at v3.9-rc6 35 kB view raw
1/* 2 * 3 * Copyright (c) 2011, Microsoft Corporation. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 * 14 * You should have received a copy of the GNU General Public License along with 15 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple 16 * Place - Suite 330, Boston, MA 02111-1307 USA. 17 * 18 * Authors: 19 * Haiyang Zhang <haiyangz@microsoft.com> 20 * Hank Janssen <hjanssen@microsoft.com> 21 * K. Y. Srinivasan <kys@microsoft.com> 22 * 23 */ 24 25#ifndef _HYPERV_H 26#define _HYPERV_H 27 28#include <linux/types.h> 29 30/* 31 * An implementation of HyperV key value pair (KVP) functionality for Linux. 32 * 33 * 34 * Copyright (C) 2010, Novell, Inc. 35 * Author : K. Y. Srinivasan <ksrinivasan@novell.com> 36 * 37 */ 38 39/* 40 * Maximum value size - used for both key names and value data, and includes 41 * any applicable NULL terminators. 42 * 43 * Note: This limit is somewhat arbitrary, but falls easily within what is 44 * supported for all native guests (back to Win 2000) and what is reasonable 45 * for the IC KVP exchange functionality. Note that Windows Me/98/95 are 46 * limited to 255 character key names. 47 * 48 * MSDN recommends not storing data values larger than 2048 bytes in the 49 * registry. 50 * 51 * Note: This value is used in defining the KVP exchange message - this value 52 * cannot be modified without affecting the message size and compatibility. 53 */ 54 55/* 56 * bytes, including any null terminators 57 */ 58#define HV_KVP_EXCHANGE_MAX_VALUE_SIZE (2048) 59 60 61/* 62 * Maximum key size - the registry limit for the length of an entry name 63 * is 256 characters, including the null terminator 64 */ 65 66#define HV_KVP_EXCHANGE_MAX_KEY_SIZE (512) 67 68/* 69 * In Linux, we implement the KVP functionality in two components: 70 * 1) The kernel component which is packaged as part of the hv_utils driver 71 * is responsible for communicating with the host and responsible for 72 * implementing the host/guest protocol. 2) A user level daemon that is 73 * responsible for data gathering. 74 * 75 * Host/Guest Protocol: The host iterates over an index and expects the guest 76 * to assign a key name to the index and also return the value corresponding to 77 * the key. The host will have atmost one KVP transaction outstanding at any 78 * given point in time. The host side iteration stops when the guest returns 79 * an error. Microsoft has specified the following mapping of key names to 80 * host specified index: 81 * 82 * Index Key Name 83 * 0 FullyQualifiedDomainName 84 * 1 IntegrationServicesVersion 85 * 2 NetworkAddressIPv4 86 * 3 NetworkAddressIPv6 87 * 4 OSBuildNumber 88 * 5 OSName 89 * 6 OSMajorVersion 90 * 7 OSMinorVersion 91 * 8 OSVersion 92 * 9 ProcessorArchitecture 93 * 94 * The Windows host expects the Key Name and Key Value to be encoded in utf16. 95 * 96 * Guest Kernel/KVP Daemon Protocol: As noted earlier, we implement all of the 97 * data gathering functionality in a user mode daemon. The user level daemon 98 * is also responsible for binding the key name to the index as well. The 99 * kernel and user-level daemon communicate using a connector channel. 100 * 101 * The user mode component first registers with the 102 * the kernel component. Subsequently, the kernel component requests, data 103 * for the specified keys. In response to this message the user mode component 104 * fills in the value corresponding to the specified key. We overload the 105 * sequence field in the cn_msg header to define our KVP message types. 106 * 107 * 108 * The kernel component simply acts as a conduit for communication between the 109 * Windows host and the user-level daemon. The kernel component passes up the 110 * index received from the Host to the user-level daemon. If the index is 111 * valid (supported), the corresponding key as well as its 112 * value (both are strings) is returned. If the index is invalid 113 * (not supported), a NULL key string is returned. 114 */ 115 116 117/* 118 * Registry value types. 119 */ 120 121#define REG_SZ 1 122#define REG_U32 4 123#define REG_U64 8 124 125/* 126 * As we look at expanding the KVP functionality to include 127 * IP injection functionality, we need to maintain binary 128 * compatibility with older daemons. 129 * 130 * The KVP opcodes are defined by the host and it was unfortunate 131 * that I chose to treat the registration operation as part of the 132 * KVP operations defined by the host. 133 * Here is the level of compatibility 134 * (between the user level daemon and the kernel KVP driver) that we 135 * will implement: 136 * 137 * An older daemon will always be supported on a newer driver. 138 * A given user level daemon will require a minimal version of the 139 * kernel driver. 140 * If we cannot handle the version differences, we will fail gracefully 141 * (this can happen when we have a user level daemon that is more 142 * advanced than the KVP driver. 143 * 144 * We will use values used in this handshake for determining if we have 145 * workable user level daemon and the kernel driver. We begin by taking the 146 * registration opcode out of the KVP opcode namespace. We will however, 147 * maintain compatibility with the existing user-level daemon code. 148 */ 149 150/* 151 * Daemon code not supporting IP injection (legacy daemon). 152 */ 153 154#define KVP_OP_REGISTER 4 155 156/* 157 * Daemon code supporting IP injection. 158 * The KVP opcode field is used to communicate the 159 * registration information; so define a namespace that 160 * will be distinct from the host defined KVP opcode. 161 */ 162 163#define KVP_OP_REGISTER1 100 164 165enum hv_kvp_exchg_op { 166 KVP_OP_GET = 0, 167 KVP_OP_SET, 168 KVP_OP_DELETE, 169 KVP_OP_ENUMERATE, 170 KVP_OP_GET_IP_INFO, 171 KVP_OP_SET_IP_INFO, 172 KVP_OP_COUNT /* Number of operations, must be last. */ 173}; 174 175enum hv_kvp_exchg_pool { 176 KVP_POOL_EXTERNAL = 0, 177 KVP_POOL_GUEST, 178 KVP_POOL_AUTO, 179 KVP_POOL_AUTO_EXTERNAL, 180 KVP_POOL_AUTO_INTERNAL, 181 KVP_POOL_COUNT /* Number of pools, must be last. */ 182}; 183 184/* 185 * Some Hyper-V status codes. 186 */ 187 188#define HV_S_OK 0x00000000 189#define HV_E_FAIL 0x80004005 190#define HV_S_CONT 0x80070103 191#define HV_ERROR_NOT_SUPPORTED 0x80070032 192#define HV_ERROR_MACHINE_LOCKED 0x800704F7 193#define HV_ERROR_DEVICE_NOT_CONNECTED 0x8007048F 194#define HV_INVALIDARG 0x80070057 195#define HV_GUID_NOTFOUND 0x80041002 196 197#define ADDR_FAMILY_NONE 0x00 198#define ADDR_FAMILY_IPV4 0x01 199#define ADDR_FAMILY_IPV6 0x02 200 201#define MAX_ADAPTER_ID_SIZE 128 202#define MAX_IP_ADDR_SIZE 1024 203#define MAX_GATEWAY_SIZE 512 204 205 206struct hv_kvp_ipaddr_value { 207 __u16 adapter_id[MAX_ADAPTER_ID_SIZE]; 208 __u8 addr_family; 209 __u8 dhcp_enabled; 210 __u16 ip_addr[MAX_IP_ADDR_SIZE]; 211 __u16 sub_net[MAX_IP_ADDR_SIZE]; 212 __u16 gate_way[MAX_GATEWAY_SIZE]; 213 __u16 dns_addr[MAX_IP_ADDR_SIZE]; 214} __attribute__((packed)); 215 216 217struct hv_kvp_hdr { 218 __u8 operation; 219 __u8 pool; 220 __u16 pad; 221} __attribute__((packed)); 222 223struct hv_kvp_exchg_msg_value { 224 __u32 value_type; 225 __u32 key_size; 226 __u32 value_size; 227 __u8 key[HV_KVP_EXCHANGE_MAX_KEY_SIZE]; 228 union { 229 __u8 value[HV_KVP_EXCHANGE_MAX_VALUE_SIZE]; 230 __u32 value_u32; 231 __u64 value_u64; 232 }; 233} __attribute__((packed)); 234 235struct hv_kvp_msg_enumerate { 236 __u32 index; 237 struct hv_kvp_exchg_msg_value data; 238} __attribute__((packed)); 239 240struct hv_kvp_msg_get { 241 struct hv_kvp_exchg_msg_value data; 242}; 243 244struct hv_kvp_msg_set { 245 struct hv_kvp_exchg_msg_value data; 246}; 247 248struct hv_kvp_msg_delete { 249 __u32 key_size; 250 __u8 key[HV_KVP_EXCHANGE_MAX_KEY_SIZE]; 251}; 252 253struct hv_kvp_register { 254 __u8 version[HV_KVP_EXCHANGE_MAX_KEY_SIZE]; 255}; 256 257struct hv_kvp_msg { 258 union { 259 struct hv_kvp_hdr kvp_hdr; 260 int error; 261 }; 262 union { 263 struct hv_kvp_msg_get kvp_get; 264 struct hv_kvp_msg_set kvp_set; 265 struct hv_kvp_msg_delete kvp_delete; 266 struct hv_kvp_msg_enumerate kvp_enum_data; 267 struct hv_kvp_ipaddr_value kvp_ip_val; 268 struct hv_kvp_register kvp_register; 269 } body; 270} __attribute__((packed)); 271 272struct hv_kvp_ip_msg { 273 __u8 operation; 274 __u8 pool; 275 struct hv_kvp_ipaddr_value kvp_ip_val; 276} __attribute__((packed)); 277 278#ifdef __KERNEL__ 279#include <linux/scatterlist.h> 280#include <linux/list.h> 281#include <linux/uuid.h> 282#include <linux/timer.h> 283#include <linux/workqueue.h> 284#include <linux/completion.h> 285#include <linux/device.h> 286#include <linux/mod_devicetable.h> 287 288 289#define MAX_PAGE_BUFFER_COUNT 19 290#define MAX_MULTIPAGE_BUFFER_COUNT 32 /* 128K */ 291 292#pragma pack(push, 1) 293 294/* Single-page buffer */ 295struct hv_page_buffer { 296 u32 len; 297 u32 offset; 298 u64 pfn; 299}; 300 301/* Multiple-page buffer */ 302struct hv_multipage_buffer { 303 /* Length and Offset determines the # of pfns in the array */ 304 u32 len; 305 u32 offset; 306 u64 pfn_array[MAX_MULTIPAGE_BUFFER_COUNT]; 307}; 308 309/* 0x18 includes the proprietary packet header */ 310#define MAX_PAGE_BUFFER_PACKET (0x18 + \ 311 (sizeof(struct hv_page_buffer) * \ 312 MAX_PAGE_BUFFER_COUNT)) 313#define MAX_MULTIPAGE_BUFFER_PACKET (0x18 + \ 314 sizeof(struct hv_multipage_buffer)) 315 316 317#pragma pack(pop) 318 319struct hv_ring_buffer { 320 /* Offset in bytes from the start of ring data below */ 321 u32 write_index; 322 323 /* Offset in bytes from the start of ring data below */ 324 u32 read_index; 325 326 u32 interrupt_mask; 327 328 /* 329 * Win8 uses some of the reserved bits to implement 330 * interrupt driven flow management. On the send side 331 * we can request that the receiver interrupt the sender 332 * when the ring transitions from being full to being able 333 * to handle a message of size "pending_send_sz". 334 * 335 * Add necessary state for this enhancement. 336 */ 337 u32 pending_send_sz; 338 339 u32 reserved1[12]; 340 341 union { 342 struct { 343 u32 feat_pending_send_sz:1; 344 }; 345 u32 value; 346 } feature_bits; 347 348 /* Pad it to PAGE_SIZE so that data starts on page boundary */ 349 u8 reserved2[4028]; 350 351 /* 352 * Ring data starts here + RingDataStartOffset 353 * !!! DO NOT place any fields below this !!! 354 */ 355 u8 buffer[0]; 356} __packed; 357 358struct hv_ring_buffer_info { 359 struct hv_ring_buffer *ring_buffer; 360 u32 ring_size; /* Include the shared header */ 361 spinlock_t ring_lock; 362 363 u32 ring_datasize; /* < ring_size */ 364 u32 ring_data_startoffset; 365}; 366 367struct hv_ring_buffer_debug_info { 368 u32 current_interrupt_mask; 369 u32 current_read_index; 370 u32 current_write_index; 371 u32 bytes_avail_toread; 372 u32 bytes_avail_towrite; 373}; 374 375 376/* 377 * 378 * hv_get_ringbuffer_availbytes() 379 * 380 * Get number of bytes available to read and to write to 381 * for the specified ring buffer 382 */ 383static inline void 384hv_get_ringbuffer_availbytes(struct hv_ring_buffer_info *rbi, 385 u32 *read, u32 *write) 386{ 387 u32 read_loc, write_loc, dsize; 388 389 smp_read_barrier_depends(); 390 391 /* Capture the read/write indices before they changed */ 392 read_loc = rbi->ring_buffer->read_index; 393 write_loc = rbi->ring_buffer->write_index; 394 dsize = rbi->ring_datasize; 395 396 *write = write_loc >= read_loc ? dsize - (write_loc - read_loc) : 397 read_loc - write_loc; 398 *read = dsize - *write; 399} 400 401 402/* 403 * We use the same version numbering for all Hyper-V modules. 404 * 405 * Definition of versioning is as follows; 406 * 407 * Major Number Changes for these scenarios; 408 * 1. When a new version of Windows Hyper-V 409 * is released. 410 * 2. A Major change has occurred in the 411 * Linux IC's. 412 * (For example the merge for the first time 413 * into the kernel) Every time the Major Number 414 * changes, the Revision number is reset to 0. 415 * Minor Number Changes when new functionality is added 416 * to the Linux IC's that is not a bug fix. 417 * 418 * 3.1 - Added completed hv_utils driver. Shutdown/Heartbeat/Timesync 419 */ 420#define HV_DRV_VERSION "3.1" 421 422/* 423 * VMBUS version is 32 bit entity broken up into 424 * two 16 bit quantities: major_number. minor_number. 425 * 426 * 0 . 13 (Windows Server 2008) 427 * 1 . 1 (Windows 7) 428 * 2 . 4 (Windows 8) 429 */ 430 431#define VERSION_WS2008 ((0 << 16) | (13)) 432#define VERSION_WIN7 ((1 << 16) | (1)) 433#define VERSION_WIN8 ((2 << 16) | (4)) 434 435#define VERSION_INVAL -1 436 437#define VERSION_CURRENT VERSION_WIN8 438 439/* Make maximum size of pipe payload of 16K */ 440#define MAX_PIPE_DATA_PAYLOAD (sizeof(u8) * 16384) 441 442/* Define PipeMode values. */ 443#define VMBUS_PIPE_TYPE_BYTE 0x00000000 444#define VMBUS_PIPE_TYPE_MESSAGE 0x00000004 445 446/* The size of the user defined data buffer for non-pipe offers. */ 447#define MAX_USER_DEFINED_BYTES 120 448 449/* The size of the user defined data buffer for pipe offers. */ 450#define MAX_PIPE_USER_DEFINED_BYTES 116 451 452/* 453 * At the center of the Channel Management library is the Channel Offer. This 454 * struct contains the fundamental information about an offer. 455 */ 456struct vmbus_channel_offer { 457 uuid_le if_type; 458 uuid_le if_instance; 459 460 /* 461 * These two fields are not currently used. 462 */ 463 u64 reserved1; 464 u64 reserved2; 465 466 u16 chn_flags; 467 u16 mmio_megabytes; /* in bytes * 1024 * 1024 */ 468 469 union { 470 /* Non-pipes: The user has MAX_USER_DEFINED_BYTES bytes. */ 471 struct { 472 unsigned char user_def[MAX_USER_DEFINED_BYTES]; 473 } std; 474 475 /* 476 * Pipes: 477 * The following sructure is an integrated pipe protocol, which 478 * is implemented on top of standard user-defined data. Pipe 479 * clients have MAX_PIPE_USER_DEFINED_BYTES left for their own 480 * use. 481 */ 482 struct { 483 u32 pipe_mode; 484 unsigned char user_def[MAX_PIPE_USER_DEFINED_BYTES]; 485 } pipe; 486 } u; 487 /* 488 * The sub_channel_index is defined in win8. 489 */ 490 u16 sub_channel_index; 491 u16 reserved3; 492} __packed; 493 494/* Server Flags */ 495#define VMBUS_CHANNEL_ENUMERATE_DEVICE_INTERFACE 1 496#define VMBUS_CHANNEL_SERVER_SUPPORTS_TRANSFER_PAGES 2 497#define VMBUS_CHANNEL_SERVER_SUPPORTS_GPADLS 4 498#define VMBUS_CHANNEL_NAMED_PIPE_MODE 0x10 499#define VMBUS_CHANNEL_LOOPBACK_OFFER 0x100 500#define VMBUS_CHANNEL_PARENT_OFFER 0x200 501#define VMBUS_CHANNEL_REQUEST_MONITORED_NOTIFICATION 0x400 502 503struct vmpacket_descriptor { 504 u16 type; 505 u16 offset8; 506 u16 len8; 507 u16 flags; 508 u64 trans_id; 509} __packed; 510 511struct vmpacket_header { 512 u32 prev_pkt_start_offset; 513 struct vmpacket_descriptor descriptor; 514} __packed; 515 516struct vmtransfer_page_range { 517 u32 byte_count; 518 u32 byte_offset; 519} __packed; 520 521struct vmtransfer_page_packet_header { 522 struct vmpacket_descriptor d; 523 u16 xfer_pageset_id; 524 u8 sender_owns_set; 525 u8 reserved; 526 u32 range_cnt; 527 struct vmtransfer_page_range ranges[1]; 528} __packed; 529 530struct vmgpadl_packet_header { 531 struct vmpacket_descriptor d; 532 u32 gpadl; 533 u32 reserved; 534} __packed; 535 536struct vmadd_remove_transfer_page_set { 537 struct vmpacket_descriptor d; 538 u32 gpadl; 539 u16 xfer_pageset_id; 540 u16 reserved; 541} __packed; 542 543/* 544 * This structure defines a range in guest physical space that can be made to 545 * look virtually contiguous. 546 */ 547struct gpa_range { 548 u32 byte_count; 549 u32 byte_offset; 550 u64 pfn_array[0]; 551}; 552 553/* 554 * This is the format for an Establish Gpadl packet, which contains a handle by 555 * which this GPADL will be known and a set of GPA ranges associated with it. 556 * This can be converted to a MDL by the guest OS. If there are multiple GPA 557 * ranges, then the resulting MDL will be "chained," representing multiple VA 558 * ranges. 559 */ 560struct vmestablish_gpadl { 561 struct vmpacket_descriptor d; 562 u32 gpadl; 563 u32 range_cnt; 564 struct gpa_range range[1]; 565} __packed; 566 567/* 568 * This is the format for a Teardown Gpadl packet, which indicates that the 569 * GPADL handle in the Establish Gpadl packet will never be referenced again. 570 */ 571struct vmteardown_gpadl { 572 struct vmpacket_descriptor d; 573 u32 gpadl; 574 u32 reserved; /* for alignment to a 8-byte boundary */ 575} __packed; 576 577/* 578 * This is the format for a GPA-Direct packet, which contains a set of GPA 579 * ranges, in addition to commands and/or data. 580 */ 581struct vmdata_gpa_direct { 582 struct vmpacket_descriptor d; 583 u32 reserved; 584 u32 range_cnt; 585 struct gpa_range range[1]; 586} __packed; 587 588/* This is the format for a Additional Data Packet. */ 589struct vmadditional_data { 590 struct vmpacket_descriptor d; 591 u64 total_bytes; 592 u32 offset; 593 u32 byte_cnt; 594 unsigned char data[1]; 595} __packed; 596 597union vmpacket_largest_possible_header { 598 struct vmpacket_descriptor simple_hdr; 599 struct vmtransfer_page_packet_header xfer_page_hdr; 600 struct vmgpadl_packet_header gpadl_hdr; 601 struct vmadd_remove_transfer_page_set add_rm_xfer_page_hdr; 602 struct vmestablish_gpadl establish_gpadl_hdr; 603 struct vmteardown_gpadl teardown_gpadl_hdr; 604 struct vmdata_gpa_direct data_gpa_direct_hdr; 605}; 606 607#define VMPACKET_DATA_START_ADDRESS(__packet) \ 608 (void *)(((unsigned char *)__packet) + \ 609 ((struct vmpacket_descriptor)__packet)->offset8 * 8) 610 611#define VMPACKET_DATA_LENGTH(__packet) \ 612 ((((struct vmpacket_descriptor)__packet)->len8 - \ 613 ((struct vmpacket_descriptor)__packet)->offset8) * 8) 614 615#define VMPACKET_TRANSFER_MODE(__packet) \ 616 (((struct IMPACT)__packet)->type) 617 618enum vmbus_packet_type { 619 VM_PKT_INVALID = 0x0, 620 VM_PKT_SYNCH = 0x1, 621 VM_PKT_ADD_XFER_PAGESET = 0x2, 622 VM_PKT_RM_XFER_PAGESET = 0x3, 623 VM_PKT_ESTABLISH_GPADL = 0x4, 624 VM_PKT_TEARDOWN_GPADL = 0x5, 625 VM_PKT_DATA_INBAND = 0x6, 626 VM_PKT_DATA_USING_XFER_PAGES = 0x7, 627 VM_PKT_DATA_USING_GPADL = 0x8, 628 VM_PKT_DATA_USING_GPA_DIRECT = 0x9, 629 VM_PKT_CANCEL_REQUEST = 0xa, 630 VM_PKT_COMP = 0xb, 631 VM_PKT_DATA_USING_ADDITIONAL_PKT = 0xc, 632 VM_PKT_ADDITIONAL_DATA = 0xd 633}; 634 635#define VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED 1 636 637 638/* Version 1 messages */ 639enum vmbus_channel_message_type { 640 CHANNELMSG_INVALID = 0, 641 CHANNELMSG_OFFERCHANNEL = 1, 642 CHANNELMSG_RESCIND_CHANNELOFFER = 2, 643 CHANNELMSG_REQUESTOFFERS = 3, 644 CHANNELMSG_ALLOFFERS_DELIVERED = 4, 645 CHANNELMSG_OPENCHANNEL = 5, 646 CHANNELMSG_OPENCHANNEL_RESULT = 6, 647 CHANNELMSG_CLOSECHANNEL = 7, 648 CHANNELMSG_GPADL_HEADER = 8, 649 CHANNELMSG_GPADL_BODY = 9, 650 CHANNELMSG_GPADL_CREATED = 10, 651 CHANNELMSG_GPADL_TEARDOWN = 11, 652 CHANNELMSG_GPADL_TORNDOWN = 12, 653 CHANNELMSG_RELID_RELEASED = 13, 654 CHANNELMSG_INITIATE_CONTACT = 14, 655 CHANNELMSG_VERSION_RESPONSE = 15, 656 CHANNELMSG_UNLOAD = 16, 657#ifdef VMBUS_FEATURE_PARENT_OR_PEER_MEMORY_MAPPED_INTO_A_CHILD 658 CHANNELMSG_VIEWRANGE_ADD = 17, 659 CHANNELMSG_VIEWRANGE_REMOVE = 18, 660#endif 661 CHANNELMSG_COUNT 662}; 663 664struct vmbus_channel_message_header { 665 enum vmbus_channel_message_type msgtype; 666 u32 padding; 667} __packed; 668 669/* Query VMBus Version parameters */ 670struct vmbus_channel_query_vmbus_version { 671 struct vmbus_channel_message_header header; 672 u32 version; 673} __packed; 674 675/* VMBus Version Supported parameters */ 676struct vmbus_channel_version_supported { 677 struct vmbus_channel_message_header header; 678 u8 version_supported; 679} __packed; 680 681/* Offer Channel parameters */ 682struct vmbus_channel_offer_channel { 683 struct vmbus_channel_message_header header; 684 struct vmbus_channel_offer offer; 685 u32 child_relid; 686 u8 monitorid; 687 /* 688 * win7 and beyond splits this field into a bit field. 689 */ 690 u8 monitor_allocated:1; 691 u8 reserved:7; 692 /* 693 * These are new fields added in win7 and later. 694 * Do not access these fields without checking the 695 * negotiated protocol. 696 * 697 * If "is_dedicated_interrupt" is set, we must not set the 698 * associated bit in the channel bitmap while sending the 699 * interrupt to the host. 700 * 701 * connection_id is to be used in signaling the host. 702 */ 703 u16 is_dedicated_interrupt:1; 704 u16 reserved1:15; 705 u32 connection_id; 706} __packed; 707 708/* Rescind Offer parameters */ 709struct vmbus_channel_rescind_offer { 710 struct vmbus_channel_message_header header; 711 u32 child_relid; 712} __packed; 713 714/* 715 * Request Offer -- no parameters, SynIC message contains the partition ID 716 * Set Snoop -- no parameters, SynIC message contains the partition ID 717 * Clear Snoop -- no parameters, SynIC message contains the partition ID 718 * All Offers Delivered -- no parameters, SynIC message contains the partition 719 * ID 720 * Flush Client -- no parameters, SynIC message contains the partition ID 721 */ 722 723/* Open Channel parameters */ 724struct vmbus_channel_open_channel { 725 struct vmbus_channel_message_header header; 726 727 /* Identifies the specific VMBus channel that is being opened. */ 728 u32 child_relid; 729 730 /* ID making a particular open request at a channel offer unique. */ 731 u32 openid; 732 733 /* GPADL for the channel's ring buffer. */ 734 u32 ringbuffer_gpadlhandle; 735 736 /* 737 * Starting with win8, this field will be used to specify 738 * the target virtual processor on which to deliver the interrupt for 739 * the host to guest communication. 740 * Prior to win8, incoming channel interrupts would only 741 * be delivered on cpu 0. Setting this value to 0 would 742 * preserve the earlier behavior. 743 */ 744 u32 target_vp; 745 746 /* 747 * The upstream ring buffer begins at offset zero in the memory 748 * described by RingBufferGpadlHandle. The downstream ring buffer 749 * follows it at this offset (in pages). 750 */ 751 u32 downstream_ringbuffer_pageoffset; 752 753 /* User-specific data to be passed along to the server endpoint. */ 754 unsigned char userdata[MAX_USER_DEFINED_BYTES]; 755} __packed; 756 757/* Open Channel Result parameters */ 758struct vmbus_channel_open_result { 759 struct vmbus_channel_message_header header; 760 u32 child_relid; 761 u32 openid; 762 u32 status; 763} __packed; 764 765/* Close channel parameters; */ 766struct vmbus_channel_close_channel { 767 struct vmbus_channel_message_header header; 768 u32 child_relid; 769} __packed; 770 771/* Channel Message GPADL */ 772#define GPADL_TYPE_RING_BUFFER 1 773#define GPADL_TYPE_SERVER_SAVE_AREA 2 774#define GPADL_TYPE_TRANSACTION 8 775 776/* 777 * The number of PFNs in a GPADL message is defined by the number of 778 * pages that would be spanned by ByteCount and ByteOffset. If the 779 * implied number of PFNs won't fit in this packet, there will be a 780 * follow-up packet that contains more. 781 */ 782struct vmbus_channel_gpadl_header { 783 struct vmbus_channel_message_header header; 784 u32 child_relid; 785 u32 gpadl; 786 u16 range_buflen; 787 u16 rangecount; 788 struct gpa_range range[0]; 789} __packed; 790 791/* This is the followup packet that contains more PFNs. */ 792struct vmbus_channel_gpadl_body { 793 struct vmbus_channel_message_header header; 794 u32 msgnumber; 795 u32 gpadl; 796 u64 pfn[0]; 797} __packed; 798 799struct vmbus_channel_gpadl_created { 800 struct vmbus_channel_message_header header; 801 u32 child_relid; 802 u32 gpadl; 803 u32 creation_status; 804} __packed; 805 806struct vmbus_channel_gpadl_teardown { 807 struct vmbus_channel_message_header header; 808 u32 child_relid; 809 u32 gpadl; 810} __packed; 811 812struct vmbus_channel_gpadl_torndown { 813 struct vmbus_channel_message_header header; 814 u32 gpadl; 815} __packed; 816 817#ifdef VMBUS_FEATURE_PARENT_OR_PEER_MEMORY_MAPPED_INTO_A_CHILD 818struct vmbus_channel_view_range_add { 819 struct vmbus_channel_message_header header; 820 PHYSICAL_ADDRESS viewrange_base; 821 u64 viewrange_length; 822 u32 child_relid; 823} __packed; 824 825struct vmbus_channel_view_range_remove { 826 struct vmbus_channel_message_header header; 827 PHYSICAL_ADDRESS viewrange_base; 828 u32 child_relid; 829} __packed; 830#endif 831 832struct vmbus_channel_relid_released { 833 struct vmbus_channel_message_header header; 834 u32 child_relid; 835} __packed; 836 837struct vmbus_channel_initiate_contact { 838 struct vmbus_channel_message_header header; 839 u32 vmbus_version_requested; 840 u32 padding2; 841 u64 interrupt_page; 842 u64 monitor_page1; 843 u64 monitor_page2; 844} __packed; 845 846struct vmbus_channel_version_response { 847 struct vmbus_channel_message_header header; 848 u8 version_supported; 849} __packed; 850 851enum vmbus_channel_state { 852 CHANNEL_OFFER_STATE, 853 CHANNEL_OPENING_STATE, 854 CHANNEL_OPEN_STATE, 855}; 856 857struct vmbus_channel_debug_info { 858 u32 relid; 859 enum vmbus_channel_state state; 860 uuid_le interfacetype; 861 uuid_le interface_instance; 862 u32 monitorid; 863 u32 servermonitor_pending; 864 u32 servermonitor_latency; 865 u32 servermonitor_connectionid; 866 u32 clientmonitor_pending; 867 u32 clientmonitor_latency; 868 u32 clientmonitor_connectionid; 869 870 struct hv_ring_buffer_debug_info inbound; 871 struct hv_ring_buffer_debug_info outbound; 872}; 873 874/* 875 * Represents each channel msg on the vmbus connection This is a 876 * variable-size data structure depending on the msg type itself 877 */ 878struct vmbus_channel_msginfo { 879 /* Bookkeeping stuff */ 880 struct list_head msglistentry; 881 882 /* So far, this is only used to handle gpadl body message */ 883 struct list_head submsglist; 884 885 /* Synchronize the request/response if needed */ 886 struct completion waitevent; 887 union { 888 struct vmbus_channel_version_supported version_supported; 889 struct vmbus_channel_open_result open_result; 890 struct vmbus_channel_gpadl_torndown gpadl_torndown; 891 struct vmbus_channel_gpadl_created gpadl_created; 892 struct vmbus_channel_version_response version_response; 893 } response; 894 895 u32 msgsize; 896 /* 897 * The channel message that goes out on the "wire". 898 * It will contain at minimum the VMBUS_CHANNEL_MESSAGE_HEADER header 899 */ 900 unsigned char msg[0]; 901}; 902 903struct vmbus_close_msg { 904 struct vmbus_channel_msginfo info; 905 struct vmbus_channel_close_channel msg; 906}; 907 908/* Define connection identifier type. */ 909union hv_connection_id { 910 u32 asu32; 911 struct { 912 u32 id:24; 913 u32 reserved:8; 914 } u; 915}; 916 917/* Definition of the hv_signal_event hypercall input structure. */ 918struct hv_input_signal_event { 919 union hv_connection_id connectionid; 920 u16 flag_number; 921 u16 rsvdz; 922}; 923 924struct hv_input_signal_event_buffer { 925 u64 align8; 926 struct hv_input_signal_event event; 927}; 928 929struct vmbus_channel { 930 struct list_head listentry; 931 932 struct hv_device *device_obj; 933 934 struct work_struct work; 935 936 enum vmbus_channel_state state; 937 938 struct vmbus_channel_offer_channel offermsg; 939 /* 940 * These are based on the OfferMsg.MonitorId. 941 * Save it here for easy access. 942 */ 943 u8 monitor_grp; 944 u8 monitor_bit; 945 946 u32 ringbuffer_gpadlhandle; 947 948 /* Allocated memory for ring buffer */ 949 void *ringbuffer_pages; 950 u32 ringbuffer_pagecount; 951 struct hv_ring_buffer_info outbound; /* send to parent */ 952 struct hv_ring_buffer_info inbound; /* receive from parent */ 953 spinlock_t inbound_lock; 954 struct workqueue_struct *controlwq; 955 956 struct vmbus_close_msg close_msg; 957 958 /* Channel callback are invoked in this workqueue context */ 959 /* HANDLE dataWorkQueue; */ 960 961 void (*onchannel_callback)(void *context); 962 void *channel_callback_context; 963 964 /* 965 * A channel can be marked for efficient (batched) 966 * reading: 967 * If batched_reading is set to "true", we read until the 968 * channel is empty and hold off interrupts from the host 969 * during the entire read process. 970 * If batched_reading is set to "false", the client is not 971 * going to perform batched reading. 972 * 973 * By default we will enable batched reading; specific 974 * drivers that don't want this behavior can turn it off. 975 */ 976 977 bool batched_reading; 978 979 bool is_dedicated_interrupt; 980 struct hv_input_signal_event_buffer sig_buf; 981 struct hv_input_signal_event *sig_event; 982 983 /* 984 * Starting with win8, this field will be used to specify 985 * the target virtual processor on which to deliver the interrupt for 986 * the host to guest communication. 987 * Prior to win8, incoming channel interrupts would only 988 * be delivered on cpu 0. Setting this value to 0 would 989 * preserve the earlier behavior. 990 */ 991 u32 target_vp; 992}; 993 994static inline void set_channel_read_state(struct vmbus_channel *c, bool state) 995{ 996 c->batched_reading = state; 997} 998 999void vmbus_onmessage(void *context); 1000 1001int vmbus_request_offers(void); 1002 1003/* The format must be the same as struct vmdata_gpa_direct */ 1004struct vmbus_channel_packet_page_buffer { 1005 u16 type; 1006 u16 dataoffset8; 1007 u16 length8; 1008 u16 flags; 1009 u64 transactionid; 1010 u32 reserved; 1011 u32 rangecount; 1012 struct hv_page_buffer range[MAX_PAGE_BUFFER_COUNT]; 1013} __packed; 1014 1015/* The format must be the same as struct vmdata_gpa_direct */ 1016struct vmbus_channel_packet_multipage_buffer { 1017 u16 type; 1018 u16 dataoffset8; 1019 u16 length8; 1020 u16 flags; 1021 u64 transactionid; 1022 u32 reserved; 1023 u32 rangecount; /* Always 1 in this case */ 1024 struct hv_multipage_buffer range; 1025} __packed; 1026 1027 1028extern int vmbus_open(struct vmbus_channel *channel, 1029 u32 send_ringbuffersize, 1030 u32 recv_ringbuffersize, 1031 void *userdata, 1032 u32 userdatalen, 1033 void(*onchannel_callback)(void *context), 1034 void *context); 1035 1036extern void vmbus_close(struct vmbus_channel *channel); 1037 1038extern int vmbus_sendpacket(struct vmbus_channel *channel, 1039 const void *buffer, 1040 u32 bufferLen, 1041 u64 requestid, 1042 enum vmbus_packet_type type, 1043 u32 flags); 1044 1045extern int vmbus_sendpacket_pagebuffer(struct vmbus_channel *channel, 1046 struct hv_page_buffer pagebuffers[], 1047 u32 pagecount, 1048 void *buffer, 1049 u32 bufferlen, 1050 u64 requestid); 1051 1052extern int vmbus_sendpacket_multipagebuffer(struct vmbus_channel *channel, 1053 struct hv_multipage_buffer *mpb, 1054 void *buffer, 1055 u32 bufferlen, 1056 u64 requestid); 1057 1058extern int vmbus_establish_gpadl(struct vmbus_channel *channel, 1059 void *kbuffer, 1060 u32 size, 1061 u32 *gpadl_handle); 1062 1063extern int vmbus_teardown_gpadl(struct vmbus_channel *channel, 1064 u32 gpadl_handle); 1065 1066extern int vmbus_recvpacket(struct vmbus_channel *channel, 1067 void *buffer, 1068 u32 bufferlen, 1069 u32 *buffer_actual_len, 1070 u64 *requestid); 1071 1072extern int vmbus_recvpacket_raw(struct vmbus_channel *channel, 1073 void *buffer, 1074 u32 bufferlen, 1075 u32 *buffer_actual_len, 1076 u64 *requestid); 1077 1078 1079extern void vmbus_get_debug_info(struct vmbus_channel *channel, 1080 struct vmbus_channel_debug_info *debug); 1081 1082extern void vmbus_ontimer(unsigned long data); 1083 1084struct hv_dev_port_info { 1085 u32 int_mask; 1086 u32 read_idx; 1087 u32 write_idx; 1088 u32 bytes_avail_toread; 1089 u32 bytes_avail_towrite; 1090}; 1091 1092/* Base driver object */ 1093struct hv_driver { 1094 const char *name; 1095 1096 /* the device type supported by this driver */ 1097 uuid_le dev_type; 1098 const struct hv_vmbus_device_id *id_table; 1099 1100 struct device_driver driver; 1101 1102 int (*probe)(struct hv_device *, const struct hv_vmbus_device_id *); 1103 int (*remove)(struct hv_device *); 1104 void (*shutdown)(struct hv_device *); 1105 1106}; 1107 1108/* Base device object */ 1109struct hv_device { 1110 /* the device type id of this device */ 1111 uuid_le dev_type; 1112 1113 /* the device instance id of this device */ 1114 uuid_le dev_instance; 1115 1116 struct device device; 1117 1118 struct vmbus_channel *channel; 1119}; 1120 1121 1122static inline struct hv_device *device_to_hv_device(struct device *d) 1123{ 1124 return container_of(d, struct hv_device, device); 1125} 1126 1127static inline struct hv_driver *drv_to_hv_drv(struct device_driver *d) 1128{ 1129 return container_of(d, struct hv_driver, driver); 1130} 1131 1132static inline void hv_set_drvdata(struct hv_device *dev, void *data) 1133{ 1134 dev_set_drvdata(&dev->device, data); 1135} 1136 1137static inline void *hv_get_drvdata(struct hv_device *dev) 1138{ 1139 return dev_get_drvdata(&dev->device); 1140} 1141 1142/* Vmbus interface */ 1143#define vmbus_driver_register(driver) \ 1144 __vmbus_driver_register(driver, THIS_MODULE, KBUILD_MODNAME) 1145int __must_check __vmbus_driver_register(struct hv_driver *hv_driver, 1146 struct module *owner, 1147 const char *mod_name); 1148void vmbus_driver_unregister(struct hv_driver *hv_driver); 1149 1150/** 1151 * VMBUS_DEVICE - macro used to describe a specific hyperv vmbus device 1152 * 1153 * This macro is used to create a struct hv_vmbus_device_id that matches a 1154 * specific device. 1155 */ 1156#define VMBUS_DEVICE(g0, g1, g2, g3, g4, g5, g6, g7, \ 1157 g8, g9, ga, gb, gc, gd, ge, gf) \ 1158 .guid = { g0, g1, g2, g3, g4, g5, g6, g7, \ 1159 g8, g9, ga, gb, gc, gd, ge, gf }, 1160 1161/* 1162 * GUID definitions of various offer types - services offered to the guest. 1163 */ 1164 1165/* 1166 * Network GUID 1167 * {f8615163-df3e-46c5-913f-f2d2f965ed0e} 1168 */ 1169#define HV_NIC_GUID \ 1170 .guid = { \ 1171 0x63, 0x51, 0x61, 0xf8, 0x3e, 0xdf, 0xc5, 0x46, \ 1172 0x91, 0x3f, 0xf2, 0xd2, 0xf9, 0x65, 0xed, 0x0e \ 1173 } 1174 1175/* 1176 * IDE GUID 1177 * {32412632-86cb-44a2-9b5c-50d1417354f5} 1178 */ 1179#define HV_IDE_GUID \ 1180 .guid = { \ 1181 0x32, 0x26, 0x41, 0x32, 0xcb, 0x86, 0xa2, 0x44, \ 1182 0x9b, 0x5c, 0x50, 0xd1, 0x41, 0x73, 0x54, 0xf5 \ 1183 } 1184 1185/* 1186 * SCSI GUID 1187 * {ba6163d9-04a1-4d29-b605-72e2ffb1dc7f} 1188 */ 1189#define HV_SCSI_GUID \ 1190 .guid = { \ 1191 0xd9, 0x63, 0x61, 0xba, 0xa1, 0x04, 0x29, 0x4d, \ 1192 0xb6, 0x05, 0x72, 0xe2, 0xff, 0xb1, 0xdc, 0x7f \ 1193 } 1194 1195/* 1196 * Shutdown GUID 1197 * {0e0b6031-5213-4934-818b-38d90ced39db} 1198 */ 1199#define HV_SHUTDOWN_GUID \ 1200 .guid = { \ 1201 0x31, 0x60, 0x0b, 0x0e, 0x13, 0x52, 0x34, 0x49, \ 1202 0x81, 0x8b, 0x38, 0xd9, 0x0c, 0xed, 0x39, 0xdb \ 1203 } 1204 1205/* 1206 * Time Synch GUID 1207 * {9527E630-D0AE-497b-ADCE-E80AB0175CAF} 1208 */ 1209#define HV_TS_GUID \ 1210 .guid = { \ 1211 0x30, 0xe6, 0x27, 0x95, 0xae, 0xd0, 0x7b, 0x49, \ 1212 0xad, 0xce, 0xe8, 0x0a, 0xb0, 0x17, 0x5c, 0xaf \ 1213 } 1214 1215/* 1216 * Heartbeat GUID 1217 * {57164f39-9115-4e78-ab55-382f3bd5422d} 1218 */ 1219#define HV_HEART_BEAT_GUID \ 1220 .guid = { \ 1221 0x39, 0x4f, 0x16, 0x57, 0x15, 0x91, 0x78, 0x4e, \ 1222 0xab, 0x55, 0x38, 0x2f, 0x3b, 0xd5, 0x42, 0x2d \ 1223 } 1224 1225/* 1226 * KVP GUID 1227 * {a9a0f4e7-5a45-4d96-b827-8a841e8c03e6} 1228 */ 1229#define HV_KVP_GUID \ 1230 .guid = { \ 1231 0xe7, 0xf4, 0xa0, 0xa9, 0x45, 0x5a, 0x96, 0x4d, \ 1232 0xb8, 0x27, 0x8a, 0x84, 0x1e, 0x8c, 0x3, 0xe6 \ 1233 } 1234 1235/* 1236 * Dynamic memory GUID 1237 * {525074dc-8985-46e2-8057-a307dc18a502} 1238 */ 1239#define HV_DM_GUID \ 1240 .guid = { \ 1241 0xdc, 0x74, 0x50, 0X52, 0x85, 0x89, 0xe2, 0x46, \ 1242 0x80, 0x57, 0xa3, 0x07, 0xdc, 0x18, 0xa5, 0x02 \ 1243 } 1244 1245/* 1246 * Mouse GUID 1247 * {cfa8b69e-5b4a-4cc0-b98b-8ba1a1f3f95a} 1248 */ 1249#define HV_MOUSE_GUID \ 1250 .guid = { \ 1251 0x9e, 0xb6, 0xa8, 0xcf, 0x4a, 0x5b, 0xc0, 0x4c, \ 1252 0xb9, 0x8b, 0x8b, 0xa1, 0xa1, 0xf3, 0xf9, 0x5a \ 1253 } 1254 1255/* 1256 * Common header for Hyper-V ICs 1257 */ 1258 1259#define ICMSGTYPE_NEGOTIATE 0 1260#define ICMSGTYPE_HEARTBEAT 1 1261#define ICMSGTYPE_KVPEXCHANGE 2 1262#define ICMSGTYPE_SHUTDOWN 3 1263#define ICMSGTYPE_TIMESYNC 4 1264#define ICMSGTYPE_VSS 5 1265 1266#define ICMSGHDRFLAG_TRANSACTION 1 1267#define ICMSGHDRFLAG_REQUEST 2 1268#define ICMSGHDRFLAG_RESPONSE 4 1269 1270 1271/* 1272 * While we want to handle util services as regular devices, 1273 * there is only one instance of each of these services; so 1274 * we statically allocate the service specific state. 1275 */ 1276 1277struct hv_util_service { 1278 u8 *recv_buffer; 1279 void (*util_cb)(void *); 1280 int (*util_init)(struct hv_util_service *); 1281 void (*util_deinit)(void); 1282}; 1283 1284struct vmbuspipe_hdr { 1285 u32 flags; 1286 u32 msgsize; 1287} __packed; 1288 1289struct ic_version { 1290 u16 major; 1291 u16 minor; 1292} __packed; 1293 1294struct icmsg_hdr { 1295 struct ic_version icverframe; 1296 u16 icmsgtype; 1297 struct ic_version icvermsg; 1298 u16 icmsgsize; 1299 u32 status; 1300 u8 ictransaction_id; 1301 u8 icflags; 1302 u8 reserved[2]; 1303} __packed; 1304 1305struct icmsg_negotiate { 1306 u16 icframe_vercnt; 1307 u16 icmsg_vercnt; 1308 u32 reserved; 1309 struct ic_version icversion_data[1]; /* any size array */ 1310} __packed; 1311 1312struct shutdown_msg_data { 1313 u32 reason_code; 1314 u32 timeout_seconds; 1315 u32 flags; 1316 u8 display_message[2048]; 1317} __packed; 1318 1319struct heartbeat_msg_data { 1320 u64 seq_num; 1321 u32 reserved[8]; 1322} __packed; 1323 1324/* Time Sync IC defs */ 1325#define ICTIMESYNCFLAG_PROBE 0 1326#define ICTIMESYNCFLAG_SYNC 1 1327#define ICTIMESYNCFLAG_SAMPLE 2 1328 1329#ifdef __x86_64__ 1330#define WLTIMEDELTA 116444736000000000L /* in 100ns unit */ 1331#else 1332#define WLTIMEDELTA 116444736000000000LL 1333#endif 1334 1335struct ictimesync_data { 1336 u64 parenttime; 1337 u64 childtime; 1338 u64 roundtriptime; 1339 u8 flags; 1340} __packed; 1341 1342struct hyperv_service_callback { 1343 u8 msg_type; 1344 char *log_msg; 1345 uuid_le data; 1346 struct vmbus_channel *channel; 1347 void (*callback) (void *context); 1348}; 1349 1350#define MAX_SRV_VER 0x7ffffff 1351extern void vmbus_prep_negotiate_resp(struct icmsg_hdr *, 1352 struct icmsg_negotiate *, u8 *, int, 1353 int); 1354 1355int hv_kvp_init(struct hv_util_service *); 1356void hv_kvp_deinit(void); 1357void hv_kvp_onchannelcallback(void *); 1358 1359/* 1360 * Negotiated version with the Host. 1361 */ 1362 1363extern __u32 vmbus_proto_version; 1364 1365#endif /* __KERNEL__ */ 1366#endif /* _HYPERV_H */