: device 5768 * 5769 * This function shuts down a device interface and removes it 5770 * from the kernel tables. 5771 * 5772 * This is just a wrapper for unregister_netdevice that takes 5773 * the rtnl semaphore. In general you want to use this and not 5774 * unregister_netdevice. 5775 */ 5776void unregister_netdev(struct net_device *dev) 5777{ 5778 rtnl_lock(); 5779 unregister_netdevice(dev); 5780 rtnl_unlock(); 5781} 5782EXPORT_SYMBOL(unregister_netdev); 5783 5784/** 5785 * dev_change_net_namespace - move device to different nethost namespace 5786 * @dev: device 5787 * @net: network namespace 5788 * @pat: If not NULL name pattern to try if the current device name 5789 * is already taken in the destination network namespace. 5790 * 5791 * This function shuts down a device interface and moves it 5792 * to a new network namespace. On success 0 is returned, on 5793 * a failure a netagive errno code is returned. 5794 * 5795 * Callers must hold the rtnl semaphore. 5796 */ 5797 5798int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 5799{ 5800 int err; 5801 5802 ASSERT_RTNL(); 5803 5804 /* Don't allow namespace local devices to be moved. */ 5805 err = -EINVAL; 5806 if (dev->features & NETIF_F_NETNS_LOCAL) 5807 goto out; 5808 5809 /* Ensure the device has been registrered */ 5810 if (dev->reg_state != NETREG_REGISTERED) 5811 goto out; 5812 5813 /* Get out if there is nothing todo */ 5814 err = 0; 5815 if (net_eq(dev_net(dev), net)) 5816 goto out; 5817 5818 /* Pick the destination device name, and ensure 5819 * we can use it in the destination network namespace. 5820 */ 5821 err = -EEXIST; 5822 if (__dev_get_by_name(net, dev->name)) { 5823 /* We get here if we can't use the current device name */ 5824 if (!pat) 5825 goto out; 5826 if (dev_get_valid_name(net, dev, pat) < 0) 5827 goto out; 5828 } 5829 5830 /* 5831 * And now a mini version of register_netdevice unregister_netdevice. 5832 */ 5833 5834 /* If device is running close it first. */ 5835 dev_close(dev); 5836 5837 /* And unlink it from device chain */ 5838 err = -ENODEV; 5839 unlist_netdevice(dev); 5840 5841 synchronize_net(); 5842 5843 /* Shutdown queueing discipline. */ 5844 dev_shutdown(dev); 5845 5846 /* Notify protocols, that we are about to destroy 5847 this device. They should clean all the things. 5848 5849 Note that dev->reg_state stays at NETREG_REGISTERED. 5850 This is wanted because this way 8021q and macvlan know 5851 the device is just moving and can keep their slaves up. 5852 */ 5853 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 5854 rcu_barrier(); 5855 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 5856 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U); 5857 5858 /* 5859 * Flush the unicast and multicast chains 5860 */ 5861 dev_uc_flush(dev); 5862 dev_mc_flush(dev); 5863 5864 /* Send a netdev-removed uevent to the old namespace */ 5865 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 5866 5867 /* Actually switch the network namespace */ 5868 dev_net_set(dev, net); 5869 5870 /* If there is an ifindex conflict assign a new one */ 5871 if (__dev_get_by_index(net, dev->ifindex)) { 5872 int iflink = (dev->iflink == dev->ifindex); 5873 dev->ifindex = dev_new_index(net); 5874 if (iflink) 5875 dev->iflink = dev->ifindex; 5876 } 5877 5878 /* Send a netdev-add uevent to the new namespace */ 5879 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 5880 5881 /* Fixup kobjects */ 5882 err = device_rename(&dev->dev, dev->name); 5883 WARN_ON(err); 5884 5885 /* Add the device back in the hashes */ 5886 list_netdevice(dev); 5887 5888 /* Notify protocols, that a new device appeared. */ 5889 call_netdevice_notifiers(NETDEV_REGISTER, dev); 5890 5891 /* 5892 * Prevent userspace races by waiting until the network 5893 * device is fully setup before sending notifications. 5894 */ 5895 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U); 5896 5897 synchronize_net(); 5898 err = 0; 5899out: 5900 return err; 5901} 5902EXPORT_SYMBOL_GPL(dev_change_net_namespace); 5903 5904static int dev_cpu_callback(struct notifier_block *nfb, 5905 unsigned long action, 5906 void *ocpu) 5907{ 5908 struct sk_buff **list_skb; 5909 struct sk_buff *skb; 5910 unsigned int cpu, oldcpu = (unsigned long)ocpu; 5911 struct softnet_data *sd, *oldsd; 5912 5913 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 5914 return NOTIFY_OK; 5915 5916 local_irq_disable(); 5917 cpu = smp_processor_id(); 5918 sd = &per_cpu(softnet_data, cpu); 5919 oldsd = &per_cpu(softnet_data, oldcpu); 5920 5921 /* Find end of our completion_queue. */ 5922 list_skb = &sd->completion_queue; 5923 while (*list_skb) 5924 list_skb = &(*list_skb)->next; 5925 /* Append completion queue from offline CPU. */ 5926 *list_skb = oldsd->completion_queue; 5927 oldsd->completion_queue = NULL; 5928 5929 /* Append output queue from offline CPU. */ 5930 if (oldsd->output_queue) { 5931 *sd->output_queue_tailp = oldsd->output_queue; 5932 sd->output_queue_tailp = oldsd->output_queue_tailp; 5933 oldsd->output_queue = NULL; 5934 oldsd->output_queue_tailp = &oldsd->output_queue; 5935 } 5936 /* Append NAPI poll list from offline CPU. */ 5937 if (!list_empty(&oldsd->poll_list)) { 5938 list_splice_init(&oldsd->poll_list, &sd->poll_list); 5939 raise_softirq_irqoff(NET_RX_SOFTIRQ); 5940 } 5941 5942 raise_softirq_irqoff(NET_TX_SOFTIRQ); 5943 local_irq_enable(); 5944 5945 /* Process offline CPU's input_pkt_queue */ 5946 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 5947 netif_rx(skb); 5948 input_queue_head_incr(oldsd); 5949 } 5950 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) { 5951 netif_rx(skb); 5952 input_queue_head_incr(oldsd); 5953 } 5954 5955 return NOTIFY_OK; 5956} 5957 5958 5959/** 5960 * netdev_increment_features - increment feature set by one 5961 * @all: current feature set 5962 * @one: new feature set 5963 * @mask: mask feature set 5964 * 5965 * Computes a new feature set after adding a device with feature set 5966 * @one to the master device with current feature set @all. Will not 5967 * enable anything that is off in @mask. Returns the new feature set. 5968 */ 5969netdev_features_t netdev_increment_features(netdev_features_t all, 5970 netdev_features_t one, netdev_features_t mask) 5971{ 5972 if (mask & NETIF_F_GEN_CSUM) 5973 mask |= NETIF_F_ALL_CSUM; 5974 mask |= NETIF_F_VLAN_CHALLENGED; 5975 5976 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask; 5977 all &= one | ~NETIF_F_ALL_FOR_ALL; 5978 5979 /* If one device supports hw checksumming, set for all. */ 5980 if (all & NETIF_F_GEN_CSUM) 5981 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM); 5982 5983 return all; 5984} 5985EXPORT_SYMBOL(netdev_increment_features); 5986 5987static struct hlist_head *netdev_create_hash(void) 5988{ 5989 int i; 5990 struct hlist_head *hash; 5991 5992 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL); 5993 if (hash != NULL) 5994 for (i = 0; i < NETDEV_HASHENTRIES; i++) 5995 INIT_HLIST_HEAD(&hash[i]); 5996 5997 return hash; 5998} 5999 6000/* Initialize per network namespace state */ 6001static int __net_init netdev_init(struct net *net) 6002{ 6003 if (net != &init_net) 6004 INIT_LIST_HEAD(&net->dev_base_head); 6005 6006 net->dev_name_head = netdev_create_hash(); 6007 if (net->dev_name_head == NULL) 6008 goto err_name; 6009 6010 net->dev_index_head = netdev_create_hash(); 6011 if (net->dev_index_head == NULL) 6012 goto err_idx; 6013 6014 return 0; 6015 6016err_idx: 6017 kfree(net->dev_name_head); 6018err_name: 6019 return -ENOMEM; 6020} 6021 6022/** 6023 * netdev_drivername - network driver for the device 6024 * @dev: network device 6025 * 6026 * Determine network driver for device. 6027 */ 6028const char *netdev_drivername(const struct net_device *dev) 6029{ 6030 const struct device_driver *driver; 6031 const struct device *parent; 6032 const char *empty = ""; 6033 6034 parent = dev->dev.parent; 6035 if (!parent) 6036 return empty; 6037 6038 driver = parent->driver; 6039 if (driver && driver->name) 6040 return driver->name; 6041 return empty; 6042} 6043 6044static int __netdev_printk(const char *level, const struct net_device *dev, 6045 struct va_format *vaf) 6046{ 6047 int r; 6048 6049 if (dev && dev->dev.parent) { 6050 r = dev_printk_emit(level[1] - '0', 6051 dev->dev.parent, 6052 "%s %s %s: %pV", 6053 dev_driver_string(dev->dev.parent), 6054 dev_name(dev->dev.parent), 6055 netdev_name(dev), vaf); 6056 } else if (dev) { 6057 r = printk("%s%s: %pV", level, netdev_name(dev), vaf); 6058 } else { 6059 r = printk("%s(NULL net_device): %pV", level, vaf); 6060 } 6061 6062 return r; 6063} 6064 6065int netdev_printk(const char *level, const struct net_device *dev, 6066 const char *format, ...) 6067{ 6068 struct va_format vaf; 6069 va_list args; 6070 int r; 6071 6072 va_start(args, format); 6073 6074 vaf.fmt = format; 6075 vaf.va = &args; 6076 6077 r = __netdev_printk(level, dev, &vaf); 6078 6079 va_end(args); 6080 6081 return r; 6082} 6083EXPORT_SYMBOL(netdev_printk); 6084 6085#define define_netdev_printk_level(func, level) \ 6086int func(const struct net_device *dev, const char *fmt, ...) \ 6087{ \ 6088 int r; \ 6089 struct va_format vaf; \ 6090 va_list args; \ 6091 \ 6092 va_start(args, fmt); \ 6093 \ 6094 vaf.fmt = fmt; \ 6095 vaf.va = &args; \ 6096 \ 6097 r = __netdev_printk(level, dev, &vaf); \ 6098 \ 6099 va_end(args); \ 6100 \ 6101 return r; \ 6102} \ 6103EXPORT_SYMBOL(func); 6104 6105define_netdev_printk_level(netdev_emerg, KERN_EMERG); 6106define_netdev_printk_level(netdev_alert, KERN_ALERT); 6107define_netdev_printk_level(netdev_crit, KERN_CRIT); 6108define_netdev_printk_level(netdev_err, KERN_ERR); 6109define_netdev_printk_level(netdev_warn, KERN_WARNING); 6110define_netdev_printk_level(netdev_notice, KERN_NOTICE); 6111define_netdev_printk_level(netdev_info, KERN_INFO); 6112 6113static void __net_exit netdev_exit(struct net *net) 6114{ 6115 kfree(net->dev_name_head); 6116 kfree(net->dev_index_head); 6117} 6118 6119static struct pernet_operations __net_initdata netdev_net_ops = { 6120 .init = netdev_init, 6121 .exit = netdev_exit, 6122}; 6123 6124static void __net_exit default_device_exit(struct net *net) 6125{ 6126 struct net_device *dev, *aux; 6127 /* 6128 * Push all migratable network devices back to the 6129 * initial network namespace 6130 */ 6131 rtnl_lock(); 6132 for_each_netdev_safe(net, dev, aux) { 6133 int err; 6134 char fb_name[IFNAMSIZ]; 6135 6136 /* Ignore unmoveable devices (i.e. loopback) */ 6137 if (dev->features & NETIF_F_NETNS_LOCAL) 6138 continue; 6139 6140 /* Leave virtual devices for the generic cleanup */ 6141 if (dev->rtnl_link_ops) 6142 continue; 6143 6144 /* Push remaining network devices to init_net */ 6145 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 6146 err = dev_change_net_namespace(dev, &init_net, fb_name); 6147 if (err) { 6148 pr_emerg("%s: failed to move %s to init_net: %d\n", 6149 __func__, dev->name, err); 6150 BUG(); 6151 } 6152 } 6153 rtnl_unlock(); 6154} 6155 6156static void __net_exit default_device_exit_batch(struct list_head *net_list) 6157{ 6158 /* At exit all network devices most be removed from a network 6159 * namespace. Do this in the reverse order of registration. 6160 * Do this across as many network namespaces as possible to 6161 * improve batching efficiency. 6162 */ 6163 struct net_device *dev; 6164 struct net *net; 6165 LIST_HEAD(dev_kill_list); 6166 6167 rtnl_lock(); 6168 list_for_each_entry(net, net_list, exit_list) { 6169 for_each_netdev_reverse(net, dev) { 6170 if (dev->rtnl_link_ops) 6171 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 6172 else 6173 unregister_netdevice_queue(dev, &dev_kill_list); 6174 } 6175 } 6176 unregister_netdevice_many(&dev_kill_list); 6177 list_del(&dev_kill_list); 6178 rtnl_unlock(); 6179} 6180 6181static struct pernet_operations __net_initdata default_device_ops = { 6182 .exit = default_device_exit, 6183 .exit_batch = default_device_exit_batch, 6184}; 6185 6186/* 6187 * Initialize the DEV module. At boot time this walks the device list and 6188 * unhooks any devices that fail to initialise (normally hardware not 6189 * present) and leaves us with a valid list of present and active devices. 6190 * 6191 */ 6192 6193/* 6194 * This is called single threaded during boot, so no need 6195 * to take the rtnl semaphore. 6196 */ 6197static int __init net_dev_init(void) 6198{ 6199 int i, rc = -ENOMEM; 6200 6201 BUG_ON(!dev_boot_phase); 6202 6203 if (dev_proc_init()) 6204 goto out; 6205 6206 if (netdev_kobject_init()) 6207 goto out; 6208 6209 INIT_LIST_HEAD(&ptype_all); 6210 for (i = 0; i < PTYPE_HASH_SIZE; i++) 6211 INIT_LIST_HEAD(&ptype_base[i]); 6212 6213 INIT_LIST_HEAD(&offload_base); 6214 6215 if (register_pernet_subsys(&netdev_net_ops)) 6216 goto out; 6217 6218 /* 6219 * Initialise the packet receive queues. 6220 */ 6221 6222 for_each_possible_cpu(i) { 6223 struct softnet_data *sd = &per_cpu(softnet_data, i); 6224 6225 memset(sd, 0, sizeof(*sd)); 6226 skb_queue_head_init(&sd->input_pkt_queue); 6227 skb_queue_head_init(&sd->process_queue); 6228 sd->completion_queue = NULL; 6229 INIT_LIST_HEAD(&sd->poll_list); 6230 sd->output_queue = NULL; 6231 sd->output_queue_tailp = &sd->output_queue; 6232#ifdef CONFIG_RPS 6233 sd->csd.func = rps_trigger_softirq; 6234 sd->csd.info = sd; 6235 sd->csd.flags = 0; 6236 sd->cpu = i; 6237#endif 6238 6239 sd->backlog.poll = process_backlog; 6240 sd->backlog.weight = weight_p; 6241 sd->backlog.gro_list = NULL; 6242 sd->backlog.gro_count = 0; 6243 } 6244 6245 dev_boot_phase = 0; 6246 6247 /* The loopback device is special if any other network devices 6248 * is present in a network namespace the loopback device must 6249 * be present. Since we now dynamically allocate and free the 6250 * loopback device ensure this invariant is maintained by 6251 * keeping the loopback device as the first device on the 6252 * list of network devices. Ensuring the loopback devices 6253 * is the first device that appears and the last network device 6254 * that disappears. 6255 */ 6256 if (register_pernet_device(&loopback_net_ops)) 6257 goto out; 6258 6259 if (register_pernet_device(&default_device_ops)) 6260 goto out; 6261 6262 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 6263 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 6264 6265 hotcpu_notifier(dev_cpu_callback, 0); 6266 dst_init(); 6267 rc = 0; 6268out: 6269 return rc; 6270} 6271 6272subsys_initcall(net_dev_init);