at v3.9-rc2 27 kB view raw
1/* 2 * RT-Mutexes: simple blocking mutual exclusion locks with PI support 3 * 4 * started by Ingo Molnar and Thomas Gleixner. 5 * 6 * Copyright (C) 2004-2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 7 * Copyright (C) 2005-2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com> 8 * Copyright (C) 2005 Kihon Technologies Inc., Steven Rostedt 9 * Copyright (C) 2006 Esben Nielsen 10 * 11 * See Documentation/rt-mutex-design.txt for details. 12 */ 13#include <linux/spinlock.h> 14#include <linux/export.h> 15#include <linux/sched.h> 16#include <linux/sched/rt.h> 17#include <linux/timer.h> 18 19#include "rtmutex_common.h" 20 21/* 22 * lock->owner state tracking: 23 * 24 * lock->owner holds the task_struct pointer of the owner. Bit 0 25 * is used to keep track of the "lock has waiters" state. 26 * 27 * owner bit0 28 * NULL 0 lock is free (fast acquire possible) 29 * NULL 1 lock is free and has waiters and the top waiter 30 * is going to take the lock* 31 * taskpointer 0 lock is held (fast release possible) 32 * taskpointer 1 lock is held and has waiters** 33 * 34 * The fast atomic compare exchange based acquire and release is only 35 * possible when bit 0 of lock->owner is 0. 36 * 37 * (*) It also can be a transitional state when grabbing the lock 38 * with ->wait_lock is held. To prevent any fast path cmpxchg to the lock, 39 * we need to set the bit0 before looking at the lock, and the owner may be 40 * NULL in this small time, hence this can be a transitional state. 41 * 42 * (**) There is a small time when bit 0 is set but there are no 43 * waiters. This can happen when grabbing the lock in the slow path. 44 * To prevent a cmpxchg of the owner releasing the lock, we need to 45 * set this bit before looking at the lock. 46 */ 47 48static void 49rt_mutex_set_owner(struct rt_mutex *lock, struct task_struct *owner) 50{ 51 unsigned long val = (unsigned long)owner; 52 53 if (rt_mutex_has_waiters(lock)) 54 val |= RT_MUTEX_HAS_WAITERS; 55 56 lock->owner = (struct task_struct *)val; 57} 58 59static inline void clear_rt_mutex_waiters(struct rt_mutex *lock) 60{ 61 lock->owner = (struct task_struct *) 62 ((unsigned long)lock->owner & ~RT_MUTEX_HAS_WAITERS); 63} 64 65static void fixup_rt_mutex_waiters(struct rt_mutex *lock) 66{ 67 if (!rt_mutex_has_waiters(lock)) 68 clear_rt_mutex_waiters(lock); 69} 70 71/* 72 * We can speed up the acquire/release, if the architecture 73 * supports cmpxchg and if there's no debugging state to be set up 74 */ 75#if defined(__HAVE_ARCH_CMPXCHG) && !defined(CONFIG_DEBUG_RT_MUTEXES) 76# define rt_mutex_cmpxchg(l,c,n) (cmpxchg(&l->owner, c, n) == c) 77static inline void mark_rt_mutex_waiters(struct rt_mutex *lock) 78{ 79 unsigned long owner, *p = (unsigned long *) &lock->owner; 80 81 do { 82 owner = *p; 83 } while (cmpxchg(p, owner, owner | RT_MUTEX_HAS_WAITERS) != owner); 84} 85#else 86# define rt_mutex_cmpxchg(l,c,n) (0) 87static inline void mark_rt_mutex_waiters(struct rt_mutex *lock) 88{ 89 lock->owner = (struct task_struct *) 90 ((unsigned long)lock->owner | RT_MUTEX_HAS_WAITERS); 91} 92#endif 93 94/* 95 * Calculate task priority from the waiter list priority 96 * 97 * Return task->normal_prio when the waiter list is empty or when 98 * the waiter is not allowed to do priority boosting 99 */ 100int rt_mutex_getprio(struct task_struct *task) 101{ 102 if (likely(!task_has_pi_waiters(task))) 103 return task->normal_prio; 104 105 return min(task_top_pi_waiter(task)->pi_list_entry.prio, 106 task->normal_prio); 107} 108 109/* 110 * Adjust the priority of a task, after its pi_waiters got modified. 111 * 112 * This can be both boosting and unboosting. task->pi_lock must be held. 113 */ 114static void __rt_mutex_adjust_prio(struct task_struct *task) 115{ 116 int prio = rt_mutex_getprio(task); 117 118 if (task->prio != prio) 119 rt_mutex_setprio(task, prio); 120} 121 122/* 123 * Adjust task priority (undo boosting). Called from the exit path of 124 * rt_mutex_slowunlock() and rt_mutex_slowlock(). 125 * 126 * (Note: We do this outside of the protection of lock->wait_lock to 127 * allow the lock to be taken while or before we readjust the priority 128 * of task. We do not use the spin_xx_mutex() variants here as we are 129 * outside of the debug path.) 130 */ 131static void rt_mutex_adjust_prio(struct task_struct *task) 132{ 133 unsigned long flags; 134 135 raw_spin_lock_irqsave(&task->pi_lock, flags); 136 __rt_mutex_adjust_prio(task); 137 raw_spin_unlock_irqrestore(&task->pi_lock, flags); 138} 139 140/* 141 * Max number of times we'll walk the boosting chain: 142 */ 143int max_lock_depth = 1024; 144 145/* 146 * Adjust the priority chain. Also used for deadlock detection. 147 * Decreases task's usage by one - may thus free the task. 148 * Returns 0 or -EDEADLK. 149 */ 150static int rt_mutex_adjust_prio_chain(struct task_struct *task, 151 int deadlock_detect, 152 struct rt_mutex *orig_lock, 153 struct rt_mutex_waiter *orig_waiter, 154 struct task_struct *top_task) 155{ 156 struct rt_mutex *lock; 157 struct rt_mutex_waiter *waiter, *top_waiter = orig_waiter; 158 int detect_deadlock, ret = 0, depth = 0; 159 unsigned long flags; 160 161 detect_deadlock = debug_rt_mutex_detect_deadlock(orig_waiter, 162 deadlock_detect); 163 164 /* 165 * The (de)boosting is a step by step approach with a lot of 166 * pitfalls. We want this to be preemptible and we want hold a 167 * maximum of two locks per step. So we have to check 168 * carefully whether things change under us. 169 */ 170 again: 171 if (++depth > max_lock_depth) { 172 static int prev_max; 173 174 /* 175 * Print this only once. If the admin changes the limit, 176 * print a new message when reaching the limit again. 177 */ 178 if (prev_max != max_lock_depth) { 179 prev_max = max_lock_depth; 180 printk(KERN_WARNING "Maximum lock depth %d reached " 181 "task: %s (%d)\n", max_lock_depth, 182 top_task->comm, task_pid_nr(top_task)); 183 } 184 put_task_struct(task); 185 186 return deadlock_detect ? -EDEADLK : 0; 187 } 188 retry: 189 /* 190 * Task can not go away as we did a get_task() before ! 191 */ 192 raw_spin_lock_irqsave(&task->pi_lock, flags); 193 194 waiter = task->pi_blocked_on; 195 /* 196 * Check whether the end of the boosting chain has been 197 * reached or the state of the chain has changed while we 198 * dropped the locks. 199 */ 200 if (!waiter) 201 goto out_unlock_pi; 202 203 /* 204 * Check the orig_waiter state. After we dropped the locks, 205 * the previous owner of the lock might have released the lock. 206 */ 207 if (orig_waiter && !rt_mutex_owner(orig_lock)) 208 goto out_unlock_pi; 209 210 /* 211 * Drop out, when the task has no waiters. Note, 212 * top_waiter can be NULL, when we are in the deboosting 213 * mode! 214 */ 215 if (top_waiter && (!task_has_pi_waiters(task) || 216 top_waiter != task_top_pi_waiter(task))) 217 goto out_unlock_pi; 218 219 /* 220 * When deadlock detection is off then we check, if further 221 * priority adjustment is necessary. 222 */ 223 if (!detect_deadlock && waiter->list_entry.prio == task->prio) 224 goto out_unlock_pi; 225 226 lock = waiter->lock; 227 if (!raw_spin_trylock(&lock->wait_lock)) { 228 raw_spin_unlock_irqrestore(&task->pi_lock, flags); 229 cpu_relax(); 230 goto retry; 231 } 232 233 /* Deadlock detection */ 234 if (lock == orig_lock || rt_mutex_owner(lock) == top_task) { 235 debug_rt_mutex_deadlock(deadlock_detect, orig_waiter, lock); 236 raw_spin_unlock(&lock->wait_lock); 237 ret = deadlock_detect ? -EDEADLK : 0; 238 goto out_unlock_pi; 239 } 240 241 top_waiter = rt_mutex_top_waiter(lock); 242 243 /* Requeue the waiter */ 244 plist_del(&waiter->list_entry, &lock->wait_list); 245 waiter->list_entry.prio = task->prio; 246 plist_add(&waiter->list_entry, &lock->wait_list); 247 248 /* Release the task */ 249 raw_spin_unlock_irqrestore(&task->pi_lock, flags); 250 if (!rt_mutex_owner(lock)) { 251 /* 252 * If the requeue above changed the top waiter, then we need 253 * to wake the new top waiter up to try to get the lock. 254 */ 255 256 if (top_waiter != rt_mutex_top_waiter(lock)) 257 wake_up_process(rt_mutex_top_waiter(lock)->task); 258 raw_spin_unlock(&lock->wait_lock); 259 goto out_put_task; 260 } 261 put_task_struct(task); 262 263 /* Grab the next task */ 264 task = rt_mutex_owner(lock); 265 get_task_struct(task); 266 raw_spin_lock_irqsave(&task->pi_lock, flags); 267 268 if (waiter == rt_mutex_top_waiter(lock)) { 269 /* Boost the owner */ 270 plist_del(&top_waiter->pi_list_entry, &task->pi_waiters); 271 waiter->pi_list_entry.prio = waiter->list_entry.prio; 272 plist_add(&waiter->pi_list_entry, &task->pi_waiters); 273 __rt_mutex_adjust_prio(task); 274 275 } else if (top_waiter == waiter) { 276 /* Deboost the owner */ 277 plist_del(&waiter->pi_list_entry, &task->pi_waiters); 278 waiter = rt_mutex_top_waiter(lock); 279 waiter->pi_list_entry.prio = waiter->list_entry.prio; 280 plist_add(&waiter->pi_list_entry, &task->pi_waiters); 281 __rt_mutex_adjust_prio(task); 282 } 283 284 raw_spin_unlock_irqrestore(&task->pi_lock, flags); 285 286 top_waiter = rt_mutex_top_waiter(lock); 287 raw_spin_unlock(&lock->wait_lock); 288 289 if (!detect_deadlock && waiter != top_waiter) 290 goto out_put_task; 291 292 goto again; 293 294 out_unlock_pi: 295 raw_spin_unlock_irqrestore(&task->pi_lock, flags); 296 out_put_task: 297 put_task_struct(task); 298 299 return ret; 300} 301 302/* 303 * Try to take an rt-mutex 304 * 305 * Must be called with lock->wait_lock held. 306 * 307 * @lock: the lock to be acquired. 308 * @task: the task which wants to acquire the lock 309 * @waiter: the waiter that is queued to the lock's wait list. (could be NULL) 310 */ 311static int try_to_take_rt_mutex(struct rt_mutex *lock, struct task_struct *task, 312 struct rt_mutex_waiter *waiter) 313{ 314 /* 315 * We have to be careful here if the atomic speedups are 316 * enabled, such that, when 317 * - no other waiter is on the lock 318 * - the lock has been released since we did the cmpxchg 319 * the lock can be released or taken while we are doing the 320 * checks and marking the lock with RT_MUTEX_HAS_WAITERS. 321 * 322 * The atomic acquire/release aware variant of 323 * mark_rt_mutex_waiters uses a cmpxchg loop. After setting 324 * the WAITERS bit, the atomic release / acquire can not 325 * happen anymore and lock->wait_lock protects us from the 326 * non-atomic case. 327 * 328 * Note, that this might set lock->owner = 329 * RT_MUTEX_HAS_WAITERS in the case the lock is not contended 330 * any more. This is fixed up when we take the ownership. 331 * This is the transitional state explained at the top of this file. 332 */ 333 mark_rt_mutex_waiters(lock); 334 335 if (rt_mutex_owner(lock)) 336 return 0; 337 338 /* 339 * It will get the lock because of one of these conditions: 340 * 1) there is no waiter 341 * 2) higher priority than waiters 342 * 3) it is top waiter 343 */ 344 if (rt_mutex_has_waiters(lock)) { 345 if (task->prio >= rt_mutex_top_waiter(lock)->list_entry.prio) { 346 if (!waiter || waiter != rt_mutex_top_waiter(lock)) 347 return 0; 348 } 349 } 350 351 if (waiter || rt_mutex_has_waiters(lock)) { 352 unsigned long flags; 353 struct rt_mutex_waiter *top; 354 355 raw_spin_lock_irqsave(&task->pi_lock, flags); 356 357 /* remove the queued waiter. */ 358 if (waiter) { 359 plist_del(&waiter->list_entry, &lock->wait_list); 360 task->pi_blocked_on = NULL; 361 } 362 363 /* 364 * We have to enqueue the top waiter(if it exists) into 365 * task->pi_waiters list. 366 */ 367 if (rt_mutex_has_waiters(lock)) { 368 top = rt_mutex_top_waiter(lock); 369 top->pi_list_entry.prio = top->list_entry.prio; 370 plist_add(&top->pi_list_entry, &task->pi_waiters); 371 } 372 raw_spin_unlock_irqrestore(&task->pi_lock, flags); 373 } 374 375 /* We got the lock. */ 376 debug_rt_mutex_lock(lock); 377 378 rt_mutex_set_owner(lock, task); 379 380 rt_mutex_deadlock_account_lock(lock, task); 381 382 return 1; 383} 384 385/* 386 * Task blocks on lock. 387 * 388 * Prepare waiter and propagate pi chain 389 * 390 * This must be called with lock->wait_lock held. 391 */ 392static int task_blocks_on_rt_mutex(struct rt_mutex *lock, 393 struct rt_mutex_waiter *waiter, 394 struct task_struct *task, 395 int detect_deadlock) 396{ 397 struct task_struct *owner = rt_mutex_owner(lock); 398 struct rt_mutex_waiter *top_waiter = waiter; 399 unsigned long flags; 400 int chain_walk = 0, res; 401 402 raw_spin_lock_irqsave(&task->pi_lock, flags); 403 __rt_mutex_adjust_prio(task); 404 waiter->task = task; 405 waiter->lock = lock; 406 plist_node_init(&waiter->list_entry, task->prio); 407 plist_node_init(&waiter->pi_list_entry, task->prio); 408 409 /* Get the top priority waiter on the lock */ 410 if (rt_mutex_has_waiters(lock)) 411 top_waiter = rt_mutex_top_waiter(lock); 412 plist_add(&waiter->list_entry, &lock->wait_list); 413 414 task->pi_blocked_on = waiter; 415 416 raw_spin_unlock_irqrestore(&task->pi_lock, flags); 417 418 if (!owner) 419 return 0; 420 421 if (waiter == rt_mutex_top_waiter(lock)) { 422 raw_spin_lock_irqsave(&owner->pi_lock, flags); 423 plist_del(&top_waiter->pi_list_entry, &owner->pi_waiters); 424 plist_add(&waiter->pi_list_entry, &owner->pi_waiters); 425 426 __rt_mutex_adjust_prio(owner); 427 if (owner->pi_blocked_on) 428 chain_walk = 1; 429 raw_spin_unlock_irqrestore(&owner->pi_lock, flags); 430 } 431 else if (debug_rt_mutex_detect_deadlock(waiter, detect_deadlock)) 432 chain_walk = 1; 433 434 if (!chain_walk) 435 return 0; 436 437 /* 438 * The owner can't disappear while holding a lock, 439 * so the owner struct is protected by wait_lock. 440 * Gets dropped in rt_mutex_adjust_prio_chain()! 441 */ 442 get_task_struct(owner); 443 444 raw_spin_unlock(&lock->wait_lock); 445 446 res = rt_mutex_adjust_prio_chain(owner, detect_deadlock, lock, waiter, 447 task); 448 449 raw_spin_lock(&lock->wait_lock); 450 451 return res; 452} 453 454/* 455 * Wake up the next waiter on the lock. 456 * 457 * Remove the top waiter from the current tasks waiter list and wake it up. 458 * 459 * Called with lock->wait_lock held. 460 */ 461static void wakeup_next_waiter(struct rt_mutex *lock) 462{ 463 struct rt_mutex_waiter *waiter; 464 unsigned long flags; 465 466 raw_spin_lock_irqsave(&current->pi_lock, flags); 467 468 waiter = rt_mutex_top_waiter(lock); 469 470 /* 471 * Remove it from current->pi_waiters. We do not adjust a 472 * possible priority boost right now. We execute wakeup in the 473 * boosted mode and go back to normal after releasing 474 * lock->wait_lock. 475 */ 476 plist_del(&waiter->pi_list_entry, &current->pi_waiters); 477 478 rt_mutex_set_owner(lock, NULL); 479 480 raw_spin_unlock_irqrestore(&current->pi_lock, flags); 481 482 wake_up_process(waiter->task); 483} 484 485/* 486 * Remove a waiter from a lock and give up 487 * 488 * Must be called with lock->wait_lock held and 489 * have just failed to try_to_take_rt_mutex(). 490 */ 491static void remove_waiter(struct rt_mutex *lock, 492 struct rt_mutex_waiter *waiter) 493{ 494 int first = (waiter == rt_mutex_top_waiter(lock)); 495 struct task_struct *owner = rt_mutex_owner(lock); 496 unsigned long flags; 497 int chain_walk = 0; 498 499 raw_spin_lock_irqsave(&current->pi_lock, flags); 500 plist_del(&waiter->list_entry, &lock->wait_list); 501 current->pi_blocked_on = NULL; 502 raw_spin_unlock_irqrestore(&current->pi_lock, flags); 503 504 if (!owner) 505 return; 506 507 if (first) { 508 509 raw_spin_lock_irqsave(&owner->pi_lock, flags); 510 511 plist_del(&waiter->pi_list_entry, &owner->pi_waiters); 512 513 if (rt_mutex_has_waiters(lock)) { 514 struct rt_mutex_waiter *next; 515 516 next = rt_mutex_top_waiter(lock); 517 plist_add(&next->pi_list_entry, &owner->pi_waiters); 518 } 519 __rt_mutex_adjust_prio(owner); 520 521 if (owner->pi_blocked_on) 522 chain_walk = 1; 523 524 raw_spin_unlock_irqrestore(&owner->pi_lock, flags); 525 } 526 527 WARN_ON(!plist_node_empty(&waiter->pi_list_entry)); 528 529 if (!chain_walk) 530 return; 531 532 /* gets dropped in rt_mutex_adjust_prio_chain()! */ 533 get_task_struct(owner); 534 535 raw_spin_unlock(&lock->wait_lock); 536 537 rt_mutex_adjust_prio_chain(owner, 0, lock, NULL, current); 538 539 raw_spin_lock(&lock->wait_lock); 540} 541 542/* 543 * Recheck the pi chain, in case we got a priority setting 544 * 545 * Called from sched_setscheduler 546 */ 547void rt_mutex_adjust_pi(struct task_struct *task) 548{ 549 struct rt_mutex_waiter *waiter; 550 unsigned long flags; 551 552 raw_spin_lock_irqsave(&task->pi_lock, flags); 553 554 waiter = task->pi_blocked_on; 555 if (!waiter || waiter->list_entry.prio == task->prio) { 556 raw_spin_unlock_irqrestore(&task->pi_lock, flags); 557 return; 558 } 559 560 raw_spin_unlock_irqrestore(&task->pi_lock, flags); 561 562 /* gets dropped in rt_mutex_adjust_prio_chain()! */ 563 get_task_struct(task); 564 rt_mutex_adjust_prio_chain(task, 0, NULL, NULL, task); 565} 566 567/** 568 * __rt_mutex_slowlock() - Perform the wait-wake-try-to-take loop 569 * @lock: the rt_mutex to take 570 * @state: the state the task should block in (TASK_INTERRUPTIBLE 571 * or TASK_UNINTERRUPTIBLE) 572 * @timeout: the pre-initialized and started timer, or NULL for none 573 * @waiter: the pre-initialized rt_mutex_waiter 574 * 575 * lock->wait_lock must be held by the caller. 576 */ 577static int __sched 578__rt_mutex_slowlock(struct rt_mutex *lock, int state, 579 struct hrtimer_sleeper *timeout, 580 struct rt_mutex_waiter *waiter) 581{ 582 int ret = 0; 583 584 for (;;) { 585 /* Try to acquire the lock: */ 586 if (try_to_take_rt_mutex(lock, current, waiter)) 587 break; 588 589 /* 590 * TASK_INTERRUPTIBLE checks for signals and 591 * timeout. Ignored otherwise. 592 */ 593 if (unlikely(state == TASK_INTERRUPTIBLE)) { 594 /* Signal pending? */ 595 if (signal_pending(current)) 596 ret = -EINTR; 597 if (timeout && !timeout->task) 598 ret = -ETIMEDOUT; 599 if (ret) 600 break; 601 } 602 603 raw_spin_unlock(&lock->wait_lock); 604 605 debug_rt_mutex_print_deadlock(waiter); 606 607 schedule_rt_mutex(lock); 608 609 raw_spin_lock(&lock->wait_lock); 610 set_current_state(state); 611 } 612 613 return ret; 614} 615 616/* 617 * Slow path lock function: 618 */ 619static int __sched 620rt_mutex_slowlock(struct rt_mutex *lock, int state, 621 struct hrtimer_sleeper *timeout, 622 int detect_deadlock) 623{ 624 struct rt_mutex_waiter waiter; 625 int ret = 0; 626 627 debug_rt_mutex_init_waiter(&waiter); 628 629 raw_spin_lock(&lock->wait_lock); 630 631 /* Try to acquire the lock again: */ 632 if (try_to_take_rt_mutex(lock, current, NULL)) { 633 raw_spin_unlock(&lock->wait_lock); 634 return 0; 635 } 636 637 set_current_state(state); 638 639 /* Setup the timer, when timeout != NULL */ 640 if (unlikely(timeout)) { 641 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS); 642 if (!hrtimer_active(&timeout->timer)) 643 timeout->task = NULL; 644 } 645 646 ret = task_blocks_on_rt_mutex(lock, &waiter, current, detect_deadlock); 647 648 if (likely(!ret)) 649 ret = __rt_mutex_slowlock(lock, state, timeout, &waiter); 650 651 set_current_state(TASK_RUNNING); 652 653 if (unlikely(ret)) 654 remove_waiter(lock, &waiter); 655 656 /* 657 * try_to_take_rt_mutex() sets the waiter bit 658 * unconditionally. We might have to fix that up. 659 */ 660 fixup_rt_mutex_waiters(lock); 661 662 raw_spin_unlock(&lock->wait_lock); 663 664 /* Remove pending timer: */ 665 if (unlikely(timeout)) 666 hrtimer_cancel(&timeout->timer); 667 668 debug_rt_mutex_free_waiter(&waiter); 669 670 return ret; 671} 672 673/* 674 * Slow path try-lock function: 675 */ 676static inline int 677rt_mutex_slowtrylock(struct rt_mutex *lock) 678{ 679 int ret = 0; 680 681 raw_spin_lock(&lock->wait_lock); 682 683 if (likely(rt_mutex_owner(lock) != current)) { 684 685 ret = try_to_take_rt_mutex(lock, current, NULL); 686 /* 687 * try_to_take_rt_mutex() sets the lock waiters 688 * bit unconditionally. Clean this up. 689 */ 690 fixup_rt_mutex_waiters(lock); 691 } 692 693 raw_spin_unlock(&lock->wait_lock); 694 695 return ret; 696} 697 698/* 699 * Slow path to release a rt-mutex: 700 */ 701static void __sched 702rt_mutex_slowunlock(struct rt_mutex *lock) 703{ 704 raw_spin_lock(&lock->wait_lock); 705 706 debug_rt_mutex_unlock(lock); 707 708 rt_mutex_deadlock_account_unlock(current); 709 710 if (!rt_mutex_has_waiters(lock)) { 711 lock->owner = NULL; 712 raw_spin_unlock(&lock->wait_lock); 713 return; 714 } 715 716 wakeup_next_waiter(lock); 717 718 raw_spin_unlock(&lock->wait_lock); 719 720 /* Undo pi boosting if necessary: */ 721 rt_mutex_adjust_prio(current); 722} 723 724/* 725 * debug aware fast / slowpath lock,trylock,unlock 726 * 727 * The atomic acquire/release ops are compiled away, when either the 728 * architecture does not support cmpxchg or when debugging is enabled. 729 */ 730static inline int 731rt_mutex_fastlock(struct rt_mutex *lock, int state, 732 int detect_deadlock, 733 int (*slowfn)(struct rt_mutex *lock, int state, 734 struct hrtimer_sleeper *timeout, 735 int detect_deadlock)) 736{ 737 if (!detect_deadlock && likely(rt_mutex_cmpxchg(lock, NULL, current))) { 738 rt_mutex_deadlock_account_lock(lock, current); 739 return 0; 740 } else 741 return slowfn(lock, state, NULL, detect_deadlock); 742} 743 744static inline int 745rt_mutex_timed_fastlock(struct rt_mutex *lock, int state, 746 struct hrtimer_sleeper *timeout, int detect_deadlock, 747 int (*slowfn)(struct rt_mutex *lock, int state, 748 struct hrtimer_sleeper *timeout, 749 int detect_deadlock)) 750{ 751 if (!detect_deadlock && likely(rt_mutex_cmpxchg(lock, NULL, current))) { 752 rt_mutex_deadlock_account_lock(lock, current); 753 return 0; 754 } else 755 return slowfn(lock, state, timeout, detect_deadlock); 756} 757 758static inline int 759rt_mutex_fasttrylock(struct rt_mutex *lock, 760 int (*slowfn)(struct rt_mutex *lock)) 761{ 762 if (likely(rt_mutex_cmpxchg(lock, NULL, current))) { 763 rt_mutex_deadlock_account_lock(lock, current); 764 return 1; 765 } 766 return slowfn(lock); 767} 768 769static inline void 770rt_mutex_fastunlock(struct rt_mutex *lock, 771 void (*slowfn)(struct rt_mutex *lock)) 772{ 773 if (likely(rt_mutex_cmpxchg(lock, current, NULL))) 774 rt_mutex_deadlock_account_unlock(current); 775 else 776 slowfn(lock); 777} 778 779/** 780 * rt_mutex_lock - lock a rt_mutex 781 * 782 * @lock: the rt_mutex to be locked 783 */ 784void __sched rt_mutex_lock(struct rt_mutex *lock) 785{ 786 might_sleep(); 787 788 rt_mutex_fastlock(lock, TASK_UNINTERRUPTIBLE, 0, rt_mutex_slowlock); 789} 790EXPORT_SYMBOL_GPL(rt_mutex_lock); 791 792/** 793 * rt_mutex_lock_interruptible - lock a rt_mutex interruptible 794 * 795 * @lock: the rt_mutex to be locked 796 * @detect_deadlock: deadlock detection on/off 797 * 798 * Returns: 799 * 0 on success 800 * -EINTR when interrupted by a signal 801 * -EDEADLK when the lock would deadlock (when deadlock detection is on) 802 */ 803int __sched rt_mutex_lock_interruptible(struct rt_mutex *lock, 804 int detect_deadlock) 805{ 806 might_sleep(); 807 808 return rt_mutex_fastlock(lock, TASK_INTERRUPTIBLE, 809 detect_deadlock, rt_mutex_slowlock); 810} 811EXPORT_SYMBOL_GPL(rt_mutex_lock_interruptible); 812 813/** 814 * rt_mutex_timed_lock - lock a rt_mutex interruptible 815 * the timeout structure is provided 816 * by the caller 817 * 818 * @lock: the rt_mutex to be locked 819 * @timeout: timeout structure or NULL (no timeout) 820 * @detect_deadlock: deadlock detection on/off 821 * 822 * Returns: 823 * 0 on success 824 * -EINTR when interrupted by a signal 825 * -ETIMEDOUT when the timeout expired 826 * -EDEADLK when the lock would deadlock (when deadlock detection is on) 827 */ 828int 829rt_mutex_timed_lock(struct rt_mutex *lock, struct hrtimer_sleeper *timeout, 830 int detect_deadlock) 831{ 832 might_sleep(); 833 834 return rt_mutex_timed_fastlock(lock, TASK_INTERRUPTIBLE, timeout, 835 detect_deadlock, rt_mutex_slowlock); 836} 837EXPORT_SYMBOL_GPL(rt_mutex_timed_lock); 838 839/** 840 * rt_mutex_trylock - try to lock a rt_mutex 841 * 842 * @lock: the rt_mutex to be locked 843 * 844 * Returns 1 on success and 0 on contention 845 */ 846int __sched rt_mutex_trylock(struct rt_mutex *lock) 847{ 848 return rt_mutex_fasttrylock(lock, rt_mutex_slowtrylock); 849} 850EXPORT_SYMBOL_GPL(rt_mutex_trylock); 851 852/** 853 * rt_mutex_unlock - unlock a rt_mutex 854 * 855 * @lock: the rt_mutex to be unlocked 856 */ 857void __sched rt_mutex_unlock(struct rt_mutex *lock) 858{ 859 rt_mutex_fastunlock(lock, rt_mutex_slowunlock); 860} 861EXPORT_SYMBOL_GPL(rt_mutex_unlock); 862 863/** 864 * rt_mutex_destroy - mark a mutex unusable 865 * @lock: the mutex to be destroyed 866 * 867 * This function marks the mutex uninitialized, and any subsequent 868 * use of the mutex is forbidden. The mutex must not be locked when 869 * this function is called. 870 */ 871void rt_mutex_destroy(struct rt_mutex *lock) 872{ 873 WARN_ON(rt_mutex_is_locked(lock)); 874#ifdef CONFIG_DEBUG_RT_MUTEXES 875 lock->magic = NULL; 876#endif 877} 878 879EXPORT_SYMBOL_GPL(rt_mutex_destroy); 880 881/** 882 * __rt_mutex_init - initialize the rt lock 883 * 884 * @lock: the rt lock to be initialized 885 * 886 * Initialize the rt lock to unlocked state. 887 * 888 * Initializing of a locked rt lock is not allowed 889 */ 890void __rt_mutex_init(struct rt_mutex *lock, const char *name) 891{ 892 lock->owner = NULL; 893 raw_spin_lock_init(&lock->wait_lock); 894 plist_head_init(&lock->wait_list); 895 896 debug_rt_mutex_init(lock, name); 897} 898EXPORT_SYMBOL_GPL(__rt_mutex_init); 899 900/** 901 * rt_mutex_init_proxy_locked - initialize and lock a rt_mutex on behalf of a 902 * proxy owner 903 * 904 * @lock: the rt_mutex to be locked 905 * @proxy_owner:the task to set as owner 906 * 907 * No locking. Caller has to do serializing itself 908 * Special API call for PI-futex support 909 */ 910void rt_mutex_init_proxy_locked(struct rt_mutex *lock, 911 struct task_struct *proxy_owner) 912{ 913 __rt_mutex_init(lock, NULL); 914 debug_rt_mutex_proxy_lock(lock, proxy_owner); 915 rt_mutex_set_owner(lock, proxy_owner); 916 rt_mutex_deadlock_account_lock(lock, proxy_owner); 917} 918 919/** 920 * rt_mutex_proxy_unlock - release a lock on behalf of owner 921 * 922 * @lock: the rt_mutex to be locked 923 * 924 * No locking. Caller has to do serializing itself 925 * Special API call for PI-futex support 926 */ 927void rt_mutex_proxy_unlock(struct rt_mutex *lock, 928 struct task_struct *proxy_owner) 929{ 930 debug_rt_mutex_proxy_unlock(lock); 931 rt_mutex_set_owner(lock, NULL); 932 rt_mutex_deadlock_account_unlock(proxy_owner); 933} 934 935/** 936 * rt_mutex_start_proxy_lock() - Start lock acquisition for another task 937 * @lock: the rt_mutex to take 938 * @waiter: the pre-initialized rt_mutex_waiter 939 * @task: the task to prepare 940 * @detect_deadlock: perform deadlock detection (1) or not (0) 941 * 942 * Returns: 943 * 0 - task blocked on lock 944 * 1 - acquired the lock for task, caller should wake it up 945 * <0 - error 946 * 947 * Special API call for FUTEX_REQUEUE_PI support. 948 */ 949int rt_mutex_start_proxy_lock(struct rt_mutex *lock, 950 struct rt_mutex_waiter *waiter, 951 struct task_struct *task, int detect_deadlock) 952{ 953 int ret; 954 955 raw_spin_lock(&lock->wait_lock); 956 957 if (try_to_take_rt_mutex(lock, task, NULL)) { 958 raw_spin_unlock(&lock->wait_lock); 959 return 1; 960 } 961 962 ret = task_blocks_on_rt_mutex(lock, waiter, task, detect_deadlock); 963 964 if (ret && !rt_mutex_owner(lock)) { 965 /* 966 * Reset the return value. We might have 967 * returned with -EDEADLK and the owner 968 * released the lock while we were walking the 969 * pi chain. Let the waiter sort it out. 970 */ 971 ret = 0; 972 } 973 974 if (unlikely(ret)) 975 remove_waiter(lock, waiter); 976 977 raw_spin_unlock(&lock->wait_lock); 978 979 debug_rt_mutex_print_deadlock(waiter); 980 981 return ret; 982} 983 984/** 985 * rt_mutex_next_owner - return the next owner of the lock 986 * 987 * @lock: the rt lock query 988 * 989 * Returns the next owner of the lock or NULL 990 * 991 * Caller has to serialize against other accessors to the lock 992 * itself. 993 * 994 * Special API call for PI-futex support 995 */ 996struct task_struct *rt_mutex_next_owner(struct rt_mutex *lock) 997{ 998 if (!rt_mutex_has_waiters(lock)) 999 return NULL; 1000 1001 return rt_mutex_top_waiter(lock)->task; 1002} 1003 1004/** 1005 * rt_mutex_finish_proxy_lock() - Complete lock acquisition 1006 * @lock: the rt_mutex we were woken on 1007 * @to: the timeout, null if none. hrtimer should already have 1008 * been started. 1009 * @waiter: the pre-initialized rt_mutex_waiter 1010 * @detect_deadlock: perform deadlock detection (1) or not (0) 1011 * 1012 * Complete the lock acquisition started our behalf by another thread. 1013 * 1014 * Returns: 1015 * 0 - success 1016 * <0 - error, one of -EINTR, -ETIMEDOUT, or -EDEADLK 1017 * 1018 * Special API call for PI-futex requeue support 1019 */ 1020int rt_mutex_finish_proxy_lock(struct rt_mutex *lock, 1021 struct hrtimer_sleeper *to, 1022 struct rt_mutex_waiter *waiter, 1023 int detect_deadlock) 1024{ 1025 int ret; 1026 1027 raw_spin_lock(&lock->wait_lock); 1028 1029 set_current_state(TASK_INTERRUPTIBLE); 1030 1031 ret = __rt_mutex_slowlock(lock, TASK_INTERRUPTIBLE, to, waiter); 1032 1033 set_current_state(TASK_RUNNING); 1034 1035 if (unlikely(ret)) 1036 remove_waiter(lock, waiter); 1037 1038 /* 1039 * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might 1040 * have to fix that up. 1041 */ 1042 fixup_rt_mutex_waiters(lock); 1043 1044 raw_spin_unlock(&lock->wait_lock); 1045 1046 return ret; 1047}