at v3.9-rc4 1759 lines 59 kB view raw
1#ifndef _LINUX_MM_H 2#define _LINUX_MM_H 3 4#include <linux/errno.h> 5 6#ifdef __KERNEL__ 7 8#include <linux/gfp.h> 9#include <linux/bug.h> 10#include <linux/list.h> 11#include <linux/mmzone.h> 12#include <linux/rbtree.h> 13#include <linux/atomic.h> 14#include <linux/debug_locks.h> 15#include <linux/mm_types.h> 16#include <linux/range.h> 17#include <linux/pfn.h> 18#include <linux/bit_spinlock.h> 19#include <linux/shrinker.h> 20 21struct mempolicy; 22struct anon_vma; 23struct anon_vma_chain; 24struct file_ra_state; 25struct user_struct; 26struct writeback_control; 27 28#ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */ 29extern unsigned long max_mapnr; 30#endif 31 32extern unsigned long num_physpages; 33extern unsigned long totalram_pages; 34extern void * high_memory; 35extern int page_cluster; 36 37#ifdef CONFIG_SYSCTL 38extern int sysctl_legacy_va_layout; 39#else 40#define sysctl_legacy_va_layout 0 41#endif 42 43#include <asm/page.h> 44#include <asm/pgtable.h> 45#include <asm/processor.h> 46 47#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 48 49/* to align the pointer to the (next) page boundary */ 50#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 51 52/* 53 * Linux kernel virtual memory manager primitives. 54 * The idea being to have a "virtual" mm in the same way 55 * we have a virtual fs - giving a cleaner interface to the 56 * mm details, and allowing different kinds of memory mappings 57 * (from shared memory to executable loading to arbitrary 58 * mmap() functions). 59 */ 60 61extern struct kmem_cache *vm_area_cachep; 62 63#ifndef CONFIG_MMU 64extern struct rb_root nommu_region_tree; 65extern struct rw_semaphore nommu_region_sem; 66 67extern unsigned int kobjsize(const void *objp); 68#endif 69 70/* 71 * vm_flags in vm_area_struct, see mm_types.h. 72 */ 73#define VM_NONE 0x00000000 74 75#define VM_READ 0x00000001 /* currently active flags */ 76#define VM_WRITE 0x00000002 77#define VM_EXEC 0x00000004 78#define VM_SHARED 0x00000008 79 80/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 81#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 82#define VM_MAYWRITE 0x00000020 83#define VM_MAYEXEC 0x00000040 84#define VM_MAYSHARE 0x00000080 85 86#define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 87#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 88#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 89 90#define VM_POPULATE 0x00001000 91#define VM_LOCKED 0x00002000 92#define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 93 94 /* Used by sys_madvise() */ 95#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 96#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 97 98#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 99#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 100#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 101#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 102#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 103#define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */ 104#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 105#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 106 107#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 108#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 109#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 110#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 111 112#if defined(CONFIG_X86) 113# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 114#elif defined(CONFIG_PPC) 115# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 116#elif defined(CONFIG_PARISC) 117# define VM_GROWSUP VM_ARCH_1 118#elif defined(CONFIG_METAG) 119# define VM_GROWSUP VM_ARCH_1 120#elif defined(CONFIG_IA64) 121# define VM_GROWSUP VM_ARCH_1 122#elif !defined(CONFIG_MMU) 123# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 124#endif 125 126#ifndef VM_GROWSUP 127# define VM_GROWSUP VM_NONE 128#endif 129 130/* Bits set in the VMA until the stack is in its final location */ 131#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) 132 133#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 134#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 135#endif 136 137#ifdef CONFIG_STACK_GROWSUP 138#define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 139#else 140#define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 141#endif 142 143#define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ) 144#define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK 145#define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK)) 146#define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ) 147#define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ) 148 149/* 150 * Special vmas that are non-mergable, non-mlock()able. 151 * Note: mm/huge_memory.c VM_NO_THP depends on this definition. 152 */ 153#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP) 154 155/* 156 * mapping from the currently active vm_flags protection bits (the 157 * low four bits) to a page protection mask.. 158 */ 159extern pgprot_t protection_map[16]; 160 161#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */ 162#define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */ 163#define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */ 164#define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */ 165#define FAULT_FLAG_RETRY_NOWAIT 0x10 /* Don't drop mmap_sem and wait when retrying */ 166#define FAULT_FLAG_KILLABLE 0x20 /* The fault task is in SIGKILL killable region */ 167#define FAULT_FLAG_TRIED 0x40 /* second try */ 168 169/* 170 * vm_fault is filled by the the pagefault handler and passed to the vma's 171 * ->fault function. The vma's ->fault is responsible for returning a bitmask 172 * of VM_FAULT_xxx flags that give details about how the fault was handled. 173 * 174 * pgoff should be used in favour of virtual_address, if possible. If pgoff 175 * is used, one may implement ->remap_pages to get nonlinear mapping support. 176 */ 177struct vm_fault { 178 unsigned int flags; /* FAULT_FLAG_xxx flags */ 179 pgoff_t pgoff; /* Logical page offset based on vma */ 180 void __user *virtual_address; /* Faulting virtual address */ 181 182 struct page *page; /* ->fault handlers should return a 183 * page here, unless VM_FAULT_NOPAGE 184 * is set (which is also implied by 185 * VM_FAULT_ERROR). 186 */ 187}; 188 189/* 190 * These are the virtual MM functions - opening of an area, closing and 191 * unmapping it (needed to keep files on disk up-to-date etc), pointer 192 * to the functions called when a no-page or a wp-page exception occurs. 193 */ 194struct vm_operations_struct { 195 void (*open)(struct vm_area_struct * area); 196 void (*close)(struct vm_area_struct * area); 197 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf); 198 199 /* notification that a previously read-only page is about to become 200 * writable, if an error is returned it will cause a SIGBUS */ 201 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf); 202 203 /* called by access_process_vm when get_user_pages() fails, typically 204 * for use by special VMAs that can switch between memory and hardware 205 */ 206 int (*access)(struct vm_area_struct *vma, unsigned long addr, 207 void *buf, int len, int write); 208#ifdef CONFIG_NUMA 209 /* 210 * set_policy() op must add a reference to any non-NULL @new mempolicy 211 * to hold the policy upon return. Caller should pass NULL @new to 212 * remove a policy and fall back to surrounding context--i.e. do not 213 * install a MPOL_DEFAULT policy, nor the task or system default 214 * mempolicy. 215 */ 216 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 217 218 /* 219 * get_policy() op must add reference [mpol_get()] to any policy at 220 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 221 * in mm/mempolicy.c will do this automatically. 222 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 223 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem. 224 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 225 * must return NULL--i.e., do not "fallback" to task or system default 226 * policy. 227 */ 228 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 229 unsigned long addr); 230 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from, 231 const nodemask_t *to, unsigned long flags); 232#endif 233 /* called by sys_remap_file_pages() to populate non-linear mapping */ 234 int (*remap_pages)(struct vm_area_struct *vma, unsigned long addr, 235 unsigned long size, pgoff_t pgoff); 236}; 237 238struct mmu_gather; 239struct inode; 240 241#define page_private(page) ((page)->private) 242#define set_page_private(page, v) ((page)->private = (v)) 243 244/* It's valid only if the page is free path or free_list */ 245static inline void set_freepage_migratetype(struct page *page, int migratetype) 246{ 247 page->index = migratetype; 248} 249 250/* It's valid only if the page is free path or free_list */ 251static inline int get_freepage_migratetype(struct page *page) 252{ 253 return page->index; 254} 255 256/* 257 * FIXME: take this include out, include page-flags.h in 258 * files which need it (119 of them) 259 */ 260#include <linux/page-flags.h> 261#include <linux/huge_mm.h> 262 263/* 264 * Methods to modify the page usage count. 265 * 266 * What counts for a page usage: 267 * - cache mapping (page->mapping) 268 * - private data (page->private) 269 * - page mapped in a task's page tables, each mapping 270 * is counted separately 271 * 272 * Also, many kernel routines increase the page count before a critical 273 * routine so they can be sure the page doesn't go away from under them. 274 */ 275 276/* 277 * Drop a ref, return true if the refcount fell to zero (the page has no users) 278 */ 279static inline int put_page_testzero(struct page *page) 280{ 281 VM_BUG_ON(atomic_read(&page->_count) == 0); 282 return atomic_dec_and_test(&page->_count); 283} 284 285/* 286 * Try to grab a ref unless the page has a refcount of zero, return false if 287 * that is the case. 288 */ 289static inline int get_page_unless_zero(struct page *page) 290{ 291 return atomic_inc_not_zero(&page->_count); 292} 293 294extern int page_is_ram(unsigned long pfn); 295 296/* Support for virtually mapped pages */ 297struct page *vmalloc_to_page(const void *addr); 298unsigned long vmalloc_to_pfn(const void *addr); 299 300/* 301 * Determine if an address is within the vmalloc range 302 * 303 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 304 * is no special casing required. 305 */ 306static inline int is_vmalloc_addr(const void *x) 307{ 308#ifdef CONFIG_MMU 309 unsigned long addr = (unsigned long)x; 310 311 return addr >= VMALLOC_START && addr < VMALLOC_END; 312#else 313 return 0; 314#endif 315} 316#ifdef CONFIG_MMU 317extern int is_vmalloc_or_module_addr(const void *x); 318#else 319static inline int is_vmalloc_or_module_addr(const void *x) 320{ 321 return 0; 322} 323#endif 324 325static inline void compound_lock(struct page *page) 326{ 327#ifdef CONFIG_TRANSPARENT_HUGEPAGE 328 VM_BUG_ON(PageSlab(page)); 329 bit_spin_lock(PG_compound_lock, &page->flags); 330#endif 331} 332 333static inline void compound_unlock(struct page *page) 334{ 335#ifdef CONFIG_TRANSPARENT_HUGEPAGE 336 VM_BUG_ON(PageSlab(page)); 337 bit_spin_unlock(PG_compound_lock, &page->flags); 338#endif 339} 340 341static inline unsigned long compound_lock_irqsave(struct page *page) 342{ 343 unsigned long uninitialized_var(flags); 344#ifdef CONFIG_TRANSPARENT_HUGEPAGE 345 local_irq_save(flags); 346 compound_lock(page); 347#endif 348 return flags; 349} 350 351static inline void compound_unlock_irqrestore(struct page *page, 352 unsigned long flags) 353{ 354#ifdef CONFIG_TRANSPARENT_HUGEPAGE 355 compound_unlock(page); 356 local_irq_restore(flags); 357#endif 358} 359 360static inline struct page *compound_head(struct page *page) 361{ 362 if (unlikely(PageTail(page))) 363 return page->first_page; 364 return page; 365} 366 367/* 368 * The atomic page->_mapcount, starts from -1: so that transitions 369 * both from it and to it can be tracked, using atomic_inc_and_test 370 * and atomic_add_negative(-1). 371 */ 372static inline void page_mapcount_reset(struct page *page) 373{ 374 atomic_set(&(page)->_mapcount, -1); 375} 376 377static inline int page_mapcount(struct page *page) 378{ 379 return atomic_read(&(page)->_mapcount) + 1; 380} 381 382static inline int page_count(struct page *page) 383{ 384 return atomic_read(&compound_head(page)->_count); 385} 386 387static inline void get_huge_page_tail(struct page *page) 388{ 389 /* 390 * __split_huge_page_refcount() cannot run 391 * from under us. 392 */ 393 VM_BUG_ON(page_mapcount(page) < 0); 394 VM_BUG_ON(atomic_read(&page->_count) != 0); 395 atomic_inc(&page->_mapcount); 396} 397 398extern bool __get_page_tail(struct page *page); 399 400static inline void get_page(struct page *page) 401{ 402 if (unlikely(PageTail(page))) 403 if (likely(__get_page_tail(page))) 404 return; 405 /* 406 * Getting a normal page or the head of a compound page 407 * requires to already have an elevated page->_count. 408 */ 409 VM_BUG_ON(atomic_read(&page->_count) <= 0); 410 atomic_inc(&page->_count); 411} 412 413static inline struct page *virt_to_head_page(const void *x) 414{ 415 struct page *page = virt_to_page(x); 416 return compound_head(page); 417} 418 419/* 420 * Setup the page count before being freed into the page allocator for 421 * the first time (boot or memory hotplug) 422 */ 423static inline void init_page_count(struct page *page) 424{ 425 atomic_set(&page->_count, 1); 426} 427 428/* 429 * PageBuddy() indicate that the page is free and in the buddy system 430 * (see mm/page_alloc.c). 431 * 432 * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to 433 * -2 so that an underflow of the page_mapcount() won't be mistaken 434 * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very 435 * efficiently by most CPU architectures. 436 */ 437#define PAGE_BUDDY_MAPCOUNT_VALUE (-128) 438 439static inline int PageBuddy(struct page *page) 440{ 441 return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE; 442} 443 444static inline void __SetPageBuddy(struct page *page) 445{ 446 VM_BUG_ON(atomic_read(&page->_mapcount) != -1); 447 atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE); 448} 449 450static inline void __ClearPageBuddy(struct page *page) 451{ 452 VM_BUG_ON(!PageBuddy(page)); 453 atomic_set(&page->_mapcount, -1); 454} 455 456void put_page(struct page *page); 457void put_pages_list(struct list_head *pages); 458 459void split_page(struct page *page, unsigned int order); 460int split_free_page(struct page *page); 461 462/* 463 * Compound pages have a destructor function. Provide a 464 * prototype for that function and accessor functions. 465 * These are _only_ valid on the head of a PG_compound page. 466 */ 467typedef void compound_page_dtor(struct page *); 468 469static inline void set_compound_page_dtor(struct page *page, 470 compound_page_dtor *dtor) 471{ 472 page[1].lru.next = (void *)dtor; 473} 474 475static inline compound_page_dtor *get_compound_page_dtor(struct page *page) 476{ 477 return (compound_page_dtor *)page[1].lru.next; 478} 479 480static inline int compound_order(struct page *page) 481{ 482 if (!PageHead(page)) 483 return 0; 484 return (unsigned long)page[1].lru.prev; 485} 486 487static inline int compound_trans_order(struct page *page) 488{ 489 int order; 490 unsigned long flags; 491 492 if (!PageHead(page)) 493 return 0; 494 495 flags = compound_lock_irqsave(page); 496 order = compound_order(page); 497 compound_unlock_irqrestore(page, flags); 498 return order; 499} 500 501static inline void set_compound_order(struct page *page, unsigned long order) 502{ 503 page[1].lru.prev = (void *)order; 504} 505 506#ifdef CONFIG_MMU 507/* 508 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 509 * servicing faults for write access. In the normal case, do always want 510 * pte_mkwrite. But get_user_pages can cause write faults for mappings 511 * that do not have writing enabled, when used by access_process_vm. 512 */ 513static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 514{ 515 if (likely(vma->vm_flags & VM_WRITE)) 516 pte = pte_mkwrite(pte); 517 return pte; 518} 519#endif 520 521/* 522 * Multiple processes may "see" the same page. E.g. for untouched 523 * mappings of /dev/null, all processes see the same page full of 524 * zeroes, and text pages of executables and shared libraries have 525 * only one copy in memory, at most, normally. 526 * 527 * For the non-reserved pages, page_count(page) denotes a reference count. 528 * page_count() == 0 means the page is free. page->lru is then used for 529 * freelist management in the buddy allocator. 530 * page_count() > 0 means the page has been allocated. 531 * 532 * Pages are allocated by the slab allocator in order to provide memory 533 * to kmalloc and kmem_cache_alloc. In this case, the management of the 534 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 535 * unless a particular usage is carefully commented. (the responsibility of 536 * freeing the kmalloc memory is the caller's, of course). 537 * 538 * A page may be used by anyone else who does a __get_free_page(). 539 * In this case, page_count still tracks the references, and should only 540 * be used through the normal accessor functions. The top bits of page->flags 541 * and page->virtual store page management information, but all other fields 542 * are unused and could be used privately, carefully. The management of this 543 * page is the responsibility of the one who allocated it, and those who have 544 * subsequently been given references to it. 545 * 546 * The other pages (we may call them "pagecache pages") are completely 547 * managed by the Linux memory manager: I/O, buffers, swapping etc. 548 * The following discussion applies only to them. 549 * 550 * A pagecache page contains an opaque `private' member, which belongs to the 551 * page's address_space. Usually, this is the address of a circular list of 552 * the page's disk buffers. PG_private must be set to tell the VM to call 553 * into the filesystem to release these pages. 554 * 555 * A page may belong to an inode's memory mapping. In this case, page->mapping 556 * is the pointer to the inode, and page->index is the file offset of the page, 557 * in units of PAGE_CACHE_SIZE. 558 * 559 * If pagecache pages are not associated with an inode, they are said to be 560 * anonymous pages. These may become associated with the swapcache, and in that 561 * case PG_swapcache is set, and page->private is an offset into the swapcache. 562 * 563 * In either case (swapcache or inode backed), the pagecache itself holds one 564 * reference to the page. Setting PG_private should also increment the 565 * refcount. The each user mapping also has a reference to the page. 566 * 567 * The pagecache pages are stored in a per-mapping radix tree, which is 568 * rooted at mapping->page_tree, and indexed by offset. 569 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 570 * lists, we instead now tag pages as dirty/writeback in the radix tree. 571 * 572 * All pagecache pages may be subject to I/O: 573 * - inode pages may need to be read from disk, 574 * - inode pages which have been modified and are MAP_SHARED may need 575 * to be written back to the inode on disk, 576 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 577 * modified may need to be swapped out to swap space and (later) to be read 578 * back into memory. 579 */ 580 581/* 582 * The zone field is never updated after free_area_init_core() 583 * sets it, so none of the operations on it need to be atomic. 584 */ 585 586/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_NID] | ... | FLAGS | */ 587#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 588#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 589#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 590#define LAST_NID_PGOFF (ZONES_PGOFF - LAST_NID_WIDTH) 591 592/* 593 * Define the bit shifts to access each section. For non-existent 594 * sections we define the shift as 0; that plus a 0 mask ensures 595 * the compiler will optimise away reference to them. 596 */ 597#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 598#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 599#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 600#define LAST_NID_PGSHIFT (LAST_NID_PGOFF * (LAST_NID_WIDTH != 0)) 601 602/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 603#ifdef NODE_NOT_IN_PAGE_FLAGS 604#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 605#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ 606 SECTIONS_PGOFF : ZONES_PGOFF) 607#else 608#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 609#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ 610 NODES_PGOFF : ZONES_PGOFF) 611#endif 612 613#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 614 615#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 616#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 617#endif 618 619#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 620#define NODES_MASK ((1UL << NODES_WIDTH) - 1) 621#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 622#define LAST_NID_MASK ((1UL << LAST_NID_WIDTH) - 1) 623#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 624 625static inline enum zone_type page_zonenum(const struct page *page) 626{ 627 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 628} 629 630#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 631#define SECTION_IN_PAGE_FLAGS 632#endif 633 634/* 635 * The identification function is only used by the buddy allocator for 636 * determining if two pages could be buddies. We are not really 637 * identifying a zone since we could be using a the section number 638 * id if we have not node id available in page flags. 639 * We guarantee only that it will return the same value for two 640 * combinable pages in a zone. 641 */ 642static inline int page_zone_id(struct page *page) 643{ 644 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 645} 646 647static inline int zone_to_nid(struct zone *zone) 648{ 649#ifdef CONFIG_NUMA 650 return zone->node; 651#else 652 return 0; 653#endif 654} 655 656#ifdef NODE_NOT_IN_PAGE_FLAGS 657extern int page_to_nid(const struct page *page); 658#else 659static inline int page_to_nid(const struct page *page) 660{ 661 return (page->flags >> NODES_PGSHIFT) & NODES_MASK; 662} 663#endif 664 665#ifdef CONFIG_NUMA_BALANCING 666#ifdef LAST_NID_NOT_IN_PAGE_FLAGS 667static inline int page_nid_xchg_last(struct page *page, int nid) 668{ 669 return xchg(&page->_last_nid, nid); 670} 671 672static inline int page_nid_last(struct page *page) 673{ 674 return page->_last_nid; 675} 676static inline void page_nid_reset_last(struct page *page) 677{ 678 page->_last_nid = -1; 679} 680#else 681static inline int page_nid_last(struct page *page) 682{ 683 return (page->flags >> LAST_NID_PGSHIFT) & LAST_NID_MASK; 684} 685 686extern int page_nid_xchg_last(struct page *page, int nid); 687 688static inline void page_nid_reset_last(struct page *page) 689{ 690 int nid = (1 << LAST_NID_SHIFT) - 1; 691 692 page->flags &= ~(LAST_NID_MASK << LAST_NID_PGSHIFT); 693 page->flags |= (nid & LAST_NID_MASK) << LAST_NID_PGSHIFT; 694} 695#endif /* LAST_NID_NOT_IN_PAGE_FLAGS */ 696#else 697static inline int page_nid_xchg_last(struct page *page, int nid) 698{ 699 return page_to_nid(page); 700} 701 702static inline int page_nid_last(struct page *page) 703{ 704 return page_to_nid(page); 705} 706 707static inline void page_nid_reset_last(struct page *page) 708{ 709} 710#endif 711 712static inline struct zone *page_zone(const struct page *page) 713{ 714 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 715} 716 717#ifdef SECTION_IN_PAGE_FLAGS 718static inline void set_page_section(struct page *page, unsigned long section) 719{ 720 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 721 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 722} 723 724static inline unsigned long page_to_section(const struct page *page) 725{ 726 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 727} 728#endif 729 730static inline void set_page_zone(struct page *page, enum zone_type zone) 731{ 732 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 733 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 734} 735 736static inline void set_page_node(struct page *page, unsigned long node) 737{ 738 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 739 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 740} 741 742static inline void set_page_links(struct page *page, enum zone_type zone, 743 unsigned long node, unsigned long pfn) 744{ 745 set_page_zone(page, zone); 746 set_page_node(page, node); 747#ifdef SECTION_IN_PAGE_FLAGS 748 set_page_section(page, pfn_to_section_nr(pfn)); 749#endif 750} 751 752/* 753 * Some inline functions in vmstat.h depend on page_zone() 754 */ 755#include <linux/vmstat.h> 756 757static __always_inline void *lowmem_page_address(const struct page *page) 758{ 759 return __va(PFN_PHYS(page_to_pfn(page))); 760} 761 762#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 763#define HASHED_PAGE_VIRTUAL 764#endif 765 766#if defined(WANT_PAGE_VIRTUAL) 767#define page_address(page) ((page)->virtual) 768#define set_page_address(page, address) \ 769 do { \ 770 (page)->virtual = (address); \ 771 } while(0) 772#define page_address_init() do { } while(0) 773#endif 774 775#if defined(HASHED_PAGE_VIRTUAL) 776void *page_address(const struct page *page); 777void set_page_address(struct page *page, void *virtual); 778void page_address_init(void); 779#endif 780 781#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 782#define page_address(page) lowmem_page_address(page) 783#define set_page_address(page, address) do { } while(0) 784#define page_address_init() do { } while(0) 785#endif 786 787/* 788 * On an anonymous page mapped into a user virtual memory area, 789 * page->mapping points to its anon_vma, not to a struct address_space; 790 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h. 791 * 792 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled, 793 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit; 794 * and then page->mapping points, not to an anon_vma, but to a private 795 * structure which KSM associates with that merged page. See ksm.h. 796 * 797 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used. 798 * 799 * Please note that, confusingly, "page_mapping" refers to the inode 800 * address_space which maps the page from disk; whereas "page_mapped" 801 * refers to user virtual address space into which the page is mapped. 802 */ 803#define PAGE_MAPPING_ANON 1 804#define PAGE_MAPPING_KSM 2 805#define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM) 806 807extern struct address_space *page_mapping(struct page *page); 808 809/* Neutral page->mapping pointer to address_space or anon_vma or other */ 810static inline void *page_rmapping(struct page *page) 811{ 812 return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS); 813} 814 815extern struct address_space *__page_file_mapping(struct page *); 816 817static inline 818struct address_space *page_file_mapping(struct page *page) 819{ 820 if (unlikely(PageSwapCache(page))) 821 return __page_file_mapping(page); 822 823 return page->mapping; 824} 825 826static inline int PageAnon(struct page *page) 827{ 828 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0; 829} 830 831/* 832 * Return the pagecache index of the passed page. Regular pagecache pages 833 * use ->index whereas swapcache pages use ->private 834 */ 835static inline pgoff_t page_index(struct page *page) 836{ 837 if (unlikely(PageSwapCache(page))) 838 return page_private(page); 839 return page->index; 840} 841 842extern pgoff_t __page_file_index(struct page *page); 843 844/* 845 * Return the file index of the page. Regular pagecache pages use ->index 846 * whereas swapcache pages use swp_offset(->private) 847 */ 848static inline pgoff_t page_file_index(struct page *page) 849{ 850 if (unlikely(PageSwapCache(page))) 851 return __page_file_index(page); 852 853 return page->index; 854} 855 856/* 857 * Return true if this page is mapped into pagetables. 858 */ 859static inline int page_mapped(struct page *page) 860{ 861 return atomic_read(&(page)->_mapcount) >= 0; 862} 863 864/* 865 * Different kinds of faults, as returned by handle_mm_fault(). 866 * Used to decide whether a process gets delivered SIGBUS or 867 * just gets major/minor fault counters bumped up. 868 */ 869 870#define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */ 871 872#define VM_FAULT_OOM 0x0001 873#define VM_FAULT_SIGBUS 0x0002 874#define VM_FAULT_MAJOR 0x0004 875#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */ 876#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */ 877#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */ 878 879#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */ 880#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */ 881#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */ 882 883#define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */ 884 885#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \ 886 VM_FAULT_HWPOISON_LARGE) 887 888/* Encode hstate index for a hwpoisoned large page */ 889#define VM_FAULT_SET_HINDEX(x) ((x) << 12) 890#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf) 891 892/* 893 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 894 */ 895extern void pagefault_out_of_memory(void); 896 897#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 898 899/* 900 * Flags passed to show_mem() and show_free_areas() to suppress output in 901 * various contexts. 902 */ 903#define SHOW_MEM_FILTER_NODES (0x0001u) /* filter disallowed nodes */ 904 905extern void show_free_areas(unsigned int flags); 906extern bool skip_free_areas_node(unsigned int flags, int nid); 907 908int shmem_zero_setup(struct vm_area_struct *); 909 910extern int can_do_mlock(void); 911extern int user_shm_lock(size_t, struct user_struct *); 912extern void user_shm_unlock(size_t, struct user_struct *); 913 914/* 915 * Parameter block passed down to zap_pte_range in exceptional cases. 916 */ 917struct zap_details { 918 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */ 919 struct address_space *check_mapping; /* Check page->mapping if set */ 920 pgoff_t first_index; /* Lowest page->index to unmap */ 921 pgoff_t last_index; /* Highest page->index to unmap */ 922}; 923 924struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 925 pte_t pte); 926 927int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 928 unsigned long size); 929void zap_page_range(struct vm_area_struct *vma, unsigned long address, 930 unsigned long size, struct zap_details *); 931void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma, 932 unsigned long start, unsigned long end); 933 934/** 935 * mm_walk - callbacks for walk_page_range 936 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry 937 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry 938 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry 939 * this handler is required to be able to handle 940 * pmd_trans_huge() pmds. They may simply choose to 941 * split_huge_page() instead of handling it explicitly. 942 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry 943 * @pte_hole: if set, called for each hole at all levels 944 * @hugetlb_entry: if set, called for each hugetlb entry 945 * *Caution*: The caller must hold mmap_sem() if @hugetlb_entry 946 * is used. 947 * 948 * (see walk_page_range for more details) 949 */ 950struct mm_walk { 951 int (*pgd_entry)(pgd_t *, unsigned long, unsigned long, struct mm_walk *); 952 int (*pud_entry)(pud_t *, unsigned long, unsigned long, struct mm_walk *); 953 int (*pmd_entry)(pmd_t *, unsigned long, unsigned long, struct mm_walk *); 954 int (*pte_entry)(pte_t *, unsigned long, unsigned long, struct mm_walk *); 955 int (*pte_hole)(unsigned long, unsigned long, struct mm_walk *); 956 int (*hugetlb_entry)(pte_t *, unsigned long, 957 unsigned long, unsigned long, struct mm_walk *); 958 struct mm_struct *mm; 959 void *private; 960}; 961 962int walk_page_range(unsigned long addr, unsigned long end, 963 struct mm_walk *walk); 964void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 965 unsigned long end, unsigned long floor, unsigned long ceiling); 966int copy_page_range(struct mm_struct *dst, struct mm_struct *src, 967 struct vm_area_struct *vma); 968void unmap_mapping_range(struct address_space *mapping, 969 loff_t const holebegin, loff_t const holelen, int even_cows); 970int follow_pfn(struct vm_area_struct *vma, unsigned long address, 971 unsigned long *pfn); 972int follow_phys(struct vm_area_struct *vma, unsigned long address, 973 unsigned int flags, unsigned long *prot, resource_size_t *phys); 974int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 975 void *buf, int len, int write); 976 977static inline void unmap_shared_mapping_range(struct address_space *mapping, 978 loff_t const holebegin, loff_t const holelen) 979{ 980 unmap_mapping_range(mapping, holebegin, holelen, 0); 981} 982 983extern void truncate_pagecache(struct inode *inode, loff_t old, loff_t new); 984extern void truncate_setsize(struct inode *inode, loff_t newsize); 985void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 986int truncate_inode_page(struct address_space *mapping, struct page *page); 987int generic_error_remove_page(struct address_space *mapping, struct page *page); 988int invalidate_inode_page(struct page *page); 989 990#ifdef CONFIG_MMU 991extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 992 unsigned long address, unsigned int flags); 993extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, 994 unsigned long address, unsigned int fault_flags); 995#else 996static inline int handle_mm_fault(struct mm_struct *mm, 997 struct vm_area_struct *vma, unsigned long address, 998 unsigned int flags) 999{ 1000 /* should never happen if there's no MMU */ 1001 BUG(); 1002 return VM_FAULT_SIGBUS; 1003} 1004static inline int fixup_user_fault(struct task_struct *tsk, 1005 struct mm_struct *mm, unsigned long address, 1006 unsigned int fault_flags) 1007{ 1008 /* should never happen if there's no MMU */ 1009 BUG(); 1010 return -EFAULT; 1011} 1012#endif 1013 1014extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write); 1015extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1016 void *buf, int len, int write); 1017 1018long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1019 unsigned long start, unsigned long nr_pages, 1020 unsigned int foll_flags, struct page **pages, 1021 struct vm_area_struct **vmas, int *nonblocking); 1022long get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1023 unsigned long start, unsigned long nr_pages, 1024 int write, int force, struct page **pages, 1025 struct vm_area_struct **vmas); 1026int get_user_pages_fast(unsigned long start, int nr_pages, int write, 1027 struct page **pages); 1028struct kvec; 1029int get_kernel_pages(const struct kvec *iov, int nr_pages, int write, 1030 struct page **pages); 1031int get_kernel_page(unsigned long start, int write, struct page **pages); 1032struct page *get_dump_page(unsigned long addr); 1033 1034extern int try_to_release_page(struct page * page, gfp_t gfp_mask); 1035extern void do_invalidatepage(struct page *page, unsigned long offset); 1036 1037int __set_page_dirty_nobuffers(struct page *page); 1038int __set_page_dirty_no_writeback(struct page *page); 1039int redirty_page_for_writepage(struct writeback_control *wbc, 1040 struct page *page); 1041void account_page_dirtied(struct page *page, struct address_space *mapping); 1042void account_page_writeback(struct page *page); 1043int set_page_dirty(struct page *page); 1044int set_page_dirty_lock(struct page *page); 1045int clear_page_dirty_for_io(struct page *page); 1046 1047/* Is the vma a continuation of the stack vma above it? */ 1048static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr) 1049{ 1050 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN); 1051} 1052 1053static inline int stack_guard_page_start(struct vm_area_struct *vma, 1054 unsigned long addr) 1055{ 1056 return (vma->vm_flags & VM_GROWSDOWN) && 1057 (vma->vm_start == addr) && 1058 !vma_growsdown(vma->vm_prev, addr); 1059} 1060 1061/* Is the vma a continuation of the stack vma below it? */ 1062static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr) 1063{ 1064 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP); 1065} 1066 1067static inline int stack_guard_page_end(struct vm_area_struct *vma, 1068 unsigned long addr) 1069{ 1070 return (vma->vm_flags & VM_GROWSUP) && 1071 (vma->vm_end == addr) && 1072 !vma_growsup(vma->vm_next, addr); 1073} 1074 1075extern pid_t 1076vm_is_stack(struct task_struct *task, struct vm_area_struct *vma, int in_group); 1077 1078extern unsigned long move_page_tables(struct vm_area_struct *vma, 1079 unsigned long old_addr, struct vm_area_struct *new_vma, 1080 unsigned long new_addr, unsigned long len, 1081 bool need_rmap_locks); 1082extern unsigned long do_mremap(unsigned long addr, 1083 unsigned long old_len, unsigned long new_len, 1084 unsigned long flags, unsigned long new_addr); 1085extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start, 1086 unsigned long end, pgprot_t newprot, 1087 int dirty_accountable, int prot_numa); 1088extern int mprotect_fixup(struct vm_area_struct *vma, 1089 struct vm_area_struct **pprev, unsigned long start, 1090 unsigned long end, unsigned long newflags); 1091 1092/* 1093 * doesn't attempt to fault and will return short. 1094 */ 1095int __get_user_pages_fast(unsigned long start, int nr_pages, int write, 1096 struct page **pages); 1097/* 1098 * per-process(per-mm_struct) statistics. 1099 */ 1100static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 1101{ 1102 long val = atomic_long_read(&mm->rss_stat.count[member]); 1103 1104#ifdef SPLIT_RSS_COUNTING 1105 /* 1106 * counter is updated in asynchronous manner and may go to minus. 1107 * But it's never be expected number for users. 1108 */ 1109 if (val < 0) 1110 val = 0; 1111#endif 1112 return (unsigned long)val; 1113} 1114 1115static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 1116{ 1117 atomic_long_add(value, &mm->rss_stat.count[member]); 1118} 1119 1120static inline void inc_mm_counter(struct mm_struct *mm, int member) 1121{ 1122 atomic_long_inc(&mm->rss_stat.count[member]); 1123} 1124 1125static inline void dec_mm_counter(struct mm_struct *mm, int member) 1126{ 1127 atomic_long_dec(&mm->rss_stat.count[member]); 1128} 1129 1130static inline unsigned long get_mm_rss(struct mm_struct *mm) 1131{ 1132 return get_mm_counter(mm, MM_FILEPAGES) + 1133 get_mm_counter(mm, MM_ANONPAGES); 1134} 1135 1136static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 1137{ 1138 return max(mm->hiwater_rss, get_mm_rss(mm)); 1139} 1140 1141static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 1142{ 1143 return max(mm->hiwater_vm, mm->total_vm); 1144} 1145 1146static inline void update_hiwater_rss(struct mm_struct *mm) 1147{ 1148 unsigned long _rss = get_mm_rss(mm); 1149 1150 if ((mm)->hiwater_rss < _rss) 1151 (mm)->hiwater_rss = _rss; 1152} 1153 1154static inline void update_hiwater_vm(struct mm_struct *mm) 1155{ 1156 if (mm->hiwater_vm < mm->total_vm) 1157 mm->hiwater_vm = mm->total_vm; 1158} 1159 1160static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 1161 struct mm_struct *mm) 1162{ 1163 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 1164 1165 if (*maxrss < hiwater_rss) 1166 *maxrss = hiwater_rss; 1167} 1168 1169#if defined(SPLIT_RSS_COUNTING) 1170void sync_mm_rss(struct mm_struct *mm); 1171#else 1172static inline void sync_mm_rss(struct mm_struct *mm) 1173{ 1174} 1175#endif 1176 1177int vma_wants_writenotify(struct vm_area_struct *vma); 1178 1179extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1180 spinlock_t **ptl); 1181static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 1182 spinlock_t **ptl) 1183{ 1184 pte_t *ptep; 1185 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 1186 return ptep; 1187} 1188 1189#ifdef __PAGETABLE_PUD_FOLDED 1190static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, 1191 unsigned long address) 1192{ 1193 return 0; 1194} 1195#else 1196int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 1197#endif 1198 1199#ifdef __PAGETABLE_PMD_FOLDED 1200static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 1201 unsigned long address) 1202{ 1203 return 0; 1204} 1205#else 1206int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 1207#endif 1208 1209int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, 1210 pmd_t *pmd, unsigned long address); 1211int __pte_alloc_kernel(pmd_t *pmd, unsigned long address); 1212 1213/* 1214 * The following ifdef needed to get the 4level-fixup.h header to work. 1215 * Remove it when 4level-fixup.h has been removed. 1216 */ 1217#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK) 1218static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 1219{ 1220 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))? 1221 NULL: pud_offset(pgd, address); 1222} 1223 1224static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 1225{ 1226 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 1227 NULL: pmd_offset(pud, address); 1228} 1229#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */ 1230 1231#if USE_SPLIT_PTLOCKS 1232/* 1233 * We tuck a spinlock to guard each pagetable page into its struct page, 1234 * at page->private, with BUILD_BUG_ON to make sure that this will not 1235 * overflow into the next struct page (as it might with DEBUG_SPINLOCK). 1236 * When freeing, reset page->mapping so free_pages_check won't complain. 1237 */ 1238#define __pte_lockptr(page) &((page)->ptl) 1239#define pte_lock_init(_page) do { \ 1240 spin_lock_init(__pte_lockptr(_page)); \ 1241} while (0) 1242#define pte_lock_deinit(page) ((page)->mapping = NULL) 1243#define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));}) 1244#else /* !USE_SPLIT_PTLOCKS */ 1245/* 1246 * We use mm->page_table_lock to guard all pagetable pages of the mm. 1247 */ 1248#define pte_lock_init(page) do {} while (0) 1249#define pte_lock_deinit(page) do {} while (0) 1250#define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;}) 1251#endif /* USE_SPLIT_PTLOCKS */ 1252 1253static inline void pgtable_page_ctor(struct page *page) 1254{ 1255 pte_lock_init(page); 1256 inc_zone_page_state(page, NR_PAGETABLE); 1257} 1258 1259static inline void pgtable_page_dtor(struct page *page) 1260{ 1261 pte_lock_deinit(page); 1262 dec_zone_page_state(page, NR_PAGETABLE); 1263} 1264 1265#define pte_offset_map_lock(mm, pmd, address, ptlp) \ 1266({ \ 1267 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 1268 pte_t *__pte = pte_offset_map(pmd, address); \ 1269 *(ptlp) = __ptl; \ 1270 spin_lock(__ptl); \ 1271 __pte; \ 1272}) 1273 1274#define pte_unmap_unlock(pte, ptl) do { \ 1275 spin_unlock(ptl); \ 1276 pte_unmap(pte); \ 1277} while (0) 1278 1279#define pte_alloc_map(mm, vma, pmd, address) \ 1280 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \ 1281 pmd, address))? \ 1282 NULL: pte_offset_map(pmd, address)) 1283 1284#define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 1285 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \ 1286 pmd, address))? \ 1287 NULL: pte_offset_map_lock(mm, pmd, address, ptlp)) 1288 1289#define pte_alloc_kernel(pmd, address) \ 1290 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \ 1291 NULL: pte_offset_kernel(pmd, address)) 1292 1293extern void free_area_init(unsigned long * zones_size); 1294extern void free_area_init_node(int nid, unsigned long * zones_size, 1295 unsigned long zone_start_pfn, unsigned long *zholes_size); 1296extern void free_initmem(void); 1297 1298#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 1299/* 1300 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its 1301 * zones, allocate the backing mem_map and account for memory holes in a more 1302 * architecture independent manner. This is a substitute for creating the 1303 * zone_sizes[] and zholes_size[] arrays and passing them to 1304 * free_area_init_node() 1305 * 1306 * An architecture is expected to register range of page frames backed by 1307 * physical memory with memblock_add[_node]() before calling 1308 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic 1309 * usage, an architecture is expected to do something like 1310 * 1311 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 1312 * max_highmem_pfn}; 1313 * for_each_valid_physical_page_range() 1314 * memblock_add_node(base, size, nid) 1315 * free_area_init_nodes(max_zone_pfns); 1316 * 1317 * free_bootmem_with_active_regions() calls free_bootmem_node() for each 1318 * registered physical page range. Similarly 1319 * sparse_memory_present_with_active_regions() calls memory_present() for 1320 * each range when SPARSEMEM is enabled. 1321 * 1322 * See mm/page_alloc.c for more information on each function exposed by 1323 * CONFIG_HAVE_MEMBLOCK_NODE_MAP. 1324 */ 1325extern void free_area_init_nodes(unsigned long *max_zone_pfn); 1326unsigned long node_map_pfn_alignment(void); 1327unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, 1328 unsigned long end_pfn); 1329extern unsigned long absent_pages_in_range(unsigned long start_pfn, 1330 unsigned long end_pfn); 1331extern void get_pfn_range_for_nid(unsigned int nid, 1332 unsigned long *start_pfn, unsigned long *end_pfn); 1333extern unsigned long find_min_pfn_with_active_regions(void); 1334extern void free_bootmem_with_active_regions(int nid, 1335 unsigned long max_low_pfn); 1336extern void sparse_memory_present_with_active_regions(int nid); 1337 1338#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 1339 1340#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \ 1341 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) 1342static inline int __early_pfn_to_nid(unsigned long pfn) 1343{ 1344 return 0; 1345} 1346#else 1347/* please see mm/page_alloc.c */ 1348extern int __meminit early_pfn_to_nid(unsigned long pfn); 1349#ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 1350/* there is a per-arch backend function. */ 1351extern int __meminit __early_pfn_to_nid(unsigned long pfn); 1352#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 1353#endif 1354 1355extern void set_dma_reserve(unsigned long new_dma_reserve); 1356extern void memmap_init_zone(unsigned long, int, unsigned long, 1357 unsigned long, enum memmap_context); 1358extern void setup_per_zone_wmarks(void); 1359extern int __meminit init_per_zone_wmark_min(void); 1360extern void mem_init(void); 1361extern void __init mmap_init(void); 1362extern void show_mem(unsigned int flags); 1363extern void si_meminfo(struct sysinfo * val); 1364extern void si_meminfo_node(struct sysinfo *val, int nid); 1365 1366extern __printf(3, 4) 1367void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...); 1368 1369extern void setup_per_cpu_pageset(void); 1370 1371extern void zone_pcp_update(struct zone *zone); 1372extern void zone_pcp_reset(struct zone *zone); 1373 1374/* page_alloc.c */ 1375extern int min_free_kbytes; 1376 1377/* nommu.c */ 1378extern atomic_long_t mmap_pages_allocated; 1379extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 1380 1381/* interval_tree.c */ 1382void vma_interval_tree_insert(struct vm_area_struct *node, 1383 struct rb_root *root); 1384void vma_interval_tree_insert_after(struct vm_area_struct *node, 1385 struct vm_area_struct *prev, 1386 struct rb_root *root); 1387void vma_interval_tree_remove(struct vm_area_struct *node, 1388 struct rb_root *root); 1389struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root, 1390 unsigned long start, unsigned long last); 1391struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 1392 unsigned long start, unsigned long last); 1393 1394#define vma_interval_tree_foreach(vma, root, start, last) \ 1395 for (vma = vma_interval_tree_iter_first(root, start, last); \ 1396 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 1397 1398static inline void vma_nonlinear_insert(struct vm_area_struct *vma, 1399 struct list_head *list) 1400{ 1401 list_add_tail(&vma->shared.nonlinear, list); 1402} 1403 1404void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 1405 struct rb_root *root); 1406void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 1407 struct rb_root *root); 1408struct anon_vma_chain *anon_vma_interval_tree_iter_first( 1409 struct rb_root *root, unsigned long start, unsigned long last); 1410struct anon_vma_chain *anon_vma_interval_tree_iter_next( 1411 struct anon_vma_chain *node, unsigned long start, unsigned long last); 1412#ifdef CONFIG_DEBUG_VM_RB 1413void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 1414#endif 1415 1416#define anon_vma_interval_tree_foreach(avc, root, start, last) \ 1417 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 1418 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 1419 1420/* mmap.c */ 1421extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 1422extern int vma_adjust(struct vm_area_struct *vma, unsigned long start, 1423 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert); 1424extern struct vm_area_struct *vma_merge(struct mm_struct *, 1425 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 1426 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 1427 struct mempolicy *); 1428extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 1429extern int split_vma(struct mm_struct *, 1430 struct vm_area_struct *, unsigned long addr, int new_below); 1431extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 1432extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 1433 struct rb_node **, struct rb_node *); 1434extern void unlink_file_vma(struct vm_area_struct *); 1435extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 1436 unsigned long addr, unsigned long len, pgoff_t pgoff, 1437 bool *need_rmap_locks); 1438extern void exit_mmap(struct mm_struct *); 1439 1440extern int mm_take_all_locks(struct mm_struct *mm); 1441extern void mm_drop_all_locks(struct mm_struct *mm); 1442 1443extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 1444extern struct file *get_mm_exe_file(struct mm_struct *mm); 1445 1446extern int may_expand_vm(struct mm_struct *mm, unsigned long npages); 1447extern int install_special_mapping(struct mm_struct *mm, 1448 unsigned long addr, unsigned long len, 1449 unsigned long flags, struct page **pages); 1450 1451extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 1452 1453extern unsigned long mmap_region(struct file *file, unsigned long addr, 1454 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff); 1455extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr, 1456 unsigned long len, unsigned long prot, unsigned long flags, 1457 unsigned long pgoff, unsigned long *populate); 1458extern int do_munmap(struct mm_struct *, unsigned long, size_t); 1459 1460#ifdef CONFIG_MMU 1461extern int __mm_populate(unsigned long addr, unsigned long len, 1462 int ignore_errors); 1463static inline void mm_populate(unsigned long addr, unsigned long len) 1464{ 1465 /* Ignore errors */ 1466 (void) __mm_populate(addr, len, 1); 1467} 1468#else 1469static inline void mm_populate(unsigned long addr, unsigned long len) {} 1470#endif 1471 1472/* These take the mm semaphore themselves */ 1473extern unsigned long vm_brk(unsigned long, unsigned long); 1474extern int vm_munmap(unsigned long, size_t); 1475extern unsigned long vm_mmap(struct file *, unsigned long, 1476 unsigned long, unsigned long, 1477 unsigned long, unsigned long); 1478 1479struct vm_unmapped_area_info { 1480#define VM_UNMAPPED_AREA_TOPDOWN 1 1481 unsigned long flags; 1482 unsigned long length; 1483 unsigned long low_limit; 1484 unsigned long high_limit; 1485 unsigned long align_mask; 1486 unsigned long align_offset; 1487}; 1488 1489extern unsigned long unmapped_area(struct vm_unmapped_area_info *info); 1490extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info); 1491 1492/* 1493 * Search for an unmapped address range. 1494 * 1495 * We are looking for a range that: 1496 * - does not intersect with any VMA; 1497 * - is contained within the [low_limit, high_limit) interval; 1498 * - is at least the desired size. 1499 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask) 1500 */ 1501static inline unsigned long 1502vm_unmapped_area(struct vm_unmapped_area_info *info) 1503{ 1504 if (!(info->flags & VM_UNMAPPED_AREA_TOPDOWN)) 1505 return unmapped_area(info); 1506 else 1507 return unmapped_area_topdown(info); 1508} 1509 1510/* truncate.c */ 1511extern void truncate_inode_pages(struct address_space *, loff_t); 1512extern void truncate_inode_pages_range(struct address_space *, 1513 loff_t lstart, loff_t lend); 1514 1515/* generic vm_area_ops exported for stackable file systems */ 1516extern int filemap_fault(struct vm_area_struct *, struct vm_fault *); 1517extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf); 1518 1519/* mm/page-writeback.c */ 1520int write_one_page(struct page *page, int wait); 1521void task_dirty_inc(struct task_struct *tsk); 1522 1523/* readahead.c */ 1524#define VM_MAX_READAHEAD 128 /* kbytes */ 1525#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */ 1526 1527int force_page_cache_readahead(struct address_space *mapping, struct file *filp, 1528 pgoff_t offset, unsigned long nr_to_read); 1529 1530void page_cache_sync_readahead(struct address_space *mapping, 1531 struct file_ra_state *ra, 1532 struct file *filp, 1533 pgoff_t offset, 1534 unsigned long size); 1535 1536void page_cache_async_readahead(struct address_space *mapping, 1537 struct file_ra_state *ra, 1538 struct file *filp, 1539 struct page *pg, 1540 pgoff_t offset, 1541 unsigned long size); 1542 1543unsigned long max_sane_readahead(unsigned long nr); 1544unsigned long ra_submit(struct file_ra_state *ra, 1545 struct address_space *mapping, 1546 struct file *filp); 1547 1548/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 1549extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 1550 1551/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */ 1552extern int expand_downwards(struct vm_area_struct *vma, 1553 unsigned long address); 1554#if VM_GROWSUP 1555extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 1556#else 1557 #define expand_upwards(vma, address) do { } while (0) 1558#endif 1559 1560/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 1561extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 1562extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 1563 struct vm_area_struct **pprev); 1564 1565/* Look up the first VMA which intersects the interval start_addr..end_addr-1, 1566 NULL if none. Assume start_addr < end_addr. */ 1567static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) 1568{ 1569 struct vm_area_struct * vma = find_vma(mm,start_addr); 1570 1571 if (vma && end_addr <= vma->vm_start) 1572 vma = NULL; 1573 return vma; 1574} 1575 1576static inline unsigned long vma_pages(struct vm_area_struct *vma) 1577{ 1578 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 1579} 1580 1581/* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 1582static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 1583 unsigned long vm_start, unsigned long vm_end) 1584{ 1585 struct vm_area_struct *vma = find_vma(mm, vm_start); 1586 1587 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 1588 vma = NULL; 1589 1590 return vma; 1591} 1592 1593#ifdef CONFIG_MMU 1594pgprot_t vm_get_page_prot(unsigned long vm_flags); 1595#else 1596static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 1597{ 1598 return __pgprot(0); 1599} 1600#endif 1601 1602#ifdef CONFIG_ARCH_USES_NUMA_PROT_NONE 1603unsigned long change_prot_numa(struct vm_area_struct *vma, 1604 unsigned long start, unsigned long end); 1605#endif 1606 1607struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 1608int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 1609 unsigned long pfn, unsigned long size, pgprot_t); 1610int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 1611int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1612 unsigned long pfn); 1613int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 1614 unsigned long pfn); 1615 1616struct page *follow_page_mask(struct vm_area_struct *vma, 1617 unsigned long address, unsigned int foll_flags, 1618 unsigned int *page_mask); 1619 1620static inline struct page *follow_page(struct vm_area_struct *vma, 1621 unsigned long address, unsigned int foll_flags) 1622{ 1623 unsigned int unused_page_mask; 1624 return follow_page_mask(vma, address, foll_flags, &unused_page_mask); 1625} 1626 1627#define FOLL_WRITE 0x01 /* check pte is writable */ 1628#define FOLL_TOUCH 0x02 /* mark page accessed */ 1629#define FOLL_GET 0x04 /* do get_page on page */ 1630#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */ 1631#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */ 1632#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO 1633 * and return without waiting upon it */ 1634#define FOLL_MLOCK 0x40 /* mark page as mlocked */ 1635#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */ 1636#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */ 1637#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */ 1638#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */ 1639 1640typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr, 1641 void *data); 1642extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 1643 unsigned long size, pte_fn_t fn, void *data); 1644 1645#ifdef CONFIG_PROC_FS 1646void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long); 1647#else 1648static inline void vm_stat_account(struct mm_struct *mm, 1649 unsigned long flags, struct file *file, long pages) 1650{ 1651 mm->total_vm += pages; 1652} 1653#endif /* CONFIG_PROC_FS */ 1654 1655#ifdef CONFIG_DEBUG_PAGEALLOC 1656extern void kernel_map_pages(struct page *page, int numpages, int enable); 1657#ifdef CONFIG_HIBERNATION 1658extern bool kernel_page_present(struct page *page); 1659#endif /* CONFIG_HIBERNATION */ 1660#else 1661static inline void 1662kernel_map_pages(struct page *page, int numpages, int enable) {} 1663#ifdef CONFIG_HIBERNATION 1664static inline bool kernel_page_present(struct page *page) { return true; } 1665#endif /* CONFIG_HIBERNATION */ 1666#endif 1667 1668extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 1669#ifdef __HAVE_ARCH_GATE_AREA 1670int in_gate_area_no_mm(unsigned long addr); 1671int in_gate_area(struct mm_struct *mm, unsigned long addr); 1672#else 1673int in_gate_area_no_mm(unsigned long addr); 1674#define in_gate_area(mm, addr) ({(void)mm; in_gate_area_no_mm(addr);}) 1675#endif /* __HAVE_ARCH_GATE_AREA */ 1676 1677int drop_caches_sysctl_handler(struct ctl_table *, int, 1678 void __user *, size_t *, loff_t *); 1679unsigned long shrink_slab(struct shrink_control *shrink, 1680 unsigned long nr_pages_scanned, 1681 unsigned long lru_pages); 1682 1683#ifndef CONFIG_MMU 1684#define randomize_va_space 0 1685#else 1686extern int randomize_va_space; 1687#endif 1688 1689const char * arch_vma_name(struct vm_area_struct *vma); 1690void print_vma_addr(char *prefix, unsigned long rip); 1691 1692void sparse_mem_maps_populate_node(struct page **map_map, 1693 unsigned long pnum_begin, 1694 unsigned long pnum_end, 1695 unsigned long map_count, 1696 int nodeid); 1697 1698struct page *sparse_mem_map_populate(unsigned long pnum, int nid); 1699pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 1700pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node); 1701pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 1702pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node); 1703void *vmemmap_alloc_block(unsigned long size, int node); 1704void *vmemmap_alloc_block_buf(unsigned long size, int node); 1705void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 1706int vmemmap_populate_basepages(struct page *start_page, 1707 unsigned long pages, int node); 1708int vmemmap_populate(struct page *start_page, unsigned long pages, int node); 1709void vmemmap_populate_print_last(void); 1710#ifdef CONFIG_MEMORY_HOTPLUG 1711void vmemmap_free(struct page *memmap, unsigned long nr_pages); 1712#endif 1713void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, 1714 unsigned long size); 1715 1716enum mf_flags { 1717 MF_COUNT_INCREASED = 1 << 0, 1718 MF_ACTION_REQUIRED = 1 << 1, 1719 MF_MUST_KILL = 1 << 2, 1720}; 1721extern int memory_failure(unsigned long pfn, int trapno, int flags); 1722extern void memory_failure_queue(unsigned long pfn, int trapno, int flags); 1723extern int unpoison_memory(unsigned long pfn); 1724extern int sysctl_memory_failure_early_kill; 1725extern int sysctl_memory_failure_recovery; 1726extern void shake_page(struct page *p, int access); 1727extern atomic_long_t num_poisoned_pages; 1728extern int soft_offline_page(struct page *page, int flags); 1729 1730extern void dump_page(struct page *page); 1731 1732#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 1733extern void clear_huge_page(struct page *page, 1734 unsigned long addr, 1735 unsigned int pages_per_huge_page); 1736extern void copy_user_huge_page(struct page *dst, struct page *src, 1737 unsigned long addr, struct vm_area_struct *vma, 1738 unsigned int pages_per_huge_page); 1739#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 1740 1741#ifdef CONFIG_DEBUG_PAGEALLOC 1742extern unsigned int _debug_guardpage_minorder; 1743 1744static inline unsigned int debug_guardpage_minorder(void) 1745{ 1746 return _debug_guardpage_minorder; 1747} 1748 1749static inline bool page_is_guard(struct page *page) 1750{ 1751 return test_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags); 1752} 1753#else 1754static inline unsigned int debug_guardpage_minorder(void) { return 0; } 1755static inline bool page_is_guard(struct page *page) { return false; } 1756#endif /* CONFIG_DEBUG_PAGEALLOC */ 1757 1758#endif /* __KERNEL__ */ 1759#endif /* _LINUX_MM_H */