at v3.9-rc2 5337 lines 154 kB view raw
1/* 2 * linux/fs/ext4/super.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * Big-endian to little-endian byte-swapping/bitmaps by 16 * David S. Miller (davem@caip.rutgers.edu), 1995 17 */ 18 19#include <linux/module.h> 20#include <linux/string.h> 21#include <linux/fs.h> 22#include <linux/time.h> 23#include <linux/vmalloc.h> 24#include <linux/jbd2.h> 25#include <linux/slab.h> 26#include <linux/init.h> 27#include <linux/blkdev.h> 28#include <linux/parser.h> 29#include <linux/buffer_head.h> 30#include <linux/exportfs.h> 31#include <linux/vfs.h> 32#include <linux/random.h> 33#include <linux/mount.h> 34#include <linux/namei.h> 35#include <linux/quotaops.h> 36#include <linux/seq_file.h> 37#include <linux/proc_fs.h> 38#include <linux/ctype.h> 39#include <linux/log2.h> 40#include <linux/crc16.h> 41#include <linux/cleancache.h> 42#include <asm/uaccess.h> 43 44#include <linux/kthread.h> 45#include <linux/freezer.h> 46 47#include "ext4.h" 48#include "ext4_extents.h" /* Needed for trace points definition */ 49#include "ext4_jbd2.h" 50#include "xattr.h" 51#include "acl.h" 52#include "mballoc.h" 53 54#define CREATE_TRACE_POINTS 55#include <trace/events/ext4.h> 56 57static struct proc_dir_entry *ext4_proc_root; 58static struct kset *ext4_kset; 59static struct ext4_lazy_init *ext4_li_info; 60static struct mutex ext4_li_mtx; 61static struct ext4_features *ext4_feat; 62 63static int ext4_load_journal(struct super_block *, struct ext4_super_block *, 64 unsigned long journal_devnum); 65static int ext4_show_options(struct seq_file *seq, struct dentry *root); 66static int ext4_commit_super(struct super_block *sb, int sync); 67static void ext4_mark_recovery_complete(struct super_block *sb, 68 struct ext4_super_block *es); 69static void ext4_clear_journal_err(struct super_block *sb, 70 struct ext4_super_block *es); 71static int ext4_sync_fs(struct super_block *sb, int wait); 72static int ext4_remount(struct super_block *sb, int *flags, char *data); 73static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf); 74static int ext4_unfreeze(struct super_block *sb); 75static int ext4_freeze(struct super_block *sb); 76static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 77 const char *dev_name, void *data); 78static inline int ext2_feature_set_ok(struct super_block *sb); 79static inline int ext3_feature_set_ok(struct super_block *sb); 80static int ext4_feature_set_ok(struct super_block *sb, int readonly); 81static void ext4_destroy_lazyinit_thread(void); 82static void ext4_unregister_li_request(struct super_block *sb); 83static void ext4_clear_request_list(void); 84 85#if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23) 86static struct file_system_type ext2_fs_type = { 87 .owner = THIS_MODULE, 88 .name = "ext2", 89 .mount = ext4_mount, 90 .kill_sb = kill_block_super, 91 .fs_flags = FS_REQUIRES_DEV, 92}; 93MODULE_ALIAS_FS("ext2"); 94#define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type) 95#else 96#define IS_EXT2_SB(sb) (0) 97#endif 98 99 100#if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23) 101static struct file_system_type ext3_fs_type = { 102 .owner = THIS_MODULE, 103 .name = "ext3", 104 .mount = ext4_mount, 105 .kill_sb = kill_block_super, 106 .fs_flags = FS_REQUIRES_DEV, 107}; 108MODULE_ALIAS_FS("ext3"); 109#define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type) 110#else 111#define IS_EXT3_SB(sb) (0) 112#endif 113 114static int ext4_verify_csum_type(struct super_block *sb, 115 struct ext4_super_block *es) 116{ 117 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, 118 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 119 return 1; 120 121 return es->s_checksum_type == EXT4_CRC32C_CHKSUM; 122} 123 124static __le32 ext4_superblock_csum(struct super_block *sb, 125 struct ext4_super_block *es) 126{ 127 struct ext4_sb_info *sbi = EXT4_SB(sb); 128 int offset = offsetof(struct ext4_super_block, s_checksum); 129 __u32 csum; 130 131 csum = ext4_chksum(sbi, ~0, (char *)es, offset); 132 133 return cpu_to_le32(csum); 134} 135 136int ext4_superblock_csum_verify(struct super_block *sb, 137 struct ext4_super_block *es) 138{ 139 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, 140 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 141 return 1; 142 143 return es->s_checksum == ext4_superblock_csum(sb, es); 144} 145 146void ext4_superblock_csum_set(struct super_block *sb) 147{ 148 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 149 150 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, 151 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 152 return; 153 154 es->s_checksum = ext4_superblock_csum(sb, es); 155} 156 157void *ext4_kvmalloc(size_t size, gfp_t flags) 158{ 159 void *ret; 160 161 ret = kmalloc(size, flags); 162 if (!ret) 163 ret = __vmalloc(size, flags, PAGE_KERNEL); 164 return ret; 165} 166 167void *ext4_kvzalloc(size_t size, gfp_t flags) 168{ 169 void *ret; 170 171 ret = kzalloc(size, flags); 172 if (!ret) 173 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL); 174 return ret; 175} 176 177void ext4_kvfree(void *ptr) 178{ 179 if (is_vmalloc_addr(ptr)) 180 vfree(ptr); 181 else 182 kfree(ptr); 183 184} 185 186ext4_fsblk_t ext4_block_bitmap(struct super_block *sb, 187 struct ext4_group_desc *bg) 188{ 189 return le32_to_cpu(bg->bg_block_bitmap_lo) | 190 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 191 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0); 192} 193 194ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb, 195 struct ext4_group_desc *bg) 196{ 197 return le32_to_cpu(bg->bg_inode_bitmap_lo) | 198 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 199 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0); 200} 201 202ext4_fsblk_t ext4_inode_table(struct super_block *sb, 203 struct ext4_group_desc *bg) 204{ 205 return le32_to_cpu(bg->bg_inode_table_lo) | 206 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 207 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0); 208} 209 210__u32 ext4_free_group_clusters(struct super_block *sb, 211 struct ext4_group_desc *bg) 212{ 213 return le16_to_cpu(bg->bg_free_blocks_count_lo) | 214 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 215 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0); 216} 217 218__u32 ext4_free_inodes_count(struct super_block *sb, 219 struct ext4_group_desc *bg) 220{ 221 return le16_to_cpu(bg->bg_free_inodes_count_lo) | 222 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 223 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0); 224} 225 226__u32 ext4_used_dirs_count(struct super_block *sb, 227 struct ext4_group_desc *bg) 228{ 229 return le16_to_cpu(bg->bg_used_dirs_count_lo) | 230 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 231 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0); 232} 233 234__u32 ext4_itable_unused_count(struct super_block *sb, 235 struct ext4_group_desc *bg) 236{ 237 return le16_to_cpu(bg->bg_itable_unused_lo) | 238 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ? 239 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0); 240} 241 242void ext4_block_bitmap_set(struct super_block *sb, 243 struct ext4_group_desc *bg, ext4_fsblk_t blk) 244{ 245 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk); 246 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 247 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32); 248} 249 250void ext4_inode_bitmap_set(struct super_block *sb, 251 struct ext4_group_desc *bg, ext4_fsblk_t blk) 252{ 253 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk); 254 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 255 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32); 256} 257 258void ext4_inode_table_set(struct super_block *sb, 259 struct ext4_group_desc *bg, ext4_fsblk_t blk) 260{ 261 bg->bg_inode_table_lo = cpu_to_le32((u32)blk); 262 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 263 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32); 264} 265 266void ext4_free_group_clusters_set(struct super_block *sb, 267 struct ext4_group_desc *bg, __u32 count) 268{ 269 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count); 270 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 271 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16); 272} 273 274void ext4_free_inodes_set(struct super_block *sb, 275 struct ext4_group_desc *bg, __u32 count) 276{ 277 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count); 278 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 279 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16); 280} 281 282void ext4_used_dirs_set(struct super_block *sb, 283 struct ext4_group_desc *bg, __u32 count) 284{ 285 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count); 286 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 287 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16); 288} 289 290void ext4_itable_unused_set(struct super_block *sb, 291 struct ext4_group_desc *bg, __u32 count) 292{ 293 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count); 294 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT) 295 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16); 296} 297 298 299static void __save_error_info(struct super_block *sb, const char *func, 300 unsigned int line) 301{ 302 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 303 304 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 305 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 306 es->s_last_error_time = cpu_to_le32(get_seconds()); 307 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func)); 308 es->s_last_error_line = cpu_to_le32(line); 309 if (!es->s_first_error_time) { 310 es->s_first_error_time = es->s_last_error_time; 311 strncpy(es->s_first_error_func, func, 312 sizeof(es->s_first_error_func)); 313 es->s_first_error_line = cpu_to_le32(line); 314 es->s_first_error_ino = es->s_last_error_ino; 315 es->s_first_error_block = es->s_last_error_block; 316 } 317 /* 318 * Start the daily error reporting function if it hasn't been 319 * started already 320 */ 321 if (!es->s_error_count) 322 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ); 323 le32_add_cpu(&es->s_error_count, 1); 324} 325 326static void save_error_info(struct super_block *sb, const char *func, 327 unsigned int line) 328{ 329 __save_error_info(sb, func, line); 330 ext4_commit_super(sb, 1); 331} 332 333/* 334 * The del_gendisk() function uninitializes the disk-specific data 335 * structures, including the bdi structure, without telling anyone 336 * else. Once this happens, any attempt to call mark_buffer_dirty() 337 * (for example, by ext4_commit_super), will cause a kernel OOPS. 338 * This is a kludge to prevent these oops until we can put in a proper 339 * hook in del_gendisk() to inform the VFS and file system layers. 340 */ 341static int block_device_ejected(struct super_block *sb) 342{ 343 struct inode *bd_inode = sb->s_bdev->bd_inode; 344 struct backing_dev_info *bdi = bd_inode->i_mapping->backing_dev_info; 345 346 return bdi->dev == NULL; 347} 348 349static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn) 350{ 351 struct super_block *sb = journal->j_private; 352 struct ext4_sb_info *sbi = EXT4_SB(sb); 353 int error = is_journal_aborted(journal); 354 struct ext4_journal_cb_entry *jce, *tmp; 355 356 spin_lock(&sbi->s_md_lock); 357 list_for_each_entry_safe(jce, tmp, &txn->t_private_list, jce_list) { 358 list_del_init(&jce->jce_list); 359 spin_unlock(&sbi->s_md_lock); 360 jce->jce_func(sb, jce, error); 361 spin_lock(&sbi->s_md_lock); 362 } 363 spin_unlock(&sbi->s_md_lock); 364} 365 366/* Deal with the reporting of failure conditions on a filesystem such as 367 * inconsistencies detected or read IO failures. 368 * 369 * On ext2, we can store the error state of the filesystem in the 370 * superblock. That is not possible on ext4, because we may have other 371 * write ordering constraints on the superblock which prevent us from 372 * writing it out straight away; and given that the journal is about to 373 * be aborted, we can't rely on the current, or future, transactions to 374 * write out the superblock safely. 375 * 376 * We'll just use the jbd2_journal_abort() error code to record an error in 377 * the journal instead. On recovery, the journal will complain about 378 * that error until we've noted it down and cleared it. 379 */ 380 381static void ext4_handle_error(struct super_block *sb) 382{ 383 if (sb->s_flags & MS_RDONLY) 384 return; 385 386 if (!test_opt(sb, ERRORS_CONT)) { 387 journal_t *journal = EXT4_SB(sb)->s_journal; 388 389 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 390 if (journal) 391 jbd2_journal_abort(journal, -EIO); 392 } 393 if (test_opt(sb, ERRORS_RO)) { 394 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 395 sb->s_flags |= MS_RDONLY; 396 } 397 if (test_opt(sb, ERRORS_PANIC)) 398 panic("EXT4-fs (device %s): panic forced after error\n", 399 sb->s_id); 400} 401 402void __ext4_error(struct super_block *sb, const char *function, 403 unsigned int line, const char *fmt, ...) 404{ 405 struct va_format vaf; 406 va_list args; 407 408 va_start(args, fmt); 409 vaf.fmt = fmt; 410 vaf.va = &args; 411 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n", 412 sb->s_id, function, line, current->comm, &vaf); 413 va_end(args); 414 save_error_info(sb, function, line); 415 416 ext4_handle_error(sb); 417} 418 419void ext4_error_inode(struct inode *inode, const char *function, 420 unsigned int line, ext4_fsblk_t block, 421 const char *fmt, ...) 422{ 423 va_list args; 424 struct va_format vaf; 425 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es; 426 427 es->s_last_error_ino = cpu_to_le32(inode->i_ino); 428 es->s_last_error_block = cpu_to_le64(block); 429 save_error_info(inode->i_sb, function, line); 430 va_start(args, fmt); 431 vaf.fmt = fmt; 432 vaf.va = &args; 433 if (block) 434 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 435 "inode #%lu: block %llu: comm %s: %pV\n", 436 inode->i_sb->s_id, function, line, inode->i_ino, 437 block, current->comm, &vaf); 438 else 439 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: " 440 "inode #%lu: comm %s: %pV\n", 441 inode->i_sb->s_id, function, line, inode->i_ino, 442 current->comm, &vaf); 443 va_end(args); 444 445 ext4_handle_error(inode->i_sb); 446} 447 448void ext4_error_file(struct file *file, const char *function, 449 unsigned int line, ext4_fsblk_t block, 450 const char *fmt, ...) 451{ 452 va_list args; 453 struct va_format vaf; 454 struct ext4_super_block *es; 455 struct inode *inode = file_inode(file); 456 char pathname[80], *path; 457 458 es = EXT4_SB(inode->i_sb)->s_es; 459 es->s_last_error_ino = cpu_to_le32(inode->i_ino); 460 save_error_info(inode->i_sb, function, line); 461 path = d_path(&(file->f_path), pathname, sizeof(pathname)); 462 if (IS_ERR(path)) 463 path = "(unknown)"; 464 va_start(args, fmt); 465 vaf.fmt = fmt; 466 vaf.va = &args; 467 if (block) 468 printk(KERN_CRIT 469 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 470 "block %llu: comm %s: path %s: %pV\n", 471 inode->i_sb->s_id, function, line, inode->i_ino, 472 block, current->comm, path, &vaf); 473 else 474 printk(KERN_CRIT 475 "EXT4-fs error (device %s): %s:%d: inode #%lu: " 476 "comm %s: path %s: %pV\n", 477 inode->i_sb->s_id, function, line, inode->i_ino, 478 current->comm, path, &vaf); 479 va_end(args); 480 481 ext4_handle_error(inode->i_sb); 482} 483 484const char *ext4_decode_error(struct super_block *sb, int errno, 485 char nbuf[16]) 486{ 487 char *errstr = NULL; 488 489 switch (errno) { 490 case -EIO: 491 errstr = "IO failure"; 492 break; 493 case -ENOMEM: 494 errstr = "Out of memory"; 495 break; 496 case -EROFS: 497 if (!sb || (EXT4_SB(sb)->s_journal && 498 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT)) 499 errstr = "Journal has aborted"; 500 else 501 errstr = "Readonly filesystem"; 502 break; 503 default: 504 /* If the caller passed in an extra buffer for unknown 505 * errors, textualise them now. Else we just return 506 * NULL. */ 507 if (nbuf) { 508 /* Check for truncated error codes... */ 509 if (snprintf(nbuf, 16, "error %d", -errno) >= 0) 510 errstr = nbuf; 511 } 512 break; 513 } 514 515 return errstr; 516} 517 518/* __ext4_std_error decodes expected errors from journaling functions 519 * automatically and invokes the appropriate error response. */ 520 521void __ext4_std_error(struct super_block *sb, const char *function, 522 unsigned int line, int errno) 523{ 524 char nbuf[16]; 525 const char *errstr; 526 527 /* Special case: if the error is EROFS, and we're not already 528 * inside a transaction, then there's really no point in logging 529 * an error. */ 530 if (errno == -EROFS && journal_current_handle() == NULL && 531 (sb->s_flags & MS_RDONLY)) 532 return; 533 534 errstr = ext4_decode_error(sb, errno, nbuf); 535 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n", 536 sb->s_id, function, line, errstr); 537 save_error_info(sb, function, line); 538 539 ext4_handle_error(sb); 540} 541 542/* 543 * ext4_abort is a much stronger failure handler than ext4_error. The 544 * abort function may be used to deal with unrecoverable failures such 545 * as journal IO errors or ENOMEM at a critical moment in log management. 546 * 547 * We unconditionally force the filesystem into an ABORT|READONLY state, 548 * unless the error response on the fs has been set to panic in which 549 * case we take the easy way out and panic immediately. 550 */ 551 552void __ext4_abort(struct super_block *sb, const char *function, 553 unsigned int line, const char *fmt, ...) 554{ 555 va_list args; 556 557 save_error_info(sb, function, line); 558 va_start(args, fmt); 559 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: ", sb->s_id, 560 function, line); 561 vprintk(fmt, args); 562 printk("\n"); 563 va_end(args); 564 565 if ((sb->s_flags & MS_RDONLY) == 0) { 566 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only"); 567 sb->s_flags |= MS_RDONLY; 568 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED; 569 if (EXT4_SB(sb)->s_journal) 570 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO); 571 save_error_info(sb, function, line); 572 } 573 if (test_opt(sb, ERRORS_PANIC)) 574 panic("EXT4-fs panic from previous error\n"); 575} 576 577void ext4_msg(struct super_block *sb, const char *prefix, const char *fmt, ...) 578{ 579 struct va_format vaf; 580 va_list args; 581 582 va_start(args, fmt); 583 vaf.fmt = fmt; 584 vaf.va = &args; 585 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf); 586 va_end(args); 587} 588 589void __ext4_warning(struct super_block *sb, const char *function, 590 unsigned int line, const char *fmt, ...) 591{ 592 struct va_format vaf; 593 va_list args; 594 595 va_start(args, fmt); 596 vaf.fmt = fmt; 597 vaf.va = &args; 598 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n", 599 sb->s_id, function, line, &vaf); 600 va_end(args); 601} 602 603void __ext4_grp_locked_error(const char *function, unsigned int line, 604 struct super_block *sb, ext4_group_t grp, 605 unsigned long ino, ext4_fsblk_t block, 606 const char *fmt, ...) 607__releases(bitlock) 608__acquires(bitlock) 609{ 610 struct va_format vaf; 611 va_list args; 612 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 613 614 es->s_last_error_ino = cpu_to_le32(ino); 615 es->s_last_error_block = cpu_to_le64(block); 616 __save_error_info(sb, function, line); 617 618 va_start(args, fmt); 619 620 vaf.fmt = fmt; 621 vaf.va = &args; 622 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ", 623 sb->s_id, function, line, grp); 624 if (ino) 625 printk(KERN_CONT "inode %lu: ", ino); 626 if (block) 627 printk(KERN_CONT "block %llu:", (unsigned long long) block); 628 printk(KERN_CONT "%pV\n", &vaf); 629 va_end(args); 630 631 if (test_opt(sb, ERRORS_CONT)) { 632 ext4_commit_super(sb, 0); 633 return; 634 } 635 636 ext4_unlock_group(sb, grp); 637 ext4_handle_error(sb); 638 /* 639 * We only get here in the ERRORS_RO case; relocking the group 640 * may be dangerous, but nothing bad will happen since the 641 * filesystem will have already been marked read/only and the 642 * journal has been aborted. We return 1 as a hint to callers 643 * who might what to use the return value from 644 * ext4_grp_locked_error() to distinguish between the 645 * ERRORS_CONT and ERRORS_RO case, and perhaps return more 646 * aggressively from the ext4 function in question, with a 647 * more appropriate error code. 648 */ 649 ext4_lock_group(sb, grp); 650 return; 651} 652 653void ext4_update_dynamic_rev(struct super_block *sb) 654{ 655 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 656 657 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV) 658 return; 659 660 ext4_warning(sb, 661 "updating to rev %d because of new feature flag, " 662 "running e2fsck is recommended", 663 EXT4_DYNAMIC_REV); 664 665 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO); 666 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE); 667 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV); 668 /* leave es->s_feature_*compat flags alone */ 669 /* es->s_uuid will be set by e2fsck if empty */ 670 671 /* 672 * The rest of the superblock fields should be zero, and if not it 673 * means they are likely already in use, so leave them alone. We 674 * can leave it up to e2fsck to clean up any inconsistencies there. 675 */ 676} 677 678/* 679 * Open the external journal device 680 */ 681static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb) 682{ 683 struct block_device *bdev; 684 char b[BDEVNAME_SIZE]; 685 686 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb); 687 if (IS_ERR(bdev)) 688 goto fail; 689 return bdev; 690 691fail: 692 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld", 693 __bdevname(dev, b), PTR_ERR(bdev)); 694 return NULL; 695} 696 697/* 698 * Release the journal device 699 */ 700static int ext4_blkdev_put(struct block_device *bdev) 701{ 702 return blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 703} 704 705static int ext4_blkdev_remove(struct ext4_sb_info *sbi) 706{ 707 struct block_device *bdev; 708 int ret = -ENODEV; 709 710 bdev = sbi->journal_bdev; 711 if (bdev) { 712 ret = ext4_blkdev_put(bdev); 713 sbi->journal_bdev = NULL; 714 } 715 return ret; 716} 717 718static inline struct inode *orphan_list_entry(struct list_head *l) 719{ 720 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode; 721} 722 723static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi) 724{ 725 struct list_head *l; 726 727 ext4_msg(sb, KERN_ERR, "sb orphan head is %d", 728 le32_to_cpu(sbi->s_es->s_last_orphan)); 729 730 printk(KERN_ERR "sb_info orphan list:\n"); 731 list_for_each(l, &sbi->s_orphan) { 732 struct inode *inode = orphan_list_entry(l); 733 printk(KERN_ERR " " 734 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n", 735 inode->i_sb->s_id, inode->i_ino, inode, 736 inode->i_mode, inode->i_nlink, 737 NEXT_ORPHAN(inode)); 738 } 739} 740 741static void ext4_put_super(struct super_block *sb) 742{ 743 struct ext4_sb_info *sbi = EXT4_SB(sb); 744 struct ext4_super_block *es = sbi->s_es; 745 int i, err; 746 747 ext4_unregister_li_request(sb); 748 dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED); 749 750 flush_workqueue(sbi->dio_unwritten_wq); 751 destroy_workqueue(sbi->dio_unwritten_wq); 752 753 if (sbi->s_journal) { 754 err = jbd2_journal_destroy(sbi->s_journal); 755 sbi->s_journal = NULL; 756 if (err < 0) 757 ext4_abort(sb, "Couldn't clean up the journal"); 758 } 759 760 ext4_es_unregister_shrinker(sb); 761 del_timer(&sbi->s_err_report); 762 ext4_release_system_zone(sb); 763 ext4_mb_release(sb); 764 ext4_ext_release(sb); 765 ext4_xattr_put_super(sb); 766 767 if (!(sb->s_flags & MS_RDONLY)) { 768 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 769 es->s_state = cpu_to_le16(sbi->s_mount_state); 770 } 771 if (!(sb->s_flags & MS_RDONLY)) 772 ext4_commit_super(sb, 1); 773 774 if (sbi->s_proc) { 775 remove_proc_entry("options", sbi->s_proc); 776 remove_proc_entry(sb->s_id, ext4_proc_root); 777 } 778 kobject_del(&sbi->s_kobj); 779 780 for (i = 0; i < sbi->s_gdb_count; i++) 781 brelse(sbi->s_group_desc[i]); 782 ext4_kvfree(sbi->s_group_desc); 783 ext4_kvfree(sbi->s_flex_groups); 784 percpu_counter_destroy(&sbi->s_freeclusters_counter); 785 percpu_counter_destroy(&sbi->s_freeinodes_counter); 786 percpu_counter_destroy(&sbi->s_dirs_counter); 787 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 788 percpu_counter_destroy(&sbi->s_extent_cache_cnt); 789 brelse(sbi->s_sbh); 790#ifdef CONFIG_QUOTA 791 for (i = 0; i < MAXQUOTAS; i++) 792 kfree(sbi->s_qf_names[i]); 793#endif 794 795 /* Debugging code just in case the in-memory inode orphan list 796 * isn't empty. The on-disk one can be non-empty if we've 797 * detected an error and taken the fs readonly, but the 798 * in-memory list had better be clean by this point. */ 799 if (!list_empty(&sbi->s_orphan)) 800 dump_orphan_list(sb, sbi); 801 J_ASSERT(list_empty(&sbi->s_orphan)); 802 803 invalidate_bdev(sb->s_bdev); 804 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) { 805 /* 806 * Invalidate the journal device's buffers. We don't want them 807 * floating about in memory - the physical journal device may 808 * hotswapped, and it breaks the `ro-after' testing code. 809 */ 810 sync_blockdev(sbi->journal_bdev); 811 invalidate_bdev(sbi->journal_bdev); 812 ext4_blkdev_remove(sbi); 813 } 814 if (sbi->s_mmp_tsk) 815 kthread_stop(sbi->s_mmp_tsk); 816 sb->s_fs_info = NULL; 817 /* 818 * Now that we are completely done shutting down the 819 * superblock, we need to actually destroy the kobject. 820 */ 821 kobject_put(&sbi->s_kobj); 822 wait_for_completion(&sbi->s_kobj_unregister); 823 if (sbi->s_chksum_driver) 824 crypto_free_shash(sbi->s_chksum_driver); 825 kfree(sbi->s_blockgroup_lock); 826 kfree(sbi); 827} 828 829static struct kmem_cache *ext4_inode_cachep; 830 831/* 832 * Called inside transaction, so use GFP_NOFS 833 */ 834static struct inode *ext4_alloc_inode(struct super_block *sb) 835{ 836 struct ext4_inode_info *ei; 837 838 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS); 839 if (!ei) 840 return NULL; 841 842 ei->vfs_inode.i_version = 1; 843 INIT_LIST_HEAD(&ei->i_prealloc_list); 844 spin_lock_init(&ei->i_prealloc_lock); 845 ext4_es_init_tree(&ei->i_es_tree); 846 rwlock_init(&ei->i_es_lock); 847 INIT_LIST_HEAD(&ei->i_es_lru); 848 ei->i_es_lru_nr = 0; 849 ei->i_reserved_data_blocks = 0; 850 ei->i_reserved_meta_blocks = 0; 851 ei->i_allocated_meta_blocks = 0; 852 ei->i_da_metadata_calc_len = 0; 853 ei->i_da_metadata_calc_last_lblock = 0; 854 spin_lock_init(&(ei->i_block_reservation_lock)); 855#ifdef CONFIG_QUOTA 856 ei->i_reserved_quota = 0; 857#endif 858 ei->jinode = NULL; 859 INIT_LIST_HEAD(&ei->i_completed_io_list); 860 spin_lock_init(&ei->i_completed_io_lock); 861 ei->i_sync_tid = 0; 862 ei->i_datasync_tid = 0; 863 atomic_set(&ei->i_ioend_count, 0); 864 atomic_set(&ei->i_unwritten, 0); 865 INIT_WORK(&ei->i_unwritten_work, ext4_end_io_work); 866 867 return &ei->vfs_inode; 868} 869 870static int ext4_drop_inode(struct inode *inode) 871{ 872 int drop = generic_drop_inode(inode); 873 874 trace_ext4_drop_inode(inode, drop); 875 return drop; 876} 877 878static void ext4_i_callback(struct rcu_head *head) 879{ 880 struct inode *inode = container_of(head, struct inode, i_rcu); 881 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode)); 882} 883 884static void ext4_destroy_inode(struct inode *inode) 885{ 886 if (!list_empty(&(EXT4_I(inode)->i_orphan))) { 887 ext4_msg(inode->i_sb, KERN_ERR, 888 "Inode %lu (%p): orphan list check failed!", 889 inode->i_ino, EXT4_I(inode)); 890 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4, 891 EXT4_I(inode), sizeof(struct ext4_inode_info), 892 true); 893 dump_stack(); 894 } 895 call_rcu(&inode->i_rcu, ext4_i_callback); 896} 897 898static void init_once(void *foo) 899{ 900 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo; 901 902 INIT_LIST_HEAD(&ei->i_orphan); 903 init_rwsem(&ei->xattr_sem); 904 init_rwsem(&ei->i_data_sem); 905 inode_init_once(&ei->vfs_inode); 906} 907 908static int init_inodecache(void) 909{ 910 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache", 911 sizeof(struct ext4_inode_info), 912 0, (SLAB_RECLAIM_ACCOUNT| 913 SLAB_MEM_SPREAD), 914 init_once); 915 if (ext4_inode_cachep == NULL) 916 return -ENOMEM; 917 return 0; 918} 919 920static void destroy_inodecache(void) 921{ 922 /* 923 * Make sure all delayed rcu free inodes are flushed before we 924 * destroy cache. 925 */ 926 rcu_barrier(); 927 kmem_cache_destroy(ext4_inode_cachep); 928} 929 930void ext4_clear_inode(struct inode *inode) 931{ 932 invalidate_inode_buffers(inode); 933 clear_inode(inode); 934 dquot_drop(inode); 935 ext4_discard_preallocations(inode); 936 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS); 937 ext4_es_lru_del(inode); 938 if (EXT4_I(inode)->jinode) { 939 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode), 940 EXT4_I(inode)->jinode); 941 jbd2_free_inode(EXT4_I(inode)->jinode); 942 EXT4_I(inode)->jinode = NULL; 943 } 944} 945 946static struct inode *ext4_nfs_get_inode(struct super_block *sb, 947 u64 ino, u32 generation) 948{ 949 struct inode *inode; 950 951 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) 952 return ERR_PTR(-ESTALE); 953 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count)) 954 return ERR_PTR(-ESTALE); 955 956 /* iget isn't really right if the inode is currently unallocated!! 957 * 958 * ext4_read_inode will return a bad_inode if the inode had been 959 * deleted, so we should be safe. 960 * 961 * Currently we don't know the generation for parent directory, so 962 * a generation of 0 means "accept any" 963 */ 964 inode = ext4_iget(sb, ino); 965 if (IS_ERR(inode)) 966 return ERR_CAST(inode); 967 if (generation && inode->i_generation != generation) { 968 iput(inode); 969 return ERR_PTR(-ESTALE); 970 } 971 972 return inode; 973} 974 975static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid, 976 int fh_len, int fh_type) 977{ 978 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 979 ext4_nfs_get_inode); 980} 981 982static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid, 983 int fh_len, int fh_type) 984{ 985 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 986 ext4_nfs_get_inode); 987} 988 989/* 990 * Try to release metadata pages (indirect blocks, directories) which are 991 * mapped via the block device. Since these pages could have journal heads 992 * which would prevent try_to_free_buffers() from freeing them, we must use 993 * jbd2 layer's try_to_free_buffers() function to release them. 994 */ 995static int bdev_try_to_free_page(struct super_block *sb, struct page *page, 996 gfp_t wait) 997{ 998 journal_t *journal = EXT4_SB(sb)->s_journal; 999 1000 WARN_ON(PageChecked(page)); 1001 if (!page_has_buffers(page)) 1002 return 0; 1003 if (journal) 1004 return jbd2_journal_try_to_free_buffers(journal, page, 1005 wait & ~__GFP_WAIT); 1006 return try_to_free_buffers(page); 1007} 1008 1009#ifdef CONFIG_QUOTA 1010#define QTYPE2NAME(t) ((t) == USRQUOTA ? "user" : "group") 1011#define QTYPE2MOPT(on, t) ((t) == USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA)) 1012 1013static int ext4_write_dquot(struct dquot *dquot); 1014static int ext4_acquire_dquot(struct dquot *dquot); 1015static int ext4_release_dquot(struct dquot *dquot); 1016static int ext4_mark_dquot_dirty(struct dquot *dquot); 1017static int ext4_write_info(struct super_block *sb, int type); 1018static int ext4_quota_on(struct super_block *sb, int type, int format_id, 1019 struct path *path); 1020static int ext4_quota_on_sysfile(struct super_block *sb, int type, 1021 int format_id); 1022static int ext4_quota_off(struct super_block *sb, int type); 1023static int ext4_quota_off_sysfile(struct super_block *sb, int type); 1024static int ext4_quota_on_mount(struct super_block *sb, int type); 1025static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 1026 size_t len, loff_t off); 1027static ssize_t ext4_quota_write(struct super_block *sb, int type, 1028 const char *data, size_t len, loff_t off); 1029static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 1030 unsigned int flags); 1031static int ext4_enable_quotas(struct super_block *sb); 1032 1033static const struct dquot_operations ext4_quota_operations = { 1034 .get_reserved_space = ext4_get_reserved_space, 1035 .write_dquot = ext4_write_dquot, 1036 .acquire_dquot = ext4_acquire_dquot, 1037 .release_dquot = ext4_release_dquot, 1038 .mark_dirty = ext4_mark_dquot_dirty, 1039 .write_info = ext4_write_info, 1040 .alloc_dquot = dquot_alloc, 1041 .destroy_dquot = dquot_destroy, 1042}; 1043 1044static const struct quotactl_ops ext4_qctl_operations = { 1045 .quota_on = ext4_quota_on, 1046 .quota_off = ext4_quota_off, 1047 .quota_sync = dquot_quota_sync, 1048 .get_info = dquot_get_dqinfo, 1049 .set_info = dquot_set_dqinfo, 1050 .get_dqblk = dquot_get_dqblk, 1051 .set_dqblk = dquot_set_dqblk 1052}; 1053 1054static const struct quotactl_ops ext4_qctl_sysfile_operations = { 1055 .quota_on_meta = ext4_quota_on_sysfile, 1056 .quota_off = ext4_quota_off_sysfile, 1057 .quota_sync = dquot_quota_sync, 1058 .get_info = dquot_get_dqinfo, 1059 .set_info = dquot_set_dqinfo, 1060 .get_dqblk = dquot_get_dqblk, 1061 .set_dqblk = dquot_set_dqblk 1062}; 1063#endif 1064 1065static const struct super_operations ext4_sops = { 1066 .alloc_inode = ext4_alloc_inode, 1067 .destroy_inode = ext4_destroy_inode, 1068 .write_inode = ext4_write_inode, 1069 .dirty_inode = ext4_dirty_inode, 1070 .drop_inode = ext4_drop_inode, 1071 .evict_inode = ext4_evict_inode, 1072 .put_super = ext4_put_super, 1073 .sync_fs = ext4_sync_fs, 1074 .freeze_fs = ext4_freeze, 1075 .unfreeze_fs = ext4_unfreeze, 1076 .statfs = ext4_statfs, 1077 .remount_fs = ext4_remount, 1078 .show_options = ext4_show_options, 1079#ifdef CONFIG_QUOTA 1080 .quota_read = ext4_quota_read, 1081 .quota_write = ext4_quota_write, 1082#endif 1083 .bdev_try_to_free_page = bdev_try_to_free_page, 1084}; 1085 1086static const struct super_operations ext4_nojournal_sops = { 1087 .alloc_inode = ext4_alloc_inode, 1088 .destroy_inode = ext4_destroy_inode, 1089 .write_inode = ext4_write_inode, 1090 .dirty_inode = ext4_dirty_inode, 1091 .drop_inode = ext4_drop_inode, 1092 .evict_inode = ext4_evict_inode, 1093 .put_super = ext4_put_super, 1094 .statfs = ext4_statfs, 1095 .remount_fs = ext4_remount, 1096 .show_options = ext4_show_options, 1097#ifdef CONFIG_QUOTA 1098 .quota_read = ext4_quota_read, 1099 .quota_write = ext4_quota_write, 1100#endif 1101 .bdev_try_to_free_page = bdev_try_to_free_page, 1102}; 1103 1104static const struct export_operations ext4_export_ops = { 1105 .fh_to_dentry = ext4_fh_to_dentry, 1106 .fh_to_parent = ext4_fh_to_parent, 1107 .get_parent = ext4_get_parent, 1108}; 1109 1110enum { 1111 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid, 1112 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro, 1113 Opt_nouid32, Opt_debug, Opt_removed, 1114 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl, 1115 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, 1116 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, 1117 Opt_journal_dev, Opt_journal_checksum, Opt_journal_async_commit, 1118 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback, 1119 Opt_data_err_abort, Opt_data_err_ignore, 1120 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota, 1121 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota, 1122 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err, 1123 Opt_usrquota, Opt_grpquota, Opt_i_version, 1124 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit, 1125 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity, 1126 Opt_inode_readahead_blks, Opt_journal_ioprio, 1127 Opt_dioread_nolock, Opt_dioread_lock, 1128 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable, 1129 Opt_max_dir_size_kb, 1130}; 1131 1132static const match_table_t tokens = { 1133 {Opt_bsd_df, "bsddf"}, 1134 {Opt_minix_df, "minixdf"}, 1135 {Opt_grpid, "grpid"}, 1136 {Opt_grpid, "bsdgroups"}, 1137 {Opt_nogrpid, "nogrpid"}, 1138 {Opt_nogrpid, "sysvgroups"}, 1139 {Opt_resgid, "resgid=%u"}, 1140 {Opt_resuid, "resuid=%u"}, 1141 {Opt_sb, "sb=%u"}, 1142 {Opt_err_cont, "errors=continue"}, 1143 {Opt_err_panic, "errors=panic"}, 1144 {Opt_err_ro, "errors=remount-ro"}, 1145 {Opt_nouid32, "nouid32"}, 1146 {Opt_debug, "debug"}, 1147 {Opt_removed, "oldalloc"}, 1148 {Opt_removed, "orlov"}, 1149 {Opt_user_xattr, "user_xattr"}, 1150 {Opt_nouser_xattr, "nouser_xattr"}, 1151 {Opt_acl, "acl"}, 1152 {Opt_noacl, "noacl"}, 1153 {Opt_noload, "norecovery"}, 1154 {Opt_noload, "noload"}, 1155 {Opt_removed, "nobh"}, 1156 {Opt_removed, "bh"}, 1157 {Opt_commit, "commit=%u"}, 1158 {Opt_min_batch_time, "min_batch_time=%u"}, 1159 {Opt_max_batch_time, "max_batch_time=%u"}, 1160 {Opt_journal_dev, "journal_dev=%u"}, 1161 {Opt_journal_checksum, "journal_checksum"}, 1162 {Opt_journal_async_commit, "journal_async_commit"}, 1163 {Opt_abort, "abort"}, 1164 {Opt_data_journal, "data=journal"}, 1165 {Opt_data_ordered, "data=ordered"}, 1166 {Opt_data_writeback, "data=writeback"}, 1167 {Opt_data_err_abort, "data_err=abort"}, 1168 {Opt_data_err_ignore, "data_err=ignore"}, 1169 {Opt_offusrjquota, "usrjquota="}, 1170 {Opt_usrjquota, "usrjquota=%s"}, 1171 {Opt_offgrpjquota, "grpjquota="}, 1172 {Opt_grpjquota, "grpjquota=%s"}, 1173 {Opt_jqfmt_vfsold, "jqfmt=vfsold"}, 1174 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"}, 1175 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"}, 1176 {Opt_grpquota, "grpquota"}, 1177 {Opt_noquota, "noquota"}, 1178 {Opt_quota, "quota"}, 1179 {Opt_usrquota, "usrquota"}, 1180 {Opt_barrier, "barrier=%u"}, 1181 {Opt_barrier, "barrier"}, 1182 {Opt_nobarrier, "nobarrier"}, 1183 {Opt_i_version, "i_version"}, 1184 {Opt_stripe, "stripe=%u"}, 1185 {Opt_delalloc, "delalloc"}, 1186 {Opt_nodelalloc, "nodelalloc"}, 1187 {Opt_removed, "mblk_io_submit"}, 1188 {Opt_removed, "nomblk_io_submit"}, 1189 {Opt_block_validity, "block_validity"}, 1190 {Opt_noblock_validity, "noblock_validity"}, 1191 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"}, 1192 {Opt_journal_ioprio, "journal_ioprio=%u"}, 1193 {Opt_auto_da_alloc, "auto_da_alloc=%u"}, 1194 {Opt_auto_da_alloc, "auto_da_alloc"}, 1195 {Opt_noauto_da_alloc, "noauto_da_alloc"}, 1196 {Opt_dioread_nolock, "dioread_nolock"}, 1197 {Opt_dioread_lock, "dioread_lock"}, 1198 {Opt_discard, "discard"}, 1199 {Opt_nodiscard, "nodiscard"}, 1200 {Opt_init_itable, "init_itable=%u"}, 1201 {Opt_init_itable, "init_itable"}, 1202 {Opt_noinit_itable, "noinit_itable"}, 1203 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"}, 1204 {Opt_removed, "check=none"}, /* mount option from ext2/3 */ 1205 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */ 1206 {Opt_removed, "reservation"}, /* mount option from ext2/3 */ 1207 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */ 1208 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */ 1209 {Opt_err, NULL}, 1210}; 1211 1212static ext4_fsblk_t get_sb_block(void **data) 1213{ 1214 ext4_fsblk_t sb_block; 1215 char *options = (char *) *data; 1216 1217 if (!options || strncmp(options, "sb=", 3) != 0) 1218 return 1; /* Default location */ 1219 1220 options += 3; 1221 /* TODO: use simple_strtoll with >32bit ext4 */ 1222 sb_block = simple_strtoul(options, &options, 0); 1223 if (*options && *options != ',') { 1224 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n", 1225 (char *) *data); 1226 return 1; 1227 } 1228 if (*options == ',') 1229 options++; 1230 *data = (void *) options; 1231 1232 return sb_block; 1233} 1234 1235#define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3)) 1236static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n" 1237 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n"; 1238 1239#ifdef CONFIG_QUOTA 1240static int set_qf_name(struct super_block *sb, int qtype, substring_t *args) 1241{ 1242 struct ext4_sb_info *sbi = EXT4_SB(sb); 1243 char *qname; 1244 int ret = -1; 1245 1246 if (sb_any_quota_loaded(sb) && 1247 !sbi->s_qf_names[qtype]) { 1248 ext4_msg(sb, KERN_ERR, 1249 "Cannot change journaled " 1250 "quota options when quota turned on"); 1251 return -1; 1252 } 1253 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)) { 1254 ext4_msg(sb, KERN_ERR, "Cannot set journaled quota options " 1255 "when QUOTA feature is enabled"); 1256 return -1; 1257 } 1258 qname = match_strdup(args); 1259 if (!qname) { 1260 ext4_msg(sb, KERN_ERR, 1261 "Not enough memory for storing quotafile name"); 1262 return -1; 1263 } 1264 if (sbi->s_qf_names[qtype]) { 1265 if (strcmp(sbi->s_qf_names[qtype], qname) == 0) 1266 ret = 1; 1267 else 1268 ext4_msg(sb, KERN_ERR, 1269 "%s quota file already specified", 1270 QTYPE2NAME(qtype)); 1271 goto errout; 1272 } 1273 if (strchr(qname, '/')) { 1274 ext4_msg(sb, KERN_ERR, 1275 "quotafile must be on filesystem root"); 1276 goto errout; 1277 } 1278 sbi->s_qf_names[qtype] = qname; 1279 set_opt(sb, QUOTA); 1280 return 1; 1281errout: 1282 kfree(qname); 1283 return ret; 1284} 1285 1286static int clear_qf_name(struct super_block *sb, int qtype) 1287{ 1288 1289 struct ext4_sb_info *sbi = EXT4_SB(sb); 1290 1291 if (sb_any_quota_loaded(sb) && 1292 sbi->s_qf_names[qtype]) { 1293 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options" 1294 " when quota turned on"); 1295 return -1; 1296 } 1297 kfree(sbi->s_qf_names[qtype]); 1298 sbi->s_qf_names[qtype] = NULL; 1299 return 1; 1300} 1301#endif 1302 1303#define MOPT_SET 0x0001 1304#define MOPT_CLEAR 0x0002 1305#define MOPT_NOSUPPORT 0x0004 1306#define MOPT_EXPLICIT 0x0008 1307#define MOPT_CLEAR_ERR 0x0010 1308#define MOPT_GTE0 0x0020 1309#ifdef CONFIG_QUOTA 1310#define MOPT_Q 0 1311#define MOPT_QFMT 0x0040 1312#else 1313#define MOPT_Q MOPT_NOSUPPORT 1314#define MOPT_QFMT MOPT_NOSUPPORT 1315#endif 1316#define MOPT_DATAJ 0x0080 1317#define MOPT_NO_EXT2 0x0100 1318#define MOPT_NO_EXT3 0x0200 1319#define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3) 1320 1321static const struct mount_opts { 1322 int token; 1323 int mount_opt; 1324 int flags; 1325} ext4_mount_opts[] = { 1326 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET}, 1327 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR}, 1328 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET}, 1329 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR}, 1330 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET}, 1331 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR}, 1332 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK, 1333 MOPT_EXT4_ONLY | MOPT_SET}, 1334 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK, 1335 MOPT_EXT4_ONLY | MOPT_CLEAR}, 1336 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET}, 1337 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR}, 1338 {Opt_delalloc, EXT4_MOUNT_DELALLOC, 1339 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT}, 1340 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC, 1341 MOPT_EXT4_ONLY | MOPT_CLEAR | MOPT_EXPLICIT}, 1342 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, 1343 MOPT_EXT4_ONLY | MOPT_SET}, 1344 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT | 1345 EXT4_MOUNT_JOURNAL_CHECKSUM), 1346 MOPT_EXT4_ONLY | MOPT_SET}, 1347 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET}, 1348 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR}, 1349 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR}, 1350 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR}, 1351 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT, 1352 MOPT_NO_EXT2 | MOPT_SET}, 1353 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT, 1354 MOPT_NO_EXT2 | MOPT_CLEAR}, 1355 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET}, 1356 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR}, 1357 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET}, 1358 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR}, 1359 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR}, 1360 {Opt_commit, 0, MOPT_GTE0}, 1361 {Opt_max_batch_time, 0, MOPT_GTE0}, 1362 {Opt_min_batch_time, 0, MOPT_GTE0}, 1363 {Opt_inode_readahead_blks, 0, MOPT_GTE0}, 1364 {Opt_init_itable, 0, MOPT_GTE0}, 1365 {Opt_stripe, 0, MOPT_GTE0}, 1366 {Opt_resuid, 0, MOPT_GTE0}, 1367 {Opt_resgid, 0, MOPT_GTE0}, 1368 {Opt_journal_dev, 0, MOPT_GTE0}, 1369 {Opt_journal_ioprio, 0, MOPT_GTE0}, 1370 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, 1371 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ}, 1372 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA, 1373 MOPT_NO_EXT2 | MOPT_DATAJ}, 1374 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET}, 1375 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR}, 1376#ifdef CONFIG_EXT4_FS_POSIX_ACL 1377 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET}, 1378 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR}, 1379#else 1380 {Opt_acl, 0, MOPT_NOSUPPORT}, 1381 {Opt_noacl, 0, MOPT_NOSUPPORT}, 1382#endif 1383 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET}, 1384 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET}, 1385 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q}, 1386 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, 1387 MOPT_SET | MOPT_Q}, 1388 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA, 1389 MOPT_SET | MOPT_Q}, 1390 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA | 1391 EXT4_MOUNT_GRPQUOTA), MOPT_CLEAR | MOPT_Q}, 1392 {Opt_usrjquota, 0, MOPT_Q}, 1393 {Opt_grpjquota, 0, MOPT_Q}, 1394 {Opt_offusrjquota, 0, MOPT_Q}, 1395 {Opt_offgrpjquota, 0, MOPT_Q}, 1396 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT}, 1397 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT}, 1398 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT}, 1399 {Opt_max_dir_size_kb, 0, MOPT_GTE0}, 1400 {Opt_err, 0, 0} 1401}; 1402 1403static int handle_mount_opt(struct super_block *sb, char *opt, int token, 1404 substring_t *args, unsigned long *journal_devnum, 1405 unsigned int *journal_ioprio, int is_remount) 1406{ 1407 struct ext4_sb_info *sbi = EXT4_SB(sb); 1408 const struct mount_opts *m; 1409 kuid_t uid; 1410 kgid_t gid; 1411 int arg = 0; 1412 1413#ifdef CONFIG_QUOTA 1414 if (token == Opt_usrjquota) 1415 return set_qf_name(sb, USRQUOTA, &args[0]); 1416 else if (token == Opt_grpjquota) 1417 return set_qf_name(sb, GRPQUOTA, &args[0]); 1418 else if (token == Opt_offusrjquota) 1419 return clear_qf_name(sb, USRQUOTA); 1420 else if (token == Opt_offgrpjquota) 1421 return clear_qf_name(sb, GRPQUOTA); 1422#endif 1423 switch (token) { 1424 case Opt_noacl: 1425 case Opt_nouser_xattr: 1426 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5"); 1427 break; 1428 case Opt_sb: 1429 return 1; /* handled by get_sb_block() */ 1430 case Opt_removed: 1431 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt); 1432 return 1; 1433 case Opt_abort: 1434 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED; 1435 return 1; 1436 case Opt_i_version: 1437 sb->s_flags |= MS_I_VERSION; 1438 return 1; 1439 } 1440 1441 for (m = ext4_mount_opts; m->token != Opt_err; m++) 1442 if (token == m->token) 1443 break; 1444 1445 if (m->token == Opt_err) { 1446 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" " 1447 "or missing value", opt); 1448 return -1; 1449 } 1450 1451 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) { 1452 ext4_msg(sb, KERN_ERR, 1453 "Mount option \"%s\" incompatible with ext2", opt); 1454 return -1; 1455 } 1456 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) { 1457 ext4_msg(sb, KERN_ERR, 1458 "Mount option \"%s\" incompatible with ext3", opt); 1459 return -1; 1460 } 1461 1462 if (args->from && match_int(args, &arg)) 1463 return -1; 1464 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0)) 1465 return -1; 1466 if (m->flags & MOPT_EXPLICIT) 1467 set_opt2(sb, EXPLICIT_DELALLOC); 1468 if (m->flags & MOPT_CLEAR_ERR) 1469 clear_opt(sb, ERRORS_MASK); 1470 if (token == Opt_noquota && sb_any_quota_loaded(sb)) { 1471 ext4_msg(sb, KERN_ERR, "Cannot change quota " 1472 "options when quota turned on"); 1473 return -1; 1474 } 1475 1476 if (m->flags & MOPT_NOSUPPORT) { 1477 ext4_msg(sb, KERN_ERR, "%s option not supported", opt); 1478 } else if (token == Opt_commit) { 1479 if (arg == 0) 1480 arg = JBD2_DEFAULT_MAX_COMMIT_AGE; 1481 sbi->s_commit_interval = HZ * arg; 1482 } else if (token == Opt_max_batch_time) { 1483 if (arg == 0) 1484 arg = EXT4_DEF_MAX_BATCH_TIME; 1485 sbi->s_max_batch_time = arg; 1486 } else if (token == Opt_min_batch_time) { 1487 sbi->s_min_batch_time = arg; 1488 } else if (token == Opt_inode_readahead_blks) { 1489 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) { 1490 ext4_msg(sb, KERN_ERR, 1491 "EXT4-fs: inode_readahead_blks must be " 1492 "0 or a power of 2 smaller than 2^31"); 1493 return -1; 1494 } 1495 sbi->s_inode_readahead_blks = arg; 1496 } else if (token == Opt_init_itable) { 1497 set_opt(sb, INIT_INODE_TABLE); 1498 if (!args->from) 1499 arg = EXT4_DEF_LI_WAIT_MULT; 1500 sbi->s_li_wait_mult = arg; 1501 } else if (token == Opt_max_dir_size_kb) { 1502 sbi->s_max_dir_size_kb = arg; 1503 } else if (token == Opt_stripe) { 1504 sbi->s_stripe = arg; 1505 } else if (token == Opt_resuid) { 1506 uid = make_kuid(current_user_ns(), arg); 1507 if (!uid_valid(uid)) { 1508 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg); 1509 return -1; 1510 } 1511 sbi->s_resuid = uid; 1512 } else if (token == Opt_resgid) { 1513 gid = make_kgid(current_user_ns(), arg); 1514 if (!gid_valid(gid)) { 1515 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg); 1516 return -1; 1517 } 1518 sbi->s_resgid = gid; 1519 } else if (token == Opt_journal_dev) { 1520 if (is_remount) { 1521 ext4_msg(sb, KERN_ERR, 1522 "Cannot specify journal on remount"); 1523 return -1; 1524 } 1525 *journal_devnum = arg; 1526 } else if (token == Opt_journal_ioprio) { 1527 if (arg > 7) { 1528 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority" 1529 " (must be 0-7)"); 1530 return -1; 1531 } 1532 *journal_ioprio = 1533 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg); 1534 } else if (m->flags & MOPT_DATAJ) { 1535 if (is_remount) { 1536 if (!sbi->s_journal) 1537 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option"); 1538 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) { 1539 ext4_msg(sb, KERN_ERR, 1540 "Cannot change data mode on remount"); 1541 return -1; 1542 } 1543 } else { 1544 clear_opt(sb, DATA_FLAGS); 1545 sbi->s_mount_opt |= m->mount_opt; 1546 } 1547#ifdef CONFIG_QUOTA 1548 } else if (m->flags & MOPT_QFMT) { 1549 if (sb_any_quota_loaded(sb) && 1550 sbi->s_jquota_fmt != m->mount_opt) { 1551 ext4_msg(sb, KERN_ERR, "Cannot change journaled " 1552 "quota options when quota turned on"); 1553 return -1; 1554 } 1555 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 1556 EXT4_FEATURE_RO_COMPAT_QUOTA)) { 1557 ext4_msg(sb, KERN_ERR, 1558 "Cannot set journaled quota options " 1559 "when QUOTA feature is enabled"); 1560 return -1; 1561 } 1562 sbi->s_jquota_fmt = m->mount_opt; 1563#endif 1564 } else { 1565 if (!args->from) 1566 arg = 1; 1567 if (m->flags & MOPT_CLEAR) 1568 arg = !arg; 1569 else if (unlikely(!(m->flags & MOPT_SET))) { 1570 ext4_msg(sb, KERN_WARNING, 1571 "buggy handling of option %s", opt); 1572 WARN_ON(1); 1573 return -1; 1574 } 1575 if (arg != 0) 1576 sbi->s_mount_opt |= m->mount_opt; 1577 else 1578 sbi->s_mount_opt &= ~m->mount_opt; 1579 } 1580 return 1; 1581} 1582 1583static int parse_options(char *options, struct super_block *sb, 1584 unsigned long *journal_devnum, 1585 unsigned int *journal_ioprio, 1586 int is_remount) 1587{ 1588 struct ext4_sb_info *sbi = EXT4_SB(sb); 1589 char *p; 1590 substring_t args[MAX_OPT_ARGS]; 1591 int token; 1592 1593 if (!options) 1594 return 1; 1595 1596 while ((p = strsep(&options, ",")) != NULL) { 1597 if (!*p) 1598 continue; 1599 /* 1600 * Initialize args struct so we know whether arg was 1601 * found; some options take optional arguments. 1602 */ 1603 args[0].to = args[0].from = NULL; 1604 token = match_token(p, tokens, args); 1605 if (handle_mount_opt(sb, p, token, args, journal_devnum, 1606 journal_ioprio, is_remount) < 0) 1607 return 0; 1608 } 1609#ifdef CONFIG_QUOTA 1610 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) && 1611 (test_opt(sb, USRQUOTA) || test_opt(sb, GRPQUOTA))) { 1612 ext4_msg(sb, KERN_ERR, "Cannot set quota options when QUOTA " 1613 "feature is enabled"); 1614 return 0; 1615 } 1616 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) { 1617 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA]) 1618 clear_opt(sb, USRQUOTA); 1619 1620 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA]) 1621 clear_opt(sb, GRPQUOTA); 1622 1623 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) { 1624 ext4_msg(sb, KERN_ERR, "old and new quota " 1625 "format mixing"); 1626 return 0; 1627 } 1628 1629 if (!sbi->s_jquota_fmt) { 1630 ext4_msg(sb, KERN_ERR, "journaled quota format " 1631 "not specified"); 1632 return 0; 1633 } 1634 } else { 1635 if (sbi->s_jquota_fmt) { 1636 ext4_msg(sb, KERN_ERR, "journaled quota format " 1637 "specified with no journaling " 1638 "enabled"); 1639 return 0; 1640 } 1641 } 1642#endif 1643 if (test_opt(sb, DIOREAD_NOLOCK)) { 1644 int blocksize = 1645 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size); 1646 1647 if (blocksize < PAGE_CACHE_SIZE) { 1648 ext4_msg(sb, KERN_ERR, "can't mount with " 1649 "dioread_nolock if block size != PAGE_SIZE"); 1650 return 0; 1651 } 1652 } 1653 return 1; 1654} 1655 1656static inline void ext4_show_quota_options(struct seq_file *seq, 1657 struct super_block *sb) 1658{ 1659#if defined(CONFIG_QUOTA) 1660 struct ext4_sb_info *sbi = EXT4_SB(sb); 1661 1662 if (sbi->s_jquota_fmt) { 1663 char *fmtname = ""; 1664 1665 switch (sbi->s_jquota_fmt) { 1666 case QFMT_VFS_OLD: 1667 fmtname = "vfsold"; 1668 break; 1669 case QFMT_VFS_V0: 1670 fmtname = "vfsv0"; 1671 break; 1672 case QFMT_VFS_V1: 1673 fmtname = "vfsv1"; 1674 break; 1675 } 1676 seq_printf(seq, ",jqfmt=%s", fmtname); 1677 } 1678 1679 if (sbi->s_qf_names[USRQUOTA]) 1680 seq_printf(seq, ",usrjquota=%s", sbi->s_qf_names[USRQUOTA]); 1681 1682 if (sbi->s_qf_names[GRPQUOTA]) 1683 seq_printf(seq, ",grpjquota=%s", sbi->s_qf_names[GRPQUOTA]); 1684 1685 if (test_opt(sb, USRQUOTA)) 1686 seq_puts(seq, ",usrquota"); 1687 1688 if (test_opt(sb, GRPQUOTA)) 1689 seq_puts(seq, ",grpquota"); 1690#endif 1691} 1692 1693static const char *token2str(int token) 1694{ 1695 const struct match_token *t; 1696 1697 for (t = tokens; t->token != Opt_err; t++) 1698 if (t->token == token && !strchr(t->pattern, '=')) 1699 break; 1700 return t->pattern; 1701} 1702 1703/* 1704 * Show an option if 1705 * - it's set to a non-default value OR 1706 * - if the per-sb default is different from the global default 1707 */ 1708static int _ext4_show_options(struct seq_file *seq, struct super_block *sb, 1709 int nodefs) 1710{ 1711 struct ext4_sb_info *sbi = EXT4_SB(sb); 1712 struct ext4_super_block *es = sbi->s_es; 1713 int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt; 1714 const struct mount_opts *m; 1715 char sep = nodefs ? '\n' : ','; 1716 1717#define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep) 1718#define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg) 1719 1720 if (sbi->s_sb_block != 1) 1721 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block); 1722 1723 for (m = ext4_mount_opts; m->token != Opt_err; m++) { 1724 int want_set = m->flags & MOPT_SET; 1725 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) || 1726 (m->flags & MOPT_CLEAR_ERR)) 1727 continue; 1728 if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt))) 1729 continue; /* skip if same as the default */ 1730 if ((want_set && 1731 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) || 1732 (!want_set && (sbi->s_mount_opt & m->mount_opt))) 1733 continue; /* select Opt_noFoo vs Opt_Foo */ 1734 SEQ_OPTS_PRINT("%s", token2str(m->token)); 1735 } 1736 1737 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) || 1738 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) 1739 SEQ_OPTS_PRINT("resuid=%u", 1740 from_kuid_munged(&init_user_ns, sbi->s_resuid)); 1741 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) || 1742 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) 1743 SEQ_OPTS_PRINT("resgid=%u", 1744 from_kgid_munged(&init_user_ns, sbi->s_resgid)); 1745 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors); 1746 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO) 1747 SEQ_OPTS_PUTS("errors=remount-ro"); 1748 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE) 1749 SEQ_OPTS_PUTS("errors=continue"); 1750 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC) 1751 SEQ_OPTS_PUTS("errors=panic"); 1752 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) 1753 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ); 1754 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) 1755 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time); 1756 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) 1757 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time); 1758 if (sb->s_flags & MS_I_VERSION) 1759 SEQ_OPTS_PUTS("i_version"); 1760 if (nodefs || sbi->s_stripe) 1761 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe); 1762 if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) { 1763 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 1764 SEQ_OPTS_PUTS("data=journal"); 1765 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 1766 SEQ_OPTS_PUTS("data=ordered"); 1767 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA) 1768 SEQ_OPTS_PUTS("data=writeback"); 1769 } 1770 if (nodefs || 1771 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS) 1772 SEQ_OPTS_PRINT("inode_readahead_blks=%u", 1773 sbi->s_inode_readahead_blks); 1774 1775 if (nodefs || (test_opt(sb, INIT_INODE_TABLE) && 1776 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT))) 1777 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult); 1778 if (nodefs || sbi->s_max_dir_size_kb) 1779 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb); 1780 1781 ext4_show_quota_options(seq, sb); 1782 return 0; 1783} 1784 1785static int ext4_show_options(struct seq_file *seq, struct dentry *root) 1786{ 1787 return _ext4_show_options(seq, root->d_sb, 0); 1788} 1789 1790static int options_seq_show(struct seq_file *seq, void *offset) 1791{ 1792 struct super_block *sb = seq->private; 1793 int rc; 1794 1795 seq_puts(seq, (sb->s_flags & MS_RDONLY) ? "ro" : "rw"); 1796 rc = _ext4_show_options(seq, sb, 1); 1797 seq_puts(seq, "\n"); 1798 return rc; 1799} 1800 1801static int options_open_fs(struct inode *inode, struct file *file) 1802{ 1803 return single_open(file, options_seq_show, PDE(inode)->data); 1804} 1805 1806static const struct file_operations ext4_seq_options_fops = { 1807 .owner = THIS_MODULE, 1808 .open = options_open_fs, 1809 .read = seq_read, 1810 .llseek = seq_lseek, 1811 .release = single_release, 1812}; 1813 1814static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es, 1815 int read_only) 1816{ 1817 struct ext4_sb_info *sbi = EXT4_SB(sb); 1818 int res = 0; 1819 1820 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) { 1821 ext4_msg(sb, KERN_ERR, "revision level too high, " 1822 "forcing read-only mode"); 1823 res = MS_RDONLY; 1824 } 1825 if (read_only) 1826 goto done; 1827 if (!(sbi->s_mount_state & EXT4_VALID_FS)) 1828 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, " 1829 "running e2fsck is recommended"); 1830 else if ((sbi->s_mount_state & EXT4_ERROR_FS)) 1831 ext4_msg(sb, KERN_WARNING, 1832 "warning: mounting fs with errors, " 1833 "running e2fsck is recommended"); 1834 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 && 1835 le16_to_cpu(es->s_mnt_count) >= 1836 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count)) 1837 ext4_msg(sb, KERN_WARNING, 1838 "warning: maximal mount count reached, " 1839 "running e2fsck is recommended"); 1840 else if (le32_to_cpu(es->s_checkinterval) && 1841 (le32_to_cpu(es->s_lastcheck) + 1842 le32_to_cpu(es->s_checkinterval) <= get_seconds())) 1843 ext4_msg(sb, KERN_WARNING, 1844 "warning: checktime reached, " 1845 "running e2fsck is recommended"); 1846 if (!sbi->s_journal) 1847 es->s_state &= cpu_to_le16(~EXT4_VALID_FS); 1848 if (!(__s16) le16_to_cpu(es->s_max_mnt_count)) 1849 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT); 1850 le16_add_cpu(&es->s_mnt_count, 1); 1851 es->s_mtime = cpu_to_le32(get_seconds()); 1852 ext4_update_dynamic_rev(sb); 1853 if (sbi->s_journal) 1854 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 1855 1856 ext4_commit_super(sb, 1); 1857done: 1858 if (test_opt(sb, DEBUG)) 1859 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, " 1860 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n", 1861 sb->s_blocksize, 1862 sbi->s_groups_count, 1863 EXT4_BLOCKS_PER_GROUP(sb), 1864 EXT4_INODES_PER_GROUP(sb), 1865 sbi->s_mount_opt, sbi->s_mount_opt2); 1866 1867 cleancache_init_fs(sb); 1868 return res; 1869} 1870 1871int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup) 1872{ 1873 struct ext4_sb_info *sbi = EXT4_SB(sb); 1874 struct flex_groups *new_groups; 1875 int size; 1876 1877 if (!sbi->s_log_groups_per_flex) 1878 return 0; 1879 1880 size = ext4_flex_group(sbi, ngroup - 1) + 1; 1881 if (size <= sbi->s_flex_groups_allocated) 1882 return 0; 1883 1884 size = roundup_pow_of_two(size * sizeof(struct flex_groups)); 1885 new_groups = ext4_kvzalloc(size, GFP_KERNEL); 1886 if (!new_groups) { 1887 ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups", 1888 size / (int) sizeof(struct flex_groups)); 1889 return -ENOMEM; 1890 } 1891 1892 if (sbi->s_flex_groups) { 1893 memcpy(new_groups, sbi->s_flex_groups, 1894 (sbi->s_flex_groups_allocated * 1895 sizeof(struct flex_groups))); 1896 ext4_kvfree(sbi->s_flex_groups); 1897 } 1898 sbi->s_flex_groups = new_groups; 1899 sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups); 1900 return 0; 1901} 1902 1903static int ext4_fill_flex_info(struct super_block *sb) 1904{ 1905 struct ext4_sb_info *sbi = EXT4_SB(sb); 1906 struct ext4_group_desc *gdp = NULL; 1907 ext4_group_t flex_group; 1908 unsigned int groups_per_flex = 0; 1909 int i, err; 1910 1911 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex; 1912 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) { 1913 sbi->s_log_groups_per_flex = 0; 1914 return 1; 1915 } 1916 groups_per_flex = 1U << sbi->s_log_groups_per_flex; 1917 1918 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count); 1919 if (err) 1920 goto failed; 1921 1922 for (i = 0; i < sbi->s_groups_count; i++) { 1923 gdp = ext4_get_group_desc(sb, i, NULL); 1924 1925 flex_group = ext4_flex_group(sbi, i); 1926 atomic_add(ext4_free_inodes_count(sb, gdp), 1927 &sbi->s_flex_groups[flex_group].free_inodes); 1928 atomic_add(ext4_free_group_clusters(sb, gdp), 1929 &sbi->s_flex_groups[flex_group].free_clusters); 1930 atomic_add(ext4_used_dirs_count(sb, gdp), 1931 &sbi->s_flex_groups[flex_group].used_dirs); 1932 } 1933 1934 return 1; 1935failed: 1936 return 0; 1937} 1938 1939static __le16 ext4_group_desc_csum(struct ext4_sb_info *sbi, __u32 block_group, 1940 struct ext4_group_desc *gdp) 1941{ 1942 int offset; 1943 __u16 crc = 0; 1944 __le32 le_group = cpu_to_le32(block_group); 1945 1946 if ((sbi->s_es->s_feature_ro_compat & 1947 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))) { 1948 /* Use new metadata_csum algorithm */ 1949 __u16 old_csum; 1950 __u32 csum32; 1951 1952 old_csum = gdp->bg_checksum; 1953 gdp->bg_checksum = 0; 1954 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group, 1955 sizeof(le_group)); 1956 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, 1957 sbi->s_desc_size); 1958 gdp->bg_checksum = old_csum; 1959 1960 crc = csum32 & 0xFFFF; 1961 goto out; 1962 } 1963 1964 /* old crc16 code */ 1965 offset = offsetof(struct ext4_group_desc, bg_checksum); 1966 1967 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid)); 1968 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group)); 1969 crc = crc16(crc, (__u8 *)gdp, offset); 1970 offset += sizeof(gdp->bg_checksum); /* skip checksum */ 1971 /* for checksum of struct ext4_group_desc do the rest...*/ 1972 if ((sbi->s_es->s_feature_incompat & 1973 cpu_to_le32(EXT4_FEATURE_INCOMPAT_64BIT)) && 1974 offset < le16_to_cpu(sbi->s_es->s_desc_size)) 1975 crc = crc16(crc, (__u8 *)gdp + offset, 1976 le16_to_cpu(sbi->s_es->s_desc_size) - 1977 offset); 1978 1979out: 1980 return cpu_to_le16(crc); 1981} 1982 1983int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group, 1984 struct ext4_group_desc *gdp) 1985{ 1986 if (ext4_has_group_desc_csum(sb) && 1987 (gdp->bg_checksum != ext4_group_desc_csum(EXT4_SB(sb), 1988 block_group, gdp))) 1989 return 0; 1990 1991 return 1; 1992} 1993 1994void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group, 1995 struct ext4_group_desc *gdp) 1996{ 1997 if (!ext4_has_group_desc_csum(sb)) 1998 return; 1999 gdp->bg_checksum = ext4_group_desc_csum(EXT4_SB(sb), block_group, gdp); 2000} 2001 2002/* Called at mount-time, super-block is locked */ 2003static int ext4_check_descriptors(struct super_block *sb, 2004 ext4_group_t *first_not_zeroed) 2005{ 2006 struct ext4_sb_info *sbi = EXT4_SB(sb); 2007 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block); 2008 ext4_fsblk_t last_block; 2009 ext4_fsblk_t block_bitmap; 2010 ext4_fsblk_t inode_bitmap; 2011 ext4_fsblk_t inode_table; 2012 int flexbg_flag = 0; 2013 ext4_group_t i, grp = sbi->s_groups_count; 2014 2015 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG)) 2016 flexbg_flag = 1; 2017 2018 ext4_debug("Checking group descriptors"); 2019 2020 for (i = 0; i < sbi->s_groups_count; i++) { 2021 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL); 2022 2023 if (i == sbi->s_groups_count - 1 || flexbg_flag) 2024 last_block = ext4_blocks_count(sbi->s_es) - 1; 2025 else 2026 last_block = first_block + 2027 (EXT4_BLOCKS_PER_GROUP(sb) - 1); 2028 2029 if ((grp == sbi->s_groups_count) && 2030 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2031 grp = i; 2032 2033 block_bitmap = ext4_block_bitmap(sb, gdp); 2034 if (block_bitmap < first_block || block_bitmap > last_block) { 2035 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2036 "Block bitmap for group %u not in group " 2037 "(block %llu)!", i, block_bitmap); 2038 return 0; 2039 } 2040 inode_bitmap = ext4_inode_bitmap(sb, gdp); 2041 if (inode_bitmap < first_block || inode_bitmap > last_block) { 2042 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2043 "Inode bitmap for group %u not in group " 2044 "(block %llu)!", i, inode_bitmap); 2045 return 0; 2046 } 2047 inode_table = ext4_inode_table(sb, gdp); 2048 if (inode_table < first_block || 2049 inode_table + sbi->s_itb_per_group - 1 > last_block) { 2050 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2051 "Inode table for group %u not in group " 2052 "(block %llu)!", i, inode_table); 2053 return 0; 2054 } 2055 ext4_lock_group(sb, i); 2056 if (!ext4_group_desc_csum_verify(sb, i, gdp)) { 2057 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: " 2058 "Checksum for group %u failed (%u!=%u)", 2059 i, le16_to_cpu(ext4_group_desc_csum(sbi, i, 2060 gdp)), le16_to_cpu(gdp->bg_checksum)); 2061 if (!(sb->s_flags & MS_RDONLY)) { 2062 ext4_unlock_group(sb, i); 2063 return 0; 2064 } 2065 } 2066 ext4_unlock_group(sb, i); 2067 if (!flexbg_flag) 2068 first_block += EXT4_BLOCKS_PER_GROUP(sb); 2069 } 2070 if (NULL != first_not_zeroed) 2071 *first_not_zeroed = grp; 2072 2073 ext4_free_blocks_count_set(sbi->s_es, 2074 EXT4_C2B(sbi, ext4_count_free_clusters(sb))); 2075 sbi->s_es->s_free_inodes_count =cpu_to_le32(ext4_count_free_inodes(sb)); 2076 return 1; 2077} 2078 2079/* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at 2080 * the superblock) which were deleted from all directories, but held open by 2081 * a process at the time of a crash. We walk the list and try to delete these 2082 * inodes at recovery time (only with a read-write filesystem). 2083 * 2084 * In order to keep the orphan inode chain consistent during traversal (in 2085 * case of crash during recovery), we link each inode into the superblock 2086 * orphan list_head and handle it the same way as an inode deletion during 2087 * normal operation (which journals the operations for us). 2088 * 2089 * We only do an iget() and an iput() on each inode, which is very safe if we 2090 * accidentally point at an in-use or already deleted inode. The worst that 2091 * can happen in this case is that we get a "bit already cleared" message from 2092 * ext4_free_inode(). The only reason we would point at a wrong inode is if 2093 * e2fsck was run on this filesystem, and it must have already done the orphan 2094 * inode cleanup for us, so we can safely abort without any further action. 2095 */ 2096static void ext4_orphan_cleanup(struct super_block *sb, 2097 struct ext4_super_block *es) 2098{ 2099 unsigned int s_flags = sb->s_flags; 2100 int nr_orphans = 0, nr_truncates = 0; 2101#ifdef CONFIG_QUOTA 2102 int i; 2103#endif 2104 if (!es->s_last_orphan) { 2105 jbd_debug(4, "no orphan inodes to clean up\n"); 2106 return; 2107 } 2108 2109 if (bdev_read_only(sb->s_bdev)) { 2110 ext4_msg(sb, KERN_ERR, "write access " 2111 "unavailable, skipping orphan cleanup"); 2112 return; 2113 } 2114 2115 /* Check if feature set would not allow a r/w mount */ 2116 if (!ext4_feature_set_ok(sb, 0)) { 2117 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to " 2118 "unknown ROCOMPAT features"); 2119 return; 2120 } 2121 2122 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) { 2123 /* don't clear list on RO mount w/ errors */ 2124 if (es->s_last_orphan && !(s_flags & MS_RDONLY)) { 2125 jbd_debug(1, "Errors on filesystem, " 2126 "clearing orphan list.\n"); 2127 es->s_last_orphan = 0; 2128 } 2129 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n"); 2130 return; 2131 } 2132 2133 if (s_flags & MS_RDONLY) { 2134 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs"); 2135 sb->s_flags &= ~MS_RDONLY; 2136 } 2137#ifdef CONFIG_QUOTA 2138 /* Needed for iput() to work correctly and not trash data */ 2139 sb->s_flags |= MS_ACTIVE; 2140 /* Turn on quotas so that they are updated correctly */ 2141 for (i = 0; i < MAXQUOTAS; i++) { 2142 if (EXT4_SB(sb)->s_qf_names[i]) { 2143 int ret = ext4_quota_on_mount(sb, i); 2144 if (ret < 0) 2145 ext4_msg(sb, KERN_ERR, 2146 "Cannot turn on journaled " 2147 "quota: error %d", ret); 2148 } 2149 } 2150#endif 2151 2152 while (es->s_last_orphan) { 2153 struct inode *inode; 2154 2155 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan)); 2156 if (IS_ERR(inode)) { 2157 es->s_last_orphan = 0; 2158 break; 2159 } 2160 2161 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan); 2162 dquot_initialize(inode); 2163 if (inode->i_nlink) { 2164 ext4_msg(sb, KERN_DEBUG, 2165 "%s: truncating inode %lu to %lld bytes", 2166 __func__, inode->i_ino, inode->i_size); 2167 jbd_debug(2, "truncating inode %lu to %lld bytes\n", 2168 inode->i_ino, inode->i_size); 2169 mutex_lock(&inode->i_mutex); 2170 ext4_truncate(inode); 2171 mutex_unlock(&inode->i_mutex); 2172 nr_truncates++; 2173 } else { 2174 ext4_msg(sb, KERN_DEBUG, 2175 "%s: deleting unreferenced inode %lu", 2176 __func__, inode->i_ino); 2177 jbd_debug(2, "deleting unreferenced inode %lu\n", 2178 inode->i_ino); 2179 nr_orphans++; 2180 } 2181 iput(inode); /* The delete magic happens here! */ 2182 } 2183 2184#define PLURAL(x) (x), ((x) == 1) ? "" : "s" 2185 2186 if (nr_orphans) 2187 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted", 2188 PLURAL(nr_orphans)); 2189 if (nr_truncates) 2190 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up", 2191 PLURAL(nr_truncates)); 2192#ifdef CONFIG_QUOTA 2193 /* Turn quotas off */ 2194 for (i = 0; i < MAXQUOTAS; i++) { 2195 if (sb_dqopt(sb)->files[i]) 2196 dquot_quota_off(sb, i); 2197 } 2198#endif 2199 sb->s_flags = s_flags; /* Restore MS_RDONLY status */ 2200} 2201 2202/* 2203 * Maximal extent format file size. 2204 * Resulting logical blkno at s_maxbytes must fit in our on-disk 2205 * extent format containers, within a sector_t, and within i_blocks 2206 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units, 2207 * so that won't be a limiting factor. 2208 * 2209 * However there is other limiting factor. We do store extents in the form 2210 * of starting block and length, hence the resulting length of the extent 2211 * covering maximum file size must fit into on-disk format containers as 2212 * well. Given that length is always by 1 unit bigger than max unit (because 2213 * we count 0 as well) we have to lower the s_maxbytes by one fs block. 2214 * 2215 * Note, this does *not* consider any metadata overhead for vfs i_blocks. 2216 */ 2217static loff_t ext4_max_size(int blkbits, int has_huge_files) 2218{ 2219 loff_t res; 2220 loff_t upper_limit = MAX_LFS_FILESIZE; 2221 2222 /* small i_blocks in vfs inode? */ 2223 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 2224 /* 2225 * CONFIG_LBDAF is not enabled implies the inode 2226 * i_block represent total blocks in 512 bytes 2227 * 32 == size of vfs inode i_blocks * 8 2228 */ 2229 upper_limit = (1LL << 32) - 1; 2230 2231 /* total blocks in file system block size */ 2232 upper_limit >>= (blkbits - 9); 2233 upper_limit <<= blkbits; 2234 } 2235 2236 /* 2237 * 32-bit extent-start container, ee_block. We lower the maxbytes 2238 * by one fs block, so ee_len can cover the extent of maximum file 2239 * size 2240 */ 2241 res = (1LL << 32) - 1; 2242 res <<= blkbits; 2243 2244 /* Sanity check against vm- & vfs- imposed limits */ 2245 if (res > upper_limit) 2246 res = upper_limit; 2247 2248 return res; 2249} 2250 2251/* 2252 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect 2253 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks. 2254 * We need to be 1 filesystem block less than the 2^48 sector limit. 2255 */ 2256static loff_t ext4_max_bitmap_size(int bits, int has_huge_files) 2257{ 2258 loff_t res = EXT4_NDIR_BLOCKS; 2259 int meta_blocks; 2260 loff_t upper_limit; 2261 /* This is calculated to be the largest file size for a dense, block 2262 * mapped file such that the file's total number of 512-byte sectors, 2263 * including data and all indirect blocks, does not exceed (2^48 - 1). 2264 * 2265 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total 2266 * number of 512-byte sectors of the file. 2267 */ 2268 2269 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) { 2270 /* 2271 * !has_huge_files or CONFIG_LBDAF not enabled implies that 2272 * the inode i_block field represents total file blocks in 2273 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8 2274 */ 2275 upper_limit = (1LL << 32) - 1; 2276 2277 /* total blocks in file system block size */ 2278 upper_limit >>= (bits - 9); 2279 2280 } else { 2281 /* 2282 * We use 48 bit ext4_inode i_blocks 2283 * With EXT4_HUGE_FILE_FL set the i_blocks 2284 * represent total number of blocks in 2285 * file system block size 2286 */ 2287 upper_limit = (1LL << 48) - 1; 2288 2289 } 2290 2291 /* indirect blocks */ 2292 meta_blocks = 1; 2293 /* double indirect blocks */ 2294 meta_blocks += 1 + (1LL << (bits-2)); 2295 /* tripple indirect blocks */ 2296 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2))); 2297 2298 upper_limit -= meta_blocks; 2299 upper_limit <<= bits; 2300 2301 res += 1LL << (bits-2); 2302 res += 1LL << (2*(bits-2)); 2303 res += 1LL << (3*(bits-2)); 2304 res <<= bits; 2305 if (res > upper_limit) 2306 res = upper_limit; 2307 2308 if (res > MAX_LFS_FILESIZE) 2309 res = MAX_LFS_FILESIZE; 2310 2311 return res; 2312} 2313 2314static ext4_fsblk_t descriptor_loc(struct super_block *sb, 2315 ext4_fsblk_t logical_sb_block, int nr) 2316{ 2317 struct ext4_sb_info *sbi = EXT4_SB(sb); 2318 ext4_group_t bg, first_meta_bg; 2319 int has_super = 0; 2320 2321 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg); 2322 2323 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) || 2324 nr < first_meta_bg) 2325 return logical_sb_block + nr + 1; 2326 bg = sbi->s_desc_per_block * nr; 2327 if (ext4_bg_has_super(sb, bg)) 2328 has_super = 1; 2329 2330 return (has_super + ext4_group_first_block_no(sb, bg)); 2331} 2332 2333/** 2334 * ext4_get_stripe_size: Get the stripe size. 2335 * @sbi: In memory super block info 2336 * 2337 * If we have specified it via mount option, then 2338 * use the mount option value. If the value specified at mount time is 2339 * greater than the blocks per group use the super block value. 2340 * If the super block value is greater than blocks per group return 0. 2341 * Allocator needs it be less than blocks per group. 2342 * 2343 */ 2344static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi) 2345{ 2346 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride); 2347 unsigned long stripe_width = 2348 le32_to_cpu(sbi->s_es->s_raid_stripe_width); 2349 int ret; 2350 2351 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group) 2352 ret = sbi->s_stripe; 2353 else if (stripe_width <= sbi->s_blocks_per_group) 2354 ret = stripe_width; 2355 else if (stride <= sbi->s_blocks_per_group) 2356 ret = stride; 2357 else 2358 ret = 0; 2359 2360 /* 2361 * If the stripe width is 1, this makes no sense and 2362 * we set it to 0 to turn off stripe handling code. 2363 */ 2364 if (ret <= 1) 2365 ret = 0; 2366 2367 return ret; 2368} 2369 2370/* sysfs supprt */ 2371 2372struct ext4_attr { 2373 struct attribute attr; 2374 ssize_t (*show)(struct ext4_attr *, struct ext4_sb_info *, char *); 2375 ssize_t (*store)(struct ext4_attr *, struct ext4_sb_info *, 2376 const char *, size_t); 2377 int offset; 2378}; 2379 2380static int parse_strtoul(const char *buf, 2381 unsigned long max, unsigned long *value) 2382{ 2383 char *endp; 2384 2385 *value = simple_strtoul(skip_spaces(buf), &endp, 0); 2386 endp = skip_spaces(endp); 2387 if (*endp || *value > max) 2388 return -EINVAL; 2389 2390 return 0; 2391} 2392 2393static ssize_t delayed_allocation_blocks_show(struct ext4_attr *a, 2394 struct ext4_sb_info *sbi, 2395 char *buf) 2396{ 2397 return snprintf(buf, PAGE_SIZE, "%llu\n", 2398 (s64) EXT4_C2B(sbi, 2399 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 2400} 2401 2402static ssize_t session_write_kbytes_show(struct ext4_attr *a, 2403 struct ext4_sb_info *sbi, char *buf) 2404{ 2405 struct super_block *sb = sbi->s_buddy_cache->i_sb; 2406 2407 if (!sb->s_bdev->bd_part) 2408 return snprintf(buf, PAGE_SIZE, "0\n"); 2409 return snprintf(buf, PAGE_SIZE, "%lu\n", 2410 (part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 2411 sbi->s_sectors_written_start) >> 1); 2412} 2413 2414static ssize_t lifetime_write_kbytes_show(struct ext4_attr *a, 2415 struct ext4_sb_info *sbi, char *buf) 2416{ 2417 struct super_block *sb = sbi->s_buddy_cache->i_sb; 2418 2419 if (!sb->s_bdev->bd_part) 2420 return snprintf(buf, PAGE_SIZE, "0\n"); 2421 return snprintf(buf, PAGE_SIZE, "%llu\n", 2422 (unsigned long long)(sbi->s_kbytes_written + 2423 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 2424 EXT4_SB(sb)->s_sectors_written_start) >> 1))); 2425} 2426 2427static ssize_t inode_readahead_blks_store(struct ext4_attr *a, 2428 struct ext4_sb_info *sbi, 2429 const char *buf, size_t count) 2430{ 2431 unsigned long t; 2432 2433 if (parse_strtoul(buf, 0x40000000, &t)) 2434 return -EINVAL; 2435 2436 if (t && !is_power_of_2(t)) 2437 return -EINVAL; 2438 2439 sbi->s_inode_readahead_blks = t; 2440 return count; 2441} 2442 2443static ssize_t sbi_ui_show(struct ext4_attr *a, 2444 struct ext4_sb_info *sbi, char *buf) 2445{ 2446 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset); 2447 2448 return snprintf(buf, PAGE_SIZE, "%u\n", *ui); 2449} 2450 2451static ssize_t sbi_ui_store(struct ext4_attr *a, 2452 struct ext4_sb_info *sbi, 2453 const char *buf, size_t count) 2454{ 2455 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset); 2456 unsigned long t; 2457 2458 if (parse_strtoul(buf, 0xffffffff, &t)) 2459 return -EINVAL; 2460 *ui = t; 2461 return count; 2462} 2463 2464static ssize_t trigger_test_error(struct ext4_attr *a, 2465 struct ext4_sb_info *sbi, 2466 const char *buf, size_t count) 2467{ 2468 int len = count; 2469 2470 if (!capable(CAP_SYS_ADMIN)) 2471 return -EPERM; 2472 2473 if (len && buf[len-1] == '\n') 2474 len--; 2475 2476 if (len) 2477 ext4_error(sbi->s_sb, "%.*s", len, buf); 2478 return count; 2479} 2480 2481#define EXT4_ATTR_OFFSET(_name,_mode,_show,_store,_elname) \ 2482static struct ext4_attr ext4_attr_##_name = { \ 2483 .attr = {.name = __stringify(_name), .mode = _mode }, \ 2484 .show = _show, \ 2485 .store = _store, \ 2486 .offset = offsetof(struct ext4_sb_info, _elname), \ 2487} 2488#define EXT4_ATTR(name, mode, show, store) \ 2489static struct ext4_attr ext4_attr_##name = __ATTR(name, mode, show, store) 2490 2491#define EXT4_INFO_ATTR(name) EXT4_ATTR(name, 0444, NULL, NULL) 2492#define EXT4_RO_ATTR(name) EXT4_ATTR(name, 0444, name##_show, NULL) 2493#define EXT4_RW_ATTR(name) EXT4_ATTR(name, 0644, name##_show, name##_store) 2494#define EXT4_RW_ATTR_SBI_UI(name, elname) \ 2495 EXT4_ATTR_OFFSET(name, 0644, sbi_ui_show, sbi_ui_store, elname) 2496#define ATTR_LIST(name) &ext4_attr_##name.attr 2497 2498EXT4_RO_ATTR(delayed_allocation_blocks); 2499EXT4_RO_ATTR(session_write_kbytes); 2500EXT4_RO_ATTR(lifetime_write_kbytes); 2501EXT4_ATTR_OFFSET(inode_readahead_blks, 0644, sbi_ui_show, 2502 inode_readahead_blks_store, s_inode_readahead_blks); 2503EXT4_RW_ATTR_SBI_UI(inode_goal, s_inode_goal); 2504EXT4_RW_ATTR_SBI_UI(mb_stats, s_mb_stats); 2505EXT4_RW_ATTR_SBI_UI(mb_max_to_scan, s_mb_max_to_scan); 2506EXT4_RW_ATTR_SBI_UI(mb_min_to_scan, s_mb_min_to_scan); 2507EXT4_RW_ATTR_SBI_UI(mb_order2_req, s_mb_order2_reqs); 2508EXT4_RW_ATTR_SBI_UI(mb_stream_req, s_mb_stream_request); 2509EXT4_RW_ATTR_SBI_UI(mb_group_prealloc, s_mb_group_prealloc); 2510EXT4_RW_ATTR_SBI_UI(max_writeback_mb_bump, s_max_writeback_mb_bump); 2511EXT4_RW_ATTR_SBI_UI(extent_max_zeroout_kb, s_extent_max_zeroout_kb); 2512EXT4_ATTR(trigger_fs_error, 0200, NULL, trigger_test_error); 2513 2514static struct attribute *ext4_attrs[] = { 2515 ATTR_LIST(delayed_allocation_blocks), 2516 ATTR_LIST(session_write_kbytes), 2517 ATTR_LIST(lifetime_write_kbytes), 2518 ATTR_LIST(inode_readahead_blks), 2519 ATTR_LIST(inode_goal), 2520 ATTR_LIST(mb_stats), 2521 ATTR_LIST(mb_max_to_scan), 2522 ATTR_LIST(mb_min_to_scan), 2523 ATTR_LIST(mb_order2_req), 2524 ATTR_LIST(mb_stream_req), 2525 ATTR_LIST(mb_group_prealloc), 2526 ATTR_LIST(max_writeback_mb_bump), 2527 ATTR_LIST(extent_max_zeroout_kb), 2528 ATTR_LIST(trigger_fs_error), 2529 NULL, 2530}; 2531 2532/* Features this copy of ext4 supports */ 2533EXT4_INFO_ATTR(lazy_itable_init); 2534EXT4_INFO_ATTR(batched_discard); 2535EXT4_INFO_ATTR(meta_bg_resize); 2536 2537static struct attribute *ext4_feat_attrs[] = { 2538 ATTR_LIST(lazy_itable_init), 2539 ATTR_LIST(batched_discard), 2540 ATTR_LIST(meta_bg_resize), 2541 NULL, 2542}; 2543 2544static ssize_t ext4_attr_show(struct kobject *kobj, 2545 struct attribute *attr, char *buf) 2546{ 2547 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info, 2548 s_kobj); 2549 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr); 2550 2551 return a->show ? a->show(a, sbi, buf) : 0; 2552} 2553 2554static ssize_t ext4_attr_store(struct kobject *kobj, 2555 struct attribute *attr, 2556 const char *buf, size_t len) 2557{ 2558 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info, 2559 s_kobj); 2560 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr); 2561 2562 return a->store ? a->store(a, sbi, buf, len) : 0; 2563} 2564 2565static void ext4_sb_release(struct kobject *kobj) 2566{ 2567 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info, 2568 s_kobj); 2569 complete(&sbi->s_kobj_unregister); 2570} 2571 2572static const struct sysfs_ops ext4_attr_ops = { 2573 .show = ext4_attr_show, 2574 .store = ext4_attr_store, 2575}; 2576 2577static struct kobj_type ext4_ktype = { 2578 .default_attrs = ext4_attrs, 2579 .sysfs_ops = &ext4_attr_ops, 2580 .release = ext4_sb_release, 2581}; 2582 2583static void ext4_feat_release(struct kobject *kobj) 2584{ 2585 complete(&ext4_feat->f_kobj_unregister); 2586} 2587 2588static struct kobj_type ext4_feat_ktype = { 2589 .default_attrs = ext4_feat_attrs, 2590 .sysfs_ops = &ext4_attr_ops, 2591 .release = ext4_feat_release, 2592}; 2593 2594/* 2595 * Check whether this filesystem can be mounted based on 2596 * the features present and the RDONLY/RDWR mount requested. 2597 * Returns 1 if this filesystem can be mounted as requested, 2598 * 0 if it cannot be. 2599 */ 2600static int ext4_feature_set_ok(struct super_block *sb, int readonly) 2601{ 2602 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT4_FEATURE_INCOMPAT_SUPP)) { 2603 ext4_msg(sb, KERN_ERR, 2604 "Couldn't mount because of " 2605 "unsupported optional features (%x)", 2606 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) & 2607 ~EXT4_FEATURE_INCOMPAT_SUPP)); 2608 return 0; 2609 } 2610 2611 if (readonly) 2612 return 1; 2613 2614 /* Check that feature set is OK for a read-write mount */ 2615 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT4_FEATURE_RO_COMPAT_SUPP)) { 2616 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of " 2617 "unsupported optional features (%x)", 2618 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) & 2619 ~EXT4_FEATURE_RO_COMPAT_SUPP)); 2620 return 0; 2621 } 2622 /* 2623 * Large file size enabled file system can only be mounted 2624 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF 2625 */ 2626 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) { 2627 if (sizeof(blkcnt_t) < sizeof(u64)) { 2628 ext4_msg(sb, KERN_ERR, "Filesystem with huge files " 2629 "cannot be mounted RDWR without " 2630 "CONFIG_LBDAF"); 2631 return 0; 2632 } 2633 } 2634 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC) && 2635 !EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) { 2636 ext4_msg(sb, KERN_ERR, 2637 "Can't support bigalloc feature without " 2638 "extents feature\n"); 2639 return 0; 2640 } 2641 2642#ifndef CONFIG_QUOTA 2643 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) && 2644 !readonly) { 2645 ext4_msg(sb, KERN_ERR, 2646 "Filesystem with quota feature cannot be mounted RDWR " 2647 "without CONFIG_QUOTA"); 2648 return 0; 2649 } 2650#endif /* CONFIG_QUOTA */ 2651 return 1; 2652} 2653 2654/* 2655 * This function is called once a day if we have errors logged 2656 * on the file system 2657 */ 2658static void print_daily_error_info(unsigned long arg) 2659{ 2660 struct super_block *sb = (struct super_block *) arg; 2661 struct ext4_sb_info *sbi; 2662 struct ext4_super_block *es; 2663 2664 sbi = EXT4_SB(sb); 2665 es = sbi->s_es; 2666 2667 if (es->s_error_count) 2668 ext4_msg(sb, KERN_NOTICE, "error count: %u", 2669 le32_to_cpu(es->s_error_count)); 2670 if (es->s_first_error_time) { 2671 printk(KERN_NOTICE "EXT4-fs (%s): initial error at %u: %.*s:%d", 2672 sb->s_id, le32_to_cpu(es->s_first_error_time), 2673 (int) sizeof(es->s_first_error_func), 2674 es->s_first_error_func, 2675 le32_to_cpu(es->s_first_error_line)); 2676 if (es->s_first_error_ino) 2677 printk(": inode %u", 2678 le32_to_cpu(es->s_first_error_ino)); 2679 if (es->s_first_error_block) 2680 printk(": block %llu", (unsigned long long) 2681 le64_to_cpu(es->s_first_error_block)); 2682 printk("\n"); 2683 } 2684 if (es->s_last_error_time) { 2685 printk(KERN_NOTICE "EXT4-fs (%s): last error at %u: %.*s:%d", 2686 sb->s_id, le32_to_cpu(es->s_last_error_time), 2687 (int) sizeof(es->s_last_error_func), 2688 es->s_last_error_func, 2689 le32_to_cpu(es->s_last_error_line)); 2690 if (es->s_last_error_ino) 2691 printk(": inode %u", 2692 le32_to_cpu(es->s_last_error_ino)); 2693 if (es->s_last_error_block) 2694 printk(": block %llu", (unsigned long long) 2695 le64_to_cpu(es->s_last_error_block)); 2696 printk("\n"); 2697 } 2698 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */ 2699} 2700 2701/* Find next suitable group and run ext4_init_inode_table */ 2702static int ext4_run_li_request(struct ext4_li_request *elr) 2703{ 2704 struct ext4_group_desc *gdp = NULL; 2705 ext4_group_t group, ngroups; 2706 struct super_block *sb; 2707 unsigned long timeout = 0; 2708 int ret = 0; 2709 2710 sb = elr->lr_super; 2711 ngroups = EXT4_SB(sb)->s_groups_count; 2712 2713 sb_start_write(sb); 2714 for (group = elr->lr_next_group; group < ngroups; group++) { 2715 gdp = ext4_get_group_desc(sb, group, NULL); 2716 if (!gdp) { 2717 ret = 1; 2718 break; 2719 } 2720 2721 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2722 break; 2723 } 2724 2725 if (group >= ngroups) 2726 ret = 1; 2727 2728 if (!ret) { 2729 timeout = jiffies; 2730 ret = ext4_init_inode_table(sb, group, 2731 elr->lr_timeout ? 0 : 1); 2732 if (elr->lr_timeout == 0) { 2733 timeout = (jiffies - timeout) * 2734 elr->lr_sbi->s_li_wait_mult; 2735 elr->lr_timeout = timeout; 2736 } 2737 elr->lr_next_sched = jiffies + elr->lr_timeout; 2738 elr->lr_next_group = group + 1; 2739 } 2740 sb_end_write(sb); 2741 2742 return ret; 2743} 2744 2745/* 2746 * Remove lr_request from the list_request and free the 2747 * request structure. Should be called with li_list_mtx held 2748 */ 2749static void ext4_remove_li_request(struct ext4_li_request *elr) 2750{ 2751 struct ext4_sb_info *sbi; 2752 2753 if (!elr) 2754 return; 2755 2756 sbi = elr->lr_sbi; 2757 2758 list_del(&elr->lr_request); 2759 sbi->s_li_request = NULL; 2760 kfree(elr); 2761} 2762 2763static void ext4_unregister_li_request(struct super_block *sb) 2764{ 2765 mutex_lock(&ext4_li_mtx); 2766 if (!ext4_li_info) { 2767 mutex_unlock(&ext4_li_mtx); 2768 return; 2769 } 2770 2771 mutex_lock(&ext4_li_info->li_list_mtx); 2772 ext4_remove_li_request(EXT4_SB(sb)->s_li_request); 2773 mutex_unlock(&ext4_li_info->li_list_mtx); 2774 mutex_unlock(&ext4_li_mtx); 2775} 2776 2777static struct task_struct *ext4_lazyinit_task; 2778 2779/* 2780 * This is the function where ext4lazyinit thread lives. It walks 2781 * through the request list searching for next scheduled filesystem. 2782 * When such a fs is found, run the lazy initialization request 2783 * (ext4_rn_li_request) and keep track of the time spend in this 2784 * function. Based on that time we compute next schedule time of 2785 * the request. When walking through the list is complete, compute 2786 * next waking time and put itself into sleep. 2787 */ 2788static int ext4_lazyinit_thread(void *arg) 2789{ 2790 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg; 2791 struct list_head *pos, *n; 2792 struct ext4_li_request *elr; 2793 unsigned long next_wakeup, cur; 2794 2795 BUG_ON(NULL == eli); 2796 2797cont_thread: 2798 while (true) { 2799 next_wakeup = MAX_JIFFY_OFFSET; 2800 2801 mutex_lock(&eli->li_list_mtx); 2802 if (list_empty(&eli->li_request_list)) { 2803 mutex_unlock(&eli->li_list_mtx); 2804 goto exit_thread; 2805 } 2806 2807 list_for_each_safe(pos, n, &eli->li_request_list) { 2808 elr = list_entry(pos, struct ext4_li_request, 2809 lr_request); 2810 2811 if (time_after_eq(jiffies, elr->lr_next_sched)) { 2812 if (ext4_run_li_request(elr) != 0) { 2813 /* error, remove the lazy_init job */ 2814 ext4_remove_li_request(elr); 2815 continue; 2816 } 2817 } 2818 2819 if (time_before(elr->lr_next_sched, next_wakeup)) 2820 next_wakeup = elr->lr_next_sched; 2821 } 2822 mutex_unlock(&eli->li_list_mtx); 2823 2824 try_to_freeze(); 2825 2826 cur = jiffies; 2827 if ((time_after_eq(cur, next_wakeup)) || 2828 (MAX_JIFFY_OFFSET == next_wakeup)) { 2829 cond_resched(); 2830 continue; 2831 } 2832 2833 schedule_timeout_interruptible(next_wakeup - cur); 2834 2835 if (kthread_should_stop()) { 2836 ext4_clear_request_list(); 2837 goto exit_thread; 2838 } 2839 } 2840 2841exit_thread: 2842 /* 2843 * It looks like the request list is empty, but we need 2844 * to check it under the li_list_mtx lock, to prevent any 2845 * additions into it, and of course we should lock ext4_li_mtx 2846 * to atomically free the list and ext4_li_info, because at 2847 * this point another ext4 filesystem could be registering 2848 * new one. 2849 */ 2850 mutex_lock(&ext4_li_mtx); 2851 mutex_lock(&eli->li_list_mtx); 2852 if (!list_empty(&eli->li_request_list)) { 2853 mutex_unlock(&eli->li_list_mtx); 2854 mutex_unlock(&ext4_li_mtx); 2855 goto cont_thread; 2856 } 2857 mutex_unlock(&eli->li_list_mtx); 2858 kfree(ext4_li_info); 2859 ext4_li_info = NULL; 2860 mutex_unlock(&ext4_li_mtx); 2861 2862 return 0; 2863} 2864 2865static void ext4_clear_request_list(void) 2866{ 2867 struct list_head *pos, *n; 2868 struct ext4_li_request *elr; 2869 2870 mutex_lock(&ext4_li_info->li_list_mtx); 2871 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) { 2872 elr = list_entry(pos, struct ext4_li_request, 2873 lr_request); 2874 ext4_remove_li_request(elr); 2875 } 2876 mutex_unlock(&ext4_li_info->li_list_mtx); 2877} 2878 2879static int ext4_run_lazyinit_thread(void) 2880{ 2881 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread, 2882 ext4_li_info, "ext4lazyinit"); 2883 if (IS_ERR(ext4_lazyinit_task)) { 2884 int err = PTR_ERR(ext4_lazyinit_task); 2885 ext4_clear_request_list(); 2886 kfree(ext4_li_info); 2887 ext4_li_info = NULL; 2888 printk(KERN_CRIT "EXT4-fs: error %d creating inode table " 2889 "initialization thread\n", 2890 err); 2891 return err; 2892 } 2893 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING; 2894 return 0; 2895} 2896 2897/* 2898 * Check whether it make sense to run itable init. thread or not. 2899 * If there is at least one uninitialized inode table, return 2900 * corresponding group number, else the loop goes through all 2901 * groups and return total number of groups. 2902 */ 2903static ext4_group_t ext4_has_uninit_itable(struct super_block *sb) 2904{ 2905 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count; 2906 struct ext4_group_desc *gdp = NULL; 2907 2908 for (group = 0; group < ngroups; group++) { 2909 gdp = ext4_get_group_desc(sb, group, NULL); 2910 if (!gdp) 2911 continue; 2912 2913 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))) 2914 break; 2915 } 2916 2917 return group; 2918} 2919 2920static int ext4_li_info_new(void) 2921{ 2922 struct ext4_lazy_init *eli = NULL; 2923 2924 eli = kzalloc(sizeof(*eli), GFP_KERNEL); 2925 if (!eli) 2926 return -ENOMEM; 2927 2928 INIT_LIST_HEAD(&eli->li_request_list); 2929 mutex_init(&eli->li_list_mtx); 2930 2931 eli->li_state |= EXT4_LAZYINIT_QUIT; 2932 2933 ext4_li_info = eli; 2934 2935 return 0; 2936} 2937 2938static struct ext4_li_request *ext4_li_request_new(struct super_block *sb, 2939 ext4_group_t start) 2940{ 2941 struct ext4_sb_info *sbi = EXT4_SB(sb); 2942 struct ext4_li_request *elr; 2943 unsigned long rnd; 2944 2945 elr = kzalloc(sizeof(*elr), GFP_KERNEL); 2946 if (!elr) 2947 return NULL; 2948 2949 elr->lr_super = sb; 2950 elr->lr_sbi = sbi; 2951 elr->lr_next_group = start; 2952 2953 /* 2954 * Randomize first schedule time of the request to 2955 * spread the inode table initialization requests 2956 * better. 2957 */ 2958 get_random_bytes(&rnd, sizeof(rnd)); 2959 elr->lr_next_sched = jiffies + (unsigned long)rnd % 2960 (EXT4_DEF_LI_MAX_START_DELAY * HZ); 2961 2962 return elr; 2963} 2964 2965int ext4_register_li_request(struct super_block *sb, 2966 ext4_group_t first_not_zeroed) 2967{ 2968 struct ext4_sb_info *sbi = EXT4_SB(sb); 2969 struct ext4_li_request *elr = NULL; 2970 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count; 2971 int ret = 0; 2972 2973 mutex_lock(&ext4_li_mtx); 2974 if (sbi->s_li_request != NULL) { 2975 /* 2976 * Reset timeout so it can be computed again, because 2977 * s_li_wait_mult might have changed. 2978 */ 2979 sbi->s_li_request->lr_timeout = 0; 2980 goto out; 2981 } 2982 2983 if (first_not_zeroed == ngroups || 2984 (sb->s_flags & MS_RDONLY) || 2985 !test_opt(sb, INIT_INODE_TABLE)) 2986 goto out; 2987 2988 elr = ext4_li_request_new(sb, first_not_zeroed); 2989 if (!elr) { 2990 ret = -ENOMEM; 2991 goto out; 2992 } 2993 2994 if (NULL == ext4_li_info) { 2995 ret = ext4_li_info_new(); 2996 if (ret) 2997 goto out; 2998 } 2999 3000 mutex_lock(&ext4_li_info->li_list_mtx); 3001 list_add(&elr->lr_request, &ext4_li_info->li_request_list); 3002 mutex_unlock(&ext4_li_info->li_list_mtx); 3003 3004 sbi->s_li_request = elr; 3005 /* 3006 * set elr to NULL here since it has been inserted to 3007 * the request_list and the removal and free of it is 3008 * handled by ext4_clear_request_list from now on. 3009 */ 3010 elr = NULL; 3011 3012 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) { 3013 ret = ext4_run_lazyinit_thread(); 3014 if (ret) 3015 goto out; 3016 } 3017out: 3018 mutex_unlock(&ext4_li_mtx); 3019 if (ret) 3020 kfree(elr); 3021 return ret; 3022} 3023 3024/* 3025 * We do not need to lock anything since this is called on 3026 * module unload. 3027 */ 3028static void ext4_destroy_lazyinit_thread(void) 3029{ 3030 /* 3031 * If thread exited earlier 3032 * there's nothing to be done. 3033 */ 3034 if (!ext4_li_info || !ext4_lazyinit_task) 3035 return; 3036 3037 kthread_stop(ext4_lazyinit_task); 3038} 3039 3040static int set_journal_csum_feature_set(struct super_block *sb) 3041{ 3042 int ret = 1; 3043 int compat, incompat; 3044 struct ext4_sb_info *sbi = EXT4_SB(sb); 3045 3046 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3047 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) { 3048 /* journal checksum v2 */ 3049 compat = 0; 3050 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V2; 3051 } else { 3052 /* journal checksum v1 */ 3053 compat = JBD2_FEATURE_COMPAT_CHECKSUM; 3054 incompat = 0; 3055 } 3056 3057 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) { 3058 ret = jbd2_journal_set_features(sbi->s_journal, 3059 compat, 0, 3060 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT | 3061 incompat); 3062 } else if (test_opt(sb, JOURNAL_CHECKSUM)) { 3063 ret = jbd2_journal_set_features(sbi->s_journal, 3064 compat, 0, 3065 incompat); 3066 jbd2_journal_clear_features(sbi->s_journal, 0, 0, 3067 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT); 3068 } else { 3069 jbd2_journal_clear_features(sbi->s_journal, 3070 JBD2_FEATURE_COMPAT_CHECKSUM, 0, 3071 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT | 3072 JBD2_FEATURE_INCOMPAT_CSUM_V2); 3073 } 3074 3075 return ret; 3076} 3077 3078/* 3079 * Note: calculating the overhead so we can be compatible with 3080 * historical BSD practice is quite difficult in the face of 3081 * clusters/bigalloc. This is because multiple metadata blocks from 3082 * different block group can end up in the same allocation cluster. 3083 * Calculating the exact overhead in the face of clustered allocation 3084 * requires either O(all block bitmaps) in memory or O(number of block 3085 * groups**2) in time. We will still calculate the superblock for 3086 * older file systems --- and if we come across with a bigalloc file 3087 * system with zero in s_overhead_clusters the estimate will be close to 3088 * correct especially for very large cluster sizes --- but for newer 3089 * file systems, it's better to calculate this figure once at mkfs 3090 * time, and store it in the superblock. If the superblock value is 3091 * present (even for non-bigalloc file systems), we will use it. 3092 */ 3093static int count_overhead(struct super_block *sb, ext4_group_t grp, 3094 char *buf) 3095{ 3096 struct ext4_sb_info *sbi = EXT4_SB(sb); 3097 struct ext4_group_desc *gdp; 3098 ext4_fsblk_t first_block, last_block, b; 3099 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3100 int s, j, count = 0; 3101 3102 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC)) 3103 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) + 3104 sbi->s_itb_per_group + 2); 3105 3106 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) + 3107 (grp * EXT4_BLOCKS_PER_GROUP(sb)); 3108 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1; 3109 for (i = 0; i < ngroups; i++) { 3110 gdp = ext4_get_group_desc(sb, i, NULL); 3111 b = ext4_block_bitmap(sb, gdp); 3112 if (b >= first_block && b <= last_block) { 3113 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3114 count++; 3115 } 3116 b = ext4_inode_bitmap(sb, gdp); 3117 if (b >= first_block && b <= last_block) { 3118 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf); 3119 count++; 3120 } 3121 b = ext4_inode_table(sb, gdp); 3122 if (b >= first_block && b + sbi->s_itb_per_group <= last_block) 3123 for (j = 0; j < sbi->s_itb_per_group; j++, b++) { 3124 int c = EXT4_B2C(sbi, b - first_block); 3125 ext4_set_bit(c, buf); 3126 count++; 3127 } 3128 if (i != grp) 3129 continue; 3130 s = 0; 3131 if (ext4_bg_has_super(sb, grp)) { 3132 ext4_set_bit(s++, buf); 3133 count++; 3134 } 3135 for (j = ext4_bg_num_gdb(sb, grp); j > 0; j--) { 3136 ext4_set_bit(EXT4_B2C(sbi, s++), buf); 3137 count++; 3138 } 3139 } 3140 if (!count) 3141 return 0; 3142 return EXT4_CLUSTERS_PER_GROUP(sb) - 3143 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8); 3144} 3145 3146/* 3147 * Compute the overhead and stash it in sbi->s_overhead 3148 */ 3149int ext4_calculate_overhead(struct super_block *sb) 3150{ 3151 struct ext4_sb_info *sbi = EXT4_SB(sb); 3152 struct ext4_super_block *es = sbi->s_es; 3153 ext4_group_t i, ngroups = ext4_get_groups_count(sb); 3154 ext4_fsblk_t overhead = 0; 3155 char *buf = (char *) get_zeroed_page(GFP_KERNEL); 3156 3157 if (!buf) 3158 return -ENOMEM; 3159 3160 /* 3161 * Compute the overhead (FS structures). This is constant 3162 * for a given filesystem unless the number of block groups 3163 * changes so we cache the previous value until it does. 3164 */ 3165 3166 /* 3167 * All of the blocks before first_data_block are overhead 3168 */ 3169 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block)); 3170 3171 /* 3172 * Add the overhead found in each block group 3173 */ 3174 for (i = 0; i < ngroups; i++) { 3175 int blks; 3176 3177 blks = count_overhead(sb, i, buf); 3178 overhead += blks; 3179 if (blks) 3180 memset(buf, 0, PAGE_SIZE); 3181 cond_resched(); 3182 } 3183 /* Add the journal blocks as well */ 3184 if (sbi->s_journal) 3185 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen); 3186 3187 sbi->s_overhead = overhead; 3188 smp_wmb(); 3189 free_page((unsigned long) buf); 3190 return 0; 3191} 3192 3193static int ext4_fill_super(struct super_block *sb, void *data, int silent) 3194{ 3195 char *orig_data = kstrdup(data, GFP_KERNEL); 3196 struct buffer_head *bh; 3197 struct ext4_super_block *es = NULL; 3198 struct ext4_sb_info *sbi; 3199 ext4_fsblk_t block; 3200 ext4_fsblk_t sb_block = get_sb_block(&data); 3201 ext4_fsblk_t logical_sb_block; 3202 unsigned long offset = 0; 3203 unsigned long journal_devnum = 0; 3204 unsigned long def_mount_opts; 3205 struct inode *root; 3206 char *cp; 3207 const char *descr; 3208 int ret = -ENOMEM; 3209 int blocksize, clustersize; 3210 unsigned int db_count; 3211 unsigned int i; 3212 int needs_recovery, has_huge_files, has_bigalloc; 3213 __u64 blocks_count; 3214 int err = 0; 3215 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 3216 ext4_group_t first_not_zeroed; 3217 3218 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 3219 if (!sbi) 3220 goto out_free_orig; 3221 3222 sbi->s_blockgroup_lock = 3223 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL); 3224 if (!sbi->s_blockgroup_lock) { 3225 kfree(sbi); 3226 goto out_free_orig; 3227 } 3228 sb->s_fs_info = sbi; 3229 sbi->s_sb = sb; 3230 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS; 3231 sbi->s_sb_block = sb_block; 3232 if (sb->s_bdev->bd_part) 3233 sbi->s_sectors_written_start = 3234 part_stat_read(sb->s_bdev->bd_part, sectors[1]); 3235 3236 /* Cleanup superblock name */ 3237 for (cp = sb->s_id; (cp = strchr(cp, '/'));) 3238 *cp = '!'; 3239 3240 /* -EINVAL is default */ 3241 ret = -EINVAL; 3242 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE); 3243 if (!blocksize) { 3244 ext4_msg(sb, KERN_ERR, "unable to set blocksize"); 3245 goto out_fail; 3246 } 3247 3248 /* 3249 * The ext4 superblock will not be buffer aligned for other than 1kB 3250 * block sizes. We need to calculate the offset from buffer start. 3251 */ 3252 if (blocksize != EXT4_MIN_BLOCK_SIZE) { 3253 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3254 offset = do_div(logical_sb_block, blocksize); 3255 } else { 3256 logical_sb_block = sb_block; 3257 } 3258 3259 if (!(bh = sb_bread(sb, logical_sb_block))) { 3260 ext4_msg(sb, KERN_ERR, "unable to read superblock"); 3261 goto out_fail; 3262 } 3263 /* 3264 * Note: s_es must be initialized as soon as possible because 3265 * some ext4 macro-instructions depend on its value 3266 */ 3267 es = (struct ext4_super_block *) (bh->b_data + offset); 3268 sbi->s_es = es; 3269 sb->s_magic = le16_to_cpu(es->s_magic); 3270 if (sb->s_magic != EXT4_SUPER_MAGIC) 3271 goto cantfind_ext4; 3272 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written); 3273 3274 /* Warn if metadata_csum and gdt_csum are both set. */ 3275 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3276 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) && 3277 EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) 3278 ext4_warning(sb, KERN_INFO "metadata_csum and uninit_bg are " 3279 "redundant flags; please run fsck."); 3280 3281 /* Check for a known checksum algorithm */ 3282 if (!ext4_verify_csum_type(sb, es)) { 3283 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3284 "unknown checksum algorithm."); 3285 silent = 1; 3286 goto cantfind_ext4; 3287 } 3288 3289 /* Load the checksum driver */ 3290 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3291 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) { 3292 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 3293 if (IS_ERR(sbi->s_chksum_driver)) { 3294 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver."); 3295 ret = PTR_ERR(sbi->s_chksum_driver); 3296 sbi->s_chksum_driver = NULL; 3297 goto failed_mount; 3298 } 3299 } 3300 3301 /* Check superblock checksum */ 3302 if (!ext4_superblock_csum_verify(sb, es)) { 3303 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with " 3304 "invalid superblock checksum. Run e2fsck?"); 3305 silent = 1; 3306 goto cantfind_ext4; 3307 } 3308 3309 /* Precompute checksum seed for all metadata */ 3310 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3311 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) 3312 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid, 3313 sizeof(es->s_uuid)); 3314 3315 /* Set defaults before we parse the mount options */ 3316 def_mount_opts = le32_to_cpu(es->s_default_mount_opts); 3317 set_opt(sb, INIT_INODE_TABLE); 3318 if (def_mount_opts & EXT4_DEFM_DEBUG) 3319 set_opt(sb, DEBUG); 3320 if (def_mount_opts & EXT4_DEFM_BSDGROUPS) 3321 set_opt(sb, GRPID); 3322 if (def_mount_opts & EXT4_DEFM_UID16) 3323 set_opt(sb, NO_UID32); 3324 /* xattr user namespace & acls are now defaulted on */ 3325 set_opt(sb, XATTR_USER); 3326#ifdef CONFIG_EXT4_FS_POSIX_ACL 3327 set_opt(sb, POSIX_ACL); 3328#endif 3329 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA) 3330 set_opt(sb, JOURNAL_DATA); 3331 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED) 3332 set_opt(sb, ORDERED_DATA); 3333 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK) 3334 set_opt(sb, WRITEBACK_DATA); 3335 3336 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC) 3337 set_opt(sb, ERRORS_PANIC); 3338 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE) 3339 set_opt(sb, ERRORS_CONT); 3340 else 3341 set_opt(sb, ERRORS_RO); 3342 if (def_mount_opts & EXT4_DEFM_BLOCK_VALIDITY) 3343 set_opt(sb, BLOCK_VALIDITY); 3344 if (def_mount_opts & EXT4_DEFM_DISCARD) 3345 set_opt(sb, DISCARD); 3346 3347 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid)); 3348 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid)); 3349 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ; 3350 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME; 3351 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME; 3352 3353 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0) 3354 set_opt(sb, BARRIER); 3355 3356 /* 3357 * enable delayed allocation by default 3358 * Use -o nodelalloc to turn it off 3359 */ 3360 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) && 3361 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0)) 3362 set_opt(sb, DELALLOC); 3363 3364 /* 3365 * set default s_li_wait_mult for lazyinit, for the case there is 3366 * no mount option specified. 3367 */ 3368 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT; 3369 3370 if (!parse_options((char *) sbi->s_es->s_mount_opts, sb, 3371 &journal_devnum, &journal_ioprio, 0)) { 3372 ext4_msg(sb, KERN_WARNING, 3373 "failed to parse options in superblock: %s", 3374 sbi->s_es->s_mount_opts); 3375 } 3376 sbi->s_def_mount_opt = sbi->s_mount_opt; 3377 if (!parse_options((char *) data, sb, &journal_devnum, 3378 &journal_ioprio, 0)) 3379 goto failed_mount; 3380 3381 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) { 3382 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting " 3383 "with data=journal disables delayed " 3384 "allocation and O_DIRECT support!\n"); 3385 if (test_opt2(sb, EXPLICIT_DELALLOC)) { 3386 ext4_msg(sb, KERN_ERR, "can't mount with " 3387 "both data=journal and delalloc"); 3388 goto failed_mount; 3389 } 3390 if (test_opt(sb, DIOREAD_NOLOCK)) { 3391 ext4_msg(sb, KERN_ERR, "can't mount with " 3392 "both data=journal and delalloc"); 3393 goto failed_mount; 3394 } 3395 if (test_opt(sb, DELALLOC)) 3396 clear_opt(sb, DELALLOC); 3397 } 3398 3399 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 3400 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0); 3401 3402 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV && 3403 (EXT4_HAS_COMPAT_FEATURE(sb, ~0U) || 3404 EXT4_HAS_RO_COMPAT_FEATURE(sb, ~0U) || 3405 EXT4_HAS_INCOMPAT_FEATURE(sb, ~0U))) 3406 ext4_msg(sb, KERN_WARNING, 3407 "feature flags set on rev 0 fs, " 3408 "running e2fsck is recommended"); 3409 3410 if (IS_EXT2_SB(sb)) { 3411 if (ext2_feature_set_ok(sb)) 3412 ext4_msg(sb, KERN_INFO, "mounting ext2 file system " 3413 "using the ext4 subsystem"); 3414 else { 3415 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due " 3416 "to feature incompatibilities"); 3417 goto failed_mount; 3418 } 3419 } 3420 3421 if (IS_EXT3_SB(sb)) { 3422 if (ext3_feature_set_ok(sb)) 3423 ext4_msg(sb, KERN_INFO, "mounting ext3 file system " 3424 "using the ext4 subsystem"); 3425 else { 3426 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due " 3427 "to feature incompatibilities"); 3428 goto failed_mount; 3429 } 3430 } 3431 3432 /* 3433 * Check feature flags regardless of the revision level, since we 3434 * previously didn't change the revision level when setting the flags, 3435 * so there is a chance incompat flags are set on a rev 0 filesystem. 3436 */ 3437 if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY))) 3438 goto failed_mount; 3439 3440 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size); 3441 if (blocksize < EXT4_MIN_BLOCK_SIZE || 3442 blocksize > EXT4_MAX_BLOCK_SIZE) { 3443 ext4_msg(sb, KERN_ERR, 3444 "Unsupported filesystem blocksize %d", blocksize); 3445 goto failed_mount; 3446 } 3447 3448 if (sb->s_blocksize != blocksize) { 3449 /* Validate the filesystem blocksize */ 3450 if (!sb_set_blocksize(sb, blocksize)) { 3451 ext4_msg(sb, KERN_ERR, "bad block size %d", 3452 blocksize); 3453 goto failed_mount; 3454 } 3455 3456 brelse(bh); 3457 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE; 3458 offset = do_div(logical_sb_block, blocksize); 3459 bh = sb_bread(sb, logical_sb_block); 3460 if (!bh) { 3461 ext4_msg(sb, KERN_ERR, 3462 "Can't read superblock on 2nd try"); 3463 goto failed_mount; 3464 } 3465 es = (struct ext4_super_block *)(bh->b_data + offset); 3466 sbi->s_es = es; 3467 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) { 3468 ext4_msg(sb, KERN_ERR, 3469 "Magic mismatch, very weird!"); 3470 goto failed_mount; 3471 } 3472 } 3473 3474 has_huge_files = EXT4_HAS_RO_COMPAT_FEATURE(sb, 3475 EXT4_FEATURE_RO_COMPAT_HUGE_FILE); 3476 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits, 3477 has_huge_files); 3478 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files); 3479 3480 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) { 3481 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE; 3482 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO; 3483 } else { 3484 sbi->s_inode_size = le16_to_cpu(es->s_inode_size); 3485 sbi->s_first_ino = le32_to_cpu(es->s_first_ino); 3486 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) || 3487 (!is_power_of_2(sbi->s_inode_size)) || 3488 (sbi->s_inode_size > blocksize)) { 3489 ext4_msg(sb, KERN_ERR, 3490 "unsupported inode size: %d", 3491 sbi->s_inode_size); 3492 goto failed_mount; 3493 } 3494 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) 3495 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2); 3496 } 3497 3498 sbi->s_desc_size = le16_to_cpu(es->s_desc_size); 3499 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) { 3500 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT || 3501 sbi->s_desc_size > EXT4_MAX_DESC_SIZE || 3502 !is_power_of_2(sbi->s_desc_size)) { 3503 ext4_msg(sb, KERN_ERR, 3504 "unsupported descriptor size %lu", 3505 sbi->s_desc_size); 3506 goto failed_mount; 3507 } 3508 } else 3509 sbi->s_desc_size = EXT4_MIN_DESC_SIZE; 3510 3511 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group); 3512 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group); 3513 if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0) 3514 goto cantfind_ext4; 3515 3516 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb); 3517 if (sbi->s_inodes_per_block == 0) 3518 goto cantfind_ext4; 3519 sbi->s_itb_per_group = sbi->s_inodes_per_group / 3520 sbi->s_inodes_per_block; 3521 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb); 3522 sbi->s_sbh = bh; 3523 sbi->s_mount_state = le16_to_cpu(es->s_state); 3524 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb)); 3525 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb)); 3526 3527 for (i = 0; i < 4; i++) 3528 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]); 3529 sbi->s_def_hash_version = es->s_def_hash_version; 3530 i = le32_to_cpu(es->s_flags); 3531 if (i & EXT2_FLAGS_UNSIGNED_HASH) 3532 sbi->s_hash_unsigned = 3; 3533 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) { 3534#ifdef __CHAR_UNSIGNED__ 3535 es->s_flags |= cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH); 3536 sbi->s_hash_unsigned = 3; 3537#else 3538 es->s_flags |= cpu_to_le32(EXT2_FLAGS_SIGNED_HASH); 3539#endif 3540 } 3541 3542 /* Handle clustersize */ 3543 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size); 3544 has_bigalloc = EXT4_HAS_RO_COMPAT_FEATURE(sb, 3545 EXT4_FEATURE_RO_COMPAT_BIGALLOC); 3546 if (has_bigalloc) { 3547 if (clustersize < blocksize) { 3548 ext4_msg(sb, KERN_ERR, 3549 "cluster size (%d) smaller than " 3550 "block size (%d)", clustersize, blocksize); 3551 goto failed_mount; 3552 } 3553 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) - 3554 le32_to_cpu(es->s_log_block_size); 3555 sbi->s_clusters_per_group = 3556 le32_to_cpu(es->s_clusters_per_group); 3557 if (sbi->s_clusters_per_group > blocksize * 8) { 3558 ext4_msg(sb, KERN_ERR, 3559 "#clusters per group too big: %lu", 3560 sbi->s_clusters_per_group); 3561 goto failed_mount; 3562 } 3563 if (sbi->s_blocks_per_group != 3564 (sbi->s_clusters_per_group * (clustersize / blocksize))) { 3565 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and " 3566 "clusters per group (%lu) inconsistent", 3567 sbi->s_blocks_per_group, 3568 sbi->s_clusters_per_group); 3569 goto failed_mount; 3570 } 3571 } else { 3572 if (clustersize != blocksize) { 3573 ext4_warning(sb, "fragment/cluster size (%d) != " 3574 "block size (%d)", clustersize, 3575 blocksize); 3576 clustersize = blocksize; 3577 } 3578 if (sbi->s_blocks_per_group > blocksize * 8) { 3579 ext4_msg(sb, KERN_ERR, 3580 "#blocks per group too big: %lu", 3581 sbi->s_blocks_per_group); 3582 goto failed_mount; 3583 } 3584 sbi->s_clusters_per_group = sbi->s_blocks_per_group; 3585 sbi->s_cluster_bits = 0; 3586 } 3587 sbi->s_cluster_ratio = clustersize / blocksize; 3588 3589 if (sbi->s_inodes_per_group > blocksize * 8) { 3590 ext4_msg(sb, KERN_ERR, 3591 "#inodes per group too big: %lu", 3592 sbi->s_inodes_per_group); 3593 goto failed_mount; 3594 } 3595 3596 /* 3597 * Test whether we have more sectors than will fit in sector_t, 3598 * and whether the max offset is addressable by the page cache. 3599 */ 3600 err = generic_check_addressable(sb->s_blocksize_bits, 3601 ext4_blocks_count(es)); 3602 if (err) { 3603 ext4_msg(sb, KERN_ERR, "filesystem" 3604 " too large to mount safely on this system"); 3605 if (sizeof(sector_t) < 8) 3606 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled"); 3607 goto failed_mount; 3608 } 3609 3610 if (EXT4_BLOCKS_PER_GROUP(sb) == 0) 3611 goto cantfind_ext4; 3612 3613 /* check blocks count against device size */ 3614 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits; 3615 if (blocks_count && ext4_blocks_count(es) > blocks_count) { 3616 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu " 3617 "exceeds size of device (%llu blocks)", 3618 ext4_blocks_count(es), blocks_count); 3619 goto failed_mount; 3620 } 3621 3622 /* 3623 * It makes no sense for the first data block to be beyond the end 3624 * of the filesystem. 3625 */ 3626 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) { 3627 ext4_msg(sb, KERN_WARNING, "bad geometry: first data " 3628 "block %u is beyond end of filesystem (%llu)", 3629 le32_to_cpu(es->s_first_data_block), 3630 ext4_blocks_count(es)); 3631 goto failed_mount; 3632 } 3633 blocks_count = (ext4_blocks_count(es) - 3634 le32_to_cpu(es->s_first_data_block) + 3635 EXT4_BLOCKS_PER_GROUP(sb) - 1); 3636 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb)); 3637 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) { 3638 ext4_msg(sb, KERN_WARNING, "groups count too large: %u " 3639 "(block count %llu, first data block %u, " 3640 "blocks per group %lu)", sbi->s_groups_count, 3641 ext4_blocks_count(es), 3642 le32_to_cpu(es->s_first_data_block), 3643 EXT4_BLOCKS_PER_GROUP(sb)); 3644 goto failed_mount; 3645 } 3646 sbi->s_groups_count = blocks_count; 3647 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count, 3648 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb))); 3649 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) / 3650 EXT4_DESC_PER_BLOCK(sb); 3651 sbi->s_group_desc = ext4_kvmalloc(db_count * 3652 sizeof(struct buffer_head *), 3653 GFP_KERNEL); 3654 if (sbi->s_group_desc == NULL) { 3655 ext4_msg(sb, KERN_ERR, "not enough memory"); 3656 ret = -ENOMEM; 3657 goto failed_mount; 3658 } 3659 3660 if (ext4_proc_root) 3661 sbi->s_proc = proc_mkdir(sb->s_id, ext4_proc_root); 3662 3663 if (sbi->s_proc) 3664 proc_create_data("options", S_IRUGO, sbi->s_proc, 3665 &ext4_seq_options_fops, sb); 3666 3667 bgl_lock_init(sbi->s_blockgroup_lock); 3668 3669 for (i = 0; i < db_count; i++) { 3670 block = descriptor_loc(sb, logical_sb_block, i); 3671 sbi->s_group_desc[i] = sb_bread(sb, block); 3672 if (!sbi->s_group_desc[i]) { 3673 ext4_msg(sb, KERN_ERR, 3674 "can't read group descriptor %d", i); 3675 db_count = i; 3676 goto failed_mount2; 3677 } 3678 } 3679 if (!ext4_check_descriptors(sb, &first_not_zeroed)) { 3680 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!"); 3681 goto failed_mount2; 3682 } 3683 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG)) 3684 if (!ext4_fill_flex_info(sb)) { 3685 ext4_msg(sb, KERN_ERR, 3686 "unable to initialize " 3687 "flex_bg meta info!"); 3688 goto failed_mount2; 3689 } 3690 3691 sbi->s_gdb_count = db_count; 3692 get_random_bytes(&sbi->s_next_generation, sizeof(u32)); 3693 spin_lock_init(&sbi->s_next_gen_lock); 3694 3695 init_timer(&sbi->s_err_report); 3696 sbi->s_err_report.function = print_daily_error_info; 3697 sbi->s_err_report.data = (unsigned long) sb; 3698 3699 err = percpu_counter_init(&sbi->s_freeclusters_counter, 3700 ext4_count_free_clusters(sb)); 3701 if (!err) { 3702 err = percpu_counter_init(&sbi->s_freeinodes_counter, 3703 ext4_count_free_inodes(sb)); 3704 } 3705 if (!err) { 3706 err = percpu_counter_init(&sbi->s_dirs_counter, 3707 ext4_count_dirs(sb)); 3708 } 3709 if (!err) { 3710 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0); 3711 } 3712 if (!err) { 3713 err = percpu_counter_init(&sbi->s_extent_cache_cnt, 0); 3714 } 3715 if (err) { 3716 ext4_msg(sb, KERN_ERR, "insufficient memory"); 3717 goto failed_mount3; 3718 } 3719 3720 sbi->s_stripe = ext4_get_stripe_size(sbi); 3721 sbi->s_max_writeback_mb_bump = 128; 3722 sbi->s_extent_max_zeroout_kb = 32; 3723 3724 /* Register extent status tree shrinker */ 3725 ext4_es_register_shrinker(sb); 3726 3727 /* 3728 * set up enough so that it can read an inode 3729 */ 3730 if (!test_opt(sb, NOLOAD) && 3731 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) 3732 sb->s_op = &ext4_sops; 3733 else 3734 sb->s_op = &ext4_nojournal_sops; 3735 sb->s_export_op = &ext4_export_ops; 3736 sb->s_xattr = ext4_xattr_handlers; 3737#ifdef CONFIG_QUOTA 3738 sb->dq_op = &ext4_quota_operations; 3739 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)) 3740 sb->s_qcop = &ext4_qctl_sysfile_operations; 3741 else 3742 sb->s_qcop = &ext4_qctl_operations; 3743#endif 3744 memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid)); 3745 3746 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */ 3747 mutex_init(&sbi->s_orphan_lock); 3748 3749 sb->s_root = NULL; 3750 3751 needs_recovery = (es->s_last_orphan != 0 || 3752 EXT4_HAS_INCOMPAT_FEATURE(sb, 3753 EXT4_FEATURE_INCOMPAT_RECOVER)); 3754 3755 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_MMP) && 3756 !(sb->s_flags & MS_RDONLY)) 3757 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block))) 3758 goto failed_mount3; 3759 3760 /* 3761 * The first inode we look at is the journal inode. Don't try 3762 * root first: it may be modified in the journal! 3763 */ 3764 if (!test_opt(sb, NOLOAD) && 3765 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) { 3766 if (ext4_load_journal(sb, es, journal_devnum)) 3767 goto failed_mount3; 3768 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) && 3769 EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) { 3770 ext4_msg(sb, KERN_ERR, "required journal recovery " 3771 "suppressed and not mounted read-only"); 3772 goto failed_mount_wq; 3773 } else { 3774 clear_opt(sb, DATA_FLAGS); 3775 sbi->s_journal = NULL; 3776 needs_recovery = 0; 3777 goto no_journal; 3778 } 3779 3780 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT) && 3781 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0, 3782 JBD2_FEATURE_INCOMPAT_64BIT)) { 3783 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature"); 3784 goto failed_mount_wq; 3785 } 3786 3787 if (!set_journal_csum_feature_set(sb)) { 3788 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum " 3789 "feature set"); 3790 goto failed_mount_wq; 3791 } 3792 3793 /* We have now updated the journal if required, so we can 3794 * validate the data journaling mode. */ 3795 switch (test_opt(sb, DATA_FLAGS)) { 3796 case 0: 3797 /* No mode set, assume a default based on the journal 3798 * capabilities: ORDERED_DATA if the journal can 3799 * cope, else JOURNAL_DATA 3800 */ 3801 if (jbd2_journal_check_available_features 3802 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) 3803 set_opt(sb, ORDERED_DATA); 3804 else 3805 set_opt(sb, JOURNAL_DATA); 3806 break; 3807 3808 case EXT4_MOUNT_ORDERED_DATA: 3809 case EXT4_MOUNT_WRITEBACK_DATA: 3810 if (!jbd2_journal_check_available_features 3811 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) { 3812 ext4_msg(sb, KERN_ERR, "Journal does not support " 3813 "requested data journaling mode"); 3814 goto failed_mount_wq; 3815 } 3816 default: 3817 break; 3818 } 3819 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 3820 3821 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback; 3822 3823 /* 3824 * The journal may have updated the bg summary counts, so we 3825 * need to update the global counters. 3826 */ 3827 percpu_counter_set(&sbi->s_freeclusters_counter, 3828 ext4_count_free_clusters(sb)); 3829 percpu_counter_set(&sbi->s_freeinodes_counter, 3830 ext4_count_free_inodes(sb)); 3831 percpu_counter_set(&sbi->s_dirs_counter, 3832 ext4_count_dirs(sb)); 3833 percpu_counter_set(&sbi->s_dirtyclusters_counter, 0); 3834 3835no_journal: 3836 /* 3837 * Get the # of file system overhead blocks from the 3838 * superblock if present. 3839 */ 3840 if (es->s_overhead_clusters) 3841 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters); 3842 else { 3843 err = ext4_calculate_overhead(sb); 3844 if (err) 3845 goto failed_mount_wq; 3846 } 3847 3848 /* 3849 * The maximum number of concurrent works can be high and 3850 * concurrency isn't really necessary. Limit it to 1. 3851 */ 3852 EXT4_SB(sb)->dio_unwritten_wq = 3853 alloc_workqueue("ext4-dio-unwritten", WQ_MEM_RECLAIM | WQ_UNBOUND, 1); 3854 if (!EXT4_SB(sb)->dio_unwritten_wq) { 3855 printk(KERN_ERR "EXT4-fs: failed to create DIO workqueue\n"); 3856 ret = -ENOMEM; 3857 goto failed_mount_wq; 3858 } 3859 3860 /* 3861 * The jbd2_journal_load will have done any necessary log recovery, 3862 * so we can safely mount the rest of the filesystem now. 3863 */ 3864 3865 root = ext4_iget(sb, EXT4_ROOT_INO); 3866 if (IS_ERR(root)) { 3867 ext4_msg(sb, KERN_ERR, "get root inode failed"); 3868 ret = PTR_ERR(root); 3869 root = NULL; 3870 goto failed_mount4; 3871 } 3872 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { 3873 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck"); 3874 iput(root); 3875 goto failed_mount4; 3876 } 3877 sb->s_root = d_make_root(root); 3878 if (!sb->s_root) { 3879 ext4_msg(sb, KERN_ERR, "get root dentry failed"); 3880 ret = -ENOMEM; 3881 goto failed_mount4; 3882 } 3883 3884 if (ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY)) 3885 sb->s_flags |= MS_RDONLY; 3886 3887 /* determine the minimum size of new large inodes, if present */ 3888 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) { 3889 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 3890 EXT4_GOOD_OLD_INODE_SIZE; 3891 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 3892 EXT4_FEATURE_RO_COMPAT_EXTRA_ISIZE)) { 3893 if (sbi->s_want_extra_isize < 3894 le16_to_cpu(es->s_want_extra_isize)) 3895 sbi->s_want_extra_isize = 3896 le16_to_cpu(es->s_want_extra_isize); 3897 if (sbi->s_want_extra_isize < 3898 le16_to_cpu(es->s_min_extra_isize)) 3899 sbi->s_want_extra_isize = 3900 le16_to_cpu(es->s_min_extra_isize); 3901 } 3902 } 3903 /* Check if enough inode space is available */ 3904 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize > 3905 sbi->s_inode_size) { 3906 sbi->s_want_extra_isize = sizeof(struct ext4_inode) - 3907 EXT4_GOOD_OLD_INODE_SIZE; 3908 ext4_msg(sb, KERN_INFO, "required extra inode space not" 3909 "available"); 3910 } 3911 3912 err = ext4_setup_system_zone(sb); 3913 if (err) { 3914 ext4_msg(sb, KERN_ERR, "failed to initialize system " 3915 "zone (%d)", err); 3916 goto failed_mount4a; 3917 } 3918 3919 ext4_ext_init(sb); 3920 err = ext4_mb_init(sb); 3921 if (err) { 3922 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)", 3923 err); 3924 goto failed_mount5; 3925 } 3926 3927 err = ext4_register_li_request(sb, first_not_zeroed); 3928 if (err) 3929 goto failed_mount6; 3930 3931 sbi->s_kobj.kset = ext4_kset; 3932 init_completion(&sbi->s_kobj_unregister); 3933 err = kobject_init_and_add(&sbi->s_kobj, &ext4_ktype, NULL, 3934 "%s", sb->s_id); 3935 if (err) 3936 goto failed_mount7; 3937 3938#ifdef CONFIG_QUOTA 3939 /* Enable quota usage during mount. */ 3940 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) && 3941 !(sb->s_flags & MS_RDONLY)) { 3942 err = ext4_enable_quotas(sb); 3943 if (err) 3944 goto failed_mount8; 3945 } 3946#endif /* CONFIG_QUOTA */ 3947 3948 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS; 3949 ext4_orphan_cleanup(sb, es); 3950 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS; 3951 if (needs_recovery) { 3952 ext4_msg(sb, KERN_INFO, "recovery complete"); 3953 ext4_mark_recovery_complete(sb, es); 3954 } 3955 if (EXT4_SB(sb)->s_journal) { 3956 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) 3957 descr = " journalled data mode"; 3958 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) 3959 descr = " ordered data mode"; 3960 else 3961 descr = " writeback data mode"; 3962 } else 3963 descr = "out journal"; 3964 3965 if (test_opt(sb, DISCARD)) { 3966 struct request_queue *q = bdev_get_queue(sb->s_bdev); 3967 if (!blk_queue_discard(q)) 3968 ext4_msg(sb, KERN_WARNING, 3969 "mounting with \"discard\" option, but " 3970 "the device does not support discard"); 3971 } 3972 3973 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. " 3974 "Opts: %s%s%s", descr, sbi->s_es->s_mount_opts, 3975 *sbi->s_es->s_mount_opts ? "; " : "", orig_data); 3976 3977 if (es->s_error_count) 3978 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */ 3979 3980 kfree(orig_data); 3981 return 0; 3982 3983cantfind_ext4: 3984 if (!silent) 3985 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem"); 3986 goto failed_mount; 3987 3988#ifdef CONFIG_QUOTA 3989failed_mount8: 3990 kobject_del(&sbi->s_kobj); 3991#endif 3992failed_mount7: 3993 ext4_unregister_li_request(sb); 3994failed_mount6: 3995 ext4_mb_release(sb); 3996failed_mount5: 3997 ext4_ext_release(sb); 3998 ext4_release_system_zone(sb); 3999failed_mount4a: 4000 dput(sb->s_root); 4001 sb->s_root = NULL; 4002failed_mount4: 4003 ext4_msg(sb, KERN_ERR, "mount failed"); 4004 destroy_workqueue(EXT4_SB(sb)->dio_unwritten_wq); 4005failed_mount_wq: 4006 if (sbi->s_journal) { 4007 jbd2_journal_destroy(sbi->s_journal); 4008 sbi->s_journal = NULL; 4009 } 4010failed_mount3: 4011 del_timer(&sbi->s_err_report); 4012 if (sbi->s_flex_groups) 4013 ext4_kvfree(sbi->s_flex_groups); 4014 percpu_counter_destroy(&sbi->s_freeclusters_counter); 4015 percpu_counter_destroy(&sbi->s_freeinodes_counter); 4016 percpu_counter_destroy(&sbi->s_dirs_counter); 4017 percpu_counter_destroy(&sbi->s_dirtyclusters_counter); 4018 percpu_counter_destroy(&sbi->s_extent_cache_cnt); 4019 if (sbi->s_mmp_tsk) 4020 kthread_stop(sbi->s_mmp_tsk); 4021failed_mount2: 4022 for (i = 0; i < db_count; i++) 4023 brelse(sbi->s_group_desc[i]); 4024 ext4_kvfree(sbi->s_group_desc); 4025failed_mount: 4026 if (sbi->s_chksum_driver) 4027 crypto_free_shash(sbi->s_chksum_driver); 4028 if (sbi->s_proc) { 4029 remove_proc_entry("options", sbi->s_proc); 4030 remove_proc_entry(sb->s_id, ext4_proc_root); 4031 } 4032#ifdef CONFIG_QUOTA 4033 for (i = 0; i < MAXQUOTAS; i++) 4034 kfree(sbi->s_qf_names[i]); 4035#endif 4036 ext4_blkdev_remove(sbi); 4037 brelse(bh); 4038out_fail: 4039 sb->s_fs_info = NULL; 4040 kfree(sbi->s_blockgroup_lock); 4041 kfree(sbi); 4042out_free_orig: 4043 kfree(orig_data); 4044 return err ? err : ret; 4045} 4046 4047/* 4048 * Setup any per-fs journal parameters now. We'll do this both on 4049 * initial mount, once the journal has been initialised but before we've 4050 * done any recovery; and again on any subsequent remount. 4051 */ 4052static void ext4_init_journal_params(struct super_block *sb, journal_t *journal) 4053{ 4054 struct ext4_sb_info *sbi = EXT4_SB(sb); 4055 4056 journal->j_commit_interval = sbi->s_commit_interval; 4057 journal->j_min_batch_time = sbi->s_min_batch_time; 4058 journal->j_max_batch_time = sbi->s_max_batch_time; 4059 4060 write_lock(&journal->j_state_lock); 4061 if (test_opt(sb, BARRIER)) 4062 journal->j_flags |= JBD2_BARRIER; 4063 else 4064 journal->j_flags &= ~JBD2_BARRIER; 4065 if (test_opt(sb, DATA_ERR_ABORT)) 4066 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR; 4067 else 4068 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR; 4069 write_unlock(&journal->j_state_lock); 4070} 4071 4072static journal_t *ext4_get_journal(struct super_block *sb, 4073 unsigned int journal_inum) 4074{ 4075 struct inode *journal_inode; 4076 journal_t *journal; 4077 4078 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 4079 4080 /* First, test for the existence of a valid inode on disk. Bad 4081 * things happen if we iget() an unused inode, as the subsequent 4082 * iput() will try to delete it. */ 4083 4084 journal_inode = ext4_iget(sb, journal_inum); 4085 if (IS_ERR(journal_inode)) { 4086 ext4_msg(sb, KERN_ERR, "no journal found"); 4087 return NULL; 4088 } 4089 if (!journal_inode->i_nlink) { 4090 make_bad_inode(journal_inode); 4091 iput(journal_inode); 4092 ext4_msg(sb, KERN_ERR, "journal inode is deleted"); 4093 return NULL; 4094 } 4095 4096 jbd_debug(2, "Journal inode found at %p: %lld bytes\n", 4097 journal_inode, journal_inode->i_size); 4098 if (!S_ISREG(journal_inode->i_mode)) { 4099 ext4_msg(sb, KERN_ERR, "invalid journal inode"); 4100 iput(journal_inode); 4101 return NULL; 4102 } 4103 4104 journal = jbd2_journal_init_inode(journal_inode); 4105 if (!journal) { 4106 ext4_msg(sb, KERN_ERR, "Could not load journal inode"); 4107 iput(journal_inode); 4108 return NULL; 4109 } 4110 journal->j_private = sb; 4111 ext4_init_journal_params(sb, journal); 4112 return journal; 4113} 4114 4115static journal_t *ext4_get_dev_journal(struct super_block *sb, 4116 dev_t j_dev) 4117{ 4118 struct buffer_head *bh; 4119 journal_t *journal; 4120 ext4_fsblk_t start; 4121 ext4_fsblk_t len; 4122 int hblock, blocksize; 4123 ext4_fsblk_t sb_block; 4124 unsigned long offset; 4125 struct ext4_super_block *es; 4126 struct block_device *bdev; 4127 4128 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 4129 4130 bdev = ext4_blkdev_get(j_dev, sb); 4131 if (bdev == NULL) 4132 return NULL; 4133 4134 blocksize = sb->s_blocksize; 4135 hblock = bdev_logical_block_size(bdev); 4136 if (blocksize < hblock) { 4137 ext4_msg(sb, KERN_ERR, 4138 "blocksize too small for journal device"); 4139 goto out_bdev; 4140 } 4141 4142 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize; 4143 offset = EXT4_MIN_BLOCK_SIZE % blocksize; 4144 set_blocksize(bdev, blocksize); 4145 if (!(bh = __bread(bdev, sb_block, blocksize))) { 4146 ext4_msg(sb, KERN_ERR, "couldn't read superblock of " 4147 "external journal"); 4148 goto out_bdev; 4149 } 4150 4151 es = (struct ext4_super_block *) (bh->b_data + offset); 4152 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) || 4153 !(le32_to_cpu(es->s_feature_incompat) & 4154 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) { 4155 ext4_msg(sb, KERN_ERR, "external journal has " 4156 "bad superblock"); 4157 brelse(bh); 4158 goto out_bdev; 4159 } 4160 4161 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) { 4162 ext4_msg(sb, KERN_ERR, "journal UUID does not match"); 4163 brelse(bh); 4164 goto out_bdev; 4165 } 4166 4167 len = ext4_blocks_count(es); 4168 start = sb_block + 1; 4169 brelse(bh); /* we're done with the superblock */ 4170 4171 journal = jbd2_journal_init_dev(bdev, sb->s_bdev, 4172 start, len, blocksize); 4173 if (!journal) { 4174 ext4_msg(sb, KERN_ERR, "failed to create device journal"); 4175 goto out_bdev; 4176 } 4177 journal->j_private = sb; 4178 ll_rw_block(READ, 1, &journal->j_sb_buffer); 4179 wait_on_buffer(journal->j_sb_buffer); 4180 if (!buffer_uptodate(journal->j_sb_buffer)) { 4181 ext4_msg(sb, KERN_ERR, "I/O error on journal device"); 4182 goto out_journal; 4183 } 4184 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) { 4185 ext4_msg(sb, KERN_ERR, "External journal has more than one " 4186 "user (unsupported) - %d", 4187 be32_to_cpu(journal->j_superblock->s_nr_users)); 4188 goto out_journal; 4189 } 4190 EXT4_SB(sb)->journal_bdev = bdev; 4191 ext4_init_journal_params(sb, journal); 4192 return journal; 4193 4194out_journal: 4195 jbd2_journal_destroy(journal); 4196out_bdev: 4197 ext4_blkdev_put(bdev); 4198 return NULL; 4199} 4200 4201static int ext4_load_journal(struct super_block *sb, 4202 struct ext4_super_block *es, 4203 unsigned long journal_devnum) 4204{ 4205 journal_t *journal; 4206 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum); 4207 dev_t journal_dev; 4208 int err = 0; 4209 int really_read_only; 4210 4211 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 4212 4213 if (journal_devnum && 4214 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 4215 ext4_msg(sb, KERN_INFO, "external journal device major/minor " 4216 "numbers have changed"); 4217 journal_dev = new_decode_dev(journal_devnum); 4218 } else 4219 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev)); 4220 4221 really_read_only = bdev_read_only(sb->s_bdev); 4222 4223 /* 4224 * Are we loading a blank journal or performing recovery after a 4225 * crash? For recovery, we need to check in advance whether we 4226 * can get read-write access to the device. 4227 */ 4228 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) { 4229 if (sb->s_flags & MS_RDONLY) { 4230 ext4_msg(sb, KERN_INFO, "INFO: recovery " 4231 "required on readonly filesystem"); 4232 if (really_read_only) { 4233 ext4_msg(sb, KERN_ERR, "write access " 4234 "unavailable, cannot proceed"); 4235 return -EROFS; 4236 } 4237 ext4_msg(sb, KERN_INFO, "write access will " 4238 "be enabled during recovery"); 4239 } 4240 } 4241 4242 if (journal_inum && journal_dev) { 4243 ext4_msg(sb, KERN_ERR, "filesystem has both journal " 4244 "and inode journals!"); 4245 return -EINVAL; 4246 } 4247 4248 if (journal_inum) { 4249 if (!(journal = ext4_get_journal(sb, journal_inum))) 4250 return -EINVAL; 4251 } else { 4252 if (!(journal = ext4_get_dev_journal(sb, journal_dev))) 4253 return -EINVAL; 4254 } 4255 4256 if (!(journal->j_flags & JBD2_BARRIER)) 4257 ext4_msg(sb, KERN_INFO, "barriers disabled"); 4258 4259 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) 4260 err = jbd2_journal_wipe(journal, !really_read_only); 4261 if (!err) { 4262 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL); 4263 if (save) 4264 memcpy(save, ((char *) es) + 4265 EXT4_S_ERR_START, EXT4_S_ERR_LEN); 4266 err = jbd2_journal_load(journal); 4267 if (save) 4268 memcpy(((char *) es) + EXT4_S_ERR_START, 4269 save, EXT4_S_ERR_LEN); 4270 kfree(save); 4271 } 4272 4273 if (err) { 4274 ext4_msg(sb, KERN_ERR, "error loading journal"); 4275 jbd2_journal_destroy(journal); 4276 return err; 4277 } 4278 4279 EXT4_SB(sb)->s_journal = journal; 4280 ext4_clear_journal_err(sb, es); 4281 4282 if (!really_read_only && journal_devnum && 4283 journal_devnum != le32_to_cpu(es->s_journal_dev)) { 4284 es->s_journal_dev = cpu_to_le32(journal_devnum); 4285 4286 /* Make sure we flush the recovery flag to disk. */ 4287 ext4_commit_super(sb, 1); 4288 } 4289 4290 return 0; 4291} 4292 4293static int ext4_commit_super(struct super_block *sb, int sync) 4294{ 4295 struct ext4_super_block *es = EXT4_SB(sb)->s_es; 4296 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh; 4297 int error = 0; 4298 4299 if (!sbh || block_device_ejected(sb)) 4300 return error; 4301 if (buffer_write_io_error(sbh)) { 4302 /* 4303 * Oh, dear. A previous attempt to write the 4304 * superblock failed. This could happen because the 4305 * USB device was yanked out. Or it could happen to 4306 * be a transient write error and maybe the block will 4307 * be remapped. Nothing we can do but to retry the 4308 * write and hope for the best. 4309 */ 4310 ext4_msg(sb, KERN_ERR, "previous I/O error to " 4311 "superblock detected"); 4312 clear_buffer_write_io_error(sbh); 4313 set_buffer_uptodate(sbh); 4314 } 4315 /* 4316 * If the file system is mounted read-only, don't update the 4317 * superblock write time. This avoids updating the superblock 4318 * write time when we are mounting the root file system 4319 * read/only but we need to replay the journal; at that point, 4320 * for people who are east of GMT and who make their clock 4321 * tick in localtime for Windows bug-for-bug compatibility, 4322 * the clock is set in the future, and this will cause e2fsck 4323 * to complain and force a full file system check. 4324 */ 4325 if (!(sb->s_flags & MS_RDONLY)) 4326 es->s_wtime = cpu_to_le32(get_seconds()); 4327 if (sb->s_bdev->bd_part) 4328 es->s_kbytes_written = 4329 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written + 4330 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) - 4331 EXT4_SB(sb)->s_sectors_written_start) >> 1)); 4332 else 4333 es->s_kbytes_written = 4334 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written); 4335 ext4_free_blocks_count_set(es, 4336 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive( 4337 &EXT4_SB(sb)->s_freeclusters_counter))); 4338 es->s_free_inodes_count = 4339 cpu_to_le32(percpu_counter_sum_positive( 4340 &EXT4_SB(sb)->s_freeinodes_counter)); 4341 BUFFER_TRACE(sbh, "marking dirty"); 4342 ext4_superblock_csum_set(sb); 4343 mark_buffer_dirty(sbh); 4344 if (sync) { 4345 error = sync_dirty_buffer(sbh); 4346 if (error) 4347 return error; 4348 4349 error = buffer_write_io_error(sbh); 4350 if (error) { 4351 ext4_msg(sb, KERN_ERR, "I/O error while writing " 4352 "superblock"); 4353 clear_buffer_write_io_error(sbh); 4354 set_buffer_uptodate(sbh); 4355 } 4356 } 4357 return error; 4358} 4359 4360/* 4361 * Have we just finished recovery? If so, and if we are mounting (or 4362 * remounting) the filesystem readonly, then we will end up with a 4363 * consistent fs on disk. Record that fact. 4364 */ 4365static void ext4_mark_recovery_complete(struct super_block *sb, 4366 struct ext4_super_block *es) 4367{ 4368 journal_t *journal = EXT4_SB(sb)->s_journal; 4369 4370 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) { 4371 BUG_ON(journal != NULL); 4372 return; 4373 } 4374 jbd2_journal_lock_updates(journal); 4375 if (jbd2_journal_flush(journal) < 0) 4376 goto out; 4377 4378 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER) && 4379 sb->s_flags & MS_RDONLY) { 4380 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 4381 ext4_commit_super(sb, 1); 4382 } 4383 4384out: 4385 jbd2_journal_unlock_updates(journal); 4386} 4387 4388/* 4389 * If we are mounting (or read-write remounting) a filesystem whose journal 4390 * has recorded an error from a previous lifetime, move that error to the 4391 * main filesystem now. 4392 */ 4393static void ext4_clear_journal_err(struct super_block *sb, 4394 struct ext4_super_block *es) 4395{ 4396 journal_t *journal; 4397 int j_errno; 4398 const char *errstr; 4399 4400 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)); 4401 4402 journal = EXT4_SB(sb)->s_journal; 4403 4404 /* 4405 * Now check for any error status which may have been recorded in the 4406 * journal by a prior ext4_error() or ext4_abort() 4407 */ 4408 4409 j_errno = jbd2_journal_errno(journal); 4410 if (j_errno) { 4411 char nbuf[16]; 4412 4413 errstr = ext4_decode_error(sb, j_errno, nbuf); 4414 ext4_warning(sb, "Filesystem error recorded " 4415 "from previous mount: %s", errstr); 4416 ext4_warning(sb, "Marking fs in need of filesystem check."); 4417 4418 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS; 4419 es->s_state |= cpu_to_le16(EXT4_ERROR_FS); 4420 ext4_commit_super(sb, 1); 4421 4422 jbd2_journal_clear_err(journal); 4423 jbd2_journal_update_sb_errno(journal); 4424 } 4425} 4426 4427/* 4428 * Force the running and committing transactions to commit, 4429 * and wait on the commit. 4430 */ 4431int ext4_force_commit(struct super_block *sb) 4432{ 4433 journal_t *journal; 4434 4435 if (sb->s_flags & MS_RDONLY) 4436 return 0; 4437 4438 journal = EXT4_SB(sb)->s_journal; 4439 return ext4_journal_force_commit(journal); 4440} 4441 4442static int ext4_sync_fs(struct super_block *sb, int wait) 4443{ 4444 int ret = 0; 4445 tid_t target; 4446 struct ext4_sb_info *sbi = EXT4_SB(sb); 4447 4448 trace_ext4_sync_fs(sb, wait); 4449 flush_workqueue(sbi->dio_unwritten_wq); 4450 /* 4451 * Writeback quota in non-journalled quota case - journalled quota has 4452 * no dirty dquots 4453 */ 4454 dquot_writeback_dquots(sb, -1); 4455 if (jbd2_journal_start_commit(sbi->s_journal, &target)) { 4456 if (wait) 4457 jbd2_log_wait_commit(sbi->s_journal, target); 4458 } 4459 return ret; 4460} 4461 4462/* 4463 * LVM calls this function before a (read-only) snapshot is created. This 4464 * gives us a chance to flush the journal completely and mark the fs clean. 4465 * 4466 * Note that only this function cannot bring a filesystem to be in a clean 4467 * state independently. It relies on upper layer to stop all data & metadata 4468 * modifications. 4469 */ 4470static int ext4_freeze(struct super_block *sb) 4471{ 4472 int error = 0; 4473 journal_t *journal; 4474 4475 if (sb->s_flags & MS_RDONLY) 4476 return 0; 4477 4478 journal = EXT4_SB(sb)->s_journal; 4479 4480 /* Now we set up the journal barrier. */ 4481 jbd2_journal_lock_updates(journal); 4482 4483 /* 4484 * Don't clear the needs_recovery flag if we failed to flush 4485 * the journal. 4486 */ 4487 error = jbd2_journal_flush(journal); 4488 if (error < 0) 4489 goto out; 4490 4491 /* Journal blocked and flushed, clear needs_recovery flag. */ 4492 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 4493 error = ext4_commit_super(sb, 1); 4494out: 4495 /* we rely on upper layer to stop further updates */ 4496 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); 4497 return error; 4498} 4499 4500/* 4501 * Called by LVM after the snapshot is done. We need to reset the RECOVER 4502 * flag here, even though the filesystem is not technically dirty yet. 4503 */ 4504static int ext4_unfreeze(struct super_block *sb) 4505{ 4506 if (sb->s_flags & MS_RDONLY) 4507 return 0; 4508 4509 /* Reset the needs_recovery flag before the fs is unlocked. */ 4510 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER); 4511 ext4_commit_super(sb, 1); 4512 return 0; 4513} 4514 4515/* 4516 * Structure to save mount options for ext4_remount's benefit 4517 */ 4518struct ext4_mount_options { 4519 unsigned long s_mount_opt; 4520 unsigned long s_mount_opt2; 4521 kuid_t s_resuid; 4522 kgid_t s_resgid; 4523 unsigned long s_commit_interval; 4524 u32 s_min_batch_time, s_max_batch_time; 4525#ifdef CONFIG_QUOTA 4526 int s_jquota_fmt; 4527 char *s_qf_names[MAXQUOTAS]; 4528#endif 4529}; 4530 4531static int ext4_remount(struct super_block *sb, int *flags, char *data) 4532{ 4533 struct ext4_super_block *es; 4534 struct ext4_sb_info *sbi = EXT4_SB(sb); 4535 unsigned long old_sb_flags; 4536 struct ext4_mount_options old_opts; 4537 int enable_quota = 0; 4538 ext4_group_t g; 4539 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO; 4540 int err = 0; 4541#ifdef CONFIG_QUOTA 4542 int i, j; 4543#endif 4544 char *orig_data = kstrdup(data, GFP_KERNEL); 4545 4546 /* Store the original options */ 4547 old_sb_flags = sb->s_flags; 4548 old_opts.s_mount_opt = sbi->s_mount_opt; 4549 old_opts.s_mount_opt2 = sbi->s_mount_opt2; 4550 old_opts.s_resuid = sbi->s_resuid; 4551 old_opts.s_resgid = sbi->s_resgid; 4552 old_opts.s_commit_interval = sbi->s_commit_interval; 4553 old_opts.s_min_batch_time = sbi->s_min_batch_time; 4554 old_opts.s_max_batch_time = sbi->s_max_batch_time; 4555#ifdef CONFIG_QUOTA 4556 old_opts.s_jquota_fmt = sbi->s_jquota_fmt; 4557 for (i = 0; i < MAXQUOTAS; i++) 4558 if (sbi->s_qf_names[i]) { 4559 old_opts.s_qf_names[i] = kstrdup(sbi->s_qf_names[i], 4560 GFP_KERNEL); 4561 if (!old_opts.s_qf_names[i]) { 4562 for (j = 0; j < i; j++) 4563 kfree(old_opts.s_qf_names[j]); 4564 kfree(orig_data); 4565 return -ENOMEM; 4566 } 4567 } else 4568 old_opts.s_qf_names[i] = NULL; 4569#endif 4570 if (sbi->s_journal && sbi->s_journal->j_task->io_context) 4571 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio; 4572 4573 /* 4574 * Allow the "check" option to be passed as a remount option. 4575 */ 4576 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) { 4577 err = -EINVAL; 4578 goto restore_opts; 4579 } 4580 4581 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) 4582 ext4_abort(sb, "Abort forced by user"); 4583 4584 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 4585 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0); 4586 4587 es = sbi->s_es; 4588 4589 if (sbi->s_journal) { 4590 ext4_init_journal_params(sb, sbi->s_journal); 4591 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio); 4592 } 4593 4594 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY)) { 4595 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) { 4596 err = -EROFS; 4597 goto restore_opts; 4598 } 4599 4600 if (*flags & MS_RDONLY) { 4601 err = dquot_suspend(sb, -1); 4602 if (err < 0) 4603 goto restore_opts; 4604 4605 /* 4606 * First of all, the unconditional stuff we have to do 4607 * to disable replay of the journal when we next remount 4608 */ 4609 sb->s_flags |= MS_RDONLY; 4610 4611 /* 4612 * OK, test if we are remounting a valid rw partition 4613 * readonly, and if so set the rdonly flag and then 4614 * mark the partition as valid again. 4615 */ 4616 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) && 4617 (sbi->s_mount_state & EXT4_VALID_FS)) 4618 es->s_state = cpu_to_le16(sbi->s_mount_state); 4619 4620 if (sbi->s_journal) 4621 ext4_mark_recovery_complete(sb, es); 4622 } else { 4623 /* Make sure we can mount this feature set readwrite */ 4624 if (!ext4_feature_set_ok(sb, 0)) { 4625 err = -EROFS; 4626 goto restore_opts; 4627 } 4628 /* 4629 * Make sure the group descriptor checksums 4630 * are sane. If they aren't, refuse to remount r/w. 4631 */ 4632 for (g = 0; g < sbi->s_groups_count; g++) { 4633 struct ext4_group_desc *gdp = 4634 ext4_get_group_desc(sb, g, NULL); 4635 4636 if (!ext4_group_desc_csum_verify(sb, g, gdp)) { 4637 ext4_msg(sb, KERN_ERR, 4638 "ext4_remount: Checksum for group %u failed (%u!=%u)", 4639 g, le16_to_cpu(ext4_group_desc_csum(sbi, g, gdp)), 4640 le16_to_cpu(gdp->bg_checksum)); 4641 err = -EINVAL; 4642 goto restore_opts; 4643 } 4644 } 4645 4646 /* 4647 * If we have an unprocessed orphan list hanging 4648 * around from a previously readonly bdev mount, 4649 * require a full umount/remount for now. 4650 */ 4651 if (es->s_last_orphan) { 4652 ext4_msg(sb, KERN_WARNING, "Couldn't " 4653 "remount RDWR because of unprocessed " 4654 "orphan inode list. Please " 4655 "umount/remount instead"); 4656 err = -EINVAL; 4657 goto restore_opts; 4658 } 4659 4660 /* 4661 * Mounting a RDONLY partition read-write, so reread 4662 * and store the current valid flag. (It may have 4663 * been changed by e2fsck since we originally mounted 4664 * the partition.) 4665 */ 4666 if (sbi->s_journal) 4667 ext4_clear_journal_err(sb, es); 4668 sbi->s_mount_state = le16_to_cpu(es->s_state); 4669 if (!ext4_setup_super(sb, es, 0)) 4670 sb->s_flags &= ~MS_RDONLY; 4671 if (EXT4_HAS_INCOMPAT_FEATURE(sb, 4672 EXT4_FEATURE_INCOMPAT_MMP)) 4673 if (ext4_multi_mount_protect(sb, 4674 le64_to_cpu(es->s_mmp_block))) { 4675 err = -EROFS; 4676 goto restore_opts; 4677 } 4678 enable_quota = 1; 4679 } 4680 } 4681 4682 /* 4683 * Reinitialize lazy itable initialization thread based on 4684 * current settings 4685 */ 4686 if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE)) 4687 ext4_unregister_li_request(sb); 4688 else { 4689 ext4_group_t first_not_zeroed; 4690 first_not_zeroed = ext4_has_uninit_itable(sb); 4691 ext4_register_li_request(sb, first_not_zeroed); 4692 } 4693 4694 ext4_setup_system_zone(sb); 4695 if (sbi->s_journal == NULL && !(old_sb_flags & MS_RDONLY)) 4696 ext4_commit_super(sb, 1); 4697 4698#ifdef CONFIG_QUOTA 4699 /* Release old quota file names */ 4700 for (i = 0; i < MAXQUOTAS; i++) 4701 kfree(old_opts.s_qf_names[i]); 4702 if (enable_quota) { 4703 if (sb_any_quota_suspended(sb)) 4704 dquot_resume(sb, -1); 4705 else if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 4706 EXT4_FEATURE_RO_COMPAT_QUOTA)) { 4707 err = ext4_enable_quotas(sb); 4708 if (err) 4709 goto restore_opts; 4710 } 4711 } 4712#endif 4713 4714 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data); 4715 kfree(orig_data); 4716 return 0; 4717 4718restore_opts: 4719 sb->s_flags = old_sb_flags; 4720 sbi->s_mount_opt = old_opts.s_mount_opt; 4721 sbi->s_mount_opt2 = old_opts.s_mount_opt2; 4722 sbi->s_resuid = old_opts.s_resuid; 4723 sbi->s_resgid = old_opts.s_resgid; 4724 sbi->s_commit_interval = old_opts.s_commit_interval; 4725 sbi->s_min_batch_time = old_opts.s_min_batch_time; 4726 sbi->s_max_batch_time = old_opts.s_max_batch_time; 4727#ifdef CONFIG_QUOTA 4728 sbi->s_jquota_fmt = old_opts.s_jquota_fmt; 4729 for (i = 0; i < MAXQUOTAS; i++) { 4730 kfree(sbi->s_qf_names[i]); 4731 sbi->s_qf_names[i] = old_opts.s_qf_names[i]; 4732 } 4733#endif 4734 kfree(orig_data); 4735 return err; 4736} 4737 4738static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf) 4739{ 4740 struct super_block *sb = dentry->d_sb; 4741 struct ext4_sb_info *sbi = EXT4_SB(sb); 4742 struct ext4_super_block *es = sbi->s_es; 4743 ext4_fsblk_t overhead = 0; 4744 u64 fsid; 4745 s64 bfree; 4746 4747 if (!test_opt(sb, MINIX_DF)) 4748 overhead = sbi->s_overhead; 4749 4750 buf->f_type = EXT4_SUPER_MAGIC; 4751 buf->f_bsize = sb->s_blocksize; 4752 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead); 4753 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) - 4754 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter); 4755 /* prevent underflow in case that few free space is available */ 4756 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0)); 4757 buf->f_bavail = buf->f_bfree - ext4_r_blocks_count(es); 4758 if (buf->f_bfree < ext4_r_blocks_count(es)) 4759 buf->f_bavail = 0; 4760 buf->f_files = le32_to_cpu(es->s_inodes_count); 4761 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter); 4762 buf->f_namelen = EXT4_NAME_LEN; 4763 fsid = le64_to_cpup((void *)es->s_uuid) ^ 4764 le64_to_cpup((void *)es->s_uuid + sizeof(u64)); 4765 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL; 4766 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL; 4767 4768 return 0; 4769} 4770 4771/* Helper function for writing quotas on sync - we need to start transaction 4772 * before quota file is locked for write. Otherwise the are possible deadlocks: 4773 * Process 1 Process 2 4774 * ext4_create() quota_sync() 4775 * jbd2_journal_start() write_dquot() 4776 * dquot_initialize() down(dqio_mutex) 4777 * down(dqio_mutex) jbd2_journal_start() 4778 * 4779 */ 4780 4781#ifdef CONFIG_QUOTA 4782 4783static inline struct inode *dquot_to_inode(struct dquot *dquot) 4784{ 4785 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type]; 4786} 4787 4788static int ext4_write_dquot(struct dquot *dquot) 4789{ 4790 int ret, err; 4791 handle_t *handle; 4792 struct inode *inode; 4793 4794 inode = dquot_to_inode(dquot); 4795 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 4796 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb)); 4797 if (IS_ERR(handle)) 4798 return PTR_ERR(handle); 4799 ret = dquot_commit(dquot); 4800 err = ext4_journal_stop(handle); 4801 if (!ret) 4802 ret = err; 4803 return ret; 4804} 4805 4806static int ext4_acquire_dquot(struct dquot *dquot) 4807{ 4808 int ret, err; 4809 handle_t *handle; 4810 4811 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 4812 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb)); 4813 if (IS_ERR(handle)) 4814 return PTR_ERR(handle); 4815 ret = dquot_acquire(dquot); 4816 err = ext4_journal_stop(handle); 4817 if (!ret) 4818 ret = err; 4819 return ret; 4820} 4821 4822static int ext4_release_dquot(struct dquot *dquot) 4823{ 4824 int ret, err; 4825 handle_t *handle; 4826 4827 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA, 4828 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb)); 4829 if (IS_ERR(handle)) { 4830 /* Release dquot anyway to avoid endless cycle in dqput() */ 4831 dquot_release(dquot); 4832 return PTR_ERR(handle); 4833 } 4834 ret = dquot_release(dquot); 4835 err = ext4_journal_stop(handle); 4836 if (!ret) 4837 ret = err; 4838 return ret; 4839} 4840 4841static int ext4_mark_dquot_dirty(struct dquot *dquot) 4842{ 4843 struct super_block *sb = dquot->dq_sb; 4844 struct ext4_sb_info *sbi = EXT4_SB(sb); 4845 4846 /* Are we journaling quotas? */ 4847 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) || 4848 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) { 4849 dquot_mark_dquot_dirty(dquot); 4850 return ext4_write_dquot(dquot); 4851 } else { 4852 return dquot_mark_dquot_dirty(dquot); 4853 } 4854} 4855 4856static int ext4_write_info(struct super_block *sb, int type) 4857{ 4858 int ret, err; 4859 handle_t *handle; 4860 4861 /* Data block + inode block */ 4862 handle = ext4_journal_start(sb->s_root->d_inode, EXT4_HT_QUOTA, 2); 4863 if (IS_ERR(handle)) 4864 return PTR_ERR(handle); 4865 ret = dquot_commit_info(sb, type); 4866 err = ext4_journal_stop(handle); 4867 if (!ret) 4868 ret = err; 4869 return ret; 4870} 4871 4872/* 4873 * Turn on quotas during mount time - we need to find 4874 * the quota file and such... 4875 */ 4876static int ext4_quota_on_mount(struct super_block *sb, int type) 4877{ 4878 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type], 4879 EXT4_SB(sb)->s_jquota_fmt, type); 4880} 4881 4882/* 4883 * Standard function to be called on quota_on 4884 */ 4885static int ext4_quota_on(struct super_block *sb, int type, int format_id, 4886 struct path *path) 4887{ 4888 int err; 4889 4890 if (!test_opt(sb, QUOTA)) 4891 return -EINVAL; 4892 4893 /* Quotafile not on the same filesystem? */ 4894 if (path->dentry->d_sb != sb) 4895 return -EXDEV; 4896 /* Journaling quota? */ 4897 if (EXT4_SB(sb)->s_qf_names[type]) { 4898 /* Quotafile not in fs root? */ 4899 if (path->dentry->d_parent != sb->s_root) 4900 ext4_msg(sb, KERN_WARNING, 4901 "Quota file not on filesystem root. " 4902 "Journaled quota will not work"); 4903 } 4904 4905 /* 4906 * When we journal data on quota file, we have to flush journal to see 4907 * all updates to the file when we bypass pagecache... 4908 */ 4909 if (EXT4_SB(sb)->s_journal && 4910 ext4_should_journal_data(path->dentry->d_inode)) { 4911 /* 4912 * We don't need to lock updates but journal_flush() could 4913 * otherwise be livelocked... 4914 */ 4915 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal); 4916 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal); 4917 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal); 4918 if (err) 4919 return err; 4920 } 4921 4922 return dquot_quota_on(sb, type, format_id, path); 4923} 4924 4925static int ext4_quota_enable(struct super_block *sb, int type, int format_id, 4926 unsigned int flags) 4927{ 4928 int err; 4929 struct inode *qf_inode; 4930 unsigned long qf_inums[MAXQUOTAS] = { 4931 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 4932 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum) 4933 }; 4934 4935 BUG_ON(!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)); 4936 4937 if (!qf_inums[type]) 4938 return -EPERM; 4939 4940 qf_inode = ext4_iget(sb, qf_inums[type]); 4941 if (IS_ERR(qf_inode)) { 4942 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]); 4943 return PTR_ERR(qf_inode); 4944 } 4945 4946 err = dquot_enable(qf_inode, type, format_id, flags); 4947 iput(qf_inode); 4948 4949 return err; 4950} 4951 4952/* Enable usage tracking for all quota types. */ 4953static int ext4_enable_quotas(struct super_block *sb) 4954{ 4955 int type, err = 0; 4956 unsigned long qf_inums[MAXQUOTAS] = { 4957 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum), 4958 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum) 4959 }; 4960 4961 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE; 4962 for (type = 0; type < MAXQUOTAS; type++) { 4963 if (qf_inums[type]) { 4964 err = ext4_quota_enable(sb, type, QFMT_VFS_V1, 4965 DQUOT_USAGE_ENABLED); 4966 if (err) { 4967 ext4_warning(sb, 4968 "Failed to enable quota tracking " 4969 "(type=%d, err=%d). Please run " 4970 "e2fsck to fix.", type, err); 4971 return err; 4972 } 4973 } 4974 } 4975 return 0; 4976} 4977 4978/* 4979 * quota_on function that is used when QUOTA feature is set. 4980 */ 4981static int ext4_quota_on_sysfile(struct super_block *sb, int type, 4982 int format_id) 4983{ 4984 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)) 4985 return -EINVAL; 4986 4987 /* 4988 * USAGE was enabled at mount time. Only need to enable LIMITS now. 4989 */ 4990 return ext4_quota_enable(sb, type, format_id, DQUOT_LIMITS_ENABLED); 4991} 4992 4993static int ext4_quota_off(struct super_block *sb, int type) 4994{ 4995 struct inode *inode = sb_dqopt(sb)->files[type]; 4996 handle_t *handle; 4997 4998 /* Force all delayed allocation blocks to be allocated. 4999 * Caller already holds s_umount sem */ 5000 if (test_opt(sb, DELALLOC)) 5001 sync_filesystem(sb); 5002 5003 if (!inode) 5004 goto out; 5005 5006 /* Update modification times of quota files when userspace can 5007 * start looking at them */ 5008 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1); 5009 if (IS_ERR(handle)) 5010 goto out; 5011 inode->i_mtime = inode->i_ctime = CURRENT_TIME; 5012 ext4_mark_inode_dirty(handle, inode); 5013 ext4_journal_stop(handle); 5014 5015out: 5016 return dquot_quota_off(sb, type); 5017} 5018 5019/* 5020 * quota_off function that is used when QUOTA feature is set. 5021 */ 5022static int ext4_quota_off_sysfile(struct super_block *sb, int type) 5023{ 5024 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)) 5025 return -EINVAL; 5026 5027 /* Disable only the limits. */ 5028 return dquot_disable(sb, type, DQUOT_LIMITS_ENABLED); 5029} 5030 5031/* Read data from quotafile - avoid pagecache and such because we cannot afford 5032 * acquiring the locks... As quota files are never truncated and quota code 5033 * itself serializes the operations (and no one else should touch the files) 5034 * we don't have to be afraid of races */ 5035static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data, 5036 size_t len, loff_t off) 5037{ 5038 struct inode *inode = sb_dqopt(sb)->files[type]; 5039 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 5040 int err = 0; 5041 int offset = off & (sb->s_blocksize - 1); 5042 int tocopy; 5043 size_t toread; 5044 struct buffer_head *bh; 5045 loff_t i_size = i_size_read(inode); 5046 5047 if (off > i_size) 5048 return 0; 5049 if (off+len > i_size) 5050 len = i_size-off; 5051 toread = len; 5052 while (toread > 0) { 5053 tocopy = sb->s_blocksize - offset < toread ? 5054 sb->s_blocksize - offset : toread; 5055 bh = ext4_bread(NULL, inode, blk, 0, &err); 5056 if (err) 5057 return err; 5058 if (!bh) /* A hole? */ 5059 memset(data, 0, tocopy); 5060 else 5061 memcpy(data, bh->b_data+offset, tocopy); 5062 brelse(bh); 5063 offset = 0; 5064 toread -= tocopy; 5065 data += tocopy; 5066 blk++; 5067 } 5068 return len; 5069} 5070 5071/* Write to quotafile (we know the transaction is already started and has 5072 * enough credits) */ 5073static ssize_t ext4_quota_write(struct super_block *sb, int type, 5074 const char *data, size_t len, loff_t off) 5075{ 5076 struct inode *inode = sb_dqopt(sb)->files[type]; 5077 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb); 5078 int err = 0; 5079 int offset = off & (sb->s_blocksize - 1); 5080 struct buffer_head *bh; 5081 handle_t *handle = journal_current_handle(); 5082 5083 if (EXT4_SB(sb)->s_journal && !handle) { 5084 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 5085 " cancelled because transaction is not started", 5086 (unsigned long long)off, (unsigned long long)len); 5087 return -EIO; 5088 } 5089 /* 5090 * Since we account only one data block in transaction credits, 5091 * then it is impossible to cross a block boundary. 5092 */ 5093 if (sb->s_blocksize - offset < len) { 5094 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)" 5095 " cancelled because not block aligned", 5096 (unsigned long long)off, (unsigned long long)len); 5097 return -EIO; 5098 } 5099 5100 bh = ext4_bread(handle, inode, blk, 1, &err); 5101 if (!bh) 5102 goto out; 5103 err = ext4_journal_get_write_access(handle, bh); 5104 if (err) { 5105 brelse(bh); 5106 goto out; 5107 } 5108 lock_buffer(bh); 5109 memcpy(bh->b_data+offset, data, len); 5110 flush_dcache_page(bh->b_page); 5111 unlock_buffer(bh); 5112 err = ext4_handle_dirty_metadata(handle, NULL, bh); 5113 brelse(bh); 5114out: 5115 if (err) 5116 return err; 5117 if (inode->i_size < off + len) { 5118 i_size_write(inode, off + len); 5119 EXT4_I(inode)->i_disksize = inode->i_size; 5120 ext4_mark_inode_dirty(handle, inode); 5121 } 5122 return len; 5123} 5124 5125#endif 5126 5127static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags, 5128 const char *dev_name, void *data) 5129{ 5130 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super); 5131} 5132 5133#if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23) 5134static inline void register_as_ext2(void) 5135{ 5136 int err = register_filesystem(&ext2_fs_type); 5137 if (err) 5138 printk(KERN_WARNING 5139 "EXT4-fs: Unable to register as ext2 (%d)\n", err); 5140} 5141 5142static inline void unregister_as_ext2(void) 5143{ 5144 unregister_filesystem(&ext2_fs_type); 5145} 5146 5147static inline int ext2_feature_set_ok(struct super_block *sb) 5148{ 5149 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT2_FEATURE_INCOMPAT_SUPP)) 5150 return 0; 5151 if (sb->s_flags & MS_RDONLY) 5152 return 1; 5153 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT2_FEATURE_RO_COMPAT_SUPP)) 5154 return 0; 5155 return 1; 5156} 5157#else 5158static inline void register_as_ext2(void) { } 5159static inline void unregister_as_ext2(void) { } 5160static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; } 5161#endif 5162 5163#if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23) 5164static inline void register_as_ext3(void) 5165{ 5166 int err = register_filesystem(&ext3_fs_type); 5167 if (err) 5168 printk(KERN_WARNING 5169 "EXT4-fs: Unable to register as ext3 (%d)\n", err); 5170} 5171 5172static inline void unregister_as_ext3(void) 5173{ 5174 unregister_filesystem(&ext3_fs_type); 5175} 5176 5177static inline int ext3_feature_set_ok(struct super_block *sb) 5178{ 5179 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT3_FEATURE_INCOMPAT_SUPP)) 5180 return 0; 5181 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) 5182 return 0; 5183 if (sb->s_flags & MS_RDONLY) 5184 return 1; 5185 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT3_FEATURE_RO_COMPAT_SUPP)) 5186 return 0; 5187 return 1; 5188} 5189#else 5190static inline void register_as_ext3(void) { } 5191static inline void unregister_as_ext3(void) { } 5192static inline int ext3_feature_set_ok(struct super_block *sb) { return 0; } 5193#endif 5194 5195static struct file_system_type ext4_fs_type = { 5196 .owner = THIS_MODULE, 5197 .name = "ext4", 5198 .mount = ext4_mount, 5199 .kill_sb = kill_block_super, 5200 .fs_flags = FS_REQUIRES_DEV, 5201}; 5202MODULE_ALIAS_FS("ext4"); 5203 5204static int __init ext4_init_feat_adverts(void) 5205{ 5206 struct ext4_features *ef; 5207 int ret = -ENOMEM; 5208 5209 ef = kzalloc(sizeof(struct ext4_features), GFP_KERNEL); 5210 if (!ef) 5211 goto out; 5212 5213 ef->f_kobj.kset = ext4_kset; 5214 init_completion(&ef->f_kobj_unregister); 5215 ret = kobject_init_and_add(&ef->f_kobj, &ext4_feat_ktype, NULL, 5216 "features"); 5217 if (ret) { 5218 kfree(ef); 5219 goto out; 5220 } 5221 5222 ext4_feat = ef; 5223 ret = 0; 5224out: 5225 return ret; 5226} 5227 5228static void ext4_exit_feat_adverts(void) 5229{ 5230 kobject_put(&ext4_feat->f_kobj); 5231 wait_for_completion(&ext4_feat->f_kobj_unregister); 5232 kfree(ext4_feat); 5233} 5234 5235/* Shared across all ext4 file systems */ 5236wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ]; 5237struct mutex ext4__aio_mutex[EXT4_WQ_HASH_SZ]; 5238 5239static int __init ext4_init_fs(void) 5240{ 5241 int i, err; 5242 5243 ext4_li_info = NULL; 5244 mutex_init(&ext4_li_mtx); 5245 5246 /* Build-time check for flags consistency */ 5247 ext4_check_flag_values(); 5248 5249 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) { 5250 mutex_init(&ext4__aio_mutex[i]); 5251 init_waitqueue_head(&ext4__ioend_wq[i]); 5252 } 5253 5254 err = ext4_init_es(); 5255 if (err) 5256 return err; 5257 5258 err = ext4_init_pageio(); 5259 if (err) 5260 goto out7; 5261 5262 err = ext4_init_system_zone(); 5263 if (err) 5264 goto out6; 5265 ext4_kset = kset_create_and_add("ext4", NULL, fs_kobj); 5266 if (!ext4_kset) { 5267 err = -ENOMEM; 5268 goto out5; 5269 } 5270 ext4_proc_root = proc_mkdir("fs/ext4", NULL); 5271 5272 err = ext4_init_feat_adverts(); 5273 if (err) 5274 goto out4; 5275 5276 err = ext4_init_mballoc(); 5277 if (err) 5278 goto out3; 5279 5280 err = ext4_init_xattr(); 5281 if (err) 5282 goto out2; 5283 err = init_inodecache(); 5284 if (err) 5285 goto out1; 5286 register_as_ext3(); 5287 register_as_ext2(); 5288 err = register_filesystem(&ext4_fs_type); 5289 if (err) 5290 goto out; 5291 5292 return 0; 5293out: 5294 unregister_as_ext2(); 5295 unregister_as_ext3(); 5296 destroy_inodecache(); 5297out1: 5298 ext4_exit_xattr(); 5299out2: 5300 ext4_exit_mballoc(); 5301out3: 5302 ext4_exit_feat_adverts(); 5303out4: 5304 if (ext4_proc_root) 5305 remove_proc_entry("fs/ext4", NULL); 5306 kset_unregister(ext4_kset); 5307out5: 5308 ext4_exit_system_zone(); 5309out6: 5310 ext4_exit_pageio(); 5311out7: 5312 ext4_exit_es(); 5313 5314 return err; 5315} 5316 5317static void __exit ext4_exit_fs(void) 5318{ 5319 ext4_destroy_lazyinit_thread(); 5320 unregister_as_ext2(); 5321 unregister_as_ext3(); 5322 unregister_filesystem(&ext4_fs_type); 5323 destroy_inodecache(); 5324 ext4_exit_xattr(); 5325 ext4_exit_mballoc(); 5326 ext4_exit_feat_adverts(); 5327 remove_proc_entry("fs/ext4", NULL); 5328 kset_unregister(ext4_kset); 5329 ext4_exit_system_zone(); 5330 ext4_exit_pageio(); 5331} 5332 5333MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others"); 5334MODULE_DESCRIPTION("Fourth Extended Filesystem"); 5335MODULE_LICENSE("GPL"); 5336module_init(ext4_init_fs) 5337module_exit(ext4_exit_fs)