Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75#include <asm/uaccess.h>
76#include <linux/bitops.h>
77#include <linux/capability.h>
78#include <linux/cpu.h>
79#include <linux/types.h>
80#include <linux/kernel.h>
81#include <linux/hash.h>
82#include <linux/slab.h>
83#include <linux/sched.h>
84#include <linux/mutex.h>
85#include <linux/string.h>
86#include <linux/mm.h>
87#include <linux/socket.h>
88#include <linux/sockios.h>
89#include <linux/errno.h>
90#include <linux/interrupt.h>
91#include <linux/if_ether.h>
92#include <linux/netdevice.h>
93#include <linux/etherdevice.h>
94#include <linux/ethtool.h>
95#include <linux/notifier.h>
96#include <linux/skbuff.h>
97#include <net/net_namespace.h>
98#include <net/sock.h>
99#include <linux/rtnetlink.h>
100#include <linux/stat.h>
101#include <net/dst.h>
102#include <net/pkt_sched.h>
103#include <net/checksum.h>
104#include <net/xfrm.h>
105#include <linux/highmem.h>
106#include <linux/init.h>
107#include <linux/module.h>
108#include <linux/netpoll.h>
109#include <linux/rcupdate.h>
110#include <linux/delay.h>
111#include <net/iw_handler.h>
112#include <asm/current.h>
113#include <linux/audit.h>
114#include <linux/dmaengine.h>
115#include <linux/err.h>
116#include <linux/ctype.h>
117#include <linux/if_arp.h>
118#include <linux/if_vlan.h>
119#include <linux/ip.h>
120#include <net/ip.h>
121#include <linux/ipv6.h>
122#include <linux/in.h>
123#include <linux/jhash.h>
124#include <linux/random.h>
125#include <trace/events/napi.h>
126#include <trace/events/net.h>
127#include <trace/events/skb.h>
128#include <linux/pci.h>
129#include <linux/inetdevice.h>
130#include <linux/cpu_rmap.h>
131#include <linux/static_key.h>
132
133#include "net-sysfs.h"
134
135/* Instead of increasing this, you should create a hash table. */
136#define MAX_GRO_SKBS 8
137
138/* This should be increased if a protocol with a bigger head is added. */
139#define GRO_MAX_HEAD (MAX_HEADER + 128)
140
141static DEFINE_SPINLOCK(ptype_lock);
142static DEFINE_SPINLOCK(offload_lock);
143struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
144struct list_head ptype_all __read_mostly; /* Taps */
145static struct list_head offload_base __read_mostly;
146
147/*
148 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
149 * semaphore.
150 *
151 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
152 *
153 * Writers must hold the rtnl semaphore while they loop through the
154 * dev_base_head list, and hold dev_base_lock for writing when they do the
155 * actual updates. This allows pure readers to access the list even
156 * while a writer is preparing to update it.
157 *
158 * To put it another way, dev_base_lock is held for writing only to
159 * protect against pure readers; the rtnl semaphore provides the
160 * protection against other writers.
161 *
162 * See, for example usages, register_netdevice() and
163 * unregister_netdevice(), which must be called with the rtnl
164 * semaphore held.
165 */
166DEFINE_RWLOCK(dev_base_lock);
167EXPORT_SYMBOL(dev_base_lock);
168
169seqcount_t devnet_rename_seq;
170
171static inline void dev_base_seq_inc(struct net *net)
172{
173 while (++net->dev_base_seq == 0);
174}
175
176static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
177{
178 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
179
180 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
181}
182
183static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
184{
185 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
186}
187
188static inline void rps_lock(struct softnet_data *sd)
189{
190#ifdef CONFIG_RPS
191 spin_lock(&sd->input_pkt_queue.lock);
192#endif
193}
194
195static inline void rps_unlock(struct softnet_data *sd)
196{
197#ifdef CONFIG_RPS
198 spin_unlock(&sd->input_pkt_queue.lock);
199#endif
200}
201
202/* Device list insertion */
203static int list_netdevice(struct net_device *dev)
204{
205 struct net *net = dev_net(dev);
206
207 ASSERT_RTNL();
208
209 write_lock_bh(&dev_base_lock);
210 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
211 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
212 hlist_add_head_rcu(&dev->index_hlist,
213 dev_index_hash(net, dev->ifindex));
214 write_unlock_bh(&dev_base_lock);
215
216 dev_base_seq_inc(net);
217
218 return 0;
219}
220
221/* Device list removal
222 * caller must respect a RCU grace period before freeing/reusing dev
223 */
224static void unlist_netdevice(struct net_device *dev)
225{
226 ASSERT_RTNL();
227
228 /* Unlink dev from the device chain */
229 write_lock_bh(&dev_base_lock);
230 list_del_rcu(&dev->dev_list);
231 hlist_del_rcu(&dev->name_hlist);
232 hlist_del_rcu(&dev->index_hlist);
233 write_unlock_bh(&dev_base_lock);
234
235 dev_base_seq_inc(dev_net(dev));
236}
237
238/*
239 * Our notifier list
240 */
241
242static RAW_NOTIFIER_HEAD(netdev_chain);
243
244/*
245 * Device drivers call our routines to queue packets here. We empty the
246 * queue in the local softnet handler.
247 */
248
249DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
250EXPORT_PER_CPU_SYMBOL(softnet_data);
251
252#ifdef CONFIG_LOCKDEP
253/*
254 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
255 * according to dev->type
256 */
257static const unsigned short netdev_lock_type[] =
258 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
259 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
260 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
261 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
262 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
263 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
264 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
265 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
266 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
267 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
268 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
269 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
270 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
271 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
272 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
273
274static const char *const netdev_lock_name[] =
275 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
276 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
277 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
278 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
279 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
280 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
281 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
282 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
283 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
284 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
285 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
286 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
287 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
288 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
289 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
290
291static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
292static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
293
294static inline unsigned short netdev_lock_pos(unsigned short dev_type)
295{
296 int i;
297
298 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
299 if (netdev_lock_type[i] == dev_type)
300 return i;
301 /* the last key is used by default */
302 return ARRAY_SIZE(netdev_lock_type) - 1;
303}
304
305static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
306 unsigned short dev_type)
307{
308 int i;
309
310 i = netdev_lock_pos(dev_type);
311 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
312 netdev_lock_name[i]);
313}
314
315static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
316{
317 int i;
318
319 i = netdev_lock_pos(dev->type);
320 lockdep_set_class_and_name(&dev->addr_list_lock,
321 &netdev_addr_lock_key[i],
322 netdev_lock_name[i]);
323}
324#else
325static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
326 unsigned short dev_type)
327{
328}
329static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
330{
331}
332#endif
333
334/*******************************************************************************
335
336 Protocol management and registration routines
337
338*******************************************************************************/
339
340/*
341 * Add a protocol ID to the list. Now that the input handler is
342 * smarter we can dispense with all the messy stuff that used to be
343 * here.
344 *
345 * BEWARE!!! Protocol handlers, mangling input packets,
346 * MUST BE last in hash buckets and checking protocol handlers
347 * MUST start from promiscuous ptype_all chain in net_bh.
348 * It is true now, do not change it.
349 * Explanation follows: if protocol handler, mangling packet, will
350 * be the first on list, it is not able to sense, that packet
351 * is cloned and should be copied-on-write, so that it will
352 * change it and subsequent readers will get broken packet.
353 * --ANK (980803)
354 */
355
356static inline struct list_head *ptype_head(const struct packet_type *pt)
357{
358 if (pt->type == htons(ETH_P_ALL))
359 return &ptype_all;
360 else
361 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
362}
363
364/**
365 * dev_add_pack - add packet handler
366 * @pt: packet type declaration
367 *
368 * Add a protocol handler to the networking stack. The passed &packet_type
369 * is linked into kernel lists and may not be freed until it has been
370 * removed from the kernel lists.
371 *
372 * This call does not sleep therefore it can not
373 * guarantee all CPU's that are in middle of receiving packets
374 * will see the new packet type (until the next received packet).
375 */
376
377void dev_add_pack(struct packet_type *pt)
378{
379 struct list_head *head = ptype_head(pt);
380
381 spin_lock(&ptype_lock);
382 list_add_rcu(&pt->list, head);
383 spin_unlock(&ptype_lock);
384}
385EXPORT_SYMBOL(dev_add_pack);
386
387/**
388 * __dev_remove_pack - remove packet handler
389 * @pt: packet type declaration
390 *
391 * Remove a protocol handler that was previously added to the kernel
392 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
393 * from the kernel lists and can be freed or reused once this function
394 * returns.
395 *
396 * The packet type might still be in use by receivers
397 * and must not be freed until after all the CPU's have gone
398 * through a quiescent state.
399 */
400void __dev_remove_pack(struct packet_type *pt)
401{
402 struct list_head *head = ptype_head(pt);
403 struct packet_type *pt1;
404
405 spin_lock(&ptype_lock);
406
407 list_for_each_entry(pt1, head, list) {
408 if (pt == pt1) {
409 list_del_rcu(&pt->list);
410 goto out;
411 }
412 }
413
414 pr_warn("dev_remove_pack: %p not found\n", pt);
415out:
416 spin_unlock(&ptype_lock);
417}
418EXPORT_SYMBOL(__dev_remove_pack);
419
420/**
421 * dev_remove_pack - remove packet handler
422 * @pt: packet type declaration
423 *
424 * Remove a protocol handler that was previously added to the kernel
425 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
426 * from the kernel lists and can be freed or reused once this function
427 * returns.
428 *
429 * This call sleeps to guarantee that no CPU is looking at the packet
430 * type after return.
431 */
432void dev_remove_pack(struct packet_type *pt)
433{
434 __dev_remove_pack(pt);
435
436 synchronize_net();
437}
438EXPORT_SYMBOL(dev_remove_pack);
439
440
441/**
442 * dev_add_offload - register offload handlers
443 * @po: protocol offload declaration
444 *
445 * Add protocol offload handlers to the networking stack. The passed
446 * &proto_offload is linked into kernel lists and may not be freed until
447 * it has been removed from the kernel lists.
448 *
449 * This call does not sleep therefore it can not
450 * guarantee all CPU's that are in middle of receiving packets
451 * will see the new offload handlers (until the next received packet).
452 */
453void dev_add_offload(struct packet_offload *po)
454{
455 struct list_head *head = &offload_base;
456
457 spin_lock(&offload_lock);
458 list_add_rcu(&po->list, head);
459 spin_unlock(&offload_lock);
460}
461EXPORT_SYMBOL(dev_add_offload);
462
463/**
464 * __dev_remove_offload - remove offload handler
465 * @po: packet offload declaration
466 *
467 * Remove a protocol offload handler that was previously added to the
468 * kernel offload handlers by dev_add_offload(). The passed &offload_type
469 * is removed from the kernel lists and can be freed or reused once this
470 * function returns.
471 *
472 * The packet type might still be in use by receivers
473 * and must not be freed until after all the CPU's have gone
474 * through a quiescent state.
475 */
476void __dev_remove_offload(struct packet_offload *po)
477{
478 struct list_head *head = &offload_base;
479 struct packet_offload *po1;
480
481 spin_lock(&offload_lock);
482
483 list_for_each_entry(po1, head, list) {
484 if (po == po1) {
485 list_del_rcu(&po->list);
486 goto out;
487 }
488 }
489
490 pr_warn("dev_remove_offload: %p not found\n", po);
491out:
492 spin_unlock(&offload_lock);
493}
494EXPORT_SYMBOL(__dev_remove_offload);
495
496/**
497 * dev_remove_offload - remove packet offload handler
498 * @po: packet offload declaration
499 *
500 * Remove a packet offload handler that was previously added to the kernel
501 * offload handlers by dev_add_offload(). The passed &offload_type is
502 * removed from the kernel lists and can be freed or reused once this
503 * function returns.
504 *
505 * This call sleeps to guarantee that no CPU is looking at the packet
506 * type after return.
507 */
508void dev_remove_offload(struct packet_offload *po)
509{
510 __dev_remove_offload(po);
511
512 synchronize_net();
513}
514EXPORT_SYMBOL(dev_remove_offload);
515
516/******************************************************************************
517
518 Device Boot-time Settings Routines
519
520*******************************************************************************/
521
522/* Boot time configuration table */
523static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
524
525/**
526 * netdev_boot_setup_add - add new setup entry
527 * @name: name of the device
528 * @map: configured settings for the device
529 *
530 * Adds new setup entry to the dev_boot_setup list. The function
531 * returns 0 on error and 1 on success. This is a generic routine to
532 * all netdevices.
533 */
534static int netdev_boot_setup_add(char *name, struct ifmap *map)
535{
536 struct netdev_boot_setup *s;
537 int i;
538
539 s = dev_boot_setup;
540 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
541 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
542 memset(s[i].name, 0, sizeof(s[i].name));
543 strlcpy(s[i].name, name, IFNAMSIZ);
544 memcpy(&s[i].map, map, sizeof(s[i].map));
545 break;
546 }
547 }
548
549 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
550}
551
552/**
553 * netdev_boot_setup_check - check boot time settings
554 * @dev: the netdevice
555 *
556 * Check boot time settings for the device.
557 * The found settings are set for the device to be used
558 * later in the device probing.
559 * Returns 0 if no settings found, 1 if they are.
560 */
561int netdev_boot_setup_check(struct net_device *dev)
562{
563 struct netdev_boot_setup *s = dev_boot_setup;
564 int i;
565
566 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
567 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
568 !strcmp(dev->name, s[i].name)) {
569 dev->irq = s[i].map.irq;
570 dev->base_addr = s[i].map.base_addr;
571 dev->mem_start = s[i].map.mem_start;
572 dev->mem_end = s[i].map.mem_end;
573 return 1;
574 }
575 }
576 return 0;
577}
578EXPORT_SYMBOL(netdev_boot_setup_check);
579
580
581/**
582 * netdev_boot_base - get address from boot time settings
583 * @prefix: prefix for network device
584 * @unit: id for network device
585 *
586 * Check boot time settings for the base address of device.
587 * The found settings are set for the device to be used
588 * later in the device probing.
589 * Returns 0 if no settings found.
590 */
591unsigned long netdev_boot_base(const char *prefix, int unit)
592{
593 const struct netdev_boot_setup *s = dev_boot_setup;
594 char name[IFNAMSIZ];
595 int i;
596
597 sprintf(name, "%s%d", prefix, unit);
598
599 /*
600 * If device already registered then return base of 1
601 * to indicate not to probe for this interface
602 */
603 if (__dev_get_by_name(&init_net, name))
604 return 1;
605
606 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
607 if (!strcmp(name, s[i].name))
608 return s[i].map.base_addr;
609 return 0;
610}
611
612/*
613 * Saves at boot time configured settings for any netdevice.
614 */
615int __init netdev_boot_setup(char *str)
616{
617 int ints[5];
618 struct ifmap map;
619
620 str = get_options(str, ARRAY_SIZE(ints), ints);
621 if (!str || !*str)
622 return 0;
623
624 /* Save settings */
625 memset(&map, 0, sizeof(map));
626 if (ints[0] > 0)
627 map.irq = ints[1];
628 if (ints[0] > 1)
629 map.base_addr = ints[2];
630 if (ints[0] > 2)
631 map.mem_start = ints[3];
632 if (ints[0] > 3)
633 map.mem_end = ints[4];
634
635 /* Add new entry to the list */
636 return netdev_boot_setup_add(str, &map);
637}
638
639__setup("netdev=", netdev_boot_setup);
640
641/*******************************************************************************
642
643 Device Interface Subroutines
644
645*******************************************************************************/
646
647/**
648 * __dev_get_by_name - find a device by its name
649 * @net: the applicable net namespace
650 * @name: name to find
651 *
652 * Find an interface by name. Must be called under RTNL semaphore
653 * or @dev_base_lock. If the name is found a pointer to the device
654 * is returned. If the name is not found then %NULL is returned. The
655 * reference counters are not incremented so the caller must be
656 * careful with locks.
657 */
658
659struct net_device *__dev_get_by_name(struct net *net, const char *name)
660{
661 struct net_device *dev;
662 struct hlist_head *head = dev_name_hash(net, name);
663
664 hlist_for_each_entry(dev, head, name_hlist)
665 if (!strncmp(dev->name, name, IFNAMSIZ))
666 return dev;
667
668 return NULL;
669}
670EXPORT_SYMBOL(__dev_get_by_name);
671
672/**
673 * dev_get_by_name_rcu - find a device by its name
674 * @net: the applicable net namespace
675 * @name: name to find
676 *
677 * Find an interface by name.
678 * If the name is found a pointer to the device is returned.
679 * If the name is not found then %NULL is returned.
680 * The reference counters are not incremented so the caller must be
681 * careful with locks. The caller must hold RCU lock.
682 */
683
684struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
685{
686 struct net_device *dev;
687 struct hlist_head *head = dev_name_hash(net, name);
688
689 hlist_for_each_entry_rcu(dev, head, name_hlist)
690 if (!strncmp(dev->name, name, IFNAMSIZ))
691 return dev;
692
693 return NULL;
694}
695EXPORT_SYMBOL(dev_get_by_name_rcu);
696
697/**
698 * dev_get_by_name - find a device by its name
699 * @net: the applicable net namespace
700 * @name: name to find
701 *
702 * Find an interface by name. This can be called from any
703 * context and does its own locking. The returned handle has
704 * the usage count incremented and the caller must use dev_put() to
705 * release it when it is no longer needed. %NULL is returned if no
706 * matching device is found.
707 */
708
709struct net_device *dev_get_by_name(struct net *net, const char *name)
710{
711 struct net_device *dev;
712
713 rcu_read_lock();
714 dev = dev_get_by_name_rcu(net, name);
715 if (dev)
716 dev_hold(dev);
717 rcu_read_unlock();
718 return dev;
719}
720EXPORT_SYMBOL(dev_get_by_name);
721
722/**
723 * __dev_get_by_index - find a device by its ifindex
724 * @net: the applicable net namespace
725 * @ifindex: index of device
726 *
727 * Search for an interface by index. Returns %NULL if the device
728 * is not found or a pointer to the device. The device has not
729 * had its reference counter increased so the caller must be careful
730 * about locking. The caller must hold either the RTNL semaphore
731 * or @dev_base_lock.
732 */
733
734struct net_device *__dev_get_by_index(struct net *net, int ifindex)
735{
736 struct net_device *dev;
737 struct hlist_head *head = dev_index_hash(net, ifindex);
738
739 hlist_for_each_entry(dev, head, index_hlist)
740 if (dev->ifindex == ifindex)
741 return dev;
742
743 return NULL;
744}
745EXPORT_SYMBOL(__dev_get_by_index);
746
747/**
748 * dev_get_by_index_rcu - find a device by its ifindex
749 * @net: the applicable net namespace
750 * @ifindex: index of device
751 *
752 * Search for an interface by index. Returns %NULL if the device
753 * is not found or a pointer to the device. The device has not
754 * had its reference counter increased so the caller must be careful
755 * about locking. The caller must hold RCU lock.
756 */
757
758struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
759{
760 struct net_device *dev;
761 struct hlist_head *head = dev_index_hash(net, ifindex);
762
763 hlist_for_each_entry_rcu(dev, head, index_hlist)
764 if (dev->ifindex == ifindex)
765 return dev;
766
767 return NULL;
768}
769EXPORT_SYMBOL(dev_get_by_index_rcu);
770
771
772/**
773 * dev_get_by_index - find a device by its ifindex
774 * @net: the applicable net namespace
775 * @ifindex: index of device
776 *
777 * Search for an interface by index. Returns NULL if the device
778 * is not found or a pointer to the device. The device returned has
779 * had a reference added and the pointer is safe until the user calls
780 * dev_put to indicate they have finished with it.
781 */
782
783struct net_device *dev_get_by_index(struct net *net, int ifindex)
784{
785 struct net_device *dev;
786
787 rcu_read_lock();
788 dev = dev_get_by_index_rcu(net, ifindex);
789 if (dev)
790 dev_hold(dev);
791 rcu_read_unlock();
792 return dev;
793}
794EXPORT_SYMBOL(dev_get_by_index);
795
796/**
797 * dev_getbyhwaddr_rcu - find a device by its hardware address
798 * @net: the applicable net namespace
799 * @type: media type of device
800 * @ha: hardware address
801 *
802 * Search for an interface by MAC address. Returns NULL if the device
803 * is not found or a pointer to the device.
804 * The caller must hold RCU or RTNL.
805 * The returned device has not had its ref count increased
806 * and the caller must therefore be careful about locking
807 *
808 */
809
810struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
811 const char *ha)
812{
813 struct net_device *dev;
814
815 for_each_netdev_rcu(net, dev)
816 if (dev->type == type &&
817 !memcmp(dev->dev_addr, ha, dev->addr_len))
818 return dev;
819
820 return NULL;
821}
822EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
823
824struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
825{
826 struct net_device *dev;
827
828 ASSERT_RTNL();
829 for_each_netdev(net, dev)
830 if (dev->type == type)
831 return dev;
832
833 return NULL;
834}
835EXPORT_SYMBOL(__dev_getfirstbyhwtype);
836
837struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
838{
839 struct net_device *dev, *ret = NULL;
840
841 rcu_read_lock();
842 for_each_netdev_rcu(net, dev)
843 if (dev->type == type) {
844 dev_hold(dev);
845 ret = dev;
846 break;
847 }
848 rcu_read_unlock();
849 return ret;
850}
851EXPORT_SYMBOL(dev_getfirstbyhwtype);
852
853/**
854 * dev_get_by_flags_rcu - find any device with given flags
855 * @net: the applicable net namespace
856 * @if_flags: IFF_* values
857 * @mask: bitmask of bits in if_flags to check
858 *
859 * Search for any interface with the given flags. Returns NULL if a device
860 * is not found or a pointer to the device. Must be called inside
861 * rcu_read_lock(), and result refcount is unchanged.
862 */
863
864struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
865 unsigned short mask)
866{
867 struct net_device *dev, *ret;
868
869 ret = NULL;
870 for_each_netdev_rcu(net, dev) {
871 if (((dev->flags ^ if_flags) & mask) == 0) {
872 ret = dev;
873 break;
874 }
875 }
876 return ret;
877}
878EXPORT_SYMBOL(dev_get_by_flags_rcu);
879
880/**
881 * dev_valid_name - check if name is okay for network device
882 * @name: name string
883 *
884 * Network device names need to be valid file names to
885 * to allow sysfs to work. We also disallow any kind of
886 * whitespace.
887 */
888bool dev_valid_name(const char *name)
889{
890 if (*name == '\0')
891 return false;
892 if (strlen(name) >= IFNAMSIZ)
893 return false;
894 if (!strcmp(name, ".") || !strcmp(name, ".."))
895 return false;
896
897 while (*name) {
898 if (*name == '/' || isspace(*name))
899 return false;
900 name++;
901 }
902 return true;
903}
904EXPORT_SYMBOL(dev_valid_name);
905
906/**
907 * __dev_alloc_name - allocate a name for a device
908 * @net: network namespace to allocate the device name in
909 * @name: name format string
910 * @buf: scratch buffer and result name string
911 *
912 * Passed a format string - eg "lt%d" it will try and find a suitable
913 * id. It scans list of devices to build up a free map, then chooses
914 * the first empty slot. The caller must hold the dev_base or rtnl lock
915 * while allocating the name and adding the device in order to avoid
916 * duplicates.
917 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
918 * Returns the number of the unit assigned or a negative errno code.
919 */
920
921static int __dev_alloc_name(struct net *net, const char *name, char *buf)
922{
923 int i = 0;
924 const char *p;
925 const int max_netdevices = 8*PAGE_SIZE;
926 unsigned long *inuse;
927 struct net_device *d;
928
929 p = strnchr(name, IFNAMSIZ-1, '%');
930 if (p) {
931 /*
932 * Verify the string as this thing may have come from
933 * the user. There must be either one "%d" and no other "%"
934 * characters.
935 */
936 if (p[1] != 'd' || strchr(p + 2, '%'))
937 return -EINVAL;
938
939 /* Use one page as a bit array of possible slots */
940 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
941 if (!inuse)
942 return -ENOMEM;
943
944 for_each_netdev(net, d) {
945 if (!sscanf(d->name, name, &i))
946 continue;
947 if (i < 0 || i >= max_netdevices)
948 continue;
949
950 /* avoid cases where sscanf is not exact inverse of printf */
951 snprintf(buf, IFNAMSIZ, name, i);
952 if (!strncmp(buf, d->name, IFNAMSIZ))
953 set_bit(i, inuse);
954 }
955
956 i = find_first_zero_bit(inuse, max_netdevices);
957 free_page((unsigned long) inuse);
958 }
959
960 if (buf != name)
961 snprintf(buf, IFNAMSIZ, name, i);
962 if (!__dev_get_by_name(net, buf))
963 return i;
964
965 /* It is possible to run out of possible slots
966 * when the name is long and there isn't enough space left
967 * for the digits, or if all bits are used.
968 */
969 return -ENFILE;
970}
971
972/**
973 * dev_alloc_name - allocate a name for a device
974 * @dev: device
975 * @name: name format string
976 *
977 * Passed a format string - eg "lt%d" it will try and find a suitable
978 * id. It scans list of devices to build up a free map, then chooses
979 * the first empty slot. The caller must hold the dev_base or rtnl lock
980 * while allocating the name and adding the device in order to avoid
981 * duplicates.
982 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
983 * Returns the number of the unit assigned or a negative errno code.
984 */
985
986int dev_alloc_name(struct net_device *dev, const char *name)
987{
988 char buf[IFNAMSIZ];
989 struct net *net;
990 int ret;
991
992 BUG_ON(!dev_net(dev));
993 net = dev_net(dev);
994 ret = __dev_alloc_name(net, name, buf);
995 if (ret >= 0)
996 strlcpy(dev->name, buf, IFNAMSIZ);
997 return ret;
998}
999EXPORT_SYMBOL(dev_alloc_name);
1000
1001static int dev_alloc_name_ns(struct net *net,
1002 struct net_device *dev,
1003 const char *name)
1004{
1005 char buf[IFNAMSIZ];
1006 int ret;
1007
1008 ret = __dev_alloc_name(net, name, buf);
1009 if (ret >= 0)
1010 strlcpy(dev->name, buf, IFNAMSIZ);
1011 return ret;
1012}
1013
1014static int dev_get_valid_name(struct net *net,
1015 struct net_device *dev,
1016 const char *name)
1017{
1018 BUG_ON(!net);
1019
1020 if (!dev_valid_name(name))
1021 return -EINVAL;
1022
1023 if (strchr(name, '%'))
1024 return dev_alloc_name_ns(net, dev, name);
1025 else if (__dev_get_by_name(net, name))
1026 return -EEXIST;
1027 else if (dev->name != name)
1028 strlcpy(dev->name, name, IFNAMSIZ);
1029
1030 return 0;
1031}
1032
1033/**
1034 * dev_change_name - change name of a device
1035 * @dev: device
1036 * @newname: name (or format string) must be at least IFNAMSIZ
1037 *
1038 * Change name of a device, can pass format strings "eth%d".
1039 * for wildcarding.
1040 */
1041int dev_change_name(struct net_device *dev, const char *newname)
1042{
1043 char oldname[IFNAMSIZ];
1044 int err = 0;
1045 int ret;
1046 struct net *net;
1047
1048 ASSERT_RTNL();
1049 BUG_ON(!dev_net(dev));
1050
1051 net = dev_net(dev);
1052 if (dev->flags & IFF_UP)
1053 return -EBUSY;
1054
1055 write_seqcount_begin(&devnet_rename_seq);
1056
1057 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1058 write_seqcount_end(&devnet_rename_seq);
1059 return 0;
1060 }
1061
1062 memcpy(oldname, dev->name, IFNAMSIZ);
1063
1064 err = dev_get_valid_name(net, dev, newname);
1065 if (err < 0) {
1066 write_seqcount_end(&devnet_rename_seq);
1067 return err;
1068 }
1069
1070rollback:
1071 ret = device_rename(&dev->dev, dev->name);
1072 if (ret) {
1073 memcpy(dev->name, oldname, IFNAMSIZ);
1074 write_seqcount_end(&devnet_rename_seq);
1075 return ret;
1076 }
1077
1078 write_seqcount_end(&devnet_rename_seq);
1079
1080 write_lock_bh(&dev_base_lock);
1081 hlist_del_rcu(&dev->name_hlist);
1082 write_unlock_bh(&dev_base_lock);
1083
1084 synchronize_rcu();
1085
1086 write_lock_bh(&dev_base_lock);
1087 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1088 write_unlock_bh(&dev_base_lock);
1089
1090 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1091 ret = notifier_to_errno(ret);
1092
1093 if (ret) {
1094 /* err >= 0 after dev_alloc_name() or stores the first errno */
1095 if (err >= 0) {
1096 err = ret;
1097 write_seqcount_begin(&devnet_rename_seq);
1098 memcpy(dev->name, oldname, IFNAMSIZ);
1099 goto rollback;
1100 } else {
1101 pr_err("%s: name change rollback failed: %d\n",
1102 dev->name, ret);
1103 }
1104 }
1105
1106 return err;
1107}
1108
1109/**
1110 * dev_set_alias - change ifalias of a device
1111 * @dev: device
1112 * @alias: name up to IFALIASZ
1113 * @len: limit of bytes to copy from info
1114 *
1115 * Set ifalias for a device,
1116 */
1117int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1118{
1119 char *new_ifalias;
1120
1121 ASSERT_RTNL();
1122
1123 if (len >= IFALIASZ)
1124 return -EINVAL;
1125
1126 if (!len) {
1127 kfree(dev->ifalias);
1128 dev->ifalias = NULL;
1129 return 0;
1130 }
1131
1132 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1133 if (!new_ifalias)
1134 return -ENOMEM;
1135 dev->ifalias = new_ifalias;
1136
1137 strlcpy(dev->ifalias, alias, len+1);
1138 return len;
1139}
1140
1141
1142/**
1143 * netdev_features_change - device changes features
1144 * @dev: device to cause notification
1145 *
1146 * Called to indicate a device has changed features.
1147 */
1148void netdev_features_change(struct net_device *dev)
1149{
1150 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1151}
1152EXPORT_SYMBOL(netdev_features_change);
1153
1154/**
1155 * netdev_state_change - device changes state
1156 * @dev: device to cause notification
1157 *
1158 * Called to indicate a device has changed state. This function calls
1159 * the notifier chains for netdev_chain and sends a NEWLINK message
1160 * to the routing socket.
1161 */
1162void netdev_state_change(struct net_device *dev)
1163{
1164 if (dev->flags & IFF_UP) {
1165 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1166 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1167 }
1168}
1169EXPORT_SYMBOL(netdev_state_change);
1170
1171/**
1172 * netdev_notify_peers - notify network peers about existence of @dev
1173 * @dev: network device
1174 *
1175 * Generate traffic such that interested network peers are aware of
1176 * @dev, such as by generating a gratuitous ARP. This may be used when
1177 * a device wants to inform the rest of the network about some sort of
1178 * reconfiguration such as a failover event or virtual machine
1179 * migration.
1180 */
1181void netdev_notify_peers(struct net_device *dev)
1182{
1183 rtnl_lock();
1184 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1185 rtnl_unlock();
1186}
1187EXPORT_SYMBOL(netdev_notify_peers);
1188
1189static int __dev_open(struct net_device *dev)
1190{
1191 const struct net_device_ops *ops = dev->netdev_ops;
1192 int ret;
1193
1194 ASSERT_RTNL();
1195
1196 if (!netif_device_present(dev))
1197 return -ENODEV;
1198
1199 /* Block netpoll from trying to do any rx path servicing.
1200 * If we don't do this there is a chance ndo_poll_controller
1201 * or ndo_poll may be running while we open the device
1202 */
1203 ret = netpoll_rx_disable(dev);
1204 if (ret)
1205 return ret;
1206
1207 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1208 ret = notifier_to_errno(ret);
1209 if (ret)
1210 return ret;
1211
1212 set_bit(__LINK_STATE_START, &dev->state);
1213
1214 if (ops->ndo_validate_addr)
1215 ret = ops->ndo_validate_addr(dev);
1216
1217 if (!ret && ops->ndo_open)
1218 ret = ops->ndo_open(dev);
1219
1220 netpoll_rx_enable(dev);
1221
1222 if (ret)
1223 clear_bit(__LINK_STATE_START, &dev->state);
1224 else {
1225 dev->flags |= IFF_UP;
1226 net_dmaengine_get();
1227 dev_set_rx_mode(dev);
1228 dev_activate(dev);
1229 add_device_randomness(dev->dev_addr, dev->addr_len);
1230 }
1231
1232 return ret;
1233}
1234
1235/**
1236 * dev_open - prepare an interface for use.
1237 * @dev: device to open
1238 *
1239 * Takes a device from down to up state. The device's private open
1240 * function is invoked and then the multicast lists are loaded. Finally
1241 * the device is moved into the up state and a %NETDEV_UP message is
1242 * sent to the netdev notifier chain.
1243 *
1244 * Calling this function on an active interface is a nop. On a failure
1245 * a negative errno code is returned.
1246 */
1247int dev_open(struct net_device *dev)
1248{
1249 int ret;
1250
1251 if (dev->flags & IFF_UP)
1252 return 0;
1253
1254 ret = __dev_open(dev);
1255 if (ret < 0)
1256 return ret;
1257
1258 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1259 call_netdevice_notifiers(NETDEV_UP, dev);
1260
1261 return ret;
1262}
1263EXPORT_SYMBOL(dev_open);
1264
1265static int __dev_close_many(struct list_head *head)
1266{
1267 struct net_device *dev;
1268
1269 ASSERT_RTNL();
1270 might_sleep();
1271
1272 list_for_each_entry(dev, head, unreg_list) {
1273 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1274
1275 clear_bit(__LINK_STATE_START, &dev->state);
1276
1277 /* Synchronize to scheduled poll. We cannot touch poll list, it
1278 * can be even on different cpu. So just clear netif_running().
1279 *
1280 * dev->stop() will invoke napi_disable() on all of it's
1281 * napi_struct instances on this device.
1282 */
1283 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1284 }
1285
1286 dev_deactivate_many(head);
1287
1288 list_for_each_entry(dev, head, unreg_list) {
1289 const struct net_device_ops *ops = dev->netdev_ops;
1290
1291 /*
1292 * Call the device specific close. This cannot fail.
1293 * Only if device is UP
1294 *
1295 * We allow it to be called even after a DETACH hot-plug
1296 * event.
1297 */
1298 if (ops->ndo_stop)
1299 ops->ndo_stop(dev);
1300
1301 dev->flags &= ~IFF_UP;
1302 net_dmaengine_put();
1303 }
1304
1305 return 0;
1306}
1307
1308static int __dev_close(struct net_device *dev)
1309{
1310 int retval;
1311 LIST_HEAD(single);
1312
1313 /* Temporarily disable netpoll until the interface is down */
1314 retval = netpoll_rx_disable(dev);
1315 if (retval)
1316 return retval;
1317
1318 list_add(&dev->unreg_list, &single);
1319 retval = __dev_close_many(&single);
1320 list_del(&single);
1321
1322 netpoll_rx_enable(dev);
1323 return retval;
1324}
1325
1326static int dev_close_many(struct list_head *head)
1327{
1328 struct net_device *dev, *tmp;
1329 LIST_HEAD(tmp_list);
1330
1331 list_for_each_entry_safe(dev, tmp, head, unreg_list)
1332 if (!(dev->flags & IFF_UP))
1333 list_move(&dev->unreg_list, &tmp_list);
1334
1335 __dev_close_many(head);
1336
1337 list_for_each_entry(dev, head, unreg_list) {
1338 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1339 call_netdevice_notifiers(NETDEV_DOWN, dev);
1340 }
1341
1342 /* rollback_registered_many needs the complete original list */
1343 list_splice(&tmp_list, head);
1344 return 0;
1345}
1346
1347/**
1348 * dev_close - shutdown an interface.
1349 * @dev: device to shutdown
1350 *
1351 * This function moves an active device into down state. A
1352 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1353 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1354 * chain.
1355 */
1356int dev_close(struct net_device *dev)
1357{
1358 int ret = 0;
1359 if (dev->flags & IFF_UP) {
1360 LIST_HEAD(single);
1361
1362 /* Block netpoll rx while the interface is going down */
1363 ret = netpoll_rx_disable(dev);
1364 if (ret)
1365 return ret;
1366
1367 list_add(&dev->unreg_list, &single);
1368 dev_close_many(&single);
1369 list_del(&single);
1370
1371 netpoll_rx_enable(dev);
1372 }
1373 return ret;
1374}
1375EXPORT_SYMBOL(dev_close);
1376
1377
1378/**
1379 * dev_disable_lro - disable Large Receive Offload on a device
1380 * @dev: device
1381 *
1382 * Disable Large Receive Offload (LRO) on a net device. Must be
1383 * called under RTNL. This is needed if received packets may be
1384 * forwarded to another interface.
1385 */
1386void dev_disable_lro(struct net_device *dev)
1387{
1388 /*
1389 * If we're trying to disable lro on a vlan device
1390 * use the underlying physical device instead
1391 */
1392 if (is_vlan_dev(dev))
1393 dev = vlan_dev_real_dev(dev);
1394
1395 dev->wanted_features &= ~NETIF_F_LRO;
1396 netdev_update_features(dev);
1397
1398 if (unlikely(dev->features & NETIF_F_LRO))
1399 netdev_WARN(dev, "failed to disable LRO!\n");
1400}
1401EXPORT_SYMBOL(dev_disable_lro);
1402
1403
1404static int dev_boot_phase = 1;
1405
1406/**
1407 * register_netdevice_notifier - register a network notifier block
1408 * @nb: notifier
1409 *
1410 * Register a notifier to be called when network device events occur.
1411 * The notifier passed is linked into the kernel structures and must
1412 * not be reused until it has been unregistered. A negative errno code
1413 * is returned on a failure.
1414 *
1415 * When registered all registration and up events are replayed
1416 * to the new notifier to allow device to have a race free
1417 * view of the network device list.
1418 */
1419
1420int register_netdevice_notifier(struct notifier_block *nb)
1421{
1422 struct net_device *dev;
1423 struct net_device *last;
1424 struct net *net;
1425 int err;
1426
1427 rtnl_lock();
1428 err = raw_notifier_chain_register(&netdev_chain, nb);
1429 if (err)
1430 goto unlock;
1431 if (dev_boot_phase)
1432 goto unlock;
1433 for_each_net(net) {
1434 for_each_netdev(net, dev) {
1435 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1436 err = notifier_to_errno(err);
1437 if (err)
1438 goto rollback;
1439
1440 if (!(dev->flags & IFF_UP))
1441 continue;
1442
1443 nb->notifier_call(nb, NETDEV_UP, dev);
1444 }
1445 }
1446
1447unlock:
1448 rtnl_unlock();
1449 return err;
1450
1451rollback:
1452 last = dev;
1453 for_each_net(net) {
1454 for_each_netdev(net, dev) {
1455 if (dev == last)
1456 goto outroll;
1457
1458 if (dev->flags & IFF_UP) {
1459 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1460 nb->notifier_call(nb, NETDEV_DOWN, dev);
1461 }
1462 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1463 }
1464 }
1465
1466outroll:
1467 raw_notifier_chain_unregister(&netdev_chain, nb);
1468 goto unlock;
1469}
1470EXPORT_SYMBOL(register_netdevice_notifier);
1471
1472/**
1473 * unregister_netdevice_notifier - unregister a network notifier block
1474 * @nb: notifier
1475 *
1476 * Unregister a notifier previously registered by
1477 * register_netdevice_notifier(). The notifier is unlinked into the
1478 * kernel structures and may then be reused. A negative errno code
1479 * is returned on a failure.
1480 *
1481 * After unregistering unregister and down device events are synthesized
1482 * for all devices on the device list to the removed notifier to remove
1483 * the need for special case cleanup code.
1484 */
1485
1486int unregister_netdevice_notifier(struct notifier_block *nb)
1487{
1488 struct net_device *dev;
1489 struct net *net;
1490 int err;
1491
1492 rtnl_lock();
1493 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1494 if (err)
1495 goto unlock;
1496
1497 for_each_net(net) {
1498 for_each_netdev(net, dev) {
1499 if (dev->flags & IFF_UP) {
1500 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1501 nb->notifier_call(nb, NETDEV_DOWN, dev);
1502 }
1503 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1504 }
1505 }
1506unlock:
1507 rtnl_unlock();
1508 return err;
1509}
1510EXPORT_SYMBOL(unregister_netdevice_notifier);
1511
1512/**
1513 * call_netdevice_notifiers - call all network notifier blocks
1514 * @val: value passed unmodified to notifier function
1515 * @dev: net_device pointer passed unmodified to notifier function
1516 *
1517 * Call all network notifier blocks. Parameters and return value
1518 * are as for raw_notifier_call_chain().
1519 */
1520
1521int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1522{
1523 ASSERT_RTNL();
1524 return raw_notifier_call_chain(&netdev_chain, val, dev);
1525}
1526EXPORT_SYMBOL(call_netdevice_notifiers);
1527
1528static struct static_key netstamp_needed __read_mostly;
1529#ifdef HAVE_JUMP_LABEL
1530/* We are not allowed to call static_key_slow_dec() from irq context
1531 * If net_disable_timestamp() is called from irq context, defer the
1532 * static_key_slow_dec() calls.
1533 */
1534static atomic_t netstamp_needed_deferred;
1535#endif
1536
1537void net_enable_timestamp(void)
1538{
1539#ifdef HAVE_JUMP_LABEL
1540 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1541
1542 if (deferred) {
1543 while (--deferred)
1544 static_key_slow_dec(&netstamp_needed);
1545 return;
1546 }
1547#endif
1548 static_key_slow_inc(&netstamp_needed);
1549}
1550EXPORT_SYMBOL(net_enable_timestamp);
1551
1552void net_disable_timestamp(void)
1553{
1554#ifdef HAVE_JUMP_LABEL
1555 if (in_interrupt()) {
1556 atomic_inc(&netstamp_needed_deferred);
1557 return;
1558 }
1559#endif
1560 static_key_slow_dec(&netstamp_needed);
1561}
1562EXPORT_SYMBOL(net_disable_timestamp);
1563
1564static inline void net_timestamp_set(struct sk_buff *skb)
1565{
1566 skb->tstamp.tv64 = 0;
1567 if (static_key_false(&netstamp_needed))
1568 __net_timestamp(skb);
1569}
1570
1571#define net_timestamp_check(COND, SKB) \
1572 if (static_key_false(&netstamp_needed)) { \
1573 if ((COND) && !(SKB)->tstamp.tv64) \
1574 __net_timestamp(SKB); \
1575 } \
1576
1577static inline bool is_skb_forwardable(struct net_device *dev,
1578 struct sk_buff *skb)
1579{
1580 unsigned int len;
1581
1582 if (!(dev->flags & IFF_UP))
1583 return false;
1584
1585 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1586 if (skb->len <= len)
1587 return true;
1588
1589 /* if TSO is enabled, we don't care about the length as the packet
1590 * could be forwarded without being segmented before
1591 */
1592 if (skb_is_gso(skb))
1593 return true;
1594
1595 return false;
1596}
1597
1598/**
1599 * dev_forward_skb - loopback an skb to another netif
1600 *
1601 * @dev: destination network device
1602 * @skb: buffer to forward
1603 *
1604 * return values:
1605 * NET_RX_SUCCESS (no congestion)
1606 * NET_RX_DROP (packet was dropped, but freed)
1607 *
1608 * dev_forward_skb can be used for injecting an skb from the
1609 * start_xmit function of one device into the receive queue
1610 * of another device.
1611 *
1612 * The receiving device may be in another namespace, so
1613 * we have to clear all information in the skb that could
1614 * impact namespace isolation.
1615 */
1616int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1617{
1618 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1619 if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1620 atomic_long_inc(&dev->rx_dropped);
1621 kfree_skb(skb);
1622 return NET_RX_DROP;
1623 }
1624 }
1625
1626 skb_orphan(skb);
1627
1628 if (unlikely(!is_skb_forwardable(dev, skb))) {
1629 atomic_long_inc(&dev->rx_dropped);
1630 kfree_skb(skb);
1631 return NET_RX_DROP;
1632 }
1633 skb->skb_iif = 0;
1634 skb->dev = dev;
1635 skb_dst_drop(skb);
1636 skb->tstamp.tv64 = 0;
1637 skb->pkt_type = PACKET_HOST;
1638 skb->protocol = eth_type_trans(skb, dev);
1639 skb->mark = 0;
1640 secpath_reset(skb);
1641 nf_reset(skb);
1642 nf_reset_trace(skb);
1643 return netif_rx(skb);
1644}
1645EXPORT_SYMBOL_GPL(dev_forward_skb);
1646
1647static inline int deliver_skb(struct sk_buff *skb,
1648 struct packet_type *pt_prev,
1649 struct net_device *orig_dev)
1650{
1651 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1652 return -ENOMEM;
1653 atomic_inc(&skb->users);
1654 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1655}
1656
1657static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1658{
1659 if (!ptype->af_packet_priv || !skb->sk)
1660 return false;
1661
1662 if (ptype->id_match)
1663 return ptype->id_match(ptype, skb->sk);
1664 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1665 return true;
1666
1667 return false;
1668}
1669
1670/*
1671 * Support routine. Sends outgoing frames to any network
1672 * taps currently in use.
1673 */
1674
1675static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1676{
1677 struct packet_type *ptype;
1678 struct sk_buff *skb2 = NULL;
1679 struct packet_type *pt_prev = NULL;
1680
1681 rcu_read_lock();
1682 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1683 /* Never send packets back to the socket
1684 * they originated from - MvS (miquels@drinkel.ow.org)
1685 */
1686 if ((ptype->dev == dev || !ptype->dev) &&
1687 (!skb_loop_sk(ptype, skb))) {
1688 if (pt_prev) {
1689 deliver_skb(skb2, pt_prev, skb->dev);
1690 pt_prev = ptype;
1691 continue;
1692 }
1693
1694 skb2 = skb_clone(skb, GFP_ATOMIC);
1695 if (!skb2)
1696 break;
1697
1698 net_timestamp_set(skb2);
1699
1700 /* skb->nh should be correctly
1701 set by sender, so that the second statement is
1702 just protection against buggy protocols.
1703 */
1704 skb_reset_mac_header(skb2);
1705
1706 if (skb_network_header(skb2) < skb2->data ||
1707 skb2->network_header > skb2->tail) {
1708 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1709 ntohs(skb2->protocol),
1710 dev->name);
1711 skb_reset_network_header(skb2);
1712 }
1713
1714 skb2->transport_header = skb2->network_header;
1715 skb2->pkt_type = PACKET_OUTGOING;
1716 pt_prev = ptype;
1717 }
1718 }
1719 if (pt_prev)
1720 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1721 rcu_read_unlock();
1722}
1723
1724/**
1725 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1726 * @dev: Network device
1727 * @txq: number of queues available
1728 *
1729 * If real_num_tx_queues is changed the tc mappings may no longer be
1730 * valid. To resolve this verify the tc mapping remains valid and if
1731 * not NULL the mapping. With no priorities mapping to this
1732 * offset/count pair it will no longer be used. In the worst case TC0
1733 * is invalid nothing can be done so disable priority mappings. If is
1734 * expected that drivers will fix this mapping if they can before
1735 * calling netif_set_real_num_tx_queues.
1736 */
1737static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1738{
1739 int i;
1740 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1741
1742 /* If TC0 is invalidated disable TC mapping */
1743 if (tc->offset + tc->count > txq) {
1744 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1745 dev->num_tc = 0;
1746 return;
1747 }
1748
1749 /* Invalidated prio to tc mappings set to TC0 */
1750 for (i = 1; i < TC_BITMASK + 1; i++) {
1751 int q = netdev_get_prio_tc_map(dev, i);
1752
1753 tc = &dev->tc_to_txq[q];
1754 if (tc->offset + tc->count > txq) {
1755 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1756 i, q);
1757 netdev_set_prio_tc_map(dev, i, 0);
1758 }
1759 }
1760}
1761
1762#ifdef CONFIG_XPS
1763static DEFINE_MUTEX(xps_map_mutex);
1764#define xmap_dereference(P) \
1765 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1766
1767static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1768 int cpu, u16 index)
1769{
1770 struct xps_map *map = NULL;
1771 int pos;
1772
1773 if (dev_maps)
1774 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1775
1776 for (pos = 0; map && pos < map->len; pos++) {
1777 if (map->queues[pos] == index) {
1778 if (map->len > 1) {
1779 map->queues[pos] = map->queues[--map->len];
1780 } else {
1781 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1782 kfree_rcu(map, rcu);
1783 map = NULL;
1784 }
1785 break;
1786 }
1787 }
1788
1789 return map;
1790}
1791
1792static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1793{
1794 struct xps_dev_maps *dev_maps;
1795 int cpu, i;
1796 bool active = false;
1797
1798 mutex_lock(&xps_map_mutex);
1799 dev_maps = xmap_dereference(dev->xps_maps);
1800
1801 if (!dev_maps)
1802 goto out_no_maps;
1803
1804 for_each_possible_cpu(cpu) {
1805 for (i = index; i < dev->num_tx_queues; i++) {
1806 if (!remove_xps_queue(dev_maps, cpu, i))
1807 break;
1808 }
1809 if (i == dev->num_tx_queues)
1810 active = true;
1811 }
1812
1813 if (!active) {
1814 RCU_INIT_POINTER(dev->xps_maps, NULL);
1815 kfree_rcu(dev_maps, rcu);
1816 }
1817
1818 for (i = index; i < dev->num_tx_queues; i++)
1819 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1820 NUMA_NO_NODE);
1821
1822out_no_maps:
1823 mutex_unlock(&xps_map_mutex);
1824}
1825
1826static struct xps_map *expand_xps_map(struct xps_map *map,
1827 int cpu, u16 index)
1828{
1829 struct xps_map *new_map;
1830 int alloc_len = XPS_MIN_MAP_ALLOC;
1831 int i, pos;
1832
1833 for (pos = 0; map && pos < map->len; pos++) {
1834 if (map->queues[pos] != index)
1835 continue;
1836 return map;
1837 }
1838
1839 /* Need to add queue to this CPU's existing map */
1840 if (map) {
1841 if (pos < map->alloc_len)
1842 return map;
1843
1844 alloc_len = map->alloc_len * 2;
1845 }
1846
1847 /* Need to allocate new map to store queue on this CPU's map */
1848 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
1849 cpu_to_node(cpu));
1850 if (!new_map)
1851 return NULL;
1852
1853 for (i = 0; i < pos; i++)
1854 new_map->queues[i] = map->queues[i];
1855 new_map->alloc_len = alloc_len;
1856 new_map->len = pos;
1857
1858 return new_map;
1859}
1860
1861int netif_set_xps_queue(struct net_device *dev, struct cpumask *mask, u16 index)
1862{
1863 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
1864 struct xps_map *map, *new_map;
1865 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
1866 int cpu, numa_node_id = -2;
1867 bool active = false;
1868
1869 mutex_lock(&xps_map_mutex);
1870
1871 dev_maps = xmap_dereference(dev->xps_maps);
1872
1873 /* allocate memory for queue storage */
1874 for_each_online_cpu(cpu) {
1875 if (!cpumask_test_cpu(cpu, mask))
1876 continue;
1877
1878 if (!new_dev_maps)
1879 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
1880 if (!new_dev_maps) {
1881 mutex_unlock(&xps_map_mutex);
1882 return -ENOMEM;
1883 }
1884
1885 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
1886 NULL;
1887
1888 map = expand_xps_map(map, cpu, index);
1889 if (!map)
1890 goto error;
1891
1892 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1893 }
1894
1895 if (!new_dev_maps)
1896 goto out_no_new_maps;
1897
1898 for_each_possible_cpu(cpu) {
1899 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
1900 /* add queue to CPU maps */
1901 int pos = 0;
1902
1903 map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1904 while ((pos < map->len) && (map->queues[pos] != index))
1905 pos++;
1906
1907 if (pos == map->len)
1908 map->queues[map->len++] = index;
1909#ifdef CONFIG_NUMA
1910 if (numa_node_id == -2)
1911 numa_node_id = cpu_to_node(cpu);
1912 else if (numa_node_id != cpu_to_node(cpu))
1913 numa_node_id = -1;
1914#endif
1915 } else if (dev_maps) {
1916 /* fill in the new device map from the old device map */
1917 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1918 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1919 }
1920
1921 }
1922
1923 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
1924
1925 /* Cleanup old maps */
1926 if (dev_maps) {
1927 for_each_possible_cpu(cpu) {
1928 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1929 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1930 if (map && map != new_map)
1931 kfree_rcu(map, rcu);
1932 }
1933
1934 kfree_rcu(dev_maps, rcu);
1935 }
1936
1937 dev_maps = new_dev_maps;
1938 active = true;
1939
1940out_no_new_maps:
1941 /* update Tx queue numa node */
1942 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
1943 (numa_node_id >= 0) ? numa_node_id :
1944 NUMA_NO_NODE);
1945
1946 if (!dev_maps)
1947 goto out_no_maps;
1948
1949 /* removes queue from unused CPUs */
1950 for_each_possible_cpu(cpu) {
1951 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
1952 continue;
1953
1954 if (remove_xps_queue(dev_maps, cpu, index))
1955 active = true;
1956 }
1957
1958 /* free map if not active */
1959 if (!active) {
1960 RCU_INIT_POINTER(dev->xps_maps, NULL);
1961 kfree_rcu(dev_maps, rcu);
1962 }
1963
1964out_no_maps:
1965 mutex_unlock(&xps_map_mutex);
1966
1967 return 0;
1968error:
1969 /* remove any maps that we added */
1970 for_each_possible_cpu(cpu) {
1971 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1972 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
1973 NULL;
1974 if (new_map && new_map != map)
1975 kfree(new_map);
1976 }
1977
1978 mutex_unlock(&xps_map_mutex);
1979
1980 kfree(new_dev_maps);
1981 return -ENOMEM;
1982}
1983EXPORT_SYMBOL(netif_set_xps_queue);
1984
1985#endif
1986/*
1987 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
1988 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
1989 */
1990int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
1991{
1992 int rc;
1993
1994 if (txq < 1 || txq > dev->num_tx_queues)
1995 return -EINVAL;
1996
1997 if (dev->reg_state == NETREG_REGISTERED ||
1998 dev->reg_state == NETREG_UNREGISTERING) {
1999 ASSERT_RTNL();
2000
2001 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2002 txq);
2003 if (rc)
2004 return rc;
2005
2006 if (dev->num_tc)
2007 netif_setup_tc(dev, txq);
2008
2009 if (txq < dev->real_num_tx_queues) {
2010 qdisc_reset_all_tx_gt(dev, txq);
2011#ifdef CONFIG_XPS
2012 netif_reset_xps_queues_gt(dev, txq);
2013#endif
2014 }
2015 }
2016
2017 dev->real_num_tx_queues = txq;
2018 return 0;
2019}
2020EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2021
2022#ifdef CONFIG_RPS
2023/**
2024 * netif_set_real_num_rx_queues - set actual number of RX queues used
2025 * @dev: Network device
2026 * @rxq: Actual number of RX queues
2027 *
2028 * This must be called either with the rtnl_lock held or before
2029 * registration of the net device. Returns 0 on success, or a
2030 * negative error code. If called before registration, it always
2031 * succeeds.
2032 */
2033int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2034{
2035 int rc;
2036
2037 if (rxq < 1 || rxq > dev->num_rx_queues)
2038 return -EINVAL;
2039
2040 if (dev->reg_state == NETREG_REGISTERED) {
2041 ASSERT_RTNL();
2042
2043 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2044 rxq);
2045 if (rc)
2046 return rc;
2047 }
2048
2049 dev->real_num_rx_queues = rxq;
2050 return 0;
2051}
2052EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2053#endif
2054
2055/**
2056 * netif_get_num_default_rss_queues - default number of RSS queues
2057 *
2058 * This routine should set an upper limit on the number of RSS queues
2059 * used by default by multiqueue devices.
2060 */
2061int netif_get_num_default_rss_queues(void)
2062{
2063 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2064}
2065EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2066
2067static inline void __netif_reschedule(struct Qdisc *q)
2068{
2069 struct softnet_data *sd;
2070 unsigned long flags;
2071
2072 local_irq_save(flags);
2073 sd = &__get_cpu_var(softnet_data);
2074 q->next_sched = NULL;
2075 *sd->output_queue_tailp = q;
2076 sd->output_queue_tailp = &q->next_sched;
2077 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2078 local_irq_restore(flags);
2079}
2080
2081void __netif_schedule(struct Qdisc *q)
2082{
2083 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2084 __netif_reschedule(q);
2085}
2086EXPORT_SYMBOL(__netif_schedule);
2087
2088void dev_kfree_skb_irq(struct sk_buff *skb)
2089{
2090 if (atomic_dec_and_test(&skb->users)) {
2091 struct softnet_data *sd;
2092 unsigned long flags;
2093
2094 local_irq_save(flags);
2095 sd = &__get_cpu_var(softnet_data);
2096 skb->next = sd->completion_queue;
2097 sd->completion_queue = skb;
2098 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2099 local_irq_restore(flags);
2100 }
2101}
2102EXPORT_SYMBOL(dev_kfree_skb_irq);
2103
2104void dev_kfree_skb_any(struct sk_buff *skb)
2105{
2106 if (in_irq() || irqs_disabled())
2107 dev_kfree_skb_irq(skb);
2108 else
2109 dev_kfree_skb(skb);
2110}
2111EXPORT_SYMBOL(dev_kfree_skb_any);
2112
2113
2114/**
2115 * netif_device_detach - mark device as removed
2116 * @dev: network device
2117 *
2118 * Mark device as removed from system and therefore no longer available.
2119 */
2120void netif_device_detach(struct net_device *dev)
2121{
2122 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2123 netif_running(dev)) {
2124 netif_tx_stop_all_queues(dev);
2125 }
2126}
2127EXPORT_SYMBOL(netif_device_detach);
2128
2129/**
2130 * netif_device_attach - mark device as attached
2131 * @dev: network device
2132 *
2133 * Mark device as attached from system and restart if needed.
2134 */
2135void netif_device_attach(struct net_device *dev)
2136{
2137 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2138 netif_running(dev)) {
2139 netif_tx_wake_all_queues(dev);
2140 __netdev_watchdog_up(dev);
2141 }
2142}
2143EXPORT_SYMBOL(netif_device_attach);
2144
2145static void skb_warn_bad_offload(const struct sk_buff *skb)
2146{
2147 static const netdev_features_t null_features = 0;
2148 struct net_device *dev = skb->dev;
2149 const char *driver = "";
2150
2151 if (dev && dev->dev.parent)
2152 driver = dev_driver_string(dev->dev.parent);
2153
2154 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2155 "gso_type=%d ip_summed=%d\n",
2156 driver, dev ? &dev->features : &null_features,
2157 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2158 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2159 skb_shinfo(skb)->gso_type, skb->ip_summed);
2160}
2161
2162/*
2163 * Invalidate hardware checksum when packet is to be mangled, and
2164 * complete checksum manually on outgoing path.
2165 */
2166int skb_checksum_help(struct sk_buff *skb)
2167{
2168 __wsum csum;
2169 int ret = 0, offset;
2170
2171 if (skb->ip_summed == CHECKSUM_COMPLETE)
2172 goto out_set_summed;
2173
2174 if (unlikely(skb_shinfo(skb)->gso_size)) {
2175 skb_warn_bad_offload(skb);
2176 return -EINVAL;
2177 }
2178
2179 /* Before computing a checksum, we should make sure no frag could
2180 * be modified by an external entity : checksum could be wrong.
2181 */
2182 if (skb_has_shared_frag(skb)) {
2183 ret = __skb_linearize(skb);
2184 if (ret)
2185 goto out;
2186 }
2187
2188 offset = skb_checksum_start_offset(skb);
2189 BUG_ON(offset >= skb_headlen(skb));
2190 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2191
2192 offset += skb->csum_offset;
2193 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2194
2195 if (skb_cloned(skb) &&
2196 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2197 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2198 if (ret)
2199 goto out;
2200 }
2201
2202 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2203out_set_summed:
2204 skb->ip_summed = CHECKSUM_NONE;
2205out:
2206 return ret;
2207}
2208EXPORT_SYMBOL(skb_checksum_help);
2209
2210/**
2211 * skb_mac_gso_segment - mac layer segmentation handler.
2212 * @skb: buffer to segment
2213 * @features: features for the output path (see dev->features)
2214 */
2215struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2216 netdev_features_t features)
2217{
2218 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2219 struct packet_offload *ptype;
2220 __be16 type = skb->protocol;
2221 int vlan_depth = ETH_HLEN;
2222
2223 while (type == htons(ETH_P_8021Q)) {
2224 struct vlan_hdr *vh;
2225
2226 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN)))
2227 return ERR_PTR(-EINVAL);
2228
2229 vh = (struct vlan_hdr *)(skb->data + vlan_depth);
2230 type = vh->h_vlan_encapsulated_proto;
2231 vlan_depth += VLAN_HLEN;
2232 }
2233
2234 __skb_pull(skb, skb->mac_len);
2235
2236 rcu_read_lock();
2237 list_for_each_entry_rcu(ptype, &offload_base, list) {
2238 if (ptype->type == type && ptype->callbacks.gso_segment) {
2239 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
2240 int err;
2241
2242 err = ptype->callbacks.gso_send_check(skb);
2243 segs = ERR_PTR(err);
2244 if (err || skb_gso_ok(skb, features))
2245 break;
2246 __skb_push(skb, (skb->data -
2247 skb_network_header(skb)));
2248 }
2249 segs = ptype->callbacks.gso_segment(skb, features);
2250 break;
2251 }
2252 }
2253 rcu_read_unlock();
2254
2255 __skb_push(skb, skb->data - skb_mac_header(skb));
2256
2257 return segs;
2258}
2259EXPORT_SYMBOL(skb_mac_gso_segment);
2260
2261
2262/* openvswitch calls this on rx path, so we need a different check.
2263 */
2264static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2265{
2266 if (tx_path)
2267 return skb->ip_summed != CHECKSUM_PARTIAL;
2268 else
2269 return skb->ip_summed == CHECKSUM_NONE;
2270}
2271
2272/**
2273 * __skb_gso_segment - Perform segmentation on skb.
2274 * @skb: buffer to segment
2275 * @features: features for the output path (see dev->features)
2276 * @tx_path: whether it is called in TX path
2277 *
2278 * This function segments the given skb and returns a list of segments.
2279 *
2280 * It may return NULL if the skb requires no segmentation. This is
2281 * only possible when GSO is used for verifying header integrity.
2282 */
2283struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2284 netdev_features_t features, bool tx_path)
2285{
2286 if (unlikely(skb_needs_check(skb, tx_path))) {
2287 int err;
2288
2289 skb_warn_bad_offload(skb);
2290
2291 if (skb_header_cloned(skb) &&
2292 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
2293 return ERR_PTR(err);
2294 }
2295
2296 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2297 skb_reset_mac_header(skb);
2298 skb_reset_mac_len(skb);
2299
2300 return skb_mac_gso_segment(skb, features);
2301}
2302EXPORT_SYMBOL(__skb_gso_segment);
2303
2304/* Take action when hardware reception checksum errors are detected. */
2305#ifdef CONFIG_BUG
2306void netdev_rx_csum_fault(struct net_device *dev)
2307{
2308 if (net_ratelimit()) {
2309 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2310 dump_stack();
2311 }
2312}
2313EXPORT_SYMBOL(netdev_rx_csum_fault);
2314#endif
2315
2316/* Actually, we should eliminate this check as soon as we know, that:
2317 * 1. IOMMU is present and allows to map all the memory.
2318 * 2. No high memory really exists on this machine.
2319 */
2320
2321static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2322{
2323#ifdef CONFIG_HIGHMEM
2324 int i;
2325 if (!(dev->features & NETIF_F_HIGHDMA)) {
2326 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2327 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2328 if (PageHighMem(skb_frag_page(frag)))
2329 return 1;
2330 }
2331 }
2332
2333 if (PCI_DMA_BUS_IS_PHYS) {
2334 struct device *pdev = dev->dev.parent;
2335
2336 if (!pdev)
2337 return 0;
2338 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2339 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2340 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2341 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2342 return 1;
2343 }
2344 }
2345#endif
2346 return 0;
2347}
2348
2349struct dev_gso_cb {
2350 void (*destructor)(struct sk_buff *skb);
2351};
2352
2353#define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
2354
2355static void dev_gso_skb_destructor(struct sk_buff *skb)
2356{
2357 struct dev_gso_cb *cb;
2358
2359 do {
2360 struct sk_buff *nskb = skb->next;
2361
2362 skb->next = nskb->next;
2363 nskb->next = NULL;
2364 kfree_skb(nskb);
2365 } while (skb->next);
2366
2367 cb = DEV_GSO_CB(skb);
2368 if (cb->destructor)
2369 cb->destructor(skb);
2370}
2371
2372/**
2373 * dev_gso_segment - Perform emulated hardware segmentation on skb.
2374 * @skb: buffer to segment
2375 * @features: device features as applicable to this skb
2376 *
2377 * This function segments the given skb and stores the list of segments
2378 * in skb->next.
2379 */
2380static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features)
2381{
2382 struct sk_buff *segs;
2383
2384 segs = skb_gso_segment(skb, features);
2385
2386 /* Verifying header integrity only. */
2387 if (!segs)
2388 return 0;
2389
2390 if (IS_ERR(segs))
2391 return PTR_ERR(segs);
2392
2393 skb->next = segs;
2394 DEV_GSO_CB(skb)->destructor = skb->destructor;
2395 skb->destructor = dev_gso_skb_destructor;
2396
2397 return 0;
2398}
2399
2400static bool can_checksum_protocol(netdev_features_t features, __be16 protocol)
2401{
2402 return ((features & NETIF_F_GEN_CSUM) ||
2403 ((features & NETIF_F_V4_CSUM) &&
2404 protocol == htons(ETH_P_IP)) ||
2405 ((features & NETIF_F_V6_CSUM) &&
2406 protocol == htons(ETH_P_IPV6)) ||
2407 ((features & NETIF_F_FCOE_CRC) &&
2408 protocol == htons(ETH_P_FCOE)));
2409}
2410
2411static netdev_features_t harmonize_features(struct sk_buff *skb,
2412 __be16 protocol, netdev_features_t features)
2413{
2414 if (skb->ip_summed != CHECKSUM_NONE &&
2415 !can_checksum_protocol(features, protocol)) {
2416 features &= ~NETIF_F_ALL_CSUM;
2417 features &= ~NETIF_F_SG;
2418 } else if (illegal_highdma(skb->dev, skb)) {
2419 features &= ~NETIF_F_SG;
2420 }
2421
2422 return features;
2423}
2424
2425netdev_features_t netif_skb_features(struct sk_buff *skb)
2426{
2427 __be16 protocol = skb->protocol;
2428 netdev_features_t features = skb->dev->features;
2429
2430 if (skb_shinfo(skb)->gso_segs > skb->dev->gso_max_segs)
2431 features &= ~NETIF_F_GSO_MASK;
2432
2433 if (protocol == htons(ETH_P_8021Q)) {
2434 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2435 protocol = veh->h_vlan_encapsulated_proto;
2436 } else if (!vlan_tx_tag_present(skb)) {
2437 return harmonize_features(skb, protocol, features);
2438 }
2439
2440 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_TX);
2441
2442 if (protocol != htons(ETH_P_8021Q)) {
2443 return harmonize_features(skb, protocol, features);
2444 } else {
2445 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2446 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_TX;
2447 return harmonize_features(skb, protocol, features);
2448 }
2449}
2450EXPORT_SYMBOL(netif_skb_features);
2451
2452/*
2453 * Returns true if either:
2454 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
2455 * 2. skb is fragmented and the device does not support SG.
2456 */
2457static inline int skb_needs_linearize(struct sk_buff *skb,
2458 int features)
2459{
2460 return skb_is_nonlinear(skb) &&
2461 ((skb_has_frag_list(skb) &&
2462 !(features & NETIF_F_FRAGLIST)) ||
2463 (skb_shinfo(skb)->nr_frags &&
2464 !(features & NETIF_F_SG)));
2465}
2466
2467int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2468 struct netdev_queue *txq)
2469{
2470 const struct net_device_ops *ops = dev->netdev_ops;
2471 int rc = NETDEV_TX_OK;
2472 unsigned int skb_len;
2473
2474 if (likely(!skb->next)) {
2475 netdev_features_t features;
2476
2477 /*
2478 * If device doesn't need skb->dst, release it right now while
2479 * its hot in this cpu cache
2480 */
2481 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2482 skb_dst_drop(skb);
2483
2484 features = netif_skb_features(skb);
2485
2486 if (vlan_tx_tag_present(skb) &&
2487 !(features & NETIF_F_HW_VLAN_TX)) {
2488 skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb));
2489 if (unlikely(!skb))
2490 goto out;
2491
2492 skb->vlan_tci = 0;
2493 }
2494
2495 /* If encapsulation offload request, verify we are testing
2496 * hardware encapsulation features instead of standard
2497 * features for the netdev
2498 */
2499 if (skb->encapsulation)
2500 features &= dev->hw_enc_features;
2501
2502 if (netif_needs_gso(skb, features)) {
2503 if (unlikely(dev_gso_segment(skb, features)))
2504 goto out_kfree_skb;
2505 if (skb->next)
2506 goto gso;
2507 } else {
2508 if (skb_needs_linearize(skb, features) &&
2509 __skb_linearize(skb))
2510 goto out_kfree_skb;
2511
2512 /* If packet is not checksummed and device does not
2513 * support checksumming for this protocol, complete
2514 * checksumming here.
2515 */
2516 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2517 if (skb->encapsulation)
2518 skb_set_inner_transport_header(skb,
2519 skb_checksum_start_offset(skb));
2520 else
2521 skb_set_transport_header(skb,
2522 skb_checksum_start_offset(skb));
2523 if (!(features & NETIF_F_ALL_CSUM) &&
2524 skb_checksum_help(skb))
2525 goto out_kfree_skb;
2526 }
2527 }
2528
2529 if (!list_empty(&ptype_all))
2530 dev_queue_xmit_nit(skb, dev);
2531
2532 skb_len = skb->len;
2533 rc = ops->ndo_start_xmit(skb, dev);
2534 trace_net_dev_xmit(skb, rc, dev, skb_len);
2535 if (rc == NETDEV_TX_OK)
2536 txq_trans_update(txq);
2537 return rc;
2538 }
2539
2540gso:
2541 do {
2542 struct sk_buff *nskb = skb->next;
2543
2544 skb->next = nskb->next;
2545 nskb->next = NULL;
2546
2547 /*
2548 * If device doesn't need nskb->dst, release it right now while
2549 * its hot in this cpu cache
2550 */
2551 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2552 skb_dst_drop(nskb);
2553
2554 if (!list_empty(&ptype_all))
2555 dev_queue_xmit_nit(nskb, dev);
2556
2557 skb_len = nskb->len;
2558 rc = ops->ndo_start_xmit(nskb, dev);
2559 trace_net_dev_xmit(nskb, rc, dev, skb_len);
2560 if (unlikely(rc != NETDEV_TX_OK)) {
2561 if (rc & ~NETDEV_TX_MASK)
2562 goto out_kfree_gso_skb;
2563 nskb->next = skb->next;
2564 skb->next = nskb;
2565 return rc;
2566 }
2567 txq_trans_update(txq);
2568 if (unlikely(netif_xmit_stopped(txq) && skb->next))
2569 return NETDEV_TX_BUSY;
2570 } while (skb->next);
2571
2572out_kfree_gso_skb:
2573 if (likely(skb->next == NULL))
2574 skb->destructor = DEV_GSO_CB(skb)->destructor;
2575out_kfree_skb:
2576 kfree_skb(skb);
2577out:
2578 return rc;
2579}
2580
2581static void qdisc_pkt_len_init(struct sk_buff *skb)
2582{
2583 const struct skb_shared_info *shinfo = skb_shinfo(skb);
2584
2585 qdisc_skb_cb(skb)->pkt_len = skb->len;
2586
2587 /* To get more precise estimation of bytes sent on wire,
2588 * we add to pkt_len the headers size of all segments
2589 */
2590 if (shinfo->gso_size) {
2591 unsigned int hdr_len;
2592
2593 /* mac layer + network layer */
2594 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2595
2596 /* + transport layer */
2597 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2598 hdr_len += tcp_hdrlen(skb);
2599 else
2600 hdr_len += sizeof(struct udphdr);
2601 qdisc_skb_cb(skb)->pkt_len += (shinfo->gso_segs - 1) * hdr_len;
2602 }
2603}
2604
2605static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2606 struct net_device *dev,
2607 struct netdev_queue *txq)
2608{
2609 spinlock_t *root_lock = qdisc_lock(q);
2610 bool contended;
2611 int rc;
2612
2613 qdisc_pkt_len_init(skb);
2614 qdisc_calculate_pkt_len(skb, q);
2615 /*
2616 * Heuristic to force contended enqueues to serialize on a
2617 * separate lock before trying to get qdisc main lock.
2618 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2619 * and dequeue packets faster.
2620 */
2621 contended = qdisc_is_running(q);
2622 if (unlikely(contended))
2623 spin_lock(&q->busylock);
2624
2625 spin_lock(root_lock);
2626 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2627 kfree_skb(skb);
2628 rc = NET_XMIT_DROP;
2629 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2630 qdisc_run_begin(q)) {
2631 /*
2632 * This is a work-conserving queue; there are no old skbs
2633 * waiting to be sent out; and the qdisc is not running -
2634 * xmit the skb directly.
2635 */
2636 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2637 skb_dst_force(skb);
2638
2639 qdisc_bstats_update(q, skb);
2640
2641 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2642 if (unlikely(contended)) {
2643 spin_unlock(&q->busylock);
2644 contended = false;
2645 }
2646 __qdisc_run(q);
2647 } else
2648 qdisc_run_end(q);
2649
2650 rc = NET_XMIT_SUCCESS;
2651 } else {
2652 skb_dst_force(skb);
2653 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2654 if (qdisc_run_begin(q)) {
2655 if (unlikely(contended)) {
2656 spin_unlock(&q->busylock);
2657 contended = false;
2658 }
2659 __qdisc_run(q);
2660 }
2661 }
2662 spin_unlock(root_lock);
2663 if (unlikely(contended))
2664 spin_unlock(&q->busylock);
2665 return rc;
2666}
2667
2668#if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
2669static void skb_update_prio(struct sk_buff *skb)
2670{
2671 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2672
2673 if (!skb->priority && skb->sk && map) {
2674 unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2675
2676 if (prioidx < map->priomap_len)
2677 skb->priority = map->priomap[prioidx];
2678 }
2679}
2680#else
2681#define skb_update_prio(skb)
2682#endif
2683
2684static DEFINE_PER_CPU(int, xmit_recursion);
2685#define RECURSION_LIMIT 10
2686
2687/**
2688 * dev_loopback_xmit - loop back @skb
2689 * @skb: buffer to transmit
2690 */
2691int dev_loopback_xmit(struct sk_buff *skb)
2692{
2693 skb_reset_mac_header(skb);
2694 __skb_pull(skb, skb_network_offset(skb));
2695 skb->pkt_type = PACKET_LOOPBACK;
2696 skb->ip_summed = CHECKSUM_UNNECESSARY;
2697 WARN_ON(!skb_dst(skb));
2698 skb_dst_force(skb);
2699 netif_rx_ni(skb);
2700 return 0;
2701}
2702EXPORT_SYMBOL(dev_loopback_xmit);
2703
2704/**
2705 * dev_queue_xmit - transmit a buffer
2706 * @skb: buffer to transmit
2707 *
2708 * Queue a buffer for transmission to a network device. The caller must
2709 * have set the device and priority and built the buffer before calling
2710 * this function. The function can be called from an interrupt.
2711 *
2712 * A negative errno code is returned on a failure. A success does not
2713 * guarantee the frame will be transmitted as it may be dropped due
2714 * to congestion or traffic shaping.
2715 *
2716 * -----------------------------------------------------------------------------------
2717 * I notice this method can also return errors from the queue disciplines,
2718 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2719 * be positive.
2720 *
2721 * Regardless of the return value, the skb is consumed, so it is currently
2722 * difficult to retry a send to this method. (You can bump the ref count
2723 * before sending to hold a reference for retry if you are careful.)
2724 *
2725 * When calling this method, interrupts MUST be enabled. This is because
2726 * the BH enable code must have IRQs enabled so that it will not deadlock.
2727 * --BLG
2728 */
2729int dev_queue_xmit(struct sk_buff *skb)
2730{
2731 struct net_device *dev = skb->dev;
2732 struct netdev_queue *txq;
2733 struct Qdisc *q;
2734 int rc = -ENOMEM;
2735
2736 skb_reset_mac_header(skb);
2737
2738 /* Disable soft irqs for various locks below. Also
2739 * stops preemption for RCU.
2740 */
2741 rcu_read_lock_bh();
2742
2743 skb_update_prio(skb);
2744
2745 txq = netdev_pick_tx(dev, skb);
2746 q = rcu_dereference_bh(txq->qdisc);
2747
2748#ifdef CONFIG_NET_CLS_ACT
2749 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2750#endif
2751 trace_net_dev_queue(skb);
2752 if (q->enqueue) {
2753 rc = __dev_xmit_skb(skb, q, dev, txq);
2754 goto out;
2755 }
2756
2757 /* The device has no queue. Common case for software devices:
2758 loopback, all the sorts of tunnels...
2759
2760 Really, it is unlikely that netif_tx_lock protection is necessary
2761 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2762 counters.)
2763 However, it is possible, that they rely on protection
2764 made by us here.
2765
2766 Check this and shot the lock. It is not prone from deadlocks.
2767 Either shot noqueue qdisc, it is even simpler 8)
2768 */
2769 if (dev->flags & IFF_UP) {
2770 int cpu = smp_processor_id(); /* ok because BHs are off */
2771
2772 if (txq->xmit_lock_owner != cpu) {
2773
2774 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2775 goto recursion_alert;
2776
2777 HARD_TX_LOCK(dev, txq, cpu);
2778
2779 if (!netif_xmit_stopped(txq)) {
2780 __this_cpu_inc(xmit_recursion);
2781 rc = dev_hard_start_xmit(skb, dev, txq);
2782 __this_cpu_dec(xmit_recursion);
2783 if (dev_xmit_complete(rc)) {
2784 HARD_TX_UNLOCK(dev, txq);
2785 goto out;
2786 }
2787 }
2788 HARD_TX_UNLOCK(dev, txq);
2789 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2790 dev->name);
2791 } else {
2792 /* Recursion is detected! It is possible,
2793 * unfortunately
2794 */
2795recursion_alert:
2796 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
2797 dev->name);
2798 }
2799 }
2800
2801 rc = -ENETDOWN;
2802 rcu_read_unlock_bh();
2803
2804 kfree_skb(skb);
2805 return rc;
2806out:
2807 rcu_read_unlock_bh();
2808 return rc;
2809}
2810EXPORT_SYMBOL(dev_queue_xmit);
2811
2812
2813/*=======================================================================
2814 Receiver routines
2815 =======================================================================*/
2816
2817int netdev_max_backlog __read_mostly = 1000;
2818EXPORT_SYMBOL(netdev_max_backlog);
2819
2820int netdev_tstamp_prequeue __read_mostly = 1;
2821int netdev_budget __read_mostly = 300;
2822int weight_p __read_mostly = 64; /* old backlog weight */
2823
2824/* Called with irq disabled */
2825static inline void ____napi_schedule(struct softnet_data *sd,
2826 struct napi_struct *napi)
2827{
2828 list_add_tail(&napi->poll_list, &sd->poll_list);
2829 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2830}
2831
2832#ifdef CONFIG_RPS
2833
2834/* One global table that all flow-based protocols share. */
2835struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2836EXPORT_SYMBOL(rps_sock_flow_table);
2837
2838struct static_key rps_needed __read_mostly;
2839
2840static struct rps_dev_flow *
2841set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2842 struct rps_dev_flow *rflow, u16 next_cpu)
2843{
2844 if (next_cpu != RPS_NO_CPU) {
2845#ifdef CONFIG_RFS_ACCEL
2846 struct netdev_rx_queue *rxqueue;
2847 struct rps_dev_flow_table *flow_table;
2848 struct rps_dev_flow *old_rflow;
2849 u32 flow_id;
2850 u16 rxq_index;
2851 int rc;
2852
2853 /* Should we steer this flow to a different hardware queue? */
2854 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
2855 !(dev->features & NETIF_F_NTUPLE))
2856 goto out;
2857 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
2858 if (rxq_index == skb_get_rx_queue(skb))
2859 goto out;
2860
2861 rxqueue = dev->_rx + rxq_index;
2862 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2863 if (!flow_table)
2864 goto out;
2865 flow_id = skb->rxhash & flow_table->mask;
2866 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
2867 rxq_index, flow_id);
2868 if (rc < 0)
2869 goto out;
2870 old_rflow = rflow;
2871 rflow = &flow_table->flows[flow_id];
2872 rflow->filter = rc;
2873 if (old_rflow->filter == rflow->filter)
2874 old_rflow->filter = RPS_NO_FILTER;
2875 out:
2876#endif
2877 rflow->last_qtail =
2878 per_cpu(softnet_data, next_cpu).input_queue_head;
2879 }
2880
2881 rflow->cpu = next_cpu;
2882 return rflow;
2883}
2884
2885/*
2886 * get_rps_cpu is called from netif_receive_skb and returns the target
2887 * CPU from the RPS map of the receiving queue for a given skb.
2888 * rcu_read_lock must be held on entry.
2889 */
2890static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2891 struct rps_dev_flow **rflowp)
2892{
2893 struct netdev_rx_queue *rxqueue;
2894 struct rps_map *map;
2895 struct rps_dev_flow_table *flow_table;
2896 struct rps_sock_flow_table *sock_flow_table;
2897 int cpu = -1;
2898 u16 tcpu;
2899
2900 if (skb_rx_queue_recorded(skb)) {
2901 u16 index = skb_get_rx_queue(skb);
2902 if (unlikely(index >= dev->real_num_rx_queues)) {
2903 WARN_ONCE(dev->real_num_rx_queues > 1,
2904 "%s received packet on queue %u, but number "
2905 "of RX queues is %u\n",
2906 dev->name, index, dev->real_num_rx_queues);
2907 goto done;
2908 }
2909 rxqueue = dev->_rx + index;
2910 } else
2911 rxqueue = dev->_rx;
2912
2913 map = rcu_dereference(rxqueue->rps_map);
2914 if (map) {
2915 if (map->len == 1 &&
2916 !rcu_access_pointer(rxqueue->rps_flow_table)) {
2917 tcpu = map->cpus[0];
2918 if (cpu_online(tcpu))
2919 cpu = tcpu;
2920 goto done;
2921 }
2922 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
2923 goto done;
2924 }
2925
2926 skb_reset_network_header(skb);
2927 if (!skb_get_rxhash(skb))
2928 goto done;
2929
2930 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2931 sock_flow_table = rcu_dereference(rps_sock_flow_table);
2932 if (flow_table && sock_flow_table) {
2933 u16 next_cpu;
2934 struct rps_dev_flow *rflow;
2935
2936 rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2937 tcpu = rflow->cpu;
2938
2939 next_cpu = sock_flow_table->ents[skb->rxhash &
2940 sock_flow_table->mask];
2941
2942 /*
2943 * If the desired CPU (where last recvmsg was done) is
2944 * different from current CPU (one in the rx-queue flow
2945 * table entry), switch if one of the following holds:
2946 * - Current CPU is unset (equal to RPS_NO_CPU).
2947 * - Current CPU is offline.
2948 * - The current CPU's queue tail has advanced beyond the
2949 * last packet that was enqueued using this table entry.
2950 * This guarantees that all previous packets for the flow
2951 * have been dequeued, thus preserving in order delivery.
2952 */
2953 if (unlikely(tcpu != next_cpu) &&
2954 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2955 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2956 rflow->last_qtail)) >= 0)) {
2957 tcpu = next_cpu;
2958 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
2959 }
2960
2961 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2962 *rflowp = rflow;
2963 cpu = tcpu;
2964 goto done;
2965 }
2966 }
2967
2968 if (map) {
2969 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2970
2971 if (cpu_online(tcpu)) {
2972 cpu = tcpu;
2973 goto done;
2974 }
2975 }
2976
2977done:
2978 return cpu;
2979}
2980
2981#ifdef CONFIG_RFS_ACCEL
2982
2983/**
2984 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
2985 * @dev: Device on which the filter was set
2986 * @rxq_index: RX queue index
2987 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
2988 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
2989 *
2990 * Drivers that implement ndo_rx_flow_steer() should periodically call
2991 * this function for each installed filter and remove the filters for
2992 * which it returns %true.
2993 */
2994bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
2995 u32 flow_id, u16 filter_id)
2996{
2997 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
2998 struct rps_dev_flow_table *flow_table;
2999 struct rps_dev_flow *rflow;
3000 bool expire = true;
3001 int cpu;
3002
3003 rcu_read_lock();
3004 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3005 if (flow_table && flow_id <= flow_table->mask) {
3006 rflow = &flow_table->flows[flow_id];
3007 cpu = ACCESS_ONCE(rflow->cpu);
3008 if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
3009 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3010 rflow->last_qtail) <
3011 (int)(10 * flow_table->mask)))
3012 expire = false;
3013 }
3014 rcu_read_unlock();
3015 return expire;
3016}
3017EXPORT_SYMBOL(rps_may_expire_flow);
3018
3019#endif /* CONFIG_RFS_ACCEL */
3020
3021/* Called from hardirq (IPI) context */
3022static void rps_trigger_softirq(void *data)
3023{
3024 struct softnet_data *sd = data;
3025
3026 ____napi_schedule(sd, &sd->backlog);
3027 sd->received_rps++;
3028}
3029
3030#endif /* CONFIG_RPS */
3031
3032/*
3033 * Check if this softnet_data structure is another cpu one
3034 * If yes, queue it to our IPI list and return 1
3035 * If no, return 0
3036 */
3037static int rps_ipi_queued(struct softnet_data *sd)
3038{
3039#ifdef CONFIG_RPS
3040 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
3041
3042 if (sd != mysd) {
3043 sd->rps_ipi_next = mysd->rps_ipi_list;
3044 mysd->rps_ipi_list = sd;
3045
3046 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3047 return 1;
3048 }
3049#endif /* CONFIG_RPS */
3050 return 0;
3051}
3052
3053/*
3054 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3055 * queue (may be a remote CPU queue).
3056 */
3057static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3058 unsigned int *qtail)
3059{
3060 struct softnet_data *sd;
3061 unsigned long flags;
3062
3063 sd = &per_cpu(softnet_data, cpu);
3064
3065 local_irq_save(flags);
3066
3067 rps_lock(sd);
3068 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
3069 if (skb_queue_len(&sd->input_pkt_queue)) {
3070enqueue:
3071 __skb_queue_tail(&sd->input_pkt_queue, skb);
3072 input_queue_tail_incr_save(sd, qtail);
3073 rps_unlock(sd);
3074 local_irq_restore(flags);
3075 return NET_RX_SUCCESS;
3076 }
3077
3078 /* Schedule NAPI for backlog device
3079 * We can use non atomic operation since we own the queue lock
3080 */
3081 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3082 if (!rps_ipi_queued(sd))
3083 ____napi_schedule(sd, &sd->backlog);
3084 }
3085 goto enqueue;
3086 }
3087
3088 sd->dropped++;
3089 rps_unlock(sd);
3090
3091 local_irq_restore(flags);
3092
3093 atomic_long_inc(&skb->dev->rx_dropped);
3094 kfree_skb(skb);
3095 return NET_RX_DROP;
3096}
3097
3098/**
3099 * netif_rx - post buffer to the network code
3100 * @skb: buffer to post
3101 *
3102 * This function receives a packet from a device driver and queues it for
3103 * the upper (protocol) levels to process. It always succeeds. The buffer
3104 * may be dropped during processing for congestion control or by the
3105 * protocol layers.
3106 *
3107 * return values:
3108 * NET_RX_SUCCESS (no congestion)
3109 * NET_RX_DROP (packet was dropped)
3110 *
3111 */
3112
3113int netif_rx(struct sk_buff *skb)
3114{
3115 int ret;
3116
3117 /* if netpoll wants it, pretend we never saw it */
3118 if (netpoll_rx(skb))
3119 return NET_RX_DROP;
3120
3121 net_timestamp_check(netdev_tstamp_prequeue, skb);
3122
3123 trace_netif_rx(skb);
3124#ifdef CONFIG_RPS
3125 if (static_key_false(&rps_needed)) {
3126 struct rps_dev_flow voidflow, *rflow = &voidflow;
3127 int cpu;
3128
3129 preempt_disable();
3130 rcu_read_lock();
3131
3132 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3133 if (cpu < 0)
3134 cpu = smp_processor_id();
3135
3136 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3137
3138 rcu_read_unlock();
3139 preempt_enable();
3140 } else
3141#endif
3142 {
3143 unsigned int qtail;
3144 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3145 put_cpu();
3146 }
3147 return ret;
3148}
3149EXPORT_SYMBOL(netif_rx);
3150
3151int netif_rx_ni(struct sk_buff *skb)
3152{
3153 int err;
3154
3155 preempt_disable();
3156 err = netif_rx(skb);
3157 if (local_softirq_pending())
3158 do_softirq();
3159 preempt_enable();
3160
3161 return err;
3162}
3163EXPORT_SYMBOL(netif_rx_ni);
3164
3165static void net_tx_action(struct softirq_action *h)
3166{
3167 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3168
3169 if (sd->completion_queue) {
3170 struct sk_buff *clist;
3171
3172 local_irq_disable();
3173 clist = sd->completion_queue;
3174 sd->completion_queue = NULL;
3175 local_irq_enable();
3176
3177 while (clist) {
3178 struct sk_buff *skb = clist;
3179 clist = clist->next;
3180
3181 WARN_ON(atomic_read(&skb->users));
3182 trace_kfree_skb(skb, net_tx_action);
3183 __kfree_skb(skb);
3184 }
3185 }
3186
3187 if (sd->output_queue) {
3188 struct Qdisc *head;
3189
3190 local_irq_disable();
3191 head = sd->output_queue;
3192 sd->output_queue = NULL;
3193 sd->output_queue_tailp = &sd->output_queue;
3194 local_irq_enable();
3195
3196 while (head) {
3197 struct Qdisc *q = head;
3198 spinlock_t *root_lock;
3199
3200 head = head->next_sched;
3201
3202 root_lock = qdisc_lock(q);
3203 if (spin_trylock(root_lock)) {
3204 smp_mb__before_clear_bit();
3205 clear_bit(__QDISC_STATE_SCHED,
3206 &q->state);
3207 qdisc_run(q);
3208 spin_unlock(root_lock);
3209 } else {
3210 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3211 &q->state)) {
3212 __netif_reschedule(q);
3213 } else {
3214 smp_mb__before_clear_bit();
3215 clear_bit(__QDISC_STATE_SCHED,
3216 &q->state);
3217 }
3218 }
3219 }
3220 }
3221}
3222
3223#if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3224 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3225/* This hook is defined here for ATM LANE */
3226int (*br_fdb_test_addr_hook)(struct net_device *dev,
3227 unsigned char *addr) __read_mostly;
3228EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3229#endif
3230
3231#ifdef CONFIG_NET_CLS_ACT
3232/* TODO: Maybe we should just force sch_ingress to be compiled in
3233 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3234 * a compare and 2 stores extra right now if we dont have it on
3235 * but have CONFIG_NET_CLS_ACT
3236 * NOTE: This doesn't stop any functionality; if you dont have
3237 * the ingress scheduler, you just can't add policies on ingress.
3238 *
3239 */
3240static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3241{
3242 struct net_device *dev = skb->dev;
3243 u32 ttl = G_TC_RTTL(skb->tc_verd);
3244 int result = TC_ACT_OK;
3245 struct Qdisc *q;
3246
3247 if (unlikely(MAX_RED_LOOP < ttl++)) {
3248 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3249 skb->skb_iif, dev->ifindex);
3250 return TC_ACT_SHOT;
3251 }
3252
3253 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3254 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3255
3256 q = rxq->qdisc;
3257 if (q != &noop_qdisc) {
3258 spin_lock(qdisc_lock(q));
3259 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3260 result = qdisc_enqueue_root(skb, q);
3261 spin_unlock(qdisc_lock(q));
3262 }
3263
3264 return result;
3265}
3266
3267static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3268 struct packet_type **pt_prev,
3269 int *ret, struct net_device *orig_dev)
3270{
3271 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3272
3273 if (!rxq || rxq->qdisc == &noop_qdisc)
3274 goto out;
3275
3276 if (*pt_prev) {
3277 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3278 *pt_prev = NULL;
3279 }
3280
3281 switch (ing_filter(skb, rxq)) {
3282 case TC_ACT_SHOT:
3283 case TC_ACT_STOLEN:
3284 kfree_skb(skb);
3285 return NULL;
3286 }
3287
3288out:
3289 skb->tc_verd = 0;
3290 return skb;
3291}
3292#endif
3293
3294/**
3295 * netdev_rx_handler_register - register receive handler
3296 * @dev: device to register a handler for
3297 * @rx_handler: receive handler to register
3298 * @rx_handler_data: data pointer that is used by rx handler
3299 *
3300 * Register a receive hander for a device. This handler will then be
3301 * called from __netif_receive_skb. A negative errno code is returned
3302 * on a failure.
3303 *
3304 * The caller must hold the rtnl_mutex.
3305 *
3306 * For a general description of rx_handler, see enum rx_handler_result.
3307 */
3308int netdev_rx_handler_register(struct net_device *dev,
3309 rx_handler_func_t *rx_handler,
3310 void *rx_handler_data)
3311{
3312 ASSERT_RTNL();
3313
3314 if (dev->rx_handler)
3315 return -EBUSY;
3316
3317 /* Note: rx_handler_data must be set before rx_handler */
3318 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3319 rcu_assign_pointer(dev->rx_handler, rx_handler);
3320
3321 return 0;
3322}
3323EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3324
3325/**
3326 * netdev_rx_handler_unregister - unregister receive handler
3327 * @dev: device to unregister a handler from
3328 *
3329 * Unregister a receive hander from a device.
3330 *
3331 * The caller must hold the rtnl_mutex.
3332 */
3333void netdev_rx_handler_unregister(struct net_device *dev)
3334{
3335
3336 ASSERT_RTNL();
3337 RCU_INIT_POINTER(dev->rx_handler, NULL);
3338 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3339 * section has a guarantee to see a non NULL rx_handler_data
3340 * as well.
3341 */
3342 synchronize_net();
3343 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3344}
3345EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3346
3347/*
3348 * Limit the use of PFMEMALLOC reserves to those protocols that implement
3349 * the special handling of PFMEMALLOC skbs.
3350 */
3351static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3352{
3353 switch (skb->protocol) {
3354 case __constant_htons(ETH_P_ARP):
3355 case __constant_htons(ETH_P_IP):
3356 case __constant_htons(ETH_P_IPV6):
3357 case __constant_htons(ETH_P_8021Q):
3358 return true;
3359 default:
3360 return false;
3361 }
3362}
3363
3364static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
3365{
3366 struct packet_type *ptype, *pt_prev;
3367 rx_handler_func_t *rx_handler;
3368 struct net_device *orig_dev;
3369 struct net_device *null_or_dev;
3370 bool deliver_exact = false;
3371 int ret = NET_RX_DROP;
3372 __be16 type;
3373
3374 net_timestamp_check(!netdev_tstamp_prequeue, skb);
3375
3376 trace_netif_receive_skb(skb);
3377
3378 /* if we've gotten here through NAPI, check netpoll */
3379 if (netpoll_receive_skb(skb))
3380 goto out;
3381
3382 orig_dev = skb->dev;
3383
3384 skb_reset_network_header(skb);
3385 if (!skb_transport_header_was_set(skb))
3386 skb_reset_transport_header(skb);
3387 skb_reset_mac_len(skb);
3388
3389 pt_prev = NULL;
3390
3391 rcu_read_lock();
3392
3393another_round:
3394 skb->skb_iif = skb->dev->ifindex;
3395
3396 __this_cpu_inc(softnet_data.processed);
3397
3398 if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) {
3399 skb = vlan_untag(skb);
3400 if (unlikely(!skb))
3401 goto unlock;
3402 }
3403
3404#ifdef CONFIG_NET_CLS_ACT
3405 if (skb->tc_verd & TC_NCLS) {
3406 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3407 goto ncls;
3408 }
3409#endif
3410
3411 if (pfmemalloc)
3412 goto skip_taps;
3413
3414 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3415 if (!ptype->dev || ptype->dev == skb->dev) {
3416 if (pt_prev)
3417 ret = deliver_skb(skb, pt_prev, orig_dev);
3418 pt_prev = ptype;
3419 }
3420 }
3421
3422skip_taps:
3423#ifdef CONFIG_NET_CLS_ACT
3424 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3425 if (!skb)
3426 goto unlock;
3427ncls:
3428#endif
3429
3430 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
3431 goto drop;
3432
3433 if (vlan_tx_tag_present(skb)) {
3434 if (pt_prev) {
3435 ret = deliver_skb(skb, pt_prev, orig_dev);
3436 pt_prev = NULL;
3437 }
3438 if (vlan_do_receive(&skb))
3439 goto another_round;
3440 else if (unlikely(!skb))
3441 goto unlock;
3442 }
3443
3444 rx_handler = rcu_dereference(skb->dev->rx_handler);
3445 if (rx_handler) {
3446 if (pt_prev) {
3447 ret = deliver_skb(skb, pt_prev, orig_dev);
3448 pt_prev = NULL;
3449 }
3450 switch (rx_handler(&skb)) {
3451 case RX_HANDLER_CONSUMED:
3452 ret = NET_RX_SUCCESS;
3453 goto unlock;
3454 case RX_HANDLER_ANOTHER:
3455 goto another_round;
3456 case RX_HANDLER_EXACT:
3457 deliver_exact = true;
3458 case RX_HANDLER_PASS:
3459 break;
3460 default:
3461 BUG();
3462 }
3463 }
3464
3465 if (vlan_tx_nonzero_tag_present(skb))
3466 skb->pkt_type = PACKET_OTHERHOST;
3467
3468 /* deliver only exact match when indicated */
3469 null_or_dev = deliver_exact ? skb->dev : NULL;
3470
3471 type = skb->protocol;
3472 list_for_each_entry_rcu(ptype,
3473 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3474 if (ptype->type == type &&
3475 (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3476 ptype->dev == orig_dev)) {
3477 if (pt_prev)
3478 ret = deliver_skb(skb, pt_prev, orig_dev);
3479 pt_prev = ptype;
3480 }
3481 }
3482
3483 if (pt_prev) {
3484 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3485 goto drop;
3486 else
3487 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3488 } else {
3489drop:
3490 atomic_long_inc(&skb->dev->rx_dropped);
3491 kfree_skb(skb);
3492 /* Jamal, now you will not able to escape explaining
3493 * me how you were going to use this. :-)
3494 */
3495 ret = NET_RX_DROP;
3496 }
3497
3498unlock:
3499 rcu_read_unlock();
3500out:
3501 return ret;
3502}
3503
3504static int __netif_receive_skb(struct sk_buff *skb)
3505{
3506 int ret;
3507
3508 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3509 unsigned long pflags = current->flags;
3510
3511 /*
3512 * PFMEMALLOC skbs are special, they should
3513 * - be delivered to SOCK_MEMALLOC sockets only
3514 * - stay away from userspace
3515 * - have bounded memory usage
3516 *
3517 * Use PF_MEMALLOC as this saves us from propagating the allocation
3518 * context down to all allocation sites.
3519 */
3520 current->flags |= PF_MEMALLOC;
3521 ret = __netif_receive_skb_core(skb, true);
3522 tsk_restore_flags(current, pflags, PF_MEMALLOC);
3523 } else
3524 ret = __netif_receive_skb_core(skb, false);
3525
3526 return ret;
3527}
3528
3529/**
3530 * netif_receive_skb - process receive buffer from network
3531 * @skb: buffer to process
3532 *
3533 * netif_receive_skb() is the main receive data processing function.
3534 * It always succeeds. The buffer may be dropped during processing
3535 * for congestion control or by the protocol layers.
3536 *
3537 * This function may only be called from softirq context and interrupts
3538 * should be enabled.
3539 *
3540 * Return values (usually ignored):
3541 * NET_RX_SUCCESS: no congestion
3542 * NET_RX_DROP: packet was dropped
3543 */
3544int netif_receive_skb(struct sk_buff *skb)
3545{
3546 net_timestamp_check(netdev_tstamp_prequeue, skb);
3547
3548 if (skb_defer_rx_timestamp(skb))
3549 return NET_RX_SUCCESS;
3550
3551#ifdef CONFIG_RPS
3552 if (static_key_false(&rps_needed)) {
3553 struct rps_dev_flow voidflow, *rflow = &voidflow;
3554 int cpu, ret;
3555
3556 rcu_read_lock();
3557
3558 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3559
3560 if (cpu >= 0) {
3561 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3562 rcu_read_unlock();
3563 return ret;
3564 }
3565 rcu_read_unlock();
3566 }
3567#endif
3568 return __netif_receive_skb(skb);
3569}
3570EXPORT_SYMBOL(netif_receive_skb);
3571
3572/* Network device is going away, flush any packets still pending
3573 * Called with irqs disabled.
3574 */
3575static void flush_backlog(void *arg)
3576{
3577 struct net_device *dev = arg;
3578 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3579 struct sk_buff *skb, *tmp;
3580
3581 rps_lock(sd);
3582 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3583 if (skb->dev == dev) {
3584 __skb_unlink(skb, &sd->input_pkt_queue);
3585 kfree_skb(skb);
3586 input_queue_head_incr(sd);
3587 }
3588 }
3589 rps_unlock(sd);
3590
3591 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3592 if (skb->dev == dev) {
3593 __skb_unlink(skb, &sd->process_queue);
3594 kfree_skb(skb);
3595 input_queue_head_incr(sd);
3596 }
3597 }
3598}
3599
3600static int napi_gro_complete(struct sk_buff *skb)
3601{
3602 struct packet_offload *ptype;
3603 __be16 type = skb->protocol;
3604 struct list_head *head = &offload_base;
3605 int err = -ENOENT;
3606
3607 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
3608
3609 if (NAPI_GRO_CB(skb)->count == 1) {
3610 skb_shinfo(skb)->gso_size = 0;
3611 goto out;
3612 }
3613
3614 rcu_read_lock();
3615 list_for_each_entry_rcu(ptype, head, list) {
3616 if (ptype->type != type || !ptype->callbacks.gro_complete)
3617 continue;
3618
3619 err = ptype->callbacks.gro_complete(skb);
3620 break;
3621 }
3622 rcu_read_unlock();
3623
3624 if (err) {
3625 WARN_ON(&ptype->list == head);
3626 kfree_skb(skb);
3627 return NET_RX_SUCCESS;
3628 }
3629
3630out:
3631 return netif_receive_skb(skb);
3632}
3633
3634/* napi->gro_list contains packets ordered by age.
3635 * youngest packets at the head of it.
3636 * Complete skbs in reverse order to reduce latencies.
3637 */
3638void napi_gro_flush(struct napi_struct *napi, bool flush_old)
3639{
3640 struct sk_buff *skb, *prev = NULL;
3641
3642 /* scan list and build reverse chain */
3643 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
3644 skb->prev = prev;
3645 prev = skb;
3646 }
3647
3648 for (skb = prev; skb; skb = prev) {
3649 skb->next = NULL;
3650
3651 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
3652 return;
3653
3654 prev = skb->prev;
3655 napi_gro_complete(skb);
3656 napi->gro_count--;
3657 }
3658
3659 napi->gro_list = NULL;
3660}
3661EXPORT_SYMBOL(napi_gro_flush);
3662
3663static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
3664{
3665 struct sk_buff *p;
3666 unsigned int maclen = skb->dev->hard_header_len;
3667
3668 for (p = napi->gro_list; p; p = p->next) {
3669 unsigned long diffs;
3670
3671 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3672 diffs |= p->vlan_tci ^ skb->vlan_tci;
3673 if (maclen == ETH_HLEN)
3674 diffs |= compare_ether_header(skb_mac_header(p),
3675 skb_gro_mac_header(skb));
3676 else if (!diffs)
3677 diffs = memcmp(skb_mac_header(p),
3678 skb_gro_mac_header(skb),
3679 maclen);
3680 NAPI_GRO_CB(p)->same_flow = !diffs;
3681 NAPI_GRO_CB(p)->flush = 0;
3682 }
3683}
3684
3685static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3686{
3687 struct sk_buff **pp = NULL;
3688 struct packet_offload *ptype;
3689 __be16 type = skb->protocol;
3690 struct list_head *head = &offload_base;
3691 int same_flow;
3692 enum gro_result ret;
3693
3694 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3695 goto normal;
3696
3697 if (skb_is_gso(skb) || skb_has_frag_list(skb))
3698 goto normal;
3699
3700 gro_list_prepare(napi, skb);
3701
3702 rcu_read_lock();
3703 list_for_each_entry_rcu(ptype, head, list) {
3704 if (ptype->type != type || !ptype->callbacks.gro_receive)
3705 continue;
3706
3707 skb_set_network_header(skb, skb_gro_offset(skb));
3708 skb_reset_mac_len(skb);
3709 NAPI_GRO_CB(skb)->same_flow = 0;
3710 NAPI_GRO_CB(skb)->flush = 0;
3711 NAPI_GRO_CB(skb)->free = 0;
3712
3713 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
3714 break;
3715 }
3716 rcu_read_unlock();
3717
3718 if (&ptype->list == head)
3719 goto normal;
3720
3721 same_flow = NAPI_GRO_CB(skb)->same_flow;
3722 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3723
3724 if (pp) {
3725 struct sk_buff *nskb = *pp;
3726
3727 *pp = nskb->next;
3728 nskb->next = NULL;
3729 napi_gro_complete(nskb);
3730 napi->gro_count--;
3731 }
3732
3733 if (same_flow)
3734 goto ok;
3735
3736 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3737 goto normal;
3738
3739 napi->gro_count++;
3740 NAPI_GRO_CB(skb)->count = 1;
3741 NAPI_GRO_CB(skb)->age = jiffies;
3742 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3743 skb->next = napi->gro_list;
3744 napi->gro_list = skb;
3745 ret = GRO_HELD;
3746
3747pull:
3748 if (skb_headlen(skb) < skb_gro_offset(skb)) {
3749 int grow = skb_gro_offset(skb) - skb_headlen(skb);
3750
3751 BUG_ON(skb->end - skb->tail < grow);
3752
3753 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3754
3755 skb->tail += grow;
3756 skb->data_len -= grow;
3757
3758 skb_shinfo(skb)->frags[0].page_offset += grow;
3759 skb_frag_size_sub(&skb_shinfo(skb)->frags[0], grow);
3760
3761 if (unlikely(!skb_frag_size(&skb_shinfo(skb)->frags[0]))) {
3762 skb_frag_unref(skb, 0);
3763 memmove(skb_shinfo(skb)->frags,
3764 skb_shinfo(skb)->frags + 1,
3765 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3766 }
3767 }
3768
3769ok:
3770 return ret;
3771
3772normal:
3773 ret = GRO_NORMAL;
3774 goto pull;
3775}
3776
3777
3778static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3779{
3780 switch (ret) {
3781 case GRO_NORMAL:
3782 if (netif_receive_skb(skb))
3783 ret = GRO_DROP;
3784 break;
3785
3786 case GRO_DROP:
3787 kfree_skb(skb);
3788 break;
3789
3790 case GRO_MERGED_FREE:
3791 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
3792 kmem_cache_free(skbuff_head_cache, skb);
3793 else
3794 __kfree_skb(skb);
3795 break;
3796
3797 case GRO_HELD:
3798 case GRO_MERGED:
3799 break;
3800 }
3801
3802 return ret;
3803}
3804
3805static void skb_gro_reset_offset(struct sk_buff *skb)
3806{
3807 const struct skb_shared_info *pinfo = skb_shinfo(skb);
3808 const skb_frag_t *frag0 = &pinfo->frags[0];
3809
3810 NAPI_GRO_CB(skb)->data_offset = 0;
3811 NAPI_GRO_CB(skb)->frag0 = NULL;
3812 NAPI_GRO_CB(skb)->frag0_len = 0;
3813
3814 if (skb->mac_header == skb->tail &&
3815 pinfo->nr_frags &&
3816 !PageHighMem(skb_frag_page(frag0))) {
3817 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
3818 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
3819 }
3820}
3821
3822gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3823{
3824 skb_gro_reset_offset(skb);
3825
3826 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
3827}
3828EXPORT_SYMBOL(napi_gro_receive);
3829
3830static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3831{
3832 __skb_pull(skb, skb_headlen(skb));
3833 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
3834 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
3835 skb->vlan_tci = 0;
3836 skb->dev = napi->dev;
3837 skb->skb_iif = 0;
3838
3839 napi->skb = skb;
3840}
3841
3842struct sk_buff *napi_get_frags(struct napi_struct *napi)
3843{
3844 struct sk_buff *skb = napi->skb;
3845
3846 if (!skb) {
3847 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3848 if (skb)
3849 napi->skb = skb;
3850 }
3851 return skb;
3852}
3853EXPORT_SYMBOL(napi_get_frags);
3854
3855static gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3856 gro_result_t ret)
3857{
3858 switch (ret) {
3859 case GRO_NORMAL:
3860 case GRO_HELD:
3861 skb->protocol = eth_type_trans(skb, skb->dev);
3862
3863 if (ret == GRO_HELD)
3864 skb_gro_pull(skb, -ETH_HLEN);
3865 else if (netif_receive_skb(skb))
3866 ret = GRO_DROP;
3867 break;
3868
3869 case GRO_DROP:
3870 case GRO_MERGED_FREE:
3871 napi_reuse_skb(napi, skb);
3872 break;
3873
3874 case GRO_MERGED:
3875 break;
3876 }
3877
3878 return ret;
3879}
3880
3881static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3882{
3883 struct sk_buff *skb = napi->skb;
3884 struct ethhdr *eth;
3885 unsigned int hlen;
3886 unsigned int off;
3887
3888 napi->skb = NULL;
3889
3890 skb_reset_mac_header(skb);
3891 skb_gro_reset_offset(skb);
3892
3893 off = skb_gro_offset(skb);
3894 hlen = off + sizeof(*eth);
3895 eth = skb_gro_header_fast(skb, off);
3896 if (skb_gro_header_hard(skb, hlen)) {
3897 eth = skb_gro_header_slow(skb, hlen, off);
3898 if (unlikely(!eth)) {
3899 napi_reuse_skb(napi, skb);
3900 skb = NULL;
3901 goto out;
3902 }
3903 }
3904
3905 skb_gro_pull(skb, sizeof(*eth));
3906
3907 /*
3908 * This works because the only protocols we care about don't require
3909 * special handling. We'll fix it up properly at the end.
3910 */
3911 skb->protocol = eth->h_proto;
3912
3913out:
3914 return skb;
3915}
3916
3917gro_result_t napi_gro_frags(struct napi_struct *napi)
3918{
3919 struct sk_buff *skb = napi_frags_skb(napi);
3920
3921 if (!skb)
3922 return GRO_DROP;
3923
3924 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
3925}
3926EXPORT_SYMBOL(napi_gro_frags);
3927
3928/*
3929 * net_rps_action sends any pending IPI's for rps.
3930 * Note: called with local irq disabled, but exits with local irq enabled.
3931 */
3932static void net_rps_action_and_irq_enable(struct softnet_data *sd)
3933{
3934#ifdef CONFIG_RPS
3935 struct softnet_data *remsd = sd->rps_ipi_list;
3936
3937 if (remsd) {
3938 sd->rps_ipi_list = NULL;
3939
3940 local_irq_enable();
3941
3942 /* Send pending IPI's to kick RPS processing on remote cpus. */
3943 while (remsd) {
3944 struct softnet_data *next = remsd->rps_ipi_next;
3945
3946 if (cpu_online(remsd->cpu))
3947 __smp_call_function_single(remsd->cpu,
3948 &remsd->csd, 0);
3949 remsd = next;
3950 }
3951 } else
3952#endif
3953 local_irq_enable();
3954}
3955
3956static int process_backlog(struct napi_struct *napi, int quota)
3957{
3958 int work = 0;
3959 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
3960
3961#ifdef CONFIG_RPS
3962 /* Check if we have pending ipi, its better to send them now,
3963 * not waiting net_rx_action() end.
3964 */
3965 if (sd->rps_ipi_list) {
3966 local_irq_disable();
3967 net_rps_action_and_irq_enable(sd);
3968 }
3969#endif
3970 napi->weight = weight_p;
3971 local_irq_disable();
3972 while (work < quota) {
3973 struct sk_buff *skb;
3974 unsigned int qlen;
3975
3976 while ((skb = __skb_dequeue(&sd->process_queue))) {
3977 local_irq_enable();
3978 __netif_receive_skb(skb);
3979 local_irq_disable();
3980 input_queue_head_incr(sd);
3981 if (++work >= quota) {
3982 local_irq_enable();
3983 return work;
3984 }
3985 }
3986
3987 rps_lock(sd);
3988 qlen = skb_queue_len(&sd->input_pkt_queue);
3989 if (qlen)
3990 skb_queue_splice_tail_init(&sd->input_pkt_queue,
3991 &sd->process_queue);
3992
3993 if (qlen < quota - work) {
3994 /*
3995 * Inline a custom version of __napi_complete().
3996 * only current cpu owns and manipulates this napi,
3997 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
3998 * we can use a plain write instead of clear_bit(),
3999 * and we dont need an smp_mb() memory barrier.
4000 */
4001 list_del(&napi->poll_list);
4002 napi->state = 0;
4003
4004 quota = work + qlen;
4005 }
4006 rps_unlock(sd);
4007 }
4008 local_irq_enable();
4009
4010 return work;
4011}
4012
4013/**
4014 * __napi_schedule - schedule for receive
4015 * @n: entry to schedule
4016 *
4017 * The entry's receive function will be scheduled to run
4018 */
4019void __napi_schedule(struct napi_struct *n)
4020{
4021 unsigned long flags;
4022
4023 local_irq_save(flags);
4024 ____napi_schedule(&__get_cpu_var(softnet_data), n);
4025 local_irq_restore(flags);
4026}
4027EXPORT_SYMBOL(__napi_schedule);
4028
4029void __napi_complete(struct napi_struct *n)
4030{
4031 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4032 BUG_ON(n->gro_list);
4033
4034 list_del(&n->poll_list);
4035 smp_mb__before_clear_bit();
4036 clear_bit(NAPI_STATE_SCHED, &n->state);
4037}
4038EXPORT_SYMBOL(__napi_complete);
4039
4040void napi_complete(struct napi_struct *n)
4041{
4042 unsigned long flags;
4043
4044 /*
4045 * don't let napi dequeue from the cpu poll list
4046 * just in case its running on a different cpu
4047 */
4048 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4049 return;
4050
4051 napi_gro_flush(n, false);
4052 local_irq_save(flags);
4053 __napi_complete(n);
4054 local_irq_restore(flags);
4055}
4056EXPORT_SYMBOL(napi_complete);
4057
4058void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4059 int (*poll)(struct napi_struct *, int), int weight)
4060{
4061 INIT_LIST_HEAD(&napi->poll_list);
4062 napi->gro_count = 0;
4063 napi->gro_list = NULL;
4064 napi->skb = NULL;
4065 napi->poll = poll;
4066 napi->weight = weight;
4067 list_add(&napi->dev_list, &dev->napi_list);
4068 napi->dev = dev;
4069#ifdef CONFIG_NETPOLL
4070 spin_lock_init(&napi->poll_lock);
4071 napi->poll_owner = -1;
4072#endif
4073 set_bit(NAPI_STATE_SCHED, &napi->state);
4074}
4075EXPORT_SYMBOL(netif_napi_add);
4076
4077void netif_napi_del(struct napi_struct *napi)
4078{
4079 struct sk_buff *skb, *next;
4080
4081 list_del_init(&napi->dev_list);
4082 napi_free_frags(napi);
4083
4084 for (skb = napi->gro_list; skb; skb = next) {
4085 next = skb->next;
4086 skb->next = NULL;
4087 kfree_skb(skb);
4088 }
4089
4090 napi->gro_list = NULL;
4091 napi->gro_count = 0;
4092}
4093EXPORT_SYMBOL(netif_napi_del);
4094
4095static void net_rx_action(struct softirq_action *h)
4096{
4097 struct softnet_data *sd = &__get_cpu_var(softnet_data);
4098 unsigned long time_limit = jiffies + 2;
4099 int budget = netdev_budget;
4100 void *have;
4101
4102 local_irq_disable();
4103
4104 while (!list_empty(&sd->poll_list)) {
4105 struct napi_struct *n;
4106 int work, weight;
4107
4108 /* If softirq window is exhuasted then punt.
4109 * Allow this to run for 2 jiffies since which will allow
4110 * an average latency of 1.5/HZ.
4111 */
4112 if (unlikely(budget <= 0 || time_after_eq(jiffies, time_limit)))
4113 goto softnet_break;
4114
4115 local_irq_enable();
4116
4117 /* Even though interrupts have been re-enabled, this
4118 * access is safe because interrupts can only add new
4119 * entries to the tail of this list, and only ->poll()
4120 * calls can remove this head entry from the list.
4121 */
4122 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
4123
4124 have = netpoll_poll_lock(n);
4125
4126 weight = n->weight;
4127
4128 /* This NAPI_STATE_SCHED test is for avoiding a race
4129 * with netpoll's poll_napi(). Only the entity which
4130 * obtains the lock and sees NAPI_STATE_SCHED set will
4131 * actually make the ->poll() call. Therefore we avoid
4132 * accidentally calling ->poll() when NAPI is not scheduled.
4133 */
4134 work = 0;
4135 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4136 work = n->poll(n, weight);
4137 trace_napi_poll(n);
4138 }
4139
4140 WARN_ON_ONCE(work > weight);
4141
4142 budget -= work;
4143
4144 local_irq_disable();
4145
4146 /* Drivers must not modify the NAPI state if they
4147 * consume the entire weight. In such cases this code
4148 * still "owns" the NAPI instance and therefore can
4149 * move the instance around on the list at-will.
4150 */
4151 if (unlikely(work == weight)) {
4152 if (unlikely(napi_disable_pending(n))) {
4153 local_irq_enable();
4154 napi_complete(n);
4155 local_irq_disable();
4156 } else {
4157 if (n->gro_list) {
4158 /* flush too old packets
4159 * If HZ < 1000, flush all packets.
4160 */
4161 local_irq_enable();
4162 napi_gro_flush(n, HZ >= 1000);
4163 local_irq_disable();
4164 }
4165 list_move_tail(&n->poll_list, &sd->poll_list);
4166 }
4167 }
4168
4169 netpoll_poll_unlock(have);
4170 }
4171out:
4172 net_rps_action_and_irq_enable(sd);
4173
4174#ifdef CONFIG_NET_DMA
4175 /*
4176 * There may not be any more sk_buffs coming right now, so push
4177 * any pending DMA copies to hardware
4178 */
4179 dma_issue_pending_all();
4180#endif
4181
4182 return;
4183
4184softnet_break:
4185 sd->time_squeeze++;
4186 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4187 goto out;
4188}
4189
4190struct netdev_upper {
4191 struct net_device *dev;
4192 bool master;
4193 struct list_head list;
4194 struct rcu_head rcu;
4195 struct list_head search_list;
4196};
4197
4198static void __append_search_uppers(struct list_head *search_list,
4199 struct net_device *dev)
4200{
4201 struct netdev_upper *upper;
4202
4203 list_for_each_entry(upper, &dev->upper_dev_list, list) {
4204 /* check if this upper is not already in search list */
4205 if (list_empty(&upper->search_list))
4206 list_add_tail(&upper->search_list, search_list);
4207 }
4208}
4209
4210static bool __netdev_search_upper_dev(struct net_device *dev,
4211 struct net_device *upper_dev)
4212{
4213 LIST_HEAD(search_list);
4214 struct netdev_upper *upper;
4215 struct netdev_upper *tmp;
4216 bool ret = false;
4217
4218 __append_search_uppers(&search_list, dev);
4219 list_for_each_entry(upper, &search_list, search_list) {
4220 if (upper->dev == upper_dev) {
4221 ret = true;
4222 break;
4223 }
4224 __append_search_uppers(&search_list, upper->dev);
4225 }
4226 list_for_each_entry_safe(upper, tmp, &search_list, search_list)
4227 INIT_LIST_HEAD(&upper->search_list);
4228 return ret;
4229}
4230
4231static struct netdev_upper *__netdev_find_upper(struct net_device *dev,
4232 struct net_device *upper_dev)
4233{
4234 struct netdev_upper *upper;
4235
4236 list_for_each_entry(upper, &dev->upper_dev_list, list) {
4237 if (upper->dev == upper_dev)
4238 return upper;
4239 }
4240 return NULL;
4241}
4242
4243/**
4244 * netdev_has_upper_dev - Check if device is linked to an upper device
4245 * @dev: device
4246 * @upper_dev: upper device to check
4247 *
4248 * Find out if a device is linked to specified upper device and return true
4249 * in case it is. Note that this checks only immediate upper device,
4250 * not through a complete stack of devices. The caller must hold the RTNL lock.
4251 */
4252bool netdev_has_upper_dev(struct net_device *dev,
4253 struct net_device *upper_dev)
4254{
4255 ASSERT_RTNL();
4256
4257 return __netdev_find_upper(dev, upper_dev);
4258}
4259EXPORT_SYMBOL(netdev_has_upper_dev);
4260
4261/**
4262 * netdev_has_any_upper_dev - Check if device is linked to some device
4263 * @dev: device
4264 *
4265 * Find out if a device is linked to an upper device and return true in case
4266 * it is. The caller must hold the RTNL lock.
4267 */
4268bool netdev_has_any_upper_dev(struct net_device *dev)
4269{
4270 ASSERT_RTNL();
4271
4272 return !list_empty(&dev->upper_dev_list);
4273}
4274EXPORT_SYMBOL(netdev_has_any_upper_dev);
4275
4276/**
4277 * netdev_master_upper_dev_get - Get master upper device
4278 * @dev: device
4279 *
4280 * Find a master upper device and return pointer to it or NULL in case
4281 * it's not there. The caller must hold the RTNL lock.
4282 */
4283struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4284{
4285 struct netdev_upper *upper;
4286
4287 ASSERT_RTNL();
4288
4289 if (list_empty(&dev->upper_dev_list))
4290 return NULL;
4291
4292 upper = list_first_entry(&dev->upper_dev_list,
4293 struct netdev_upper, list);
4294 if (likely(upper->master))
4295 return upper->dev;
4296 return NULL;
4297}
4298EXPORT_SYMBOL(netdev_master_upper_dev_get);
4299
4300/**
4301 * netdev_master_upper_dev_get_rcu - Get master upper device
4302 * @dev: device
4303 *
4304 * Find a master upper device and return pointer to it or NULL in case
4305 * it's not there. The caller must hold the RCU read lock.
4306 */
4307struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
4308{
4309 struct netdev_upper *upper;
4310
4311 upper = list_first_or_null_rcu(&dev->upper_dev_list,
4312 struct netdev_upper, list);
4313 if (upper && likely(upper->master))
4314 return upper->dev;
4315 return NULL;
4316}
4317EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
4318
4319static int __netdev_upper_dev_link(struct net_device *dev,
4320 struct net_device *upper_dev, bool master)
4321{
4322 struct netdev_upper *upper;
4323
4324 ASSERT_RTNL();
4325
4326 if (dev == upper_dev)
4327 return -EBUSY;
4328
4329 /* To prevent loops, check if dev is not upper device to upper_dev. */
4330 if (__netdev_search_upper_dev(upper_dev, dev))
4331 return -EBUSY;
4332
4333 if (__netdev_find_upper(dev, upper_dev))
4334 return -EEXIST;
4335
4336 if (master && netdev_master_upper_dev_get(dev))
4337 return -EBUSY;
4338
4339 upper = kmalloc(sizeof(*upper), GFP_KERNEL);
4340 if (!upper)
4341 return -ENOMEM;
4342
4343 upper->dev = upper_dev;
4344 upper->master = master;
4345 INIT_LIST_HEAD(&upper->search_list);
4346
4347 /* Ensure that master upper link is always the first item in list. */
4348 if (master)
4349 list_add_rcu(&upper->list, &dev->upper_dev_list);
4350 else
4351 list_add_tail_rcu(&upper->list, &dev->upper_dev_list);
4352 dev_hold(upper_dev);
4353
4354 return 0;
4355}
4356
4357/**
4358 * netdev_upper_dev_link - Add a link to the upper device
4359 * @dev: device
4360 * @upper_dev: new upper device
4361 *
4362 * Adds a link to device which is upper to this one. The caller must hold
4363 * the RTNL lock. On a failure a negative errno code is returned.
4364 * On success the reference counts are adjusted and the function
4365 * returns zero.
4366 */
4367int netdev_upper_dev_link(struct net_device *dev,
4368 struct net_device *upper_dev)
4369{
4370 return __netdev_upper_dev_link(dev, upper_dev, false);
4371}
4372EXPORT_SYMBOL(netdev_upper_dev_link);
4373
4374/**
4375 * netdev_master_upper_dev_link - Add a master link to the upper device
4376 * @dev: device
4377 * @upper_dev: new upper device
4378 *
4379 * Adds a link to device which is upper to this one. In this case, only
4380 * one master upper device can be linked, although other non-master devices
4381 * might be linked as well. The caller must hold the RTNL lock.
4382 * On a failure a negative errno code is returned. On success the reference
4383 * counts are adjusted and the function returns zero.
4384 */
4385int netdev_master_upper_dev_link(struct net_device *dev,
4386 struct net_device *upper_dev)
4387{
4388 return __netdev_upper_dev_link(dev, upper_dev, true);
4389}
4390EXPORT_SYMBOL(netdev_master_upper_dev_link);
4391
4392/**
4393 * netdev_upper_dev_unlink - Removes a link to upper device
4394 * @dev: device
4395 * @upper_dev: new upper device
4396 *
4397 * Removes a link to device which is upper to this one. The caller must hold
4398 * the RTNL lock.
4399 */
4400void netdev_upper_dev_unlink(struct net_device *dev,
4401 struct net_device *upper_dev)
4402{
4403 struct netdev_upper *upper;
4404
4405 ASSERT_RTNL();
4406
4407 upper = __netdev_find_upper(dev, upper_dev);
4408 if (!upper)
4409 return;
4410 list_del_rcu(&upper->list);
4411 dev_put(upper_dev);
4412 kfree_rcu(upper, rcu);
4413}
4414EXPORT_SYMBOL(netdev_upper_dev_unlink);
4415
4416static void dev_change_rx_flags(struct net_device *dev, int flags)
4417{
4418 const struct net_device_ops *ops = dev->netdev_ops;
4419
4420 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4421 ops->ndo_change_rx_flags(dev, flags);
4422}
4423
4424static int __dev_set_promiscuity(struct net_device *dev, int inc)
4425{
4426 unsigned int old_flags = dev->flags;
4427 kuid_t uid;
4428 kgid_t gid;
4429
4430 ASSERT_RTNL();
4431
4432 dev->flags |= IFF_PROMISC;
4433 dev->promiscuity += inc;
4434 if (dev->promiscuity == 0) {
4435 /*
4436 * Avoid overflow.
4437 * If inc causes overflow, untouch promisc and return error.
4438 */
4439 if (inc < 0)
4440 dev->flags &= ~IFF_PROMISC;
4441 else {
4442 dev->promiscuity -= inc;
4443 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
4444 dev->name);
4445 return -EOVERFLOW;
4446 }
4447 }
4448 if (dev->flags != old_flags) {
4449 pr_info("device %s %s promiscuous mode\n",
4450 dev->name,
4451 dev->flags & IFF_PROMISC ? "entered" : "left");
4452 if (audit_enabled) {
4453 current_uid_gid(&uid, &gid);
4454 audit_log(current->audit_context, GFP_ATOMIC,
4455 AUDIT_ANOM_PROMISCUOUS,
4456 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4457 dev->name, (dev->flags & IFF_PROMISC),
4458 (old_flags & IFF_PROMISC),
4459 from_kuid(&init_user_ns, audit_get_loginuid(current)),
4460 from_kuid(&init_user_ns, uid),
4461 from_kgid(&init_user_ns, gid),
4462 audit_get_sessionid(current));
4463 }
4464
4465 dev_change_rx_flags(dev, IFF_PROMISC);
4466 }
4467 return 0;
4468}
4469
4470/**
4471 * dev_set_promiscuity - update promiscuity count on a device
4472 * @dev: device
4473 * @inc: modifier
4474 *
4475 * Add or remove promiscuity from a device. While the count in the device
4476 * remains above zero the interface remains promiscuous. Once it hits zero
4477 * the device reverts back to normal filtering operation. A negative inc
4478 * value is used to drop promiscuity on the device.
4479 * Return 0 if successful or a negative errno code on error.
4480 */
4481int dev_set_promiscuity(struct net_device *dev, int inc)
4482{
4483 unsigned int old_flags = dev->flags;
4484 int err;
4485
4486 err = __dev_set_promiscuity(dev, inc);
4487 if (err < 0)
4488 return err;
4489 if (dev->flags != old_flags)
4490 dev_set_rx_mode(dev);
4491 return err;
4492}
4493EXPORT_SYMBOL(dev_set_promiscuity);
4494
4495/**
4496 * dev_set_allmulti - update allmulti count on a device
4497 * @dev: device
4498 * @inc: modifier
4499 *
4500 * Add or remove reception of all multicast frames to a device. While the
4501 * count in the device remains above zero the interface remains listening
4502 * to all interfaces. Once it hits zero the device reverts back to normal
4503 * filtering operation. A negative @inc value is used to drop the counter
4504 * when releasing a resource needing all multicasts.
4505 * Return 0 if successful or a negative errno code on error.
4506 */
4507
4508int dev_set_allmulti(struct net_device *dev, int inc)
4509{
4510 unsigned int old_flags = dev->flags;
4511
4512 ASSERT_RTNL();
4513
4514 dev->flags |= IFF_ALLMULTI;
4515 dev->allmulti += inc;
4516 if (dev->allmulti == 0) {
4517 /*
4518 * Avoid overflow.
4519 * If inc causes overflow, untouch allmulti and return error.
4520 */
4521 if (inc < 0)
4522 dev->flags &= ~IFF_ALLMULTI;
4523 else {
4524 dev->allmulti -= inc;
4525 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
4526 dev->name);
4527 return -EOVERFLOW;
4528 }
4529 }
4530 if (dev->flags ^ old_flags) {
4531 dev_change_rx_flags(dev, IFF_ALLMULTI);
4532 dev_set_rx_mode(dev);
4533 }
4534 return 0;
4535}
4536EXPORT_SYMBOL(dev_set_allmulti);
4537
4538/*
4539 * Upload unicast and multicast address lists to device and
4540 * configure RX filtering. When the device doesn't support unicast
4541 * filtering it is put in promiscuous mode while unicast addresses
4542 * are present.
4543 */
4544void __dev_set_rx_mode(struct net_device *dev)
4545{
4546 const struct net_device_ops *ops = dev->netdev_ops;
4547
4548 /* dev_open will call this function so the list will stay sane. */
4549 if (!(dev->flags&IFF_UP))
4550 return;
4551
4552 if (!netif_device_present(dev))
4553 return;
4554
4555 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
4556 /* Unicast addresses changes may only happen under the rtnl,
4557 * therefore calling __dev_set_promiscuity here is safe.
4558 */
4559 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4560 __dev_set_promiscuity(dev, 1);
4561 dev->uc_promisc = true;
4562 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4563 __dev_set_promiscuity(dev, -1);
4564 dev->uc_promisc = false;
4565 }
4566 }
4567
4568 if (ops->ndo_set_rx_mode)
4569 ops->ndo_set_rx_mode(dev);
4570}
4571
4572void dev_set_rx_mode(struct net_device *dev)
4573{
4574 netif_addr_lock_bh(dev);
4575 __dev_set_rx_mode(dev);
4576 netif_addr_unlock_bh(dev);
4577}
4578
4579/**
4580 * dev_get_flags - get flags reported to userspace
4581 * @dev: device
4582 *
4583 * Get the combination of flag bits exported through APIs to userspace.
4584 */
4585unsigned int dev_get_flags(const struct net_device *dev)
4586{
4587 unsigned int flags;
4588
4589 flags = (dev->flags & ~(IFF_PROMISC |
4590 IFF_ALLMULTI |
4591 IFF_RUNNING |
4592 IFF_LOWER_UP |
4593 IFF_DORMANT)) |
4594 (dev->gflags & (IFF_PROMISC |
4595 IFF_ALLMULTI));
4596
4597 if (netif_running(dev)) {
4598 if (netif_oper_up(dev))
4599 flags |= IFF_RUNNING;
4600 if (netif_carrier_ok(dev))
4601 flags |= IFF_LOWER_UP;
4602 if (netif_dormant(dev))
4603 flags |= IFF_DORMANT;
4604 }
4605
4606 return flags;
4607}
4608EXPORT_SYMBOL(dev_get_flags);
4609
4610int __dev_change_flags(struct net_device *dev, unsigned int flags)
4611{
4612 unsigned int old_flags = dev->flags;
4613 int ret;
4614
4615 ASSERT_RTNL();
4616
4617 /*
4618 * Set the flags on our device.
4619 */
4620
4621 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4622 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4623 IFF_AUTOMEDIA)) |
4624 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4625 IFF_ALLMULTI));
4626
4627 /*
4628 * Load in the correct multicast list now the flags have changed.
4629 */
4630
4631 if ((old_flags ^ flags) & IFF_MULTICAST)
4632 dev_change_rx_flags(dev, IFF_MULTICAST);
4633
4634 dev_set_rx_mode(dev);
4635
4636 /*
4637 * Have we downed the interface. We handle IFF_UP ourselves
4638 * according to user attempts to set it, rather than blindly
4639 * setting it.
4640 */
4641
4642 ret = 0;
4643 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4644 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4645
4646 if (!ret)
4647 dev_set_rx_mode(dev);
4648 }
4649
4650 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4651 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4652
4653 dev->gflags ^= IFF_PROMISC;
4654 dev_set_promiscuity(dev, inc);
4655 }
4656
4657 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4658 is important. Some (broken) drivers set IFF_PROMISC, when
4659 IFF_ALLMULTI is requested not asking us and not reporting.
4660 */
4661 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4662 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4663
4664 dev->gflags ^= IFF_ALLMULTI;
4665 dev_set_allmulti(dev, inc);
4666 }
4667
4668 return ret;
4669}
4670
4671void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4672{
4673 unsigned int changes = dev->flags ^ old_flags;
4674
4675 if (changes & IFF_UP) {
4676 if (dev->flags & IFF_UP)
4677 call_netdevice_notifiers(NETDEV_UP, dev);
4678 else
4679 call_netdevice_notifiers(NETDEV_DOWN, dev);
4680 }
4681
4682 if (dev->flags & IFF_UP &&
4683 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4684 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4685}
4686
4687/**
4688 * dev_change_flags - change device settings
4689 * @dev: device
4690 * @flags: device state flags
4691 *
4692 * Change settings on device based state flags. The flags are
4693 * in the userspace exported format.
4694 */
4695int dev_change_flags(struct net_device *dev, unsigned int flags)
4696{
4697 int ret;
4698 unsigned int changes, old_flags = dev->flags;
4699
4700 ret = __dev_change_flags(dev, flags);
4701 if (ret < 0)
4702 return ret;
4703
4704 changes = old_flags ^ dev->flags;
4705 if (changes)
4706 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4707
4708 __dev_notify_flags(dev, old_flags);
4709 return ret;
4710}
4711EXPORT_SYMBOL(dev_change_flags);
4712
4713/**
4714 * dev_set_mtu - Change maximum transfer unit
4715 * @dev: device
4716 * @new_mtu: new transfer unit
4717 *
4718 * Change the maximum transfer size of the network device.
4719 */
4720int dev_set_mtu(struct net_device *dev, int new_mtu)
4721{
4722 const struct net_device_ops *ops = dev->netdev_ops;
4723 int err;
4724
4725 if (new_mtu == dev->mtu)
4726 return 0;
4727
4728 /* MTU must be positive. */
4729 if (new_mtu < 0)
4730 return -EINVAL;
4731
4732 if (!netif_device_present(dev))
4733 return -ENODEV;
4734
4735 err = 0;
4736 if (ops->ndo_change_mtu)
4737 err = ops->ndo_change_mtu(dev, new_mtu);
4738 else
4739 dev->mtu = new_mtu;
4740
4741 if (!err)
4742 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4743 return err;
4744}
4745EXPORT_SYMBOL(dev_set_mtu);
4746
4747/**
4748 * dev_set_group - Change group this device belongs to
4749 * @dev: device
4750 * @new_group: group this device should belong to
4751 */
4752void dev_set_group(struct net_device *dev, int new_group)
4753{
4754 dev->group = new_group;
4755}
4756EXPORT_SYMBOL(dev_set_group);
4757
4758/**
4759 * dev_set_mac_address - Change Media Access Control Address
4760 * @dev: device
4761 * @sa: new address
4762 *
4763 * Change the hardware (MAC) address of the device
4764 */
4765int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4766{
4767 const struct net_device_ops *ops = dev->netdev_ops;
4768 int err;
4769
4770 if (!ops->ndo_set_mac_address)
4771 return -EOPNOTSUPP;
4772 if (sa->sa_family != dev->type)
4773 return -EINVAL;
4774 if (!netif_device_present(dev))
4775 return -ENODEV;
4776 err = ops->ndo_set_mac_address(dev, sa);
4777 if (err)
4778 return err;
4779 dev->addr_assign_type = NET_ADDR_SET;
4780 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4781 add_device_randomness(dev->dev_addr, dev->addr_len);
4782 return 0;
4783}
4784EXPORT_SYMBOL(dev_set_mac_address);
4785
4786/**
4787 * dev_change_carrier - Change device carrier
4788 * @dev: device
4789 * @new_carrier: new value
4790 *
4791 * Change device carrier
4792 */
4793int dev_change_carrier(struct net_device *dev, bool new_carrier)
4794{
4795 const struct net_device_ops *ops = dev->netdev_ops;
4796
4797 if (!ops->ndo_change_carrier)
4798 return -EOPNOTSUPP;
4799 if (!netif_device_present(dev))
4800 return -ENODEV;
4801 return ops->ndo_change_carrier(dev, new_carrier);
4802}
4803EXPORT_SYMBOL(dev_change_carrier);
4804
4805/**
4806 * dev_new_index - allocate an ifindex
4807 * @net: the applicable net namespace
4808 *
4809 * Returns a suitable unique value for a new device interface
4810 * number. The caller must hold the rtnl semaphore or the
4811 * dev_base_lock to be sure it remains unique.
4812 */
4813static int dev_new_index(struct net *net)
4814{
4815 int ifindex = net->ifindex;
4816 for (;;) {
4817 if (++ifindex <= 0)
4818 ifindex = 1;
4819 if (!__dev_get_by_index(net, ifindex))
4820 return net->ifindex = ifindex;
4821 }
4822}
4823
4824/* Delayed registration/unregisteration */
4825static LIST_HEAD(net_todo_list);
4826
4827static void net_set_todo(struct net_device *dev)
4828{
4829 list_add_tail(&dev->todo_list, &net_todo_list);
4830}
4831
4832static void rollback_registered_many(struct list_head *head)
4833{
4834 struct net_device *dev, *tmp;
4835
4836 BUG_ON(dev_boot_phase);
4837 ASSERT_RTNL();
4838
4839 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
4840 /* Some devices call without registering
4841 * for initialization unwind. Remove those
4842 * devices and proceed with the remaining.
4843 */
4844 if (dev->reg_state == NETREG_UNINITIALIZED) {
4845 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
4846 dev->name, dev);
4847
4848 WARN_ON(1);
4849 list_del(&dev->unreg_list);
4850 continue;
4851 }
4852 dev->dismantle = true;
4853 BUG_ON(dev->reg_state != NETREG_REGISTERED);
4854 }
4855
4856 /* If device is running, close it first. */
4857 dev_close_many(head);
4858
4859 list_for_each_entry(dev, head, unreg_list) {
4860 /* And unlink it from device chain. */
4861 unlist_netdevice(dev);
4862
4863 dev->reg_state = NETREG_UNREGISTERING;
4864 }
4865
4866 synchronize_net();
4867
4868 list_for_each_entry(dev, head, unreg_list) {
4869 /* Shutdown queueing discipline. */
4870 dev_shutdown(dev);
4871
4872
4873 /* Notify protocols, that we are about to destroy
4874 this device. They should clean all the things.
4875 */
4876 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4877
4878 if (!dev->rtnl_link_ops ||
4879 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
4880 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
4881
4882 /*
4883 * Flush the unicast and multicast chains
4884 */
4885 dev_uc_flush(dev);
4886 dev_mc_flush(dev);
4887
4888 if (dev->netdev_ops->ndo_uninit)
4889 dev->netdev_ops->ndo_uninit(dev);
4890
4891 /* Notifier chain MUST detach us all upper devices. */
4892 WARN_ON(netdev_has_any_upper_dev(dev));
4893
4894 /* Remove entries from kobject tree */
4895 netdev_unregister_kobject(dev);
4896#ifdef CONFIG_XPS
4897 /* Remove XPS queueing entries */
4898 netif_reset_xps_queues_gt(dev, 0);
4899#endif
4900 }
4901
4902 synchronize_net();
4903
4904 list_for_each_entry(dev, head, unreg_list)
4905 dev_put(dev);
4906}
4907
4908static void rollback_registered(struct net_device *dev)
4909{
4910 LIST_HEAD(single);
4911
4912 list_add(&dev->unreg_list, &single);
4913 rollback_registered_many(&single);
4914 list_del(&single);
4915}
4916
4917static netdev_features_t netdev_fix_features(struct net_device *dev,
4918 netdev_features_t features)
4919{
4920 /* Fix illegal checksum combinations */
4921 if ((features & NETIF_F_HW_CSUM) &&
4922 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4923 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
4924 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4925 }
4926
4927 /* Fix illegal SG+CSUM combinations. */
4928 if ((features & NETIF_F_SG) &&
4929 !(features & NETIF_F_ALL_CSUM)) {
4930 netdev_dbg(dev,
4931 "Dropping NETIF_F_SG since no checksum feature.\n");
4932 features &= ~NETIF_F_SG;
4933 }
4934
4935 /* TSO requires that SG is present as well. */
4936 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
4937 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
4938 features &= ~NETIF_F_ALL_TSO;
4939 }
4940
4941 /* TSO ECN requires that TSO is present as well. */
4942 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
4943 features &= ~NETIF_F_TSO_ECN;
4944
4945 /* Software GSO depends on SG. */
4946 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
4947 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
4948 features &= ~NETIF_F_GSO;
4949 }
4950
4951 /* UFO needs SG and checksumming */
4952 if (features & NETIF_F_UFO) {
4953 /* maybe split UFO into V4 and V6? */
4954 if (!((features & NETIF_F_GEN_CSUM) ||
4955 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
4956 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4957 netdev_dbg(dev,
4958 "Dropping NETIF_F_UFO since no checksum offload features.\n");
4959 features &= ~NETIF_F_UFO;
4960 }
4961
4962 if (!(features & NETIF_F_SG)) {
4963 netdev_dbg(dev,
4964 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
4965 features &= ~NETIF_F_UFO;
4966 }
4967 }
4968
4969 return features;
4970}
4971
4972int __netdev_update_features(struct net_device *dev)
4973{
4974 netdev_features_t features;
4975 int err = 0;
4976
4977 ASSERT_RTNL();
4978
4979 features = netdev_get_wanted_features(dev);
4980
4981 if (dev->netdev_ops->ndo_fix_features)
4982 features = dev->netdev_ops->ndo_fix_features(dev, features);
4983
4984 /* driver might be less strict about feature dependencies */
4985 features = netdev_fix_features(dev, features);
4986
4987 if (dev->features == features)
4988 return 0;
4989
4990 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
4991 &dev->features, &features);
4992
4993 if (dev->netdev_ops->ndo_set_features)
4994 err = dev->netdev_ops->ndo_set_features(dev, features);
4995
4996 if (unlikely(err < 0)) {
4997 netdev_err(dev,
4998 "set_features() failed (%d); wanted %pNF, left %pNF\n",
4999 err, &features, &dev->features);
5000 return -1;
5001 }
5002
5003 if (!err)
5004 dev->features = features;
5005
5006 return 1;
5007}
5008
5009/**
5010 * netdev_update_features - recalculate device features
5011 * @dev: the device to check
5012 *
5013 * Recalculate dev->features set and send notifications if it
5014 * has changed. Should be called after driver or hardware dependent
5015 * conditions might have changed that influence the features.
5016 */
5017void netdev_update_features(struct net_device *dev)
5018{
5019 if (__netdev_update_features(dev))
5020 netdev_features_change(dev);
5021}
5022EXPORT_SYMBOL(netdev_update_features);
5023
5024/**
5025 * netdev_change_features - recalculate device features
5026 * @dev: the device to check
5027 *
5028 * Recalculate dev->features set and send notifications even
5029 * if they have not changed. Should be called instead of
5030 * netdev_update_features() if also dev->vlan_features might
5031 * have changed to allow the changes to be propagated to stacked
5032 * VLAN devices.
5033 */
5034void netdev_change_features(struct net_device *dev)
5035{
5036 __netdev_update_features(dev);
5037 netdev_features_change(dev);
5038}
5039EXPORT_SYMBOL(netdev_change_features);
5040
5041/**
5042 * netif_stacked_transfer_operstate - transfer operstate
5043 * @rootdev: the root or lower level device to transfer state from
5044 * @dev: the device to transfer operstate to
5045 *
5046 * Transfer operational state from root to device. This is normally
5047 * called when a stacking relationship exists between the root
5048 * device and the device(a leaf device).
5049 */
5050void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5051 struct net_device *dev)
5052{
5053 if (rootdev->operstate == IF_OPER_DORMANT)
5054 netif_dormant_on(dev);
5055 else
5056 netif_dormant_off(dev);
5057
5058 if (netif_carrier_ok(rootdev)) {
5059 if (!netif_carrier_ok(dev))
5060 netif_carrier_on(dev);
5061 } else {
5062 if (netif_carrier_ok(dev))
5063 netif_carrier_off(dev);
5064 }
5065}
5066EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5067
5068#ifdef CONFIG_RPS
5069static int netif_alloc_rx_queues(struct net_device *dev)
5070{
5071 unsigned int i, count = dev->num_rx_queues;
5072 struct netdev_rx_queue *rx;
5073
5074 BUG_ON(count < 1);
5075
5076 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5077 if (!rx)
5078 return -ENOMEM;
5079
5080 dev->_rx = rx;
5081
5082 for (i = 0; i < count; i++)
5083 rx[i].dev = dev;
5084 return 0;
5085}
5086#endif
5087
5088static void netdev_init_one_queue(struct net_device *dev,
5089 struct netdev_queue *queue, void *_unused)
5090{
5091 /* Initialize queue lock */
5092 spin_lock_init(&queue->_xmit_lock);
5093 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5094 queue->xmit_lock_owner = -1;
5095 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5096 queue->dev = dev;
5097#ifdef CONFIG_BQL
5098 dql_init(&queue->dql, HZ);
5099#endif
5100}
5101
5102static int netif_alloc_netdev_queues(struct net_device *dev)
5103{
5104 unsigned int count = dev->num_tx_queues;
5105 struct netdev_queue *tx;
5106
5107 BUG_ON(count < 1);
5108
5109 tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL);
5110 if (!tx)
5111 return -ENOMEM;
5112
5113 dev->_tx = tx;
5114
5115 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5116 spin_lock_init(&dev->tx_global_lock);
5117
5118 return 0;
5119}
5120
5121/**
5122 * register_netdevice - register a network device
5123 * @dev: device to register
5124 *
5125 * Take a completed network device structure and add it to the kernel
5126 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5127 * chain. 0 is returned on success. A negative errno code is returned
5128 * on a failure to set up the device, or if the name is a duplicate.
5129 *
5130 * Callers must hold the rtnl semaphore. You may want
5131 * register_netdev() instead of this.
5132 *
5133 * BUGS:
5134 * The locking appears insufficient to guarantee two parallel registers
5135 * will not get the same name.
5136 */
5137
5138int register_netdevice(struct net_device *dev)
5139{
5140 int ret;
5141 struct net *net = dev_net(dev);
5142
5143 BUG_ON(dev_boot_phase);
5144 ASSERT_RTNL();
5145
5146 might_sleep();
5147
5148 /* When net_device's are persistent, this will be fatal. */
5149 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5150 BUG_ON(!net);
5151
5152 spin_lock_init(&dev->addr_list_lock);
5153 netdev_set_addr_lockdep_class(dev);
5154
5155 dev->iflink = -1;
5156
5157 ret = dev_get_valid_name(net, dev, dev->name);
5158 if (ret < 0)
5159 goto out;
5160
5161 /* Init, if this function is available */
5162 if (dev->netdev_ops->ndo_init) {
5163 ret = dev->netdev_ops->ndo_init(dev);
5164 if (ret) {
5165 if (ret > 0)
5166 ret = -EIO;
5167 goto out;
5168 }
5169 }
5170
5171 if (((dev->hw_features | dev->features) & NETIF_F_HW_VLAN_FILTER) &&
5172 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
5173 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
5174 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
5175 ret = -EINVAL;
5176 goto err_uninit;
5177 }
5178
5179 ret = -EBUSY;
5180 if (!dev->ifindex)
5181 dev->ifindex = dev_new_index(net);
5182 else if (__dev_get_by_index(net, dev->ifindex))
5183 goto err_uninit;
5184
5185 if (dev->iflink == -1)
5186 dev->iflink = dev->ifindex;
5187
5188 /* Transfer changeable features to wanted_features and enable
5189 * software offloads (GSO and GRO).
5190 */
5191 dev->hw_features |= NETIF_F_SOFT_FEATURES;
5192 dev->features |= NETIF_F_SOFT_FEATURES;
5193 dev->wanted_features = dev->features & dev->hw_features;
5194
5195 /* Turn on no cache copy if HW is doing checksum */
5196 if (!(dev->flags & IFF_LOOPBACK)) {
5197 dev->hw_features |= NETIF_F_NOCACHE_COPY;
5198 if (dev->features & NETIF_F_ALL_CSUM) {
5199 dev->wanted_features |= NETIF_F_NOCACHE_COPY;
5200 dev->features |= NETIF_F_NOCACHE_COPY;
5201 }
5202 }
5203
5204 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
5205 */
5206 dev->vlan_features |= NETIF_F_HIGHDMA;
5207
5208 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5209 ret = notifier_to_errno(ret);
5210 if (ret)
5211 goto err_uninit;
5212
5213 ret = netdev_register_kobject(dev);
5214 if (ret)
5215 goto err_uninit;
5216 dev->reg_state = NETREG_REGISTERED;
5217
5218 __netdev_update_features(dev);
5219
5220 /*
5221 * Default initial state at registry is that the
5222 * device is present.
5223 */
5224
5225 set_bit(__LINK_STATE_PRESENT, &dev->state);
5226
5227 linkwatch_init_dev(dev);
5228
5229 dev_init_scheduler(dev);
5230 dev_hold(dev);
5231 list_netdevice(dev);
5232 add_device_randomness(dev->dev_addr, dev->addr_len);
5233
5234 /* If the device has permanent device address, driver should
5235 * set dev_addr and also addr_assign_type should be set to
5236 * NET_ADDR_PERM (default value).
5237 */
5238 if (dev->addr_assign_type == NET_ADDR_PERM)
5239 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
5240
5241 /* Notify protocols, that a new device appeared. */
5242 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5243 ret = notifier_to_errno(ret);
5244 if (ret) {
5245 rollback_registered(dev);
5246 dev->reg_state = NETREG_UNREGISTERED;
5247 }
5248 /*
5249 * Prevent userspace races by waiting until the network
5250 * device is fully setup before sending notifications.
5251 */
5252 if (!dev->rtnl_link_ops ||
5253 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5254 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5255
5256out:
5257 return ret;
5258
5259err_uninit:
5260 if (dev->netdev_ops->ndo_uninit)
5261 dev->netdev_ops->ndo_uninit(dev);
5262 goto out;
5263}
5264EXPORT_SYMBOL(register_netdevice);
5265
5266/**
5267 * init_dummy_netdev - init a dummy network device for NAPI
5268 * @dev: device to init
5269 *
5270 * This takes a network device structure and initialize the minimum
5271 * amount of fields so it can be used to schedule NAPI polls without
5272 * registering a full blown interface. This is to be used by drivers
5273 * that need to tie several hardware interfaces to a single NAPI
5274 * poll scheduler due to HW limitations.
5275 */
5276int init_dummy_netdev(struct net_device *dev)
5277{
5278 /* Clear everything. Note we don't initialize spinlocks
5279 * are they aren't supposed to be taken by any of the
5280 * NAPI code and this dummy netdev is supposed to be
5281 * only ever used for NAPI polls
5282 */
5283 memset(dev, 0, sizeof(struct net_device));
5284
5285 /* make sure we BUG if trying to hit standard
5286 * register/unregister code path
5287 */
5288 dev->reg_state = NETREG_DUMMY;
5289
5290 /* NAPI wants this */
5291 INIT_LIST_HEAD(&dev->napi_list);
5292
5293 /* a dummy interface is started by default */
5294 set_bit(__LINK_STATE_PRESENT, &dev->state);
5295 set_bit(__LINK_STATE_START, &dev->state);
5296
5297 /* Note : We dont allocate pcpu_refcnt for dummy devices,
5298 * because users of this 'device' dont need to change
5299 * its refcount.
5300 */
5301
5302 return 0;
5303}
5304EXPORT_SYMBOL_GPL(init_dummy_netdev);
5305
5306
5307/**
5308 * register_netdev - register a network device
5309 * @dev: device to register
5310 *
5311 * Take a completed network device structure and add it to the kernel
5312 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5313 * chain. 0 is returned on success. A negative errno code is returned
5314 * on a failure to set up the device, or if the name is a duplicate.
5315 *
5316 * This is a wrapper around register_netdevice that takes the rtnl semaphore
5317 * and expands the device name if you passed a format string to
5318 * alloc_netdev.
5319 */
5320int register_netdev(struct net_device *dev)
5321{
5322 int err;
5323
5324 rtnl_lock();
5325 err = register_netdevice(dev);
5326 rtnl_unlock();
5327 return err;
5328}
5329EXPORT_SYMBOL(register_netdev);
5330
5331int netdev_refcnt_read(const struct net_device *dev)
5332{
5333 int i, refcnt = 0;
5334
5335 for_each_possible_cpu(i)
5336 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
5337 return refcnt;
5338}
5339EXPORT_SYMBOL(netdev_refcnt_read);
5340
5341/**
5342 * netdev_wait_allrefs - wait until all references are gone.
5343 * @dev: target net_device
5344 *
5345 * This is called when unregistering network devices.
5346 *
5347 * Any protocol or device that holds a reference should register
5348 * for netdevice notification, and cleanup and put back the
5349 * reference if they receive an UNREGISTER event.
5350 * We can get stuck here if buggy protocols don't correctly
5351 * call dev_put.
5352 */
5353static void netdev_wait_allrefs(struct net_device *dev)
5354{
5355 unsigned long rebroadcast_time, warning_time;
5356 int refcnt;
5357
5358 linkwatch_forget_dev(dev);
5359
5360 rebroadcast_time = warning_time = jiffies;
5361 refcnt = netdev_refcnt_read(dev);
5362
5363 while (refcnt != 0) {
5364 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5365 rtnl_lock();
5366
5367 /* Rebroadcast unregister notification */
5368 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5369
5370 __rtnl_unlock();
5371 rcu_barrier();
5372 rtnl_lock();
5373
5374 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
5375 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5376 &dev->state)) {
5377 /* We must not have linkwatch events
5378 * pending on unregister. If this
5379 * happens, we simply run the queue
5380 * unscheduled, resulting in a noop
5381 * for this device.
5382 */
5383 linkwatch_run_queue();
5384 }
5385
5386 __rtnl_unlock();
5387
5388 rebroadcast_time = jiffies;
5389 }
5390
5391 msleep(250);
5392
5393 refcnt = netdev_refcnt_read(dev);
5394
5395 if (time_after(jiffies, warning_time + 10 * HZ)) {
5396 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
5397 dev->name, refcnt);
5398 warning_time = jiffies;
5399 }
5400 }
5401}
5402
5403/* The sequence is:
5404 *
5405 * rtnl_lock();
5406 * ...
5407 * register_netdevice(x1);
5408 * register_netdevice(x2);
5409 * ...
5410 * unregister_netdevice(y1);
5411 * unregister_netdevice(y2);
5412 * ...
5413 * rtnl_unlock();
5414 * free_netdev(y1);
5415 * free_netdev(y2);
5416 *
5417 * We are invoked by rtnl_unlock().
5418 * This allows us to deal with problems:
5419 * 1) We can delete sysfs objects which invoke hotplug
5420 * without deadlocking with linkwatch via keventd.
5421 * 2) Since we run with the RTNL semaphore not held, we can sleep
5422 * safely in order to wait for the netdev refcnt to drop to zero.
5423 *
5424 * We must not return until all unregister events added during
5425 * the interval the lock was held have been completed.
5426 */
5427void netdev_run_todo(void)
5428{
5429 struct list_head list;
5430
5431 /* Snapshot list, allow later requests */
5432 list_replace_init(&net_todo_list, &list);
5433
5434 __rtnl_unlock();
5435
5436
5437 /* Wait for rcu callbacks to finish before next phase */
5438 if (!list_empty(&list))
5439 rcu_barrier();
5440
5441 while (!list_empty(&list)) {
5442 struct net_device *dev
5443 = list_first_entry(&list, struct net_device, todo_list);
5444 list_del(&dev->todo_list);
5445
5446 rtnl_lock();
5447 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
5448 __rtnl_unlock();
5449
5450 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5451 pr_err("network todo '%s' but state %d\n",
5452 dev->name, dev->reg_state);
5453 dump_stack();
5454 continue;
5455 }
5456
5457 dev->reg_state = NETREG_UNREGISTERED;
5458
5459 on_each_cpu(flush_backlog, dev, 1);
5460
5461 netdev_wait_allrefs(dev);
5462
5463 /* paranoia */
5464 BUG_ON(netdev_refcnt_read(dev));
5465 WARN_ON(rcu_access_pointer(dev->ip_ptr));
5466 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
5467 WARN_ON(dev->dn_ptr);
5468
5469 if (dev->destructor)
5470 dev->destructor(dev);
5471
5472 /* Free network device */
5473 kobject_put(&dev->dev.kobj);
5474 }
5475}
5476
5477/* Convert net_device_stats to rtnl_link_stats64. They have the same
5478 * fields in the same order, with only the type differing.
5479 */
5480void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
5481 const struct net_device_stats *netdev_stats)
5482{
5483#if BITS_PER_LONG == 64
5484 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
5485 memcpy(stats64, netdev_stats, sizeof(*stats64));
5486#else
5487 size_t i, n = sizeof(*stats64) / sizeof(u64);
5488 const unsigned long *src = (const unsigned long *)netdev_stats;
5489 u64 *dst = (u64 *)stats64;
5490
5491 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
5492 sizeof(*stats64) / sizeof(u64));
5493 for (i = 0; i < n; i++)
5494 dst[i] = src[i];
5495#endif
5496}
5497EXPORT_SYMBOL(netdev_stats_to_stats64);
5498
5499/**
5500 * dev_get_stats - get network device statistics
5501 * @dev: device to get statistics from
5502 * @storage: place to store stats
5503 *
5504 * Get network statistics from device. Return @storage.
5505 * The device driver may provide its own method by setting
5506 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
5507 * otherwise the internal statistics structure is used.
5508 */
5509struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
5510 struct rtnl_link_stats64 *storage)
5511{
5512 const struct net_device_ops *ops = dev->netdev_ops;
5513
5514 if (ops->ndo_get_stats64) {
5515 memset(storage, 0, sizeof(*storage));
5516 ops->ndo_get_stats64(dev, storage);
5517 } else if (ops->ndo_get_stats) {
5518 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
5519 } else {
5520 netdev_stats_to_stats64(storage, &dev->stats);
5521 }
5522 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
5523 return storage;
5524}
5525EXPORT_SYMBOL(dev_get_stats);
5526
5527struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
5528{
5529 struct netdev_queue *queue = dev_ingress_queue(dev);
5530
5531#ifdef CONFIG_NET_CLS_ACT
5532 if (queue)
5533 return queue;
5534 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
5535 if (!queue)
5536 return NULL;
5537 netdev_init_one_queue(dev, queue, NULL);
5538 queue->qdisc = &noop_qdisc;
5539 queue->qdisc_sleeping = &noop_qdisc;
5540 rcu_assign_pointer(dev->ingress_queue, queue);
5541#endif
5542 return queue;
5543}
5544
5545static const struct ethtool_ops default_ethtool_ops;
5546
5547void netdev_set_default_ethtool_ops(struct net_device *dev,
5548 const struct ethtool_ops *ops)
5549{
5550 if (dev->ethtool_ops == &default_ethtool_ops)
5551 dev->ethtool_ops = ops;
5552}
5553EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
5554
5555/**
5556 * alloc_netdev_mqs - allocate network device
5557 * @sizeof_priv: size of private data to allocate space for
5558 * @name: device name format string
5559 * @setup: callback to initialize device
5560 * @txqs: the number of TX subqueues to allocate
5561 * @rxqs: the number of RX subqueues to allocate
5562 *
5563 * Allocates a struct net_device with private data area for driver use
5564 * and performs basic initialization. Also allocates subquue structs
5565 * for each queue on the device.
5566 */
5567struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
5568 void (*setup)(struct net_device *),
5569 unsigned int txqs, unsigned int rxqs)
5570{
5571 struct net_device *dev;
5572 size_t alloc_size;
5573 struct net_device *p;
5574
5575 BUG_ON(strlen(name) >= sizeof(dev->name));
5576
5577 if (txqs < 1) {
5578 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
5579 return NULL;
5580 }
5581
5582#ifdef CONFIG_RPS
5583 if (rxqs < 1) {
5584 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
5585 return NULL;
5586 }
5587#endif
5588
5589 alloc_size = sizeof(struct net_device);
5590 if (sizeof_priv) {
5591 /* ensure 32-byte alignment of private area */
5592 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5593 alloc_size += sizeof_priv;
5594 }
5595 /* ensure 32-byte alignment of whole construct */
5596 alloc_size += NETDEV_ALIGN - 1;
5597
5598 p = kzalloc(alloc_size, GFP_KERNEL);
5599 if (!p)
5600 return NULL;
5601
5602 dev = PTR_ALIGN(p, NETDEV_ALIGN);
5603 dev->padded = (char *)dev - (char *)p;
5604
5605 dev->pcpu_refcnt = alloc_percpu(int);
5606 if (!dev->pcpu_refcnt)
5607 goto free_p;
5608
5609 if (dev_addr_init(dev))
5610 goto free_pcpu;
5611
5612 dev_mc_init(dev);
5613 dev_uc_init(dev);
5614
5615 dev_net_set(dev, &init_net);
5616
5617 dev->gso_max_size = GSO_MAX_SIZE;
5618 dev->gso_max_segs = GSO_MAX_SEGS;
5619
5620 INIT_LIST_HEAD(&dev->napi_list);
5621 INIT_LIST_HEAD(&dev->unreg_list);
5622 INIT_LIST_HEAD(&dev->link_watch_list);
5623 INIT_LIST_HEAD(&dev->upper_dev_list);
5624 dev->priv_flags = IFF_XMIT_DST_RELEASE;
5625 setup(dev);
5626
5627 dev->num_tx_queues = txqs;
5628 dev->real_num_tx_queues = txqs;
5629 if (netif_alloc_netdev_queues(dev))
5630 goto free_all;
5631
5632#ifdef CONFIG_RPS
5633 dev->num_rx_queues = rxqs;
5634 dev->real_num_rx_queues = rxqs;
5635 if (netif_alloc_rx_queues(dev))
5636 goto free_all;
5637#endif
5638
5639 strcpy(dev->name, name);
5640 dev->group = INIT_NETDEV_GROUP;
5641 if (!dev->ethtool_ops)
5642 dev->ethtool_ops = &default_ethtool_ops;
5643 return dev;
5644
5645free_all:
5646 free_netdev(dev);
5647 return NULL;
5648
5649free_pcpu:
5650 free_percpu(dev->pcpu_refcnt);
5651 kfree(dev->_tx);
5652#ifdef CONFIG_RPS
5653 kfree(dev->_rx);
5654#endif
5655
5656free_p:
5657 kfree(p);
5658 return NULL;
5659}
5660EXPORT_SYMBOL(alloc_netdev_mqs);
5661
5662/**
5663 * free_netdev - free network device
5664 * @dev: device
5665 *
5666 * This function does the last stage of destroying an allocated device
5667 * interface. The reference to the device object is released.
5668 * If this is the last reference then it will be freed.
5669 */
5670void free_netdev(struct net_device *dev)
5671{
5672 struct napi_struct *p, *n;
5673
5674 release_net(dev_net(dev));
5675
5676 kfree(dev->_tx);
5677#ifdef CONFIG_RPS
5678 kfree(dev->_rx);
5679#endif
5680
5681 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
5682
5683 /* Flush device addresses */
5684 dev_addr_flush(dev);
5685
5686 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5687 netif_napi_del(p);
5688
5689 free_percpu(dev->pcpu_refcnt);
5690 dev->pcpu_refcnt = NULL;
5691
5692 /* Compatibility with error handling in drivers */
5693 if (dev->reg_state == NETREG_UNINITIALIZED) {
5694 kfree((char *)dev - dev->padded);
5695 return;
5696 }
5697
5698 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
5699 dev->reg_state = NETREG_RELEASED;
5700
5701 /* will free via device release */
5702 put_device(&dev->dev);
5703}
5704EXPORT_SYMBOL(free_netdev);
5705
5706/**
5707 * synchronize_net - Synchronize with packet receive processing
5708 *
5709 * Wait for packets currently being received to be done.
5710 * Does not block later packets from starting.
5711 */
5712void synchronize_net(void)
5713{
5714 might_sleep();
5715 if (rtnl_is_locked())
5716 synchronize_rcu_expedited();
5717 else
5718 synchronize_rcu();
5719}
5720EXPORT_SYMBOL(synchronize_net);
5721
5722/**
5723 * unregister_netdevice_queue - remove device from the kernel
5724 * @dev: device
5725 * @head: list
5726 *
5727 * This function shuts down a device interface and removes it
5728 * from the kernel tables.
5729 * If head not NULL, device is queued to be unregistered later.
5730 *
5731 * Callers must hold the rtnl semaphore. You may want
5732 * unregister_netdev() instead of this.
5733 */
5734
5735void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
5736{
5737 ASSERT_RTNL();
5738
5739 if (head) {
5740 list_move_tail(&dev->unreg_list, head);
5741 } else {
5742 rollback_registered(dev);
5743 /* Finish processing unregister after unlock */
5744 net_set_todo(dev);
5745 }
5746}
5747EXPORT_SYMBOL(unregister_netdevice_queue);
5748
5749/**
5750 * unregister_netdevice_many - unregister many devices
5751 * @head: list of devices
5752 */
5753void unregister_netdevice_many(struct list_head *head)
5754{
5755 struct net_device *dev;
5756
5757 if (!list_empty(head)) {
5758 rollback_registered_many(head);
5759 list_for_each_entry(dev, head, unreg_list)
5760 net_set_todo(dev);
5761 }
5762}
5763EXPORT_SYMBOL(unregister_netdevice_many);
5764
5765/**
5766 * unregister_netdev - remove device from the kernel
5767 * @dev: device
5768 *
5769 * This function shuts down a device interface and removes it
5770 * from the kernel tables.
5771 *
5772 * This is just a wrapper for unregister_netdevice that takes
5773 * the rtnl semaphore. In general you want to use this and not
5774 * unregister_netdevice.
5775 */
5776void unregister_netdev(struct net_device *dev)
5777{
5778 rtnl_lock();
5779 unregister_netdevice(dev);
5780 rtnl_unlock();
5781}
5782EXPORT_SYMBOL(unregister_netdev);
5783
5784/**
5785 * dev_change_net_namespace - move device to different nethost namespace
5786 * @dev: device
5787 * @net: network namespace
5788 * @pat: If not NULL name pattern to try if the current device name
5789 * is already taken in the destination network namespace.
5790 *
5791 * This function shuts down a device interface and moves it
5792 * to a new network namespace. On success 0 is returned, on
5793 * a failure a netagive errno code is returned.
5794 *
5795 * Callers must hold the rtnl semaphore.
5796 */
5797
5798int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
5799{
5800 int err;
5801
5802 ASSERT_RTNL();
5803
5804 /* Don't allow namespace local devices to be moved. */
5805 err = -EINVAL;
5806 if (dev->features & NETIF_F_NETNS_LOCAL)
5807 goto out;
5808
5809 /* Ensure the device has been registrered */
5810 if (dev->reg_state != NETREG_REGISTERED)
5811 goto out;
5812
5813 /* Get out if there is nothing todo */
5814 err = 0;
5815 if (net_eq(dev_net(dev), net))
5816 goto out;
5817
5818 /* Pick the destination device name, and ensure
5819 * we can use it in the destination network namespace.
5820 */
5821 err = -EEXIST;
5822 if (__dev_get_by_name(net, dev->name)) {
5823 /* We get here if we can't use the current device name */
5824 if (!pat)
5825 goto out;
5826 if (dev_get_valid_name(net, dev, pat) < 0)
5827 goto out;
5828 }
5829
5830 /*
5831 * And now a mini version of register_netdevice unregister_netdevice.
5832 */
5833
5834 /* If device is running close it first. */
5835 dev_close(dev);
5836
5837 /* And unlink it from device chain */
5838 err = -ENODEV;
5839 unlist_netdevice(dev);
5840
5841 synchronize_net();
5842
5843 /* Shutdown queueing discipline. */
5844 dev_shutdown(dev);
5845
5846 /* Notify protocols, that we are about to destroy
5847 this device. They should clean all the things.
5848
5849 Note that dev->reg_state stays at NETREG_REGISTERED.
5850 This is wanted because this way 8021q and macvlan know
5851 the device is just moving and can keep their slaves up.
5852 */
5853 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5854 rcu_barrier();
5855 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
5856 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
5857
5858 /*
5859 * Flush the unicast and multicast chains
5860 */
5861 dev_uc_flush(dev);
5862 dev_mc_flush(dev);
5863
5864 /* Send a netdev-removed uevent to the old namespace */
5865 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
5866
5867 /* Actually switch the network namespace */
5868 dev_net_set(dev, net);
5869
5870 /* If there is an ifindex conflict assign a new one */
5871 if (__dev_get_by_index(net, dev->ifindex)) {
5872 int iflink = (dev->iflink == dev->ifindex);
5873 dev->ifindex = dev_new_index(net);
5874 if (iflink)
5875 dev->iflink = dev->ifindex;
5876 }
5877
5878 /* Send a netdev-add uevent to the new namespace */
5879 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
5880
5881 /* Fixup kobjects */
5882 err = device_rename(&dev->dev, dev->name);
5883 WARN_ON(err);
5884
5885 /* Add the device back in the hashes */
5886 list_netdevice(dev);
5887
5888 /* Notify protocols, that a new device appeared. */
5889 call_netdevice_notifiers(NETDEV_REGISTER, dev);
5890
5891 /*
5892 * Prevent userspace races by waiting until the network
5893 * device is fully setup before sending notifications.
5894 */
5895 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5896
5897 synchronize_net();
5898 err = 0;
5899out:
5900 return err;
5901}
5902EXPORT_SYMBOL_GPL(dev_change_net_namespace);
5903
5904static int dev_cpu_callback(struct notifier_block *nfb,
5905 unsigned long action,
5906 void *ocpu)
5907{
5908 struct sk_buff **list_skb;
5909 struct sk_buff *skb;
5910 unsigned int cpu, oldcpu = (unsigned long)ocpu;
5911 struct softnet_data *sd, *oldsd;
5912
5913 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
5914 return NOTIFY_OK;
5915
5916 local_irq_disable();
5917 cpu = smp_processor_id();
5918 sd = &per_cpu(softnet_data, cpu);
5919 oldsd = &per_cpu(softnet_data, oldcpu);
5920
5921 /* Find end of our completion_queue. */
5922 list_skb = &sd->completion_queue;
5923 while (*list_skb)
5924 list_skb = &(*list_skb)->next;
5925 /* Append completion queue from offline CPU. */
5926 *list_skb = oldsd->completion_queue;
5927 oldsd->completion_queue = NULL;
5928
5929 /* Append output queue from offline CPU. */
5930 if (oldsd->output_queue) {
5931 *sd->output_queue_tailp = oldsd->output_queue;
5932 sd->output_queue_tailp = oldsd->output_queue_tailp;
5933 oldsd->output_queue = NULL;
5934 oldsd->output_queue_tailp = &oldsd->output_queue;
5935 }
5936 /* Append NAPI poll list from offline CPU. */
5937 if (!list_empty(&oldsd->poll_list)) {
5938 list_splice_init(&oldsd->poll_list, &sd->poll_list);
5939 raise_softirq_irqoff(NET_RX_SOFTIRQ);
5940 }
5941
5942 raise_softirq_irqoff(NET_TX_SOFTIRQ);
5943 local_irq_enable();
5944
5945 /* Process offline CPU's input_pkt_queue */
5946 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
5947 netif_rx(skb);
5948 input_queue_head_incr(oldsd);
5949 }
5950 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
5951 netif_rx(skb);
5952 input_queue_head_incr(oldsd);
5953 }
5954
5955 return NOTIFY_OK;
5956}
5957
5958
5959/**
5960 * netdev_increment_features - increment feature set by one
5961 * @all: current feature set
5962 * @one: new feature set
5963 * @mask: mask feature set
5964 *
5965 * Computes a new feature set after adding a device with feature set
5966 * @one to the master device with current feature set @all. Will not
5967 * enable anything that is off in @mask. Returns the new feature set.
5968 */
5969netdev_features_t netdev_increment_features(netdev_features_t all,
5970 netdev_features_t one, netdev_features_t mask)
5971{
5972 if (mask & NETIF_F_GEN_CSUM)
5973 mask |= NETIF_F_ALL_CSUM;
5974 mask |= NETIF_F_VLAN_CHALLENGED;
5975
5976 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
5977 all &= one | ~NETIF_F_ALL_FOR_ALL;
5978
5979 /* If one device supports hw checksumming, set for all. */
5980 if (all & NETIF_F_GEN_CSUM)
5981 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
5982
5983 return all;
5984}
5985EXPORT_SYMBOL(netdev_increment_features);
5986
5987static struct hlist_head *netdev_create_hash(void)
5988{
5989 int i;
5990 struct hlist_head *hash;
5991
5992 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
5993 if (hash != NULL)
5994 for (i = 0; i < NETDEV_HASHENTRIES; i++)
5995 INIT_HLIST_HEAD(&hash[i]);
5996
5997 return hash;
5998}
5999
6000/* Initialize per network namespace state */
6001static int __net_init netdev_init(struct net *net)
6002{
6003 if (net != &init_net)
6004 INIT_LIST_HEAD(&net->dev_base_head);
6005
6006 net->dev_name_head = netdev_create_hash();
6007 if (net->dev_name_head == NULL)
6008 goto err_name;
6009
6010 net->dev_index_head = netdev_create_hash();
6011 if (net->dev_index_head == NULL)
6012 goto err_idx;
6013
6014 return 0;
6015
6016err_idx:
6017 kfree(net->dev_name_head);
6018err_name:
6019 return -ENOMEM;
6020}
6021
6022/**
6023 * netdev_drivername - network driver for the device
6024 * @dev: network device
6025 *
6026 * Determine network driver for device.
6027 */
6028const char *netdev_drivername(const struct net_device *dev)
6029{
6030 const struct device_driver *driver;
6031 const struct device *parent;
6032 const char *empty = "";
6033
6034 parent = dev->dev.parent;
6035 if (!parent)
6036 return empty;
6037
6038 driver = parent->driver;
6039 if (driver && driver->name)
6040 return driver->name;
6041 return empty;
6042}
6043
6044static int __netdev_printk(const char *level, const struct net_device *dev,
6045 struct va_format *vaf)
6046{
6047 int r;
6048
6049 if (dev && dev->dev.parent) {
6050 r = dev_printk_emit(level[1] - '0',
6051 dev->dev.parent,
6052 "%s %s %s: %pV",
6053 dev_driver_string(dev->dev.parent),
6054 dev_name(dev->dev.parent),
6055 netdev_name(dev), vaf);
6056 } else if (dev) {
6057 r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6058 } else {
6059 r = printk("%s(NULL net_device): %pV", level, vaf);
6060 }
6061
6062 return r;
6063}
6064
6065int netdev_printk(const char *level, const struct net_device *dev,
6066 const char *format, ...)
6067{
6068 struct va_format vaf;
6069 va_list args;
6070 int r;
6071
6072 va_start(args, format);
6073
6074 vaf.fmt = format;
6075 vaf.va = &args;
6076
6077 r = __netdev_printk(level, dev, &vaf);
6078
6079 va_end(args);
6080
6081 return r;
6082}
6083EXPORT_SYMBOL(netdev_printk);
6084
6085#define define_netdev_printk_level(func, level) \
6086int func(const struct net_device *dev, const char *fmt, ...) \
6087{ \
6088 int r; \
6089 struct va_format vaf; \
6090 va_list args; \
6091 \
6092 va_start(args, fmt); \
6093 \
6094 vaf.fmt = fmt; \
6095 vaf.va = &args; \
6096 \
6097 r = __netdev_printk(level, dev, &vaf); \
6098 \
6099 va_end(args); \
6100 \
6101 return r; \
6102} \
6103EXPORT_SYMBOL(func);
6104
6105define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6106define_netdev_printk_level(netdev_alert, KERN_ALERT);
6107define_netdev_printk_level(netdev_crit, KERN_CRIT);
6108define_netdev_printk_level(netdev_err, KERN_ERR);
6109define_netdev_printk_level(netdev_warn, KERN_WARNING);
6110define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6111define_netdev_printk_level(netdev_info, KERN_INFO);
6112
6113static void __net_exit netdev_exit(struct net *net)
6114{
6115 kfree(net->dev_name_head);
6116 kfree(net->dev_index_head);
6117}
6118
6119static struct pernet_operations __net_initdata netdev_net_ops = {
6120 .init = netdev_init,
6121 .exit = netdev_exit,
6122};
6123
6124static void __net_exit default_device_exit(struct net *net)
6125{
6126 struct net_device *dev, *aux;
6127 /*
6128 * Push all migratable network devices back to the
6129 * initial network namespace
6130 */
6131 rtnl_lock();
6132 for_each_netdev_safe(net, dev, aux) {
6133 int err;
6134 char fb_name[IFNAMSIZ];
6135
6136 /* Ignore unmoveable devices (i.e. loopback) */
6137 if (dev->features & NETIF_F_NETNS_LOCAL)
6138 continue;
6139
6140 /* Leave virtual devices for the generic cleanup */
6141 if (dev->rtnl_link_ops)
6142 continue;
6143
6144 /* Push remaining network devices to init_net */
6145 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6146 err = dev_change_net_namespace(dev, &init_net, fb_name);
6147 if (err) {
6148 pr_emerg("%s: failed to move %s to init_net: %d\n",
6149 __func__, dev->name, err);
6150 BUG();
6151 }
6152 }
6153 rtnl_unlock();
6154}
6155
6156static void __net_exit default_device_exit_batch(struct list_head *net_list)
6157{
6158 /* At exit all network devices most be removed from a network
6159 * namespace. Do this in the reverse order of registration.
6160 * Do this across as many network namespaces as possible to
6161 * improve batching efficiency.
6162 */
6163 struct net_device *dev;
6164 struct net *net;
6165 LIST_HEAD(dev_kill_list);
6166
6167 rtnl_lock();
6168 list_for_each_entry(net, net_list, exit_list) {
6169 for_each_netdev_reverse(net, dev) {
6170 if (dev->rtnl_link_ops)
6171 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6172 else
6173 unregister_netdevice_queue(dev, &dev_kill_list);
6174 }
6175 }
6176 unregister_netdevice_many(&dev_kill_list);
6177 list_del(&dev_kill_list);
6178 rtnl_unlock();
6179}
6180
6181static struct pernet_operations __net_initdata default_device_ops = {
6182 .exit = default_device_exit,
6183 .exit_batch = default_device_exit_batch,
6184};
6185
6186/*
6187 * Initialize the DEV module. At boot time this walks the device list and
6188 * unhooks any devices that fail to initialise (normally hardware not
6189 * present) and leaves us with a valid list of present and active devices.
6190 *
6191 */
6192
6193/*
6194 * This is called single threaded during boot, so no need
6195 * to take the rtnl semaphore.
6196 */
6197static int __init net_dev_init(void)
6198{
6199 int i, rc = -ENOMEM;
6200
6201 BUG_ON(!dev_boot_phase);
6202
6203 if (dev_proc_init())
6204 goto out;
6205
6206 if (netdev_kobject_init())
6207 goto out;
6208
6209 INIT_LIST_HEAD(&ptype_all);
6210 for (i = 0; i < PTYPE_HASH_SIZE; i++)
6211 INIT_LIST_HEAD(&ptype_base[i]);
6212
6213 INIT_LIST_HEAD(&offload_base);
6214
6215 if (register_pernet_subsys(&netdev_net_ops))
6216 goto out;
6217
6218 /*
6219 * Initialise the packet receive queues.
6220 */
6221
6222 for_each_possible_cpu(i) {
6223 struct softnet_data *sd = &per_cpu(softnet_data, i);
6224
6225 memset(sd, 0, sizeof(*sd));
6226 skb_queue_head_init(&sd->input_pkt_queue);
6227 skb_queue_head_init(&sd->process_queue);
6228 sd->completion_queue = NULL;
6229 INIT_LIST_HEAD(&sd->poll_list);
6230 sd->output_queue = NULL;
6231 sd->output_queue_tailp = &sd->output_queue;
6232#ifdef CONFIG_RPS
6233 sd->csd.func = rps_trigger_softirq;
6234 sd->csd.info = sd;
6235 sd->csd.flags = 0;
6236 sd->cpu = i;
6237#endif
6238
6239 sd->backlog.poll = process_backlog;
6240 sd->backlog.weight = weight_p;
6241 sd->backlog.gro_list = NULL;
6242 sd->backlog.gro_count = 0;
6243 }
6244
6245 dev_boot_phase = 0;
6246
6247 /* The loopback device is special if any other network devices
6248 * is present in a network namespace the loopback device must
6249 * be present. Since we now dynamically allocate and free the
6250 * loopback device ensure this invariant is maintained by
6251 * keeping the loopback device as the first device on the
6252 * list of network devices. Ensuring the loopback devices
6253 * is the first device that appears and the last network device
6254 * that disappears.
6255 */
6256 if (register_pernet_device(&loopback_net_ops))
6257 goto out;
6258
6259 if (register_pernet_device(&default_device_ops))
6260 goto out;
6261
6262 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6263 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6264
6265 hotcpu_notifier(dev_cpu_callback, 0);
6266 dst_init();
6267 rc = 0;
6268out:
6269 return rc;
6270}
6271
6272subsys_initcall(net_dev_init);