at v3.9-rc6 49 kB view raw
1/* 2 * linux/drivers/block/loop.c 3 * 4 * Written by Theodore Ts'o, 3/29/93 5 * 6 * Copyright 1993 by Theodore Ts'o. Redistribution of this file is 7 * permitted under the GNU General Public License. 8 * 9 * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993 10 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996 11 * 12 * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994 13 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996 14 * 15 * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997 16 * 17 * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998 18 * 19 * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998 20 * 21 * Loadable modules and other fixes by AK, 1998 22 * 23 * Make real block number available to downstream transfer functions, enables 24 * CBC (and relatives) mode encryption requiring unique IVs per data block. 25 * Reed H. Petty, rhp@draper.net 26 * 27 * Maximum number of loop devices now dynamic via max_loop module parameter. 28 * Russell Kroll <rkroll@exploits.org> 19990701 29 * 30 * Maximum number of loop devices when compiled-in now selectable by passing 31 * max_loop=<1-255> to the kernel on boot. 32 * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999 33 * 34 * Completely rewrite request handling to be make_request_fn style and 35 * non blocking, pushing work to a helper thread. Lots of fixes from 36 * Al Viro too. 37 * Jens Axboe <axboe@suse.de>, Nov 2000 38 * 39 * Support up to 256 loop devices 40 * Heinz Mauelshagen <mge@sistina.com>, Feb 2002 41 * 42 * Support for falling back on the write file operation when the address space 43 * operations write_begin is not available on the backing filesystem. 44 * Anton Altaparmakov, 16 Feb 2005 45 * 46 * Still To Fix: 47 * - Advisory locking is ignored here. 48 * - Should use an own CAP_* category instead of CAP_SYS_ADMIN 49 * 50 */ 51 52#include <linux/module.h> 53#include <linux/moduleparam.h> 54#include <linux/sched.h> 55#include <linux/fs.h> 56#include <linux/file.h> 57#include <linux/stat.h> 58#include <linux/errno.h> 59#include <linux/major.h> 60#include <linux/wait.h> 61#include <linux/blkdev.h> 62#include <linux/blkpg.h> 63#include <linux/init.h> 64#include <linux/swap.h> 65#include <linux/slab.h> 66#include <linux/loop.h> 67#include <linux/compat.h> 68#include <linux/suspend.h> 69#include <linux/freezer.h> 70#include <linux/mutex.h> 71#include <linux/writeback.h> 72#include <linux/completion.h> 73#include <linux/highmem.h> 74#include <linux/kthread.h> 75#include <linux/splice.h> 76#include <linux/sysfs.h> 77#include <linux/miscdevice.h> 78#include <linux/falloc.h> 79 80#include <asm/uaccess.h> 81 82static DEFINE_IDR(loop_index_idr); 83static DEFINE_MUTEX(loop_index_mutex); 84 85static int max_part; 86static int part_shift; 87 88/* 89 * Transfer functions 90 */ 91static int transfer_none(struct loop_device *lo, int cmd, 92 struct page *raw_page, unsigned raw_off, 93 struct page *loop_page, unsigned loop_off, 94 int size, sector_t real_block) 95{ 96 char *raw_buf = kmap_atomic(raw_page) + raw_off; 97 char *loop_buf = kmap_atomic(loop_page) + loop_off; 98 99 if (cmd == READ) 100 memcpy(loop_buf, raw_buf, size); 101 else 102 memcpy(raw_buf, loop_buf, size); 103 104 kunmap_atomic(loop_buf); 105 kunmap_atomic(raw_buf); 106 cond_resched(); 107 return 0; 108} 109 110static int transfer_xor(struct loop_device *lo, int cmd, 111 struct page *raw_page, unsigned raw_off, 112 struct page *loop_page, unsigned loop_off, 113 int size, sector_t real_block) 114{ 115 char *raw_buf = kmap_atomic(raw_page) + raw_off; 116 char *loop_buf = kmap_atomic(loop_page) + loop_off; 117 char *in, *out, *key; 118 int i, keysize; 119 120 if (cmd == READ) { 121 in = raw_buf; 122 out = loop_buf; 123 } else { 124 in = loop_buf; 125 out = raw_buf; 126 } 127 128 key = lo->lo_encrypt_key; 129 keysize = lo->lo_encrypt_key_size; 130 for (i = 0; i < size; i++) 131 *out++ = *in++ ^ key[(i & 511) % keysize]; 132 133 kunmap_atomic(loop_buf); 134 kunmap_atomic(raw_buf); 135 cond_resched(); 136 return 0; 137} 138 139static int xor_init(struct loop_device *lo, const struct loop_info64 *info) 140{ 141 if (unlikely(info->lo_encrypt_key_size <= 0)) 142 return -EINVAL; 143 return 0; 144} 145 146static struct loop_func_table none_funcs = { 147 .number = LO_CRYPT_NONE, 148 .transfer = transfer_none, 149}; 150 151static struct loop_func_table xor_funcs = { 152 .number = LO_CRYPT_XOR, 153 .transfer = transfer_xor, 154 .init = xor_init 155}; 156 157/* xfer_funcs[0] is special - its release function is never called */ 158static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = { 159 &none_funcs, 160 &xor_funcs 161}; 162 163static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file) 164{ 165 loff_t loopsize; 166 167 /* Compute loopsize in bytes */ 168 loopsize = i_size_read(file->f_mapping->host); 169 if (offset > 0) 170 loopsize -= offset; 171 /* offset is beyond i_size, weird but possible */ 172 if (loopsize < 0) 173 return 0; 174 175 if (sizelimit > 0 && sizelimit < loopsize) 176 loopsize = sizelimit; 177 /* 178 * Unfortunately, if we want to do I/O on the device, 179 * the number of 512-byte sectors has to fit into a sector_t. 180 */ 181 return loopsize >> 9; 182} 183 184static loff_t get_loop_size(struct loop_device *lo, struct file *file) 185{ 186 return get_size(lo->lo_offset, lo->lo_sizelimit, file); 187} 188 189static int 190figure_loop_size(struct loop_device *lo, loff_t offset, loff_t sizelimit) 191{ 192 loff_t size = get_size(offset, sizelimit, lo->lo_backing_file); 193 sector_t x = (sector_t)size; 194 struct block_device *bdev = lo->lo_device; 195 196 if (unlikely((loff_t)x != size)) 197 return -EFBIG; 198 if (lo->lo_offset != offset) 199 lo->lo_offset = offset; 200 if (lo->lo_sizelimit != sizelimit) 201 lo->lo_sizelimit = sizelimit; 202 set_capacity(lo->lo_disk, x); 203 bd_set_size(bdev, (loff_t)get_capacity(bdev->bd_disk) << 9); 204 /* let user-space know about the new size */ 205 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE); 206 return 0; 207} 208 209static inline int 210lo_do_transfer(struct loop_device *lo, int cmd, 211 struct page *rpage, unsigned roffs, 212 struct page *lpage, unsigned loffs, 213 int size, sector_t rblock) 214{ 215 if (unlikely(!lo->transfer)) 216 return 0; 217 218 return lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock); 219} 220 221/** 222 * __do_lo_send_write - helper for writing data to a loop device 223 * 224 * This helper just factors out common code between do_lo_send_direct_write() 225 * and do_lo_send_write(). 226 */ 227static int __do_lo_send_write(struct file *file, 228 u8 *buf, const int len, loff_t pos) 229{ 230 ssize_t bw; 231 mm_segment_t old_fs = get_fs(); 232 233 set_fs(get_ds()); 234 bw = file->f_op->write(file, buf, len, &pos); 235 set_fs(old_fs); 236 if (likely(bw == len)) 237 return 0; 238 printk(KERN_ERR "loop: Write error at byte offset %llu, length %i.\n", 239 (unsigned long long)pos, len); 240 if (bw >= 0) 241 bw = -EIO; 242 return bw; 243} 244 245/** 246 * do_lo_send_direct_write - helper for writing data to a loop device 247 * 248 * This is the fast, non-transforming version that does not need double 249 * buffering. 250 */ 251static int do_lo_send_direct_write(struct loop_device *lo, 252 struct bio_vec *bvec, loff_t pos, struct page *page) 253{ 254 ssize_t bw = __do_lo_send_write(lo->lo_backing_file, 255 kmap(bvec->bv_page) + bvec->bv_offset, 256 bvec->bv_len, pos); 257 kunmap(bvec->bv_page); 258 cond_resched(); 259 return bw; 260} 261 262/** 263 * do_lo_send_write - helper for writing data to a loop device 264 * 265 * This is the slow, transforming version that needs to double buffer the 266 * data as it cannot do the transformations in place without having direct 267 * access to the destination pages of the backing file. 268 */ 269static int do_lo_send_write(struct loop_device *lo, struct bio_vec *bvec, 270 loff_t pos, struct page *page) 271{ 272 int ret = lo_do_transfer(lo, WRITE, page, 0, bvec->bv_page, 273 bvec->bv_offset, bvec->bv_len, pos >> 9); 274 if (likely(!ret)) 275 return __do_lo_send_write(lo->lo_backing_file, 276 page_address(page), bvec->bv_len, 277 pos); 278 printk(KERN_ERR "loop: Transfer error at byte offset %llu, " 279 "length %i.\n", (unsigned long long)pos, bvec->bv_len); 280 if (ret > 0) 281 ret = -EIO; 282 return ret; 283} 284 285static int lo_send(struct loop_device *lo, struct bio *bio, loff_t pos) 286{ 287 int (*do_lo_send)(struct loop_device *, struct bio_vec *, loff_t, 288 struct page *page); 289 struct bio_vec *bvec; 290 struct page *page = NULL; 291 int i, ret = 0; 292 293 if (lo->transfer != transfer_none) { 294 page = alloc_page(GFP_NOIO | __GFP_HIGHMEM); 295 if (unlikely(!page)) 296 goto fail; 297 kmap(page); 298 do_lo_send = do_lo_send_write; 299 } else { 300 do_lo_send = do_lo_send_direct_write; 301 } 302 303 bio_for_each_segment(bvec, bio, i) { 304 ret = do_lo_send(lo, bvec, pos, page); 305 if (ret < 0) 306 break; 307 pos += bvec->bv_len; 308 } 309 if (page) { 310 kunmap(page); 311 __free_page(page); 312 } 313out: 314 return ret; 315fail: 316 printk(KERN_ERR "loop: Failed to allocate temporary page for write.\n"); 317 ret = -ENOMEM; 318 goto out; 319} 320 321struct lo_read_data { 322 struct loop_device *lo; 323 struct page *page; 324 unsigned offset; 325 int bsize; 326}; 327 328static int 329lo_splice_actor(struct pipe_inode_info *pipe, struct pipe_buffer *buf, 330 struct splice_desc *sd) 331{ 332 struct lo_read_data *p = sd->u.data; 333 struct loop_device *lo = p->lo; 334 struct page *page = buf->page; 335 sector_t IV; 336 int size; 337 338 IV = ((sector_t) page->index << (PAGE_CACHE_SHIFT - 9)) + 339 (buf->offset >> 9); 340 size = sd->len; 341 if (size > p->bsize) 342 size = p->bsize; 343 344 if (lo_do_transfer(lo, READ, page, buf->offset, p->page, p->offset, size, IV)) { 345 printk(KERN_ERR "loop: transfer error block %ld\n", 346 page->index); 347 size = -EINVAL; 348 } 349 350 flush_dcache_page(p->page); 351 352 if (size > 0) 353 p->offset += size; 354 355 return size; 356} 357 358static int 359lo_direct_splice_actor(struct pipe_inode_info *pipe, struct splice_desc *sd) 360{ 361 return __splice_from_pipe(pipe, sd, lo_splice_actor); 362} 363 364static ssize_t 365do_lo_receive(struct loop_device *lo, 366 struct bio_vec *bvec, int bsize, loff_t pos) 367{ 368 struct lo_read_data cookie; 369 struct splice_desc sd; 370 struct file *file; 371 ssize_t retval; 372 373 cookie.lo = lo; 374 cookie.page = bvec->bv_page; 375 cookie.offset = bvec->bv_offset; 376 cookie.bsize = bsize; 377 378 sd.len = 0; 379 sd.total_len = bvec->bv_len; 380 sd.flags = 0; 381 sd.pos = pos; 382 sd.u.data = &cookie; 383 384 file = lo->lo_backing_file; 385 retval = splice_direct_to_actor(file, &sd, lo_direct_splice_actor); 386 387 return retval; 388} 389 390static int 391lo_receive(struct loop_device *lo, struct bio *bio, int bsize, loff_t pos) 392{ 393 struct bio_vec *bvec; 394 ssize_t s; 395 int i; 396 397 bio_for_each_segment(bvec, bio, i) { 398 s = do_lo_receive(lo, bvec, bsize, pos); 399 if (s < 0) 400 return s; 401 402 if (s != bvec->bv_len) { 403 zero_fill_bio(bio); 404 break; 405 } 406 pos += bvec->bv_len; 407 } 408 return 0; 409} 410 411static int do_bio_filebacked(struct loop_device *lo, struct bio *bio) 412{ 413 loff_t pos; 414 int ret; 415 416 pos = ((loff_t) bio->bi_sector << 9) + lo->lo_offset; 417 418 if (bio_rw(bio) == WRITE) { 419 struct file *file = lo->lo_backing_file; 420 421 if (bio->bi_rw & REQ_FLUSH) { 422 ret = vfs_fsync(file, 0); 423 if (unlikely(ret && ret != -EINVAL)) { 424 ret = -EIO; 425 goto out; 426 } 427 } 428 429 /* 430 * We use punch hole to reclaim the free space used by the 431 * image a.k.a. discard. However we do not support discard if 432 * encryption is enabled, because it may give an attacker 433 * useful information. 434 */ 435 if (bio->bi_rw & REQ_DISCARD) { 436 struct file *file = lo->lo_backing_file; 437 int mode = FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE; 438 439 if ((!file->f_op->fallocate) || 440 lo->lo_encrypt_key_size) { 441 ret = -EOPNOTSUPP; 442 goto out; 443 } 444 ret = file->f_op->fallocate(file, mode, pos, 445 bio->bi_size); 446 if (unlikely(ret && ret != -EINVAL && 447 ret != -EOPNOTSUPP)) 448 ret = -EIO; 449 goto out; 450 } 451 452 ret = lo_send(lo, bio, pos); 453 454 if ((bio->bi_rw & REQ_FUA) && !ret) { 455 ret = vfs_fsync(file, 0); 456 if (unlikely(ret && ret != -EINVAL)) 457 ret = -EIO; 458 } 459 } else 460 ret = lo_receive(lo, bio, lo->lo_blocksize, pos); 461 462out: 463 return ret; 464} 465 466/* 467 * Add bio to back of pending list 468 */ 469static void loop_add_bio(struct loop_device *lo, struct bio *bio) 470{ 471 lo->lo_bio_count++; 472 bio_list_add(&lo->lo_bio_list, bio); 473} 474 475/* 476 * Grab first pending buffer 477 */ 478static struct bio *loop_get_bio(struct loop_device *lo) 479{ 480 lo->lo_bio_count--; 481 return bio_list_pop(&lo->lo_bio_list); 482} 483 484static void loop_make_request(struct request_queue *q, struct bio *old_bio) 485{ 486 struct loop_device *lo = q->queuedata; 487 int rw = bio_rw(old_bio); 488 489 if (rw == READA) 490 rw = READ; 491 492 BUG_ON(!lo || (rw != READ && rw != WRITE)); 493 494 spin_lock_irq(&lo->lo_lock); 495 if (lo->lo_state != Lo_bound) 496 goto out; 497 if (unlikely(rw == WRITE && (lo->lo_flags & LO_FLAGS_READ_ONLY))) 498 goto out; 499 if (lo->lo_bio_count >= q->nr_congestion_on) 500 wait_event_lock_irq(lo->lo_req_wait, 501 lo->lo_bio_count < q->nr_congestion_off, 502 lo->lo_lock); 503 loop_add_bio(lo, old_bio); 504 wake_up(&lo->lo_event); 505 spin_unlock_irq(&lo->lo_lock); 506 return; 507 508out: 509 spin_unlock_irq(&lo->lo_lock); 510 bio_io_error(old_bio); 511} 512 513struct switch_request { 514 struct file *file; 515 struct completion wait; 516}; 517 518static void do_loop_switch(struct loop_device *, struct switch_request *); 519 520static inline void loop_handle_bio(struct loop_device *lo, struct bio *bio) 521{ 522 if (unlikely(!bio->bi_bdev)) { 523 do_loop_switch(lo, bio->bi_private); 524 bio_put(bio); 525 } else { 526 int ret = do_bio_filebacked(lo, bio); 527 bio_endio(bio, ret); 528 } 529} 530 531/* 532 * worker thread that handles reads/writes to file backed loop devices, 533 * to avoid blocking in our make_request_fn. it also does loop decrypting 534 * on reads for block backed loop, as that is too heavy to do from 535 * b_end_io context where irqs may be disabled. 536 * 537 * Loop explanation: loop_clr_fd() sets lo_state to Lo_rundown before 538 * calling kthread_stop(). Therefore once kthread_should_stop() is 539 * true, make_request will not place any more requests. Therefore 540 * once kthread_should_stop() is true and lo_bio is NULL, we are 541 * done with the loop. 542 */ 543static int loop_thread(void *data) 544{ 545 struct loop_device *lo = data; 546 struct bio *bio; 547 548 set_user_nice(current, -20); 549 550 while (!kthread_should_stop() || !bio_list_empty(&lo->lo_bio_list)) { 551 552 wait_event_interruptible(lo->lo_event, 553 !bio_list_empty(&lo->lo_bio_list) || 554 kthread_should_stop()); 555 556 if (bio_list_empty(&lo->lo_bio_list)) 557 continue; 558 spin_lock_irq(&lo->lo_lock); 559 bio = loop_get_bio(lo); 560 if (lo->lo_bio_count < lo->lo_queue->nr_congestion_off) 561 wake_up(&lo->lo_req_wait); 562 spin_unlock_irq(&lo->lo_lock); 563 564 BUG_ON(!bio); 565 loop_handle_bio(lo, bio); 566 } 567 568 return 0; 569} 570 571/* 572 * loop_switch performs the hard work of switching a backing store. 573 * First it needs to flush existing IO, it does this by sending a magic 574 * BIO down the pipe. The completion of this BIO does the actual switch. 575 */ 576static int loop_switch(struct loop_device *lo, struct file *file) 577{ 578 struct switch_request w; 579 struct bio *bio = bio_alloc(GFP_KERNEL, 0); 580 if (!bio) 581 return -ENOMEM; 582 init_completion(&w.wait); 583 w.file = file; 584 bio->bi_private = &w; 585 bio->bi_bdev = NULL; 586 loop_make_request(lo->lo_queue, bio); 587 wait_for_completion(&w.wait); 588 return 0; 589} 590 591/* 592 * Helper to flush the IOs in loop, but keeping loop thread running 593 */ 594static int loop_flush(struct loop_device *lo) 595{ 596 /* loop not yet configured, no running thread, nothing to flush */ 597 if (!lo->lo_thread) 598 return 0; 599 600 return loop_switch(lo, NULL); 601} 602 603/* 604 * Do the actual switch; called from the BIO completion routine 605 */ 606static void do_loop_switch(struct loop_device *lo, struct switch_request *p) 607{ 608 struct file *file = p->file; 609 struct file *old_file = lo->lo_backing_file; 610 struct address_space *mapping; 611 612 /* if no new file, only flush of queued bios requested */ 613 if (!file) 614 goto out; 615 616 mapping = file->f_mapping; 617 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask); 618 lo->lo_backing_file = file; 619 lo->lo_blocksize = S_ISBLK(mapping->host->i_mode) ? 620 mapping->host->i_bdev->bd_block_size : PAGE_SIZE; 621 lo->old_gfp_mask = mapping_gfp_mask(mapping); 622 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS)); 623out: 624 complete(&p->wait); 625} 626 627 628/* 629 * loop_change_fd switched the backing store of a loopback device to 630 * a new file. This is useful for operating system installers to free up 631 * the original file and in High Availability environments to switch to 632 * an alternative location for the content in case of server meltdown. 633 * This can only work if the loop device is used read-only, and if the 634 * new backing store is the same size and type as the old backing store. 635 */ 636static int loop_change_fd(struct loop_device *lo, struct block_device *bdev, 637 unsigned int arg) 638{ 639 struct file *file, *old_file; 640 struct inode *inode; 641 int error; 642 643 error = -ENXIO; 644 if (lo->lo_state != Lo_bound) 645 goto out; 646 647 /* the loop device has to be read-only */ 648 error = -EINVAL; 649 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY)) 650 goto out; 651 652 error = -EBADF; 653 file = fget(arg); 654 if (!file) 655 goto out; 656 657 inode = file->f_mapping->host; 658 old_file = lo->lo_backing_file; 659 660 error = -EINVAL; 661 662 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode)) 663 goto out_putf; 664 665 /* size of the new backing store needs to be the same */ 666 if (get_loop_size(lo, file) != get_loop_size(lo, old_file)) 667 goto out_putf; 668 669 /* and ... switch */ 670 error = loop_switch(lo, file); 671 if (error) 672 goto out_putf; 673 674 fput(old_file); 675 if (lo->lo_flags & LO_FLAGS_PARTSCAN) 676 ioctl_by_bdev(bdev, BLKRRPART, 0); 677 return 0; 678 679 out_putf: 680 fput(file); 681 out: 682 return error; 683} 684 685static inline int is_loop_device(struct file *file) 686{ 687 struct inode *i = file->f_mapping->host; 688 689 return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR; 690} 691 692/* loop sysfs attributes */ 693 694static ssize_t loop_attr_show(struct device *dev, char *page, 695 ssize_t (*callback)(struct loop_device *, char *)) 696{ 697 struct gendisk *disk = dev_to_disk(dev); 698 struct loop_device *lo = disk->private_data; 699 700 return callback(lo, page); 701} 702 703#define LOOP_ATTR_RO(_name) \ 704static ssize_t loop_attr_##_name##_show(struct loop_device *, char *); \ 705static ssize_t loop_attr_do_show_##_name(struct device *d, \ 706 struct device_attribute *attr, char *b) \ 707{ \ 708 return loop_attr_show(d, b, loop_attr_##_name##_show); \ 709} \ 710static struct device_attribute loop_attr_##_name = \ 711 __ATTR(_name, S_IRUGO, loop_attr_do_show_##_name, NULL); 712 713static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf) 714{ 715 ssize_t ret; 716 char *p = NULL; 717 718 spin_lock_irq(&lo->lo_lock); 719 if (lo->lo_backing_file) 720 p = d_path(&lo->lo_backing_file->f_path, buf, PAGE_SIZE - 1); 721 spin_unlock_irq(&lo->lo_lock); 722 723 if (IS_ERR_OR_NULL(p)) 724 ret = PTR_ERR(p); 725 else { 726 ret = strlen(p); 727 memmove(buf, p, ret); 728 buf[ret++] = '\n'; 729 buf[ret] = 0; 730 } 731 732 return ret; 733} 734 735static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf) 736{ 737 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset); 738} 739 740static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf) 741{ 742 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit); 743} 744 745static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf) 746{ 747 int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR); 748 749 return sprintf(buf, "%s\n", autoclear ? "1" : "0"); 750} 751 752static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf) 753{ 754 int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN); 755 756 return sprintf(buf, "%s\n", partscan ? "1" : "0"); 757} 758 759LOOP_ATTR_RO(backing_file); 760LOOP_ATTR_RO(offset); 761LOOP_ATTR_RO(sizelimit); 762LOOP_ATTR_RO(autoclear); 763LOOP_ATTR_RO(partscan); 764 765static struct attribute *loop_attrs[] = { 766 &loop_attr_backing_file.attr, 767 &loop_attr_offset.attr, 768 &loop_attr_sizelimit.attr, 769 &loop_attr_autoclear.attr, 770 &loop_attr_partscan.attr, 771 NULL, 772}; 773 774static struct attribute_group loop_attribute_group = { 775 .name = "loop", 776 .attrs= loop_attrs, 777}; 778 779static int loop_sysfs_init(struct loop_device *lo) 780{ 781 return sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj, 782 &loop_attribute_group); 783} 784 785static void loop_sysfs_exit(struct loop_device *lo) 786{ 787 sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj, 788 &loop_attribute_group); 789} 790 791static void loop_config_discard(struct loop_device *lo) 792{ 793 struct file *file = lo->lo_backing_file; 794 struct inode *inode = file->f_mapping->host; 795 struct request_queue *q = lo->lo_queue; 796 797 /* 798 * We use punch hole to reclaim the free space used by the 799 * image a.k.a. discard. However we do support discard if 800 * encryption is enabled, because it may give an attacker 801 * useful information. 802 */ 803 if ((!file->f_op->fallocate) || 804 lo->lo_encrypt_key_size) { 805 q->limits.discard_granularity = 0; 806 q->limits.discard_alignment = 0; 807 q->limits.max_discard_sectors = 0; 808 q->limits.discard_zeroes_data = 0; 809 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q); 810 return; 811 } 812 813 q->limits.discard_granularity = inode->i_sb->s_blocksize; 814 q->limits.discard_alignment = 0; 815 q->limits.max_discard_sectors = UINT_MAX >> 9; 816 q->limits.discard_zeroes_data = 1; 817 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q); 818} 819 820static int loop_set_fd(struct loop_device *lo, fmode_t mode, 821 struct block_device *bdev, unsigned int arg) 822{ 823 struct file *file, *f; 824 struct inode *inode; 825 struct address_space *mapping; 826 unsigned lo_blocksize; 827 int lo_flags = 0; 828 int error; 829 loff_t size; 830 831 /* This is safe, since we have a reference from open(). */ 832 __module_get(THIS_MODULE); 833 834 error = -EBADF; 835 file = fget(arg); 836 if (!file) 837 goto out; 838 839 error = -EBUSY; 840 if (lo->lo_state != Lo_unbound) 841 goto out_putf; 842 843 /* Avoid recursion */ 844 f = file; 845 while (is_loop_device(f)) { 846 struct loop_device *l; 847 848 if (f->f_mapping->host->i_bdev == bdev) 849 goto out_putf; 850 851 l = f->f_mapping->host->i_bdev->bd_disk->private_data; 852 if (l->lo_state == Lo_unbound) { 853 error = -EINVAL; 854 goto out_putf; 855 } 856 f = l->lo_backing_file; 857 } 858 859 mapping = file->f_mapping; 860 inode = mapping->host; 861 862 error = -EINVAL; 863 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode)) 864 goto out_putf; 865 866 if (!(file->f_mode & FMODE_WRITE) || !(mode & FMODE_WRITE) || 867 !file->f_op->write) 868 lo_flags |= LO_FLAGS_READ_ONLY; 869 870 lo_blocksize = S_ISBLK(inode->i_mode) ? 871 inode->i_bdev->bd_block_size : PAGE_SIZE; 872 873 error = -EFBIG; 874 size = get_loop_size(lo, file); 875 if ((loff_t)(sector_t)size != size) 876 goto out_putf; 877 878 error = 0; 879 880 set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0); 881 882 lo->lo_blocksize = lo_blocksize; 883 lo->lo_device = bdev; 884 lo->lo_flags = lo_flags; 885 lo->lo_backing_file = file; 886 lo->transfer = transfer_none; 887 lo->ioctl = NULL; 888 lo->lo_sizelimit = 0; 889 lo->lo_bio_count = 0; 890 lo->old_gfp_mask = mapping_gfp_mask(mapping); 891 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS)); 892 893 bio_list_init(&lo->lo_bio_list); 894 895 /* 896 * set queue make_request_fn, and add limits based on lower level 897 * device 898 */ 899 blk_queue_make_request(lo->lo_queue, loop_make_request); 900 lo->lo_queue->queuedata = lo; 901 902 if (!(lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync) 903 blk_queue_flush(lo->lo_queue, REQ_FLUSH); 904 905 set_capacity(lo->lo_disk, size); 906 bd_set_size(bdev, size << 9); 907 loop_sysfs_init(lo); 908 /* let user-space know about the new size */ 909 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE); 910 911 set_blocksize(bdev, lo_blocksize); 912 913 lo->lo_thread = kthread_create(loop_thread, lo, "loop%d", 914 lo->lo_number); 915 if (IS_ERR(lo->lo_thread)) { 916 error = PTR_ERR(lo->lo_thread); 917 goto out_clr; 918 } 919 lo->lo_state = Lo_bound; 920 wake_up_process(lo->lo_thread); 921 if (part_shift) 922 lo->lo_flags |= LO_FLAGS_PARTSCAN; 923 if (lo->lo_flags & LO_FLAGS_PARTSCAN) 924 ioctl_by_bdev(bdev, BLKRRPART, 0); 925 926 /* Grab the block_device to prevent its destruction after we 927 * put /dev/loopXX inode. Later in loop_clr_fd() we bdput(bdev). 928 */ 929 bdgrab(bdev); 930 return 0; 931 932out_clr: 933 loop_sysfs_exit(lo); 934 lo->lo_thread = NULL; 935 lo->lo_device = NULL; 936 lo->lo_backing_file = NULL; 937 lo->lo_flags = 0; 938 set_capacity(lo->lo_disk, 0); 939 invalidate_bdev(bdev); 940 bd_set_size(bdev, 0); 941 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE); 942 mapping_set_gfp_mask(mapping, lo->old_gfp_mask); 943 lo->lo_state = Lo_unbound; 944 out_putf: 945 fput(file); 946 out: 947 /* This is safe: open() is still holding a reference. */ 948 module_put(THIS_MODULE); 949 return error; 950} 951 952static int 953loop_release_xfer(struct loop_device *lo) 954{ 955 int err = 0; 956 struct loop_func_table *xfer = lo->lo_encryption; 957 958 if (xfer) { 959 if (xfer->release) 960 err = xfer->release(lo); 961 lo->transfer = NULL; 962 lo->lo_encryption = NULL; 963 module_put(xfer->owner); 964 } 965 return err; 966} 967 968static int 969loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer, 970 const struct loop_info64 *i) 971{ 972 int err = 0; 973 974 if (xfer) { 975 struct module *owner = xfer->owner; 976 977 if (!try_module_get(owner)) 978 return -EINVAL; 979 if (xfer->init) 980 err = xfer->init(lo, i); 981 if (err) 982 module_put(owner); 983 else 984 lo->lo_encryption = xfer; 985 } 986 return err; 987} 988 989static int loop_clr_fd(struct loop_device *lo) 990{ 991 struct file *filp = lo->lo_backing_file; 992 gfp_t gfp = lo->old_gfp_mask; 993 struct block_device *bdev = lo->lo_device; 994 995 if (lo->lo_state != Lo_bound) 996 return -ENXIO; 997 998 /* 999 * If we've explicitly asked to tear down the loop device, 1000 * and it has an elevated reference count, set it for auto-teardown when 1001 * the last reference goes away. This stops $!~#$@ udev from 1002 * preventing teardown because it decided that it needs to run blkid on 1003 * the loopback device whenever they appear. xfstests is notorious for 1004 * failing tests because blkid via udev races with a losetup 1005 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d 1006 * command to fail with EBUSY. 1007 */ 1008 if (lo->lo_refcnt > 1) { 1009 lo->lo_flags |= LO_FLAGS_AUTOCLEAR; 1010 mutex_unlock(&lo->lo_ctl_mutex); 1011 return 0; 1012 } 1013 1014 if (filp == NULL) 1015 return -EINVAL; 1016 1017 spin_lock_irq(&lo->lo_lock); 1018 lo->lo_state = Lo_rundown; 1019 spin_unlock_irq(&lo->lo_lock); 1020 1021 kthread_stop(lo->lo_thread); 1022 1023 spin_lock_irq(&lo->lo_lock); 1024 lo->lo_backing_file = NULL; 1025 spin_unlock_irq(&lo->lo_lock); 1026 1027 loop_release_xfer(lo); 1028 lo->transfer = NULL; 1029 lo->ioctl = NULL; 1030 lo->lo_device = NULL; 1031 lo->lo_encryption = NULL; 1032 lo->lo_offset = 0; 1033 lo->lo_sizelimit = 0; 1034 lo->lo_encrypt_key_size = 0; 1035 lo->lo_thread = NULL; 1036 memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE); 1037 memset(lo->lo_crypt_name, 0, LO_NAME_SIZE); 1038 memset(lo->lo_file_name, 0, LO_NAME_SIZE); 1039 if (bdev) { 1040 bdput(bdev); 1041 invalidate_bdev(bdev); 1042 } 1043 set_capacity(lo->lo_disk, 0); 1044 loop_sysfs_exit(lo); 1045 if (bdev) { 1046 bd_set_size(bdev, 0); 1047 /* let user-space know about this change */ 1048 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE); 1049 } 1050 mapping_set_gfp_mask(filp->f_mapping, gfp); 1051 lo->lo_state = Lo_unbound; 1052 /* This is safe: open() is still holding a reference. */ 1053 module_put(THIS_MODULE); 1054 lo->lo_flags = 0; 1055 if (!part_shift) 1056 lo->lo_disk->flags |= GENHD_FL_NO_PART_SCAN; 1057 mutex_unlock(&lo->lo_ctl_mutex); 1058 1059 /* 1060 * Remove all partitions, since BLKRRPART won't remove user 1061 * added partitions when max_part=0 1062 */ 1063 if (bdev) { 1064 struct disk_part_iter piter; 1065 struct hd_struct *part; 1066 1067 mutex_lock_nested(&bdev->bd_mutex, 1); 1068 invalidate_partition(bdev->bd_disk, 0); 1069 disk_part_iter_init(&piter, bdev->bd_disk, 1070 DISK_PITER_INCL_EMPTY); 1071 while ((part = disk_part_iter_next(&piter))) 1072 delete_partition(bdev->bd_disk, part->partno); 1073 disk_part_iter_exit(&piter); 1074 mutex_unlock(&bdev->bd_mutex); 1075 } 1076 1077 /* 1078 * Need not hold lo_ctl_mutex to fput backing file. 1079 * Calling fput holding lo_ctl_mutex triggers a circular 1080 * lock dependency possibility warning as fput can take 1081 * bd_mutex which is usually taken before lo_ctl_mutex. 1082 */ 1083 fput(filp); 1084 return 0; 1085} 1086 1087static int 1088loop_set_status(struct loop_device *lo, const struct loop_info64 *info) 1089{ 1090 int err; 1091 struct loop_func_table *xfer; 1092 kuid_t uid = current_uid(); 1093 1094 if (lo->lo_encrypt_key_size && 1095 !uid_eq(lo->lo_key_owner, uid) && 1096 !capable(CAP_SYS_ADMIN)) 1097 return -EPERM; 1098 if (lo->lo_state != Lo_bound) 1099 return -ENXIO; 1100 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE) 1101 return -EINVAL; 1102 1103 err = loop_release_xfer(lo); 1104 if (err) 1105 return err; 1106 1107 if (info->lo_encrypt_type) { 1108 unsigned int type = info->lo_encrypt_type; 1109 1110 if (type >= MAX_LO_CRYPT) 1111 return -EINVAL; 1112 xfer = xfer_funcs[type]; 1113 if (xfer == NULL) 1114 return -EINVAL; 1115 } else 1116 xfer = NULL; 1117 1118 err = loop_init_xfer(lo, xfer, info); 1119 if (err) 1120 return err; 1121 1122 if (lo->lo_offset != info->lo_offset || 1123 lo->lo_sizelimit != info->lo_sizelimit) 1124 if (figure_loop_size(lo, info->lo_offset, info->lo_sizelimit)) 1125 return -EFBIG; 1126 1127 loop_config_discard(lo); 1128 1129 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE); 1130 memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE); 1131 lo->lo_file_name[LO_NAME_SIZE-1] = 0; 1132 lo->lo_crypt_name[LO_NAME_SIZE-1] = 0; 1133 1134 if (!xfer) 1135 xfer = &none_funcs; 1136 lo->transfer = xfer->transfer; 1137 lo->ioctl = xfer->ioctl; 1138 1139 if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) != 1140 (info->lo_flags & LO_FLAGS_AUTOCLEAR)) 1141 lo->lo_flags ^= LO_FLAGS_AUTOCLEAR; 1142 1143 if ((info->lo_flags & LO_FLAGS_PARTSCAN) && 1144 !(lo->lo_flags & LO_FLAGS_PARTSCAN)) { 1145 lo->lo_flags |= LO_FLAGS_PARTSCAN; 1146 lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN; 1147 ioctl_by_bdev(lo->lo_device, BLKRRPART, 0); 1148 } 1149 1150 lo->lo_encrypt_key_size = info->lo_encrypt_key_size; 1151 lo->lo_init[0] = info->lo_init[0]; 1152 lo->lo_init[1] = info->lo_init[1]; 1153 if (info->lo_encrypt_key_size) { 1154 memcpy(lo->lo_encrypt_key, info->lo_encrypt_key, 1155 info->lo_encrypt_key_size); 1156 lo->lo_key_owner = uid; 1157 } 1158 1159 return 0; 1160} 1161 1162static int 1163loop_get_status(struct loop_device *lo, struct loop_info64 *info) 1164{ 1165 struct file *file = lo->lo_backing_file; 1166 struct kstat stat; 1167 int error; 1168 1169 if (lo->lo_state != Lo_bound) 1170 return -ENXIO; 1171 error = vfs_getattr(&file->f_path, &stat); 1172 if (error) 1173 return error; 1174 memset(info, 0, sizeof(*info)); 1175 info->lo_number = lo->lo_number; 1176 info->lo_device = huge_encode_dev(stat.dev); 1177 info->lo_inode = stat.ino; 1178 info->lo_rdevice = huge_encode_dev(lo->lo_device ? stat.rdev : stat.dev); 1179 info->lo_offset = lo->lo_offset; 1180 info->lo_sizelimit = lo->lo_sizelimit; 1181 info->lo_flags = lo->lo_flags; 1182 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE); 1183 memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE); 1184 info->lo_encrypt_type = 1185 lo->lo_encryption ? lo->lo_encryption->number : 0; 1186 if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) { 1187 info->lo_encrypt_key_size = lo->lo_encrypt_key_size; 1188 memcpy(info->lo_encrypt_key, lo->lo_encrypt_key, 1189 lo->lo_encrypt_key_size); 1190 } 1191 return 0; 1192} 1193 1194static void 1195loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64) 1196{ 1197 memset(info64, 0, sizeof(*info64)); 1198 info64->lo_number = info->lo_number; 1199 info64->lo_device = info->lo_device; 1200 info64->lo_inode = info->lo_inode; 1201 info64->lo_rdevice = info->lo_rdevice; 1202 info64->lo_offset = info->lo_offset; 1203 info64->lo_sizelimit = 0; 1204 info64->lo_encrypt_type = info->lo_encrypt_type; 1205 info64->lo_encrypt_key_size = info->lo_encrypt_key_size; 1206 info64->lo_flags = info->lo_flags; 1207 info64->lo_init[0] = info->lo_init[0]; 1208 info64->lo_init[1] = info->lo_init[1]; 1209 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1210 memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE); 1211 else 1212 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE); 1213 memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE); 1214} 1215 1216static int 1217loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info) 1218{ 1219 memset(info, 0, sizeof(*info)); 1220 info->lo_number = info64->lo_number; 1221 info->lo_device = info64->lo_device; 1222 info->lo_inode = info64->lo_inode; 1223 info->lo_rdevice = info64->lo_rdevice; 1224 info->lo_offset = info64->lo_offset; 1225 info->lo_encrypt_type = info64->lo_encrypt_type; 1226 info->lo_encrypt_key_size = info64->lo_encrypt_key_size; 1227 info->lo_flags = info64->lo_flags; 1228 info->lo_init[0] = info64->lo_init[0]; 1229 info->lo_init[1] = info64->lo_init[1]; 1230 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1231 memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE); 1232 else 1233 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE); 1234 memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE); 1235 1236 /* error in case values were truncated */ 1237 if (info->lo_device != info64->lo_device || 1238 info->lo_rdevice != info64->lo_rdevice || 1239 info->lo_inode != info64->lo_inode || 1240 info->lo_offset != info64->lo_offset) 1241 return -EOVERFLOW; 1242 1243 return 0; 1244} 1245 1246static int 1247loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg) 1248{ 1249 struct loop_info info; 1250 struct loop_info64 info64; 1251 1252 if (copy_from_user(&info, arg, sizeof (struct loop_info))) 1253 return -EFAULT; 1254 loop_info64_from_old(&info, &info64); 1255 return loop_set_status(lo, &info64); 1256} 1257 1258static int 1259loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg) 1260{ 1261 struct loop_info64 info64; 1262 1263 if (copy_from_user(&info64, arg, sizeof (struct loop_info64))) 1264 return -EFAULT; 1265 return loop_set_status(lo, &info64); 1266} 1267 1268static int 1269loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) { 1270 struct loop_info info; 1271 struct loop_info64 info64; 1272 int err = 0; 1273 1274 if (!arg) 1275 err = -EINVAL; 1276 if (!err) 1277 err = loop_get_status(lo, &info64); 1278 if (!err) 1279 err = loop_info64_to_old(&info64, &info); 1280 if (!err && copy_to_user(arg, &info, sizeof(info))) 1281 err = -EFAULT; 1282 1283 return err; 1284} 1285 1286static int 1287loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) { 1288 struct loop_info64 info64; 1289 int err = 0; 1290 1291 if (!arg) 1292 err = -EINVAL; 1293 if (!err) 1294 err = loop_get_status(lo, &info64); 1295 if (!err && copy_to_user(arg, &info64, sizeof(info64))) 1296 err = -EFAULT; 1297 1298 return err; 1299} 1300 1301static int loop_set_capacity(struct loop_device *lo, struct block_device *bdev) 1302{ 1303 if (unlikely(lo->lo_state != Lo_bound)) 1304 return -ENXIO; 1305 1306 return figure_loop_size(lo, lo->lo_offset, lo->lo_sizelimit); 1307} 1308 1309static int lo_ioctl(struct block_device *bdev, fmode_t mode, 1310 unsigned int cmd, unsigned long arg) 1311{ 1312 struct loop_device *lo = bdev->bd_disk->private_data; 1313 int err; 1314 1315 mutex_lock_nested(&lo->lo_ctl_mutex, 1); 1316 switch (cmd) { 1317 case LOOP_SET_FD: 1318 err = loop_set_fd(lo, mode, bdev, arg); 1319 break; 1320 case LOOP_CHANGE_FD: 1321 err = loop_change_fd(lo, bdev, arg); 1322 break; 1323 case LOOP_CLR_FD: 1324 /* loop_clr_fd would have unlocked lo_ctl_mutex on success */ 1325 err = loop_clr_fd(lo); 1326 if (!err) 1327 goto out_unlocked; 1328 break; 1329 case LOOP_SET_STATUS: 1330 err = -EPERM; 1331 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) 1332 err = loop_set_status_old(lo, 1333 (struct loop_info __user *)arg); 1334 break; 1335 case LOOP_GET_STATUS: 1336 err = loop_get_status_old(lo, (struct loop_info __user *) arg); 1337 break; 1338 case LOOP_SET_STATUS64: 1339 err = -EPERM; 1340 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) 1341 err = loop_set_status64(lo, 1342 (struct loop_info64 __user *) arg); 1343 break; 1344 case LOOP_GET_STATUS64: 1345 err = loop_get_status64(lo, (struct loop_info64 __user *) arg); 1346 break; 1347 case LOOP_SET_CAPACITY: 1348 err = -EPERM; 1349 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) 1350 err = loop_set_capacity(lo, bdev); 1351 break; 1352 default: 1353 err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL; 1354 } 1355 mutex_unlock(&lo->lo_ctl_mutex); 1356 1357out_unlocked: 1358 return err; 1359} 1360 1361#ifdef CONFIG_COMPAT 1362struct compat_loop_info { 1363 compat_int_t lo_number; /* ioctl r/o */ 1364 compat_dev_t lo_device; /* ioctl r/o */ 1365 compat_ulong_t lo_inode; /* ioctl r/o */ 1366 compat_dev_t lo_rdevice; /* ioctl r/o */ 1367 compat_int_t lo_offset; 1368 compat_int_t lo_encrypt_type; 1369 compat_int_t lo_encrypt_key_size; /* ioctl w/o */ 1370 compat_int_t lo_flags; /* ioctl r/o */ 1371 char lo_name[LO_NAME_SIZE]; 1372 unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */ 1373 compat_ulong_t lo_init[2]; 1374 char reserved[4]; 1375}; 1376 1377/* 1378 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info 1379 * - noinlined to reduce stack space usage in main part of driver 1380 */ 1381static noinline int 1382loop_info64_from_compat(const struct compat_loop_info __user *arg, 1383 struct loop_info64 *info64) 1384{ 1385 struct compat_loop_info info; 1386 1387 if (copy_from_user(&info, arg, sizeof(info))) 1388 return -EFAULT; 1389 1390 memset(info64, 0, sizeof(*info64)); 1391 info64->lo_number = info.lo_number; 1392 info64->lo_device = info.lo_device; 1393 info64->lo_inode = info.lo_inode; 1394 info64->lo_rdevice = info.lo_rdevice; 1395 info64->lo_offset = info.lo_offset; 1396 info64->lo_sizelimit = 0; 1397 info64->lo_encrypt_type = info.lo_encrypt_type; 1398 info64->lo_encrypt_key_size = info.lo_encrypt_key_size; 1399 info64->lo_flags = info.lo_flags; 1400 info64->lo_init[0] = info.lo_init[0]; 1401 info64->lo_init[1] = info.lo_init[1]; 1402 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1403 memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE); 1404 else 1405 memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE); 1406 memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE); 1407 return 0; 1408} 1409 1410/* 1411 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace 1412 * - noinlined to reduce stack space usage in main part of driver 1413 */ 1414static noinline int 1415loop_info64_to_compat(const struct loop_info64 *info64, 1416 struct compat_loop_info __user *arg) 1417{ 1418 struct compat_loop_info info; 1419 1420 memset(&info, 0, sizeof(info)); 1421 info.lo_number = info64->lo_number; 1422 info.lo_device = info64->lo_device; 1423 info.lo_inode = info64->lo_inode; 1424 info.lo_rdevice = info64->lo_rdevice; 1425 info.lo_offset = info64->lo_offset; 1426 info.lo_encrypt_type = info64->lo_encrypt_type; 1427 info.lo_encrypt_key_size = info64->lo_encrypt_key_size; 1428 info.lo_flags = info64->lo_flags; 1429 info.lo_init[0] = info64->lo_init[0]; 1430 info.lo_init[1] = info64->lo_init[1]; 1431 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI) 1432 memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE); 1433 else 1434 memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE); 1435 memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE); 1436 1437 /* error in case values were truncated */ 1438 if (info.lo_device != info64->lo_device || 1439 info.lo_rdevice != info64->lo_rdevice || 1440 info.lo_inode != info64->lo_inode || 1441 info.lo_offset != info64->lo_offset || 1442 info.lo_init[0] != info64->lo_init[0] || 1443 info.lo_init[1] != info64->lo_init[1]) 1444 return -EOVERFLOW; 1445 1446 if (copy_to_user(arg, &info, sizeof(info))) 1447 return -EFAULT; 1448 return 0; 1449} 1450 1451static int 1452loop_set_status_compat(struct loop_device *lo, 1453 const struct compat_loop_info __user *arg) 1454{ 1455 struct loop_info64 info64; 1456 int ret; 1457 1458 ret = loop_info64_from_compat(arg, &info64); 1459 if (ret < 0) 1460 return ret; 1461 return loop_set_status(lo, &info64); 1462} 1463 1464static int 1465loop_get_status_compat(struct loop_device *lo, 1466 struct compat_loop_info __user *arg) 1467{ 1468 struct loop_info64 info64; 1469 int err = 0; 1470 1471 if (!arg) 1472 err = -EINVAL; 1473 if (!err) 1474 err = loop_get_status(lo, &info64); 1475 if (!err) 1476 err = loop_info64_to_compat(&info64, arg); 1477 return err; 1478} 1479 1480static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode, 1481 unsigned int cmd, unsigned long arg) 1482{ 1483 struct loop_device *lo = bdev->bd_disk->private_data; 1484 int err; 1485 1486 switch(cmd) { 1487 case LOOP_SET_STATUS: 1488 mutex_lock(&lo->lo_ctl_mutex); 1489 err = loop_set_status_compat( 1490 lo, (const struct compat_loop_info __user *) arg); 1491 mutex_unlock(&lo->lo_ctl_mutex); 1492 break; 1493 case LOOP_GET_STATUS: 1494 mutex_lock(&lo->lo_ctl_mutex); 1495 err = loop_get_status_compat( 1496 lo, (struct compat_loop_info __user *) arg); 1497 mutex_unlock(&lo->lo_ctl_mutex); 1498 break; 1499 case LOOP_SET_CAPACITY: 1500 case LOOP_CLR_FD: 1501 case LOOP_GET_STATUS64: 1502 case LOOP_SET_STATUS64: 1503 arg = (unsigned long) compat_ptr(arg); 1504 case LOOP_SET_FD: 1505 case LOOP_CHANGE_FD: 1506 err = lo_ioctl(bdev, mode, cmd, arg); 1507 break; 1508 default: 1509 err = -ENOIOCTLCMD; 1510 break; 1511 } 1512 return err; 1513} 1514#endif 1515 1516static int lo_open(struct block_device *bdev, fmode_t mode) 1517{ 1518 struct loop_device *lo; 1519 int err = 0; 1520 1521 mutex_lock(&loop_index_mutex); 1522 lo = bdev->bd_disk->private_data; 1523 if (!lo) { 1524 err = -ENXIO; 1525 goto out; 1526 } 1527 1528 mutex_lock(&lo->lo_ctl_mutex); 1529 lo->lo_refcnt++; 1530 mutex_unlock(&lo->lo_ctl_mutex); 1531out: 1532 mutex_unlock(&loop_index_mutex); 1533 return err; 1534} 1535 1536static int lo_release(struct gendisk *disk, fmode_t mode) 1537{ 1538 struct loop_device *lo = disk->private_data; 1539 int err; 1540 1541 mutex_lock(&lo->lo_ctl_mutex); 1542 1543 if (--lo->lo_refcnt) 1544 goto out; 1545 1546 if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) { 1547 /* 1548 * In autoclear mode, stop the loop thread 1549 * and remove configuration after last close. 1550 */ 1551 err = loop_clr_fd(lo); 1552 if (!err) 1553 goto out_unlocked; 1554 } else { 1555 /* 1556 * Otherwise keep thread (if running) and config, 1557 * but flush possible ongoing bios in thread. 1558 */ 1559 loop_flush(lo); 1560 } 1561 1562out: 1563 mutex_unlock(&lo->lo_ctl_mutex); 1564out_unlocked: 1565 return 0; 1566} 1567 1568static const struct block_device_operations lo_fops = { 1569 .owner = THIS_MODULE, 1570 .open = lo_open, 1571 .release = lo_release, 1572 .ioctl = lo_ioctl, 1573#ifdef CONFIG_COMPAT 1574 .compat_ioctl = lo_compat_ioctl, 1575#endif 1576}; 1577 1578/* 1579 * And now the modules code and kernel interface. 1580 */ 1581static int max_loop; 1582module_param(max_loop, int, S_IRUGO); 1583MODULE_PARM_DESC(max_loop, "Maximum number of loop devices"); 1584module_param(max_part, int, S_IRUGO); 1585MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device"); 1586MODULE_LICENSE("GPL"); 1587MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR); 1588 1589int loop_register_transfer(struct loop_func_table *funcs) 1590{ 1591 unsigned int n = funcs->number; 1592 1593 if (n >= MAX_LO_CRYPT || xfer_funcs[n]) 1594 return -EINVAL; 1595 xfer_funcs[n] = funcs; 1596 return 0; 1597} 1598 1599static int unregister_transfer_cb(int id, void *ptr, void *data) 1600{ 1601 struct loop_device *lo = ptr; 1602 struct loop_func_table *xfer = data; 1603 1604 mutex_lock(&lo->lo_ctl_mutex); 1605 if (lo->lo_encryption == xfer) 1606 loop_release_xfer(lo); 1607 mutex_unlock(&lo->lo_ctl_mutex); 1608 return 0; 1609} 1610 1611int loop_unregister_transfer(int number) 1612{ 1613 unsigned int n = number; 1614 struct loop_func_table *xfer; 1615 1616 if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL) 1617 return -EINVAL; 1618 1619 xfer_funcs[n] = NULL; 1620 idr_for_each(&loop_index_idr, &unregister_transfer_cb, xfer); 1621 return 0; 1622} 1623 1624EXPORT_SYMBOL(loop_register_transfer); 1625EXPORT_SYMBOL(loop_unregister_transfer); 1626 1627static int loop_add(struct loop_device **l, int i) 1628{ 1629 struct loop_device *lo; 1630 struct gendisk *disk; 1631 int err; 1632 1633 err = -ENOMEM; 1634 lo = kzalloc(sizeof(*lo), GFP_KERNEL); 1635 if (!lo) 1636 goto out; 1637 1638 /* allocate id, if @id >= 0, we're requesting that specific id */ 1639 if (i >= 0) { 1640 err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL); 1641 if (err == -ENOSPC) 1642 err = -EEXIST; 1643 } else { 1644 err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL); 1645 } 1646 if (err < 0) 1647 goto out_free_dev; 1648 i = err; 1649 1650 err = -ENOMEM; 1651 lo->lo_queue = blk_alloc_queue(GFP_KERNEL); 1652 if (!lo->lo_queue) 1653 goto out_free_dev; 1654 1655 disk = lo->lo_disk = alloc_disk(1 << part_shift); 1656 if (!disk) 1657 goto out_free_queue; 1658 1659 /* 1660 * Disable partition scanning by default. The in-kernel partition 1661 * scanning can be requested individually per-device during its 1662 * setup. Userspace can always add and remove partitions from all 1663 * devices. The needed partition minors are allocated from the 1664 * extended minor space, the main loop device numbers will continue 1665 * to match the loop minors, regardless of the number of partitions 1666 * used. 1667 * 1668 * If max_part is given, partition scanning is globally enabled for 1669 * all loop devices. The minors for the main loop devices will be 1670 * multiples of max_part. 1671 * 1672 * Note: Global-for-all-devices, set-only-at-init, read-only module 1673 * parameteters like 'max_loop' and 'max_part' make things needlessly 1674 * complicated, are too static, inflexible and may surprise 1675 * userspace tools. Parameters like this in general should be avoided. 1676 */ 1677 if (!part_shift) 1678 disk->flags |= GENHD_FL_NO_PART_SCAN; 1679 disk->flags |= GENHD_FL_EXT_DEVT; 1680 mutex_init(&lo->lo_ctl_mutex); 1681 lo->lo_number = i; 1682 lo->lo_thread = NULL; 1683 init_waitqueue_head(&lo->lo_event); 1684 init_waitqueue_head(&lo->lo_req_wait); 1685 spin_lock_init(&lo->lo_lock); 1686 disk->major = LOOP_MAJOR; 1687 disk->first_minor = i << part_shift; 1688 disk->fops = &lo_fops; 1689 disk->private_data = lo; 1690 disk->queue = lo->lo_queue; 1691 sprintf(disk->disk_name, "loop%d", i); 1692 add_disk(disk); 1693 *l = lo; 1694 return lo->lo_number; 1695 1696out_free_queue: 1697 blk_cleanup_queue(lo->lo_queue); 1698out_free_dev: 1699 kfree(lo); 1700out: 1701 return err; 1702} 1703 1704static void loop_remove(struct loop_device *lo) 1705{ 1706 del_gendisk(lo->lo_disk); 1707 blk_cleanup_queue(lo->lo_queue); 1708 put_disk(lo->lo_disk); 1709 kfree(lo); 1710} 1711 1712static int find_free_cb(int id, void *ptr, void *data) 1713{ 1714 struct loop_device *lo = ptr; 1715 struct loop_device **l = data; 1716 1717 if (lo->lo_state == Lo_unbound) { 1718 *l = lo; 1719 return 1; 1720 } 1721 return 0; 1722} 1723 1724static int loop_lookup(struct loop_device **l, int i) 1725{ 1726 struct loop_device *lo; 1727 int ret = -ENODEV; 1728 1729 if (i < 0) { 1730 int err; 1731 1732 err = idr_for_each(&loop_index_idr, &find_free_cb, &lo); 1733 if (err == 1) { 1734 *l = lo; 1735 ret = lo->lo_number; 1736 } 1737 goto out; 1738 } 1739 1740 /* lookup and return a specific i */ 1741 lo = idr_find(&loop_index_idr, i); 1742 if (lo) { 1743 *l = lo; 1744 ret = lo->lo_number; 1745 } 1746out: 1747 return ret; 1748} 1749 1750static struct kobject *loop_probe(dev_t dev, int *part, void *data) 1751{ 1752 struct loop_device *lo; 1753 struct kobject *kobj; 1754 int err; 1755 1756 mutex_lock(&loop_index_mutex); 1757 err = loop_lookup(&lo, MINOR(dev) >> part_shift); 1758 if (err < 0) 1759 err = loop_add(&lo, MINOR(dev) >> part_shift); 1760 if (err < 0) 1761 kobj = ERR_PTR(err); 1762 else 1763 kobj = get_disk(lo->lo_disk); 1764 mutex_unlock(&loop_index_mutex); 1765 1766 *part = 0; 1767 return kobj; 1768} 1769 1770static long loop_control_ioctl(struct file *file, unsigned int cmd, 1771 unsigned long parm) 1772{ 1773 struct loop_device *lo; 1774 int ret = -ENOSYS; 1775 1776 mutex_lock(&loop_index_mutex); 1777 switch (cmd) { 1778 case LOOP_CTL_ADD: 1779 ret = loop_lookup(&lo, parm); 1780 if (ret >= 0) { 1781 ret = -EEXIST; 1782 break; 1783 } 1784 ret = loop_add(&lo, parm); 1785 break; 1786 case LOOP_CTL_REMOVE: 1787 ret = loop_lookup(&lo, parm); 1788 if (ret < 0) 1789 break; 1790 mutex_lock(&lo->lo_ctl_mutex); 1791 if (lo->lo_state != Lo_unbound) { 1792 ret = -EBUSY; 1793 mutex_unlock(&lo->lo_ctl_mutex); 1794 break; 1795 } 1796 if (lo->lo_refcnt > 0) { 1797 ret = -EBUSY; 1798 mutex_unlock(&lo->lo_ctl_mutex); 1799 break; 1800 } 1801 lo->lo_disk->private_data = NULL; 1802 mutex_unlock(&lo->lo_ctl_mutex); 1803 idr_remove(&loop_index_idr, lo->lo_number); 1804 loop_remove(lo); 1805 break; 1806 case LOOP_CTL_GET_FREE: 1807 ret = loop_lookup(&lo, -1); 1808 if (ret >= 0) 1809 break; 1810 ret = loop_add(&lo, -1); 1811 } 1812 mutex_unlock(&loop_index_mutex); 1813 1814 return ret; 1815} 1816 1817static const struct file_operations loop_ctl_fops = { 1818 .open = nonseekable_open, 1819 .unlocked_ioctl = loop_control_ioctl, 1820 .compat_ioctl = loop_control_ioctl, 1821 .owner = THIS_MODULE, 1822 .llseek = noop_llseek, 1823}; 1824 1825static struct miscdevice loop_misc = { 1826 .minor = LOOP_CTRL_MINOR, 1827 .name = "loop-control", 1828 .fops = &loop_ctl_fops, 1829}; 1830 1831MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR); 1832MODULE_ALIAS("devname:loop-control"); 1833 1834static int __init loop_init(void) 1835{ 1836 int i, nr; 1837 unsigned long range; 1838 struct loop_device *lo; 1839 int err; 1840 1841 err = misc_register(&loop_misc); 1842 if (err < 0) 1843 return err; 1844 1845 part_shift = 0; 1846 if (max_part > 0) { 1847 part_shift = fls(max_part); 1848 1849 /* 1850 * Adjust max_part according to part_shift as it is exported 1851 * to user space so that user can decide correct minor number 1852 * if [s]he want to create more devices. 1853 * 1854 * Note that -1 is required because partition 0 is reserved 1855 * for the whole disk. 1856 */ 1857 max_part = (1UL << part_shift) - 1; 1858 } 1859 1860 if ((1UL << part_shift) > DISK_MAX_PARTS) { 1861 err = -EINVAL; 1862 goto misc_out; 1863 } 1864 1865 if (max_loop > 1UL << (MINORBITS - part_shift)) { 1866 err = -EINVAL; 1867 goto misc_out; 1868 } 1869 1870 /* 1871 * If max_loop is specified, create that many devices upfront. 1872 * This also becomes a hard limit. If max_loop is not specified, 1873 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module 1874 * init time. Loop devices can be requested on-demand with the 1875 * /dev/loop-control interface, or be instantiated by accessing 1876 * a 'dead' device node. 1877 */ 1878 if (max_loop) { 1879 nr = max_loop; 1880 range = max_loop << part_shift; 1881 } else { 1882 nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT; 1883 range = 1UL << MINORBITS; 1884 } 1885 1886 if (register_blkdev(LOOP_MAJOR, "loop")) { 1887 err = -EIO; 1888 goto misc_out; 1889 } 1890 1891 blk_register_region(MKDEV(LOOP_MAJOR, 0), range, 1892 THIS_MODULE, loop_probe, NULL, NULL); 1893 1894 /* pre-create number of devices given by config or max_loop */ 1895 mutex_lock(&loop_index_mutex); 1896 for (i = 0; i < nr; i++) 1897 loop_add(&lo, i); 1898 mutex_unlock(&loop_index_mutex); 1899 1900 printk(KERN_INFO "loop: module loaded\n"); 1901 return 0; 1902 1903misc_out: 1904 misc_deregister(&loop_misc); 1905 return err; 1906} 1907 1908static int loop_exit_cb(int id, void *ptr, void *data) 1909{ 1910 struct loop_device *lo = ptr; 1911 1912 loop_remove(lo); 1913 return 0; 1914} 1915 1916static void __exit loop_exit(void) 1917{ 1918 unsigned long range; 1919 1920 range = max_loop ? max_loop << part_shift : 1UL << MINORBITS; 1921 1922 idr_for_each(&loop_index_idr, &loop_exit_cb, NULL); 1923 idr_destroy(&loop_index_idr); 1924 1925 blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range); 1926 unregister_blkdev(LOOP_MAJOR, "loop"); 1927 1928 misc_deregister(&loop_misc); 1929} 1930 1931module_init(loop_init); 1932module_exit(loop_exit); 1933 1934#ifndef MODULE 1935static int __init max_loop_setup(char *str) 1936{ 1937 max_loop = simple_strtol(str, NULL, 0); 1938 return 1; 1939} 1940 1941__setup("max_loop=", max_loop_setup); 1942#endif