at v3.9-rc2 91 kB view raw
1/* 2 * INET An implementation of the TCP/IP protocol suite for the LINUX 3 * operating system. INET is implemented using the BSD Socket 4 * interface as the means of communication with the user level. 5 * 6 * Definitions for the Interfaces handler. 7 * 8 * Version: @(#)dev.h 1.0.10 08/12/93 9 * 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Corey Minyard <wf-rch!minyard@relay.EU.net> 13 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov> 14 * Alan Cox, <alan@lxorguk.ukuu.org.uk> 15 * Bjorn Ekwall. <bj0rn@blox.se> 16 * Pekka Riikonen <priikone@poseidon.pspt.fi> 17 * 18 * This program is free software; you can redistribute it and/or 19 * modify it under the terms of the GNU General Public License 20 * as published by the Free Software Foundation; either version 21 * 2 of the License, or (at your option) any later version. 22 * 23 * Moved to /usr/include/linux for NET3 24 */ 25#ifndef _LINUX_NETDEVICE_H 26#define _LINUX_NETDEVICE_H 27 28#include <linux/pm_qos.h> 29#include <linux/timer.h> 30#include <linux/bug.h> 31#include <linux/delay.h> 32#include <linux/atomic.h> 33#include <asm/cache.h> 34#include <asm/byteorder.h> 35 36#include <linux/percpu.h> 37#include <linux/rculist.h> 38#include <linux/dmaengine.h> 39#include <linux/workqueue.h> 40#include <linux/dynamic_queue_limits.h> 41 42#include <linux/ethtool.h> 43#include <net/net_namespace.h> 44#include <net/dsa.h> 45#ifdef CONFIG_DCB 46#include <net/dcbnl.h> 47#endif 48#include <net/netprio_cgroup.h> 49 50#include <linux/netdev_features.h> 51#include <linux/neighbour.h> 52#include <uapi/linux/netdevice.h> 53 54struct netpoll_info; 55struct device; 56struct phy_device; 57/* 802.11 specific */ 58struct wireless_dev; 59 /* source back-compat hooks */ 60#define SET_ETHTOOL_OPS(netdev,ops) \ 61 ( (netdev)->ethtool_ops = (ops) ) 62 63extern void netdev_set_default_ethtool_ops(struct net_device *dev, 64 const struct ethtool_ops *ops); 65 66/* hardware address assignment types */ 67#define NET_ADDR_PERM 0 /* address is permanent (default) */ 68#define NET_ADDR_RANDOM 1 /* address is generated randomly */ 69#define NET_ADDR_STOLEN 2 /* address is stolen from other device */ 70#define NET_ADDR_SET 3 /* address is set using 71 * dev_set_mac_address() */ 72 73/* Backlog congestion levels */ 74#define NET_RX_SUCCESS 0 /* keep 'em coming, baby */ 75#define NET_RX_DROP 1 /* packet dropped */ 76 77/* 78 * Transmit return codes: transmit return codes originate from three different 79 * namespaces: 80 * 81 * - qdisc return codes 82 * - driver transmit return codes 83 * - errno values 84 * 85 * Drivers are allowed to return any one of those in their hard_start_xmit() 86 * function. Real network devices commonly used with qdiscs should only return 87 * the driver transmit return codes though - when qdiscs are used, the actual 88 * transmission happens asynchronously, so the value is not propagated to 89 * higher layers. Virtual network devices transmit synchronously, in this case 90 * the driver transmit return codes are consumed by dev_queue_xmit(), all 91 * others are propagated to higher layers. 92 */ 93 94/* qdisc ->enqueue() return codes. */ 95#define NET_XMIT_SUCCESS 0x00 96#define NET_XMIT_DROP 0x01 /* skb dropped */ 97#define NET_XMIT_CN 0x02 /* congestion notification */ 98#define NET_XMIT_POLICED 0x03 /* skb is shot by police */ 99#define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */ 100 101/* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It 102 * indicates that the device will soon be dropping packets, or already drops 103 * some packets of the same priority; prompting us to send less aggressively. */ 104#define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e)) 105#define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0) 106 107/* Driver transmit return codes */ 108#define NETDEV_TX_MASK 0xf0 109 110enum netdev_tx { 111 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */ 112 NETDEV_TX_OK = 0x00, /* driver took care of packet */ 113 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/ 114 NETDEV_TX_LOCKED = 0x20, /* driver tx lock was already taken */ 115}; 116typedef enum netdev_tx netdev_tx_t; 117 118/* 119 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant; 120 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed. 121 */ 122static inline bool dev_xmit_complete(int rc) 123{ 124 /* 125 * Positive cases with an skb consumed by a driver: 126 * - successful transmission (rc == NETDEV_TX_OK) 127 * - error while transmitting (rc < 0) 128 * - error while queueing to a different device (rc & NET_XMIT_MASK) 129 */ 130 if (likely(rc < NET_XMIT_MASK)) 131 return true; 132 133 return false; 134} 135 136/* 137 * Compute the worst case header length according to the protocols 138 * used. 139 */ 140 141#if defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25) 142# if defined(CONFIG_MAC80211_MESH) 143# define LL_MAX_HEADER 128 144# else 145# define LL_MAX_HEADER 96 146# endif 147#elif IS_ENABLED(CONFIG_TR) 148# define LL_MAX_HEADER 48 149#else 150# define LL_MAX_HEADER 32 151#endif 152 153#if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \ 154 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL) 155#define MAX_HEADER LL_MAX_HEADER 156#else 157#define MAX_HEADER (LL_MAX_HEADER + 48) 158#endif 159 160/* 161 * Old network device statistics. Fields are native words 162 * (unsigned long) so they can be read and written atomically. 163 */ 164 165struct net_device_stats { 166 unsigned long rx_packets; 167 unsigned long tx_packets; 168 unsigned long rx_bytes; 169 unsigned long tx_bytes; 170 unsigned long rx_errors; 171 unsigned long tx_errors; 172 unsigned long rx_dropped; 173 unsigned long tx_dropped; 174 unsigned long multicast; 175 unsigned long collisions; 176 unsigned long rx_length_errors; 177 unsigned long rx_over_errors; 178 unsigned long rx_crc_errors; 179 unsigned long rx_frame_errors; 180 unsigned long rx_fifo_errors; 181 unsigned long rx_missed_errors; 182 unsigned long tx_aborted_errors; 183 unsigned long tx_carrier_errors; 184 unsigned long tx_fifo_errors; 185 unsigned long tx_heartbeat_errors; 186 unsigned long tx_window_errors; 187 unsigned long rx_compressed; 188 unsigned long tx_compressed; 189}; 190 191 192#include <linux/cache.h> 193#include <linux/skbuff.h> 194 195#ifdef CONFIG_RPS 196#include <linux/static_key.h> 197extern struct static_key rps_needed; 198#endif 199 200struct neighbour; 201struct neigh_parms; 202struct sk_buff; 203 204struct netdev_hw_addr { 205 struct list_head list; 206 unsigned char addr[MAX_ADDR_LEN]; 207 unsigned char type; 208#define NETDEV_HW_ADDR_T_LAN 1 209#define NETDEV_HW_ADDR_T_SAN 2 210#define NETDEV_HW_ADDR_T_SLAVE 3 211#define NETDEV_HW_ADDR_T_UNICAST 4 212#define NETDEV_HW_ADDR_T_MULTICAST 5 213 bool synced; 214 bool global_use; 215 int refcount; 216 struct rcu_head rcu_head; 217}; 218 219struct netdev_hw_addr_list { 220 struct list_head list; 221 int count; 222}; 223 224#define netdev_hw_addr_list_count(l) ((l)->count) 225#define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0) 226#define netdev_hw_addr_list_for_each(ha, l) \ 227 list_for_each_entry(ha, &(l)->list, list) 228 229#define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc) 230#define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc) 231#define netdev_for_each_uc_addr(ha, dev) \ 232 netdev_hw_addr_list_for_each(ha, &(dev)->uc) 233 234#define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc) 235#define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc) 236#define netdev_for_each_mc_addr(ha, dev) \ 237 netdev_hw_addr_list_for_each(ha, &(dev)->mc) 238 239struct hh_cache { 240 u16 hh_len; 241 u16 __pad; 242 seqlock_t hh_lock; 243 244 /* cached hardware header; allow for machine alignment needs. */ 245#define HH_DATA_MOD 16 246#define HH_DATA_OFF(__len) \ 247 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1)) 248#define HH_DATA_ALIGN(__len) \ 249 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1)) 250 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)]; 251}; 252 253/* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much. 254 * Alternative is: 255 * dev->hard_header_len ? (dev->hard_header_len + 256 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0 257 * 258 * We could use other alignment values, but we must maintain the 259 * relationship HH alignment <= LL alignment. 260 */ 261#define LL_RESERVED_SPACE(dev) \ 262 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 263#define LL_RESERVED_SPACE_EXTRA(dev,extra) \ 264 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD) 265 266struct header_ops { 267 int (*create) (struct sk_buff *skb, struct net_device *dev, 268 unsigned short type, const void *daddr, 269 const void *saddr, unsigned int len); 270 int (*parse)(const struct sk_buff *skb, unsigned char *haddr); 271 int (*rebuild)(struct sk_buff *skb); 272 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type); 273 void (*cache_update)(struct hh_cache *hh, 274 const struct net_device *dev, 275 const unsigned char *haddr); 276}; 277 278/* These flag bits are private to the generic network queueing 279 * layer, they may not be explicitly referenced by any other 280 * code. 281 */ 282 283enum netdev_state_t { 284 __LINK_STATE_START, 285 __LINK_STATE_PRESENT, 286 __LINK_STATE_NOCARRIER, 287 __LINK_STATE_LINKWATCH_PENDING, 288 __LINK_STATE_DORMANT, 289}; 290 291 292/* 293 * This structure holds at boot time configured netdevice settings. They 294 * are then used in the device probing. 295 */ 296struct netdev_boot_setup { 297 char name[IFNAMSIZ]; 298 struct ifmap map; 299}; 300#define NETDEV_BOOT_SETUP_MAX 8 301 302extern int __init netdev_boot_setup(char *str); 303 304/* 305 * Structure for NAPI scheduling similar to tasklet but with weighting 306 */ 307struct napi_struct { 308 /* The poll_list must only be managed by the entity which 309 * changes the state of the NAPI_STATE_SCHED bit. This means 310 * whoever atomically sets that bit can add this napi_struct 311 * to the per-cpu poll_list, and whoever clears that bit 312 * can remove from the list right before clearing the bit. 313 */ 314 struct list_head poll_list; 315 316 unsigned long state; 317 int weight; 318 unsigned int gro_count; 319 int (*poll)(struct napi_struct *, int); 320#ifdef CONFIG_NETPOLL 321 spinlock_t poll_lock; 322 int poll_owner; 323#endif 324 struct net_device *dev; 325 struct sk_buff *gro_list; 326 struct sk_buff *skb; 327 struct list_head dev_list; 328}; 329 330enum { 331 NAPI_STATE_SCHED, /* Poll is scheduled */ 332 NAPI_STATE_DISABLE, /* Disable pending */ 333 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */ 334}; 335 336enum gro_result { 337 GRO_MERGED, 338 GRO_MERGED_FREE, 339 GRO_HELD, 340 GRO_NORMAL, 341 GRO_DROP, 342}; 343typedef enum gro_result gro_result_t; 344 345/* 346 * enum rx_handler_result - Possible return values for rx_handlers. 347 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it 348 * further. 349 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in 350 * case skb->dev was changed by rx_handler. 351 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard. 352 * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called. 353 * 354 * rx_handlers are functions called from inside __netif_receive_skb(), to do 355 * special processing of the skb, prior to delivery to protocol handlers. 356 * 357 * Currently, a net_device can only have a single rx_handler registered. Trying 358 * to register a second rx_handler will return -EBUSY. 359 * 360 * To register a rx_handler on a net_device, use netdev_rx_handler_register(). 361 * To unregister a rx_handler on a net_device, use 362 * netdev_rx_handler_unregister(). 363 * 364 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to 365 * do with the skb. 366 * 367 * If the rx_handler consumed to skb in some way, it should return 368 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for 369 * the skb to be delivered in some other ways. 370 * 371 * If the rx_handler changed skb->dev, to divert the skb to another 372 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the 373 * new device will be called if it exists. 374 * 375 * If the rx_handler consider the skb should be ignored, it should return 376 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that 377 * are registered on exact device (ptype->dev == skb->dev). 378 * 379 * If the rx_handler didn't changed skb->dev, but want the skb to be normally 380 * delivered, it should return RX_HANDLER_PASS. 381 * 382 * A device without a registered rx_handler will behave as if rx_handler 383 * returned RX_HANDLER_PASS. 384 */ 385 386enum rx_handler_result { 387 RX_HANDLER_CONSUMED, 388 RX_HANDLER_ANOTHER, 389 RX_HANDLER_EXACT, 390 RX_HANDLER_PASS, 391}; 392typedef enum rx_handler_result rx_handler_result_t; 393typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb); 394 395extern void __napi_schedule(struct napi_struct *n); 396 397static inline bool napi_disable_pending(struct napi_struct *n) 398{ 399 return test_bit(NAPI_STATE_DISABLE, &n->state); 400} 401 402/** 403 * napi_schedule_prep - check if napi can be scheduled 404 * @n: napi context 405 * 406 * Test if NAPI routine is already running, and if not mark 407 * it as running. This is used as a condition variable 408 * insure only one NAPI poll instance runs. We also make 409 * sure there is no pending NAPI disable. 410 */ 411static inline bool napi_schedule_prep(struct napi_struct *n) 412{ 413 return !napi_disable_pending(n) && 414 !test_and_set_bit(NAPI_STATE_SCHED, &n->state); 415} 416 417/** 418 * napi_schedule - schedule NAPI poll 419 * @n: napi context 420 * 421 * Schedule NAPI poll routine to be called if it is not already 422 * running. 423 */ 424static inline void napi_schedule(struct napi_struct *n) 425{ 426 if (napi_schedule_prep(n)) 427 __napi_schedule(n); 428} 429 430/* Try to reschedule poll. Called by dev->poll() after napi_complete(). */ 431static inline bool napi_reschedule(struct napi_struct *napi) 432{ 433 if (napi_schedule_prep(napi)) { 434 __napi_schedule(napi); 435 return true; 436 } 437 return false; 438} 439 440/** 441 * napi_complete - NAPI processing complete 442 * @n: napi context 443 * 444 * Mark NAPI processing as complete. 445 */ 446extern void __napi_complete(struct napi_struct *n); 447extern void napi_complete(struct napi_struct *n); 448 449/** 450 * napi_disable - prevent NAPI from scheduling 451 * @n: napi context 452 * 453 * Stop NAPI from being scheduled on this context. 454 * Waits till any outstanding processing completes. 455 */ 456static inline void napi_disable(struct napi_struct *n) 457{ 458 set_bit(NAPI_STATE_DISABLE, &n->state); 459 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state)) 460 msleep(1); 461 clear_bit(NAPI_STATE_DISABLE, &n->state); 462} 463 464/** 465 * napi_enable - enable NAPI scheduling 466 * @n: napi context 467 * 468 * Resume NAPI from being scheduled on this context. 469 * Must be paired with napi_disable. 470 */ 471static inline void napi_enable(struct napi_struct *n) 472{ 473 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 474 smp_mb__before_clear_bit(); 475 clear_bit(NAPI_STATE_SCHED, &n->state); 476} 477 478#ifdef CONFIG_SMP 479/** 480 * napi_synchronize - wait until NAPI is not running 481 * @n: napi context 482 * 483 * Wait until NAPI is done being scheduled on this context. 484 * Waits till any outstanding processing completes but 485 * does not disable future activations. 486 */ 487static inline void napi_synchronize(const struct napi_struct *n) 488{ 489 while (test_bit(NAPI_STATE_SCHED, &n->state)) 490 msleep(1); 491} 492#else 493# define napi_synchronize(n) barrier() 494#endif 495 496enum netdev_queue_state_t { 497 __QUEUE_STATE_DRV_XOFF, 498 __QUEUE_STATE_STACK_XOFF, 499 __QUEUE_STATE_FROZEN, 500#define QUEUE_STATE_ANY_XOFF ((1 << __QUEUE_STATE_DRV_XOFF) | \ 501 (1 << __QUEUE_STATE_STACK_XOFF)) 502#define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \ 503 (1 << __QUEUE_STATE_FROZEN)) 504}; 505/* 506 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The 507 * netif_tx_* functions below are used to manipulate this flag. The 508 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit 509 * queue independently. The netif_xmit_*stopped functions below are called 510 * to check if the queue has been stopped by the driver or stack (either 511 * of the XOFF bits are set in the state). Drivers should not need to call 512 * netif_xmit*stopped functions, they should only be using netif_tx_*. 513 */ 514 515struct netdev_queue { 516/* 517 * read mostly part 518 */ 519 struct net_device *dev; 520 struct Qdisc *qdisc; 521 struct Qdisc *qdisc_sleeping; 522#ifdef CONFIG_SYSFS 523 struct kobject kobj; 524#endif 525#if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 526 int numa_node; 527#endif 528/* 529 * write mostly part 530 */ 531 spinlock_t _xmit_lock ____cacheline_aligned_in_smp; 532 int xmit_lock_owner; 533 /* 534 * please use this field instead of dev->trans_start 535 */ 536 unsigned long trans_start; 537 538 /* 539 * Number of TX timeouts for this queue 540 * (/sys/class/net/DEV/Q/trans_timeout) 541 */ 542 unsigned long trans_timeout; 543 544 unsigned long state; 545 546#ifdef CONFIG_BQL 547 struct dql dql; 548#endif 549} ____cacheline_aligned_in_smp; 550 551static inline int netdev_queue_numa_node_read(const struct netdev_queue *q) 552{ 553#if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 554 return q->numa_node; 555#else 556 return NUMA_NO_NODE; 557#endif 558} 559 560static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node) 561{ 562#if defined(CONFIG_XPS) && defined(CONFIG_NUMA) 563 q->numa_node = node; 564#endif 565} 566 567#ifdef CONFIG_RPS 568/* 569 * This structure holds an RPS map which can be of variable length. The 570 * map is an array of CPUs. 571 */ 572struct rps_map { 573 unsigned int len; 574 struct rcu_head rcu; 575 u16 cpus[0]; 576}; 577#define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16))) 578 579/* 580 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the 581 * tail pointer for that CPU's input queue at the time of last enqueue, and 582 * a hardware filter index. 583 */ 584struct rps_dev_flow { 585 u16 cpu; 586 u16 filter; 587 unsigned int last_qtail; 588}; 589#define RPS_NO_FILTER 0xffff 590 591/* 592 * The rps_dev_flow_table structure contains a table of flow mappings. 593 */ 594struct rps_dev_flow_table { 595 unsigned int mask; 596 struct rcu_head rcu; 597 struct work_struct free_work; 598 struct rps_dev_flow flows[0]; 599}; 600#define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \ 601 ((_num) * sizeof(struct rps_dev_flow))) 602 603/* 604 * The rps_sock_flow_table contains mappings of flows to the last CPU 605 * on which they were processed by the application (set in recvmsg). 606 */ 607struct rps_sock_flow_table { 608 unsigned int mask; 609 u16 ents[0]; 610}; 611#define RPS_SOCK_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_sock_flow_table) + \ 612 ((_num) * sizeof(u16))) 613 614#define RPS_NO_CPU 0xffff 615 616static inline void rps_record_sock_flow(struct rps_sock_flow_table *table, 617 u32 hash) 618{ 619 if (table && hash) { 620 unsigned int cpu, index = hash & table->mask; 621 622 /* We only give a hint, preemption can change cpu under us */ 623 cpu = raw_smp_processor_id(); 624 625 if (table->ents[index] != cpu) 626 table->ents[index] = cpu; 627 } 628} 629 630static inline void rps_reset_sock_flow(struct rps_sock_flow_table *table, 631 u32 hash) 632{ 633 if (table && hash) 634 table->ents[hash & table->mask] = RPS_NO_CPU; 635} 636 637extern struct rps_sock_flow_table __rcu *rps_sock_flow_table; 638 639#ifdef CONFIG_RFS_ACCEL 640extern bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 641 u32 flow_id, u16 filter_id); 642#endif 643 644/* This structure contains an instance of an RX queue. */ 645struct netdev_rx_queue { 646 struct rps_map __rcu *rps_map; 647 struct rps_dev_flow_table __rcu *rps_flow_table; 648 struct kobject kobj; 649 struct net_device *dev; 650} ____cacheline_aligned_in_smp; 651#endif /* CONFIG_RPS */ 652 653#ifdef CONFIG_XPS 654/* 655 * This structure holds an XPS map which can be of variable length. The 656 * map is an array of queues. 657 */ 658struct xps_map { 659 unsigned int len; 660 unsigned int alloc_len; 661 struct rcu_head rcu; 662 u16 queues[0]; 663}; 664#define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16))) 665#define XPS_MIN_MAP_ALLOC ((L1_CACHE_BYTES - sizeof(struct xps_map)) \ 666 / sizeof(u16)) 667 668/* 669 * This structure holds all XPS maps for device. Maps are indexed by CPU. 670 */ 671struct xps_dev_maps { 672 struct rcu_head rcu; 673 struct xps_map __rcu *cpu_map[0]; 674}; 675#define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) + \ 676 (nr_cpu_ids * sizeof(struct xps_map *))) 677#endif /* CONFIG_XPS */ 678 679#define TC_MAX_QUEUE 16 680#define TC_BITMASK 15 681/* HW offloaded queuing disciplines txq count and offset maps */ 682struct netdev_tc_txq { 683 u16 count; 684 u16 offset; 685}; 686 687#if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE) 688/* 689 * This structure is to hold information about the device 690 * configured to run FCoE protocol stack. 691 */ 692struct netdev_fcoe_hbainfo { 693 char manufacturer[64]; 694 char serial_number[64]; 695 char hardware_version[64]; 696 char driver_version[64]; 697 char optionrom_version[64]; 698 char firmware_version[64]; 699 char model[256]; 700 char model_description[256]; 701}; 702#endif 703 704/* 705 * This structure defines the management hooks for network devices. 706 * The following hooks can be defined; unless noted otherwise, they are 707 * optional and can be filled with a null pointer. 708 * 709 * int (*ndo_init)(struct net_device *dev); 710 * This function is called once when network device is registered. 711 * The network device can use this to any late stage initializaton 712 * or semantic validattion. It can fail with an error code which will 713 * be propogated back to register_netdev 714 * 715 * void (*ndo_uninit)(struct net_device *dev); 716 * This function is called when device is unregistered or when registration 717 * fails. It is not called if init fails. 718 * 719 * int (*ndo_open)(struct net_device *dev); 720 * This function is called when network device transistions to the up 721 * state. 722 * 723 * int (*ndo_stop)(struct net_device *dev); 724 * This function is called when network device transistions to the down 725 * state. 726 * 727 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb, 728 * struct net_device *dev); 729 * Called when a packet needs to be transmitted. 730 * Must return NETDEV_TX_OK , NETDEV_TX_BUSY. 731 * (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX) 732 * Required can not be NULL. 733 * 734 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb); 735 * Called to decide which queue to when device supports multiple 736 * transmit queues. 737 * 738 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags); 739 * This function is called to allow device receiver to make 740 * changes to configuration when multicast or promiscious is enabled. 741 * 742 * void (*ndo_set_rx_mode)(struct net_device *dev); 743 * This function is called device changes address list filtering. 744 * If driver handles unicast address filtering, it should set 745 * IFF_UNICAST_FLT to its priv_flags. 746 * 747 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr); 748 * This function is called when the Media Access Control address 749 * needs to be changed. If this interface is not defined, the 750 * mac address can not be changed. 751 * 752 * int (*ndo_validate_addr)(struct net_device *dev); 753 * Test if Media Access Control address is valid for the device. 754 * 755 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd); 756 * Called when a user request an ioctl which can't be handled by 757 * the generic interface code. If not defined ioctl's return 758 * not supported error code. 759 * 760 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map); 761 * Used to set network devices bus interface parameters. This interface 762 * is retained for legacy reason, new devices should use the bus 763 * interface (PCI) for low level management. 764 * 765 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu); 766 * Called when a user wants to change the Maximum Transfer Unit 767 * of a device. If not defined, any request to change MTU will 768 * will return an error. 769 * 770 * void (*ndo_tx_timeout)(struct net_device *dev); 771 * Callback uses when the transmitter has not made any progress 772 * for dev->watchdog ticks. 773 * 774 * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev, 775 * struct rtnl_link_stats64 *storage); 776 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 777 * Called when a user wants to get the network device usage 778 * statistics. Drivers must do one of the following: 779 * 1. Define @ndo_get_stats64 to fill in a zero-initialised 780 * rtnl_link_stats64 structure passed by the caller. 781 * 2. Define @ndo_get_stats to update a net_device_stats structure 782 * (which should normally be dev->stats) and return a pointer to 783 * it. The structure may be changed asynchronously only if each 784 * field is written atomically. 785 * 3. Update dev->stats asynchronously and atomically, and define 786 * neither operation. 787 * 788 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, unsigned short vid); 789 * If device support VLAN filtering (dev->features & NETIF_F_HW_VLAN_FILTER) 790 * this function is called when a VLAN id is registered. 791 * 792 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, unsigned short vid); 793 * If device support VLAN filtering (dev->features & NETIF_F_HW_VLAN_FILTER) 794 * this function is called when a VLAN id is unregistered. 795 * 796 * void (*ndo_poll_controller)(struct net_device *dev); 797 * 798 * SR-IOV management functions. 799 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac); 800 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos); 801 * int (*ndo_set_vf_tx_rate)(struct net_device *dev, int vf, int rate); 802 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting); 803 * int (*ndo_get_vf_config)(struct net_device *dev, 804 * int vf, struct ifla_vf_info *ivf); 805 * int (*ndo_set_vf_port)(struct net_device *dev, int vf, 806 * struct nlattr *port[]); 807 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb); 808 * int (*ndo_setup_tc)(struct net_device *dev, u8 tc) 809 * Called to setup 'tc' number of traffic classes in the net device. This 810 * is always called from the stack with the rtnl lock held and netif tx 811 * queues stopped. This allows the netdevice to perform queue management 812 * safely. 813 * 814 * Fiber Channel over Ethernet (FCoE) offload functions. 815 * int (*ndo_fcoe_enable)(struct net_device *dev); 816 * Called when the FCoE protocol stack wants to start using LLD for FCoE 817 * so the underlying device can perform whatever needed configuration or 818 * initialization to support acceleration of FCoE traffic. 819 * 820 * int (*ndo_fcoe_disable)(struct net_device *dev); 821 * Called when the FCoE protocol stack wants to stop using LLD for FCoE 822 * so the underlying device can perform whatever needed clean-ups to 823 * stop supporting acceleration of FCoE traffic. 824 * 825 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid, 826 * struct scatterlist *sgl, unsigned int sgc); 827 * Called when the FCoE Initiator wants to initialize an I/O that 828 * is a possible candidate for Direct Data Placement (DDP). The LLD can 829 * perform necessary setup and returns 1 to indicate the device is set up 830 * successfully to perform DDP on this I/O, otherwise this returns 0. 831 * 832 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid); 833 * Called when the FCoE Initiator/Target is done with the DDPed I/O as 834 * indicated by the FC exchange id 'xid', so the underlying device can 835 * clean up and reuse resources for later DDP requests. 836 * 837 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid, 838 * struct scatterlist *sgl, unsigned int sgc); 839 * Called when the FCoE Target wants to initialize an I/O that 840 * is a possible candidate for Direct Data Placement (DDP). The LLD can 841 * perform necessary setup and returns 1 to indicate the device is set up 842 * successfully to perform DDP on this I/O, otherwise this returns 0. 843 * 844 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 845 * struct netdev_fcoe_hbainfo *hbainfo); 846 * Called when the FCoE Protocol stack wants information on the underlying 847 * device. This information is utilized by the FCoE protocol stack to 848 * register attributes with Fiber Channel management service as per the 849 * FC-GS Fabric Device Management Information(FDMI) specification. 850 * 851 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type); 852 * Called when the underlying device wants to override default World Wide 853 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own 854 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE 855 * protocol stack to use. 856 * 857 * RFS acceleration. 858 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb, 859 * u16 rxq_index, u32 flow_id); 860 * Set hardware filter for RFS. rxq_index is the target queue index; 861 * flow_id is a flow ID to be passed to rps_may_expire_flow() later. 862 * Return the filter ID on success, or a negative error code. 863 * 864 * Slave management functions (for bridge, bonding, etc). 865 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev); 866 * Called to make another netdev an underling. 867 * 868 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev); 869 * Called to release previously enslaved netdev. 870 * 871 * Feature/offload setting functions. 872 * netdev_features_t (*ndo_fix_features)(struct net_device *dev, 873 * netdev_features_t features); 874 * Adjusts the requested feature flags according to device-specific 875 * constraints, and returns the resulting flags. Must not modify 876 * the device state. 877 * 878 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features); 879 * Called to update device configuration to new features. Passed 880 * feature set might be less than what was returned by ndo_fix_features()). 881 * Must return >0 or -errno if it changed dev->features itself. 882 * 883 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[], 884 * struct net_device *dev, 885 * const unsigned char *addr, u16 flags) 886 * Adds an FDB entry to dev for addr. 887 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[], 888 * struct net_device *dev, 889 * const unsigned char *addr) 890 * Deletes the FDB entry from dev coresponding to addr. 891 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb, 892 * struct net_device *dev, int idx) 893 * Used to add FDB entries to dump requests. Implementers should add 894 * entries to skb and update idx with the number of entries. 895 * 896 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh) 897 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq, 898 * struct net_device *dev) 899 * 900 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier); 901 * Called to change device carrier. Soft-devices (like dummy, team, etc) 902 * which do not represent real hardware may define this to allow their 903 * userspace components to manage their virtual carrier state. Devices 904 * that determine carrier state from physical hardware properties (eg 905 * network cables) or protocol-dependent mechanisms (eg 906 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function. 907 */ 908struct net_device_ops { 909 int (*ndo_init)(struct net_device *dev); 910 void (*ndo_uninit)(struct net_device *dev); 911 int (*ndo_open)(struct net_device *dev); 912 int (*ndo_stop)(struct net_device *dev); 913 netdev_tx_t (*ndo_start_xmit) (struct sk_buff *skb, 914 struct net_device *dev); 915 u16 (*ndo_select_queue)(struct net_device *dev, 916 struct sk_buff *skb); 917 void (*ndo_change_rx_flags)(struct net_device *dev, 918 int flags); 919 void (*ndo_set_rx_mode)(struct net_device *dev); 920 int (*ndo_set_mac_address)(struct net_device *dev, 921 void *addr); 922 int (*ndo_validate_addr)(struct net_device *dev); 923 int (*ndo_do_ioctl)(struct net_device *dev, 924 struct ifreq *ifr, int cmd); 925 int (*ndo_set_config)(struct net_device *dev, 926 struct ifmap *map); 927 int (*ndo_change_mtu)(struct net_device *dev, 928 int new_mtu); 929 int (*ndo_neigh_setup)(struct net_device *dev, 930 struct neigh_parms *); 931 void (*ndo_tx_timeout) (struct net_device *dev); 932 933 struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev, 934 struct rtnl_link_stats64 *storage); 935 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev); 936 937 int (*ndo_vlan_rx_add_vid)(struct net_device *dev, 938 unsigned short vid); 939 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, 940 unsigned short vid); 941#ifdef CONFIG_NET_POLL_CONTROLLER 942 void (*ndo_poll_controller)(struct net_device *dev); 943 int (*ndo_netpoll_setup)(struct net_device *dev, 944 struct netpoll_info *info, 945 gfp_t gfp); 946 void (*ndo_netpoll_cleanup)(struct net_device *dev); 947#endif 948 int (*ndo_set_vf_mac)(struct net_device *dev, 949 int queue, u8 *mac); 950 int (*ndo_set_vf_vlan)(struct net_device *dev, 951 int queue, u16 vlan, u8 qos); 952 int (*ndo_set_vf_tx_rate)(struct net_device *dev, 953 int vf, int rate); 954 int (*ndo_set_vf_spoofchk)(struct net_device *dev, 955 int vf, bool setting); 956 int (*ndo_get_vf_config)(struct net_device *dev, 957 int vf, 958 struct ifla_vf_info *ivf); 959 int (*ndo_set_vf_port)(struct net_device *dev, 960 int vf, 961 struct nlattr *port[]); 962 int (*ndo_get_vf_port)(struct net_device *dev, 963 int vf, struct sk_buff *skb); 964 int (*ndo_setup_tc)(struct net_device *dev, u8 tc); 965#if IS_ENABLED(CONFIG_FCOE) 966 int (*ndo_fcoe_enable)(struct net_device *dev); 967 int (*ndo_fcoe_disable)(struct net_device *dev); 968 int (*ndo_fcoe_ddp_setup)(struct net_device *dev, 969 u16 xid, 970 struct scatterlist *sgl, 971 unsigned int sgc); 972 int (*ndo_fcoe_ddp_done)(struct net_device *dev, 973 u16 xid); 974 int (*ndo_fcoe_ddp_target)(struct net_device *dev, 975 u16 xid, 976 struct scatterlist *sgl, 977 unsigned int sgc); 978 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev, 979 struct netdev_fcoe_hbainfo *hbainfo); 980#endif 981 982#if IS_ENABLED(CONFIG_LIBFCOE) 983#define NETDEV_FCOE_WWNN 0 984#define NETDEV_FCOE_WWPN 1 985 int (*ndo_fcoe_get_wwn)(struct net_device *dev, 986 u64 *wwn, int type); 987#endif 988 989#ifdef CONFIG_RFS_ACCEL 990 int (*ndo_rx_flow_steer)(struct net_device *dev, 991 const struct sk_buff *skb, 992 u16 rxq_index, 993 u32 flow_id); 994#endif 995 int (*ndo_add_slave)(struct net_device *dev, 996 struct net_device *slave_dev); 997 int (*ndo_del_slave)(struct net_device *dev, 998 struct net_device *slave_dev); 999 netdev_features_t (*ndo_fix_features)(struct net_device *dev, 1000 netdev_features_t features); 1001 int (*ndo_set_features)(struct net_device *dev, 1002 netdev_features_t features); 1003 int (*ndo_neigh_construct)(struct neighbour *n); 1004 void (*ndo_neigh_destroy)(struct neighbour *n); 1005 1006 int (*ndo_fdb_add)(struct ndmsg *ndm, 1007 struct nlattr *tb[], 1008 struct net_device *dev, 1009 const unsigned char *addr, 1010 u16 flags); 1011 int (*ndo_fdb_del)(struct ndmsg *ndm, 1012 struct nlattr *tb[], 1013 struct net_device *dev, 1014 const unsigned char *addr); 1015 int (*ndo_fdb_dump)(struct sk_buff *skb, 1016 struct netlink_callback *cb, 1017 struct net_device *dev, 1018 int idx); 1019 1020 int (*ndo_bridge_setlink)(struct net_device *dev, 1021 struct nlmsghdr *nlh); 1022 int (*ndo_bridge_getlink)(struct sk_buff *skb, 1023 u32 pid, u32 seq, 1024 struct net_device *dev, 1025 u32 filter_mask); 1026 int (*ndo_bridge_dellink)(struct net_device *dev, 1027 struct nlmsghdr *nlh); 1028 int (*ndo_change_carrier)(struct net_device *dev, 1029 bool new_carrier); 1030}; 1031 1032/* 1033 * The DEVICE structure. 1034 * Actually, this whole structure is a big mistake. It mixes I/O 1035 * data with strictly "high-level" data, and it has to know about 1036 * almost every data structure used in the INET module. 1037 * 1038 * FIXME: cleanup struct net_device such that network protocol info 1039 * moves out. 1040 */ 1041 1042struct net_device { 1043 1044 /* 1045 * This is the first field of the "visible" part of this structure 1046 * (i.e. as seen by users in the "Space.c" file). It is the name 1047 * of the interface. 1048 */ 1049 char name[IFNAMSIZ]; 1050 1051 /* device name hash chain, please keep it close to name[] */ 1052 struct hlist_node name_hlist; 1053 1054 /* snmp alias */ 1055 char *ifalias; 1056 1057 /* 1058 * I/O specific fields 1059 * FIXME: Merge these and struct ifmap into one 1060 */ 1061 unsigned long mem_end; /* shared mem end */ 1062 unsigned long mem_start; /* shared mem start */ 1063 unsigned long base_addr; /* device I/O address */ 1064 unsigned int irq; /* device IRQ number */ 1065 1066 /* 1067 * Some hardware also needs these fields, but they are not 1068 * part of the usual set specified in Space.c. 1069 */ 1070 1071 unsigned long state; 1072 1073 struct list_head dev_list; 1074 struct list_head napi_list; 1075 struct list_head unreg_list; 1076 1077 /* currently active device features */ 1078 netdev_features_t features; 1079 /* user-changeable features */ 1080 netdev_features_t hw_features; 1081 /* user-requested features */ 1082 netdev_features_t wanted_features; 1083 /* mask of features inheritable by VLAN devices */ 1084 netdev_features_t vlan_features; 1085 /* mask of features inherited by encapsulating devices 1086 * This field indicates what encapsulation offloads 1087 * the hardware is capable of doing, and drivers will 1088 * need to set them appropriately. 1089 */ 1090 netdev_features_t hw_enc_features; 1091 1092 /* Interface index. Unique device identifier */ 1093 int ifindex; 1094 int iflink; 1095 1096 struct net_device_stats stats; 1097 atomic_long_t rx_dropped; /* dropped packets by core network 1098 * Do not use this in drivers. 1099 */ 1100 1101#ifdef CONFIG_WIRELESS_EXT 1102 /* List of functions to handle Wireless Extensions (instead of ioctl). 1103 * See <net/iw_handler.h> for details. Jean II */ 1104 const struct iw_handler_def * wireless_handlers; 1105 /* Instance data managed by the core of Wireless Extensions. */ 1106 struct iw_public_data * wireless_data; 1107#endif 1108 /* Management operations */ 1109 const struct net_device_ops *netdev_ops; 1110 const struct ethtool_ops *ethtool_ops; 1111 1112 /* Hardware header description */ 1113 const struct header_ops *header_ops; 1114 1115 unsigned int flags; /* interface flags (a la BSD) */ 1116 unsigned int priv_flags; /* Like 'flags' but invisible to userspace. 1117 * See if.h for definitions. */ 1118 unsigned short gflags; 1119 unsigned short padded; /* How much padding added by alloc_netdev() */ 1120 1121 unsigned char operstate; /* RFC2863 operstate */ 1122 unsigned char link_mode; /* mapping policy to operstate */ 1123 1124 unsigned char if_port; /* Selectable AUI, TP,..*/ 1125 unsigned char dma; /* DMA channel */ 1126 1127 unsigned int mtu; /* interface MTU value */ 1128 unsigned short type; /* interface hardware type */ 1129 unsigned short hard_header_len; /* hardware hdr length */ 1130 1131 /* extra head- and tailroom the hardware may need, but not in all cases 1132 * can this be guaranteed, especially tailroom. Some cases also use 1133 * LL_MAX_HEADER instead to allocate the skb. 1134 */ 1135 unsigned short needed_headroom; 1136 unsigned short needed_tailroom; 1137 1138 /* Interface address info. */ 1139 unsigned char perm_addr[MAX_ADDR_LEN]; /* permanent hw address */ 1140 unsigned char addr_assign_type; /* hw address assignment type */ 1141 unsigned char addr_len; /* hardware address length */ 1142 unsigned char neigh_priv_len; 1143 unsigned short dev_id; /* for shared network cards */ 1144 1145 spinlock_t addr_list_lock; 1146 struct netdev_hw_addr_list uc; /* Unicast mac addresses */ 1147 struct netdev_hw_addr_list mc; /* Multicast mac addresses */ 1148 bool uc_promisc; 1149 unsigned int promiscuity; 1150 unsigned int allmulti; 1151 1152 1153 /* Protocol specific pointers */ 1154 1155#if IS_ENABLED(CONFIG_VLAN_8021Q) 1156 struct vlan_info __rcu *vlan_info; /* VLAN info */ 1157#endif 1158#if IS_ENABLED(CONFIG_NET_DSA) 1159 struct dsa_switch_tree *dsa_ptr; /* dsa specific data */ 1160#endif 1161 void *atalk_ptr; /* AppleTalk link */ 1162 struct in_device __rcu *ip_ptr; /* IPv4 specific data */ 1163 struct dn_dev __rcu *dn_ptr; /* DECnet specific data */ 1164 struct inet6_dev __rcu *ip6_ptr; /* IPv6 specific data */ 1165 void *ax25_ptr; /* AX.25 specific data */ 1166 struct wireless_dev *ieee80211_ptr; /* IEEE 802.11 specific data, 1167 assign before registering */ 1168 1169/* 1170 * Cache lines mostly used on receive path (including eth_type_trans()) 1171 */ 1172 unsigned long last_rx; /* Time of last Rx 1173 * This should not be set in 1174 * drivers, unless really needed, 1175 * because network stack (bonding) 1176 * use it if/when necessary, to 1177 * avoid dirtying this cache line. 1178 */ 1179 1180 struct list_head upper_dev_list; /* List of upper devices */ 1181 1182 /* Interface address info used in eth_type_trans() */ 1183 unsigned char *dev_addr; /* hw address, (before bcast 1184 because most packets are 1185 unicast) */ 1186 1187 struct netdev_hw_addr_list dev_addrs; /* list of device 1188 hw addresses */ 1189 1190 unsigned char broadcast[MAX_ADDR_LEN]; /* hw bcast add */ 1191 1192#ifdef CONFIG_SYSFS 1193 struct kset *queues_kset; 1194#endif 1195 1196#ifdef CONFIG_RPS 1197 struct netdev_rx_queue *_rx; 1198 1199 /* Number of RX queues allocated at register_netdev() time */ 1200 unsigned int num_rx_queues; 1201 1202 /* Number of RX queues currently active in device */ 1203 unsigned int real_num_rx_queues; 1204 1205#ifdef CONFIG_RFS_ACCEL 1206 /* CPU reverse-mapping for RX completion interrupts, indexed 1207 * by RX queue number. Assigned by driver. This must only be 1208 * set if the ndo_rx_flow_steer operation is defined. */ 1209 struct cpu_rmap *rx_cpu_rmap; 1210#endif 1211#endif 1212 1213 rx_handler_func_t __rcu *rx_handler; 1214 void __rcu *rx_handler_data; 1215 1216 struct netdev_queue __rcu *ingress_queue; 1217 1218/* 1219 * Cache lines mostly used on transmit path 1220 */ 1221 struct netdev_queue *_tx ____cacheline_aligned_in_smp; 1222 1223 /* Number of TX queues allocated at alloc_netdev_mq() time */ 1224 unsigned int num_tx_queues; 1225 1226 /* Number of TX queues currently active in device */ 1227 unsigned int real_num_tx_queues; 1228 1229 /* root qdisc from userspace point of view */ 1230 struct Qdisc *qdisc; 1231 1232 unsigned long tx_queue_len; /* Max frames per queue allowed */ 1233 spinlock_t tx_global_lock; 1234 1235#ifdef CONFIG_XPS 1236 struct xps_dev_maps __rcu *xps_maps; 1237#endif 1238 1239 /* These may be needed for future network-power-down code. */ 1240 1241 /* 1242 * trans_start here is expensive for high speed devices on SMP, 1243 * please use netdev_queue->trans_start instead. 1244 */ 1245 unsigned long trans_start; /* Time (in jiffies) of last Tx */ 1246 1247 int watchdog_timeo; /* used by dev_watchdog() */ 1248 struct timer_list watchdog_timer; 1249 1250 /* Number of references to this device */ 1251 int __percpu *pcpu_refcnt; 1252 1253 /* delayed register/unregister */ 1254 struct list_head todo_list; 1255 /* device index hash chain */ 1256 struct hlist_node index_hlist; 1257 1258 struct list_head link_watch_list; 1259 1260 /* register/unregister state machine */ 1261 enum { NETREG_UNINITIALIZED=0, 1262 NETREG_REGISTERED, /* completed register_netdevice */ 1263 NETREG_UNREGISTERING, /* called unregister_netdevice */ 1264 NETREG_UNREGISTERED, /* completed unregister todo */ 1265 NETREG_RELEASED, /* called free_netdev */ 1266 NETREG_DUMMY, /* dummy device for NAPI poll */ 1267 } reg_state:8; 1268 1269 bool dismantle; /* device is going do be freed */ 1270 1271 enum { 1272 RTNL_LINK_INITIALIZED, 1273 RTNL_LINK_INITIALIZING, 1274 } rtnl_link_state:16; 1275 1276 /* Called from unregister, can be used to call free_netdev */ 1277 void (*destructor)(struct net_device *dev); 1278 1279#ifdef CONFIG_NETPOLL 1280 struct netpoll_info __rcu *npinfo; 1281#endif 1282 1283#ifdef CONFIG_NET_NS 1284 /* Network namespace this network device is inside */ 1285 struct net *nd_net; 1286#endif 1287 1288 /* mid-layer private */ 1289 union { 1290 void *ml_priv; 1291 struct pcpu_lstats __percpu *lstats; /* loopback stats */ 1292 struct pcpu_tstats __percpu *tstats; /* tunnel stats */ 1293 struct pcpu_dstats __percpu *dstats; /* dummy stats */ 1294 struct pcpu_vstats __percpu *vstats; /* veth stats */ 1295 }; 1296 /* GARP */ 1297 struct garp_port __rcu *garp_port; 1298 /* MRP */ 1299 struct mrp_port __rcu *mrp_port; 1300 1301 /* class/net/name entry */ 1302 struct device dev; 1303 /* space for optional device, statistics, and wireless sysfs groups */ 1304 const struct attribute_group *sysfs_groups[4]; 1305 1306 /* rtnetlink link ops */ 1307 const struct rtnl_link_ops *rtnl_link_ops; 1308 1309 /* for setting kernel sock attribute on TCP connection setup */ 1310#define GSO_MAX_SIZE 65536 1311 unsigned int gso_max_size; 1312#define GSO_MAX_SEGS 65535 1313 u16 gso_max_segs; 1314 1315#ifdef CONFIG_DCB 1316 /* Data Center Bridging netlink ops */ 1317 const struct dcbnl_rtnl_ops *dcbnl_ops; 1318#endif 1319 u8 num_tc; 1320 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE]; 1321 u8 prio_tc_map[TC_BITMASK + 1]; 1322 1323#if IS_ENABLED(CONFIG_FCOE) 1324 /* max exchange id for FCoE LRO by ddp */ 1325 unsigned int fcoe_ddp_xid; 1326#endif 1327#if IS_ENABLED(CONFIG_NETPRIO_CGROUP) 1328 struct netprio_map __rcu *priomap; 1329#endif 1330 /* phy device may attach itself for hardware timestamping */ 1331 struct phy_device *phydev; 1332 1333 struct lock_class_key *qdisc_tx_busylock; 1334 1335 /* group the device belongs to */ 1336 int group; 1337 1338 struct pm_qos_request pm_qos_req; 1339}; 1340#define to_net_dev(d) container_of(d, struct net_device, dev) 1341 1342#define NETDEV_ALIGN 32 1343 1344static inline 1345int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio) 1346{ 1347 return dev->prio_tc_map[prio & TC_BITMASK]; 1348} 1349 1350static inline 1351int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc) 1352{ 1353 if (tc >= dev->num_tc) 1354 return -EINVAL; 1355 1356 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK; 1357 return 0; 1358} 1359 1360static inline 1361void netdev_reset_tc(struct net_device *dev) 1362{ 1363 dev->num_tc = 0; 1364 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 1365 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 1366} 1367 1368static inline 1369int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 1370{ 1371 if (tc >= dev->num_tc) 1372 return -EINVAL; 1373 1374 dev->tc_to_txq[tc].count = count; 1375 dev->tc_to_txq[tc].offset = offset; 1376 return 0; 1377} 1378 1379static inline 1380int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 1381{ 1382 if (num_tc > TC_MAX_QUEUE) 1383 return -EINVAL; 1384 1385 dev->num_tc = num_tc; 1386 return 0; 1387} 1388 1389static inline 1390int netdev_get_num_tc(struct net_device *dev) 1391{ 1392 return dev->num_tc; 1393} 1394 1395static inline 1396struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev, 1397 unsigned int index) 1398{ 1399 return &dev->_tx[index]; 1400} 1401 1402static inline void netdev_for_each_tx_queue(struct net_device *dev, 1403 void (*f)(struct net_device *, 1404 struct netdev_queue *, 1405 void *), 1406 void *arg) 1407{ 1408 unsigned int i; 1409 1410 for (i = 0; i < dev->num_tx_queues; i++) 1411 f(dev, &dev->_tx[i], arg); 1412} 1413 1414extern struct netdev_queue *netdev_pick_tx(struct net_device *dev, 1415 struct sk_buff *skb); 1416extern u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb); 1417 1418/* 1419 * Net namespace inlines 1420 */ 1421static inline 1422struct net *dev_net(const struct net_device *dev) 1423{ 1424 return read_pnet(&dev->nd_net); 1425} 1426 1427static inline 1428void dev_net_set(struct net_device *dev, struct net *net) 1429{ 1430#ifdef CONFIG_NET_NS 1431 release_net(dev->nd_net); 1432 dev->nd_net = hold_net(net); 1433#endif 1434} 1435 1436static inline bool netdev_uses_dsa_tags(struct net_device *dev) 1437{ 1438#ifdef CONFIG_NET_DSA_TAG_DSA 1439 if (dev->dsa_ptr != NULL) 1440 return dsa_uses_dsa_tags(dev->dsa_ptr); 1441#endif 1442 1443 return 0; 1444} 1445 1446static inline bool netdev_uses_trailer_tags(struct net_device *dev) 1447{ 1448#ifdef CONFIG_NET_DSA_TAG_TRAILER 1449 if (dev->dsa_ptr != NULL) 1450 return dsa_uses_trailer_tags(dev->dsa_ptr); 1451#endif 1452 1453 return 0; 1454} 1455 1456/** 1457 * netdev_priv - access network device private data 1458 * @dev: network device 1459 * 1460 * Get network device private data 1461 */ 1462static inline void *netdev_priv(const struct net_device *dev) 1463{ 1464 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN); 1465} 1466 1467/* Set the sysfs physical device reference for the network logical device 1468 * if set prior to registration will cause a symlink during initialization. 1469 */ 1470#define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev)) 1471 1472/* Set the sysfs device type for the network logical device to allow 1473 * fin grained indentification of different network device types. For 1474 * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc. 1475 */ 1476#define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype)) 1477 1478/** 1479 * netif_napi_add - initialize a napi context 1480 * @dev: network device 1481 * @napi: napi context 1482 * @poll: polling function 1483 * @weight: default weight 1484 * 1485 * netif_napi_add() must be used to initialize a napi context prior to calling 1486 * *any* of the other napi related functions. 1487 */ 1488void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 1489 int (*poll)(struct napi_struct *, int), int weight); 1490 1491/** 1492 * netif_napi_del - remove a napi context 1493 * @napi: napi context 1494 * 1495 * netif_napi_del() removes a napi context from the network device napi list 1496 */ 1497void netif_napi_del(struct napi_struct *napi); 1498 1499struct napi_gro_cb { 1500 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */ 1501 void *frag0; 1502 1503 /* Length of frag0. */ 1504 unsigned int frag0_len; 1505 1506 /* This indicates where we are processing relative to skb->data. */ 1507 int data_offset; 1508 1509 /* This is non-zero if the packet cannot be merged with the new skb. */ 1510 int flush; 1511 1512 /* Number of segments aggregated. */ 1513 u16 count; 1514 1515 /* This is non-zero if the packet may be of the same flow. */ 1516 u8 same_flow; 1517 1518 /* Free the skb? */ 1519 u8 free; 1520#define NAPI_GRO_FREE 1 1521#define NAPI_GRO_FREE_STOLEN_HEAD 2 1522 1523 /* jiffies when first packet was created/queued */ 1524 unsigned long age; 1525 1526 /* Used in ipv6_gro_receive() */ 1527 int proto; 1528 1529 /* used in skb_gro_receive() slow path */ 1530 struct sk_buff *last; 1531}; 1532 1533#define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb) 1534 1535struct packet_type { 1536 __be16 type; /* This is really htons(ether_type). */ 1537 struct net_device *dev; /* NULL is wildcarded here */ 1538 int (*func) (struct sk_buff *, 1539 struct net_device *, 1540 struct packet_type *, 1541 struct net_device *); 1542 bool (*id_match)(struct packet_type *ptype, 1543 struct sock *sk); 1544 void *af_packet_priv; 1545 struct list_head list; 1546}; 1547 1548struct offload_callbacks { 1549 struct sk_buff *(*gso_segment)(struct sk_buff *skb, 1550 netdev_features_t features); 1551 int (*gso_send_check)(struct sk_buff *skb); 1552 struct sk_buff **(*gro_receive)(struct sk_buff **head, 1553 struct sk_buff *skb); 1554 int (*gro_complete)(struct sk_buff *skb); 1555}; 1556 1557struct packet_offload { 1558 __be16 type; /* This is really htons(ether_type). */ 1559 struct offload_callbacks callbacks; 1560 struct list_head list; 1561}; 1562 1563#include <linux/notifier.h> 1564 1565/* netdevice notifier chain. Please remember to update the rtnetlink 1566 * notification exclusion list in rtnetlink_event() when adding new 1567 * types. 1568 */ 1569#define NETDEV_UP 0x0001 /* For now you can't veto a device up/down */ 1570#define NETDEV_DOWN 0x0002 1571#define NETDEV_REBOOT 0x0003 /* Tell a protocol stack a network interface 1572 detected a hardware crash and restarted 1573 - we can use this eg to kick tcp sessions 1574 once done */ 1575#define NETDEV_CHANGE 0x0004 /* Notify device state change */ 1576#define NETDEV_REGISTER 0x0005 1577#define NETDEV_UNREGISTER 0x0006 1578#define NETDEV_CHANGEMTU 0x0007 1579#define NETDEV_CHANGEADDR 0x0008 1580#define NETDEV_GOING_DOWN 0x0009 1581#define NETDEV_CHANGENAME 0x000A 1582#define NETDEV_FEAT_CHANGE 0x000B 1583#define NETDEV_BONDING_FAILOVER 0x000C 1584#define NETDEV_PRE_UP 0x000D 1585#define NETDEV_PRE_TYPE_CHANGE 0x000E 1586#define NETDEV_POST_TYPE_CHANGE 0x000F 1587#define NETDEV_POST_INIT 0x0010 1588#define NETDEV_UNREGISTER_FINAL 0x0011 1589#define NETDEV_RELEASE 0x0012 1590#define NETDEV_NOTIFY_PEERS 0x0013 1591#define NETDEV_JOIN 0x0014 1592 1593extern int register_netdevice_notifier(struct notifier_block *nb); 1594extern int unregister_netdevice_notifier(struct notifier_block *nb); 1595extern int call_netdevice_notifiers(unsigned long val, struct net_device *dev); 1596 1597 1598extern rwlock_t dev_base_lock; /* Device list lock */ 1599 1600extern seqcount_t devnet_rename_seq; /* Device rename seq */ 1601 1602 1603#define for_each_netdev(net, d) \ 1604 list_for_each_entry(d, &(net)->dev_base_head, dev_list) 1605#define for_each_netdev_reverse(net, d) \ 1606 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list) 1607#define for_each_netdev_rcu(net, d) \ 1608 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list) 1609#define for_each_netdev_safe(net, d, n) \ 1610 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list) 1611#define for_each_netdev_continue(net, d) \ 1612 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list) 1613#define for_each_netdev_continue_rcu(net, d) \ 1614 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list) 1615#define net_device_entry(lh) list_entry(lh, struct net_device, dev_list) 1616 1617static inline struct net_device *next_net_device(struct net_device *dev) 1618{ 1619 struct list_head *lh; 1620 struct net *net; 1621 1622 net = dev_net(dev); 1623 lh = dev->dev_list.next; 1624 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 1625} 1626 1627static inline struct net_device *next_net_device_rcu(struct net_device *dev) 1628{ 1629 struct list_head *lh; 1630 struct net *net; 1631 1632 net = dev_net(dev); 1633 lh = rcu_dereference(list_next_rcu(&dev->dev_list)); 1634 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 1635} 1636 1637static inline struct net_device *first_net_device(struct net *net) 1638{ 1639 return list_empty(&net->dev_base_head) ? NULL : 1640 net_device_entry(net->dev_base_head.next); 1641} 1642 1643static inline struct net_device *first_net_device_rcu(struct net *net) 1644{ 1645 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head)); 1646 1647 return lh == &net->dev_base_head ? NULL : net_device_entry(lh); 1648} 1649 1650extern int netdev_boot_setup_check(struct net_device *dev); 1651extern unsigned long netdev_boot_base(const char *prefix, int unit); 1652extern struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 1653 const char *hwaddr); 1654extern struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type); 1655extern struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type); 1656extern void dev_add_pack(struct packet_type *pt); 1657extern void dev_remove_pack(struct packet_type *pt); 1658extern void __dev_remove_pack(struct packet_type *pt); 1659extern void dev_add_offload(struct packet_offload *po); 1660extern void dev_remove_offload(struct packet_offload *po); 1661extern void __dev_remove_offload(struct packet_offload *po); 1662 1663extern struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short flags, 1664 unsigned short mask); 1665extern struct net_device *dev_get_by_name(struct net *net, const char *name); 1666extern struct net_device *dev_get_by_name_rcu(struct net *net, const char *name); 1667extern struct net_device *__dev_get_by_name(struct net *net, const char *name); 1668extern int dev_alloc_name(struct net_device *dev, const char *name); 1669extern int dev_open(struct net_device *dev); 1670extern int dev_close(struct net_device *dev); 1671extern void dev_disable_lro(struct net_device *dev); 1672extern int dev_loopback_xmit(struct sk_buff *newskb); 1673extern int dev_queue_xmit(struct sk_buff *skb); 1674extern int register_netdevice(struct net_device *dev); 1675extern void unregister_netdevice_queue(struct net_device *dev, 1676 struct list_head *head); 1677extern void unregister_netdevice_many(struct list_head *head); 1678static inline void unregister_netdevice(struct net_device *dev) 1679{ 1680 unregister_netdevice_queue(dev, NULL); 1681} 1682 1683extern int netdev_refcnt_read(const struct net_device *dev); 1684extern void free_netdev(struct net_device *dev); 1685extern void synchronize_net(void); 1686extern int init_dummy_netdev(struct net_device *dev); 1687extern void netdev_resync_ops(struct net_device *dev); 1688 1689extern struct net_device *dev_get_by_index(struct net *net, int ifindex); 1690extern struct net_device *__dev_get_by_index(struct net *net, int ifindex); 1691extern struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex); 1692extern int dev_restart(struct net_device *dev); 1693#ifdef CONFIG_NETPOLL_TRAP 1694extern int netpoll_trap(void); 1695#endif 1696extern int skb_gro_receive(struct sk_buff **head, 1697 struct sk_buff *skb); 1698 1699static inline unsigned int skb_gro_offset(const struct sk_buff *skb) 1700{ 1701 return NAPI_GRO_CB(skb)->data_offset; 1702} 1703 1704static inline unsigned int skb_gro_len(const struct sk_buff *skb) 1705{ 1706 return skb->len - NAPI_GRO_CB(skb)->data_offset; 1707} 1708 1709static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len) 1710{ 1711 NAPI_GRO_CB(skb)->data_offset += len; 1712} 1713 1714static inline void *skb_gro_header_fast(struct sk_buff *skb, 1715 unsigned int offset) 1716{ 1717 return NAPI_GRO_CB(skb)->frag0 + offset; 1718} 1719 1720static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen) 1721{ 1722 return NAPI_GRO_CB(skb)->frag0_len < hlen; 1723} 1724 1725static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen, 1726 unsigned int offset) 1727{ 1728 if (!pskb_may_pull(skb, hlen)) 1729 return NULL; 1730 1731 NAPI_GRO_CB(skb)->frag0 = NULL; 1732 NAPI_GRO_CB(skb)->frag0_len = 0; 1733 return skb->data + offset; 1734} 1735 1736static inline void *skb_gro_mac_header(struct sk_buff *skb) 1737{ 1738 return NAPI_GRO_CB(skb)->frag0 ?: skb_mac_header(skb); 1739} 1740 1741static inline void *skb_gro_network_header(struct sk_buff *skb) 1742{ 1743 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) + 1744 skb_network_offset(skb); 1745} 1746 1747static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev, 1748 unsigned short type, 1749 const void *daddr, const void *saddr, 1750 unsigned int len) 1751{ 1752 if (!dev->header_ops || !dev->header_ops->create) 1753 return 0; 1754 1755 return dev->header_ops->create(skb, dev, type, daddr, saddr, len); 1756} 1757 1758static inline int dev_parse_header(const struct sk_buff *skb, 1759 unsigned char *haddr) 1760{ 1761 const struct net_device *dev = skb->dev; 1762 1763 if (!dev->header_ops || !dev->header_ops->parse) 1764 return 0; 1765 return dev->header_ops->parse(skb, haddr); 1766} 1767 1768typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len); 1769extern int register_gifconf(unsigned int family, gifconf_func_t * gifconf); 1770static inline int unregister_gifconf(unsigned int family) 1771{ 1772 return register_gifconf(family, NULL); 1773} 1774 1775/* 1776 * Incoming packets are placed on per-cpu queues 1777 */ 1778struct softnet_data { 1779 struct Qdisc *output_queue; 1780 struct Qdisc **output_queue_tailp; 1781 struct list_head poll_list; 1782 struct sk_buff *completion_queue; 1783 struct sk_buff_head process_queue; 1784 1785 /* stats */ 1786 unsigned int processed; 1787 unsigned int time_squeeze; 1788 unsigned int cpu_collision; 1789 unsigned int received_rps; 1790 1791#ifdef CONFIG_RPS 1792 struct softnet_data *rps_ipi_list; 1793 1794 /* Elements below can be accessed between CPUs for RPS */ 1795 struct call_single_data csd ____cacheline_aligned_in_smp; 1796 struct softnet_data *rps_ipi_next; 1797 unsigned int cpu; 1798 unsigned int input_queue_head; 1799 unsigned int input_queue_tail; 1800#endif 1801 unsigned int dropped; 1802 struct sk_buff_head input_pkt_queue; 1803 struct napi_struct backlog; 1804}; 1805 1806static inline void input_queue_head_incr(struct softnet_data *sd) 1807{ 1808#ifdef CONFIG_RPS 1809 sd->input_queue_head++; 1810#endif 1811} 1812 1813static inline void input_queue_tail_incr_save(struct softnet_data *sd, 1814 unsigned int *qtail) 1815{ 1816#ifdef CONFIG_RPS 1817 *qtail = ++sd->input_queue_tail; 1818#endif 1819} 1820 1821DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 1822 1823extern void __netif_schedule(struct Qdisc *q); 1824 1825static inline void netif_schedule_queue(struct netdev_queue *txq) 1826{ 1827 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) 1828 __netif_schedule(txq->qdisc); 1829} 1830 1831static inline void netif_tx_schedule_all(struct net_device *dev) 1832{ 1833 unsigned int i; 1834 1835 for (i = 0; i < dev->num_tx_queues; i++) 1836 netif_schedule_queue(netdev_get_tx_queue(dev, i)); 1837} 1838 1839static inline void netif_tx_start_queue(struct netdev_queue *dev_queue) 1840{ 1841 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 1842} 1843 1844/** 1845 * netif_start_queue - allow transmit 1846 * @dev: network device 1847 * 1848 * Allow upper layers to call the device hard_start_xmit routine. 1849 */ 1850static inline void netif_start_queue(struct net_device *dev) 1851{ 1852 netif_tx_start_queue(netdev_get_tx_queue(dev, 0)); 1853} 1854 1855static inline void netif_tx_start_all_queues(struct net_device *dev) 1856{ 1857 unsigned int i; 1858 1859 for (i = 0; i < dev->num_tx_queues; i++) { 1860 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 1861 netif_tx_start_queue(txq); 1862 } 1863} 1864 1865static inline void netif_tx_wake_queue(struct netdev_queue *dev_queue) 1866{ 1867#ifdef CONFIG_NETPOLL_TRAP 1868 if (netpoll_trap()) { 1869 netif_tx_start_queue(dev_queue); 1870 return; 1871 } 1872#endif 1873 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) 1874 __netif_schedule(dev_queue->qdisc); 1875} 1876 1877/** 1878 * netif_wake_queue - restart transmit 1879 * @dev: network device 1880 * 1881 * Allow upper layers to call the device hard_start_xmit routine. 1882 * Used for flow control when transmit resources are available. 1883 */ 1884static inline void netif_wake_queue(struct net_device *dev) 1885{ 1886 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0)); 1887} 1888 1889static inline void netif_tx_wake_all_queues(struct net_device *dev) 1890{ 1891 unsigned int i; 1892 1893 for (i = 0; i < dev->num_tx_queues; i++) { 1894 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 1895 netif_tx_wake_queue(txq); 1896 } 1897} 1898 1899static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue) 1900{ 1901 if (WARN_ON(!dev_queue)) { 1902 pr_info("netif_stop_queue() cannot be called before register_netdev()\n"); 1903 return; 1904 } 1905 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 1906} 1907 1908/** 1909 * netif_stop_queue - stop transmitted packets 1910 * @dev: network device 1911 * 1912 * Stop upper layers calling the device hard_start_xmit routine. 1913 * Used for flow control when transmit resources are unavailable. 1914 */ 1915static inline void netif_stop_queue(struct net_device *dev) 1916{ 1917 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0)); 1918} 1919 1920static inline void netif_tx_stop_all_queues(struct net_device *dev) 1921{ 1922 unsigned int i; 1923 1924 for (i = 0; i < dev->num_tx_queues; i++) { 1925 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 1926 netif_tx_stop_queue(txq); 1927 } 1928} 1929 1930static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue) 1931{ 1932 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state); 1933} 1934 1935/** 1936 * netif_queue_stopped - test if transmit queue is flowblocked 1937 * @dev: network device 1938 * 1939 * Test if transmit queue on device is currently unable to send. 1940 */ 1941static inline bool netif_queue_stopped(const struct net_device *dev) 1942{ 1943 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0)); 1944} 1945 1946static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue) 1947{ 1948 return dev_queue->state & QUEUE_STATE_ANY_XOFF; 1949} 1950 1951static inline bool netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue) 1952{ 1953 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN; 1954} 1955 1956static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue, 1957 unsigned int bytes) 1958{ 1959#ifdef CONFIG_BQL 1960 dql_queued(&dev_queue->dql, bytes); 1961 1962 if (likely(dql_avail(&dev_queue->dql) >= 0)) 1963 return; 1964 1965 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 1966 1967 /* 1968 * The XOFF flag must be set before checking the dql_avail below, 1969 * because in netdev_tx_completed_queue we update the dql_completed 1970 * before checking the XOFF flag. 1971 */ 1972 smp_mb(); 1973 1974 /* check again in case another CPU has just made room avail */ 1975 if (unlikely(dql_avail(&dev_queue->dql) >= 0)) 1976 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state); 1977#endif 1978} 1979 1980static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes) 1981{ 1982 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes); 1983} 1984 1985static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue, 1986 unsigned int pkts, unsigned int bytes) 1987{ 1988#ifdef CONFIG_BQL 1989 if (unlikely(!bytes)) 1990 return; 1991 1992 dql_completed(&dev_queue->dql, bytes); 1993 1994 /* 1995 * Without the memory barrier there is a small possiblity that 1996 * netdev_tx_sent_queue will miss the update and cause the queue to 1997 * be stopped forever 1998 */ 1999 smp_mb(); 2000 2001 if (dql_avail(&dev_queue->dql) < 0) 2002 return; 2003 2004 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state)) 2005 netif_schedule_queue(dev_queue); 2006#endif 2007} 2008 2009static inline void netdev_completed_queue(struct net_device *dev, 2010 unsigned int pkts, unsigned int bytes) 2011{ 2012 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes); 2013} 2014 2015static inline void netdev_tx_reset_queue(struct netdev_queue *q) 2016{ 2017#ifdef CONFIG_BQL 2018 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state); 2019 dql_reset(&q->dql); 2020#endif 2021} 2022 2023static inline void netdev_reset_queue(struct net_device *dev_queue) 2024{ 2025 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0)); 2026} 2027 2028/** 2029 * netif_running - test if up 2030 * @dev: network device 2031 * 2032 * Test if the device has been brought up. 2033 */ 2034static inline bool netif_running(const struct net_device *dev) 2035{ 2036 return test_bit(__LINK_STATE_START, &dev->state); 2037} 2038 2039/* 2040 * Routines to manage the subqueues on a device. We only need start 2041 * stop, and a check if it's stopped. All other device management is 2042 * done at the overall netdevice level. 2043 * Also test the device if we're multiqueue. 2044 */ 2045 2046/** 2047 * netif_start_subqueue - allow sending packets on subqueue 2048 * @dev: network device 2049 * @queue_index: sub queue index 2050 * 2051 * Start individual transmit queue of a device with multiple transmit queues. 2052 */ 2053static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index) 2054{ 2055 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 2056 2057 netif_tx_start_queue(txq); 2058} 2059 2060/** 2061 * netif_stop_subqueue - stop sending packets on subqueue 2062 * @dev: network device 2063 * @queue_index: sub queue index 2064 * 2065 * Stop individual transmit queue of a device with multiple transmit queues. 2066 */ 2067static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index) 2068{ 2069 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 2070#ifdef CONFIG_NETPOLL_TRAP 2071 if (netpoll_trap()) 2072 return; 2073#endif 2074 netif_tx_stop_queue(txq); 2075} 2076 2077/** 2078 * netif_subqueue_stopped - test status of subqueue 2079 * @dev: network device 2080 * @queue_index: sub queue index 2081 * 2082 * Check individual transmit queue of a device with multiple transmit queues. 2083 */ 2084static inline bool __netif_subqueue_stopped(const struct net_device *dev, 2085 u16 queue_index) 2086{ 2087 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 2088 2089 return netif_tx_queue_stopped(txq); 2090} 2091 2092static inline bool netif_subqueue_stopped(const struct net_device *dev, 2093 struct sk_buff *skb) 2094{ 2095 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb)); 2096} 2097 2098/** 2099 * netif_wake_subqueue - allow sending packets on subqueue 2100 * @dev: network device 2101 * @queue_index: sub queue index 2102 * 2103 * Resume individual transmit queue of a device with multiple transmit queues. 2104 */ 2105static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index) 2106{ 2107 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 2108#ifdef CONFIG_NETPOLL_TRAP 2109 if (netpoll_trap()) 2110 return; 2111#endif 2112 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) 2113 __netif_schedule(txq->qdisc); 2114} 2115 2116#ifdef CONFIG_XPS 2117extern int netif_set_xps_queue(struct net_device *dev, struct cpumask *mask, 2118 u16 index); 2119#else 2120static inline int netif_set_xps_queue(struct net_device *dev, 2121 struct cpumask *mask, 2122 u16 index) 2123{ 2124 return 0; 2125} 2126#endif 2127 2128/* 2129 * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used 2130 * as a distribution range limit for the returned value. 2131 */ 2132static inline u16 skb_tx_hash(const struct net_device *dev, 2133 const struct sk_buff *skb) 2134{ 2135 return __skb_tx_hash(dev, skb, dev->real_num_tx_queues); 2136} 2137 2138/** 2139 * netif_is_multiqueue - test if device has multiple transmit queues 2140 * @dev: network device 2141 * 2142 * Check if device has multiple transmit queues 2143 */ 2144static inline bool netif_is_multiqueue(const struct net_device *dev) 2145{ 2146 return dev->num_tx_queues > 1; 2147} 2148 2149extern int netif_set_real_num_tx_queues(struct net_device *dev, 2150 unsigned int txq); 2151 2152#ifdef CONFIG_RPS 2153extern int netif_set_real_num_rx_queues(struct net_device *dev, 2154 unsigned int rxq); 2155#else 2156static inline int netif_set_real_num_rx_queues(struct net_device *dev, 2157 unsigned int rxq) 2158{ 2159 return 0; 2160} 2161#endif 2162 2163static inline int netif_copy_real_num_queues(struct net_device *to_dev, 2164 const struct net_device *from_dev) 2165{ 2166 int err; 2167 2168 err = netif_set_real_num_tx_queues(to_dev, 2169 from_dev->real_num_tx_queues); 2170 if (err) 2171 return err; 2172#ifdef CONFIG_RPS 2173 return netif_set_real_num_rx_queues(to_dev, 2174 from_dev->real_num_rx_queues); 2175#else 2176 return 0; 2177#endif 2178} 2179 2180#define DEFAULT_MAX_NUM_RSS_QUEUES (8) 2181extern int netif_get_num_default_rss_queues(void); 2182 2183/* Use this variant when it is known for sure that it 2184 * is executing from hardware interrupt context or with hardware interrupts 2185 * disabled. 2186 */ 2187extern void dev_kfree_skb_irq(struct sk_buff *skb); 2188 2189/* Use this variant in places where it could be invoked 2190 * from either hardware interrupt or other context, with hardware interrupts 2191 * either disabled or enabled. 2192 */ 2193extern void dev_kfree_skb_any(struct sk_buff *skb); 2194 2195extern int netif_rx(struct sk_buff *skb); 2196extern int netif_rx_ni(struct sk_buff *skb); 2197extern int netif_receive_skb(struct sk_buff *skb); 2198extern gro_result_t napi_gro_receive(struct napi_struct *napi, 2199 struct sk_buff *skb); 2200extern void napi_gro_flush(struct napi_struct *napi, bool flush_old); 2201extern struct sk_buff * napi_get_frags(struct napi_struct *napi); 2202extern gro_result_t napi_gro_frags(struct napi_struct *napi); 2203 2204static inline void napi_free_frags(struct napi_struct *napi) 2205{ 2206 kfree_skb(napi->skb); 2207 napi->skb = NULL; 2208} 2209 2210extern int netdev_rx_handler_register(struct net_device *dev, 2211 rx_handler_func_t *rx_handler, 2212 void *rx_handler_data); 2213extern void netdev_rx_handler_unregister(struct net_device *dev); 2214 2215extern bool dev_valid_name(const char *name); 2216extern int dev_ioctl(struct net *net, unsigned int cmd, void __user *); 2217extern int dev_ethtool(struct net *net, struct ifreq *); 2218extern unsigned int dev_get_flags(const struct net_device *); 2219extern int __dev_change_flags(struct net_device *, unsigned int flags); 2220extern int dev_change_flags(struct net_device *, unsigned int); 2221extern void __dev_notify_flags(struct net_device *, unsigned int old_flags); 2222extern int dev_change_name(struct net_device *, const char *); 2223extern int dev_set_alias(struct net_device *, const char *, size_t); 2224extern int dev_change_net_namespace(struct net_device *, 2225 struct net *, const char *); 2226extern int dev_set_mtu(struct net_device *, int); 2227extern void dev_set_group(struct net_device *, int); 2228extern int dev_set_mac_address(struct net_device *, 2229 struct sockaddr *); 2230extern int dev_change_carrier(struct net_device *, 2231 bool new_carrier); 2232extern int dev_hard_start_xmit(struct sk_buff *skb, 2233 struct net_device *dev, 2234 struct netdev_queue *txq); 2235extern int dev_forward_skb(struct net_device *dev, 2236 struct sk_buff *skb); 2237 2238extern int netdev_budget; 2239 2240/* Called by rtnetlink.c:rtnl_unlock() */ 2241extern void netdev_run_todo(void); 2242 2243/** 2244 * dev_put - release reference to device 2245 * @dev: network device 2246 * 2247 * Release reference to device to allow it to be freed. 2248 */ 2249static inline void dev_put(struct net_device *dev) 2250{ 2251 this_cpu_dec(*dev->pcpu_refcnt); 2252} 2253 2254/** 2255 * dev_hold - get reference to device 2256 * @dev: network device 2257 * 2258 * Hold reference to device to keep it from being freed. 2259 */ 2260static inline void dev_hold(struct net_device *dev) 2261{ 2262 this_cpu_inc(*dev->pcpu_refcnt); 2263} 2264 2265/* Carrier loss detection, dial on demand. The functions netif_carrier_on 2266 * and _off may be called from IRQ context, but it is caller 2267 * who is responsible for serialization of these calls. 2268 * 2269 * The name carrier is inappropriate, these functions should really be 2270 * called netif_lowerlayer_*() because they represent the state of any 2271 * kind of lower layer not just hardware media. 2272 */ 2273 2274extern void linkwatch_init_dev(struct net_device *dev); 2275extern void linkwatch_fire_event(struct net_device *dev); 2276extern void linkwatch_forget_dev(struct net_device *dev); 2277 2278/** 2279 * netif_carrier_ok - test if carrier present 2280 * @dev: network device 2281 * 2282 * Check if carrier is present on device 2283 */ 2284static inline bool netif_carrier_ok(const struct net_device *dev) 2285{ 2286 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state); 2287} 2288 2289extern unsigned long dev_trans_start(struct net_device *dev); 2290 2291extern void __netdev_watchdog_up(struct net_device *dev); 2292 2293extern void netif_carrier_on(struct net_device *dev); 2294 2295extern void netif_carrier_off(struct net_device *dev); 2296 2297/** 2298 * netif_dormant_on - mark device as dormant. 2299 * @dev: network device 2300 * 2301 * Mark device as dormant (as per RFC2863). 2302 * 2303 * The dormant state indicates that the relevant interface is not 2304 * actually in a condition to pass packets (i.e., it is not 'up') but is 2305 * in a "pending" state, waiting for some external event. For "on- 2306 * demand" interfaces, this new state identifies the situation where the 2307 * interface is waiting for events to place it in the up state. 2308 * 2309 */ 2310static inline void netif_dormant_on(struct net_device *dev) 2311{ 2312 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state)) 2313 linkwatch_fire_event(dev); 2314} 2315 2316/** 2317 * netif_dormant_off - set device as not dormant. 2318 * @dev: network device 2319 * 2320 * Device is not in dormant state. 2321 */ 2322static inline void netif_dormant_off(struct net_device *dev) 2323{ 2324 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state)) 2325 linkwatch_fire_event(dev); 2326} 2327 2328/** 2329 * netif_dormant - test if carrier present 2330 * @dev: network device 2331 * 2332 * Check if carrier is present on device 2333 */ 2334static inline bool netif_dormant(const struct net_device *dev) 2335{ 2336 return test_bit(__LINK_STATE_DORMANT, &dev->state); 2337} 2338 2339 2340/** 2341 * netif_oper_up - test if device is operational 2342 * @dev: network device 2343 * 2344 * Check if carrier is operational 2345 */ 2346static inline bool netif_oper_up(const struct net_device *dev) 2347{ 2348 return (dev->operstate == IF_OPER_UP || 2349 dev->operstate == IF_OPER_UNKNOWN /* backward compat */); 2350} 2351 2352/** 2353 * netif_device_present - is device available or removed 2354 * @dev: network device 2355 * 2356 * Check if device has not been removed from system. 2357 */ 2358static inline bool netif_device_present(struct net_device *dev) 2359{ 2360 return test_bit(__LINK_STATE_PRESENT, &dev->state); 2361} 2362 2363extern void netif_device_detach(struct net_device *dev); 2364 2365extern void netif_device_attach(struct net_device *dev); 2366 2367/* 2368 * Network interface message level settings 2369 */ 2370 2371enum { 2372 NETIF_MSG_DRV = 0x0001, 2373 NETIF_MSG_PROBE = 0x0002, 2374 NETIF_MSG_LINK = 0x0004, 2375 NETIF_MSG_TIMER = 0x0008, 2376 NETIF_MSG_IFDOWN = 0x0010, 2377 NETIF_MSG_IFUP = 0x0020, 2378 NETIF_MSG_RX_ERR = 0x0040, 2379 NETIF_MSG_TX_ERR = 0x0080, 2380 NETIF_MSG_TX_QUEUED = 0x0100, 2381 NETIF_MSG_INTR = 0x0200, 2382 NETIF_MSG_TX_DONE = 0x0400, 2383 NETIF_MSG_RX_STATUS = 0x0800, 2384 NETIF_MSG_PKTDATA = 0x1000, 2385 NETIF_MSG_HW = 0x2000, 2386 NETIF_MSG_WOL = 0x4000, 2387}; 2388 2389#define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV) 2390#define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE) 2391#define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK) 2392#define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER) 2393#define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN) 2394#define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP) 2395#define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR) 2396#define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR) 2397#define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED) 2398#define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR) 2399#define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE) 2400#define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS) 2401#define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA) 2402#define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW) 2403#define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL) 2404 2405static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits) 2406{ 2407 /* use default */ 2408 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8)) 2409 return default_msg_enable_bits; 2410 if (debug_value == 0) /* no output */ 2411 return 0; 2412 /* set low N bits */ 2413 return (1 << debug_value) - 1; 2414} 2415 2416static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu) 2417{ 2418 spin_lock(&txq->_xmit_lock); 2419 txq->xmit_lock_owner = cpu; 2420} 2421 2422static inline void __netif_tx_lock_bh(struct netdev_queue *txq) 2423{ 2424 spin_lock_bh(&txq->_xmit_lock); 2425 txq->xmit_lock_owner = smp_processor_id(); 2426} 2427 2428static inline bool __netif_tx_trylock(struct netdev_queue *txq) 2429{ 2430 bool ok = spin_trylock(&txq->_xmit_lock); 2431 if (likely(ok)) 2432 txq->xmit_lock_owner = smp_processor_id(); 2433 return ok; 2434} 2435 2436static inline void __netif_tx_unlock(struct netdev_queue *txq) 2437{ 2438 txq->xmit_lock_owner = -1; 2439 spin_unlock(&txq->_xmit_lock); 2440} 2441 2442static inline void __netif_tx_unlock_bh(struct netdev_queue *txq) 2443{ 2444 txq->xmit_lock_owner = -1; 2445 spin_unlock_bh(&txq->_xmit_lock); 2446} 2447 2448static inline void txq_trans_update(struct netdev_queue *txq) 2449{ 2450 if (txq->xmit_lock_owner != -1) 2451 txq->trans_start = jiffies; 2452} 2453 2454/** 2455 * netif_tx_lock - grab network device transmit lock 2456 * @dev: network device 2457 * 2458 * Get network device transmit lock 2459 */ 2460static inline void netif_tx_lock(struct net_device *dev) 2461{ 2462 unsigned int i; 2463 int cpu; 2464 2465 spin_lock(&dev->tx_global_lock); 2466 cpu = smp_processor_id(); 2467 for (i = 0; i < dev->num_tx_queues; i++) { 2468 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2469 2470 /* We are the only thread of execution doing a 2471 * freeze, but we have to grab the _xmit_lock in 2472 * order to synchronize with threads which are in 2473 * the ->hard_start_xmit() handler and already 2474 * checked the frozen bit. 2475 */ 2476 __netif_tx_lock(txq, cpu); 2477 set_bit(__QUEUE_STATE_FROZEN, &txq->state); 2478 __netif_tx_unlock(txq); 2479 } 2480} 2481 2482static inline void netif_tx_lock_bh(struct net_device *dev) 2483{ 2484 local_bh_disable(); 2485 netif_tx_lock(dev); 2486} 2487 2488static inline void netif_tx_unlock(struct net_device *dev) 2489{ 2490 unsigned int i; 2491 2492 for (i = 0; i < dev->num_tx_queues; i++) { 2493 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2494 2495 /* No need to grab the _xmit_lock here. If the 2496 * queue is not stopped for another reason, we 2497 * force a schedule. 2498 */ 2499 clear_bit(__QUEUE_STATE_FROZEN, &txq->state); 2500 netif_schedule_queue(txq); 2501 } 2502 spin_unlock(&dev->tx_global_lock); 2503} 2504 2505static inline void netif_tx_unlock_bh(struct net_device *dev) 2506{ 2507 netif_tx_unlock(dev); 2508 local_bh_enable(); 2509} 2510 2511#define HARD_TX_LOCK(dev, txq, cpu) { \ 2512 if ((dev->features & NETIF_F_LLTX) == 0) { \ 2513 __netif_tx_lock(txq, cpu); \ 2514 } \ 2515} 2516 2517#define HARD_TX_UNLOCK(dev, txq) { \ 2518 if ((dev->features & NETIF_F_LLTX) == 0) { \ 2519 __netif_tx_unlock(txq); \ 2520 } \ 2521} 2522 2523static inline void netif_tx_disable(struct net_device *dev) 2524{ 2525 unsigned int i; 2526 int cpu; 2527 2528 local_bh_disable(); 2529 cpu = smp_processor_id(); 2530 for (i = 0; i < dev->num_tx_queues; i++) { 2531 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 2532 2533 __netif_tx_lock(txq, cpu); 2534 netif_tx_stop_queue(txq); 2535 __netif_tx_unlock(txq); 2536 } 2537 local_bh_enable(); 2538} 2539 2540static inline void netif_addr_lock(struct net_device *dev) 2541{ 2542 spin_lock(&dev->addr_list_lock); 2543} 2544 2545static inline void netif_addr_lock_nested(struct net_device *dev) 2546{ 2547 spin_lock_nested(&dev->addr_list_lock, SINGLE_DEPTH_NESTING); 2548} 2549 2550static inline void netif_addr_lock_bh(struct net_device *dev) 2551{ 2552 spin_lock_bh(&dev->addr_list_lock); 2553} 2554 2555static inline void netif_addr_unlock(struct net_device *dev) 2556{ 2557 spin_unlock(&dev->addr_list_lock); 2558} 2559 2560static inline void netif_addr_unlock_bh(struct net_device *dev) 2561{ 2562 spin_unlock_bh(&dev->addr_list_lock); 2563} 2564 2565/* 2566 * dev_addrs walker. Should be used only for read access. Call with 2567 * rcu_read_lock held. 2568 */ 2569#define for_each_dev_addr(dev, ha) \ 2570 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list) 2571 2572/* These functions live elsewhere (drivers/net/net_init.c, but related) */ 2573 2574extern void ether_setup(struct net_device *dev); 2575 2576/* Support for loadable net-drivers */ 2577extern struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 2578 void (*setup)(struct net_device *), 2579 unsigned int txqs, unsigned int rxqs); 2580#define alloc_netdev(sizeof_priv, name, setup) \ 2581 alloc_netdev_mqs(sizeof_priv, name, setup, 1, 1) 2582 2583#define alloc_netdev_mq(sizeof_priv, name, setup, count) \ 2584 alloc_netdev_mqs(sizeof_priv, name, setup, count, count) 2585 2586extern int register_netdev(struct net_device *dev); 2587extern void unregister_netdev(struct net_device *dev); 2588 2589/* General hardware address lists handling functions */ 2590extern int __hw_addr_add_multiple(struct netdev_hw_addr_list *to_list, 2591 struct netdev_hw_addr_list *from_list, 2592 int addr_len, unsigned char addr_type); 2593extern void __hw_addr_del_multiple(struct netdev_hw_addr_list *to_list, 2594 struct netdev_hw_addr_list *from_list, 2595 int addr_len, unsigned char addr_type); 2596extern int __hw_addr_sync(struct netdev_hw_addr_list *to_list, 2597 struct netdev_hw_addr_list *from_list, 2598 int addr_len); 2599extern void __hw_addr_unsync(struct netdev_hw_addr_list *to_list, 2600 struct netdev_hw_addr_list *from_list, 2601 int addr_len); 2602extern void __hw_addr_flush(struct netdev_hw_addr_list *list); 2603extern void __hw_addr_init(struct netdev_hw_addr_list *list); 2604 2605/* Functions used for device addresses handling */ 2606extern int dev_addr_add(struct net_device *dev, const unsigned char *addr, 2607 unsigned char addr_type); 2608extern int dev_addr_del(struct net_device *dev, const unsigned char *addr, 2609 unsigned char addr_type); 2610extern int dev_addr_add_multiple(struct net_device *to_dev, 2611 struct net_device *from_dev, 2612 unsigned char addr_type); 2613extern int dev_addr_del_multiple(struct net_device *to_dev, 2614 struct net_device *from_dev, 2615 unsigned char addr_type); 2616extern void dev_addr_flush(struct net_device *dev); 2617extern int dev_addr_init(struct net_device *dev); 2618 2619/* Functions used for unicast addresses handling */ 2620extern int dev_uc_add(struct net_device *dev, const unsigned char *addr); 2621extern int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr); 2622extern int dev_uc_del(struct net_device *dev, const unsigned char *addr); 2623extern int dev_uc_sync(struct net_device *to, struct net_device *from); 2624extern void dev_uc_unsync(struct net_device *to, struct net_device *from); 2625extern void dev_uc_flush(struct net_device *dev); 2626extern void dev_uc_init(struct net_device *dev); 2627 2628/* Functions used for multicast addresses handling */ 2629extern int dev_mc_add(struct net_device *dev, const unsigned char *addr); 2630extern int dev_mc_add_global(struct net_device *dev, const unsigned char *addr); 2631extern int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr); 2632extern int dev_mc_del(struct net_device *dev, const unsigned char *addr); 2633extern int dev_mc_del_global(struct net_device *dev, const unsigned char *addr); 2634extern int dev_mc_sync(struct net_device *to, struct net_device *from); 2635extern void dev_mc_unsync(struct net_device *to, struct net_device *from); 2636extern void dev_mc_flush(struct net_device *dev); 2637extern void dev_mc_init(struct net_device *dev); 2638 2639/* Functions used for secondary unicast and multicast support */ 2640extern void dev_set_rx_mode(struct net_device *dev); 2641extern void __dev_set_rx_mode(struct net_device *dev); 2642extern int dev_set_promiscuity(struct net_device *dev, int inc); 2643extern int dev_set_allmulti(struct net_device *dev, int inc); 2644extern void netdev_state_change(struct net_device *dev); 2645extern void netdev_notify_peers(struct net_device *dev); 2646extern void netdev_features_change(struct net_device *dev); 2647/* Load a device via the kmod */ 2648extern void dev_load(struct net *net, const char *name); 2649extern struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 2650 struct rtnl_link_stats64 *storage); 2651extern void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 2652 const struct net_device_stats *netdev_stats); 2653 2654extern int netdev_max_backlog; 2655extern int netdev_tstamp_prequeue; 2656extern int weight_p; 2657extern int bpf_jit_enable; 2658 2659extern bool netdev_has_upper_dev(struct net_device *dev, 2660 struct net_device *upper_dev); 2661extern bool netdev_has_any_upper_dev(struct net_device *dev); 2662extern struct net_device *netdev_master_upper_dev_get(struct net_device *dev); 2663extern struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev); 2664extern int netdev_upper_dev_link(struct net_device *dev, 2665 struct net_device *upper_dev); 2666extern int netdev_master_upper_dev_link(struct net_device *dev, 2667 struct net_device *upper_dev); 2668extern void netdev_upper_dev_unlink(struct net_device *dev, 2669 struct net_device *upper_dev); 2670extern int skb_checksum_help(struct sk_buff *skb); 2671extern struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 2672 netdev_features_t features, bool tx_path); 2673extern struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 2674 netdev_features_t features); 2675 2676static inline 2677struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features) 2678{ 2679 return __skb_gso_segment(skb, features, true); 2680} 2681 2682#ifdef CONFIG_BUG 2683extern void netdev_rx_csum_fault(struct net_device *dev); 2684#else 2685static inline void netdev_rx_csum_fault(struct net_device *dev) 2686{ 2687} 2688#endif 2689/* rx skb timestamps */ 2690extern void net_enable_timestamp(void); 2691extern void net_disable_timestamp(void); 2692 2693#ifdef CONFIG_PROC_FS 2694extern int __init dev_proc_init(void); 2695#else 2696#define dev_proc_init() 0 2697#endif 2698 2699extern int netdev_class_create_file(struct class_attribute *class_attr); 2700extern void netdev_class_remove_file(struct class_attribute *class_attr); 2701 2702extern struct kobj_ns_type_operations net_ns_type_operations; 2703 2704extern const char *netdev_drivername(const struct net_device *dev); 2705 2706extern void linkwatch_run_queue(void); 2707 2708static inline netdev_features_t netdev_get_wanted_features( 2709 struct net_device *dev) 2710{ 2711 return (dev->features & ~dev->hw_features) | dev->wanted_features; 2712} 2713netdev_features_t netdev_increment_features(netdev_features_t all, 2714 netdev_features_t one, netdev_features_t mask); 2715int __netdev_update_features(struct net_device *dev); 2716void netdev_update_features(struct net_device *dev); 2717void netdev_change_features(struct net_device *dev); 2718 2719void netif_stacked_transfer_operstate(const struct net_device *rootdev, 2720 struct net_device *dev); 2721 2722netdev_features_t netif_skb_features(struct sk_buff *skb); 2723 2724static inline bool net_gso_ok(netdev_features_t features, int gso_type) 2725{ 2726 netdev_features_t feature = gso_type << NETIF_F_GSO_SHIFT; 2727 2728 /* check flags correspondence */ 2729 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT)); 2730 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT)); 2731 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT)); 2732 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT)); 2733 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT)); 2734 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT)); 2735 2736 return (features & feature) == feature; 2737} 2738 2739static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features) 2740{ 2741 return net_gso_ok(features, skb_shinfo(skb)->gso_type) && 2742 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST)); 2743} 2744 2745static inline bool netif_needs_gso(struct sk_buff *skb, 2746 netdev_features_t features) 2747{ 2748 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) || 2749 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) && 2750 (skb->ip_summed != CHECKSUM_UNNECESSARY))); 2751} 2752 2753static inline void netif_set_gso_max_size(struct net_device *dev, 2754 unsigned int size) 2755{ 2756 dev->gso_max_size = size; 2757} 2758 2759static inline bool netif_is_bond_slave(struct net_device *dev) 2760{ 2761 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING; 2762} 2763 2764static inline bool netif_supports_nofcs(struct net_device *dev) 2765{ 2766 return dev->priv_flags & IFF_SUPP_NOFCS; 2767} 2768 2769extern struct pernet_operations __net_initdata loopback_net_ops; 2770 2771/* Logging, debugging and troubleshooting/diagnostic helpers. */ 2772 2773/* netdev_printk helpers, similar to dev_printk */ 2774 2775static inline const char *netdev_name(const struct net_device *dev) 2776{ 2777 if (dev->reg_state != NETREG_REGISTERED) 2778 return "(unregistered net_device)"; 2779 return dev->name; 2780} 2781 2782extern __printf(3, 4) 2783int netdev_printk(const char *level, const struct net_device *dev, 2784 const char *format, ...); 2785extern __printf(2, 3) 2786int netdev_emerg(const struct net_device *dev, const char *format, ...); 2787extern __printf(2, 3) 2788int netdev_alert(const struct net_device *dev, const char *format, ...); 2789extern __printf(2, 3) 2790int netdev_crit(const struct net_device *dev, const char *format, ...); 2791extern __printf(2, 3) 2792int netdev_err(const struct net_device *dev, const char *format, ...); 2793extern __printf(2, 3) 2794int netdev_warn(const struct net_device *dev, const char *format, ...); 2795extern __printf(2, 3) 2796int netdev_notice(const struct net_device *dev, const char *format, ...); 2797extern __printf(2, 3) 2798int netdev_info(const struct net_device *dev, const char *format, ...); 2799 2800#define MODULE_ALIAS_NETDEV(device) \ 2801 MODULE_ALIAS("netdev-" device) 2802 2803#if defined(CONFIG_DYNAMIC_DEBUG) 2804#define netdev_dbg(__dev, format, args...) \ 2805do { \ 2806 dynamic_netdev_dbg(__dev, format, ##args); \ 2807} while (0) 2808#elif defined(DEBUG) 2809#define netdev_dbg(__dev, format, args...) \ 2810 netdev_printk(KERN_DEBUG, __dev, format, ##args) 2811#else 2812#define netdev_dbg(__dev, format, args...) \ 2813({ \ 2814 if (0) \ 2815 netdev_printk(KERN_DEBUG, __dev, format, ##args); \ 2816 0; \ 2817}) 2818#endif 2819 2820#if defined(VERBOSE_DEBUG) 2821#define netdev_vdbg netdev_dbg 2822#else 2823 2824#define netdev_vdbg(dev, format, args...) \ 2825({ \ 2826 if (0) \ 2827 netdev_printk(KERN_DEBUG, dev, format, ##args); \ 2828 0; \ 2829}) 2830#endif 2831 2832/* 2833 * netdev_WARN() acts like dev_printk(), but with the key difference 2834 * of using a WARN/WARN_ON to get the message out, including the 2835 * file/line information and a backtrace. 2836 */ 2837#define netdev_WARN(dev, format, args...) \ 2838 WARN(1, "netdevice: %s\n" format, netdev_name(dev), ##args); 2839 2840/* netif printk helpers, similar to netdev_printk */ 2841 2842#define netif_printk(priv, type, level, dev, fmt, args...) \ 2843do { \ 2844 if (netif_msg_##type(priv)) \ 2845 netdev_printk(level, (dev), fmt, ##args); \ 2846} while (0) 2847 2848#define netif_level(level, priv, type, dev, fmt, args...) \ 2849do { \ 2850 if (netif_msg_##type(priv)) \ 2851 netdev_##level(dev, fmt, ##args); \ 2852} while (0) 2853 2854#define netif_emerg(priv, type, dev, fmt, args...) \ 2855 netif_level(emerg, priv, type, dev, fmt, ##args) 2856#define netif_alert(priv, type, dev, fmt, args...) \ 2857 netif_level(alert, priv, type, dev, fmt, ##args) 2858#define netif_crit(priv, type, dev, fmt, args...) \ 2859 netif_level(crit, priv, type, dev, fmt, ##args) 2860#define netif_err(priv, type, dev, fmt, args...) \ 2861 netif_level(err, priv, type, dev, fmt, ##args) 2862#define netif_warn(priv, type, dev, fmt, args...) \ 2863 netif_level(warn, priv, type, dev, fmt, ##args) 2864#define netif_notice(priv, type, dev, fmt, args...) \ 2865 netif_level(notice, priv, type, dev, fmt, ##args) 2866#define netif_info(priv, type, dev, fmt, args...) \ 2867 netif_level(info, priv, type, dev, fmt, ##args) 2868 2869#if defined(CONFIG_DYNAMIC_DEBUG) 2870#define netif_dbg(priv, type, netdev, format, args...) \ 2871do { \ 2872 if (netif_msg_##type(priv)) \ 2873 dynamic_netdev_dbg(netdev, format, ##args); \ 2874} while (0) 2875#elif defined(DEBUG) 2876#define netif_dbg(priv, type, dev, format, args...) \ 2877 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args) 2878#else 2879#define netif_dbg(priv, type, dev, format, args...) \ 2880({ \ 2881 if (0) \ 2882 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 2883 0; \ 2884}) 2885#endif 2886 2887#if defined(VERBOSE_DEBUG) 2888#define netif_vdbg netif_dbg 2889#else 2890#define netif_vdbg(priv, type, dev, format, args...) \ 2891({ \ 2892 if (0) \ 2893 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \ 2894 0; \ 2895}) 2896#endif 2897 2898/* 2899 * The list of packet types we will receive (as opposed to discard) 2900 * and the routines to invoke. 2901 * 2902 * Why 16. Because with 16 the only overlap we get on a hash of the 2903 * low nibble of the protocol value is RARP/SNAP/X.25. 2904 * 2905 * NOTE: That is no longer true with the addition of VLAN tags. Not 2906 * sure which should go first, but I bet it won't make much 2907 * difference if we are running VLANs. The good news is that 2908 * this protocol won't be in the list unless compiled in, so 2909 * the average user (w/out VLANs) will not be adversely affected. 2910 * --BLG 2911 * 2912 * 0800 IP 2913 * 8100 802.1Q VLAN 2914 * 0001 802.3 2915 * 0002 AX.25 2916 * 0004 802.2 2917 * 8035 RARP 2918 * 0005 SNAP 2919 * 0805 X.25 2920 * 0806 ARP 2921 * 8137 IPX 2922 * 0009 Localtalk 2923 * 86DD IPv6 2924 */ 2925#define PTYPE_HASH_SIZE (16) 2926#define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 2927 2928#endif /* _LINUX_NETDEVICE_H */