at v3.9-rc2 1518 lines 39 kB view raw
1/* 2 Copyright (C) 2010 Willow Garage <http://www.willowgarage.com> 3 Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com> 4 <http://rt2x00.serialmonkey.com> 5 6 This program is free software; you can redistribute it and/or modify 7 it under the terms of the GNU General Public License as published by 8 the Free Software Foundation; either version 2 of the License, or 9 (at your option) any later version. 10 11 This program is distributed in the hope that it will be useful, 12 but WITHOUT ANY WARRANTY; without even the implied warranty of 13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 GNU General Public License for more details. 15 16 You should have received a copy of the GNU General Public License 17 along with this program; if not, write to the 18 Free Software Foundation, Inc., 19 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 20 */ 21 22/* 23 Module: rt2x00lib 24 Abstract: rt2x00 generic device routines. 25 */ 26 27#include <linux/kernel.h> 28#include <linux/module.h> 29#include <linux/slab.h> 30#include <linux/log2.h> 31 32#include "rt2x00.h" 33#include "rt2x00lib.h" 34 35/* 36 * Utility functions. 37 */ 38u32 rt2x00lib_get_bssidx(struct rt2x00_dev *rt2x00dev, 39 struct ieee80211_vif *vif) 40{ 41 /* 42 * When in STA mode, bssidx is always 0 otherwise local_address[5] 43 * contains the bss number, see BSS_ID_MASK comments for details. 44 */ 45 if (rt2x00dev->intf_sta_count) 46 return 0; 47 return vif->addr[5] & (rt2x00dev->ops->max_ap_intf - 1); 48} 49EXPORT_SYMBOL_GPL(rt2x00lib_get_bssidx); 50 51/* 52 * Radio control handlers. 53 */ 54int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev) 55{ 56 int status; 57 58 /* 59 * Don't enable the radio twice. 60 * And check if the hardware button has been disabled. 61 */ 62 if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) 63 return 0; 64 65 /* 66 * Initialize all data queues. 67 */ 68 rt2x00queue_init_queues(rt2x00dev); 69 70 /* 71 * Enable radio. 72 */ 73 status = 74 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON); 75 if (status) 76 return status; 77 78 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_ON); 79 80 rt2x00leds_led_radio(rt2x00dev, true); 81 rt2x00led_led_activity(rt2x00dev, true); 82 83 set_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags); 84 85 /* 86 * Enable queues. 87 */ 88 rt2x00queue_start_queues(rt2x00dev); 89 rt2x00link_start_tuner(rt2x00dev); 90 rt2x00link_start_agc(rt2x00dev); 91 if (test_bit(CAPABILITY_VCO_RECALIBRATION, &rt2x00dev->cap_flags)) 92 rt2x00link_start_vcocal(rt2x00dev); 93 94 /* 95 * Start watchdog monitoring. 96 */ 97 rt2x00link_start_watchdog(rt2x00dev); 98 99 return 0; 100} 101 102void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev) 103{ 104 if (!test_and_clear_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) 105 return; 106 107 /* 108 * Stop watchdog monitoring. 109 */ 110 rt2x00link_stop_watchdog(rt2x00dev); 111 112 /* 113 * Stop all queues 114 */ 115 rt2x00link_stop_agc(rt2x00dev); 116 if (test_bit(CAPABILITY_VCO_RECALIBRATION, &rt2x00dev->cap_flags)) 117 rt2x00link_stop_vcocal(rt2x00dev); 118 rt2x00link_stop_tuner(rt2x00dev); 119 rt2x00queue_stop_queues(rt2x00dev); 120 rt2x00queue_flush_queues(rt2x00dev, true); 121 122 /* 123 * Disable radio. 124 */ 125 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF); 126 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF); 127 rt2x00led_led_activity(rt2x00dev, false); 128 rt2x00leds_led_radio(rt2x00dev, false); 129} 130 131static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac, 132 struct ieee80211_vif *vif) 133{ 134 struct rt2x00_dev *rt2x00dev = data; 135 struct rt2x00_intf *intf = vif_to_intf(vif); 136 137 /* 138 * It is possible the radio was disabled while the work had been 139 * scheduled. If that happens we should return here immediately, 140 * note that in the spinlock protected area above the delayed_flags 141 * have been cleared correctly. 142 */ 143 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) 144 return; 145 146 if (test_and_clear_bit(DELAYED_UPDATE_BEACON, &intf->delayed_flags)) 147 rt2x00queue_update_beacon(rt2x00dev, vif); 148} 149 150static void rt2x00lib_intf_scheduled(struct work_struct *work) 151{ 152 struct rt2x00_dev *rt2x00dev = 153 container_of(work, struct rt2x00_dev, intf_work); 154 155 /* 156 * Iterate over each interface and perform the 157 * requested configurations. 158 */ 159 ieee80211_iterate_active_interfaces(rt2x00dev->hw, 160 IEEE80211_IFACE_ITER_RESUME_ALL, 161 rt2x00lib_intf_scheduled_iter, 162 rt2x00dev); 163} 164 165static void rt2x00lib_autowakeup(struct work_struct *work) 166{ 167 struct rt2x00_dev *rt2x00dev = 168 container_of(work, struct rt2x00_dev, autowakeup_work.work); 169 170 if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags)) 171 return; 172 173 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE)) 174 ERROR(rt2x00dev, "Device failed to wakeup.\n"); 175 clear_bit(CONFIG_POWERSAVING, &rt2x00dev->flags); 176} 177 178/* 179 * Interrupt context handlers. 180 */ 181static void rt2x00lib_bc_buffer_iter(void *data, u8 *mac, 182 struct ieee80211_vif *vif) 183{ 184 struct rt2x00_dev *rt2x00dev = data; 185 struct sk_buff *skb; 186 187 /* 188 * Only AP mode interfaces do broad- and multicast buffering 189 */ 190 if (vif->type != NL80211_IFTYPE_AP) 191 return; 192 193 /* 194 * Send out buffered broad- and multicast frames 195 */ 196 skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif); 197 while (skb) { 198 rt2x00mac_tx(rt2x00dev->hw, NULL, skb); 199 skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif); 200 } 201} 202 203static void rt2x00lib_beaconupdate_iter(void *data, u8 *mac, 204 struct ieee80211_vif *vif) 205{ 206 struct rt2x00_dev *rt2x00dev = data; 207 208 if (vif->type != NL80211_IFTYPE_AP && 209 vif->type != NL80211_IFTYPE_ADHOC && 210 vif->type != NL80211_IFTYPE_MESH_POINT && 211 vif->type != NL80211_IFTYPE_WDS) 212 return; 213 214 /* 215 * Update the beacon without locking. This is safe on PCI devices 216 * as they only update the beacon periodically here. This should 217 * never be called for USB devices. 218 */ 219 WARN_ON(rt2x00_is_usb(rt2x00dev)); 220 rt2x00queue_update_beacon_locked(rt2x00dev, vif); 221} 222 223void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev) 224{ 225 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) 226 return; 227 228 /* send buffered bc/mc frames out for every bssid */ 229 ieee80211_iterate_active_interfaces_atomic( 230 rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL, 231 rt2x00lib_bc_buffer_iter, rt2x00dev); 232 /* 233 * Devices with pre tbtt interrupt don't need to update the beacon 234 * here as they will fetch the next beacon directly prior to 235 * transmission. 236 */ 237 if (test_bit(CAPABILITY_PRE_TBTT_INTERRUPT, &rt2x00dev->cap_flags)) 238 return; 239 240 /* fetch next beacon */ 241 ieee80211_iterate_active_interfaces_atomic( 242 rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL, 243 rt2x00lib_beaconupdate_iter, rt2x00dev); 244} 245EXPORT_SYMBOL_GPL(rt2x00lib_beacondone); 246 247void rt2x00lib_pretbtt(struct rt2x00_dev *rt2x00dev) 248{ 249 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) 250 return; 251 252 /* fetch next beacon */ 253 ieee80211_iterate_active_interfaces_atomic( 254 rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL, 255 rt2x00lib_beaconupdate_iter, rt2x00dev); 256} 257EXPORT_SYMBOL_GPL(rt2x00lib_pretbtt); 258 259void rt2x00lib_dmastart(struct queue_entry *entry) 260{ 261 set_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags); 262 rt2x00queue_index_inc(entry, Q_INDEX); 263} 264EXPORT_SYMBOL_GPL(rt2x00lib_dmastart); 265 266void rt2x00lib_dmadone(struct queue_entry *entry) 267{ 268 set_bit(ENTRY_DATA_STATUS_PENDING, &entry->flags); 269 clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags); 270 rt2x00queue_index_inc(entry, Q_INDEX_DMA_DONE); 271} 272EXPORT_SYMBOL_GPL(rt2x00lib_dmadone); 273 274static inline int rt2x00lib_txdone_bar_status(struct queue_entry *entry) 275{ 276 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; 277 struct ieee80211_bar *bar = (void *) entry->skb->data; 278 struct rt2x00_bar_list_entry *bar_entry; 279 int ret; 280 281 if (likely(!ieee80211_is_back_req(bar->frame_control))) 282 return 0; 283 284 /* 285 * Unlike all other frames, the status report for BARs does 286 * not directly come from the hardware as it is incapable of 287 * matching a BA to a previously send BAR. The hardware will 288 * report all BARs as if they weren't acked at all. 289 * 290 * Instead the RX-path will scan for incoming BAs and set the 291 * block_acked flag if it sees one that was likely caused by 292 * a BAR from us. 293 * 294 * Remove remaining BARs here and return their status for 295 * TX done processing. 296 */ 297 ret = 0; 298 rcu_read_lock(); 299 list_for_each_entry_rcu(bar_entry, &rt2x00dev->bar_list, list) { 300 if (bar_entry->entry != entry) 301 continue; 302 303 spin_lock_bh(&rt2x00dev->bar_list_lock); 304 /* Return whether this BAR was blockacked or not */ 305 ret = bar_entry->block_acked; 306 /* Remove the BAR from our checklist */ 307 list_del_rcu(&bar_entry->list); 308 spin_unlock_bh(&rt2x00dev->bar_list_lock); 309 kfree_rcu(bar_entry, head); 310 311 break; 312 } 313 rcu_read_unlock(); 314 315 return ret; 316} 317 318void rt2x00lib_txdone(struct queue_entry *entry, 319 struct txdone_entry_desc *txdesc) 320{ 321 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; 322 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb); 323 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb); 324 unsigned int header_length, i; 325 u8 rate_idx, rate_flags, retry_rates; 326 u8 skbdesc_flags = skbdesc->flags; 327 bool success; 328 329 /* 330 * Unmap the skb. 331 */ 332 rt2x00queue_unmap_skb(entry); 333 334 /* 335 * Remove the extra tx headroom from the skb. 336 */ 337 skb_pull(entry->skb, rt2x00dev->ops->extra_tx_headroom); 338 339 /* 340 * Signal that the TX descriptor is no longer in the skb. 341 */ 342 skbdesc->flags &= ~SKBDESC_DESC_IN_SKB; 343 344 /* 345 * Determine the length of 802.11 header. 346 */ 347 header_length = ieee80211_get_hdrlen_from_skb(entry->skb); 348 349 /* 350 * Remove L2 padding which was added during 351 */ 352 if (test_bit(REQUIRE_L2PAD, &rt2x00dev->cap_flags)) 353 rt2x00queue_remove_l2pad(entry->skb, header_length); 354 355 /* 356 * If the IV/EIV data was stripped from the frame before it was 357 * passed to the hardware, we should now reinsert it again because 358 * mac80211 will expect the same data to be present it the 359 * frame as it was passed to us. 360 */ 361 if (test_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags)) 362 rt2x00crypto_tx_insert_iv(entry->skb, header_length); 363 364 /* 365 * Send frame to debugfs immediately, after this call is completed 366 * we are going to overwrite the skb->cb array. 367 */ 368 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry->skb); 369 370 /* 371 * Determine if the frame has been successfully transmitted and 372 * remove BARs from our check list while checking for their 373 * TX status. 374 */ 375 success = 376 rt2x00lib_txdone_bar_status(entry) || 377 test_bit(TXDONE_SUCCESS, &txdesc->flags) || 378 test_bit(TXDONE_UNKNOWN, &txdesc->flags); 379 380 /* 381 * Update TX statistics. 382 */ 383 rt2x00dev->link.qual.tx_success += success; 384 rt2x00dev->link.qual.tx_failed += !success; 385 386 rate_idx = skbdesc->tx_rate_idx; 387 rate_flags = skbdesc->tx_rate_flags; 388 retry_rates = test_bit(TXDONE_FALLBACK, &txdesc->flags) ? 389 (txdesc->retry + 1) : 1; 390 391 /* 392 * Initialize TX status 393 */ 394 memset(&tx_info->status, 0, sizeof(tx_info->status)); 395 tx_info->status.ack_signal = 0; 396 397 /* 398 * Frame was send with retries, hardware tried 399 * different rates to send out the frame, at each 400 * retry it lowered the rate 1 step except when the 401 * lowest rate was used. 402 */ 403 for (i = 0; i < retry_rates && i < IEEE80211_TX_MAX_RATES; i++) { 404 tx_info->status.rates[i].idx = rate_idx - i; 405 tx_info->status.rates[i].flags = rate_flags; 406 407 if (rate_idx - i == 0) { 408 /* 409 * The lowest rate (index 0) was used until the 410 * number of max retries was reached. 411 */ 412 tx_info->status.rates[i].count = retry_rates - i; 413 i++; 414 break; 415 } 416 tx_info->status.rates[i].count = 1; 417 } 418 if (i < (IEEE80211_TX_MAX_RATES - 1)) 419 tx_info->status.rates[i].idx = -1; /* terminate */ 420 421 if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) { 422 if (success) 423 tx_info->flags |= IEEE80211_TX_STAT_ACK; 424 else 425 rt2x00dev->low_level_stats.dot11ACKFailureCount++; 426 } 427 428 /* 429 * Every single frame has it's own tx status, hence report 430 * every frame as ampdu of size 1. 431 * 432 * TODO: if we can find out how many frames were aggregated 433 * by the hw we could provide the real ampdu_len to mac80211 434 * which would allow the rc algorithm to better decide on 435 * which rates are suitable. 436 */ 437 if (test_bit(TXDONE_AMPDU, &txdesc->flags) || 438 tx_info->flags & IEEE80211_TX_CTL_AMPDU) { 439 tx_info->flags |= IEEE80211_TX_STAT_AMPDU; 440 tx_info->status.ampdu_len = 1; 441 tx_info->status.ampdu_ack_len = success ? 1 : 0; 442 443 if (!success) 444 tx_info->flags |= IEEE80211_TX_STAT_AMPDU_NO_BACK; 445 } 446 447 if (rate_flags & IEEE80211_TX_RC_USE_RTS_CTS) { 448 if (success) 449 rt2x00dev->low_level_stats.dot11RTSSuccessCount++; 450 else 451 rt2x00dev->low_level_stats.dot11RTSFailureCount++; 452 } 453 454 /* 455 * Only send the status report to mac80211 when it's a frame 456 * that originated in mac80211. If this was a extra frame coming 457 * through a mac80211 library call (RTS/CTS) then we should not 458 * send the status report back. 459 */ 460 if (!(skbdesc_flags & SKBDESC_NOT_MAC80211)) { 461 if (test_bit(REQUIRE_TASKLET_CONTEXT, &rt2x00dev->cap_flags)) 462 ieee80211_tx_status(rt2x00dev->hw, entry->skb); 463 else 464 ieee80211_tx_status_ni(rt2x00dev->hw, entry->skb); 465 } else 466 dev_kfree_skb_any(entry->skb); 467 468 /* 469 * Make this entry available for reuse. 470 */ 471 entry->skb = NULL; 472 entry->flags = 0; 473 474 rt2x00dev->ops->lib->clear_entry(entry); 475 476 rt2x00queue_index_inc(entry, Q_INDEX_DONE); 477 478 /* 479 * If the data queue was below the threshold before the txdone 480 * handler we must make sure the packet queue in the mac80211 stack 481 * is reenabled when the txdone handler has finished. This has to be 482 * serialized with rt2x00mac_tx(), otherwise we can wake up queue 483 * before it was stopped. 484 */ 485 spin_lock_bh(&entry->queue->tx_lock); 486 if (!rt2x00queue_threshold(entry->queue)) 487 rt2x00queue_unpause_queue(entry->queue); 488 spin_unlock_bh(&entry->queue->tx_lock); 489} 490EXPORT_SYMBOL_GPL(rt2x00lib_txdone); 491 492void rt2x00lib_txdone_noinfo(struct queue_entry *entry, u32 status) 493{ 494 struct txdone_entry_desc txdesc; 495 496 txdesc.flags = 0; 497 __set_bit(status, &txdesc.flags); 498 txdesc.retry = 0; 499 500 rt2x00lib_txdone(entry, &txdesc); 501} 502EXPORT_SYMBOL_GPL(rt2x00lib_txdone_noinfo); 503 504static u8 *rt2x00lib_find_ie(u8 *data, unsigned int len, u8 ie) 505{ 506 struct ieee80211_mgmt *mgmt = (void *)data; 507 u8 *pos, *end; 508 509 pos = (u8 *)mgmt->u.beacon.variable; 510 end = data + len; 511 while (pos < end) { 512 if (pos + 2 + pos[1] > end) 513 return NULL; 514 515 if (pos[0] == ie) 516 return pos; 517 518 pos += 2 + pos[1]; 519 } 520 521 return NULL; 522} 523 524static void rt2x00lib_sleep(struct work_struct *work) 525{ 526 struct rt2x00_dev *rt2x00dev = 527 container_of(work, struct rt2x00_dev, sleep_work); 528 529 if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags)) 530 return; 531 532 /* 533 * Check again is powersaving is enabled, to prevent races from delayed 534 * work execution. 535 */ 536 if (!test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags)) 537 rt2x00lib_config(rt2x00dev, &rt2x00dev->hw->conf, 538 IEEE80211_CONF_CHANGE_PS); 539} 540 541static void rt2x00lib_rxdone_check_ba(struct rt2x00_dev *rt2x00dev, 542 struct sk_buff *skb, 543 struct rxdone_entry_desc *rxdesc) 544{ 545 struct rt2x00_bar_list_entry *entry; 546 struct ieee80211_bar *ba = (void *)skb->data; 547 548 if (likely(!ieee80211_is_back(ba->frame_control))) 549 return; 550 551 if (rxdesc->size < sizeof(*ba) + FCS_LEN) 552 return; 553 554 rcu_read_lock(); 555 list_for_each_entry_rcu(entry, &rt2x00dev->bar_list, list) { 556 557 if (ba->start_seq_num != entry->start_seq_num) 558 continue; 559 560#define TID_CHECK(a, b) ( \ 561 ((a) & cpu_to_le16(IEEE80211_BAR_CTRL_TID_INFO_MASK)) == \ 562 ((b) & cpu_to_le16(IEEE80211_BAR_CTRL_TID_INFO_MASK))) \ 563 564 if (!TID_CHECK(ba->control, entry->control)) 565 continue; 566 567#undef TID_CHECK 568 569 if (compare_ether_addr(ba->ra, entry->ta)) 570 continue; 571 572 if (compare_ether_addr(ba->ta, entry->ra)) 573 continue; 574 575 /* Mark BAR since we received the according BA */ 576 spin_lock_bh(&rt2x00dev->bar_list_lock); 577 entry->block_acked = 1; 578 spin_unlock_bh(&rt2x00dev->bar_list_lock); 579 break; 580 } 581 rcu_read_unlock(); 582 583} 584 585static void rt2x00lib_rxdone_check_ps(struct rt2x00_dev *rt2x00dev, 586 struct sk_buff *skb, 587 struct rxdone_entry_desc *rxdesc) 588{ 589 struct ieee80211_hdr *hdr = (void *) skb->data; 590 struct ieee80211_tim_ie *tim_ie; 591 u8 *tim; 592 u8 tim_len; 593 bool cam; 594 595 /* If this is not a beacon, or if mac80211 has no powersaving 596 * configured, or if the device is already in powersaving mode 597 * we can exit now. */ 598 if (likely(!ieee80211_is_beacon(hdr->frame_control) || 599 !(rt2x00dev->hw->conf.flags & IEEE80211_CONF_PS))) 600 return; 601 602 /* min. beacon length + FCS_LEN */ 603 if (skb->len <= 40 + FCS_LEN) 604 return; 605 606 /* and only beacons from the associated BSSID, please */ 607 if (!(rxdesc->dev_flags & RXDONE_MY_BSS) || 608 !rt2x00dev->aid) 609 return; 610 611 rt2x00dev->last_beacon = jiffies; 612 613 tim = rt2x00lib_find_ie(skb->data, skb->len - FCS_LEN, WLAN_EID_TIM); 614 if (!tim) 615 return; 616 617 if (tim[1] < sizeof(*tim_ie)) 618 return; 619 620 tim_len = tim[1]; 621 tim_ie = (struct ieee80211_tim_ie *) &tim[2]; 622 623 /* Check whenever the PHY can be turned off again. */ 624 625 /* 1. What about buffered unicast traffic for our AID? */ 626 cam = ieee80211_check_tim(tim_ie, tim_len, rt2x00dev->aid); 627 628 /* 2. Maybe the AP wants to send multicast/broadcast data? */ 629 cam |= (tim_ie->bitmap_ctrl & 0x01); 630 631 if (!cam && !test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags)) 632 queue_work(rt2x00dev->workqueue, &rt2x00dev->sleep_work); 633} 634 635static int rt2x00lib_rxdone_read_signal(struct rt2x00_dev *rt2x00dev, 636 struct rxdone_entry_desc *rxdesc) 637{ 638 struct ieee80211_supported_band *sband; 639 const struct rt2x00_rate *rate; 640 unsigned int i; 641 int signal = rxdesc->signal; 642 int type = (rxdesc->dev_flags & RXDONE_SIGNAL_MASK); 643 644 switch (rxdesc->rate_mode) { 645 case RATE_MODE_CCK: 646 case RATE_MODE_OFDM: 647 /* 648 * For non-HT rates the MCS value needs to contain the 649 * actually used rate modulation (CCK or OFDM). 650 */ 651 if (rxdesc->dev_flags & RXDONE_SIGNAL_MCS) 652 signal = RATE_MCS(rxdesc->rate_mode, signal); 653 654 sband = &rt2x00dev->bands[rt2x00dev->curr_band]; 655 for (i = 0; i < sband->n_bitrates; i++) { 656 rate = rt2x00_get_rate(sband->bitrates[i].hw_value); 657 if (((type == RXDONE_SIGNAL_PLCP) && 658 (rate->plcp == signal)) || 659 ((type == RXDONE_SIGNAL_BITRATE) && 660 (rate->bitrate == signal)) || 661 ((type == RXDONE_SIGNAL_MCS) && 662 (rate->mcs == signal))) { 663 return i; 664 } 665 } 666 break; 667 case RATE_MODE_HT_MIX: 668 case RATE_MODE_HT_GREENFIELD: 669 if (signal >= 0 && signal <= 76) 670 return signal; 671 break; 672 default: 673 break; 674 } 675 676 WARNING(rt2x00dev, "Frame received with unrecognized signal, " 677 "mode=0x%.4x, signal=0x%.4x, type=%d.\n", 678 rxdesc->rate_mode, signal, type); 679 return 0; 680} 681 682void rt2x00lib_rxdone(struct queue_entry *entry, gfp_t gfp) 683{ 684 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; 685 struct rxdone_entry_desc rxdesc; 686 struct sk_buff *skb; 687 struct ieee80211_rx_status *rx_status; 688 unsigned int header_length; 689 int rate_idx; 690 691 if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) || 692 !test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) 693 goto submit_entry; 694 695 if (test_bit(ENTRY_DATA_IO_FAILED, &entry->flags)) 696 goto submit_entry; 697 698 /* 699 * Allocate a new sk_buffer. If no new buffer available, drop the 700 * received frame and reuse the existing buffer. 701 */ 702 skb = rt2x00queue_alloc_rxskb(entry, gfp); 703 if (!skb) 704 goto submit_entry; 705 706 /* 707 * Unmap the skb. 708 */ 709 rt2x00queue_unmap_skb(entry); 710 711 /* 712 * Extract the RXD details. 713 */ 714 memset(&rxdesc, 0, sizeof(rxdesc)); 715 rt2x00dev->ops->lib->fill_rxdone(entry, &rxdesc); 716 717 /* 718 * Check for valid size in case we get corrupted descriptor from 719 * hardware. 720 */ 721 if (unlikely(rxdesc.size == 0 || 722 rxdesc.size > entry->queue->data_size)) { 723 ERROR(rt2x00dev, "Wrong frame size %d max %d.\n", 724 rxdesc.size, entry->queue->data_size); 725 dev_kfree_skb(entry->skb); 726 goto renew_skb; 727 } 728 729 /* 730 * The data behind the ieee80211 header must be 731 * aligned on a 4 byte boundary. 732 */ 733 header_length = ieee80211_get_hdrlen_from_skb(entry->skb); 734 735 /* 736 * Hardware might have stripped the IV/EIV/ICV data, 737 * in that case it is possible that the data was 738 * provided separately (through hardware descriptor) 739 * in which case we should reinsert the data into the frame. 740 */ 741 if ((rxdesc.dev_flags & RXDONE_CRYPTO_IV) && 742 (rxdesc.flags & RX_FLAG_IV_STRIPPED)) 743 rt2x00crypto_rx_insert_iv(entry->skb, header_length, 744 &rxdesc); 745 else if (header_length && 746 (rxdesc.size > header_length) && 747 (rxdesc.dev_flags & RXDONE_L2PAD)) 748 rt2x00queue_remove_l2pad(entry->skb, header_length); 749 750 /* Trim buffer to correct size */ 751 skb_trim(entry->skb, rxdesc.size); 752 753 /* 754 * Translate the signal to the correct bitrate index. 755 */ 756 rate_idx = rt2x00lib_rxdone_read_signal(rt2x00dev, &rxdesc); 757 if (rxdesc.rate_mode == RATE_MODE_HT_MIX || 758 rxdesc.rate_mode == RATE_MODE_HT_GREENFIELD) 759 rxdesc.flags |= RX_FLAG_HT; 760 761 /* 762 * Check if this is a beacon, and more frames have been 763 * buffered while we were in powersaving mode. 764 */ 765 rt2x00lib_rxdone_check_ps(rt2x00dev, entry->skb, &rxdesc); 766 767 /* 768 * Check for incoming BlockAcks to match to the BlockAckReqs 769 * we've send out. 770 */ 771 rt2x00lib_rxdone_check_ba(rt2x00dev, entry->skb, &rxdesc); 772 773 /* 774 * Update extra components 775 */ 776 rt2x00link_update_stats(rt2x00dev, entry->skb, &rxdesc); 777 rt2x00debug_update_crypto(rt2x00dev, &rxdesc); 778 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_RXDONE, entry->skb); 779 780 /* 781 * Initialize RX status information, and send frame 782 * to mac80211. 783 */ 784 rx_status = IEEE80211_SKB_RXCB(entry->skb); 785 786 /* Ensure that all fields of rx_status are initialized 787 * properly. The skb->cb array was used for driver 788 * specific informations, so rx_status might contain 789 * garbage. 790 */ 791 memset(rx_status, 0, sizeof(*rx_status)); 792 793 rx_status->mactime = rxdesc.timestamp; 794 rx_status->band = rt2x00dev->curr_band; 795 rx_status->freq = rt2x00dev->curr_freq; 796 rx_status->rate_idx = rate_idx; 797 rx_status->signal = rxdesc.rssi; 798 rx_status->flag = rxdesc.flags; 799 rx_status->antenna = rt2x00dev->link.ant.active.rx; 800 801 ieee80211_rx_ni(rt2x00dev->hw, entry->skb); 802 803renew_skb: 804 /* 805 * Replace the skb with the freshly allocated one. 806 */ 807 entry->skb = skb; 808 809submit_entry: 810 entry->flags = 0; 811 rt2x00queue_index_inc(entry, Q_INDEX_DONE); 812 if (test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) && 813 test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) 814 rt2x00dev->ops->lib->clear_entry(entry); 815} 816EXPORT_SYMBOL_GPL(rt2x00lib_rxdone); 817 818/* 819 * Driver initialization handlers. 820 */ 821const struct rt2x00_rate rt2x00_supported_rates[12] = { 822 { 823 .flags = DEV_RATE_CCK, 824 .bitrate = 10, 825 .ratemask = BIT(0), 826 .plcp = 0x00, 827 .mcs = RATE_MCS(RATE_MODE_CCK, 0), 828 }, 829 { 830 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE, 831 .bitrate = 20, 832 .ratemask = BIT(1), 833 .plcp = 0x01, 834 .mcs = RATE_MCS(RATE_MODE_CCK, 1), 835 }, 836 { 837 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE, 838 .bitrate = 55, 839 .ratemask = BIT(2), 840 .plcp = 0x02, 841 .mcs = RATE_MCS(RATE_MODE_CCK, 2), 842 }, 843 { 844 .flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE, 845 .bitrate = 110, 846 .ratemask = BIT(3), 847 .plcp = 0x03, 848 .mcs = RATE_MCS(RATE_MODE_CCK, 3), 849 }, 850 { 851 .flags = DEV_RATE_OFDM, 852 .bitrate = 60, 853 .ratemask = BIT(4), 854 .plcp = 0x0b, 855 .mcs = RATE_MCS(RATE_MODE_OFDM, 0), 856 }, 857 { 858 .flags = DEV_RATE_OFDM, 859 .bitrate = 90, 860 .ratemask = BIT(5), 861 .plcp = 0x0f, 862 .mcs = RATE_MCS(RATE_MODE_OFDM, 1), 863 }, 864 { 865 .flags = DEV_RATE_OFDM, 866 .bitrate = 120, 867 .ratemask = BIT(6), 868 .plcp = 0x0a, 869 .mcs = RATE_MCS(RATE_MODE_OFDM, 2), 870 }, 871 { 872 .flags = DEV_RATE_OFDM, 873 .bitrate = 180, 874 .ratemask = BIT(7), 875 .plcp = 0x0e, 876 .mcs = RATE_MCS(RATE_MODE_OFDM, 3), 877 }, 878 { 879 .flags = DEV_RATE_OFDM, 880 .bitrate = 240, 881 .ratemask = BIT(8), 882 .plcp = 0x09, 883 .mcs = RATE_MCS(RATE_MODE_OFDM, 4), 884 }, 885 { 886 .flags = DEV_RATE_OFDM, 887 .bitrate = 360, 888 .ratemask = BIT(9), 889 .plcp = 0x0d, 890 .mcs = RATE_MCS(RATE_MODE_OFDM, 5), 891 }, 892 { 893 .flags = DEV_RATE_OFDM, 894 .bitrate = 480, 895 .ratemask = BIT(10), 896 .plcp = 0x08, 897 .mcs = RATE_MCS(RATE_MODE_OFDM, 6), 898 }, 899 { 900 .flags = DEV_RATE_OFDM, 901 .bitrate = 540, 902 .ratemask = BIT(11), 903 .plcp = 0x0c, 904 .mcs = RATE_MCS(RATE_MODE_OFDM, 7), 905 }, 906}; 907 908static void rt2x00lib_channel(struct ieee80211_channel *entry, 909 const int channel, const int tx_power, 910 const int value) 911{ 912 /* XXX: this assumption about the band is wrong for 802.11j */ 913 entry->band = channel <= 14 ? IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ; 914 entry->center_freq = ieee80211_channel_to_frequency(channel, 915 entry->band); 916 entry->hw_value = value; 917 entry->max_power = tx_power; 918 entry->max_antenna_gain = 0xff; 919} 920 921static void rt2x00lib_rate(struct ieee80211_rate *entry, 922 const u16 index, const struct rt2x00_rate *rate) 923{ 924 entry->flags = 0; 925 entry->bitrate = rate->bitrate; 926 entry->hw_value = index; 927 entry->hw_value_short = index; 928 929 if (rate->flags & DEV_RATE_SHORT_PREAMBLE) 930 entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE; 931} 932 933static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev, 934 struct hw_mode_spec *spec) 935{ 936 struct ieee80211_hw *hw = rt2x00dev->hw; 937 struct ieee80211_channel *channels; 938 struct ieee80211_rate *rates; 939 unsigned int num_rates; 940 unsigned int i; 941 942 num_rates = 0; 943 if (spec->supported_rates & SUPPORT_RATE_CCK) 944 num_rates += 4; 945 if (spec->supported_rates & SUPPORT_RATE_OFDM) 946 num_rates += 8; 947 948 channels = kcalloc(spec->num_channels, sizeof(*channels), GFP_KERNEL); 949 if (!channels) 950 return -ENOMEM; 951 952 rates = kcalloc(num_rates, sizeof(*rates), GFP_KERNEL); 953 if (!rates) 954 goto exit_free_channels; 955 956 /* 957 * Initialize Rate list. 958 */ 959 for (i = 0; i < num_rates; i++) 960 rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i)); 961 962 /* 963 * Initialize Channel list. 964 */ 965 for (i = 0; i < spec->num_channels; i++) { 966 rt2x00lib_channel(&channels[i], 967 spec->channels[i].channel, 968 spec->channels_info[i].max_power, i); 969 } 970 971 /* 972 * Intitialize 802.11b, 802.11g 973 * Rates: CCK, OFDM. 974 * Channels: 2.4 GHz 975 */ 976 if (spec->supported_bands & SUPPORT_BAND_2GHZ) { 977 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_channels = 14; 978 rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_bitrates = num_rates; 979 rt2x00dev->bands[IEEE80211_BAND_2GHZ].channels = channels; 980 rt2x00dev->bands[IEEE80211_BAND_2GHZ].bitrates = rates; 981 hw->wiphy->bands[IEEE80211_BAND_2GHZ] = 982 &rt2x00dev->bands[IEEE80211_BAND_2GHZ]; 983 memcpy(&rt2x00dev->bands[IEEE80211_BAND_2GHZ].ht_cap, 984 &spec->ht, sizeof(spec->ht)); 985 } 986 987 /* 988 * Intitialize 802.11a 989 * Rates: OFDM. 990 * Channels: OFDM, UNII, HiperLAN2. 991 */ 992 if (spec->supported_bands & SUPPORT_BAND_5GHZ) { 993 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_channels = 994 spec->num_channels - 14; 995 rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_bitrates = 996 num_rates - 4; 997 rt2x00dev->bands[IEEE80211_BAND_5GHZ].channels = &channels[14]; 998 rt2x00dev->bands[IEEE80211_BAND_5GHZ].bitrates = &rates[4]; 999 hw->wiphy->bands[IEEE80211_BAND_5GHZ] = 1000 &rt2x00dev->bands[IEEE80211_BAND_5GHZ]; 1001 memcpy(&rt2x00dev->bands[IEEE80211_BAND_5GHZ].ht_cap, 1002 &spec->ht, sizeof(spec->ht)); 1003 } 1004 1005 return 0; 1006 1007 exit_free_channels: 1008 kfree(channels); 1009 ERROR(rt2x00dev, "Allocation ieee80211 modes failed.\n"); 1010 return -ENOMEM; 1011} 1012 1013static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev) 1014{ 1015 if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags)) 1016 ieee80211_unregister_hw(rt2x00dev->hw); 1017 1018 if (likely(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ])) { 1019 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->channels); 1020 kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->bitrates); 1021 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = NULL; 1022 rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = NULL; 1023 } 1024 1025 kfree(rt2x00dev->spec.channels_info); 1026} 1027 1028static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev) 1029{ 1030 struct hw_mode_spec *spec = &rt2x00dev->spec; 1031 int status; 1032 1033 if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags)) 1034 return 0; 1035 1036 /* 1037 * Initialize HW modes. 1038 */ 1039 status = rt2x00lib_probe_hw_modes(rt2x00dev, spec); 1040 if (status) 1041 return status; 1042 1043 /* 1044 * Initialize HW fields. 1045 */ 1046 rt2x00dev->hw->queues = rt2x00dev->ops->tx_queues; 1047 1048 /* 1049 * Initialize extra TX headroom required. 1050 */ 1051 rt2x00dev->hw->extra_tx_headroom = 1052 max_t(unsigned int, IEEE80211_TX_STATUS_HEADROOM, 1053 rt2x00dev->ops->extra_tx_headroom); 1054 1055 /* 1056 * Take TX headroom required for alignment into account. 1057 */ 1058 if (test_bit(REQUIRE_L2PAD, &rt2x00dev->cap_flags)) 1059 rt2x00dev->hw->extra_tx_headroom += RT2X00_L2PAD_SIZE; 1060 else if (test_bit(REQUIRE_DMA, &rt2x00dev->cap_flags)) 1061 rt2x00dev->hw->extra_tx_headroom += RT2X00_ALIGN_SIZE; 1062 1063 /* 1064 * Tell mac80211 about the size of our private STA structure. 1065 */ 1066 rt2x00dev->hw->sta_data_size = sizeof(struct rt2x00_sta); 1067 1068 /* 1069 * Allocate tx status FIFO for driver use. 1070 */ 1071 if (test_bit(REQUIRE_TXSTATUS_FIFO, &rt2x00dev->cap_flags)) { 1072 /* 1073 * Allocate the txstatus fifo. In the worst case the tx 1074 * status fifo has to hold the tx status of all entries 1075 * in all tx queues. Hence, calculate the kfifo size as 1076 * tx_queues * entry_num and round up to the nearest 1077 * power of 2. 1078 */ 1079 int kfifo_size = 1080 roundup_pow_of_two(rt2x00dev->ops->tx_queues * 1081 rt2x00dev->ops->tx->entry_num * 1082 sizeof(u32)); 1083 1084 status = kfifo_alloc(&rt2x00dev->txstatus_fifo, kfifo_size, 1085 GFP_KERNEL); 1086 if (status) 1087 return status; 1088 } 1089 1090 /* 1091 * Initialize tasklets if used by the driver. Tasklets are 1092 * disabled until the interrupts are turned on. The driver 1093 * has to handle that. 1094 */ 1095#define RT2X00_TASKLET_INIT(taskletname) \ 1096 if (rt2x00dev->ops->lib->taskletname) { \ 1097 tasklet_init(&rt2x00dev->taskletname, \ 1098 rt2x00dev->ops->lib->taskletname, \ 1099 (unsigned long)rt2x00dev); \ 1100 } 1101 1102 RT2X00_TASKLET_INIT(txstatus_tasklet); 1103 RT2X00_TASKLET_INIT(pretbtt_tasklet); 1104 RT2X00_TASKLET_INIT(tbtt_tasklet); 1105 RT2X00_TASKLET_INIT(rxdone_tasklet); 1106 RT2X00_TASKLET_INIT(autowake_tasklet); 1107 1108#undef RT2X00_TASKLET_INIT 1109 1110 /* 1111 * Register HW. 1112 */ 1113 status = ieee80211_register_hw(rt2x00dev->hw); 1114 if (status) 1115 return status; 1116 1117 set_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags); 1118 1119 return 0; 1120} 1121 1122/* 1123 * Initialization/uninitialization handlers. 1124 */ 1125static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev) 1126{ 1127 if (!test_and_clear_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags)) 1128 return; 1129 1130 /* 1131 * Unregister extra components. 1132 */ 1133 rt2x00rfkill_unregister(rt2x00dev); 1134 1135 /* 1136 * Allow the HW to uninitialize. 1137 */ 1138 rt2x00dev->ops->lib->uninitialize(rt2x00dev); 1139 1140 /* 1141 * Free allocated queue entries. 1142 */ 1143 rt2x00queue_uninitialize(rt2x00dev); 1144} 1145 1146static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev) 1147{ 1148 int status; 1149 1150 if (test_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags)) 1151 return 0; 1152 1153 /* 1154 * Allocate all queue entries. 1155 */ 1156 status = rt2x00queue_initialize(rt2x00dev); 1157 if (status) 1158 return status; 1159 1160 /* 1161 * Initialize the device. 1162 */ 1163 status = rt2x00dev->ops->lib->initialize(rt2x00dev); 1164 if (status) { 1165 rt2x00queue_uninitialize(rt2x00dev); 1166 return status; 1167 } 1168 1169 set_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags); 1170 1171 return 0; 1172} 1173 1174int rt2x00lib_start(struct rt2x00_dev *rt2x00dev) 1175{ 1176 int retval; 1177 1178 if (test_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags)) 1179 return 0; 1180 1181 /* 1182 * If this is the first interface which is added, 1183 * we should load the firmware now. 1184 */ 1185 retval = rt2x00lib_load_firmware(rt2x00dev); 1186 if (retval) 1187 return retval; 1188 1189 /* 1190 * Initialize the device. 1191 */ 1192 retval = rt2x00lib_initialize(rt2x00dev); 1193 if (retval) 1194 return retval; 1195 1196 rt2x00dev->intf_ap_count = 0; 1197 rt2x00dev->intf_sta_count = 0; 1198 rt2x00dev->intf_associated = 0; 1199 1200 /* Enable the radio */ 1201 retval = rt2x00lib_enable_radio(rt2x00dev); 1202 if (retval) 1203 return retval; 1204 1205 set_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags); 1206 1207 return 0; 1208} 1209 1210void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev) 1211{ 1212 if (!test_and_clear_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags)) 1213 return; 1214 1215 /* 1216 * Perhaps we can add something smarter here, 1217 * but for now just disabling the radio should do. 1218 */ 1219 rt2x00lib_disable_radio(rt2x00dev); 1220 1221 rt2x00dev->intf_ap_count = 0; 1222 rt2x00dev->intf_sta_count = 0; 1223 rt2x00dev->intf_associated = 0; 1224} 1225 1226static inline void rt2x00lib_set_if_combinations(struct rt2x00_dev *rt2x00dev) 1227{ 1228 struct ieee80211_iface_limit *if_limit; 1229 struct ieee80211_iface_combination *if_combination; 1230 1231 if (rt2x00dev->ops->max_ap_intf < 2) 1232 return; 1233 1234 /* 1235 * Build up AP interface limits structure. 1236 */ 1237 if_limit = &rt2x00dev->if_limits_ap; 1238 if_limit->max = rt2x00dev->ops->max_ap_intf; 1239 if_limit->types = BIT(NL80211_IFTYPE_AP); 1240#ifdef CONFIG_MAC80211_MESH 1241 if_limit->types |= BIT(NL80211_IFTYPE_MESH_POINT); 1242#endif 1243 1244 /* 1245 * Build up AP interface combinations structure. 1246 */ 1247 if_combination = &rt2x00dev->if_combinations[IF_COMB_AP]; 1248 if_combination->limits = if_limit; 1249 if_combination->n_limits = 1; 1250 if_combination->max_interfaces = if_limit->max; 1251 if_combination->num_different_channels = 1; 1252 1253 /* 1254 * Finally, specify the possible combinations to mac80211. 1255 */ 1256 rt2x00dev->hw->wiphy->iface_combinations = rt2x00dev->if_combinations; 1257 rt2x00dev->hw->wiphy->n_iface_combinations = 1; 1258} 1259 1260/* 1261 * driver allocation handlers. 1262 */ 1263int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev) 1264{ 1265 int retval = -ENOMEM; 1266 1267 /* 1268 * Set possible interface combinations. 1269 */ 1270 rt2x00lib_set_if_combinations(rt2x00dev); 1271 1272 /* 1273 * Allocate the driver data memory, if necessary. 1274 */ 1275 if (rt2x00dev->ops->drv_data_size > 0) { 1276 rt2x00dev->drv_data = kzalloc(rt2x00dev->ops->drv_data_size, 1277 GFP_KERNEL); 1278 if (!rt2x00dev->drv_data) { 1279 retval = -ENOMEM; 1280 goto exit; 1281 } 1282 } 1283 1284 spin_lock_init(&rt2x00dev->irqmask_lock); 1285 mutex_init(&rt2x00dev->csr_mutex); 1286 INIT_LIST_HEAD(&rt2x00dev->bar_list); 1287 spin_lock_init(&rt2x00dev->bar_list_lock); 1288 1289 set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags); 1290 1291 /* 1292 * Make room for rt2x00_intf inside the per-interface 1293 * structure ieee80211_vif. 1294 */ 1295 rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf); 1296 1297 /* 1298 * rt2x00 devices can only use the last n bits of the MAC address 1299 * for virtual interfaces. 1300 */ 1301 rt2x00dev->hw->wiphy->addr_mask[ETH_ALEN - 1] = 1302 (rt2x00dev->ops->max_ap_intf - 1); 1303 1304 /* 1305 * Determine which operating modes are supported, all modes 1306 * which require beaconing, depend on the availability of 1307 * beacon entries. 1308 */ 1309 rt2x00dev->hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION); 1310 if (rt2x00dev->ops->bcn->entry_num > 0) 1311 rt2x00dev->hw->wiphy->interface_modes |= 1312 BIT(NL80211_IFTYPE_ADHOC) | 1313 BIT(NL80211_IFTYPE_AP) | 1314#ifdef CONFIG_MAC80211_MESH 1315 BIT(NL80211_IFTYPE_MESH_POINT) | 1316#endif 1317 BIT(NL80211_IFTYPE_WDS); 1318 1319 rt2x00dev->hw->wiphy->flags |= WIPHY_FLAG_IBSS_RSN; 1320 1321 /* 1322 * Initialize work. 1323 */ 1324 rt2x00dev->workqueue = 1325 alloc_ordered_workqueue(wiphy_name(rt2x00dev->hw->wiphy), 0); 1326 if (!rt2x00dev->workqueue) { 1327 retval = -ENOMEM; 1328 goto exit; 1329 } 1330 1331 INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled); 1332 INIT_DELAYED_WORK(&rt2x00dev->autowakeup_work, rt2x00lib_autowakeup); 1333 INIT_WORK(&rt2x00dev->sleep_work, rt2x00lib_sleep); 1334 1335 /* 1336 * Let the driver probe the device to detect the capabilities. 1337 */ 1338 retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev); 1339 if (retval) { 1340 ERROR(rt2x00dev, "Failed to allocate device.\n"); 1341 goto exit; 1342 } 1343 1344 /* 1345 * Allocate queue array. 1346 */ 1347 retval = rt2x00queue_allocate(rt2x00dev); 1348 if (retval) 1349 goto exit; 1350 1351 /* 1352 * Initialize ieee80211 structure. 1353 */ 1354 retval = rt2x00lib_probe_hw(rt2x00dev); 1355 if (retval) { 1356 ERROR(rt2x00dev, "Failed to initialize hw.\n"); 1357 goto exit; 1358 } 1359 1360 /* 1361 * Register extra components. 1362 */ 1363 rt2x00link_register(rt2x00dev); 1364 rt2x00leds_register(rt2x00dev); 1365 rt2x00debug_register(rt2x00dev); 1366 rt2x00rfkill_register(rt2x00dev); 1367 1368 return 0; 1369 1370exit: 1371 rt2x00lib_remove_dev(rt2x00dev); 1372 1373 return retval; 1374} 1375EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev); 1376 1377void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev) 1378{ 1379 clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags); 1380 1381 /* 1382 * Disable radio. 1383 */ 1384 rt2x00lib_disable_radio(rt2x00dev); 1385 1386 /* 1387 * Stop all work. 1388 */ 1389 cancel_work_sync(&rt2x00dev->intf_work); 1390 cancel_delayed_work_sync(&rt2x00dev->autowakeup_work); 1391 cancel_work_sync(&rt2x00dev->sleep_work); 1392 if (rt2x00_is_usb(rt2x00dev)) { 1393 hrtimer_cancel(&rt2x00dev->txstatus_timer); 1394 cancel_work_sync(&rt2x00dev->rxdone_work); 1395 cancel_work_sync(&rt2x00dev->txdone_work); 1396 } 1397 if (rt2x00dev->workqueue) 1398 destroy_workqueue(rt2x00dev->workqueue); 1399 1400 /* 1401 * Free the tx status fifo. 1402 */ 1403 kfifo_free(&rt2x00dev->txstatus_fifo); 1404 1405 /* 1406 * Kill the tx status tasklet. 1407 */ 1408 tasklet_kill(&rt2x00dev->txstatus_tasklet); 1409 tasklet_kill(&rt2x00dev->pretbtt_tasklet); 1410 tasklet_kill(&rt2x00dev->tbtt_tasklet); 1411 tasklet_kill(&rt2x00dev->rxdone_tasklet); 1412 tasklet_kill(&rt2x00dev->autowake_tasklet); 1413 1414 /* 1415 * Uninitialize device. 1416 */ 1417 rt2x00lib_uninitialize(rt2x00dev); 1418 1419 /* 1420 * Free extra components 1421 */ 1422 rt2x00debug_deregister(rt2x00dev); 1423 rt2x00leds_unregister(rt2x00dev); 1424 1425 /* 1426 * Free ieee80211_hw memory. 1427 */ 1428 rt2x00lib_remove_hw(rt2x00dev); 1429 1430 /* 1431 * Free firmware image. 1432 */ 1433 rt2x00lib_free_firmware(rt2x00dev); 1434 1435 /* 1436 * Free queue structures. 1437 */ 1438 rt2x00queue_free(rt2x00dev); 1439 1440 /* 1441 * Free the driver data. 1442 */ 1443 if (rt2x00dev->drv_data) 1444 kfree(rt2x00dev->drv_data); 1445} 1446EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev); 1447 1448/* 1449 * Device state handlers 1450 */ 1451#ifdef CONFIG_PM 1452int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state) 1453{ 1454 DEBUG(rt2x00dev, "Going to sleep.\n"); 1455 1456 /* 1457 * Prevent mac80211 from accessing driver while suspended. 1458 */ 1459 if (!test_and_clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags)) 1460 return 0; 1461 1462 /* 1463 * Cleanup as much as possible. 1464 */ 1465 rt2x00lib_uninitialize(rt2x00dev); 1466 1467 /* 1468 * Suspend/disable extra components. 1469 */ 1470 rt2x00leds_suspend(rt2x00dev); 1471 rt2x00debug_deregister(rt2x00dev); 1472 1473 /* 1474 * Set device mode to sleep for power management, 1475 * on some hardware this call seems to consistently fail. 1476 * From the specifications it is hard to tell why it fails, 1477 * and if this is a "bad thing". 1478 * Overall it is safe to just ignore the failure and 1479 * continue suspending. The only downside is that the 1480 * device will not be in optimal power save mode, but with 1481 * the radio and the other components already disabled the 1482 * device is as good as disabled. 1483 */ 1484 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP)) 1485 WARNING(rt2x00dev, "Device failed to enter sleep state, " 1486 "continue suspending.\n"); 1487 1488 return 0; 1489} 1490EXPORT_SYMBOL_GPL(rt2x00lib_suspend); 1491 1492int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev) 1493{ 1494 DEBUG(rt2x00dev, "Waking up.\n"); 1495 1496 /* 1497 * Restore/enable extra components. 1498 */ 1499 rt2x00debug_register(rt2x00dev); 1500 rt2x00leds_resume(rt2x00dev); 1501 1502 /* 1503 * We are ready again to receive requests from mac80211. 1504 */ 1505 set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags); 1506 1507 return 0; 1508} 1509EXPORT_SYMBOL_GPL(rt2x00lib_resume); 1510#endif /* CONFIG_PM */ 1511 1512/* 1513 * rt2x00lib module information. 1514 */ 1515MODULE_AUTHOR(DRV_PROJECT); 1516MODULE_VERSION(DRV_VERSION); 1517MODULE_DESCRIPTION("rt2x00 library"); 1518MODULE_LICENSE("GPL");